PR c++/69164
[official-gcc.git] / gcc / shrink-wrap.c
blob84abd6b783bf6acdad18a0d9f84e361568f679d5
1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles shrink-wrapping related optimizations. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "tm_p.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "output.h"
35 #include "tree-pass.h"
36 #include "cfgrtl.h"
37 #include "params.h"
38 #include "bb-reorder.h"
39 #include "shrink-wrap.h"
40 #include "regcprop.h"
41 #include "rtl-iter.h"
44 /* Return true if INSN requires the stack frame to be set up.
45 PROLOGUE_USED contains the hard registers used in the function
46 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
47 prologue to set up for the function. */
48 bool
49 requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
50 HARD_REG_SET set_up_by_prologue)
52 df_ref def, use;
53 HARD_REG_SET hardregs;
54 unsigned regno;
56 if (CALL_P (insn))
57 return !SIBLING_CALL_P (insn);
59 /* We need a frame to get the unique CFA expected by the unwinder. */
60 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
61 return true;
63 CLEAR_HARD_REG_SET (hardregs);
64 FOR_EACH_INSN_DEF (def, insn)
66 rtx dreg = DF_REF_REG (def);
68 if (!REG_P (dreg))
69 continue;
71 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
73 if (hard_reg_set_intersect_p (hardregs, prologue_used))
74 return true;
75 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
76 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
77 if (TEST_HARD_REG_BIT (hardregs, regno)
78 && df_regs_ever_live_p (regno))
79 return true;
81 FOR_EACH_INSN_USE (use, insn)
83 rtx reg = DF_REF_REG (use);
85 if (!REG_P (reg))
86 continue;
88 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
89 REGNO (reg));
91 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
92 return true;
94 return false;
97 /* See whether there has a single live edge from BB, which dest uses
98 [REGNO, END_REGNO). Return the live edge if its dest bb has
99 one or two predecessors. Otherwise return NULL. */
101 static edge
102 live_edge_for_reg (basic_block bb, int regno, int end_regno)
104 edge e, live_edge;
105 edge_iterator ei;
106 bitmap live;
107 int i;
109 live_edge = NULL;
110 FOR_EACH_EDGE (e, ei, bb->succs)
112 live = df_get_live_in (e->dest);
113 for (i = regno; i < end_regno; i++)
114 if (REGNO_REG_SET_P (live, i))
116 if (live_edge && live_edge != e)
117 return NULL;
118 live_edge = e;
122 /* We can sometimes encounter dead code. Don't try to move it
123 into the exit block. */
124 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
125 return NULL;
127 /* Reject targets of abnormal edges. This is needed for correctness
128 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
129 exception edges even though it is generally treated as call-saved
130 for the majority of the compilation. Moving across abnormal edges
131 isn't going to be interesting for shrink-wrap usage anyway. */
132 if (live_edge->flags & EDGE_ABNORMAL)
133 return NULL;
135 /* When live_edge->dest->preds == 2, we can create a new block on
136 the edge to make it meet the requirement. */
137 if (EDGE_COUNT (live_edge->dest->preds) > 2)
138 return NULL;
140 return live_edge;
143 /* Try to move INSN from BB to a successor. Return true on success.
144 USES and DEFS are the set of registers that are used and defined
145 after INSN in BB. SPLIT_P indicates whether a live edge from BB
146 is splitted or not. */
148 static bool
149 move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
150 const HARD_REG_SET uses,
151 const HARD_REG_SET defs,
152 bool *split_p)
154 rtx set, src, dest;
155 bitmap live_out, live_in, bb_uses, bb_defs;
156 unsigned int i, dregno, end_dregno;
157 unsigned int sregno = FIRST_PSEUDO_REGISTER;
158 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
159 basic_block next_block;
160 edge live_edge;
162 /* Look for a simple register assignment. We don't use single_set here
163 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
164 destinations. */
165 if (!INSN_P (insn))
166 return false;
167 set = PATTERN (insn);
168 if (GET_CODE (set) != SET)
169 return false;
170 src = SET_SRC (set);
171 dest = SET_DEST (set);
173 /* For the destination, we want only a register. Also disallow STACK
174 or FRAME related adjustments. They are likely part of the prologue,
175 so keep them in the entry block. */
176 if (!REG_P (dest)
177 || dest == stack_pointer_rtx
178 || dest == frame_pointer_rtx
179 || dest == hard_frame_pointer_rtx)
180 return false;
182 /* For the source, we want one of:
183 (1) A (non-overlapping) register
184 (2) A constant,
185 (3) An expression involving no more than one register.
187 That last point comes from the code following, which was originally
188 written to handle only register move operations, and still only handles
189 a single source register when checking for overlaps. Happily, the
190 same checks can be applied to expressions like (plus reg const). */
192 if (CONSTANT_P (src))
194 else if (!REG_P (src))
196 rtx src_inner = NULL_RTX;
198 if (can_throw_internal (insn))
199 return false;
201 subrtx_var_iterator::array_type array;
202 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
204 rtx x = *iter;
205 switch (GET_RTX_CLASS (GET_CODE (x)))
207 case RTX_CONST_OBJ:
208 case RTX_COMPARE:
209 case RTX_COMM_COMPARE:
210 case RTX_BIN_ARITH:
211 case RTX_COMM_ARITH:
212 case RTX_UNARY:
213 case RTX_TERNARY:
214 /* Constant or expression. Continue. */
215 break;
217 case RTX_OBJ:
218 case RTX_EXTRA:
219 switch (GET_CODE (x))
221 case UNSPEC:
222 case SUBREG:
223 case STRICT_LOW_PART:
224 case PC:
225 case LO_SUM:
226 /* Ok. Continue. */
227 break;
229 case REG:
230 /* Fail if we see a second inner register. */
231 if (src_inner != NULL)
232 return false;
233 src_inner = x;
234 break;
236 default:
237 return false;
239 break;
241 default:
242 return false;
246 if (src_inner != NULL)
247 src = src_inner;
250 /* Make sure that the source register isn't defined later in BB. */
251 if (REG_P (src))
253 sregno = REGNO (src);
254 end_sregno = END_REGNO (src);
255 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
256 return false;
259 /* Make sure that the destination register isn't referenced later in BB. */
260 dregno = REGNO (dest);
261 end_dregno = END_REGNO (dest);
262 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
263 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
264 return false;
266 /* See whether there is a successor block to which we could move INSN. */
267 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
268 if (!live_edge)
269 return false;
271 next_block = live_edge->dest;
272 /* Create a new basic block on the edge. */
273 if (EDGE_COUNT (next_block->preds) == 2)
275 /* split_edge for a block with only one successor is meaningless. */
276 if (EDGE_COUNT (bb->succs) == 1)
277 return false;
279 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
280 if (!df_live)
281 return false;
283 basic_block old_dest = live_edge->dest;
284 next_block = split_edge (live_edge);
286 /* We create a new basic block. Call df_grow_bb_info to make sure
287 all data structures are allocated. */
288 df_grow_bb_info (df_live);
290 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
291 df_get_live_in (old_dest));
292 df_set_bb_dirty (next_block);
294 /* We should not split more than once for a function. */
295 if (*split_p)
296 return false;
298 *split_p = true;
301 /* At this point we are committed to moving INSN, but let's try to
302 move it as far as we can. */
305 live_out = df_get_live_out (bb);
306 live_in = df_get_live_in (next_block);
307 bb = next_block;
309 /* Check whether BB uses DEST or clobbers DEST. We need to add
310 INSN to BB if so. Either way, DEST is no longer live on entry,
311 except for any part that overlaps SRC (next loop). */
312 bb_uses = &DF_LR_BB_INFO (bb)->use;
313 bb_defs = &DF_LR_BB_INFO (bb)->def;
314 if (df_live)
316 for (i = dregno; i < end_dregno; i++)
318 if (*split_p
319 || REGNO_REG_SET_P (bb_uses, i)
320 || REGNO_REG_SET_P (bb_defs, i)
321 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
322 next_block = NULL;
323 CLEAR_REGNO_REG_SET (live_out, i);
324 CLEAR_REGNO_REG_SET (live_in, i);
327 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
328 Either way, SRC is now live on entry. */
329 for (i = sregno; i < end_sregno; i++)
331 if (*split_p
332 || REGNO_REG_SET_P (bb_defs, i)
333 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
334 next_block = NULL;
335 SET_REGNO_REG_SET (live_out, i);
336 SET_REGNO_REG_SET (live_in, i);
339 else
341 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
342 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
343 at -O1, just give up searching NEXT_BLOCK. */
344 next_block = NULL;
345 for (i = dregno; i < end_dregno; i++)
347 CLEAR_REGNO_REG_SET (live_out, i);
348 CLEAR_REGNO_REG_SET (live_in, i);
351 for (i = sregno; i < end_sregno; i++)
353 SET_REGNO_REG_SET (live_out, i);
354 SET_REGNO_REG_SET (live_in, i);
358 /* If we don't need to add the move to BB, look for a single
359 successor block. */
360 if (next_block)
362 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
363 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
364 break;
365 next_block = live_edge->dest;
368 while (next_block);
370 /* For the new created basic block, there is no dataflow info at all.
371 So skip the following dataflow update and check. */
372 if (!(*split_p))
374 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
375 (next loop). */
376 for (i = dregno; i < end_dregno; i++)
378 CLEAR_REGNO_REG_SET (bb_uses, i);
379 SET_REGNO_REG_SET (bb_defs, i);
382 /* BB now uses SRC. */
383 for (i = sregno; i < end_sregno; i++)
384 SET_REGNO_REG_SET (bb_uses, i);
387 emit_insn_after (PATTERN (insn), bb_note (bb));
388 delete_insn (insn);
389 return true;
392 /* Look for register copies in the first block of the function, and move
393 them down into successor blocks if the register is used only on one
394 path. This exposes more opportunities for shrink-wrapping. These
395 kinds of sets often occur when incoming argument registers are moved
396 to call-saved registers because their values are live across one or
397 more calls during the function. */
399 static void
400 prepare_shrink_wrap (basic_block entry_block)
402 rtx_insn *insn, *curr;
403 rtx x;
404 HARD_REG_SET uses, defs;
405 df_ref def, use;
406 bool split_p = false;
408 if (JUMP_P (BB_END (entry_block)))
410 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
411 to sink the copies from parameter to callee saved register out of
412 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
413 to release some dependences. */
414 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
417 CLEAR_HARD_REG_SET (uses);
418 CLEAR_HARD_REG_SET (defs);
419 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
420 if (NONDEBUG_INSN_P (insn)
421 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
422 &split_p))
424 /* Add all defined registers to DEFs. */
425 FOR_EACH_INSN_DEF (def, insn)
427 x = DF_REF_REG (def);
428 if (REG_P (x) && HARD_REGISTER_P (x))
429 SET_HARD_REG_BIT (defs, REGNO (x));
432 /* Add all used registers to USESs. */
433 FOR_EACH_INSN_USE (use, insn)
435 x = DF_REF_REG (use);
436 if (REG_P (x) && HARD_REGISTER_P (x))
437 SET_HARD_REG_BIT (uses, REGNO (x));
442 /* Return whether basic block PRO can get the prologue. It can not if it
443 has incoming complex edges that need a prologue inserted (we make a new
444 block for the prologue, so those edges would need to be redirected, which
445 does not work). It also can not if there exist registers live on entry
446 to PRO that are clobbered by the prologue. */
448 static bool
449 can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
451 edge e;
452 edge_iterator ei;
453 FOR_EACH_EDGE (e, ei, pro->preds)
454 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
455 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
456 return false;
458 HARD_REG_SET live;
459 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
460 if (hard_reg_set_intersect_p (live, prologue_clobbered))
461 return false;
463 return true;
466 /* Return whether we can duplicate basic block BB for shrink wrapping. We
467 cannot if the block cannot be duplicated at all, or if any of its incoming
468 edges are complex and come from a block that does not require a prologue
469 (we cannot redirect such edges), or if the block is too big to copy.
470 PRO is the basic block before which we would put the prologue, MAX_SIZE is
471 the maximum size block we allow to be copied. */
473 static bool
474 can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
476 if (!can_duplicate_block_p (bb))
477 return false;
479 edge e;
480 edge_iterator ei;
481 FOR_EACH_EDGE (e, ei, bb->preds)
482 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
483 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
484 return false;
486 unsigned size = 0;
488 rtx_insn *insn;
489 FOR_BB_INSNS (bb, insn)
490 if (NONDEBUG_INSN_P (insn))
492 size += get_attr_min_length (insn);
493 if (size > max_size)
494 return false;
497 return true;
500 /* If the source of edge E has more than one successor, the verifier for
501 branch probabilities gets confused by the fake edges we make where
502 simple_return statements will be inserted later (because those are not
503 marked as fallthrough edges). Fix this by creating an extra block just
504 for that fallthrough. */
506 static edge
507 fix_fake_fallthrough_edge (edge e)
509 if (EDGE_COUNT (e->src->succs) <= 1)
510 return e;
512 basic_block old_bb = e->src;
513 rtx_insn *end = BB_END (old_bb);
514 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
515 basic_block new_bb = create_basic_block (note, note, old_bb);
516 BB_COPY_PARTITION (new_bb, old_bb);
517 BB_END (old_bb) = end;
519 redirect_edge_succ (e, new_bb);
520 e->flags |= EDGE_FALLTHRU;
521 e->flags &= ~EDGE_FAKE;
523 return make_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
526 /* Try to perform a kind of shrink-wrapping, making sure the
527 prologue/epilogue is emitted only around those parts of the
528 function that require it.
530 There will be exactly one prologue, and it will be executed either
531 zero or one time, on any path. Depending on where the prologue is
532 placed, some of the basic blocks can be reached via both paths with
533 and without a prologue. Such blocks will be duplicated here, and the
534 edges changed to match.
536 Paths that go to the exit without going through the prologue will use
537 a simple_return instead of the epilogue. We maximize the number of
538 those, making sure to only duplicate blocks that can be duplicated.
539 If the prologue can then still be placed in multiple locations, we
540 place it as early as possible.
542 An example, where we duplicate blocks with control flow (legend:
543 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
544 be taken to point down or to the right, to simplify the diagram; here,
545 block 3 needs a prologue, the rest does not):
551 |\ |\
552 | 3 becomes | 3
553 |/ | \
554 4 7 4
555 |\ |\ |\
556 | 5 | 8 | 5
557 |/ |/ |/
558 6 9 6
559 | | |
560 R S R
563 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
564 edge 2->3).
566 Another example, where part of a loop is duplicated (again, bb 3 is
567 the only block that needs a prologue):
570 B 3<-- B ->3<--
571 | | | | | | |
572 | v | becomes | | v |
573 2---4--- 2---5-- 4---
574 | | |
575 R S R
578 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
580 ENTRY_EDGE is the edge where the prologue will be placed, possibly
581 changed by this function. BB_WITH is a bitmap that, if we do shrink-
582 wrap, will on return contain the interesting blocks that run with
583 prologue. PROLOGUE_SEQ is the prologue we will insert. */
585 void
586 try_shrink_wrapping (edge *entry_edge, bitmap_head *bb_with,
587 rtx_insn *prologue_seq)
589 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
590 no sense to shrink-wrap: then do not shrink-wrap! */
592 if (!SHRINK_WRAPPING_ENABLED)
593 return;
595 if (crtl->profile && !targetm.profile_before_prologue ())
596 return;
598 if (crtl->calls_eh_return)
599 return;
601 bool empty_prologue = true;
602 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
603 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
605 empty_prologue = false;
606 break;
608 if (empty_prologue)
609 return;
611 /* Move some code down to expose more shrink-wrapping opportunities. */
613 basic_block entry = (*entry_edge)->dest;
614 prepare_shrink_wrap (entry);
616 if (dump_file)
617 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
619 /* Compute the registers set and used in the prologue. */
621 HARD_REG_SET prologue_clobbered, prologue_used;
622 CLEAR_HARD_REG_SET (prologue_clobbered);
623 CLEAR_HARD_REG_SET (prologue_used);
624 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
625 if (NONDEBUG_INSN_P (insn))
627 HARD_REG_SET this_used;
628 CLEAR_HARD_REG_SET (this_used);
629 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
630 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
631 IOR_HARD_REG_SET (prologue_used, this_used);
632 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
634 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
635 if (frame_pointer_needed)
636 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
638 /* Find out what registers are set up by the prologue; any use of these
639 cannot happen before the prologue. */
641 struct hard_reg_set_container set_up_by_prologue;
642 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
643 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
644 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
645 if (frame_pointer_needed)
646 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
647 HARD_FRAME_POINTER_REGNUM);
648 if (pic_offset_table_rtx
649 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
650 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
651 PIC_OFFSET_TABLE_REGNUM);
652 if (crtl->drap_reg)
653 add_to_hard_reg_set (&set_up_by_prologue.set,
654 GET_MODE (crtl->drap_reg),
655 REGNO (crtl->drap_reg));
656 if (targetm.set_up_by_prologue)
657 targetm.set_up_by_prologue (&set_up_by_prologue);
659 /* We will insert the prologue before the basic block PRO. PRO should
660 dominate all basic blocks that need the prologue to be executed
661 before them. First, make PRO the "tightest wrap" possible. */
663 calculate_dominance_info (CDI_DOMINATORS);
665 basic_block pro = 0;
667 basic_block bb;
668 edge e;
669 edge_iterator ei;
670 FOR_EACH_BB_FN (bb, cfun)
672 rtx_insn *insn;
673 FOR_BB_INSNS (bb, insn)
674 if (NONDEBUG_INSN_P (insn)
675 && requires_stack_frame_p (insn, prologue_used,
676 set_up_by_prologue.set))
678 if (dump_file)
679 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
680 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
681 break;
685 /* If nothing needs a prologue, just put it at the start. This really
686 shouldn't happen, but we cannot fix it here. */
688 if (pro == 0)
690 if (dump_file)
691 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
692 "putting it at the start.\n");
693 pro = entry;
696 if (dump_file)
697 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
698 pro->index);
700 /* Now see if we can put the prologue at the start of PRO. Putting it
701 there might require duplicating a block that cannot be duplicated,
702 or in some cases we cannot insert the prologue there at all. If PRO
703 wont't do, try again with the immediate dominator of PRO, and so on.
705 The blocks that need duplicating are those reachable from PRO but
706 not dominated by it. We keep in BB_WITH a bitmap of the blocks
707 reachable from PRO that we already found, and in VEC a stack of
708 those we still need to consider (to find successors). */
710 bitmap_set_bit (bb_with, pro->index);
712 vec<basic_block> vec;
713 vec.create (n_basic_blocks_for_fn (cfun));
714 vec.quick_push (pro);
716 unsigned max_grow_size = get_uncond_jump_length ();
717 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
719 while (!vec.is_empty () && pro != entry)
721 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
723 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
725 if (bitmap_set_bit (bb_with, pro->index))
726 vec.quick_push (pro);
729 basic_block bb = vec.pop ();
730 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
731 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
733 gcc_assert (pro != entry);
735 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
737 if (bitmap_set_bit (bb_with, pro->index))
738 vec.quick_push (pro);
741 FOR_EACH_EDGE (e, ei, bb->succs)
742 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
743 && bitmap_set_bit (bb_with, e->dest->index))
744 vec.quick_push (e->dest);
747 if (dump_file)
748 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
749 pro->index);
751 /* If we can move PRO back without having to duplicate more blocks, do so.
752 We do this because putting the prologue earlier is better for scheduling.
754 We can move back to a block PRE if every path from PRE will eventually
755 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
756 to dominate every block reachable from itself. We keep in BB_TMP a
757 bitmap of the blocks reachable from PRE that we already found, and in
758 VEC a stack of those we still need to consider.
760 Any block reachable from PRE is also reachable from all predecessors
761 of PRE, so if we find we need to move PRE back further we can leave
762 everything not considered so far on the stack. Any block dominated
763 by PRE is also dominated by all other dominators of PRE, so anything
764 found good for some PRE does not need to be reconsidered later.
766 We don't need to update BB_WITH because none of the new blocks found
767 can jump to a block that does not need the prologue. */
769 if (pro != entry)
771 calculate_dominance_info (CDI_POST_DOMINATORS);
773 bitmap bb_tmp = BITMAP_ALLOC (NULL);
774 bitmap_copy (bb_tmp, bb_with);
775 basic_block last_ok = pro;
776 vec.truncate (0);
778 while (pro != entry)
780 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
781 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
782 break;
784 if (bitmap_set_bit (bb_tmp, pre->index))
785 vec.quick_push (pre);
787 bool ok = true;
788 while (!vec.is_empty ())
790 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
792 ok = false;
793 break;
796 basic_block bb = vec.pop ();
797 FOR_EACH_EDGE (e, ei, bb->succs)
798 if (bitmap_set_bit (bb_tmp, e->dest->index))
799 vec.quick_push (e->dest);
802 if (ok && can_get_prologue (pre, prologue_clobbered))
803 last_ok = pre;
805 pro = pre;
808 pro = last_ok;
810 BITMAP_FREE (bb_tmp);
811 free_dominance_info (CDI_POST_DOMINATORS);
814 vec.release ();
816 if (dump_file)
817 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
818 pro->index);
820 if (pro == entry)
822 free_dominance_info (CDI_DOMINATORS);
823 return;
826 /* Compute what fraction of the frequency and count of the blocks that run
827 both with and without prologue are for running with prologue. This gives
828 the correct answer for reducible flow graphs; for irreducible flow graphs
829 our profile is messed up beyond repair anyway. */
831 gcov_type num = 0;
832 gcov_type den = 0;
834 FOR_EACH_EDGE (e, ei, pro->preds)
835 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
837 num += EDGE_FREQUENCY (e);
838 den += e->src->frequency;
841 if (den == 0)
842 den = 1;
844 /* All is okay, so do it. */
846 crtl->shrink_wrapped = true;
847 if (dump_file)
848 fprintf (dump_file, "Performing shrink-wrapping.\n");
850 /* Copy the blocks that can run both with and without prologue. The
851 originals run with prologue, the copies without. Store a pointer to
852 the copy in the ->aux field of the original. */
854 FOR_EACH_BB_FN (bb, cfun)
855 if (bitmap_bit_p (bb_with, bb->index)
856 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
858 basic_block dup = duplicate_block (bb, 0, 0);
860 bb->aux = dup;
862 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
863 emit_barrier_after_bb (dup);
865 if (EDGE_COUNT (dup->succs) == 0)
866 emit_barrier_after_bb (dup);
868 if (dump_file)
869 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
871 bb->frequency = RDIV (num * bb->frequency, den);
872 dup->frequency -= bb->frequency;
873 bb->count = RDIV (num * bb->count, den);
874 dup->count -= bb->count;
877 /* Now change the edges to point to the copies, where appropriate. */
879 FOR_EACH_BB_FN (bb, cfun)
880 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
882 basic_block src = bb;
883 if (bitmap_bit_p (bb_with, bb->index))
884 src = (basic_block) bb->aux;
886 FOR_EACH_EDGE (e, ei, src->succs)
888 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
889 continue;
891 if (bitmap_bit_p (bb_with, e->dest->index)
892 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
894 if (dump_file)
895 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
896 e->src->index, e->dest->index,
897 ((basic_block) e->dest->aux)->index);
898 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
900 else if (e->flags & EDGE_FALLTHRU
901 && bitmap_bit_p (bb_with, bb->index))
902 force_nonfallthru (e);
906 /* Also redirect the function entry edge if necessary. */
908 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
909 if (bitmap_bit_p (bb_with, e->dest->index)
910 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
912 basic_block split_bb = split_edge (e);
913 e = single_succ_edge (split_bb);
914 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
917 /* Change all the exits that should get a simple_return to FAKE.
918 They will be converted later. */
920 FOR_EACH_BB_FN (bb, cfun)
921 if (!bitmap_bit_p (bb_with, bb->index))
922 FOR_EACH_EDGE (e, ei, bb->succs)
923 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
925 e = fix_fake_fallthrough_edge (e);
927 e->flags &= ~EDGE_FALLTHRU;
928 if (!(e->flags & EDGE_SIBCALL))
929 e->flags |= EDGE_FAKE;
931 emit_barrier_after_bb (e->src);
934 /* Finally, we want a single edge to put the prologue on. Make a new
935 block before the PRO block; the edge beteen them is the edge we want.
936 Then redirect those edges into PRO that come from blocks without the
937 prologue, to point to the new block instead. The new prologue block
938 is put at the end of the insn chain. */
940 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
941 BB_COPY_PARTITION (new_bb, pro);
942 if (dump_file)
943 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
945 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
947 if (bitmap_bit_p (bb_with, e->src->index)
948 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
950 ei_next (&ei);
951 continue;
954 new_bb->count += RDIV (e->src->count * e->probability, REG_BR_PROB_BASE);
955 new_bb->frequency += EDGE_FREQUENCY (e);
957 redirect_edge_and_branch_force (e, new_bb);
958 if (dump_file)
959 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
962 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
963 force_nonfallthru (*entry_edge);
965 free_dominance_info (CDI_DOMINATORS);
968 /* If we're allowed to generate a simple return instruction, then by
969 definition we don't need a full epilogue. If the last basic
970 block before the exit block does not contain active instructions,
971 examine its predecessors and try to emit (conditional) return
972 instructions. */
974 edge
975 get_unconverted_simple_return (edge exit_fallthru_edge, bitmap_head bb_flags,
976 vec<edge> *unconverted_simple_returns,
977 rtx_insn **returnjump)
979 if (optimize)
981 unsigned i, last;
983 /* convert_jumps_to_returns may add to preds of the exit block
984 (but won't remove). Stop at end of current preds. */
985 last = EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
986 for (i = 0; i < last; i++)
988 edge e = EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, i);
989 if (LABEL_P (BB_HEAD (e->src))
990 && !bitmap_bit_p (&bb_flags, e->src->index)
991 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
992 *unconverted_simple_returns
993 = convert_jumps_to_returns (e->src, true,
994 *unconverted_simple_returns);
998 if (exit_fallthru_edge != NULL
999 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
1000 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
1002 basic_block last_bb;
1004 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
1005 *returnjump = BB_END (last_bb);
1006 exit_fallthru_edge = NULL;
1008 return exit_fallthru_edge;
1011 /* If there were branches to an empty LAST_BB which we tried to
1012 convert to conditional simple_returns, but couldn't for some
1013 reason, create a block to hold a simple_return insn and redirect
1014 those remaining edges. */
1016 void
1017 convert_to_simple_return (edge entry_edge, edge orig_entry_edge,
1018 bitmap_head bb_flags, rtx_insn *returnjump,
1019 vec<edge> unconverted_simple_returns)
1021 edge e;
1022 edge_iterator ei;
1024 if (!unconverted_simple_returns.is_empty ())
1026 basic_block simple_return_block_hot = NULL;
1027 basic_block simple_return_block_cold = NULL;
1028 edge pending_edge_hot = NULL;
1029 edge pending_edge_cold = NULL;
1030 basic_block exit_pred;
1031 int i;
1033 gcc_assert (entry_edge != orig_entry_edge);
1035 /* See if we can reuse the last insn that was emitted for the
1036 epilogue. */
1037 if (returnjump != NULL_RTX
1038 && JUMP_LABEL (returnjump) == simple_return_rtx)
1040 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
1041 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
1042 simple_return_block_hot = e->dest;
1043 else
1044 simple_return_block_cold = e->dest;
1047 /* Also check returns we might need to add to tail blocks. */
1048 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1049 if (EDGE_COUNT (e->src->preds) != 0
1050 && (e->flags & EDGE_FAKE) != 0
1051 && !bitmap_bit_p (&bb_flags, e->src->index))
1053 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
1054 pending_edge_hot = e;
1055 else
1056 pending_edge_cold = e;
1059 /* Save a pointer to the exit's predecessor BB for use in
1060 inserting new BBs at the end of the function. Do this
1061 after the call to split_block above which may split
1062 the original exit pred. */
1063 exit_pred = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1065 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
1067 basic_block *pdest_bb;
1068 edge pending;
1070 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
1072 pdest_bb = &simple_return_block_hot;
1073 pending = pending_edge_hot;
1075 else
1077 pdest_bb = &simple_return_block_cold;
1078 pending = pending_edge_cold;
1081 if (*pdest_bb == NULL && pending != NULL)
1083 emit_return_into_block (true, pending->src);
1084 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
1085 *pdest_bb = pending->src;
1087 else if (*pdest_bb == NULL)
1089 basic_block bb;
1091 bb = create_basic_block (NULL, NULL, exit_pred);
1092 BB_COPY_PARTITION (bb, e->src);
1093 rtx_insn *ret = targetm.gen_simple_return ();
1094 rtx_jump_insn *start = emit_jump_insn_after (ret, BB_END (bb));
1095 JUMP_LABEL (start) = simple_return_rtx;
1096 emit_barrier_after (start);
1098 *pdest_bb = bb;
1099 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
1101 redirect_edge_and_branch_force (e, *pdest_bb);
1103 unconverted_simple_returns.release ();
1106 if (entry_edge != orig_entry_edge)
1108 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1109 if (EDGE_COUNT (e->src->preds) != 0
1110 && (e->flags & EDGE_FAKE) != 0
1111 && !bitmap_bit_p (&bb_flags, e->src->index))
1113 e = fix_fake_fallthrough_edge (e);
1115 emit_return_into_block (true, e->src);
1116 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);