1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
33 #include "diagnostic-core.h"
34 #include "stor-layout.h"
39 #include "common/common-target.h"
42 static rtx
break_out_memory_refs (rtx
);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 trunc_int_for_mode (HOST_WIDE_INT c
, machine_mode mode
)
50 int width
= GET_MODE_PRECISION (mode
);
52 /* You want to truncate to a _what_? */
53 gcc_assert (SCALAR_INT_MODE_P (mode
)
54 || POINTER_BOUNDS_MODE_P (mode
));
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
58 return c
& 1 ? STORE_FLAG_VALUE
: 0;
60 /* Sign-extend for the requested mode. */
62 if (width
< HOST_BITS_PER_WIDE_INT
)
64 HOST_WIDE_INT sign
= 1;
74 /* Return an rtx for the sum of X and the integer C, given that X has
75 mode MODE. INPLACE is true if X can be modified inplace or false
76 if it must be treated as immutable. */
79 plus_constant (machine_mode mode
, rtx x
, HOST_WIDE_INT c
,
87 gcc_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
99 CASE_CONST_SCALAR_INT
:
100 return immed_wide_int_const (wi::add (std::make_pair (x
, mode
), c
),
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
109 tem
= plus_constant (mode
, get_pool_constant (XEXP (x
, 0)), c
);
110 tem
= force_const_mem (GET_MODE (x
), tem
);
111 /* Targets may disallow some constants in the constant pool, thus
112 force_const_mem may return NULL_RTX. */
113 if (tem
&& memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
119 /* If adding to something entirely constant, set a flag
120 so that we can add a CONST around the result. */
121 if (inplace
&& shared_const_p (x
))
133 /* The interesting case is adding the integer to a sum. Look
134 for constant term in the sum and combine with C. For an
135 integer constant term or a constant term that is not an
136 explicit integer, we combine or group them together anyway.
138 We may not immediately return from the recursive call here, lest
139 all_constant gets lost. */
141 if (CONSTANT_P (XEXP (x
, 1)))
143 rtx term
= plus_constant (mode
, XEXP (x
, 1), c
, inplace
);
144 if (term
== const0_rtx
)
149 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), term
);
152 else if (rtx
*const_loc
= find_constant_term_loc (&y
))
156 /* We need to be careful since X may be shared and we can't
157 modify it in place. */
159 const_loc
= find_constant_term_loc (&x
);
161 *const_loc
= plus_constant (mode
, *const_loc
, c
, true);
171 x
= gen_rtx_PLUS (mode
, x
, gen_int_mode (c
, mode
));
173 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
175 else if (all_constant
)
176 return gen_rtx_CONST (mode
, x
);
181 /* If X is a sum, return a new sum like X but lacking any constant terms.
182 Add all the removed constant terms into *CONSTPTR.
183 X itself is not altered. The result != X if and only if
184 it is not isomorphic to X. */
187 eliminate_constant_term (rtx x
, rtx
*constptr
)
192 if (GET_CODE (x
) != PLUS
)
195 /* First handle constants appearing at this level explicitly. */
196 if (CONST_INT_P (XEXP (x
, 1))
197 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
199 && CONST_INT_P (tem
))
202 return eliminate_constant_term (XEXP (x
, 0), constptr
);
206 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
207 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
208 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
209 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
211 && CONST_INT_P (tem
))
214 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
221 /* Return a copy of X in which all memory references
222 and all constants that involve symbol refs
223 have been replaced with new temporary registers.
224 Also emit code to load the memory locations and constants
225 into those registers.
227 If X contains no such constants or memory references,
228 X itself (not a copy) is returned.
230 If a constant is found in the address that is not a legitimate constant
231 in an insn, it is left alone in the hope that it might be valid in the
234 X may contain no arithmetic except addition, subtraction and multiplication.
235 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
238 break_out_memory_refs (rtx x
)
241 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
242 && GET_MODE (x
) != VOIDmode
))
243 x
= force_reg (GET_MODE (x
), x
);
244 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
245 || GET_CODE (x
) == MULT
)
247 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
248 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
250 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
251 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
257 /* Given X, a memory address in address space AS' pointer mode, convert it to
258 an address in the address space's address mode, or vice versa (TO_MODE says
259 which way). We take advantage of the fact that pointers are not allowed to
260 overflow by commuting arithmetic operations over conversions so that address
261 arithmetic insns can be used. IN_CONST is true if this conversion is inside
265 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED
,
266 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
,
267 bool in_const ATTRIBUTE_UNUSED
)
269 #ifndef POINTERS_EXTEND_UNSIGNED
270 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
272 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
273 machine_mode pointer_mode
, address_mode
, from_mode
;
277 /* If X already has the right mode, just return it. */
278 if (GET_MODE (x
) == to_mode
)
281 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
282 address_mode
= targetm
.addr_space
.address_mode (as
);
283 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
285 /* Here we handle some special cases. If none of them apply, fall through
286 to the default case. */
287 switch (GET_CODE (x
))
289 CASE_CONST_SCALAR_INT
:
290 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
292 else if (POINTERS_EXTEND_UNSIGNED
< 0)
294 else if (POINTERS_EXTEND_UNSIGNED
> 0)
298 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
304 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
305 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
306 return SUBREG_REG (x
);
310 temp
= gen_rtx_LABEL_REF (to_mode
, LABEL_REF_LABEL (x
));
311 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
316 temp
= shallow_copy_rtx (x
);
317 PUT_MODE (temp
, to_mode
);
322 return gen_rtx_CONST (to_mode
,
323 convert_memory_address_addr_space_1
324 (to_mode
, XEXP (x
, 0), as
, true));
329 /* For addition we can safely permute the conversion and addition
330 operation if one operand is a constant and converting the constant
331 does not change it or if one operand is a constant and we are
332 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
333 We can always safely permute them if we are making the address
334 narrower. Inside a CONST RTL, this is safe for both pointers
335 zero or sign extended as pointers cannot wrap. */
336 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
337 || (GET_CODE (x
) == PLUS
338 && CONST_INT_P (XEXP (x
, 1))
339 && ((in_const
&& POINTERS_EXTEND_UNSIGNED
!= 0)
340 || XEXP (x
, 1) == convert_memory_address_addr_space_1
341 (to_mode
, XEXP (x
, 1), as
, in_const
)
342 || POINTERS_EXTEND_UNSIGNED
< 0)))
343 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
344 convert_memory_address_addr_space_1
345 (to_mode
, XEXP (x
, 0), as
, in_const
),
353 return convert_modes (to_mode
, from_mode
,
354 x
, POINTERS_EXTEND_UNSIGNED
);
355 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
358 /* Given X, a memory address in address space AS' pointer mode, convert it to
359 an address in the address space's address mode, or vice versa (TO_MODE says
360 which way). We take advantage of the fact that pointers are not allowed to
361 overflow by commuting arithmetic operations over conversions so that address
362 arithmetic insns can be used. */
365 convert_memory_address_addr_space (machine_mode to_mode
, rtx x
, addr_space_t as
)
367 return convert_memory_address_addr_space_1 (to_mode
, x
, as
, false);
371 /* Return something equivalent to X but valid as a memory address for something
372 of mode MODE in the named address space AS. When X is not itself valid,
373 this works by copying X or subexpressions of it into registers. */
376 memory_address_addr_space (machine_mode mode
, rtx x
, addr_space_t as
)
379 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
381 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
383 /* By passing constant addresses through registers
384 we get a chance to cse them. */
385 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
386 x
= force_reg (address_mode
, x
);
388 /* We get better cse by rejecting indirect addressing at this stage.
389 Let the combiner create indirect addresses where appropriate.
390 For now, generate the code so that the subexpressions useful to share
391 are visible. But not if cse won't be done! */
394 if (! cse_not_expected
&& !REG_P (x
))
395 x
= break_out_memory_refs (x
);
397 /* At this point, any valid address is accepted. */
398 if (memory_address_addr_space_p (mode
, x
, as
))
401 /* If it was valid before but breaking out memory refs invalidated it,
402 use it the old way. */
403 if (memory_address_addr_space_p (mode
, oldx
, as
))
409 /* Perform machine-dependent transformations on X
410 in certain cases. This is not necessary since the code
411 below can handle all possible cases, but machine-dependent
412 transformations can make better code. */
415 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
416 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
420 /* PLUS and MULT can appear in special ways
421 as the result of attempts to make an address usable for indexing.
422 Usually they are dealt with by calling force_operand, below.
423 But a sum containing constant terms is special
424 if removing them makes the sum a valid address:
425 then we generate that address in a register
426 and index off of it. We do this because it often makes
427 shorter code, and because the addresses thus generated
428 in registers often become common subexpressions. */
429 if (GET_CODE (x
) == PLUS
)
431 rtx constant_term
= const0_rtx
;
432 rtx y
= eliminate_constant_term (x
, &constant_term
);
433 if (constant_term
== const0_rtx
434 || ! memory_address_addr_space_p (mode
, y
, as
))
435 x
= force_operand (x
, NULL_RTX
);
438 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
439 if (! memory_address_addr_space_p (mode
, y
, as
))
440 x
= force_operand (x
, NULL_RTX
);
446 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
447 x
= force_operand (x
, NULL_RTX
);
449 /* If we have a register that's an invalid address,
450 it must be a hard reg of the wrong class. Copy it to a pseudo. */
454 /* Last resort: copy the value to a register, since
455 the register is a valid address. */
457 x
= force_reg (address_mode
, x
);
462 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
463 /* If we didn't change the address, we are done. Otherwise, mark
464 a reg as a pointer if we have REG or REG + CONST_INT. */
468 mark_reg_pointer (x
, BITS_PER_UNIT
);
469 else if (GET_CODE (x
) == PLUS
470 && REG_P (XEXP (x
, 0))
471 && CONST_INT_P (XEXP (x
, 1)))
472 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
474 /* OLDX may have been the address on a temporary. Update the address
475 to indicate that X is now used. */
476 update_temp_slot_address (oldx
, x
);
481 /* If REF is a MEM with an invalid address, change it into a valid address.
482 Pass through anything else unchanged. REF must be an unshared rtx and
483 the function may modify it in-place. */
486 validize_mem (rtx ref
)
490 ref
= use_anchored_address (ref
);
491 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
492 MEM_ADDR_SPACE (ref
)))
495 return replace_equiv_address (ref
, XEXP (ref
, 0), true);
498 /* If X is a memory reference to a member of an object block, try rewriting
499 it to use an anchor instead. Return the new memory reference on success
500 and the old one on failure. */
503 use_anchored_address (rtx x
)
506 HOST_WIDE_INT offset
;
509 if (!flag_section_anchors
)
515 /* Split the address into a base and offset. */
518 if (GET_CODE (base
) == CONST
519 && GET_CODE (XEXP (base
, 0)) == PLUS
520 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
522 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
523 base
= XEXP (XEXP (base
, 0), 0);
526 /* Check whether BASE is suitable for anchors. */
527 if (GET_CODE (base
) != SYMBOL_REF
528 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
529 || SYMBOL_REF_ANCHOR_P (base
)
530 || SYMBOL_REF_BLOCK (base
) == NULL
531 || !targetm
.use_anchors_for_symbol_p (base
))
534 /* Decide where BASE is going to be. */
535 place_block_symbol (base
);
537 /* Get the anchor we need to use. */
538 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
539 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
540 SYMBOL_REF_TLS_MODEL (base
));
542 /* Work out the offset from the anchor. */
543 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
545 /* If we're going to run a CSE pass, force the anchor into a register.
546 We will then be able to reuse registers for several accesses, if the
547 target costs say that that's worthwhile. */
548 mode
= GET_MODE (base
);
549 if (!cse_not_expected
)
550 base
= force_reg (mode
, base
);
552 return replace_equiv_address (x
, plus_constant (mode
, base
, offset
));
555 /* Copy the value or contents of X to a new temp reg and return that reg. */
560 rtx temp
= gen_reg_rtx (GET_MODE (x
));
562 /* If not an operand, must be an address with PLUS and MULT so
563 do the computation. */
564 if (! general_operand (x
, VOIDmode
))
565 x
= force_operand (x
, temp
);
568 emit_move_insn (temp
, x
);
573 /* Like copy_to_reg but always give the new register mode Pmode
574 in case X is a constant. */
577 copy_addr_to_reg (rtx x
)
579 return copy_to_mode_reg (Pmode
, x
);
582 /* Like copy_to_reg but always give the new register mode MODE
583 in case X is a constant. */
586 copy_to_mode_reg (machine_mode mode
, rtx x
)
588 rtx temp
= gen_reg_rtx (mode
);
590 /* If not an operand, must be an address with PLUS and MULT so
591 do the computation. */
592 if (! general_operand (x
, VOIDmode
))
593 x
= force_operand (x
, temp
);
595 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
597 emit_move_insn (temp
, x
);
601 /* Load X into a register if it is not already one.
602 Use mode MODE for the register.
603 X should be valid for mode MODE, but it may be a constant which
604 is valid for all integer modes; that's why caller must specify MODE.
606 The caller must not alter the value in the register we return,
607 since we mark it as a "constant" register. */
610 force_reg (machine_mode mode
, rtx x
)
618 if (general_operand (x
, mode
))
620 temp
= gen_reg_rtx (mode
);
621 insn
= emit_move_insn (temp
, x
);
625 temp
= force_operand (x
, NULL_RTX
);
627 insn
= get_last_insn ();
630 rtx temp2
= gen_reg_rtx (mode
);
631 insn
= emit_move_insn (temp2
, temp
);
636 /* Let optimizers know that TEMP's value never changes
637 and that X can be substituted for it. Don't get confused
638 if INSN set something else (such as a SUBREG of TEMP). */
640 && (set
= single_set (insn
)) != 0
641 && SET_DEST (set
) == temp
642 && ! rtx_equal_p (x
, SET_SRC (set
)))
643 set_unique_reg_note (insn
, REG_EQUAL
, x
);
645 /* Let optimizers know that TEMP is a pointer, and if so, the
646 known alignment of that pointer. */
649 if (GET_CODE (x
) == SYMBOL_REF
)
651 align
= BITS_PER_UNIT
;
652 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
653 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
655 else if (GET_CODE (x
) == LABEL_REF
)
656 align
= BITS_PER_UNIT
;
657 else if (GET_CODE (x
) == CONST
658 && GET_CODE (XEXP (x
, 0)) == PLUS
659 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
660 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
662 rtx s
= XEXP (XEXP (x
, 0), 0);
663 rtx c
= XEXP (XEXP (x
, 0), 1);
667 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
668 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
674 ca
= ctz_hwi (INTVAL (c
)) * BITS_PER_UNIT
;
675 align
= MIN (sa
, ca
);
679 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
680 mark_reg_pointer (temp
, align
);
686 /* If X is a memory ref, copy its contents to a new temp reg and return
687 that reg. Otherwise, return X. */
690 force_not_mem (rtx x
)
694 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
697 temp
= gen_reg_rtx (GET_MODE (x
));
700 REG_POINTER (temp
) = 1;
702 emit_move_insn (temp
, x
);
706 /* Copy X to TARGET (if it's nonzero and a reg)
707 or to a new temp reg and return that reg.
708 MODE is the mode to use for X in case it is a constant. */
711 copy_to_suggested_reg (rtx x
, rtx target
, machine_mode mode
)
715 if (target
&& REG_P (target
))
718 temp
= gen_reg_rtx (mode
);
720 emit_move_insn (temp
, x
);
724 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
725 PUNSIGNEDP points to the signedness of the type and may be adjusted
726 to show what signedness to use on extension operations.
728 FOR_RETURN is nonzero if the caller is promoting the return value
729 of FNDECL, else it is for promoting args. */
732 promote_function_mode (const_tree type
, machine_mode mode
, int *punsignedp
,
733 const_tree funtype
, int for_return
)
735 /* Called without a type node for a libcall. */
736 if (type
== NULL_TREE
)
738 if (INTEGRAL_MODE_P (mode
))
739 return targetm
.calls
.promote_function_mode (NULL_TREE
, mode
,
746 switch (TREE_CODE (type
))
748 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
749 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
750 case POINTER_TYPE
: case REFERENCE_TYPE
:
751 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
758 /* Return the mode to use to store a scalar of TYPE and MODE.
759 PUNSIGNEDP points to the signedness of the type and may be adjusted
760 to show what signedness to use on extension operations. */
763 promote_mode (const_tree type ATTRIBUTE_UNUSED
, machine_mode mode
,
764 int *punsignedp ATTRIBUTE_UNUSED
)
771 /* For libcalls this is invoked without TYPE from the backends
772 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
774 if (type
== NULL_TREE
)
777 /* FIXME: this is the same logic that was there until GCC 4.4, but we
778 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
779 is not defined. The affected targets are M32C, S390, SPARC. */
781 code
= TREE_CODE (type
);
782 unsignedp
= *punsignedp
;
786 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
787 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
788 PROMOTE_MODE (mode
, unsignedp
, type
);
789 *punsignedp
= unsignedp
;
793 #ifdef POINTERS_EXTEND_UNSIGNED
796 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
797 return targetm
.addr_space
.address_mode
798 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
811 /* Use one of promote_mode or promote_function_mode to find the promoted
812 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
813 of DECL after promotion. */
816 promote_decl_mode (const_tree decl
, int *punsignedp
)
818 tree type
= TREE_TYPE (decl
);
819 int unsignedp
= TYPE_UNSIGNED (type
);
820 machine_mode mode
= DECL_MODE (decl
);
823 if (TREE_CODE (decl
) == RESULT_DECL
&& !DECL_BY_REFERENCE (decl
))
824 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
825 TREE_TYPE (current_function_decl
), 1);
826 else if (TREE_CODE (decl
) == RESULT_DECL
|| TREE_CODE (decl
) == PARM_DECL
)
827 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
828 TREE_TYPE (current_function_decl
), 2);
830 pmode
= promote_mode (type
, mode
, &unsignedp
);
833 *punsignedp
= unsignedp
;
837 /* Return the promoted mode for name. If it is a named SSA_NAME, it
838 is the same as promote_decl_mode. Otherwise, it is the promoted
839 mode of a temp decl of same type as the SSA_NAME, if we had created
843 promote_ssa_mode (const_tree name
, int *punsignedp
)
845 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
847 /* Partitions holding parms and results must be promoted as expected
849 if (SSA_NAME_VAR (name
)
850 && (TREE_CODE (SSA_NAME_VAR (name
)) == PARM_DECL
851 || TREE_CODE (SSA_NAME_VAR (name
)) == RESULT_DECL
))
853 machine_mode mode
= promote_decl_mode (SSA_NAME_VAR (name
), punsignedp
);
858 tree type
= TREE_TYPE (name
);
859 int unsignedp
= TYPE_UNSIGNED (type
);
860 machine_mode mode
= TYPE_MODE (type
);
862 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
865 gcc_assert (VECTOR_TYPE_P (type
));
866 mode
= type
->type_common
.mode
;
869 machine_mode pmode
= promote_mode (type
, mode
, &unsignedp
);
871 *punsignedp
= unsignedp
;
878 /* Controls the behaviour of {anti_,}adjust_stack. */
879 static bool suppress_reg_args_size
;
881 /* A helper for adjust_stack and anti_adjust_stack. */
884 adjust_stack_1 (rtx adjust
, bool anti_p
)
889 /* Hereafter anti_p means subtract_p. */
890 if (!STACK_GROWS_DOWNWARD
)
893 temp
= expand_binop (Pmode
,
894 anti_p
? sub_optab
: add_optab
,
895 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
898 if (temp
!= stack_pointer_rtx
)
899 insn
= emit_move_insn (stack_pointer_rtx
, temp
);
902 insn
= get_last_insn ();
903 temp
= single_set (insn
);
904 gcc_assert (temp
!= NULL
&& SET_DEST (temp
) == stack_pointer_rtx
);
907 if (!suppress_reg_args_size
)
908 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
911 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
912 This pops when ADJUST is positive. ADJUST need not be constant. */
915 adjust_stack (rtx adjust
)
917 if (adjust
== const0_rtx
)
920 /* We expect all variable sized adjustments to be multiple of
921 PREFERRED_STACK_BOUNDARY. */
922 if (CONST_INT_P (adjust
))
923 stack_pointer_delta
-= INTVAL (adjust
);
925 adjust_stack_1 (adjust
, false);
928 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
929 This pushes when ADJUST is positive. ADJUST need not be constant. */
932 anti_adjust_stack (rtx adjust
)
934 if (adjust
== const0_rtx
)
937 /* We expect all variable sized adjustments to be multiple of
938 PREFERRED_STACK_BOUNDARY. */
939 if (CONST_INT_P (adjust
))
940 stack_pointer_delta
+= INTVAL (adjust
);
942 adjust_stack_1 (adjust
, true);
945 /* Round the size of a block to be pushed up to the boundary required
946 by this machine. SIZE is the desired size, which need not be constant. */
949 round_push (rtx size
)
951 rtx align_rtx
, alignm1_rtx
;
953 if (!SUPPORTS_STACK_ALIGNMENT
954 || crtl
->preferred_stack_boundary
== MAX_SUPPORTED_STACK_ALIGNMENT
)
956 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
961 if (CONST_INT_P (size
))
963 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
965 if (INTVAL (size
) != new_size
)
966 size
= GEN_INT (new_size
);
970 align_rtx
= GEN_INT (align
);
971 alignm1_rtx
= GEN_INT (align
- 1);
975 /* If crtl->preferred_stack_boundary might still grow, use
976 virtual_preferred_stack_boundary_rtx instead. This will be
977 substituted by the right value in vregs pass and optimized
979 align_rtx
= virtual_preferred_stack_boundary_rtx
;
980 alignm1_rtx
= force_operand (plus_constant (Pmode
, align_rtx
, -1),
984 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
985 but we know it can't. So add ourselves and then do
987 size
= expand_binop (Pmode
, add_optab
, size
, alignm1_rtx
,
988 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
989 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, align_rtx
,
991 size
= expand_mult (Pmode
, size
, align_rtx
, NULL_RTX
, 1);
996 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
997 to a previously-created save area. If no save area has been allocated,
998 this function will allocate one. If a save area is specified, it
999 must be of the proper mode. */
1002 emit_stack_save (enum save_level save_level
, rtx
*psave
)
1005 /* The default is that we use a move insn and save in a Pmode object. */
1006 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1007 machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1009 /* See if this machine has anything special to do for this kind of save. */
1013 if (targetm
.have_save_stack_block ())
1014 fcn
= targetm
.gen_save_stack_block
;
1017 if (targetm
.have_save_stack_function ())
1018 fcn
= targetm
.gen_save_stack_function
;
1021 if (targetm
.have_save_stack_nonlocal ())
1022 fcn
= targetm
.gen_save_stack_nonlocal
;
1028 /* If there is no save area and we have to allocate one, do so. Otherwise
1029 verify the save area is the proper mode. */
1033 if (mode
!= VOIDmode
)
1035 if (save_level
== SAVE_NONLOCAL
)
1036 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1038 *psave
= sa
= gen_reg_rtx (mode
);
1042 do_pending_stack_adjust ();
1044 sa
= validize_mem (sa
);
1045 emit_insn (fcn (sa
, stack_pointer_rtx
));
1048 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1049 area made by emit_stack_save. If it is zero, we have nothing to do. */
1052 emit_stack_restore (enum save_level save_level
, rtx sa
)
1054 /* The default is that we use a move insn. */
1055 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1057 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1058 STACK_POINTER and HARD_FRAME_POINTER.
1059 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1060 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1061 aligned variables, which is reflected in ix86_can_eliminate.
1062 We normally still have the realigned STACK_POINTER that we can use.
1063 But if there is a stack restore still present at reload, it can trigger
1064 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1065 FRAME_POINTER into a hard reg.
1066 To prevent this situation, we force need_drap if we emit a stack
1068 if (SUPPORTS_STACK_ALIGNMENT
)
1069 crtl
->need_drap
= true;
1071 /* See if this machine has anything special to do for this kind of save. */
1075 if (targetm
.have_restore_stack_block ())
1076 fcn
= targetm
.gen_restore_stack_block
;
1079 if (targetm
.have_restore_stack_function ())
1080 fcn
= targetm
.gen_restore_stack_function
;
1083 if (targetm
.have_restore_stack_nonlocal ())
1084 fcn
= targetm
.gen_restore_stack_nonlocal
;
1092 sa
= validize_mem (sa
);
1093 /* These clobbers prevent the scheduler from moving
1094 references to variable arrays below the code
1095 that deletes (pops) the arrays. */
1096 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1097 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1100 discard_pending_stack_adjust ();
1102 emit_insn (fcn (stack_pointer_rtx
, sa
));
1105 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1106 function. This should be called whenever we allocate or deallocate
1107 dynamic stack space. */
1110 update_nonlocal_goto_save_area (void)
1115 /* The nonlocal_goto_save_area object is an array of N pointers. The
1116 first one is used for the frame pointer save; the rest are sized by
1117 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1118 of the stack save area slots. */
1119 t_save
= build4 (ARRAY_REF
,
1120 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
1121 cfun
->nonlocal_goto_save_area
,
1122 integer_one_node
, NULL_TREE
, NULL_TREE
);
1123 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1125 emit_stack_save (SAVE_NONLOCAL
, &r_save
);
1128 /* Record a new stack level for the current function. This should be called
1129 whenever we allocate or deallocate dynamic stack space. */
1132 record_new_stack_level (void)
1134 /* Record the new stack level for nonlocal gotos. */
1135 if (cfun
->nonlocal_goto_save_area
)
1136 update_nonlocal_goto_save_area ();
1138 /* Record the new stack level for SJLJ exceptions. */
1139 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
1140 update_sjlj_context ();
1143 /* Return an rtx representing the address of an area of memory dynamically
1144 pushed on the stack.
1146 Any required stack pointer alignment is preserved.
1148 SIZE is an rtx representing the size of the area.
1150 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1151 parameter may be zero. If so, a proper value will be extracted
1152 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1154 REQUIRED_ALIGN is the alignment (in bits) required for the region
1157 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1158 stack space allocated by the generated code cannot be added with itself
1159 in the course of the execution of the function. It is always safe to
1160 pass FALSE here and the following criterion is sufficient in order to
1161 pass TRUE: every path in the CFG that starts at the allocation point and
1162 loops to it executes the associated deallocation code. */
1165 allocate_dynamic_stack_space (rtx size
, unsigned size_align
,
1166 unsigned required_align
, bool cannot_accumulate
)
1168 HOST_WIDE_INT stack_usage_size
= -1;
1169 rtx_code_label
*final_label
;
1170 rtx final_target
, target
;
1171 unsigned extra_align
= 0;
1174 /* If we're asking for zero bytes, it doesn't matter what we point
1175 to since we can't dereference it. But return a reasonable
1177 if (size
== const0_rtx
)
1178 return virtual_stack_dynamic_rtx
;
1180 /* Otherwise, show we're calling alloca or equivalent. */
1181 cfun
->calls_alloca
= 1;
1183 /* If stack usage info is requested, look into the size we are passed.
1184 We need to do so this early to avoid the obfuscation that may be
1185 introduced later by the various alignment operations. */
1186 if (flag_stack_usage_info
)
1188 if (CONST_INT_P (size
))
1189 stack_usage_size
= INTVAL (size
);
1190 else if (REG_P (size
))
1192 /* Look into the last emitted insn and see if we can deduce
1193 something for the register. */
1196 insn
= get_last_insn ();
1197 if ((set
= single_set (insn
)) && rtx_equal_p (SET_DEST (set
), size
))
1199 if (CONST_INT_P (SET_SRC (set
)))
1200 stack_usage_size
= INTVAL (SET_SRC (set
));
1201 else if ((note
= find_reg_equal_equiv_note (insn
))
1202 && CONST_INT_P (XEXP (note
, 0)))
1203 stack_usage_size
= INTVAL (XEXP (note
, 0));
1207 /* If the size is not constant, we can't say anything. */
1208 if (stack_usage_size
== -1)
1210 current_function_has_unbounded_dynamic_stack_size
= 1;
1211 stack_usage_size
= 0;
1215 /* Ensure the size is in the proper mode. */
1216 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1217 size
= convert_to_mode (Pmode
, size
, 1);
1219 /* Adjust SIZE_ALIGN, if needed. */
1220 if (CONST_INT_P (size
))
1222 unsigned HOST_WIDE_INT lsb
;
1224 lsb
= INTVAL (size
);
1227 /* Watch out for overflow truncating to "unsigned". */
1228 if (lsb
> UINT_MAX
/ BITS_PER_UNIT
)
1229 size_align
= 1u << (HOST_BITS_PER_INT
- 1);
1231 size_align
= (unsigned)lsb
* BITS_PER_UNIT
;
1233 else if (size_align
< BITS_PER_UNIT
)
1234 size_align
= BITS_PER_UNIT
;
1236 /* We can't attempt to minimize alignment necessary, because we don't
1237 know the final value of preferred_stack_boundary yet while executing
1239 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1240 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1242 /* We will need to ensure that the address we return is aligned to
1243 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1244 always know its final value at this point in the compilation (it
1245 might depend on the size of the outgoing parameter lists, for
1246 example), so we must align the value to be returned in that case.
1247 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1248 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1249 We must also do an alignment operation on the returned value if
1250 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1252 If we have to align, we must leave space in SIZE for the hole
1253 that might result from the alignment operation. */
1255 must_align
= (crtl
->preferred_stack_boundary
< required_align
);
1258 if (required_align
> PREFERRED_STACK_BOUNDARY
)
1259 extra_align
= PREFERRED_STACK_BOUNDARY
;
1260 else if (required_align
> STACK_BOUNDARY
)
1261 extra_align
= STACK_BOUNDARY
;
1263 extra_align
= BITS_PER_UNIT
;
1266 /* ??? STACK_POINTER_OFFSET is always defined now. */
1267 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1269 extra_align
= BITS_PER_UNIT
;
1274 unsigned extra
= (required_align
- extra_align
) / BITS_PER_UNIT
;
1276 size
= plus_constant (Pmode
, size
, extra
);
1277 size
= force_operand (size
, NULL_RTX
);
1279 if (flag_stack_usage_info
)
1280 stack_usage_size
+= extra
;
1282 if (extra
&& size_align
> extra_align
)
1283 size_align
= extra_align
;
1286 /* Round the size to a multiple of the required stack alignment.
1287 Since the stack if presumed to be rounded before this allocation,
1288 this will maintain the required alignment.
1290 If the stack grows downward, we could save an insn by subtracting
1291 SIZE from the stack pointer and then aligning the stack pointer.
1292 The problem with this is that the stack pointer may be unaligned
1293 between the execution of the subtraction and alignment insns and
1294 some machines do not allow this. Even on those that do, some
1295 signal handlers malfunction if a signal should occur between those
1296 insns. Since this is an extremely rare event, we have no reliable
1297 way of knowing which systems have this problem. So we avoid even
1298 momentarily mis-aligning the stack. */
1299 if (size_align
% MAX_SUPPORTED_STACK_ALIGNMENT
!= 0)
1301 size
= round_push (size
);
1303 if (flag_stack_usage_info
)
1305 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
1306 stack_usage_size
= (stack_usage_size
+ align
- 1) / align
* align
;
1310 target
= gen_reg_rtx (Pmode
);
1312 /* The size is supposed to be fully adjusted at this point so record it
1313 if stack usage info is requested. */
1314 if (flag_stack_usage_info
)
1316 current_function_dynamic_stack_size
+= stack_usage_size
;
1318 /* ??? This is gross but the only safe stance in the absence
1319 of stack usage oriented flow analysis. */
1320 if (!cannot_accumulate
)
1321 current_function_has_unbounded_dynamic_stack_size
= 1;
1325 final_target
= NULL_RTX
;
1327 /* If we are splitting the stack, we need to ask the backend whether
1328 there is enough room on the current stack. If there isn't, or if
1329 the backend doesn't know how to tell is, then we need to call a
1330 function to allocate memory in some other way. This memory will
1331 be released when we release the current stack segment. The
1332 effect is that stack allocation becomes less efficient, but at
1333 least it doesn't cause a stack overflow. */
1334 if (flag_split_stack
)
1336 rtx_code_label
*available_label
;
1337 rtx ask
, space
, func
;
1339 available_label
= NULL
;
1341 if (targetm
.have_split_stack_space_check ())
1343 available_label
= gen_label_rtx ();
1345 /* This instruction will branch to AVAILABLE_LABEL if there
1346 are SIZE bytes available on the stack. */
1347 emit_insn (targetm
.gen_split_stack_space_check
1348 (size
, available_label
));
1351 /* The __morestack_allocate_stack_space function will allocate
1352 memory using malloc. If the alignment of the memory returned
1353 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1354 make sure we allocate enough space. */
1355 if (MALLOC_ABI_ALIGNMENT
>= required_align
)
1359 ask
= expand_binop (Pmode
, add_optab
, size
,
1360 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1362 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1366 func
= init_one_libfunc ("__morestack_allocate_stack_space");
1368 space
= emit_library_call_value (func
, target
, LCT_NORMAL
, Pmode
,
1371 if (available_label
== NULL_RTX
)
1374 final_target
= gen_reg_rtx (Pmode
);
1376 emit_move_insn (final_target
, space
);
1378 final_label
= gen_label_rtx ();
1379 emit_jump (final_label
);
1381 emit_label (available_label
);
1384 do_pending_stack_adjust ();
1386 /* We ought to be called always on the toplevel and stack ought to be aligned
1388 gcc_assert (!(stack_pointer_delta
1389 % (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
)));
1391 /* If needed, check that we have the required amount of stack. Take into
1392 account what has already been checked. */
1393 if (STACK_CHECK_MOVING_SP
)
1395 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1396 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1398 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1399 probe_stack_range (STACK_CHECK_PROTECT
, size
);
1401 /* Don't let anti_adjust_stack emit notes. */
1402 suppress_reg_args_size
= true;
1404 /* Perform the required allocation from the stack. Some systems do
1405 this differently than simply incrementing/decrementing from the
1406 stack pointer, such as acquiring the space by calling malloc(). */
1407 if (targetm
.have_allocate_stack ())
1409 struct expand_operand ops
[2];
1410 /* We don't have to check against the predicate for operand 0 since
1411 TARGET is known to be a pseudo of the proper mode, which must
1412 be valid for the operand. */
1413 create_fixed_operand (&ops
[0], target
);
1414 create_convert_operand_to (&ops
[1], size
, STACK_SIZE_MODE
, true);
1415 expand_insn (targetm
.code_for_allocate_stack
, 2, ops
);
1419 int saved_stack_pointer_delta
;
1421 if (!STACK_GROWS_DOWNWARD
)
1422 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1424 /* Check stack bounds if necessary. */
1425 if (crtl
->limit_stack
)
1428 rtx_code_label
*space_available
= gen_label_rtx ();
1429 if (STACK_GROWS_DOWNWARD
)
1430 available
= expand_binop (Pmode
, sub_optab
,
1431 stack_pointer_rtx
, stack_limit_rtx
,
1432 NULL_RTX
, 1, OPTAB_WIDEN
);
1434 available
= expand_binop (Pmode
, sub_optab
,
1435 stack_limit_rtx
, stack_pointer_rtx
,
1436 NULL_RTX
, 1, OPTAB_WIDEN
);
1438 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1440 if (targetm
.have_trap ())
1441 emit_insn (targetm
.gen_trap ());
1443 error ("stack limits not supported on this target");
1445 emit_label (space_available
);
1448 saved_stack_pointer_delta
= stack_pointer_delta
;
1450 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1451 anti_adjust_stack_and_probe (size
, false);
1453 anti_adjust_stack (size
);
1455 /* Even if size is constant, don't modify stack_pointer_delta.
1456 The constant size alloca should preserve
1457 crtl->preferred_stack_boundary alignment. */
1458 stack_pointer_delta
= saved_stack_pointer_delta
;
1460 if (STACK_GROWS_DOWNWARD
)
1461 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1464 suppress_reg_args_size
= false;
1466 /* Finish up the split stack handling. */
1467 if (final_label
!= NULL_RTX
)
1469 gcc_assert (flag_split_stack
);
1470 emit_move_insn (final_target
, target
);
1471 emit_label (final_label
);
1472 target
= final_target
;
1477 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1478 but we know it can't. So add ourselves and then do
1480 target
= expand_binop (Pmode
, add_optab
, target
,
1481 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1483 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1484 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1485 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1488 target
= expand_mult (Pmode
, target
,
1489 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1494 /* Now that we've committed to a return value, mark its alignment. */
1495 mark_reg_pointer (target
, required_align
);
1497 /* Record the new stack level. */
1498 record_new_stack_level ();
1503 /* A front end may want to override GCC's stack checking by providing a
1504 run-time routine to call to check the stack, so provide a mechanism for
1505 calling that routine. */
1507 static GTY(()) rtx stack_check_libfunc
;
1510 set_stack_check_libfunc (const char *libfunc_name
)
1512 gcc_assert (stack_check_libfunc
== NULL_RTX
);
1513 stack_check_libfunc
= gen_rtx_SYMBOL_REF (Pmode
, libfunc_name
);
1516 /* Emit one stack probe at ADDRESS, an address within the stack. */
1519 emit_stack_probe (rtx address
)
1521 if (targetm
.have_probe_stack_address ())
1522 emit_insn (targetm
.gen_probe_stack_address (address
));
1525 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1527 MEM_VOLATILE_P (memref
) = 1;
1529 /* See if we have an insn to probe the stack. */
1530 if (targetm
.have_probe_stack ())
1531 emit_insn (targetm
.gen_probe_stack (memref
));
1533 emit_move_insn (memref
, const0_rtx
);
1537 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1538 FIRST is a constant and size is a Pmode RTX. These are offsets from
1539 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1540 or subtract them from the stack pointer. */
1542 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1544 #if STACK_GROWS_DOWNWARD
1545 #define STACK_GROW_OP MINUS
1546 #define STACK_GROW_OPTAB sub_optab
1547 #define STACK_GROW_OFF(off) -(off)
1549 #define STACK_GROW_OP PLUS
1550 #define STACK_GROW_OPTAB add_optab
1551 #define STACK_GROW_OFF(off) (off)
1555 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1557 /* First ensure SIZE is Pmode. */
1558 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1559 size
= convert_to_mode (Pmode
, size
, 1);
1561 /* Next see if we have a function to check the stack. */
1562 if (stack_check_libfunc
)
1564 rtx addr
= memory_address (Pmode
,
1565 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1567 plus_constant (Pmode
,
1569 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1573 /* Next see if we have an insn to check the stack. */
1574 else if (targetm
.have_check_stack ())
1576 struct expand_operand ops
[1];
1577 rtx addr
= memory_address (Pmode
,
1578 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1580 plus_constant (Pmode
,
1583 create_input_operand (&ops
[0], addr
, Pmode
);
1584 success
= maybe_expand_insn (targetm
.code_for_check_stack
, 1, ops
);
1585 gcc_assert (success
);
1588 /* Otherwise we have to generate explicit probes. If we have a constant
1589 small number of them to generate, that's the easy case. */
1590 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1592 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1595 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1596 it exceeds SIZE. If only one probe is needed, this will not
1597 generate any code. Then probe at FIRST + SIZE. */
1598 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1600 addr
= memory_address (Pmode
,
1601 plus_constant (Pmode
, stack_pointer_rtx
,
1602 STACK_GROW_OFF (first
+ i
)));
1603 emit_stack_probe (addr
);
1606 addr
= memory_address (Pmode
,
1607 plus_constant (Pmode
, stack_pointer_rtx
,
1608 STACK_GROW_OFF (first
+ isize
)));
1609 emit_stack_probe (addr
);
1612 /* In the variable case, do the same as above, but in a loop. Note that we
1613 must be extra careful with variables wrapping around because we might be
1614 at the very top (or the very bottom) of the address space and we have to
1615 be able to handle this case properly; in particular, we use an equality
1616 test for the loop condition. */
1619 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1620 rtx_code_label
*loop_lab
= gen_label_rtx ();
1621 rtx_code_label
*end_lab
= gen_label_rtx ();
1623 /* Step 1: round SIZE to the previous multiple of the interval. */
1625 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1627 = simplify_gen_binary (AND
, Pmode
, size
,
1628 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1629 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1632 /* Step 2: compute initial and final value of the loop counter. */
1634 /* TEST_ADDR = SP + FIRST. */
1635 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1637 gen_int_mode (first
, Pmode
)),
1640 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1641 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1643 rounded_size_op
), NULL_RTX
);
1648 while (TEST_ADDR != LAST_ADDR)
1650 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1654 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1655 until it is equal to ROUNDED_SIZE. */
1657 emit_label (loop_lab
);
1659 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1660 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1663 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1664 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1665 gen_int_mode (PROBE_INTERVAL
, Pmode
), test_addr
,
1668 gcc_assert (temp
== test_addr
);
1670 /* Probe at TEST_ADDR. */
1671 emit_stack_probe (test_addr
);
1673 emit_jump (loop_lab
);
1675 emit_label (end_lab
);
1678 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1679 that SIZE is equal to ROUNDED_SIZE. */
1681 /* TEMP = SIZE - ROUNDED_SIZE. */
1682 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1683 if (temp
!= const0_rtx
)
1687 if (CONST_INT_P (temp
))
1689 /* Use [base + disp} addressing mode if supported. */
1690 HOST_WIDE_INT offset
= INTVAL (temp
);
1691 addr
= memory_address (Pmode
,
1692 plus_constant (Pmode
, last_addr
,
1693 STACK_GROW_OFF (offset
)));
1697 /* Manual CSE if the difference is not known at compile-time. */
1698 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1699 addr
= memory_address (Pmode
,
1700 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1704 emit_stack_probe (addr
);
1708 /* Make sure nothing is scheduled before we are done. */
1709 emit_insn (gen_blockage ());
1712 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1713 while probing it. This pushes when SIZE is positive. SIZE need not
1714 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1715 by plus SIZE at the end. */
1718 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
1720 /* We skip the probe for the first interval + a small dope of 4 words and
1721 probe that many bytes past the specified size to maintain a protection
1722 area at the botton of the stack. */
1723 const int dope
= 4 * UNITS_PER_WORD
;
1725 /* First ensure SIZE is Pmode. */
1726 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1727 size
= convert_to_mode (Pmode
, size
, 1);
1729 /* If we have a constant small number of probes to generate, that's the
1731 if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1733 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1734 bool first_probe
= true;
1736 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1737 values of N from 1 until it exceeds SIZE. If only one probe is
1738 needed, this will not generate any code. Then adjust and probe
1739 to PROBE_INTERVAL + SIZE. */
1740 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1744 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
1745 first_probe
= false;
1748 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1749 emit_stack_probe (stack_pointer_rtx
);
1753 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1755 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
- i
));
1756 emit_stack_probe (stack_pointer_rtx
);
1759 /* In the variable case, do the same as above, but in a loop. Note that we
1760 must be extra careful with variables wrapping around because we might be
1761 at the very top (or the very bottom) of the address space and we have to
1762 be able to handle this case properly; in particular, we use an equality
1763 test for the loop condition. */
1766 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
1767 rtx_code_label
*loop_lab
= gen_label_rtx ();
1768 rtx_code_label
*end_lab
= gen_label_rtx ();
1771 /* Step 1: round SIZE to the previous multiple of the interval. */
1773 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1775 = simplify_gen_binary (AND
, Pmode
, size
,
1776 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1777 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1780 /* Step 2: compute initial and final value of the loop counter. */
1782 /* SP = SP_0 + PROBE_INTERVAL. */
1783 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1785 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1786 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1788 rounded_size_op
), NULL_RTX
);
1793 while (SP != LAST_ADDR)
1795 SP = SP + PROBE_INTERVAL
1799 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1800 values of N from 1 until it is equal to ROUNDED_SIZE. */
1802 emit_label (loop_lab
);
1804 /* Jump to END_LAB if SP == LAST_ADDR. */
1805 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1808 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1809 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1810 emit_stack_probe (stack_pointer_rtx
);
1812 emit_jump (loop_lab
);
1814 emit_label (end_lab
);
1817 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1818 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1820 /* TEMP = SIZE - ROUNDED_SIZE. */
1821 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1822 if (temp
!= const0_rtx
)
1824 /* Manual CSE if the difference is not known at compile-time. */
1825 if (GET_CODE (temp
) != CONST_INT
)
1826 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1827 anti_adjust_stack (temp
);
1828 emit_stack_probe (stack_pointer_rtx
);
1832 /* Adjust back and account for the additional first interval. */
1834 adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1836 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1839 /* Return an rtx representing the register or memory location
1840 in which a scalar value of data type VALTYPE
1841 was returned by a function call to function FUNC.
1842 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1843 function is known, otherwise 0.
1844 OUTGOING is 1 if on a machine with register windows this function
1845 should return the register in which the function will put its result
1849 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
1850 int outgoing ATTRIBUTE_UNUSED
)
1854 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
1857 && GET_MODE (val
) == BLKmode
)
1859 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1860 machine_mode tmpmode
;
1862 /* int_size_in_bytes can return -1. We don't need a check here
1863 since the value of bytes will then be large enough that no
1864 mode will match anyway. */
1866 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1867 tmpmode
!= VOIDmode
;
1868 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1870 /* Have we found a large enough mode? */
1871 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1875 /* No suitable mode found. */
1876 gcc_assert (tmpmode
!= VOIDmode
);
1878 PUT_MODE (val
, tmpmode
);
1883 /* Return an rtx representing the register or memory location
1884 in which a scalar value of mode MODE was returned by a library call. */
1887 hard_libcall_value (machine_mode mode
, rtx fun
)
1889 return targetm
.calls
.libcall_value (mode
, fun
);
1892 /* Look up the tree code for a given rtx code
1893 to provide the arithmetic operation for real_arithmetic.
1894 The function returns an int because the caller may not know
1895 what `enum tree_code' means. */
1898 rtx_to_tree_code (enum rtx_code code
)
1900 enum tree_code tcode
;
1923 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1926 return ((int) tcode
);
1929 #include "gt-explow.h"