1 /* Control flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
58 #include "tree-cfgcleanup.h"
62 /* This file contains functions for building the Control Flow Graph (CFG)
63 for a function tree. */
65 /* Local declarations. */
67 /* Initial capacity for the basic block array. */
68 static const int initial_cfg_capacity
= 20;
70 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
71 which use a particular edge. The CASE_LABEL_EXPRs are chained together
72 via their CASE_CHAIN field, which we clear after we're done with the
73 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
75 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
76 update the case vector in response to edge redirections.
78 Right now this table is set up and torn down at key points in the
79 compilation process. It would be nice if we could make the table
80 more persistent. The key is getting notification of changes to
81 the CFG (particularly edge removal, creation and redirection). */
83 static hash_map
<edge
, tree
> *edge_to_cases
;
85 /* If we record edge_to_cases, this bitmap will hold indexes
86 of basic blocks that end in a GIMPLE_SWITCH which we touched
87 due to edge manipulations. */
89 static bitmap touched_switch_bbs
;
94 long num_merged_labels
;
97 static struct cfg_stats_d cfg_stats
;
99 /* Data to pass to replace_block_vars_by_duplicates_1. */
100 struct replace_decls_d
102 hash_map
<tree
, tree
> *vars_map
;
106 /* Hash table to store last discriminator assigned for each locus. */
107 struct locus_discrim_map
113 /* Hashtable helpers. */
115 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
117 static inline hashval_t
hash (const locus_discrim_map
*);
118 static inline bool equal (const locus_discrim_map
*,
119 const locus_discrim_map
*);
122 /* Trivial hash function for a location_t. ITEM is a pointer to
123 a hash table entry that maps a location_t to a discriminator. */
126 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
128 return LOCATION_LINE (item
->locus
);
131 /* Equality function for the locus-to-discriminator map. A and B
132 point to the two hash table entries to compare. */
135 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
136 const locus_discrim_map
*b
)
138 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
141 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
143 /* Basic blocks and flowgraphs. */
144 static void make_blocks (gimple_seq
);
147 static void make_edges (void);
148 static void assign_discriminators (void);
149 static void make_cond_expr_edges (basic_block
);
150 static void make_gimple_switch_edges (gswitch
*, basic_block
);
151 static bool make_goto_expr_edges (basic_block
);
152 static void make_gimple_asm_edges (basic_block
);
153 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
154 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
156 /* Various helpers. */
157 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
158 static int gimple_verify_flow_info (void);
159 static void gimple_make_forwarder_block (edge
);
160 static gimple
*first_non_label_stmt (basic_block
);
161 static bool verify_gimple_transaction (gtransaction
*);
162 static bool call_can_make_abnormal_goto (gimple
*);
164 /* Flowgraph optimization and cleanup. */
165 static void gimple_merge_blocks (basic_block
, basic_block
);
166 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
167 static void remove_bb (basic_block
);
168 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
169 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
170 static edge
find_taken_edge_switch_expr (gswitch
*, basic_block
, tree
);
171 static tree
find_case_label_for_value (gswitch
*, tree
);
174 init_empty_tree_cfg_for_function (struct function
*fn
)
176 /* Initialize the basic block array. */
178 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
179 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
180 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
181 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
182 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
183 initial_cfg_capacity
);
185 /* Build a mapping of labels to their associated blocks. */
186 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
187 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
188 initial_cfg_capacity
);
190 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
191 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
193 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
194 = EXIT_BLOCK_PTR_FOR_FN (fn
);
195 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
196 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
200 init_empty_tree_cfg (void)
202 init_empty_tree_cfg_for_function (cfun
);
205 /*---------------------------------------------------------------------------
207 ---------------------------------------------------------------------------*/
209 /* Entry point to the CFG builder for trees. SEQ is the sequence of
210 statements to be added to the flowgraph. */
213 build_gimple_cfg (gimple_seq seq
)
215 /* Register specific gimple functions. */
216 gimple_register_cfg_hooks ();
218 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
220 init_empty_tree_cfg ();
224 /* Make sure there is always at least one block, even if it's empty. */
225 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
226 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
228 /* Adjust the size of the array. */
229 if (basic_block_info_for_fn (cfun
)->length ()
230 < (size_t) n_basic_blocks_for_fn (cfun
))
231 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
232 n_basic_blocks_for_fn (cfun
));
234 /* To speed up statement iterator walks, we first purge dead labels. */
235 cleanup_dead_labels ();
237 /* Group case nodes to reduce the number of edges.
238 We do this after cleaning up dead labels because otherwise we miss
239 a lot of obvious case merging opportunities. */
240 group_case_labels ();
242 /* Create the edges of the flowgraph. */
243 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
245 assign_discriminators ();
246 cleanup_dead_labels ();
247 delete discriminator_per_locus
;
248 discriminator_per_locus
= NULL
;
251 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
252 them and propagate the information to LOOP. We assume that the annotations
253 come immediately before the condition in BB, if any. */
256 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
258 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
259 gimple
*stmt
= gsi_stmt (gsi
);
261 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
264 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
266 stmt
= gsi_stmt (gsi
);
267 if (gimple_code (stmt
) != GIMPLE_CALL
)
269 if (!gimple_call_internal_p (stmt
)
270 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
273 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
275 case annot_expr_ivdep_kind
:
276 loop
->safelen
= INT_MAX
;
278 case annot_expr_no_vector_kind
:
279 loop
->dont_vectorize
= true;
281 case annot_expr_vector_kind
:
282 loop
->force_vectorize
= true;
283 cfun
->has_force_vectorize_loops
= true;
289 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
290 gimple_call_arg (stmt
, 0));
291 gsi_replace (&gsi
, stmt
, true);
295 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
296 them and propagate the information to the loop. We assume that the
297 annotations come immediately before the condition of the loop. */
300 replace_loop_annotate (void)
304 gimple_stmt_iterator gsi
;
307 FOR_EACH_LOOP (loop
, 0)
309 /* First look into the header. */
310 replace_loop_annotate_in_block (loop
->header
, loop
);
312 /* Then look into the latch, if any. */
314 replace_loop_annotate_in_block (loop
->latch
, loop
);
317 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
318 FOR_EACH_BB_FN (bb
, cfun
)
320 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
322 stmt
= gsi_stmt (gsi
);
323 if (gimple_code (stmt
) != GIMPLE_CALL
)
325 if (!gimple_call_internal_p (stmt
)
326 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
329 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
331 case annot_expr_ivdep_kind
:
332 case annot_expr_no_vector_kind
:
333 case annot_expr_vector_kind
:
339 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
340 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
341 gimple_call_arg (stmt
, 0));
342 gsi_replace (&gsi
, stmt
, true);
349 execute_build_cfg (void)
351 gimple_seq body
= gimple_body (current_function_decl
);
353 build_gimple_cfg (body
);
354 gimple_set_body (current_function_decl
, NULL
);
355 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
357 fprintf (dump_file
, "Scope blocks:\n");
358 dump_scope_blocks (dump_file
, dump_flags
);
361 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
362 replace_loop_annotate ();
368 const pass_data pass_data_build_cfg
=
370 GIMPLE_PASS
, /* type */
372 OPTGROUP_NONE
, /* optinfo_flags */
373 TV_TREE_CFG
, /* tv_id */
374 PROP_gimple_leh
, /* properties_required */
375 ( PROP_cfg
| PROP_loops
), /* properties_provided */
376 0, /* properties_destroyed */
377 0, /* todo_flags_start */
378 0, /* todo_flags_finish */
381 class pass_build_cfg
: public gimple_opt_pass
384 pass_build_cfg (gcc::context
*ctxt
)
385 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
388 /* opt_pass methods: */
389 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
391 }; // class pass_build_cfg
396 make_pass_build_cfg (gcc::context
*ctxt
)
398 return new pass_build_cfg (ctxt
);
402 /* Return true if T is a computed goto. */
405 computed_goto_p (gimple
*t
)
407 return (gimple_code (t
) == GIMPLE_GOTO
408 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
411 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
412 the other edge points to a bb with just __builtin_unreachable ().
413 I.e. return true for C->M edge in:
421 __builtin_unreachable ();
425 assert_unreachable_fallthru_edge_p (edge e
)
427 basic_block pred_bb
= e
->src
;
428 gimple
*last
= last_stmt (pred_bb
);
429 if (last
&& gimple_code (last
) == GIMPLE_COND
)
431 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
432 if (other_bb
== e
->dest
)
433 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
434 if (EDGE_COUNT (other_bb
->succs
) == 0)
436 gimple_stmt_iterator gsi
= gsi_after_labels (other_bb
);
441 stmt
= gsi_stmt (gsi
);
442 while (is_gimple_debug (stmt
) || gimple_clobber_p (stmt
))
447 stmt
= gsi_stmt (gsi
);
449 return gimple_call_builtin_p (stmt
, BUILT_IN_UNREACHABLE
);
456 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
457 could alter control flow except via eh. We initialize the flag at
458 CFG build time and only ever clear it later. */
461 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
463 int flags
= gimple_call_flags (stmt
);
465 /* A call alters control flow if it can make an abnormal goto. */
466 if (call_can_make_abnormal_goto (stmt
)
467 /* A call also alters control flow if it does not return. */
468 || flags
& ECF_NORETURN
469 /* TM ending statements have backedges out of the transaction.
470 Return true so we split the basic block containing them.
471 Note that the TM_BUILTIN test is merely an optimization. */
472 || ((flags
& ECF_TM_BUILTIN
)
473 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
474 /* BUILT_IN_RETURN call is same as return statement. */
475 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
476 /* IFN_UNIQUE should be the last insn, to make checking for it
477 as cheap as possible. */
478 || (gimple_call_internal_p (stmt
)
479 && gimple_call_internal_unique_p (stmt
)))
480 gimple_call_set_ctrl_altering (stmt
, true);
482 gimple_call_set_ctrl_altering (stmt
, false);
486 /* Insert SEQ after BB and build a flowgraph. */
489 make_blocks_1 (gimple_seq seq
, basic_block bb
)
491 gimple_stmt_iterator i
= gsi_start (seq
);
493 bool start_new_block
= true;
494 bool first_stmt_of_seq
= true;
496 while (!gsi_end_p (i
))
503 if (stmt
&& is_gimple_call (stmt
))
504 gimple_call_initialize_ctrl_altering (stmt
);
506 /* If the statement starts a new basic block or if we have determined
507 in a previous pass that we need to create a new block for STMT, do
509 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
511 if (!first_stmt_of_seq
)
512 gsi_split_seq_before (&i
, &seq
);
513 bb
= create_basic_block (seq
, bb
);
514 start_new_block
= false;
517 /* Now add STMT to BB and create the subgraphs for special statement
519 gimple_set_bb (stmt
, bb
);
521 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
523 if (stmt_ends_bb_p (stmt
))
525 /* If the stmt can make abnormal goto use a new temporary
526 for the assignment to the LHS. This makes sure the old value
527 of the LHS is available on the abnormal edge. Otherwise
528 we will end up with overlapping life-ranges for abnormal
530 if (gimple_has_lhs (stmt
)
531 && stmt_can_make_abnormal_goto (stmt
)
532 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
534 tree lhs
= gimple_get_lhs (stmt
);
535 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
536 gimple
*s
= gimple_build_assign (lhs
, tmp
);
537 gimple_set_location (s
, gimple_location (stmt
));
538 gimple_set_block (s
, gimple_block (stmt
));
539 gimple_set_lhs (stmt
, tmp
);
540 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
541 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
542 DECL_GIMPLE_REG_P (tmp
) = 1;
543 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
545 start_new_block
= true;
549 first_stmt_of_seq
= false;
554 /* Build a flowgraph for the sequence of stmts SEQ. */
557 make_blocks (gimple_seq seq
)
559 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
562 /* Create and return a new empty basic block after bb AFTER. */
565 create_bb (void *h
, void *e
, basic_block after
)
571 /* Create and initialize a new basic block. Since alloc_block uses
572 GC allocation that clears memory to allocate a basic block, we do
573 not have to clear the newly allocated basic block here. */
576 bb
->index
= last_basic_block_for_fn (cfun
);
578 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
580 /* Add the new block to the linked list of blocks. */
581 link_block (bb
, after
);
583 /* Grow the basic block array if needed. */
584 if ((size_t) last_basic_block_for_fn (cfun
)
585 == basic_block_info_for_fn (cfun
)->length ())
588 (last_basic_block_for_fn (cfun
)
589 + (last_basic_block_for_fn (cfun
) + 3) / 4);
590 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
593 /* Add the newly created block to the array. */
594 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
596 n_basic_blocks_for_fn (cfun
)++;
597 last_basic_block_for_fn (cfun
)++;
603 /*---------------------------------------------------------------------------
605 ---------------------------------------------------------------------------*/
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
612 get_abnormal_succ_dispatcher (basic_block bb
)
617 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
618 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e
->dest
);
622 gimple
*g
= gsi_stmt (gsi
);
624 && is_gimple_call (g
)
625 && gimple_call_internal_p (g
)
626 && gimple_call_internal_fn (g
) == IFN_ABNORMAL_DISPATCHER
)
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
638 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
639 basic_block for_bb
, int *bb_to_omp_idx
,
640 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
642 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
643 unsigned int idx
= 0;
649 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
650 if (bb_to_omp_idx
[for_bb
->index
] != 0)
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
657 if (*dispatcher
== NULL
)
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
662 if (bb_to_omp_idx
== NULL
)
664 if (bbs
->is_empty ())
669 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
670 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
676 /* Create the dispatcher bb. */
677 *dispatcher
= create_basic_block (NULL
, for_bb
);
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION
);
694 gimple
*factored_computed_goto_label
695 = gimple_build_label (factored_label_decl
);
696 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
698 /* Build our new computed goto. */
699 gimple
*factored_computed_goto
= gimple_build_goto (var
);
700 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
702 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
705 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
708 gsi
= gsi_last_bb (bb
);
709 gimple
*last
= gsi_stmt (gsi
);
711 gcc_assert (computed_goto_p (last
));
713 /* Copy the original computed goto's destination into VAR. */
715 = gimple_build_assign (var
, gimple_goto_dest (last
));
716 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
718 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
719 e
->goto_locus
= gimple_location (last
);
720 gsi_remove (&gsi
, true);
725 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
726 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
728 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
729 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
735 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
737 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
742 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
745 /* Creates outgoing edges for BB. Returns 1 when it ends with an
746 computed goto, returns 2 when it ends with a statement that
747 might return to this function via an nonlocal goto, otherwise
748 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
751 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
753 gimple
*last
= last_stmt (bb
);
754 bool fallthru
= false;
760 switch (gimple_code (last
))
763 if (make_goto_expr_edges (bb
))
769 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
770 e
->goto_locus
= gimple_location (last
);
775 make_cond_expr_edges (bb
);
779 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
783 make_eh_edges (last
);
786 case GIMPLE_EH_DISPATCH
:
787 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
791 /* If this function receives a nonlocal goto, then we need to
792 make edges from this call site to all the nonlocal goto
794 if (stmt_can_make_abnormal_goto (last
))
797 /* If this statement has reachable exception handlers, then
798 create abnormal edges to them. */
799 make_eh_edges (last
);
801 /* BUILTIN_RETURN is really a return statement. */
802 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
804 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
807 /* Some calls are known not to return. */
809 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
813 /* A GIMPLE_ASSIGN may throw internally and thus be considered
815 if (is_ctrl_altering_stmt (last
))
816 make_eh_edges (last
);
821 make_gimple_asm_edges (bb
);
826 fallthru
= make_gimple_omp_edges (bb
, pcur_region
, pomp_index
);
829 case GIMPLE_TRANSACTION
:
831 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
832 tree label1
= gimple_transaction_label_norm (txn
);
833 tree label2
= gimple_transaction_label_uninst (txn
);
836 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
838 make_edge (bb
, label_to_block (label2
),
839 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
841 tree label3
= gimple_transaction_label_over (txn
);
842 if (gimple_transaction_subcode (txn
)
843 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
844 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
851 gcc_assert (!stmt_ends_bb_p (last
));
857 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
862 /* Join all the blocks in the flowgraph. */
868 struct omp_region
*cur_region
= NULL
;
869 auto_vec
<basic_block
> ab_edge_goto
;
870 auto_vec
<basic_block
> ab_edge_call
;
871 int *bb_to_omp_idx
= NULL
;
872 int cur_omp_region_idx
= 0;
874 /* Create an edge from entry to the first block with executable
876 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
877 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
880 /* Traverse the basic block array placing edges. */
881 FOR_EACH_BB_FN (bb
, cfun
)
886 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
888 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
890 ab_edge_goto
.safe_push (bb
);
892 ab_edge_call
.safe_push (bb
);
894 if (cur_region
&& bb_to_omp_idx
== NULL
)
895 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
898 /* Computed gotos are hell to deal with, especially if there are
899 lots of them with a large number of destinations. So we factor
900 them to a common computed goto location before we build the
901 edge list. After we convert back to normal form, we will un-factor
902 the computed gotos since factoring introduces an unwanted jump.
903 For non-local gotos and abnormal edges from calls to calls that return
904 twice or forced labels, factor the abnormal edges too, by having all
905 abnormal edges from the calls go to a common artificial basic block
906 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
907 basic block to all forced labels and calls returning twice.
908 We do this per-OpenMP structured block, because those regions
909 are guaranteed to be single entry single exit by the standard,
910 so it is not allowed to enter or exit such regions abnormally this way,
911 thus all computed gotos, non-local gotos and setjmp/longjmp calls
912 must not transfer control across SESE region boundaries. */
913 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
915 gimple_stmt_iterator gsi
;
916 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
917 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
918 int count
= n_basic_blocks_for_fn (cfun
);
921 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
923 FOR_EACH_BB_FN (bb
, cfun
)
925 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
927 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
933 target
= gimple_label_label (label_stmt
);
935 /* Make an edge to every label block that has been marked as a
936 potential target for a computed goto or a non-local goto. */
937 if (FORCED_LABEL (target
))
938 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
939 &ab_edge_goto
, true);
940 if (DECL_NONLOCAL (target
))
942 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
943 &ab_edge_call
, false);
948 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
949 gsi_next_nondebug (&gsi
);
950 if (!gsi_end_p (gsi
))
952 /* Make an edge to every setjmp-like call. */
953 gimple
*call_stmt
= gsi_stmt (gsi
);
954 if (is_gimple_call (call_stmt
)
955 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
956 || gimple_call_builtin_p (call_stmt
,
957 BUILT_IN_SETJMP_RECEIVER
)))
958 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
959 &ab_edge_call
, false);
964 XDELETE (dispatcher_bbs
);
967 XDELETE (bb_to_omp_idx
);
972 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
973 needed. Returns true if new bbs were created.
974 Note: This is transitional code, and should not be used for new code. We
975 should be able to get rid of this by rewriting all target va-arg
976 gimplification hooks to use an interface gimple_build_cond_value as described
977 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
980 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
982 gimple
*stmt
= gsi_stmt (*gsi
);
983 basic_block bb
= gimple_bb (stmt
);
984 basic_block lastbb
, afterbb
;
985 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
987 lastbb
= make_blocks_1 (seq
, bb
);
988 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
990 e
= split_block (bb
, stmt
);
991 /* Move e->dest to come after the new basic blocks. */
993 unlink_block (afterbb
);
994 link_block (afterbb
, lastbb
);
995 redirect_edge_succ (e
, bb
->next_bb
);
997 while (bb
!= afterbb
)
999 struct omp_region
*cur_region
= NULL
;
1000 int cur_omp_region_idx
= 0;
1001 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1002 gcc_assert (!mer
&& !cur_region
);
1003 add_bb_to_loop (bb
, afterbb
->loop_father
);
1009 /* Find the next available discriminator value for LOCUS. The
1010 discriminator distinguishes among several basic blocks that
1011 share a common locus, allowing for more accurate sample-based
1015 next_discriminator_for_locus (location_t locus
)
1017 struct locus_discrim_map item
;
1018 struct locus_discrim_map
**slot
;
1021 item
.discriminator
= 0;
1022 slot
= discriminator_per_locus
->find_slot_with_hash (
1023 &item
, LOCATION_LINE (locus
), INSERT
);
1025 if (*slot
== HTAB_EMPTY_ENTRY
)
1027 *slot
= XNEW (struct locus_discrim_map
);
1029 (*slot
)->locus
= locus
;
1030 (*slot
)->discriminator
= 0;
1032 (*slot
)->discriminator
++;
1033 return (*slot
)->discriminator
;
1036 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1039 same_line_p (location_t locus1
, location_t locus2
)
1041 expanded_location from
, to
;
1043 if (locus1
== locus2
)
1046 from
= expand_location (locus1
);
1047 to
= expand_location (locus2
);
1049 if (from
.line
!= to
.line
)
1051 if (from
.file
== to
.file
)
1053 return (from
.file
!= NULL
1055 && filename_cmp (from
.file
, to
.file
) == 0);
1058 /* Assign discriminators to each basic block. */
1061 assign_discriminators (void)
1065 FOR_EACH_BB_FN (bb
, cfun
)
1069 gimple
*last
= last_stmt (bb
);
1070 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1072 if (locus
== UNKNOWN_LOCATION
)
1075 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1077 gimple
*first
= first_non_label_stmt (e
->dest
);
1078 gimple
*last
= last_stmt (e
->dest
);
1079 if ((first
&& same_line_p (locus
, gimple_location (first
)))
1080 || (last
&& same_line_p (locus
, gimple_location (last
))))
1082 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1083 bb
->discriminator
= next_discriminator_for_locus (locus
);
1085 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1091 /* Create the edges for a GIMPLE_COND starting at block BB. */
1094 make_cond_expr_edges (basic_block bb
)
1096 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1097 gimple
*then_stmt
, *else_stmt
;
1098 basic_block then_bb
, else_bb
;
1099 tree then_label
, else_label
;
1103 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1105 /* Entry basic blocks for each component. */
1106 then_label
= gimple_cond_true_label (entry
);
1107 else_label
= gimple_cond_false_label (entry
);
1108 then_bb
= label_to_block (then_label
);
1109 else_bb
= label_to_block (else_label
);
1110 then_stmt
= first_stmt (then_bb
);
1111 else_stmt
= first_stmt (else_bb
);
1113 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1114 e
->goto_locus
= gimple_location (then_stmt
);
1115 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1117 e
->goto_locus
= gimple_location (else_stmt
);
1119 /* We do not need the labels anymore. */
1120 gimple_cond_set_true_label (entry
, NULL_TREE
);
1121 gimple_cond_set_false_label (entry
, NULL_TREE
);
1125 /* Called for each element in the hash table (P) as we delete the
1126 edge to cases hash table.
1128 Clear all the TREE_CHAINs to prevent problems with copying of
1129 SWITCH_EXPRs and structure sharing rules, then free the hash table
1133 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1137 for (t
= value
; t
; t
= next
)
1139 next
= CASE_CHAIN (t
);
1140 CASE_CHAIN (t
) = NULL
;
1146 /* Start recording information mapping edges to case labels. */
1149 start_recording_case_labels (void)
1151 gcc_assert (edge_to_cases
== NULL
);
1152 edge_to_cases
= new hash_map
<edge
, tree
>;
1153 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1156 /* Return nonzero if we are recording information for case labels. */
1159 recording_case_labels_p (void)
1161 return (edge_to_cases
!= NULL
);
1164 /* Stop recording information mapping edges to case labels and
1165 remove any information we have recorded. */
1167 end_recording_case_labels (void)
1171 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1172 delete edge_to_cases
;
1173 edge_to_cases
= NULL
;
1174 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1176 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1179 gimple
*stmt
= last_stmt (bb
);
1180 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1181 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1184 BITMAP_FREE (touched_switch_bbs
);
1187 /* If we are inside a {start,end}_recording_cases block, then return
1188 a chain of CASE_LABEL_EXPRs from T which reference E.
1190 Otherwise return NULL. */
1193 get_cases_for_edge (edge e
, gswitch
*t
)
1198 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1199 chains available. Return NULL so the caller can detect this case. */
1200 if (!recording_case_labels_p ())
1203 slot
= edge_to_cases
->get (e
);
1207 /* If we did not find E in the hash table, then this must be the first
1208 time we have been queried for information about E & T. Add all the
1209 elements from T to the hash table then perform the query again. */
1211 n
= gimple_switch_num_labels (t
);
1212 for (i
= 0; i
< n
; i
++)
1214 tree elt
= gimple_switch_label (t
, i
);
1215 tree lab
= CASE_LABEL (elt
);
1216 basic_block label_bb
= label_to_block (lab
);
1217 edge this_edge
= find_edge (e
->src
, label_bb
);
1219 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1221 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1222 CASE_CHAIN (elt
) = s
;
1226 return *edge_to_cases
->get (e
);
1229 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1232 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1236 n
= gimple_switch_num_labels (entry
);
1238 for (i
= 0; i
< n
; ++i
)
1240 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1241 basic_block label_bb
= label_to_block (lab
);
1242 make_edge (bb
, label_bb
, 0);
1247 /* Return the basic block holding label DEST. */
1250 label_to_block_fn (struct function
*ifun
, tree dest
)
1252 int uid
= LABEL_DECL_UID (dest
);
1254 /* We would die hard when faced by an undefined label. Emit a label to
1255 the very first basic block. This will hopefully make even the dataflow
1256 and undefined variable warnings quite right. */
1257 if (seen_error () && uid
< 0)
1259 gimple_stmt_iterator gsi
=
1260 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1263 stmt
= gimple_build_label (dest
);
1264 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1265 uid
= LABEL_DECL_UID (dest
);
1267 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1269 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1272 /* Create edges for a goto statement at block BB. Returns true
1273 if abnormal edges should be created. */
1276 make_goto_expr_edges (basic_block bb
)
1278 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1279 gimple
*goto_t
= gsi_stmt (last
);
1281 /* A simple GOTO creates normal edges. */
1282 if (simple_goto_p (goto_t
))
1284 tree dest
= gimple_goto_dest (goto_t
);
1285 basic_block label_bb
= label_to_block (dest
);
1286 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1287 e
->goto_locus
= gimple_location (goto_t
);
1288 gsi_remove (&last
, true);
1292 /* A computed GOTO creates abnormal edges. */
1296 /* Create edges for an asm statement with labels at block BB. */
1299 make_gimple_asm_edges (basic_block bb
)
1301 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1302 int i
, n
= gimple_asm_nlabels (stmt
);
1304 for (i
= 0; i
< n
; ++i
)
1306 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1307 basic_block label_bb
= label_to_block (label
);
1308 make_edge (bb
, label_bb
, 0);
1312 /*---------------------------------------------------------------------------
1314 ---------------------------------------------------------------------------*/
1316 /* Cleanup useless labels in basic blocks. This is something we wish
1317 to do early because it allows us to group case labels before creating
1318 the edges for the CFG, and it speeds up block statement iterators in
1319 all passes later on.
1320 We rerun this pass after CFG is created, to get rid of the labels that
1321 are no longer referenced. After then we do not run it any more, since
1322 (almost) no new labels should be created. */
1324 /* A map from basic block index to the leading label of that block. */
1325 static struct label_record
1330 /* True if the label is referenced from somewhere. */
1334 /* Given LABEL return the first label in the same basic block. */
1337 main_block_label (tree label
)
1339 basic_block bb
= label_to_block (label
);
1340 tree main_label
= label_for_bb
[bb
->index
].label
;
1342 /* label_to_block possibly inserted undefined label into the chain. */
1345 label_for_bb
[bb
->index
].label
= label
;
1349 label_for_bb
[bb
->index
].used
= true;
1353 /* Clean up redundant labels within the exception tree. */
1356 cleanup_dead_labels_eh (void)
1363 if (cfun
->eh
== NULL
)
1366 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1367 if (lp
&& lp
->post_landing_pad
)
1369 lab
= main_block_label (lp
->post_landing_pad
);
1370 if (lab
!= lp
->post_landing_pad
)
1372 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1373 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1377 FOR_ALL_EH_REGION (r
)
1381 case ERT_MUST_NOT_THROW
:
1387 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1391 c
->label
= main_block_label (lab
);
1396 case ERT_ALLOWED_EXCEPTIONS
:
1397 lab
= r
->u
.allowed
.label
;
1399 r
->u
.allowed
.label
= main_block_label (lab
);
1405 /* Cleanup redundant labels. This is a three-step process:
1406 1) Find the leading label for each block.
1407 2) Redirect all references to labels to the leading labels.
1408 3) Cleanup all useless labels. */
1411 cleanup_dead_labels (void)
1414 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1416 /* Find a suitable label for each block. We use the first user-defined
1417 label if there is one, or otherwise just the first label we see. */
1418 FOR_EACH_BB_FN (bb
, cfun
)
1420 gimple_stmt_iterator i
;
1422 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1425 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1430 label
= gimple_label_label (label_stmt
);
1432 /* If we have not yet seen a label for the current block,
1433 remember this one and see if there are more labels. */
1434 if (!label_for_bb
[bb
->index
].label
)
1436 label_for_bb
[bb
->index
].label
= label
;
1440 /* If we did see a label for the current block already, but it
1441 is an artificially created label, replace it if the current
1442 label is a user defined label. */
1443 if (!DECL_ARTIFICIAL (label
)
1444 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1446 label_for_bb
[bb
->index
].label
= label
;
1452 /* Now redirect all jumps/branches to the selected label.
1453 First do so for each block ending in a control statement. */
1454 FOR_EACH_BB_FN (bb
, cfun
)
1456 gimple
*stmt
= last_stmt (bb
);
1457 tree label
, new_label
;
1462 switch (gimple_code (stmt
))
1466 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1467 label
= gimple_cond_true_label (cond_stmt
);
1470 new_label
= main_block_label (label
);
1471 if (new_label
!= label
)
1472 gimple_cond_set_true_label (cond_stmt
, new_label
);
1475 label
= gimple_cond_false_label (cond_stmt
);
1478 new_label
= main_block_label (label
);
1479 if (new_label
!= label
)
1480 gimple_cond_set_false_label (cond_stmt
, new_label
);
1487 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1488 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1490 /* Replace all destination labels. */
1491 for (i
= 0; i
< n
; ++i
)
1493 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1494 label
= CASE_LABEL (case_label
);
1495 new_label
= main_block_label (label
);
1496 if (new_label
!= label
)
1497 CASE_LABEL (case_label
) = new_label
;
1504 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1505 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1507 for (i
= 0; i
< n
; ++i
)
1509 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1510 tree label
= main_block_label (TREE_VALUE (cons
));
1511 TREE_VALUE (cons
) = label
;
1516 /* We have to handle gotos until they're removed, and we don't
1517 remove them until after we've created the CFG edges. */
1519 if (!computed_goto_p (stmt
))
1521 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1522 label
= gimple_goto_dest (goto_stmt
);
1523 new_label
= main_block_label (label
);
1524 if (new_label
!= label
)
1525 gimple_goto_set_dest (goto_stmt
, new_label
);
1529 case GIMPLE_TRANSACTION
:
1531 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1533 label
= gimple_transaction_label_norm (txn
);
1536 new_label
= main_block_label (label
);
1537 if (new_label
!= label
)
1538 gimple_transaction_set_label_norm (txn
, new_label
);
1541 label
= gimple_transaction_label_uninst (txn
);
1544 new_label
= main_block_label (label
);
1545 if (new_label
!= label
)
1546 gimple_transaction_set_label_uninst (txn
, new_label
);
1549 label
= gimple_transaction_label_over (txn
);
1552 new_label
= main_block_label (label
);
1553 if (new_label
!= label
)
1554 gimple_transaction_set_label_over (txn
, new_label
);
1564 /* Do the same for the exception region tree labels. */
1565 cleanup_dead_labels_eh ();
1567 /* Finally, purge dead labels. All user-defined labels and labels that
1568 can be the target of non-local gotos and labels which have their
1569 address taken are preserved. */
1570 FOR_EACH_BB_FN (bb
, cfun
)
1572 gimple_stmt_iterator i
;
1573 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1575 if (!label_for_this_bb
)
1578 /* If the main label of the block is unused, we may still remove it. */
1579 if (!label_for_bb
[bb
->index
].used
)
1580 label_for_this_bb
= NULL
;
1582 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1585 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1590 label
= gimple_label_label (label_stmt
);
1592 if (label
== label_for_this_bb
1593 || !DECL_ARTIFICIAL (label
)
1594 || DECL_NONLOCAL (label
)
1595 || FORCED_LABEL (label
))
1598 gsi_remove (&i
, true);
1602 free (label_for_bb
);
1605 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1606 the ones jumping to the same label.
1607 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1610 group_case_labels_stmt (gswitch
*stmt
)
1612 int old_size
= gimple_switch_num_labels (stmt
);
1613 int i
, j
, new_size
= old_size
;
1614 basic_block default_bb
= NULL
;
1616 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1618 /* Look for possible opportunities to merge cases. */
1620 while (i
< old_size
)
1622 tree base_case
, base_high
;
1623 basic_block base_bb
;
1625 base_case
= gimple_switch_label (stmt
, i
);
1627 gcc_assert (base_case
);
1628 base_bb
= label_to_block (CASE_LABEL (base_case
));
1630 /* Discard cases that have the same destination as the
1632 if (base_bb
== default_bb
)
1634 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1640 base_high
= CASE_HIGH (base_case
)
1641 ? CASE_HIGH (base_case
)
1642 : CASE_LOW (base_case
);
1645 /* Try to merge case labels. Break out when we reach the end
1646 of the label vector or when we cannot merge the next case
1647 label with the current one. */
1648 while (i
< old_size
)
1650 tree merge_case
= gimple_switch_label (stmt
, i
);
1651 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1652 wide_int bhp1
= wi::add (base_high
, 1);
1654 /* Merge the cases if they jump to the same place,
1655 and their ranges are consecutive. */
1656 if (merge_bb
== base_bb
1657 && wi::eq_p (CASE_LOW (merge_case
), bhp1
))
1659 base_high
= CASE_HIGH (merge_case
) ?
1660 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1661 CASE_HIGH (base_case
) = base_high
;
1662 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1671 /* Compress the case labels in the label vector, and adjust the
1672 length of the vector. */
1673 for (i
= 0, j
= 0; i
< new_size
; i
++)
1675 while (! gimple_switch_label (stmt
, j
))
1677 gimple_switch_set_label (stmt
, i
,
1678 gimple_switch_label (stmt
, j
++));
1681 gcc_assert (new_size
<= old_size
);
1682 gimple_switch_set_num_labels (stmt
, new_size
);
1685 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1686 and scan the sorted vector of cases. Combine the ones jumping to the
1690 group_case_labels (void)
1694 FOR_EACH_BB_FN (bb
, cfun
)
1696 gimple
*stmt
= last_stmt (bb
);
1697 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1698 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1702 /* Checks whether we can merge block B into block A. */
1705 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1709 if (!single_succ_p (a
))
1712 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1715 if (single_succ (a
) != b
)
1718 if (!single_pred_p (b
))
1721 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1722 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1725 /* If A ends by a statement causing exceptions or something similar, we
1726 cannot merge the blocks. */
1727 stmt
= last_stmt (a
);
1728 if (stmt
&& stmt_ends_bb_p (stmt
))
1731 /* Do not allow a block with only a non-local label to be merged. */
1733 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1734 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1737 /* Examine the labels at the beginning of B. */
1738 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1742 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1745 lab
= gimple_label_label (label_stmt
);
1747 /* Do not remove user forced labels or for -O0 any user labels. */
1748 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1752 /* Protect simple loop latches. We only want to avoid merging
1753 the latch with the loop header or with a block in another
1754 loop in this case. */
1756 && b
->loop_father
->latch
== b
1757 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1758 && (b
->loop_father
->header
== a
1759 || b
->loop_father
!= a
->loop_father
))
1762 /* It must be possible to eliminate all phi nodes in B. If ssa form
1763 is not up-to-date and a name-mapping is registered, we cannot eliminate
1764 any phis. Symbols marked for renaming are never a problem though. */
1765 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1768 gphi
*phi
= gsi
.phi ();
1769 /* Technically only new names matter. */
1770 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1774 /* When not optimizing, don't merge if we'd lose goto_locus. */
1776 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1778 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1779 gimple_stmt_iterator prev
, next
;
1780 prev
= gsi_last_nondebug_bb (a
);
1781 next
= gsi_after_labels (b
);
1782 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1783 gsi_next_nondebug (&next
);
1784 if ((gsi_end_p (prev
)
1785 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1786 && (gsi_end_p (next
)
1787 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1794 /* Replaces all uses of NAME by VAL. */
1797 replace_uses_by (tree name
, tree val
)
1799 imm_use_iterator imm_iter
;
1804 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1806 /* Mark the block if we change the last stmt in it. */
1807 if (cfgcleanup_altered_bbs
1808 && stmt_ends_bb_p (stmt
))
1809 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1811 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1813 replace_exp (use
, val
);
1815 if (gimple_code (stmt
) == GIMPLE_PHI
)
1817 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1818 PHI_ARG_INDEX_FROM_USE (use
));
1819 if (e
->flags
& EDGE_ABNORMAL
1820 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1822 /* This can only occur for virtual operands, since
1823 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1824 would prevent replacement. */
1825 gcc_checking_assert (virtual_operand_p (name
));
1826 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1831 if (gimple_code (stmt
) != GIMPLE_PHI
)
1833 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1834 gimple
*orig_stmt
= stmt
;
1837 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1838 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1839 only change sth from non-invariant to invariant, and only
1840 when propagating constants. */
1841 if (is_gimple_min_invariant (val
))
1842 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1844 tree op
= gimple_op (stmt
, i
);
1845 /* Operands may be empty here. For example, the labels
1846 of a GIMPLE_COND are nulled out following the creation
1847 of the corresponding CFG edges. */
1848 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1849 recompute_tree_invariant_for_addr_expr (op
);
1852 if (fold_stmt (&gsi
))
1853 stmt
= gsi_stmt (gsi
);
1855 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1856 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1862 gcc_checking_assert (has_zero_uses (name
));
1864 /* Also update the trees stored in loop structures. */
1869 FOR_EACH_LOOP (loop
, 0)
1871 substitute_in_loop_info (loop
, name
, val
);
1876 /* Merge block B into block A. */
1879 gimple_merge_blocks (basic_block a
, basic_block b
)
1881 gimple_stmt_iterator last
, gsi
;
1885 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1887 /* Remove all single-valued PHI nodes from block B of the form
1888 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1889 gsi
= gsi_last_bb (a
);
1890 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1892 gimple
*phi
= gsi_stmt (psi
);
1893 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1895 bool may_replace_uses
= (virtual_operand_p (def
)
1896 || may_propagate_copy (def
, use
));
1898 /* In case we maintain loop closed ssa form, do not propagate arguments
1899 of loop exit phi nodes. */
1901 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1902 && !virtual_operand_p (def
)
1903 && TREE_CODE (use
) == SSA_NAME
1904 && a
->loop_father
!= b
->loop_father
)
1905 may_replace_uses
= false;
1907 if (!may_replace_uses
)
1909 gcc_assert (!virtual_operand_p (def
));
1911 /* Note that just emitting the copies is fine -- there is no problem
1912 with ordering of phi nodes. This is because A is the single
1913 predecessor of B, therefore results of the phi nodes cannot
1914 appear as arguments of the phi nodes. */
1915 copy
= gimple_build_assign (def
, use
);
1916 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1917 remove_phi_node (&psi
, false);
1921 /* If we deal with a PHI for virtual operands, we can simply
1922 propagate these without fussing with folding or updating
1924 if (virtual_operand_p (def
))
1926 imm_use_iterator iter
;
1927 use_operand_p use_p
;
1930 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1931 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1932 SET_USE (use_p
, use
);
1934 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1935 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1938 replace_uses_by (def
, use
);
1940 remove_phi_node (&psi
, true);
1944 /* Ensure that B follows A. */
1945 move_block_after (b
, a
);
1947 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1948 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1950 /* Remove labels from B and set gimple_bb to A for other statements. */
1951 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1953 gimple
*stmt
= gsi_stmt (gsi
);
1954 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1956 tree label
= gimple_label_label (label_stmt
);
1959 gsi_remove (&gsi
, false);
1961 /* Now that we can thread computed gotos, we might have
1962 a situation where we have a forced label in block B
1963 However, the label at the start of block B might still be
1964 used in other ways (think about the runtime checking for
1965 Fortran assigned gotos). So we can not just delete the
1966 label. Instead we move the label to the start of block A. */
1967 if (FORCED_LABEL (label
))
1969 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1970 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1972 /* Other user labels keep around in a form of a debug stmt. */
1973 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1975 gimple
*dbg
= gimple_build_debug_bind (label
,
1978 gimple_debug_bind_reset_value (dbg
);
1979 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1982 lp_nr
= EH_LANDING_PAD_NR (label
);
1985 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1986 lp
->post_landing_pad
= NULL
;
1991 gimple_set_bb (stmt
, a
);
1996 /* When merging two BBs, if their counts are different, the larger count
1997 is selected as the new bb count. This is to handle inconsistent
1999 if (a
->loop_father
== b
->loop_father
)
2001 a
->count
= MAX (a
->count
, b
->count
);
2002 a
->frequency
= MAX (a
->frequency
, b
->frequency
);
2005 /* Merge the sequences. */
2006 last
= gsi_last_bb (a
);
2007 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2008 set_bb_seq (b
, NULL
);
2010 if (cfgcleanup_altered_bbs
)
2011 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2015 /* Return the one of two successors of BB that is not reachable by a
2016 complex edge, if there is one. Else, return BB. We use
2017 this in optimizations that use post-dominators for their heuristics,
2018 to catch the cases in C++ where function calls are involved. */
2021 single_noncomplex_succ (basic_block bb
)
2024 if (EDGE_COUNT (bb
->succs
) != 2)
2027 e0
= EDGE_SUCC (bb
, 0);
2028 e1
= EDGE_SUCC (bb
, 1);
2029 if (e0
->flags
& EDGE_COMPLEX
)
2031 if (e1
->flags
& EDGE_COMPLEX
)
2037 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2040 notice_special_calls (gcall
*call
)
2042 int flags
= gimple_call_flags (call
);
2044 if (flags
& ECF_MAY_BE_ALLOCA
)
2045 cfun
->calls_alloca
= true;
2046 if (flags
& ECF_RETURNS_TWICE
)
2047 cfun
->calls_setjmp
= true;
2051 /* Clear flags set by notice_special_calls. Used by dead code removal
2052 to update the flags. */
2055 clear_special_calls (void)
2057 cfun
->calls_alloca
= false;
2058 cfun
->calls_setjmp
= false;
2061 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2064 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2066 /* Since this block is no longer reachable, we can just delete all
2067 of its PHI nodes. */
2068 remove_phi_nodes (bb
);
2070 /* Remove edges to BB's successors. */
2071 while (EDGE_COUNT (bb
->succs
) > 0)
2072 remove_edge (EDGE_SUCC (bb
, 0));
2076 /* Remove statements of basic block BB. */
2079 remove_bb (basic_block bb
)
2081 gimple_stmt_iterator i
;
2085 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2086 if (dump_flags
& TDF_DETAILS
)
2088 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2089 fprintf (dump_file
, "\n");
2095 struct loop
*loop
= bb
->loop_father
;
2097 /* If a loop gets removed, clean up the information associated
2099 if (loop
->latch
== bb
2100 || loop
->header
== bb
)
2101 free_numbers_of_iterations_estimates_loop (loop
);
2104 /* Remove all the instructions in the block. */
2105 if (bb_seq (bb
) != NULL
)
2107 /* Walk backwards so as to get a chance to substitute all
2108 released DEFs into debug stmts. See
2109 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2111 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2113 gimple
*stmt
= gsi_stmt (i
);
2114 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2116 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2117 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2120 gimple_stmt_iterator new_gsi
;
2122 /* A non-reachable non-local label may still be referenced.
2123 But it no longer needs to carry the extra semantics of
2125 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2127 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2128 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2131 new_bb
= bb
->prev_bb
;
2132 new_gsi
= gsi_start_bb (new_bb
);
2133 gsi_remove (&i
, false);
2134 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2138 /* Release SSA definitions if we are in SSA. Note that we
2139 may be called when not in SSA. For example,
2140 final_cleanup calls this function via
2141 cleanup_tree_cfg. */
2142 if (gimple_in_ssa_p (cfun
))
2143 release_defs (stmt
);
2145 gsi_remove (&i
, true);
2149 i
= gsi_last_bb (bb
);
2155 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2156 bb
->il
.gimple
.seq
= NULL
;
2157 bb
->il
.gimple
.phi_nodes
= NULL
;
2161 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2162 predicate VAL, return the edge that will be taken out of the block.
2163 If VAL does not match a unique edge, NULL is returned. */
2166 find_taken_edge (basic_block bb
, tree val
)
2170 stmt
= last_stmt (bb
);
2173 gcc_assert (is_ctrl_stmt (stmt
));
2178 if (!is_gimple_min_invariant (val
))
2181 if (gimple_code (stmt
) == GIMPLE_COND
)
2182 return find_taken_edge_cond_expr (bb
, val
);
2184 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2185 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), bb
, val
);
2187 if (computed_goto_p (stmt
))
2189 /* Only optimize if the argument is a label, if the argument is
2190 not a label then we can not construct a proper CFG.
2192 It may be the case that we only need to allow the LABEL_REF to
2193 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2194 appear inside a LABEL_EXPR just to be safe. */
2195 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2196 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2197 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2204 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2205 statement, determine which of the outgoing edges will be taken out of the
2206 block. Return NULL if either edge may be taken. */
2209 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2214 dest
= label_to_block (val
);
2217 e
= find_edge (bb
, dest
);
2218 gcc_assert (e
!= NULL
);
2224 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2225 statement, determine which of the two edges will be taken out of the
2226 block. Return NULL if either edge may be taken. */
2229 find_taken_edge_cond_expr (basic_block bb
, tree val
)
2231 edge true_edge
, false_edge
;
2233 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
2235 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
2236 return (integer_zerop (val
) ? false_edge
: true_edge
);
2239 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2240 statement, determine which edge will be taken out of the block. Return
2241 NULL if any edge may be taken. */
2244 find_taken_edge_switch_expr (gswitch
*switch_stmt
, basic_block bb
,
2247 basic_block dest_bb
;
2251 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2252 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2254 e
= find_edge (bb
, dest_bb
);
2260 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2261 We can make optimal use here of the fact that the case labels are
2262 sorted: We can do a binary search for a case matching VAL. */
2265 find_case_label_for_value (gswitch
*switch_stmt
, tree val
)
2267 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2268 tree default_case
= gimple_switch_default_label (switch_stmt
);
2270 for (low
= 0, high
= n
; high
- low
> 1; )
2272 size_t i
= (high
+ low
) / 2;
2273 tree t
= gimple_switch_label (switch_stmt
, i
);
2276 /* Cache the result of comparing CASE_LOW and val. */
2277 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2284 if (CASE_HIGH (t
) == NULL
)
2286 /* A singe-valued case label. */
2292 /* A case range. We can only handle integer ranges. */
2293 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2298 return default_case
;
2302 /* Dump a basic block on stderr. */
2305 gimple_debug_bb (basic_block bb
)
2307 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2311 /* Dump basic block with index N on stderr. */
2314 gimple_debug_bb_n (int n
)
2316 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2317 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2321 /* Dump the CFG on stderr.
2323 FLAGS are the same used by the tree dumping functions
2324 (see TDF_* in dumpfile.h). */
2327 gimple_debug_cfg (int flags
)
2329 gimple_dump_cfg (stderr
, flags
);
2333 /* Dump the program showing basic block boundaries on the given FILE.
2335 FLAGS are the same used by the tree dumping functions (see TDF_* in
2339 gimple_dump_cfg (FILE *file
, int flags
)
2341 if (flags
& TDF_DETAILS
)
2343 dump_function_header (file
, current_function_decl
, flags
);
2344 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2345 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2346 last_basic_block_for_fn (cfun
));
2348 brief_dump_cfg (file
, flags
| TDF_COMMENT
);
2349 fprintf (file
, "\n");
2352 if (flags
& TDF_STATS
)
2353 dump_cfg_stats (file
);
2355 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2359 /* Dump CFG statistics on FILE. */
2362 dump_cfg_stats (FILE *file
)
2364 static long max_num_merged_labels
= 0;
2365 unsigned long size
, total
= 0;
2368 const char * const fmt_str
= "%-30s%-13s%12s\n";
2369 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2370 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2371 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2372 const char *funcname
= current_function_name ();
2374 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2376 fprintf (file
, "---------------------------------------------------------\n");
2377 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2378 fprintf (file
, fmt_str
, "", " instances ", "used ");
2379 fprintf (file
, "---------------------------------------------------------\n");
2381 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2383 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2384 SCALE (size
), LABEL (size
));
2387 FOR_EACH_BB_FN (bb
, cfun
)
2388 num_edges
+= EDGE_COUNT (bb
->succs
);
2389 size
= num_edges
* sizeof (struct edge_def
);
2391 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2393 fprintf (file
, "---------------------------------------------------------\n");
2394 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2396 fprintf (file
, "---------------------------------------------------------\n");
2397 fprintf (file
, "\n");
2399 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2400 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2402 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2403 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2405 fprintf (file
, "\n");
2409 /* Dump CFG statistics on stderr. Keep extern so that it's always
2410 linked in the final executable. */
2413 debug_cfg_stats (void)
2415 dump_cfg_stats (stderr
);
2418 /*---------------------------------------------------------------------------
2419 Miscellaneous helpers
2420 ---------------------------------------------------------------------------*/
2422 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2423 flow. Transfers of control flow associated with EH are excluded. */
2426 call_can_make_abnormal_goto (gimple
*t
)
2428 /* If the function has no non-local labels, then a call cannot make an
2429 abnormal transfer of control. */
2430 if (!cfun
->has_nonlocal_label
2431 && !cfun
->calls_setjmp
)
2434 /* Likewise if the call has no side effects. */
2435 if (!gimple_has_side_effects (t
))
2438 /* Likewise if the called function is leaf. */
2439 if (gimple_call_flags (t
) & ECF_LEAF
)
2446 /* Return true if T can make an abnormal transfer of control flow.
2447 Transfers of control flow associated with EH are excluded. */
2450 stmt_can_make_abnormal_goto (gimple
*t
)
2452 if (computed_goto_p (t
))
2454 if (is_gimple_call (t
))
2455 return call_can_make_abnormal_goto (t
);
2460 /* Return true if T represents a stmt that always transfers control. */
2463 is_ctrl_stmt (gimple
*t
)
2465 switch (gimple_code (t
))
2479 /* Return true if T is a statement that may alter the flow of control
2480 (e.g., a call to a non-returning function). */
2483 is_ctrl_altering_stmt (gimple
*t
)
2487 switch (gimple_code (t
))
2490 /* Per stmt call flag indicates whether the call could alter
2492 if (gimple_call_ctrl_altering_p (t
))
2496 case GIMPLE_EH_DISPATCH
:
2497 /* EH_DISPATCH branches to the individual catch handlers at
2498 this level of a try or allowed-exceptions region. It can
2499 fallthru to the next statement as well. */
2503 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2508 /* OpenMP directives alter control flow. */
2511 case GIMPLE_TRANSACTION
:
2512 /* A transaction start alters control flow. */
2519 /* If a statement can throw, it alters control flow. */
2520 return stmt_can_throw_internal (t
);
2524 /* Return true if T is a simple local goto. */
2527 simple_goto_p (gimple
*t
)
2529 return (gimple_code (t
) == GIMPLE_GOTO
2530 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2534 /* Return true if STMT should start a new basic block. PREV_STMT is
2535 the statement preceding STMT. It is used when STMT is a label or a
2536 case label. Labels should only start a new basic block if their
2537 previous statement wasn't a label. Otherwise, sequence of labels
2538 would generate unnecessary basic blocks that only contain a single
2542 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2547 /* Labels start a new basic block only if the preceding statement
2548 wasn't a label of the same type. This prevents the creation of
2549 consecutive blocks that have nothing but a single label. */
2550 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2552 /* Nonlocal and computed GOTO targets always start a new block. */
2553 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2554 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2557 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2559 if (DECL_NONLOCAL (gimple_label_label (
2560 as_a
<glabel
*> (prev_stmt
))))
2563 cfg_stats
.num_merged_labels
++;
2569 else if (gimple_code (stmt
) == GIMPLE_CALL
2570 && gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2571 /* setjmp acts similar to a nonlocal GOTO target and thus should
2572 start a new block. */
2579 /* Return true if T should end a basic block. */
2582 stmt_ends_bb_p (gimple
*t
)
2584 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2587 /* Remove block annotations and other data structures. */
2590 delete_tree_cfg_annotations (struct function
*fn
)
2592 vec_free (label_to_block_map_for_fn (fn
));
2595 /* Return the virtual phi in BB. */
2598 get_virtual_phi (basic_block bb
)
2600 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2604 gphi
*phi
= gsi
.phi ();
2606 if (virtual_operand_p (PHI_RESULT (phi
)))
2613 /* Return the first statement in basic block BB. */
2616 first_stmt (basic_block bb
)
2618 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2619 gimple
*stmt
= NULL
;
2621 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2629 /* Return the first non-label statement in basic block BB. */
2632 first_non_label_stmt (basic_block bb
)
2634 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2635 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2637 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2640 /* Return the last statement in basic block BB. */
2643 last_stmt (basic_block bb
)
2645 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2646 gimple
*stmt
= NULL
;
2648 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2656 /* Return the last statement of an otherwise empty block. Return NULL
2657 if the block is totally empty, or if it contains more than one
2661 last_and_only_stmt (basic_block bb
)
2663 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2664 gimple
*last
, *prev
;
2669 last
= gsi_stmt (i
);
2670 gsi_prev_nondebug (&i
);
2674 /* Empty statements should no longer appear in the instruction stream.
2675 Everything that might have appeared before should be deleted by
2676 remove_useless_stmts, and the optimizers should just gsi_remove
2677 instead of smashing with build_empty_stmt.
2679 Thus the only thing that should appear here in a block containing
2680 one executable statement is a label. */
2681 prev
= gsi_stmt (i
);
2682 if (gimple_code (prev
) == GIMPLE_LABEL
)
2688 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2691 reinstall_phi_args (edge new_edge
, edge old_edge
)
2697 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2701 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2702 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2703 i
++, gsi_next (&phis
))
2705 gphi
*phi
= phis
.phi ();
2706 tree result
= redirect_edge_var_map_result (vm
);
2707 tree arg
= redirect_edge_var_map_def (vm
);
2709 gcc_assert (result
== gimple_phi_result (phi
));
2711 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2714 redirect_edge_var_map_clear (old_edge
);
2717 /* Returns the basic block after which the new basic block created
2718 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2719 near its "logical" location. This is of most help to humans looking
2720 at debugging dumps. */
2723 split_edge_bb_loc (edge edge_in
)
2725 basic_block dest
= edge_in
->dest
;
2726 basic_block dest_prev
= dest
->prev_bb
;
2730 edge e
= find_edge (dest_prev
, dest
);
2731 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2732 return edge_in
->src
;
2737 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2738 Abort on abnormal edges. */
2741 gimple_split_edge (edge edge_in
)
2743 basic_block new_bb
, after_bb
, dest
;
2746 /* Abnormal edges cannot be split. */
2747 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2749 dest
= edge_in
->dest
;
2751 after_bb
= split_edge_bb_loc (edge_in
);
2753 new_bb
= create_empty_bb (after_bb
);
2754 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2755 new_bb
->count
= edge_in
->count
;
2756 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2757 new_edge
->probability
= REG_BR_PROB_BASE
;
2758 new_edge
->count
= edge_in
->count
;
2760 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2761 gcc_assert (e
== edge_in
);
2762 reinstall_phi_args (new_edge
, e
);
2768 /* Verify properties of the address expression T with base object BASE. */
2771 verify_address (tree t
, tree base
)
2774 bool old_side_effects
;
2776 bool new_side_effects
;
2778 old_constant
= TREE_CONSTANT (t
);
2779 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2781 recompute_tree_invariant_for_addr_expr (t
);
2782 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2783 new_constant
= TREE_CONSTANT (t
);
2785 if (old_constant
!= new_constant
)
2787 error ("constant not recomputed when ADDR_EXPR changed");
2790 if (old_side_effects
!= new_side_effects
)
2792 error ("side effects not recomputed when ADDR_EXPR changed");
2796 if (!(TREE_CODE (base
) == VAR_DECL
2797 || TREE_CODE (base
) == PARM_DECL
2798 || TREE_CODE (base
) == RESULT_DECL
))
2801 if (DECL_GIMPLE_REG_P (base
))
2803 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2810 /* Callback for walk_tree, check that all elements with address taken are
2811 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2812 inside a PHI node. */
2815 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2822 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2823 #define CHECK_OP(N, MSG) \
2824 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2825 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2827 switch (TREE_CODE (t
))
2830 if (SSA_NAME_IN_FREE_LIST (t
))
2832 error ("SSA name in freelist but still referenced");
2838 error ("INDIRECT_REF in gimple IL");
2842 x
= TREE_OPERAND (t
, 0);
2843 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2844 || !is_gimple_mem_ref_addr (x
))
2846 error ("invalid first operand of MEM_REF");
2849 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2850 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2852 error ("invalid offset operand of MEM_REF");
2853 return TREE_OPERAND (t
, 1);
2855 if (TREE_CODE (x
) == ADDR_EXPR
2856 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2862 x
= fold (ASSERT_EXPR_COND (t
));
2863 if (x
== boolean_false_node
)
2865 error ("ASSERT_EXPR with an always-false condition");
2871 error ("MODIFY_EXPR not expected while having tuples");
2878 gcc_assert (is_gimple_address (t
));
2880 /* Skip any references (they will be checked when we recurse down the
2881 tree) and ensure that any variable used as a prefix is marked
2883 for (x
= TREE_OPERAND (t
, 0);
2884 handled_component_p (x
);
2885 x
= TREE_OPERAND (x
, 0))
2888 if ((tem
= verify_address (t
, x
)))
2891 if (!(TREE_CODE (x
) == VAR_DECL
2892 || TREE_CODE (x
) == PARM_DECL
2893 || TREE_CODE (x
) == RESULT_DECL
))
2896 if (!TREE_ADDRESSABLE (x
))
2898 error ("address taken, but ADDRESSABLE bit not set");
2906 x
= COND_EXPR_COND (t
);
2907 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2909 error ("non-integral used in condition");
2912 if (!is_gimple_condexpr (x
))
2914 error ("invalid conditional operand");
2919 case NON_LVALUE_EXPR
:
2920 case TRUTH_NOT_EXPR
:
2924 case FIX_TRUNC_EXPR
:
2929 CHECK_OP (0, "invalid operand to unary operator");
2935 if (!is_gimple_reg_type (TREE_TYPE (t
)))
2937 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2941 if (TREE_CODE (t
) == BIT_FIELD_REF
)
2943 tree t0
= TREE_OPERAND (t
, 0);
2944 tree t1
= TREE_OPERAND (t
, 1);
2945 tree t2
= TREE_OPERAND (t
, 2);
2946 if (!tree_fits_uhwi_p (t1
)
2947 || !tree_fits_uhwi_p (t2
))
2949 error ("invalid position or size operand to BIT_FIELD_REF");
2952 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2953 && (TYPE_PRECISION (TREE_TYPE (t
))
2954 != tree_to_uhwi (t1
)))
2956 error ("integral result type precision does not match "
2957 "field size of BIT_FIELD_REF");
2960 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2961 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
2962 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2963 != tree_to_uhwi (t1
)))
2965 error ("mode precision of non-integral result does not "
2966 "match field size of BIT_FIELD_REF");
2969 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0
))
2970 && (tree_to_uhwi (t1
) + tree_to_uhwi (t2
)
2971 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0
)))))
2973 error ("position plus size exceeds size of referenced object in "
2978 t
= TREE_OPERAND (t
, 0);
2983 case ARRAY_RANGE_REF
:
2984 case VIEW_CONVERT_EXPR
:
2985 /* We have a nest of references. Verify that each of the operands
2986 that determine where to reference is either a constant or a variable,
2987 verify that the base is valid, and then show we've already checked
2989 while (handled_component_p (t
))
2991 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2992 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2993 else if (TREE_CODE (t
) == ARRAY_REF
2994 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2996 CHECK_OP (1, "invalid array index");
2997 if (TREE_OPERAND (t
, 2))
2998 CHECK_OP (2, "invalid array lower bound");
2999 if (TREE_OPERAND (t
, 3))
3000 CHECK_OP (3, "invalid array stride");
3002 else if (TREE_CODE (t
) == BIT_FIELD_REF
3003 || TREE_CODE (t
) == REALPART_EXPR
3004 || TREE_CODE (t
) == IMAGPART_EXPR
)
3006 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3011 t
= TREE_OPERAND (t
, 0);
3014 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
3016 error ("invalid reference prefix");
3023 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3024 POINTER_PLUS_EXPR. */
3025 if (POINTER_TYPE_P (TREE_TYPE (t
)))
3027 error ("invalid operand to plus/minus, type is a pointer");
3030 CHECK_OP (0, "invalid operand to binary operator");
3031 CHECK_OP (1, "invalid operand to binary operator");
3034 case POINTER_PLUS_EXPR
:
3035 /* Check to make sure the first operand is a pointer or reference type. */
3036 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
3038 error ("invalid operand to pointer plus, first operand is not a pointer");
3041 /* Check to make sure the second operand is a ptrofftype. */
3042 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
3044 error ("invalid operand to pointer plus, second operand is not an "
3045 "integer type of appropriate width");
3055 case UNORDERED_EXPR
:
3064 case TRUNC_DIV_EXPR
:
3066 case FLOOR_DIV_EXPR
:
3067 case ROUND_DIV_EXPR
:
3068 case TRUNC_MOD_EXPR
:
3070 case FLOOR_MOD_EXPR
:
3071 case ROUND_MOD_EXPR
:
3073 case EXACT_DIV_EXPR
:
3083 CHECK_OP (0, "invalid operand to binary operator");
3084 CHECK_OP (1, "invalid operand to binary operator");
3088 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
3092 case CASE_LABEL_EXPR
:
3095 error ("invalid CASE_CHAIN");
3109 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3110 Returns true if there is an error, otherwise false. */
3113 verify_types_in_gimple_min_lval (tree expr
)
3117 if (is_gimple_id (expr
))
3120 if (TREE_CODE (expr
) != TARGET_MEM_REF
3121 && TREE_CODE (expr
) != MEM_REF
)
3123 error ("invalid expression for min lvalue");
3127 /* TARGET_MEM_REFs are strange beasts. */
3128 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3131 op
= TREE_OPERAND (expr
, 0);
3132 if (!is_gimple_val (op
))
3134 error ("invalid operand in indirect reference");
3135 debug_generic_stmt (op
);
3138 /* Memory references now generally can involve a value conversion. */
3143 /* Verify if EXPR is a valid GIMPLE reference expression. If
3144 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3145 if there is an error, otherwise false. */
3148 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3150 while (handled_component_p (expr
))
3152 tree op
= TREE_OPERAND (expr
, 0);
3154 if (TREE_CODE (expr
) == ARRAY_REF
3155 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3157 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3158 || (TREE_OPERAND (expr
, 2)
3159 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3160 || (TREE_OPERAND (expr
, 3)
3161 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3163 error ("invalid operands to array reference");
3164 debug_generic_stmt (expr
);
3169 /* Verify if the reference array element types are compatible. */
3170 if (TREE_CODE (expr
) == ARRAY_REF
3171 && !useless_type_conversion_p (TREE_TYPE (expr
),
3172 TREE_TYPE (TREE_TYPE (op
))))
3174 error ("type mismatch in array reference");
3175 debug_generic_stmt (TREE_TYPE (expr
));
3176 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3179 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3180 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3181 TREE_TYPE (TREE_TYPE (op
))))
3183 error ("type mismatch in array range reference");
3184 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3185 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3189 if ((TREE_CODE (expr
) == REALPART_EXPR
3190 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3191 && !useless_type_conversion_p (TREE_TYPE (expr
),
3192 TREE_TYPE (TREE_TYPE (op
))))
3194 error ("type mismatch in real/imagpart reference");
3195 debug_generic_stmt (TREE_TYPE (expr
));
3196 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3200 if (TREE_CODE (expr
) == COMPONENT_REF
3201 && !useless_type_conversion_p (TREE_TYPE (expr
),
3202 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3204 error ("type mismatch in component reference");
3205 debug_generic_stmt (TREE_TYPE (expr
));
3206 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3210 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3212 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3213 that their operand is not an SSA name or an invariant when
3214 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3215 bug). Otherwise there is nothing to verify, gross mismatches at
3216 most invoke undefined behavior. */
3218 && (TREE_CODE (op
) == SSA_NAME
3219 || is_gimple_min_invariant (op
)))
3221 error ("conversion of an SSA_NAME on the left hand side");
3222 debug_generic_stmt (expr
);
3225 else if (TREE_CODE (op
) == SSA_NAME
3226 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3228 error ("conversion of register to a different size");
3229 debug_generic_stmt (expr
);
3232 else if (!handled_component_p (op
))
3239 if (TREE_CODE (expr
) == MEM_REF
)
3241 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3243 error ("invalid address operand in MEM_REF");
3244 debug_generic_stmt (expr
);
3247 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
3248 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3250 error ("invalid offset operand in MEM_REF");
3251 debug_generic_stmt (expr
);
3255 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3257 if (!TMR_BASE (expr
)
3258 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3260 error ("invalid address operand in TARGET_MEM_REF");
3263 if (!TMR_OFFSET (expr
)
3264 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3265 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3267 error ("invalid offset operand in TARGET_MEM_REF");
3268 debug_generic_stmt (expr
);
3273 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3274 && verify_types_in_gimple_min_lval (expr
));
3277 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3278 list of pointer-to types that is trivially convertible to DEST. */
3281 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3285 if (!TYPE_POINTER_TO (src_obj
))
3288 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3289 if (useless_type_conversion_p (dest
, src
))
3295 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3296 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3299 valid_fixed_convert_types_p (tree type1
, tree type2
)
3301 return (FIXED_POINT_TYPE_P (type1
)
3302 && (INTEGRAL_TYPE_P (type2
)
3303 || SCALAR_FLOAT_TYPE_P (type2
)
3304 || FIXED_POINT_TYPE_P (type2
)));
3307 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3308 is a problem, otherwise false. */
3311 verify_gimple_call (gcall
*stmt
)
3313 tree fn
= gimple_call_fn (stmt
);
3314 tree fntype
, fndecl
;
3317 if (gimple_call_internal_p (stmt
))
3321 error ("gimple call has two targets");
3322 debug_generic_stmt (fn
);
3330 error ("gimple call has no target");
3335 if (fn
&& !is_gimple_call_addr (fn
))
3337 error ("invalid function in gimple call");
3338 debug_generic_stmt (fn
);
3343 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3344 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3345 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3347 error ("non-function in gimple call");
3351 fndecl
= gimple_call_fndecl (stmt
);
3353 && TREE_CODE (fndecl
) == FUNCTION_DECL
3354 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3355 && !DECL_PURE_P (fndecl
)
3356 && !TREE_READONLY (fndecl
))
3358 error ("invalid pure const state for function");
3362 tree lhs
= gimple_call_lhs (stmt
);
3364 && (!is_gimple_lvalue (lhs
)
3365 || verify_types_in_gimple_reference (lhs
, true)))
3367 error ("invalid LHS in gimple call");
3372 && gimple_call_ctrl_altering_p (stmt
)
3373 && gimple_call_noreturn_p (stmt
)
3374 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (lhs
))) == INTEGER_CST
)
3376 error ("LHS in noreturn call");
3380 fntype
= gimple_call_fntype (stmt
);
3383 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3384 /* ??? At least C++ misses conversions at assignments from
3385 void * call results.
3386 ??? Java is completely off. Especially with functions
3387 returning java.lang.Object.
3388 For now simply allow arbitrary pointer type conversions. */
3389 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3390 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3392 error ("invalid conversion in gimple call");
3393 debug_generic_stmt (TREE_TYPE (lhs
));
3394 debug_generic_stmt (TREE_TYPE (fntype
));
3398 if (gimple_call_chain (stmt
)
3399 && !is_gimple_val (gimple_call_chain (stmt
)))
3401 error ("invalid static chain in gimple call");
3402 debug_generic_stmt (gimple_call_chain (stmt
));
3406 /* If there is a static chain argument, the call should either be
3407 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3408 if (gimple_call_chain (stmt
)
3410 && !DECL_STATIC_CHAIN (fndecl
))
3412 error ("static chain with function that doesn%'t use one");
3416 /* ??? The C frontend passes unpromoted arguments in case it
3417 didn't see a function declaration before the call. So for now
3418 leave the call arguments mostly unverified. Once we gimplify
3419 unit-at-a-time we have a chance to fix this. */
3421 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3423 tree arg
= gimple_call_arg (stmt
, i
);
3424 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3425 && !is_gimple_val (arg
))
3426 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3427 && !is_gimple_lvalue (arg
)))
3429 error ("invalid argument to gimple call");
3430 debug_generic_expr (arg
);
3438 /* Verifies the gimple comparison with the result type TYPE and
3439 the operands OP0 and OP1. */
3442 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3444 tree op0_type
= TREE_TYPE (op0
);
3445 tree op1_type
= TREE_TYPE (op1
);
3447 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3449 error ("invalid operands in gimple comparison");
3453 /* For comparisons we do not have the operations type as the
3454 effective type the comparison is carried out in. Instead
3455 we require that either the first operand is trivially
3456 convertible into the second, or the other way around.
3457 Because we special-case pointers to void we allow
3458 comparisons of pointers with the same mode as well. */
3459 if (!useless_type_conversion_p (op0_type
, op1_type
)
3460 && !useless_type_conversion_p (op1_type
, op0_type
)
3461 && (!POINTER_TYPE_P (op0_type
)
3462 || !POINTER_TYPE_P (op1_type
)
3463 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3465 error ("mismatching comparison operand types");
3466 debug_generic_expr (op0_type
);
3467 debug_generic_expr (op1_type
);
3471 /* The resulting type of a comparison may be an effective boolean type. */
3472 if (INTEGRAL_TYPE_P (type
)
3473 && (TREE_CODE (type
) == BOOLEAN_TYPE
3474 || TYPE_PRECISION (type
) == 1))
3476 if (TREE_CODE (op0_type
) == VECTOR_TYPE
3477 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3479 error ("vector comparison returning a boolean");
3480 debug_generic_expr (op0_type
);
3481 debug_generic_expr (op1_type
);
3485 /* Or a boolean vector type with the same element count
3486 as the comparison operand types. */
3487 else if (TREE_CODE (type
) == VECTOR_TYPE
3488 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3490 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3491 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3493 error ("non-vector operands in vector comparison");
3494 debug_generic_expr (op0_type
);
3495 debug_generic_expr (op1_type
);
3499 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
))
3501 error ("invalid vector comparison resulting type");
3502 debug_generic_expr (type
);
3508 error ("bogus comparison result type");
3509 debug_generic_expr (type
);
3516 /* Verify a gimple assignment statement STMT with an unary rhs.
3517 Returns true if anything is wrong. */
3520 verify_gimple_assign_unary (gassign
*stmt
)
3522 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3523 tree lhs
= gimple_assign_lhs (stmt
);
3524 tree lhs_type
= TREE_TYPE (lhs
);
3525 tree rhs1
= gimple_assign_rhs1 (stmt
);
3526 tree rhs1_type
= TREE_TYPE (rhs1
);
3528 if (!is_gimple_reg (lhs
))
3530 error ("non-register as LHS of unary operation");
3534 if (!is_gimple_val (rhs1
))
3536 error ("invalid operand in unary operation");
3540 /* First handle conversions. */
3545 /* Allow conversions from pointer type to integral type only if
3546 there is no sign or zero extension involved.
3547 For targets were the precision of ptrofftype doesn't match that
3548 of pointers we need to allow arbitrary conversions to ptrofftype. */
3549 if ((POINTER_TYPE_P (lhs_type
)
3550 && INTEGRAL_TYPE_P (rhs1_type
))
3551 || (POINTER_TYPE_P (rhs1_type
)
3552 && INTEGRAL_TYPE_P (lhs_type
)
3553 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3554 || ptrofftype_p (sizetype
))))
3557 /* Allow conversion from integral to offset type and vice versa. */
3558 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3559 && INTEGRAL_TYPE_P (rhs1_type
))
3560 || (INTEGRAL_TYPE_P (lhs_type
)
3561 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3564 /* Otherwise assert we are converting between types of the
3566 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3568 error ("invalid types in nop conversion");
3569 debug_generic_expr (lhs_type
);
3570 debug_generic_expr (rhs1_type
);
3577 case ADDR_SPACE_CONVERT_EXPR
:
3579 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3580 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3581 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3583 error ("invalid types in address space conversion");
3584 debug_generic_expr (lhs_type
);
3585 debug_generic_expr (rhs1_type
);
3592 case FIXED_CONVERT_EXPR
:
3594 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3595 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3597 error ("invalid types in fixed-point conversion");
3598 debug_generic_expr (lhs_type
);
3599 debug_generic_expr (rhs1_type
);
3608 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3609 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3610 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3612 error ("invalid types in conversion to floating point");
3613 debug_generic_expr (lhs_type
);
3614 debug_generic_expr (rhs1_type
);
3621 case FIX_TRUNC_EXPR
:
3623 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3624 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3625 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3627 error ("invalid types in conversion to integer");
3628 debug_generic_expr (lhs_type
);
3629 debug_generic_expr (rhs1_type
);
3635 case REDUC_MAX_EXPR
:
3636 case REDUC_MIN_EXPR
:
3637 case REDUC_PLUS_EXPR
:
3638 if (!VECTOR_TYPE_P (rhs1_type
)
3639 || !useless_type_conversion_p (lhs_type
, TREE_TYPE (rhs1_type
)))
3641 error ("reduction should convert from vector to element type");
3642 debug_generic_expr (lhs_type
);
3643 debug_generic_expr (rhs1_type
);
3648 case VEC_UNPACK_HI_EXPR
:
3649 case VEC_UNPACK_LO_EXPR
:
3650 case VEC_UNPACK_FLOAT_HI_EXPR
:
3651 case VEC_UNPACK_FLOAT_LO_EXPR
:
3666 /* For the remaining codes assert there is no conversion involved. */
3667 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3669 error ("non-trivial conversion in unary operation");
3670 debug_generic_expr (lhs_type
);
3671 debug_generic_expr (rhs1_type
);
3678 /* Verify a gimple assignment statement STMT with a binary rhs.
3679 Returns true if anything is wrong. */
3682 verify_gimple_assign_binary (gassign
*stmt
)
3684 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3685 tree lhs
= gimple_assign_lhs (stmt
);
3686 tree lhs_type
= TREE_TYPE (lhs
);
3687 tree rhs1
= gimple_assign_rhs1 (stmt
);
3688 tree rhs1_type
= TREE_TYPE (rhs1
);
3689 tree rhs2
= gimple_assign_rhs2 (stmt
);
3690 tree rhs2_type
= TREE_TYPE (rhs2
);
3692 if (!is_gimple_reg (lhs
))
3694 error ("non-register as LHS of binary operation");
3698 if (!is_gimple_val (rhs1
)
3699 || !is_gimple_val (rhs2
))
3701 error ("invalid operands in binary operation");
3705 /* First handle operations that involve different types. */
3710 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3711 || !(INTEGRAL_TYPE_P (rhs1_type
)
3712 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3713 || !(INTEGRAL_TYPE_P (rhs2_type
)
3714 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3716 error ("type mismatch in complex expression");
3717 debug_generic_expr (lhs_type
);
3718 debug_generic_expr (rhs1_type
);
3719 debug_generic_expr (rhs2_type
);
3731 /* Shifts and rotates are ok on integral types, fixed point
3732 types and integer vector types. */
3733 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3734 && !FIXED_POINT_TYPE_P (rhs1_type
)
3735 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3736 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3737 || (!INTEGRAL_TYPE_P (rhs2_type
)
3738 /* Vector shifts of vectors are also ok. */
3739 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3740 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3741 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3742 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3743 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3745 error ("type mismatch in shift expression");
3746 debug_generic_expr (lhs_type
);
3747 debug_generic_expr (rhs1_type
);
3748 debug_generic_expr (rhs2_type
);
3755 case WIDEN_LSHIFT_EXPR
:
3757 if (!INTEGRAL_TYPE_P (lhs_type
)
3758 || !INTEGRAL_TYPE_P (rhs1_type
)
3759 || TREE_CODE (rhs2
) != INTEGER_CST
3760 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3762 error ("type mismatch in widening vector shift expression");
3763 debug_generic_expr (lhs_type
);
3764 debug_generic_expr (rhs1_type
);
3765 debug_generic_expr (rhs2_type
);
3772 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3773 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3775 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3776 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3777 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3778 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3779 || TREE_CODE (rhs2
) != INTEGER_CST
3780 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3781 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3783 error ("type mismatch in widening vector shift expression");
3784 debug_generic_expr (lhs_type
);
3785 debug_generic_expr (rhs1_type
);
3786 debug_generic_expr (rhs2_type
);
3796 tree lhs_etype
= lhs_type
;
3797 tree rhs1_etype
= rhs1_type
;
3798 tree rhs2_etype
= rhs2_type
;
3799 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3801 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3802 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3804 error ("invalid non-vector operands to vector valued plus");
3807 lhs_etype
= TREE_TYPE (lhs_type
);
3808 rhs1_etype
= TREE_TYPE (rhs1_type
);
3809 rhs2_etype
= TREE_TYPE (rhs2_type
);
3811 if (POINTER_TYPE_P (lhs_etype
)
3812 || POINTER_TYPE_P (rhs1_etype
)
3813 || POINTER_TYPE_P (rhs2_etype
))
3815 error ("invalid (pointer) operands to plus/minus");
3819 /* Continue with generic binary expression handling. */
3823 case POINTER_PLUS_EXPR
:
3825 if (!POINTER_TYPE_P (rhs1_type
)
3826 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3827 || !ptrofftype_p (rhs2_type
))
3829 error ("type mismatch in pointer plus expression");
3830 debug_generic_stmt (lhs_type
);
3831 debug_generic_stmt (rhs1_type
);
3832 debug_generic_stmt (rhs2_type
);
3839 case TRUTH_ANDIF_EXPR
:
3840 case TRUTH_ORIF_EXPR
:
3841 case TRUTH_AND_EXPR
:
3843 case TRUTH_XOR_EXPR
:
3853 case UNORDERED_EXPR
:
3861 /* Comparisons are also binary, but the result type is not
3862 connected to the operand types. */
3863 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3865 case WIDEN_MULT_EXPR
:
3866 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3868 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3869 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3871 case WIDEN_SUM_EXPR
:
3872 case VEC_WIDEN_MULT_HI_EXPR
:
3873 case VEC_WIDEN_MULT_LO_EXPR
:
3874 case VEC_WIDEN_MULT_EVEN_EXPR
:
3875 case VEC_WIDEN_MULT_ODD_EXPR
:
3876 case VEC_PACK_TRUNC_EXPR
:
3877 case VEC_PACK_SAT_EXPR
:
3878 case VEC_PACK_FIX_TRUNC_EXPR
:
3883 case MULT_HIGHPART_EXPR
:
3884 case TRUNC_DIV_EXPR
:
3886 case FLOOR_DIV_EXPR
:
3887 case ROUND_DIV_EXPR
:
3888 case TRUNC_MOD_EXPR
:
3890 case FLOOR_MOD_EXPR
:
3891 case ROUND_MOD_EXPR
:
3893 case EXACT_DIV_EXPR
:
3899 /* Continue with generic binary expression handling. */
3906 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3907 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3909 error ("type mismatch in binary expression");
3910 debug_generic_stmt (lhs_type
);
3911 debug_generic_stmt (rhs1_type
);
3912 debug_generic_stmt (rhs2_type
);
3919 /* Verify a gimple assignment statement STMT with a ternary rhs.
3920 Returns true if anything is wrong. */
3923 verify_gimple_assign_ternary (gassign
*stmt
)
3925 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3926 tree lhs
= gimple_assign_lhs (stmt
);
3927 tree lhs_type
= TREE_TYPE (lhs
);
3928 tree rhs1
= gimple_assign_rhs1 (stmt
);
3929 tree rhs1_type
= TREE_TYPE (rhs1
);
3930 tree rhs2
= gimple_assign_rhs2 (stmt
);
3931 tree rhs2_type
= TREE_TYPE (rhs2
);
3932 tree rhs3
= gimple_assign_rhs3 (stmt
);
3933 tree rhs3_type
= TREE_TYPE (rhs3
);
3935 if (!is_gimple_reg (lhs
))
3937 error ("non-register as LHS of ternary operation");
3941 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3942 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3943 || !is_gimple_val (rhs2
)
3944 || !is_gimple_val (rhs3
))
3946 error ("invalid operands in ternary operation");
3950 /* First handle operations that involve different types. */
3953 case WIDEN_MULT_PLUS_EXPR
:
3954 case WIDEN_MULT_MINUS_EXPR
:
3955 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3956 && !FIXED_POINT_TYPE_P (rhs1_type
))
3957 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3958 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3959 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3960 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3962 error ("type mismatch in widening multiply-accumulate expression");
3963 debug_generic_expr (lhs_type
);
3964 debug_generic_expr (rhs1_type
);
3965 debug_generic_expr (rhs2_type
);
3966 debug_generic_expr (rhs3_type
);
3972 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3973 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3974 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3976 error ("type mismatch in fused multiply-add expression");
3977 debug_generic_expr (lhs_type
);
3978 debug_generic_expr (rhs1_type
);
3979 debug_generic_expr (rhs2_type
);
3980 debug_generic_expr (rhs3_type
);
3986 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
3987 || TYPE_VECTOR_SUBPARTS (rhs1_type
)
3988 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3990 error ("the first argument of a VEC_COND_EXPR must be of a "
3991 "boolean vector type of the same number of elements "
3993 debug_generic_expr (lhs_type
);
3994 debug_generic_expr (rhs1_type
);
3999 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4000 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4002 error ("type mismatch in conditional expression");
4003 debug_generic_expr (lhs_type
);
4004 debug_generic_expr (rhs2_type
);
4005 debug_generic_expr (rhs3_type
);
4011 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4012 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4014 error ("type mismatch in vector permute expression");
4015 debug_generic_expr (lhs_type
);
4016 debug_generic_expr (rhs1_type
);
4017 debug_generic_expr (rhs2_type
);
4018 debug_generic_expr (rhs3_type
);
4022 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4023 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4024 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4026 error ("vector types expected in vector permute expression");
4027 debug_generic_expr (lhs_type
);
4028 debug_generic_expr (rhs1_type
);
4029 debug_generic_expr (rhs2_type
);
4030 debug_generic_expr (rhs3_type
);
4034 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
4035 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
4036 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
4037 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
4038 != TYPE_VECTOR_SUBPARTS (lhs_type
))
4040 error ("vectors with different element number found "
4041 "in vector permute expression");
4042 debug_generic_expr (lhs_type
);
4043 debug_generic_expr (rhs1_type
);
4044 debug_generic_expr (rhs2_type
);
4045 debug_generic_expr (rhs3_type
);
4049 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4050 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
4051 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
4053 error ("invalid mask type in vector permute expression");
4054 debug_generic_expr (lhs_type
);
4055 debug_generic_expr (rhs1_type
);
4056 debug_generic_expr (rhs2_type
);
4057 debug_generic_expr (rhs3_type
);
4064 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4065 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4066 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4067 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4069 error ("type mismatch in sad expression");
4070 debug_generic_expr (lhs_type
);
4071 debug_generic_expr (rhs1_type
);
4072 debug_generic_expr (rhs2_type
);
4073 debug_generic_expr (rhs3_type
);
4077 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4078 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4079 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4081 error ("vector types expected in sad expression");
4082 debug_generic_expr (lhs_type
);
4083 debug_generic_expr (rhs1_type
);
4084 debug_generic_expr (rhs2_type
);
4085 debug_generic_expr (rhs3_type
);
4092 case REALIGN_LOAD_EXPR
:
4102 /* Verify a gimple assignment statement STMT with a single rhs.
4103 Returns true if anything is wrong. */
4106 verify_gimple_assign_single (gassign
*stmt
)
4108 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4109 tree lhs
= gimple_assign_lhs (stmt
);
4110 tree lhs_type
= TREE_TYPE (lhs
);
4111 tree rhs1
= gimple_assign_rhs1 (stmt
);
4112 tree rhs1_type
= TREE_TYPE (rhs1
);
4115 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4117 error ("non-trivial conversion at assignment");
4118 debug_generic_expr (lhs_type
);
4119 debug_generic_expr (rhs1_type
);
4123 if (gimple_clobber_p (stmt
)
4124 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4126 error ("non-decl/MEM_REF LHS in clobber statement");
4127 debug_generic_expr (lhs
);
4131 if (handled_component_p (lhs
)
4132 || TREE_CODE (lhs
) == MEM_REF
4133 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4134 res
|= verify_types_in_gimple_reference (lhs
, true);
4136 /* Special codes we cannot handle via their class. */
4141 tree op
= TREE_OPERAND (rhs1
, 0);
4142 if (!is_gimple_addressable (op
))
4144 error ("invalid operand in unary expression");
4148 /* Technically there is no longer a need for matching types, but
4149 gimple hygiene asks for this check. In LTO we can end up
4150 combining incompatible units and thus end up with addresses
4151 of globals that change their type to a common one. */
4153 && !types_compatible_p (TREE_TYPE (op
),
4154 TREE_TYPE (TREE_TYPE (rhs1
)))
4155 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4158 error ("type mismatch in address expression");
4159 debug_generic_stmt (TREE_TYPE (rhs1
));
4160 debug_generic_stmt (TREE_TYPE (op
));
4164 return verify_types_in_gimple_reference (op
, true);
4169 error ("INDIRECT_REF in gimple IL");
4175 case ARRAY_RANGE_REF
:
4176 case VIEW_CONVERT_EXPR
:
4179 case TARGET_MEM_REF
:
4181 if (!is_gimple_reg (lhs
)
4182 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4184 error ("invalid rhs for gimple memory store");
4185 debug_generic_stmt (lhs
);
4186 debug_generic_stmt (rhs1
);
4189 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4201 /* tcc_declaration */
4206 if (!is_gimple_reg (lhs
)
4207 && !is_gimple_reg (rhs1
)
4208 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4210 error ("invalid rhs for gimple memory store");
4211 debug_generic_stmt (lhs
);
4212 debug_generic_stmt (rhs1
);
4218 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4221 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4223 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4225 /* For vector CONSTRUCTORs we require that either it is empty
4226 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4227 (then the element count must be correct to cover the whole
4228 outer vector and index must be NULL on all elements, or it is
4229 a CONSTRUCTOR of scalar elements, where we as an exception allow
4230 smaller number of elements (assuming zero filling) and
4231 consecutive indexes as compared to NULL indexes (such
4232 CONSTRUCTORs can appear in the IL from FEs). */
4233 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4235 if (elt_t
== NULL_TREE
)
4237 elt_t
= TREE_TYPE (elt_v
);
4238 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4240 tree elt_t
= TREE_TYPE (elt_v
);
4241 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4244 error ("incorrect type of vector CONSTRUCTOR"
4246 debug_generic_stmt (rhs1
);
4249 else if (CONSTRUCTOR_NELTS (rhs1
)
4250 * TYPE_VECTOR_SUBPARTS (elt_t
)
4251 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
4253 error ("incorrect number of vector CONSTRUCTOR"
4255 debug_generic_stmt (rhs1
);
4259 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4262 error ("incorrect type of vector CONSTRUCTOR elements");
4263 debug_generic_stmt (rhs1
);
4266 else if (CONSTRUCTOR_NELTS (rhs1
)
4267 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
4269 error ("incorrect number of vector CONSTRUCTOR elements");
4270 debug_generic_stmt (rhs1
);
4274 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4276 error ("incorrect type of vector CONSTRUCTOR elements");
4277 debug_generic_stmt (rhs1
);
4280 if (elt_i
!= NULL_TREE
4281 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4282 || TREE_CODE (elt_i
) != INTEGER_CST
4283 || compare_tree_int (elt_i
, i
) != 0))
4285 error ("vector CONSTRUCTOR with non-NULL element index");
4286 debug_generic_stmt (rhs1
);
4289 if (!is_gimple_val (elt_v
))
4291 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4292 debug_generic_stmt (rhs1
);
4297 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4299 error ("non-vector CONSTRUCTOR with elements");
4300 debug_generic_stmt (rhs1
);
4306 case WITH_SIZE_EXPR
:
4316 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4317 is a problem, otherwise false. */
4320 verify_gimple_assign (gassign
*stmt
)
4322 switch (gimple_assign_rhs_class (stmt
))
4324 case GIMPLE_SINGLE_RHS
:
4325 return verify_gimple_assign_single (stmt
);
4327 case GIMPLE_UNARY_RHS
:
4328 return verify_gimple_assign_unary (stmt
);
4330 case GIMPLE_BINARY_RHS
:
4331 return verify_gimple_assign_binary (stmt
);
4333 case GIMPLE_TERNARY_RHS
:
4334 return verify_gimple_assign_ternary (stmt
);
4341 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4342 is a problem, otherwise false. */
4345 verify_gimple_return (greturn
*stmt
)
4347 tree op
= gimple_return_retval (stmt
);
4348 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4350 /* We cannot test for present return values as we do not fix up missing
4351 return values from the original source. */
4355 if (!is_gimple_val (op
)
4356 && TREE_CODE (op
) != RESULT_DECL
)
4358 error ("invalid operand in return statement");
4359 debug_generic_stmt (op
);
4363 if ((TREE_CODE (op
) == RESULT_DECL
4364 && DECL_BY_REFERENCE (op
))
4365 || (TREE_CODE (op
) == SSA_NAME
4366 && SSA_NAME_VAR (op
)
4367 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4368 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4369 op
= TREE_TYPE (op
);
4371 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4373 error ("invalid conversion in return statement");
4374 debug_generic_stmt (restype
);
4375 debug_generic_stmt (TREE_TYPE (op
));
4383 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4384 is a problem, otherwise false. */
4387 verify_gimple_goto (ggoto
*stmt
)
4389 tree dest
= gimple_goto_dest (stmt
);
4391 /* ??? We have two canonical forms of direct goto destinations, a
4392 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4393 if (TREE_CODE (dest
) != LABEL_DECL
4394 && (!is_gimple_val (dest
)
4395 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4397 error ("goto destination is neither a label nor a pointer");
4404 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4405 is a problem, otherwise false. */
4408 verify_gimple_switch (gswitch
*stmt
)
4411 tree elt
, prev_upper_bound
= NULL_TREE
;
4412 tree index_type
, elt_type
= NULL_TREE
;
4414 if (!is_gimple_val (gimple_switch_index (stmt
)))
4416 error ("invalid operand to switch statement");
4417 debug_generic_stmt (gimple_switch_index (stmt
));
4421 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4422 if (! INTEGRAL_TYPE_P (index_type
))
4424 error ("non-integral type switch statement");
4425 debug_generic_expr (index_type
);
4429 elt
= gimple_switch_label (stmt
, 0);
4430 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4432 error ("invalid default case label in switch statement");
4433 debug_generic_expr (elt
);
4437 n
= gimple_switch_num_labels (stmt
);
4438 for (i
= 1; i
< n
; i
++)
4440 elt
= gimple_switch_label (stmt
, i
);
4442 if (! CASE_LOW (elt
))
4444 error ("invalid case label in switch statement");
4445 debug_generic_expr (elt
);
4449 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4451 error ("invalid case range in switch statement");
4452 debug_generic_expr (elt
);
4458 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4459 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4461 error ("type mismatch for case label in switch statement");
4462 debug_generic_expr (elt
);
4468 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4469 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4471 error ("type precision mismatch in switch statement");
4476 if (prev_upper_bound
)
4478 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4480 error ("case labels not sorted in switch statement");
4485 prev_upper_bound
= CASE_HIGH (elt
);
4486 if (! prev_upper_bound
)
4487 prev_upper_bound
= CASE_LOW (elt
);
4493 /* Verify a gimple debug statement STMT.
4494 Returns true if anything is wrong. */
4497 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4499 /* There isn't much that could be wrong in a gimple debug stmt. A
4500 gimple debug bind stmt, for example, maps a tree, that's usually
4501 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4502 component or member of an aggregate type, to another tree, that
4503 can be an arbitrary expression. These stmts expand into debug
4504 insns, and are converted to debug notes by var-tracking.c. */
4508 /* Verify a gimple label statement STMT.
4509 Returns true if anything is wrong. */
4512 verify_gimple_label (glabel
*stmt
)
4514 tree decl
= gimple_label_label (stmt
);
4518 if (TREE_CODE (decl
) != LABEL_DECL
)
4520 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4521 && DECL_CONTEXT (decl
) != current_function_decl
)
4523 error ("label's context is not the current function decl");
4527 uid
= LABEL_DECL_UID (decl
);
4530 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4532 error ("incorrect entry in label_to_block_map");
4536 uid
= EH_LANDING_PAD_NR (decl
);
4539 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4540 if (decl
!= lp
->post_landing_pad
)
4542 error ("incorrect setting of landing pad number");
4550 /* Verify a gimple cond statement STMT.
4551 Returns true if anything is wrong. */
4554 verify_gimple_cond (gcond
*stmt
)
4556 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4558 error ("invalid comparison code in gimple cond");
4561 if (!(!gimple_cond_true_label (stmt
)
4562 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4563 || !(!gimple_cond_false_label (stmt
)
4564 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4566 error ("invalid labels in gimple cond");
4570 return verify_gimple_comparison (boolean_type_node
,
4571 gimple_cond_lhs (stmt
),
4572 gimple_cond_rhs (stmt
));
4575 /* Verify the GIMPLE statement STMT. Returns true if there is an
4576 error, otherwise false. */
4579 verify_gimple_stmt (gimple
*stmt
)
4581 switch (gimple_code (stmt
))
4584 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4587 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4590 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4593 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4596 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4599 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4602 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4607 case GIMPLE_TRANSACTION
:
4608 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4610 /* Tuples that do not have tree operands. */
4612 case GIMPLE_PREDICT
:
4614 case GIMPLE_EH_DISPATCH
:
4615 case GIMPLE_EH_MUST_NOT_THROW
:
4619 /* OpenMP directives are validated by the FE and never operated
4620 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4621 non-gimple expressions when the main index variable has had
4622 its address taken. This does not affect the loop itself
4623 because the header of an GIMPLE_OMP_FOR is merely used to determine
4624 how to setup the parallel iteration. */
4628 return verify_gimple_debug (stmt
);
4635 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4636 and false otherwise. */
4639 verify_gimple_phi (gimple
*phi
)
4643 tree phi_result
= gimple_phi_result (phi
);
4648 error ("invalid PHI result");
4652 virtual_p
= virtual_operand_p (phi_result
);
4653 if (TREE_CODE (phi_result
) != SSA_NAME
4655 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4657 error ("invalid PHI result");
4661 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4663 tree t
= gimple_phi_arg_def (phi
, i
);
4667 error ("missing PHI def");
4671 /* Addressable variables do have SSA_NAMEs but they
4672 are not considered gimple values. */
4673 else if ((TREE_CODE (t
) == SSA_NAME
4674 && virtual_p
!= virtual_operand_p (t
))
4676 && (TREE_CODE (t
) != SSA_NAME
4677 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4679 && !is_gimple_val (t
)))
4681 error ("invalid PHI argument");
4682 debug_generic_expr (t
);
4685 #ifdef ENABLE_TYPES_CHECKING
4686 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4688 error ("incompatible types in PHI argument %u", i
);
4689 debug_generic_stmt (TREE_TYPE (phi_result
));
4690 debug_generic_stmt (TREE_TYPE (t
));
4699 /* Verify the GIMPLE statements inside the sequence STMTS. */
4702 verify_gimple_in_seq_2 (gimple_seq stmts
)
4704 gimple_stmt_iterator ittr
;
4707 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4709 gimple
*stmt
= gsi_stmt (ittr
);
4711 switch (gimple_code (stmt
))
4714 err
|= verify_gimple_in_seq_2 (
4715 gimple_bind_body (as_a
<gbind
*> (stmt
)));
4719 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4720 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4723 case GIMPLE_EH_FILTER
:
4724 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4727 case GIMPLE_EH_ELSE
:
4729 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
4730 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
4731 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
4736 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
4737 as_a
<gcatch
*> (stmt
)));
4740 case GIMPLE_TRANSACTION
:
4741 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4746 bool err2
= verify_gimple_stmt (stmt
);
4748 debug_gimple_stmt (stmt
);
4757 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4758 is a problem, otherwise false. */
4761 verify_gimple_transaction (gtransaction
*stmt
)
4765 lab
= gimple_transaction_label_norm (stmt
);
4766 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4768 lab
= gimple_transaction_label_uninst (stmt
);
4769 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4771 lab
= gimple_transaction_label_over (stmt
);
4772 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4775 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4779 /* Verify the GIMPLE statements inside the statement list STMTS. */
4782 verify_gimple_in_seq (gimple_seq stmts
)
4784 timevar_push (TV_TREE_STMT_VERIFY
);
4785 if (verify_gimple_in_seq_2 (stmts
))
4786 internal_error ("verify_gimple failed");
4787 timevar_pop (TV_TREE_STMT_VERIFY
);
4790 /* Return true when the T can be shared. */
4793 tree_node_can_be_shared (tree t
)
4795 if (IS_TYPE_OR_DECL_P (t
)
4796 || is_gimple_min_invariant (t
)
4797 || TREE_CODE (t
) == SSA_NAME
4798 || t
== error_mark_node
4799 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4802 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4811 /* Called via walk_tree. Verify tree sharing. */
4814 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4816 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
4818 if (tree_node_can_be_shared (*tp
))
4820 *walk_subtrees
= false;
4824 if (visited
->add (*tp
))
4830 /* Called via walk_gimple_stmt. Verify tree sharing. */
4833 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4835 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4836 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
4839 static bool eh_error_found
;
4841 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
4842 hash_set
<gimple
*> *visited
)
4844 if (!visited
->contains (stmt
))
4846 error ("dead STMT in EH table");
4847 debug_gimple_stmt (stmt
);
4848 eh_error_found
= true;
4853 /* Verify if the location LOCs block is in BLOCKS. */
4856 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
4858 tree block
= LOCATION_BLOCK (loc
);
4859 if (block
!= NULL_TREE
4860 && !blocks
->contains (block
))
4862 error ("location references block not in block tree");
4865 if (block
!= NULL_TREE
)
4866 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
4870 /* Called via walk_tree. Verify that expressions have no blocks. */
4873 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
4877 *walk_subtrees
= false;
4881 location_t loc
= EXPR_LOCATION (*tp
);
4882 if (LOCATION_BLOCK (loc
) != NULL
)
4888 /* Called via walk_tree. Verify locations of expressions. */
4891 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4893 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
4895 if (TREE_CODE (*tp
) == VAR_DECL
4896 && DECL_HAS_DEBUG_EXPR_P (*tp
))
4898 tree t
= DECL_DEBUG_EXPR (*tp
);
4899 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4903 if ((TREE_CODE (*tp
) == VAR_DECL
4904 || TREE_CODE (*tp
) == PARM_DECL
4905 || TREE_CODE (*tp
) == RESULT_DECL
)
4906 && DECL_HAS_VALUE_EXPR_P (*tp
))
4908 tree t
= DECL_VALUE_EXPR (*tp
);
4909 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4916 *walk_subtrees
= false;
4920 location_t loc
= EXPR_LOCATION (*tp
);
4921 if (verify_location (blocks
, loc
))
4927 /* Called via walk_gimple_op. Verify locations of expressions. */
4930 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
4932 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4933 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
4936 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4939 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
4942 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
4945 collect_subblocks (blocks
, t
);
4949 /* Verify the GIMPLE statements in the CFG of FN. */
4952 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
4957 timevar_push (TV_TREE_STMT_VERIFY
);
4958 hash_set
<void *> visited
;
4959 hash_set
<gimple
*> visited_stmts
;
4961 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4962 hash_set
<tree
> blocks
;
4963 if (DECL_INITIAL (fn
->decl
))
4965 blocks
.add (DECL_INITIAL (fn
->decl
));
4966 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
4969 FOR_EACH_BB_FN (bb
, fn
)
4971 gimple_stmt_iterator gsi
;
4973 for (gphi_iterator gpi
= gsi_start_phis (bb
);
4977 gphi
*phi
= gpi
.phi ();
4981 visited_stmts
.add (phi
);
4983 if (gimple_bb (phi
) != bb
)
4985 error ("gimple_bb (phi) is set to a wrong basic block");
4989 err2
|= verify_gimple_phi (phi
);
4991 /* Only PHI arguments have locations. */
4992 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
4994 error ("PHI node with location");
4998 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5000 tree arg
= gimple_phi_arg_def (phi
, i
);
5001 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5005 error ("incorrect sharing of tree nodes");
5006 debug_generic_expr (addr
);
5009 location_t loc
= gimple_phi_arg_location (phi
, i
);
5010 if (virtual_operand_p (gimple_phi_result (phi
))
5011 && loc
!= UNKNOWN_LOCATION
)
5013 error ("virtual PHI with argument locations");
5016 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5019 debug_generic_expr (addr
);
5022 err2
|= verify_location (&blocks
, loc
);
5026 debug_gimple_stmt (phi
);
5030 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5032 gimple
*stmt
= gsi_stmt (gsi
);
5034 struct walk_stmt_info wi
;
5038 visited_stmts
.add (stmt
);
5040 if (gimple_bb (stmt
) != bb
)
5042 error ("gimple_bb (stmt) is set to a wrong basic block");
5046 err2
|= verify_gimple_stmt (stmt
);
5047 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5049 memset (&wi
, 0, sizeof (wi
));
5050 wi
.info
= (void *) &visited
;
5051 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5054 error ("incorrect sharing of tree nodes");
5055 debug_generic_expr (addr
);
5059 memset (&wi
, 0, sizeof (wi
));
5060 wi
.info
= (void *) &blocks
;
5061 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5064 debug_generic_expr (addr
);
5068 /* ??? Instead of not checking these stmts at all the walker
5069 should know its context via wi. */
5070 if (!is_gimple_debug (stmt
)
5071 && !is_gimple_omp (stmt
))
5073 memset (&wi
, 0, sizeof (wi
));
5074 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
5077 debug_generic_expr (addr
);
5078 inform (gimple_location (stmt
), "in statement");
5083 /* If the statement is marked as part of an EH region, then it is
5084 expected that the statement could throw. Verify that when we
5085 have optimizations that simplify statements such that we prove
5086 that they cannot throw, that we update other data structures
5088 lp_nr
= lookup_stmt_eh_lp (stmt
);
5091 if (!stmt_could_throw_p (stmt
))
5095 error ("statement marked for throw, but doesn%'t");
5099 else if (!gsi_one_before_end_p (gsi
))
5101 error ("statement marked for throw in middle of block");
5107 debug_gimple_stmt (stmt
);
5112 eh_error_found
= false;
5113 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5115 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5118 if (err
|| eh_error_found
)
5119 internal_error ("verify_gimple failed");
5121 verify_histograms ();
5122 timevar_pop (TV_TREE_STMT_VERIFY
);
5126 /* Verifies that the flow information is OK. */
5129 gimple_verify_flow_info (void)
5133 gimple_stmt_iterator gsi
;
5138 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5139 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5141 error ("ENTRY_BLOCK has IL associated with it");
5145 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5146 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5148 error ("EXIT_BLOCK has IL associated with it");
5152 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5153 if (e
->flags
& EDGE_FALLTHRU
)
5155 error ("fallthru to exit from bb %d", e
->src
->index
);
5159 FOR_EACH_BB_FN (bb
, cfun
)
5161 bool found_ctrl_stmt
= false;
5165 /* Skip labels on the start of basic block. */
5166 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5169 gimple
*prev_stmt
= stmt
;
5171 stmt
= gsi_stmt (gsi
);
5173 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5176 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5177 if (prev_stmt
&& DECL_NONLOCAL (label
))
5179 error ("nonlocal label ");
5180 print_generic_expr (stderr
, label
, 0);
5181 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5186 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5188 error ("EH landing pad label ");
5189 print_generic_expr (stderr
, label
, 0);
5190 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5195 if (label_to_block (label
) != bb
)
5198 print_generic_expr (stderr
, label
, 0);
5199 fprintf (stderr
, " to block does not match in bb %d",
5204 if (decl_function_context (label
) != current_function_decl
)
5207 print_generic_expr (stderr
, label
, 0);
5208 fprintf (stderr
, " has incorrect context in bb %d",
5214 /* Verify that body of basic block BB is free of control flow. */
5215 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5217 gimple
*stmt
= gsi_stmt (gsi
);
5219 if (found_ctrl_stmt
)
5221 error ("control flow in the middle of basic block %d",
5226 if (stmt_ends_bb_p (stmt
))
5227 found_ctrl_stmt
= true;
5229 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5232 print_generic_expr (stderr
, gimple_label_label (label_stmt
), 0);
5233 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5238 gsi
= gsi_last_bb (bb
);
5239 if (gsi_end_p (gsi
))
5242 stmt
= gsi_stmt (gsi
);
5244 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5247 err
|= verify_eh_edges (stmt
);
5249 if (is_ctrl_stmt (stmt
))
5251 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5252 if (e
->flags
& EDGE_FALLTHRU
)
5254 error ("fallthru edge after a control statement in bb %d",
5260 if (gimple_code (stmt
) != GIMPLE_COND
)
5262 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5263 after anything else but if statement. */
5264 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5265 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5267 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5273 switch (gimple_code (stmt
))
5280 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5284 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5285 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5286 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5287 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5288 || EDGE_COUNT (bb
->succs
) >= 3)
5290 error ("wrong outgoing edge flags at end of bb %d",
5298 if (simple_goto_p (stmt
))
5300 error ("explicit goto at end of bb %d", bb
->index
);
5305 /* FIXME. We should double check that the labels in the
5306 destination blocks have their address taken. */
5307 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5308 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5309 | EDGE_FALSE_VALUE
))
5310 || !(e
->flags
& EDGE_ABNORMAL
))
5312 error ("wrong outgoing edge flags at end of bb %d",
5320 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5322 /* ... fallthru ... */
5324 if (!single_succ_p (bb
)
5325 || (single_succ_edge (bb
)->flags
5326 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5327 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5329 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5332 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5334 error ("return edge does not point to exit in bb %d",
5342 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5347 n
= gimple_switch_num_labels (switch_stmt
);
5349 /* Mark all the destination basic blocks. */
5350 for (i
= 0; i
< n
; ++i
)
5352 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5353 basic_block label_bb
= label_to_block (lab
);
5354 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5355 label_bb
->aux
= (void *)1;
5358 /* Verify that the case labels are sorted. */
5359 prev
= gimple_switch_label (switch_stmt
, 0);
5360 for (i
= 1; i
< n
; ++i
)
5362 tree c
= gimple_switch_label (switch_stmt
, i
);
5365 error ("found default case not at the start of "
5371 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5373 error ("case labels not sorted: ");
5374 print_generic_expr (stderr
, prev
, 0);
5375 fprintf (stderr
," is greater than ");
5376 print_generic_expr (stderr
, c
, 0);
5377 fprintf (stderr
," but comes before it.\n");
5382 /* VRP will remove the default case if it can prove it will
5383 never be executed. So do not verify there always exists
5384 a default case here. */
5386 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5390 error ("extra outgoing edge %d->%d",
5391 bb
->index
, e
->dest
->index
);
5395 e
->dest
->aux
= (void *)2;
5396 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5397 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5399 error ("wrong outgoing edge flags at end of bb %d",
5405 /* Check that we have all of them. */
5406 for (i
= 0; i
< n
; ++i
)
5408 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5409 basic_block label_bb
= label_to_block (lab
);
5411 if (label_bb
->aux
!= (void *)2)
5413 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5418 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5419 e
->dest
->aux
= (void *)0;
5423 case GIMPLE_EH_DISPATCH
:
5424 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5432 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5433 verify_dominators (CDI_DOMINATORS
);
5439 /* Updates phi nodes after creating a forwarder block joined
5440 by edge FALLTHRU. */
5443 gimple_make_forwarder_block (edge fallthru
)
5447 basic_block dummy
, bb
;
5451 dummy
= fallthru
->src
;
5452 bb
= fallthru
->dest
;
5454 if (single_pred_p (bb
))
5457 /* If we redirected a branch we must create new PHI nodes at the
5459 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5461 gphi
*phi
, *new_phi
;
5464 var
= gimple_phi_result (phi
);
5465 new_phi
= create_phi_node (var
, bb
);
5466 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5467 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5471 /* Add the arguments we have stored on edges. */
5472 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5477 flush_pending_stmts (e
);
5482 /* Return a non-special label in the head of basic block BLOCK.
5483 Create one if it doesn't exist. */
5486 gimple_block_label (basic_block bb
)
5488 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5493 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5495 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5498 label
= gimple_label_label (stmt
);
5499 if (!DECL_NONLOCAL (label
))
5502 gsi_move_before (&i
, &s
);
5507 label
= create_artificial_label (UNKNOWN_LOCATION
);
5508 stmt
= gimple_build_label (label
);
5509 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5514 /* Attempt to perform edge redirection by replacing a possibly complex
5515 jump instruction by a goto or by removing the jump completely.
5516 This can apply only if all edges now point to the same block. The
5517 parameters and return values are equivalent to
5518 redirect_edge_and_branch. */
5521 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5523 basic_block src
= e
->src
;
5524 gimple_stmt_iterator i
;
5527 /* We can replace or remove a complex jump only when we have exactly
5529 if (EDGE_COUNT (src
->succs
) != 2
5530 /* Verify that all targets will be TARGET. Specifically, the
5531 edge that is not E must also go to TARGET. */
5532 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5535 i
= gsi_last_bb (src
);
5539 stmt
= gsi_stmt (i
);
5541 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5543 gsi_remove (&i
, true);
5544 e
= ssa_redirect_edge (e
, target
);
5545 e
->flags
= EDGE_FALLTHRU
;
5553 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5554 edge representing the redirected branch. */
5557 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5559 basic_block bb
= e
->src
;
5560 gimple_stmt_iterator gsi
;
5564 if (e
->flags
& EDGE_ABNORMAL
)
5567 if (e
->dest
== dest
)
5570 if (e
->flags
& EDGE_EH
)
5571 return redirect_eh_edge (e
, dest
);
5573 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5575 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5580 gsi
= gsi_last_bb (bb
);
5581 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5583 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5586 /* For COND_EXPR, we only need to redirect the edge. */
5590 /* No non-abnormal edges should lead from a non-simple goto, and
5591 simple ones should be represented implicitly. */
5596 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5597 tree label
= gimple_block_label (dest
);
5598 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5600 /* If we have a list of cases associated with E, then use it
5601 as it's a lot faster than walking the entire case vector. */
5604 edge e2
= find_edge (e
->src
, dest
);
5611 CASE_LABEL (cases
) = label
;
5612 cases
= CASE_CHAIN (cases
);
5615 /* If there was already an edge in the CFG, then we need
5616 to move all the cases associated with E to E2. */
5619 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5621 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5622 CASE_CHAIN (cases2
) = first
;
5624 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5628 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5630 for (i
= 0; i
< n
; i
++)
5632 tree elt
= gimple_switch_label (switch_stmt
, i
);
5633 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5634 CASE_LABEL (elt
) = label
;
5642 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5643 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5646 for (i
= 0; i
< n
; ++i
)
5648 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5649 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5652 label
= gimple_block_label (dest
);
5653 TREE_VALUE (cons
) = label
;
5657 /* If we didn't find any label matching the former edge in the
5658 asm labels, we must be redirecting the fallthrough
5660 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5665 gsi_remove (&gsi
, true);
5666 e
->flags
|= EDGE_FALLTHRU
;
5669 case GIMPLE_OMP_RETURN
:
5670 case GIMPLE_OMP_CONTINUE
:
5671 case GIMPLE_OMP_SECTIONS_SWITCH
:
5672 case GIMPLE_OMP_FOR
:
5673 /* The edges from OMP constructs can be simply redirected. */
5676 case GIMPLE_EH_DISPATCH
:
5677 if (!(e
->flags
& EDGE_FALLTHRU
))
5678 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
5681 case GIMPLE_TRANSACTION
:
5682 if (e
->flags
& EDGE_TM_ABORT
)
5683 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
5684 gimple_block_label (dest
));
5685 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
5686 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
5687 gimple_block_label (dest
));
5689 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
5690 gimple_block_label (dest
));
5694 /* Otherwise it must be a fallthru edge, and we don't need to
5695 do anything besides redirecting it. */
5696 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5700 /* Update/insert PHI nodes as necessary. */
5702 /* Now update the edges in the CFG. */
5703 e
= ssa_redirect_edge (e
, dest
);
5708 /* Returns true if it is possible to remove edge E by redirecting
5709 it to the destination of the other edge from E->src. */
5712 gimple_can_remove_branch_p (const_edge e
)
5714 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5720 /* Simple wrapper, as we can always redirect fallthru edges. */
5723 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5725 e
= gimple_redirect_edge_and_branch (e
, dest
);
5732 /* Splits basic block BB after statement STMT (but at least after the
5733 labels). If STMT is NULL, BB is split just after the labels. */
5736 gimple_split_block (basic_block bb
, void *stmt
)
5738 gimple_stmt_iterator gsi
;
5739 gimple_stmt_iterator gsi_tgt
;
5745 new_bb
= create_empty_bb (bb
);
5747 /* Redirect the outgoing edges. */
5748 new_bb
->succs
= bb
->succs
;
5750 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5753 /* Get a stmt iterator pointing to the first stmt to move. */
5754 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
5755 gsi
= gsi_after_labels (bb
);
5758 gsi
= gsi_for_stmt ((gimple
*) stmt
);
5762 /* Move everything from GSI to the new basic block. */
5763 if (gsi_end_p (gsi
))
5766 /* Split the statement list - avoid re-creating new containers as this
5767 brings ugly quadratic memory consumption in the inliner.
5768 (We are still quadratic since we need to update stmt BB pointers,
5770 gsi_split_seq_before (&gsi
, &list
);
5771 set_bb_seq (new_bb
, list
);
5772 for (gsi_tgt
= gsi_start (list
);
5773 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5774 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5780 /* Moves basic block BB after block AFTER. */
5783 gimple_move_block_after (basic_block bb
, basic_block after
)
5785 if (bb
->prev_bb
== after
)
5789 link_block (bb
, after
);
5795 /* Return TRUE if block BB has no executable statements, otherwise return
5799 gimple_empty_block_p (basic_block bb
)
5801 /* BB must have no executable statements. */
5802 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5805 if (gsi_end_p (gsi
))
5807 if (is_gimple_debug (gsi_stmt (gsi
)))
5808 gsi_next_nondebug (&gsi
);
5809 return gsi_end_p (gsi
);
5813 /* Split a basic block if it ends with a conditional branch and if the
5814 other part of the block is not empty. */
5817 gimple_split_block_before_cond_jump (basic_block bb
)
5819 gimple
*last
, *split_point
;
5820 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
5821 if (gsi_end_p (gsi
))
5823 last
= gsi_stmt (gsi
);
5824 if (gimple_code (last
) != GIMPLE_COND
5825 && gimple_code (last
) != GIMPLE_SWITCH
)
5828 split_point
= gsi_stmt (gsi
);
5829 return split_block (bb
, split_point
)->dest
;
5833 /* Return true if basic_block can be duplicated. */
5836 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5841 /* Create a duplicate of the basic block BB. NOTE: This does not
5842 preserve SSA form. */
5845 gimple_duplicate_bb (basic_block bb
)
5848 gimple_stmt_iterator gsi_tgt
;
5850 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
5852 /* Copy the PHI nodes. We ignore PHI node arguments here because
5853 the incoming edges have not been setup yet. */
5854 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5860 copy
= create_phi_node (NULL_TREE
, new_bb
);
5861 create_new_def_for (gimple_phi_result (phi
), copy
,
5862 gimple_phi_result_ptr (copy
));
5863 gimple_set_uid (copy
, gimple_uid (phi
));
5866 gsi_tgt
= gsi_start_bb (new_bb
);
5867 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
5871 def_operand_p def_p
;
5872 ssa_op_iter op_iter
;
5874 gimple
*stmt
, *copy
;
5876 stmt
= gsi_stmt (gsi
);
5877 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5880 /* Don't duplicate label debug stmts. */
5881 if (gimple_debug_bind_p (stmt
)
5882 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5886 /* Create a new copy of STMT and duplicate STMT's virtual
5888 copy
= gimple_copy (stmt
);
5889 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5891 maybe_duplicate_eh_stmt (copy
, stmt
);
5892 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5894 /* When copying around a stmt writing into a local non-user
5895 aggregate, make sure it won't share stack slot with other
5897 lhs
= gimple_get_lhs (stmt
);
5898 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5900 tree base
= get_base_address (lhs
);
5902 && (TREE_CODE (base
) == VAR_DECL
5903 || TREE_CODE (base
) == RESULT_DECL
)
5904 && DECL_IGNORED_P (base
)
5905 && !TREE_STATIC (base
)
5906 && !DECL_EXTERNAL (base
)
5907 && (TREE_CODE (base
) != VAR_DECL
5908 || !DECL_HAS_VALUE_EXPR_P (base
)))
5909 DECL_NONSHAREABLE (base
) = 1;
5912 /* Create new names for all the definitions created by COPY and
5913 add replacement mappings for each new name. */
5914 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5915 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5921 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5924 add_phi_args_after_copy_edge (edge e_copy
)
5926 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5929 gphi
*phi
, *phi_copy
;
5931 gphi_iterator psi
, psi_copy
;
5933 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5936 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5938 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5939 dest
= get_bb_original (e_copy
->dest
);
5941 dest
= e_copy
->dest
;
5943 e
= find_edge (bb
, dest
);
5946 /* During loop unrolling the target of the latch edge is copied.
5947 In this case we are not looking for edge to dest, but to
5948 duplicated block whose original was dest. */
5949 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5951 if ((e
->dest
->flags
& BB_DUPLICATED
)
5952 && get_bb_original (e
->dest
) == dest
)
5956 gcc_assert (e
!= NULL
);
5959 for (psi
= gsi_start_phis (e
->dest
),
5960 psi_copy
= gsi_start_phis (e_copy
->dest
);
5962 gsi_next (&psi
), gsi_next (&psi_copy
))
5965 phi_copy
= psi_copy
.phi ();
5966 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5967 add_phi_arg (phi_copy
, def
, e_copy
,
5968 gimple_phi_arg_location_from_edge (phi
, e
));
5973 /* Basic block BB_COPY was created by code duplication. Add phi node
5974 arguments for edges going out of BB_COPY. The blocks that were
5975 duplicated have BB_DUPLICATED set. */
5978 add_phi_args_after_copy_bb (basic_block bb_copy
)
5983 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5985 add_phi_args_after_copy_edge (e_copy
);
5989 /* Blocks in REGION_COPY array of length N_REGION were created by
5990 duplication of basic blocks. Add phi node arguments for edges
5991 going from these blocks. If E_COPY is not NULL, also add
5992 phi node arguments for its destination.*/
5995 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6000 for (i
= 0; i
< n_region
; i
++)
6001 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6003 for (i
= 0; i
< n_region
; i
++)
6004 add_phi_args_after_copy_bb (region_copy
[i
]);
6006 add_phi_args_after_copy_edge (e_copy
);
6008 for (i
= 0; i
< n_region
; i
++)
6009 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6012 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6013 important exit edge EXIT. By important we mean that no SSA name defined
6014 inside region is live over the other exit edges of the region. All entry
6015 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6016 to the duplicate of the region. Dominance and loop information is
6017 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6018 UPDATE_DOMINANCE is false then we assume that the caller will update the
6019 dominance information after calling this function. The new basic
6020 blocks are stored to REGION_COPY in the same order as they had in REGION,
6021 provided that REGION_COPY is not NULL.
6022 The function returns false if it is unable to copy the region,
6026 gimple_duplicate_sese_region (edge entry
, edge exit
,
6027 basic_block
*region
, unsigned n_region
,
6028 basic_block
*region_copy
,
6029 bool update_dominance
)
6032 bool free_region_copy
= false, copying_header
= false;
6033 struct loop
*loop
= entry
->dest
->loop_father
;
6035 vec
<basic_block
> doms
;
6037 int total_freq
= 0, entry_freq
= 0;
6038 gcov_type total_count
= 0, entry_count
= 0;
6040 if (!can_copy_bbs_p (region
, n_region
))
6043 /* Some sanity checking. Note that we do not check for all possible
6044 missuses of the functions. I.e. if you ask to copy something weird,
6045 it will work, but the state of structures probably will not be
6047 for (i
= 0; i
< n_region
; i
++)
6049 /* We do not handle subloops, i.e. all the blocks must belong to the
6051 if (region
[i
]->loop_father
!= loop
)
6054 if (region
[i
] != entry
->dest
6055 && region
[i
] == loop
->header
)
6059 /* In case the function is used for loop header copying (which is the primary
6060 use), ensure that EXIT and its copy will be new latch and entry edges. */
6061 if (loop
->header
== entry
->dest
)
6063 copying_header
= true;
6065 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6068 for (i
= 0; i
< n_region
; i
++)
6069 if (region
[i
] != exit
->src
6070 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6074 initialize_original_copy_tables ();
6077 set_loop_copy (loop
, loop_outer (loop
));
6079 set_loop_copy (loop
, loop
);
6083 region_copy
= XNEWVEC (basic_block
, n_region
);
6084 free_region_copy
= true;
6087 /* Record blocks outside the region that are dominated by something
6089 if (update_dominance
)
6092 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6095 if (entry
->dest
->count
)
6097 total_count
= entry
->dest
->count
;
6098 entry_count
= entry
->count
;
6099 /* Fix up corner cases, to avoid division by zero or creation of negative
6101 if (entry_count
> total_count
)
6102 entry_count
= total_count
;
6106 total_freq
= entry
->dest
->frequency
;
6107 entry_freq
= EDGE_FREQUENCY (entry
);
6108 /* Fix up corner cases, to avoid division by zero or creation of negative
6110 if (total_freq
== 0)
6112 else if (entry_freq
> total_freq
)
6113 entry_freq
= total_freq
;
6116 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6117 split_edge_bb_loc (entry
), update_dominance
);
6120 scale_bbs_frequencies_gcov_type (region
, n_region
,
6121 total_count
- entry_count
,
6123 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
6128 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
6130 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
6135 loop
->header
= exit
->dest
;
6136 loop
->latch
= exit
->src
;
6139 /* Redirect the entry and add the phi node arguments. */
6140 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6141 gcc_assert (redirected
!= NULL
);
6142 flush_pending_stmts (entry
);
6144 /* Concerning updating of dominators: We must recount dominators
6145 for entry block and its copy. Anything that is outside of the
6146 region, but was dominated by something inside needs recounting as
6148 if (update_dominance
)
6150 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6151 doms
.safe_push (get_bb_original (entry
->dest
));
6152 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6156 /* Add the other PHI node arguments. */
6157 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6159 if (free_region_copy
)
6162 free_original_copy_tables ();
6166 /* Checks if BB is part of the region defined by N_REGION BBS. */
6168 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6172 for (n
= 0; n
< n_region
; n
++)
6180 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6181 are stored to REGION_COPY in the same order in that they appear
6182 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6183 the region, EXIT an exit from it. The condition guarding EXIT
6184 is moved to ENTRY. Returns true if duplication succeeds, false
6210 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
6211 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
6212 basic_block
*region_copy ATTRIBUTE_UNUSED
)
6215 bool free_region_copy
= false;
6216 struct loop
*loop
= exit
->dest
->loop_father
;
6217 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6218 basic_block switch_bb
, entry_bb
, nentry_bb
;
6219 vec
<basic_block
> doms
;
6220 int total_freq
= 0, exit_freq
= 0;
6221 gcov_type total_count
= 0, exit_count
= 0;
6222 edge exits
[2], nexits
[2], e
;
6223 gimple_stmt_iterator gsi
;
6226 basic_block exit_bb
;
6230 struct loop
*target
, *aloop
, *cloop
;
6232 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6234 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6236 if (!can_copy_bbs_p (region
, n_region
))
6239 initialize_original_copy_tables ();
6240 set_loop_copy (orig_loop
, loop
);
6243 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6245 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6247 cloop
= duplicate_loop (aloop
, target
);
6248 duplicate_subloops (aloop
, cloop
);
6254 region_copy
= XNEWVEC (basic_block
, n_region
);
6255 free_region_copy
= true;
6258 gcc_assert (!need_ssa_update_p (cfun
));
6260 /* Record blocks outside the region that are dominated by something
6262 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6264 if (exit
->src
->count
)
6266 total_count
= exit
->src
->count
;
6267 exit_count
= exit
->count
;
6268 /* Fix up corner cases, to avoid division by zero or creation of negative
6270 if (exit_count
> total_count
)
6271 exit_count
= total_count
;
6275 total_freq
= exit
->src
->frequency
;
6276 exit_freq
= EDGE_FREQUENCY (exit
);
6277 /* Fix up corner cases, to avoid division by zero or creation of negative
6279 if (total_freq
== 0)
6281 if (exit_freq
> total_freq
)
6282 exit_freq
= total_freq
;
6285 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6286 split_edge_bb_loc (exit
), true);
6289 scale_bbs_frequencies_gcov_type (region
, n_region
,
6290 total_count
- exit_count
,
6292 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
6297 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
6299 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
6302 /* Create the switch block, and put the exit condition to it. */
6303 entry_bb
= entry
->dest
;
6304 nentry_bb
= get_bb_copy (entry_bb
);
6305 if (!last_stmt (entry
->src
)
6306 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6307 switch_bb
= entry
->src
;
6309 switch_bb
= split_edge (entry
);
6310 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6312 gsi
= gsi_last_bb (switch_bb
);
6313 cond_stmt
= last_stmt (exit
->src
);
6314 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6315 cond_stmt
= gimple_copy (cond_stmt
);
6317 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6319 sorig
= single_succ_edge (switch_bb
);
6320 sorig
->flags
= exits
[1]->flags
;
6321 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6323 /* Register the new edge from SWITCH_BB in loop exit lists. */
6324 rescan_loop_exit (snew
, true, false);
6326 /* Add the PHI node arguments. */
6327 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6329 /* Get rid of now superfluous conditions and associated edges (and phi node
6331 exit_bb
= exit
->dest
;
6333 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6334 PENDING_STMT (e
) = NULL
;
6336 /* The latch of ORIG_LOOP was copied, and so was the backedge
6337 to the original header. We redirect this backedge to EXIT_BB. */
6338 for (i
= 0; i
< n_region
; i
++)
6339 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6341 gcc_assert (single_succ_edge (region_copy
[i
]));
6342 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6343 PENDING_STMT (e
) = NULL
;
6344 for (psi
= gsi_start_phis (exit_bb
);
6349 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6350 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6353 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6354 PENDING_STMT (e
) = NULL
;
6356 /* Anything that is outside of the region, but was dominated by something
6357 inside needs to update dominance info. */
6358 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6360 /* Update the SSA web. */
6361 update_ssa (TODO_update_ssa
);
6363 if (free_region_copy
)
6366 free_original_copy_tables ();
6370 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6371 adding blocks when the dominator traversal reaches EXIT. This
6372 function silently assumes that ENTRY strictly dominates EXIT. */
6375 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6376 vec
<basic_block
> *bbs_p
)
6380 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6382 son
= next_dom_son (CDI_DOMINATORS
, son
))
6384 bbs_p
->safe_push (son
);
6386 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6390 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6391 The duplicates are recorded in VARS_MAP. */
6394 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6397 tree t
= *tp
, new_t
;
6398 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6400 if (DECL_CONTEXT (t
) == to_context
)
6404 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6410 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6411 add_local_decl (f
, new_t
);
6415 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6416 new_t
= copy_node (t
);
6418 DECL_CONTEXT (new_t
) = to_context
;
6429 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6430 VARS_MAP maps old ssa names and var_decls to the new ones. */
6433 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6438 gcc_assert (!virtual_operand_p (name
));
6440 tree
*loc
= vars_map
->get (name
);
6444 tree decl
= SSA_NAME_VAR (name
);
6447 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6448 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6449 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6450 decl
, SSA_NAME_DEF_STMT (name
));
6453 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6454 name
, SSA_NAME_DEF_STMT (name
));
6456 /* Now that we've used the def stmt to define new_name, make sure it
6457 doesn't define name anymore. */
6458 SSA_NAME_DEF_STMT (name
) = NULL
;
6460 vars_map
->put (name
, new_name
);
6474 hash_map
<tree
, tree
> *vars_map
;
6475 htab_t new_label_map
;
6476 hash_map
<void *, void *> *eh_map
;
6480 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6481 contained in *TP if it has been ORIG_BLOCK previously and change the
6482 DECL_CONTEXT of every local variable referenced in *TP. */
6485 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6487 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6488 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6493 tree block
= TREE_BLOCK (t
);
6494 if (block
== p
->orig_block
6495 || (p
->orig_block
== NULL_TREE
6496 && block
!= NULL_TREE
))
6497 TREE_SET_BLOCK (t
, p
->new_block
);
6498 else if (flag_checking
&& block
!= NULL_TREE
)
6500 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6501 block
= BLOCK_SUPERCONTEXT (block
);
6502 gcc_assert (block
== p
->orig_block
);
6505 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6507 if (TREE_CODE (t
) == SSA_NAME
)
6508 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6509 else if (TREE_CODE (t
) == PARM_DECL
6510 && gimple_in_ssa_p (cfun
))
6511 *tp
= *(p
->vars_map
->get (t
));
6512 else if (TREE_CODE (t
) == LABEL_DECL
)
6514 if (p
->new_label_map
)
6516 struct tree_map in
, *out
;
6518 out
= (struct tree_map
*)
6519 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6524 DECL_CONTEXT (t
) = p
->to_context
;
6526 else if (p
->remap_decls_p
)
6528 /* Replace T with its duplicate. T should no longer appear in the
6529 parent function, so this looks wasteful; however, it may appear
6530 in referenced_vars, and more importantly, as virtual operands of
6531 statements, and in alias lists of other variables. It would be
6532 quite difficult to expunge it from all those places. ??? It might
6533 suffice to do this for addressable variables. */
6534 if ((TREE_CODE (t
) == VAR_DECL
6535 && !is_global_var (t
))
6536 || TREE_CODE (t
) == CONST_DECL
)
6537 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6541 else if (TYPE_P (t
))
6547 /* Helper for move_stmt_r. Given an EH region number for the source
6548 function, map that to the duplicate EH regio number in the dest. */
6551 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6553 eh_region old_r
, new_r
;
6555 old_r
= get_eh_region_from_number (old_nr
);
6556 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6558 return new_r
->index
;
6561 /* Similar, but operate on INTEGER_CSTs. */
6564 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6568 old_nr
= tree_to_shwi (old_t_nr
);
6569 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6571 return build_int_cst (integer_type_node
, new_nr
);
6574 /* Like move_stmt_op, but for gimple statements.
6576 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6577 contained in the current statement in *GSI_P and change the
6578 DECL_CONTEXT of every local variable referenced in the current
6582 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6583 struct walk_stmt_info
*wi
)
6585 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6586 gimple
*stmt
= gsi_stmt (*gsi_p
);
6587 tree block
= gimple_block (stmt
);
6589 if (block
== p
->orig_block
6590 || (p
->orig_block
== NULL_TREE
6591 && block
!= NULL_TREE
))
6592 gimple_set_block (stmt
, p
->new_block
);
6594 switch (gimple_code (stmt
))
6597 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6599 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6600 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6601 switch (DECL_FUNCTION_CODE (fndecl
))
6603 case BUILT_IN_EH_COPY_VALUES
:
6604 r
= gimple_call_arg (stmt
, 1);
6605 r
= move_stmt_eh_region_tree_nr (r
, p
);
6606 gimple_call_set_arg (stmt
, 1, r
);
6609 case BUILT_IN_EH_POINTER
:
6610 case BUILT_IN_EH_FILTER
:
6611 r
= gimple_call_arg (stmt
, 0);
6612 r
= move_stmt_eh_region_tree_nr (r
, p
);
6613 gimple_call_set_arg (stmt
, 0, r
);
6624 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6625 int r
= gimple_resx_region (resx_stmt
);
6626 r
= move_stmt_eh_region_nr (r
, p
);
6627 gimple_resx_set_region (resx_stmt
, r
);
6631 case GIMPLE_EH_DISPATCH
:
6633 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
6634 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
6635 r
= move_stmt_eh_region_nr (r
, p
);
6636 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
6640 case GIMPLE_OMP_RETURN
:
6641 case GIMPLE_OMP_CONTINUE
:
6644 if (is_gimple_omp (stmt
))
6646 /* Do not remap variables inside OMP directives. Variables
6647 referenced in clauses and directive header belong to the
6648 parent function and should not be moved into the child
6650 bool save_remap_decls_p
= p
->remap_decls_p
;
6651 p
->remap_decls_p
= false;
6652 *handled_ops_p
= true;
6654 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6657 p
->remap_decls_p
= save_remap_decls_p
;
6665 /* Move basic block BB from function CFUN to function DEST_FN. The
6666 block is moved out of the original linked list and placed after
6667 block AFTER in the new list. Also, the block is removed from the
6668 original array of blocks and placed in DEST_FN's array of blocks.
6669 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6670 updated to reflect the moved edges.
6672 The local variables are remapped to new instances, VARS_MAP is used
6673 to record the mapping. */
6676 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6677 basic_block after
, bool update_edge_count_p
,
6678 struct move_stmt_d
*d
)
6680 struct control_flow_graph
*cfg
;
6683 gimple_stmt_iterator si
;
6684 unsigned old_len
, new_len
;
6686 /* Remove BB from dominance structures. */
6687 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6689 /* Move BB from its current loop to the copy in the new function. */
6692 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6694 bb
->loop_father
= new_loop
;
6697 /* Link BB to the new linked list. */
6698 move_block_after (bb
, after
);
6700 /* Update the edge count in the corresponding flowgraphs. */
6701 if (update_edge_count_p
)
6702 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6704 cfun
->cfg
->x_n_edges
--;
6705 dest_cfun
->cfg
->x_n_edges
++;
6708 /* Remove BB from the original basic block array. */
6709 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6710 cfun
->cfg
->x_n_basic_blocks
--;
6712 /* Grow DEST_CFUN's basic block array if needed. */
6713 cfg
= dest_cfun
->cfg
;
6714 cfg
->x_n_basic_blocks
++;
6715 if (bb
->index
>= cfg
->x_last_basic_block
)
6716 cfg
->x_last_basic_block
= bb
->index
+ 1;
6718 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6719 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6721 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6722 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6725 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6727 /* Remap the variables in phi nodes. */
6728 for (gphi_iterator psi
= gsi_start_phis (bb
);
6731 gphi
*phi
= psi
.phi ();
6733 tree op
= PHI_RESULT (phi
);
6737 if (virtual_operand_p (op
))
6739 /* Remove the phi nodes for virtual operands (alias analysis will be
6740 run for the new function, anyway). */
6741 remove_phi_node (&psi
, true);
6745 SET_PHI_RESULT (phi
,
6746 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6747 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6749 op
= USE_FROM_PTR (use
);
6750 if (TREE_CODE (op
) == SSA_NAME
)
6751 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6754 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6756 location_t locus
= gimple_phi_arg_location (phi
, i
);
6757 tree block
= LOCATION_BLOCK (locus
);
6759 if (locus
== UNKNOWN_LOCATION
)
6761 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6763 locus
= set_block (locus
, d
->new_block
);
6764 gimple_phi_arg_set_location (phi
, i
, locus
);
6771 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6773 gimple
*stmt
= gsi_stmt (si
);
6774 struct walk_stmt_info wi
;
6776 memset (&wi
, 0, sizeof (wi
));
6778 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6780 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
6782 tree label
= gimple_label_label (label_stmt
);
6783 int uid
= LABEL_DECL_UID (label
);
6785 gcc_assert (uid
> -1);
6787 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
6788 if (old_len
<= (unsigned) uid
)
6790 new_len
= 3 * uid
/ 2 + 1;
6791 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
6794 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
6795 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
6797 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6799 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6800 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6803 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6804 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6806 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6807 gimple_remove_stmt_histograms (cfun
, stmt
);
6809 /* We cannot leave any operands allocated from the operand caches of
6810 the current function. */
6811 free_stmt_operands (cfun
, stmt
);
6812 push_cfun (dest_cfun
);
6817 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6818 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
6820 tree block
= LOCATION_BLOCK (e
->goto_locus
);
6821 if (d
->orig_block
== NULL_TREE
6822 || block
== d
->orig_block
)
6823 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
6827 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6828 the outermost EH region. Use REGION as the incoming base EH region. */
6831 find_outermost_region_in_block (struct function
*src_cfun
,
6832 basic_block bb
, eh_region region
)
6834 gimple_stmt_iterator si
;
6836 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6838 gimple
*stmt
= gsi_stmt (si
);
6839 eh_region stmt_region
;
6842 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6843 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6847 region
= stmt_region
;
6848 else if (stmt_region
!= region
)
6850 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6851 gcc_assert (region
!= NULL
);
6860 new_label_mapper (tree decl
, void *data
)
6862 htab_t hash
= (htab_t
) data
;
6866 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6868 m
= XNEW (struct tree_map
);
6869 m
->hash
= DECL_UID (decl
);
6870 m
->base
.from
= decl
;
6871 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6872 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6873 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6874 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6876 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6877 gcc_assert (*slot
== NULL
);
6884 /* Tree walker to replace the decls used inside value expressions by
6888 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
6890 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
6892 switch (TREE_CODE (*tp
))
6897 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
6903 if (IS_TYPE_OR_DECL_P (*tp
))
6904 *walk_subtrees
= false;
6909 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6913 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
6918 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6921 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6923 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6926 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6928 tree x
= DECL_VALUE_EXPR (*tp
);
6929 struct replace_decls_d rd
= { vars_map
, to_context
};
6931 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
6932 SET_DECL_VALUE_EXPR (t
, x
);
6933 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6935 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6940 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6941 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6944 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6948 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
6951 /* Discard it from the old loop array. */
6952 (*get_loops (fn1
))[loop
->num
] = NULL
;
6954 /* Place it in the new loop array, assigning it a new number. */
6955 loop
->num
= number_of_loops (fn2
);
6956 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
6958 /* Recurse to children. */
6959 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
6960 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
6963 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
6964 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
6967 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
6972 bitmap bbs
= BITMAP_ALLOC (NULL
);
6975 gcc_assert (entry
!= NULL
);
6976 gcc_assert (entry
!= exit
);
6977 gcc_assert (bbs_p
!= NULL
);
6979 gcc_assert (bbs_p
->length () > 0);
6981 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
6982 bitmap_set_bit (bbs
, bb
->index
);
6984 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
6985 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
6987 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
6991 gcc_assert (single_pred_p (entry
));
6992 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
6995 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
6998 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7003 gcc_assert (single_succ_p (exit
));
7004 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7007 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7010 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7017 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7020 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7022 bitmap release_names
= (bitmap
)data
;
7024 if (TREE_CODE (from
) != SSA_NAME
)
7027 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7031 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7032 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7033 single basic block in the original CFG and the new basic block is
7034 returned. DEST_CFUN must not have a CFG yet.
7036 Note that the region need not be a pure SESE region. Blocks inside
7037 the region may contain calls to abort/exit. The only restriction
7038 is that ENTRY_BB should be the only entry point and it must
7041 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7042 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7043 to the new function.
7045 All local variables referenced in the region are assumed to be in
7046 the corresponding BLOCK_VARS and unexpanded variable lists
7047 associated with DEST_CFUN.
7049 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7050 reimplement move_sese_region_to_fn by duplicating the region rather than
7054 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7055 basic_block exit_bb
, tree orig_block
)
7057 vec
<basic_block
> bbs
, dom_bbs
;
7058 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7059 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7060 struct function
*saved_cfun
= cfun
;
7061 int *entry_flag
, *exit_flag
;
7062 unsigned *entry_prob
, *exit_prob
;
7063 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7066 htab_t new_label_map
;
7067 hash_map
<void *, void *> *eh_map
;
7068 struct loop
*loop
= entry_bb
->loop_father
;
7069 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7070 struct move_stmt_d d
;
7072 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7074 gcc_assert (entry_bb
!= exit_bb
7076 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7078 /* Collect all the blocks in the region. Manually add ENTRY_BB
7079 because it won't be added by dfs_enumerate_from. */
7081 bbs
.safe_push (entry_bb
);
7082 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7085 verify_sese (entry_bb
, exit_bb
, &bbs
);
7087 /* The blocks that used to be dominated by something in BBS will now be
7088 dominated by the new block. */
7089 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7093 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7094 the predecessor edges to ENTRY_BB and the successor edges to
7095 EXIT_BB so that we can re-attach them to the new basic block that
7096 will replace the region. */
7097 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7098 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7099 entry_flag
= XNEWVEC (int, num_entry_edges
);
7100 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
7102 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7104 entry_prob
[i
] = e
->probability
;
7105 entry_flag
[i
] = e
->flags
;
7106 entry_pred
[i
++] = e
->src
;
7112 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7113 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7114 exit_flag
= XNEWVEC (int, num_exit_edges
);
7115 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
7117 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7119 exit_prob
[i
] = e
->probability
;
7120 exit_flag
[i
] = e
->flags
;
7121 exit_succ
[i
++] = e
->dest
;
7133 /* Switch context to the child function to initialize DEST_FN's CFG. */
7134 gcc_assert (dest_cfun
->cfg
== NULL
);
7135 push_cfun (dest_cfun
);
7137 init_empty_tree_cfg ();
7139 /* Initialize EH information for the new function. */
7141 new_label_map
= NULL
;
7144 eh_region region
= NULL
;
7146 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7147 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7149 init_eh_for_function ();
7152 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7153 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7154 new_label_mapper
, new_label_map
);
7158 /* Initialize an empty loop tree. */
7159 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7160 init_loops_structure (dest_cfun
, loops
, 1);
7161 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7162 set_loops_for_fn (dest_cfun
, loops
);
7164 /* Move the outlined loop tree part. */
7165 num_nodes
= bbs
.length ();
7166 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7168 if (bb
->loop_father
->header
== bb
)
7170 struct loop
*this_loop
= bb
->loop_father
;
7171 struct loop
*outer
= loop_outer (this_loop
);
7173 /* If the SESE region contains some bbs ending with
7174 a noreturn call, those are considered to belong
7175 to the outermost loop in saved_cfun, rather than
7176 the entry_bb's loop_father. */
7180 num_nodes
-= this_loop
->num_nodes
;
7181 flow_loop_tree_node_remove (bb
->loop_father
);
7182 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7183 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7186 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7189 /* Remove loop exits from the outlined region. */
7190 if (loops_for_fn (saved_cfun
)->exits
)
7191 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7193 struct loops
*l
= loops_for_fn (saved_cfun
);
7195 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7198 l
->exits
->clear_slot (slot
);
7203 /* Adjust the number of blocks in the tree root of the outlined part. */
7204 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7206 /* Setup a mapping to be used by move_block_to_fn. */
7207 loop
->aux
= current_loops
->tree_root
;
7208 loop0
->aux
= current_loops
->tree_root
;
7212 /* Move blocks from BBS into DEST_CFUN. */
7213 gcc_assert (bbs
.length () >= 2);
7214 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7215 hash_map
<tree
, tree
> vars_map
;
7217 memset (&d
, 0, sizeof (d
));
7218 d
.orig_block
= orig_block
;
7219 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7220 d
.from_context
= cfun
->decl
;
7221 d
.to_context
= dest_cfun
->decl
;
7222 d
.vars_map
= &vars_map
;
7223 d
.new_label_map
= new_label_map
;
7225 d
.remap_decls_p
= true;
7227 if (gimple_in_ssa_p (cfun
))
7228 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7230 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7231 set_ssa_default_def (dest_cfun
, arg
, narg
);
7232 vars_map
.put (arg
, narg
);
7235 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7237 /* No need to update edge counts on the last block. It has
7238 already been updated earlier when we detached the region from
7239 the original CFG. */
7240 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7246 /* Loop sizes are no longer correct, fix them up. */
7247 loop
->num_nodes
-= num_nodes
;
7248 for (struct loop
*outer
= loop_outer (loop
);
7249 outer
; outer
= loop_outer (outer
))
7250 outer
->num_nodes
-= num_nodes
;
7251 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7253 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7256 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7261 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7263 dest_cfun
->has_simduid_loops
= true;
7265 if (aloop
->force_vectorize
)
7266 dest_cfun
->has_force_vectorize_loops
= true;
7270 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7274 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7276 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7277 = BLOCK_SUBBLOCKS (orig_block
);
7278 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7279 block
; block
= BLOCK_CHAIN (block
))
7280 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7281 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7284 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7285 &vars_map
, dest_cfun
->decl
);
7288 htab_delete (new_label_map
);
7292 if (gimple_in_ssa_p (cfun
))
7294 /* We need to release ssa-names in a defined order, so first find them,
7295 and then iterate in ascending version order. */
7296 bitmap release_names
= BITMAP_ALLOC (NULL
);
7297 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7300 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7301 release_ssa_name (ssa_name (i
));
7302 BITMAP_FREE (release_names
);
7305 /* Rewire the entry and exit blocks. The successor to the entry
7306 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7307 the child function. Similarly, the predecessor of DEST_FN's
7308 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7309 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7310 various CFG manipulation function get to the right CFG.
7312 FIXME, this is silly. The CFG ought to become a parameter to
7314 push_cfun (dest_cfun
);
7315 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7317 make_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7320 /* Back in the original function, the SESE region has disappeared,
7321 create a new basic block in its place. */
7322 bb
= create_empty_bb (entry_pred
[0]);
7324 add_bb_to_loop (bb
, loop
);
7325 for (i
= 0; i
< num_entry_edges
; i
++)
7327 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7328 e
->probability
= entry_prob
[i
];
7331 for (i
= 0; i
< num_exit_edges
; i
++)
7333 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7334 e
->probability
= exit_prob
[i
];
7337 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7338 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7339 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7356 /* Dump default def DEF to file FILE using FLAGS and indentation
7360 dump_default_def (FILE *file
, tree def
, int spc
, int flags
)
7362 for (int i
= 0; i
< spc
; ++i
)
7363 fprintf (file
, " ");
7364 dump_ssaname_info_to_file (file
, def
, spc
);
7366 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7367 fprintf (file
, " ");
7368 print_generic_expr (file
, def
, flags
);
7369 fprintf (file
, " = ");
7370 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7371 fprintf (file
, ";\n");
7374 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7378 dump_function_to_file (tree fndecl
, FILE *file
, int flags
)
7380 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7381 struct function
*dsf
;
7382 bool ignore_topmost_bind
= false, any_var
= false;
7385 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7386 && decl_is_tm_clone (fndecl
));
7387 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7389 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7391 fprintf (file
, "__attribute__((");
7395 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7396 first
= false, chain
= TREE_CHAIN (chain
))
7399 fprintf (file
, ", ");
7401 print_generic_expr (file
, get_attribute_name (chain
), dump_flags
);
7402 if (TREE_VALUE (chain
) != NULL_TREE
)
7404 fprintf (file
, " (");
7405 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7406 fprintf (file
, ")");
7410 fprintf (file
, "))\n");
7413 current_function_decl
= fndecl
;
7414 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7416 arg
= DECL_ARGUMENTS (fndecl
);
7419 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7420 fprintf (file
, " ");
7421 print_generic_expr (file
, arg
, dump_flags
);
7422 if (flags
& TDF_VERBOSE
)
7423 print_node (file
, "", arg
, 4);
7424 if (DECL_CHAIN (arg
))
7425 fprintf (file
, ", ");
7426 arg
= DECL_CHAIN (arg
);
7428 fprintf (file
, ")\n");
7430 if (flags
& TDF_VERBOSE
)
7431 print_node (file
, "", fndecl
, 2);
7433 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7434 if (dsf
&& (flags
& TDF_EH
))
7435 dump_eh_tree (file
, dsf
);
7437 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7439 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7440 current_function_decl
= old_current_fndecl
;
7444 /* When GIMPLE is lowered, the variables are no longer available in
7445 BIND_EXPRs, so display them separately. */
7446 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7449 ignore_topmost_bind
= true;
7451 fprintf (file
, "{\n");
7452 if (gimple_in_ssa_p (fun
)
7453 && (flags
& TDF_ALIAS
))
7455 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
7456 arg
= DECL_CHAIN (arg
))
7458 tree def
= ssa_default_def (fun
, arg
);
7460 dump_default_def (file
, def
, 2, flags
);
7463 tree res
= DECL_RESULT (fun
->decl
);
7464 if (res
!= NULL_TREE
7465 && DECL_BY_REFERENCE (res
))
7467 tree def
= ssa_default_def (fun
, res
);
7469 dump_default_def (file
, def
, 2, flags
);
7472 tree static_chain
= fun
->static_chain_decl
;
7473 if (static_chain
!= NULL_TREE
)
7475 tree def
= ssa_default_def (fun
, static_chain
);
7477 dump_default_def (file
, def
, 2, flags
);
7481 if (!vec_safe_is_empty (fun
->local_decls
))
7482 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7484 print_generic_decl (file
, var
, flags
);
7485 if (flags
& TDF_VERBOSE
)
7486 print_node (file
, "", var
, 4);
7487 fprintf (file
, "\n");
7491 if (gimple_in_ssa_p (cfun
))
7492 for (ix
= 1; ix
< num_ssa_names
; ++ix
)
7494 tree name
= ssa_name (ix
);
7495 if (name
&& !SSA_NAME_VAR (name
))
7497 fprintf (file
, " ");
7498 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7499 fprintf (file
, " ");
7500 print_generic_expr (file
, name
, flags
);
7501 fprintf (file
, ";\n");
7508 if (fun
&& fun
->decl
== fndecl
7510 && basic_block_info_for_fn (fun
))
7512 /* If the CFG has been built, emit a CFG-based dump. */
7513 if (!ignore_topmost_bind
)
7514 fprintf (file
, "{\n");
7516 if (any_var
&& n_basic_blocks_for_fn (fun
))
7517 fprintf (file
, "\n");
7519 FOR_EACH_BB_FN (bb
, fun
)
7520 dump_bb (file
, bb
, 2, flags
| TDF_COMMENT
);
7522 fprintf (file
, "}\n");
7524 else if (DECL_SAVED_TREE (fndecl
) == NULL
)
7526 /* The function is now in GIMPLE form but the CFG has not been
7527 built yet. Emit the single sequence of GIMPLE statements
7528 that make up its body. */
7529 gimple_seq body
= gimple_body (fndecl
);
7531 if (gimple_seq_first_stmt (body
)
7532 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7533 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7534 print_gimple_seq (file
, body
, 0, flags
);
7537 if (!ignore_topmost_bind
)
7538 fprintf (file
, "{\n");
7541 fprintf (file
, "\n");
7543 print_gimple_seq (file
, body
, 2, flags
);
7544 fprintf (file
, "}\n");
7551 /* Make a tree based dump. */
7552 chain
= DECL_SAVED_TREE (fndecl
);
7553 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7555 if (ignore_topmost_bind
)
7557 chain
= BIND_EXPR_BODY (chain
);
7565 if (!ignore_topmost_bind
)
7567 fprintf (file
, "{\n");
7568 /* No topmost bind, pretend it's ignored for later. */
7569 ignore_topmost_bind
= true;
7575 fprintf (file
, "\n");
7577 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7578 if (ignore_topmost_bind
)
7579 fprintf (file
, "}\n");
7582 if (flags
& TDF_ENUMERATE_LOCALS
)
7583 dump_enumerated_decls (file
, flags
);
7584 fprintf (file
, "\n\n");
7586 current_function_decl
= old_current_fndecl
;
7589 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7592 debug_function (tree fn
, int flags
)
7594 dump_function_to_file (fn
, stderr
, flags
);
7598 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7601 print_pred_bbs (FILE *file
, basic_block bb
)
7606 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7607 fprintf (file
, "bb_%d ", e
->src
->index
);
7611 /* Print on FILE the indexes for the successors of basic_block BB. */
7614 print_succ_bbs (FILE *file
, basic_block bb
)
7619 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7620 fprintf (file
, "bb_%d ", e
->dest
->index
);
7623 /* Print to FILE the basic block BB following the VERBOSITY level. */
7626 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7628 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7629 memset ((void *) s_indent
, ' ', (size_t) indent
);
7630 s_indent
[indent
] = '\0';
7632 /* Print basic_block's header. */
7635 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7636 print_pred_bbs (file
, bb
);
7637 fprintf (file
, "}, succs = {");
7638 print_succ_bbs (file
, bb
);
7639 fprintf (file
, "})\n");
7642 /* Print basic_block's body. */
7645 fprintf (file
, "%s {\n", s_indent
);
7646 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
7647 fprintf (file
, "%s }\n", s_indent
);
7651 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
7653 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7654 VERBOSITY level this outputs the contents of the loop, or just its
7658 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7666 s_indent
= (char *) alloca ((size_t) indent
+ 1);
7667 memset ((void *) s_indent
, ' ', (size_t) indent
);
7668 s_indent
[indent
] = '\0';
7670 /* Print loop's header. */
7671 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
7673 fprintf (file
, "header = %d", loop
->header
->index
);
7676 fprintf (file
, "deleted)\n");
7680 fprintf (file
, ", latch = %d", loop
->latch
->index
);
7682 fprintf (file
, ", multiple latches");
7683 fprintf (file
, ", niter = ");
7684 print_generic_expr (file
, loop
->nb_iterations
, 0);
7686 if (loop
->any_upper_bound
)
7688 fprintf (file
, ", upper_bound = ");
7689 print_decu (loop
->nb_iterations_upper_bound
, file
);
7692 if (loop
->any_estimate
)
7694 fprintf (file
, ", estimate = ");
7695 print_decu (loop
->nb_iterations_estimate
, file
);
7697 fprintf (file
, ")\n");
7699 /* Print loop's body. */
7702 fprintf (file
, "%s{\n", s_indent
);
7703 FOR_EACH_BB_FN (bb
, cfun
)
7704 if (bb
->loop_father
== loop
)
7705 print_loops_bb (file
, bb
, indent
, verbosity
);
7707 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7708 fprintf (file
, "%s}\n", s_indent
);
7712 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7713 spaces. Following VERBOSITY level this outputs the contents of the
7714 loop, or just its structure. */
7717 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
7723 print_loop (file
, loop
, indent
, verbosity
);
7724 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7727 /* Follow a CFG edge from the entry point of the program, and on entry
7728 of a loop, pretty print the loop structure on FILE. */
7731 print_loops (FILE *file
, int verbosity
)
7735 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
7736 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
7737 if (bb
&& bb
->loop_father
)
7738 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7744 debug (struct loop
&ref
)
7746 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
7750 debug (struct loop
*ptr
)
7755 fprintf (stderr
, "<nil>\n");
7758 /* Dump a loop verbosely. */
7761 debug_verbose (struct loop
&ref
)
7763 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
7767 debug_verbose (struct loop
*ptr
)
7772 fprintf (stderr
, "<nil>\n");
7776 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7779 debug_loops (int verbosity
)
7781 print_loops (stderr
, verbosity
);
7784 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7787 debug_loop (struct loop
*loop
, int verbosity
)
7789 print_loop (stderr
, loop
, 0, verbosity
);
7792 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7796 debug_loop_num (unsigned num
, int verbosity
)
7798 debug_loop (get_loop (cfun
, num
), verbosity
);
7801 /* Return true if BB ends with a call, possibly followed by some
7802 instructions that must stay with the call. Return false,
7806 gimple_block_ends_with_call_p (basic_block bb
)
7808 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7809 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
7813 /* Return true if BB ends with a conditional branch. Return false,
7817 gimple_block_ends_with_condjump_p (const_basic_block bb
)
7819 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
7820 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
7824 /* Return true if we need to add fake edge to exit at statement T.
7825 Helper function for gimple_flow_call_edges_add. */
7828 need_fake_edge_p (gimple
*t
)
7830 tree fndecl
= NULL_TREE
;
7833 /* NORETURN and LONGJMP calls already have an edge to exit.
7834 CONST and PURE calls do not need one.
7835 We don't currently check for CONST and PURE here, although
7836 it would be a good idea, because those attributes are
7837 figured out from the RTL in mark_constant_function, and
7838 the counter incrementation code from -fprofile-arcs
7839 leads to different results from -fbranch-probabilities. */
7840 if (is_gimple_call (t
))
7842 fndecl
= gimple_call_fndecl (t
);
7843 call_flags
= gimple_call_flags (t
);
7846 if (is_gimple_call (t
)
7848 && DECL_BUILT_IN (fndecl
)
7849 && (call_flags
& ECF_NOTHROW
)
7850 && !(call_flags
& ECF_RETURNS_TWICE
)
7851 /* fork() doesn't really return twice, but the effect of
7852 wrapping it in __gcov_fork() which calls __gcov_flush()
7853 and clears the counters before forking has the same
7854 effect as returning twice. Force a fake edge. */
7855 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
7856 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
7859 if (is_gimple_call (t
))
7865 if (!(call_flags
& ECF_NORETURN
))
7869 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7870 if ((e
->flags
& EDGE_FAKE
) == 0)
7874 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
7875 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
7882 /* Add fake edges to the function exit for any non constant and non
7883 noreturn calls (or noreturn calls with EH/abnormal edges),
7884 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7885 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7888 The goal is to expose cases in which entering a basic block does
7889 not imply that all subsequent instructions must be executed. */
7892 gimple_flow_call_edges_add (sbitmap blocks
)
7895 int blocks_split
= 0;
7896 int last_bb
= last_basic_block_for_fn (cfun
);
7897 bool check_last_block
= false;
7899 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
7903 check_last_block
= true;
7905 check_last_block
= bitmap_bit_p (blocks
,
7906 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
7908 /* In the last basic block, before epilogue generation, there will be
7909 a fallthru edge to EXIT. Special care is required if the last insn
7910 of the last basic block is a call because make_edge folds duplicate
7911 edges, which would result in the fallthru edge also being marked
7912 fake, which would result in the fallthru edge being removed by
7913 remove_fake_edges, which would result in an invalid CFG.
7915 Moreover, we can't elide the outgoing fake edge, since the block
7916 profiler needs to take this into account in order to solve the minimal
7917 spanning tree in the case that the call doesn't return.
7919 Handle this by adding a dummy instruction in a new last basic block. */
7920 if (check_last_block
)
7922 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
7923 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7926 if (!gsi_end_p (gsi
))
7929 if (t
&& need_fake_edge_p (t
))
7933 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
7936 gsi_insert_on_edge (e
, gimple_build_nop ());
7937 gsi_commit_edge_inserts ();
7942 /* Now add fake edges to the function exit for any non constant
7943 calls since there is no way that we can determine if they will
7945 for (i
= 0; i
< last_bb
; i
++)
7947 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
7948 gimple_stmt_iterator gsi
;
7949 gimple
*stmt
, *last_stmt
;
7954 if (blocks
&& !bitmap_bit_p (blocks
, i
))
7957 gsi
= gsi_last_nondebug_bb (bb
);
7958 if (!gsi_end_p (gsi
))
7960 last_stmt
= gsi_stmt (gsi
);
7963 stmt
= gsi_stmt (gsi
);
7964 if (need_fake_edge_p (stmt
))
7968 /* The handling above of the final block before the
7969 epilogue should be enough to verify that there is
7970 no edge to the exit block in CFG already.
7971 Calling make_edge in such case would cause us to
7972 mark that edge as fake and remove it later. */
7973 if (flag_checking
&& stmt
== last_stmt
)
7975 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
7976 gcc_assert (e
== NULL
);
7979 /* Note that the following may create a new basic block
7980 and renumber the existing basic blocks. */
7981 if (stmt
!= last_stmt
)
7983 e
= split_block (bb
, stmt
);
7987 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
7991 while (!gsi_end_p (gsi
));
7996 verify_flow_info ();
7998 return blocks_split
;
8001 /* Removes edge E and all the blocks dominated by it, and updates dominance
8002 information. The IL in E->src needs to be updated separately.
8003 If dominance info is not available, only the edge E is removed.*/
8006 remove_edge_and_dominated_blocks (edge e
)
8008 vec
<basic_block
> bbs_to_remove
= vNULL
;
8009 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8013 bool none_removed
= false;
8015 basic_block bb
, dbb
;
8018 /* If we are removing a path inside a non-root loop that may change
8019 loop ownership of blocks or remove loops. Mark loops for fixup. */
8021 && loop_outer (e
->src
->loop_father
) != NULL
8022 && e
->src
->loop_father
== e
->dest
->loop_father
)
8023 loops_state_set (LOOPS_NEED_FIXUP
);
8025 if (!dom_info_available_p (CDI_DOMINATORS
))
8031 /* No updating is needed for edges to exit. */
8032 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8034 if (cfgcleanup_altered_bbs
)
8035 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8040 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8041 that is not dominated by E->dest, then this set is empty. Otherwise,
8042 all the basic blocks dominated by E->dest are removed.
8044 Also, to DF_IDOM we store the immediate dominators of the blocks in
8045 the dominance frontier of E (i.e., of the successors of the
8046 removed blocks, if there are any, and of E->dest otherwise). */
8047 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8052 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8054 none_removed
= true;
8059 df
= BITMAP_ALLOC (NULL
);
8060 df_idom
= BITMAP_ALLOC (NULL
);
8063 bitmap_set_bit (df_idom
,
8064 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8067 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8068 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8070 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8072 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8073 bitmap_set_bit (df
, f
->dest
->index
);
8076 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8077 bitmap_clear_bit (df
, bb
->index
);
8079 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8081 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8082 bitmap_set_bit (df_idom
,
8083 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8087 if (cfgcleanup_altered_bbs
)
8089 /* Record the set of the altered basic blocks. */
8090 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8091 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8094 /* Remove E and the cancelled blocks. */
8099 /* Walk backwards so as to get a chance to substitute all
8100 released DEFs into debug stmts. See
8101 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8103 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8104 delete_basic_block (bbs_to_remove
[i
]);
8107 /* Update the dominance information. The immediate dominator may change only
8108 for blocks whose immediate dominator belongs to DF_IDOM:
8110 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8111 removal. Let Z the arbitrary block such that idom(Z) = Y and
8112 Z dominates X after the removal. Before removal, there exists a path P
8113 from Y to X that avoids Z. Let F be the last edge on P that is
8114 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8115 dominates W, and because of P, Z does not dominate W), and W belongs to
8116 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8117 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8119 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8120 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8122 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8123 bbs_to_fix_dom
.safe_push (dbb
);
8126 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8129 BITMAP_FREE (df_idom
);
8130 bbs_to_remove
.release ();
8131 bbs_to_fix_dom
.release ();
8134 /* Purge dead EH edges from basic block BB. */
8137 gimple_purge_dead_eh_edges (basic_block bb
)
8139 bool changed
= false;
8142 gimple
*stmt
= last_stmt (bb
);
8144 if (stmt
&& stmt_can_throw_internal (stmt
))
8147 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8149 if (e
->flags
& EDGE_EH
)
8151 remove_edge_and_dominated_blocks (e
);
8161 /* Purge dead EH edges from basic block listed in BLOCKS. */
8164 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8166 bool changed
= false;
8170 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8172 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8174 /* Earlier gimple_purge_dead_eh_edges could have removed
8175 this basic block already. */
8176 gcc_assert (bb
|| changed
);
8178 changed
|= gimple_purge_dead_eh_edges (bb
);
8184 /* Purge dead abnormal call edges from basic block BB. */
8187 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8189 bool changed
= false;
8192 gimple
*stmt
= last_stmt (bb
);
8194 if (!cfun
->has_nonlocal_label
8195 && !cfun
->calls_setjmp
)
8198 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8201 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8203 if (e
->flags
& EDGE_ABNORMAL
)
8205 if (e
->flags
& EDGE_FALLTHRU
)
8206 e
->flags
&= ~EDGE_ABNORMAL
;
8208 remove_edge_and_dominated_blocks (e
);
8218 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8221 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8223 bool changed
= false;
8227 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8229 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8231 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8232 this basic block already. */
8233 gcc_assert (bb
|| changed
);
8235 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8241 /* This function is called whenever a new edge is created or
8245 gimple_execute_on_growing_pred (edge e
)
8247 basic_block bb
= e
->dest
;
8249 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8250 reserve_phi_args_for_new_edge (bb
);
8253 /* This function is called immediately before edge E is removed from
8254 the edge vector E->dest->preds. */
8257 gimple_execute_on_shrinking_pred (edge e
)
8259 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8260 remove_phi_args (e
);
8263 /*---------------------------------------------------------------------------
8264 Helper functions for Loop versioning
8265 ---------------------------------------------------------------------------*/
8267 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8268 of 'first'. Both of them are dominated by 'new_head' basic block. When
8269 'new_head' was created by 'second's incoming edge it received phi arguments
8270 on the edge by split_edge(). Later, additional edge 'e' was created to
8271 connect 'new_head' and 'first'. Now this routine adds phi args on this
8272 additional edge 'e' that new_head to second edge received as part of edge
8276 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8277 basic_block new_head
, edge e
)
8280 gphi_iterator psi1
, psi2
;
8282 edge e2
= find_edge (new_head
, second
);
8284 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8285 edge, we should always have an edge from NEW_HEAD to SECOND. */
8286 gcc_assert (e2
!= NULL
);
8288 /* Browse all 'second' basic block phi nodes and add phi args to
8289 edge 'e' for 'first' head. PHI args are always in correct order. */
8291 for (psi2
= gsi_start_phis (second
),
8292 psi1
= gsi_start_phis (first
);
8293 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8294 gsi_next (&psi2
), gsi_next (&psi1
))
8298 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8299 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8304 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8305 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8306 the destination of the ELSE part. */
8309 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8310 basic_block second_head ATTRIBUTE_UNUSED
,
8311 basic_block cond_bb
, void *cond_e
)
8313 gimple_stmt_iterator gsi
;
8314 gimple
*new_cond_expr
;
8315 tree cond_expr
= (tree
) cond_e
;
8318 /* Build new conditional expr */
8319 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8320 NULL_TREE
, NULL_TREE
);
8322 /* Add new cond in cond_bb. */
8323 gsi
= gsi_last_bb (cond_bb
);
8324 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8326 /* Adjust edges appropriately to connect new head with first head
8327 as well as second head. */
8328 e0
= single_succ_edge (cond_bb
);
8329 e0
->flags
&= ~EDGE_FALLTHRU
;
8330 e0
->flags
|= EDGE_FALSE_VALUE
;
8334 /* Do book-keeping of basic block BB for the profile consistency checker.
8335 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8336 then do post-pass accounting. Store the counting in RECORD. */
8338 gimple_account_profile_record (basic_block bb
, int after_pass
,
8339 struct profile_record
*record
)
8341 gimple_stmt_iterator i
;
8342 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8344 record
->size
[after_pass
]
8345 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8346 if (profile_status_for_fn (cfun
) == PROFILE_READ
)
8347 record
->time
[after_pass
]
8348 += estimate_num_insns (gsi_stmt (i
),
8349 &eni_time_weights
) * bb
->count
;
8350 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8351 record
->time
[after_pass
]
8352 += estimate_num_insns (gsi_stmt (i
),
8353 &eni_time_weights
) * bb
->frequency
;
8357 struct cfg_hooks gimple_cfg_hooks
= {
8359 gimple_verify_flow_info
,
8360 gimple_dump_bb
, /* dump_bb */
8361 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8362 create_bb
, /* create_basic_block */
8363 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8364 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8365 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8366 remove_bb
, /* delete_basic_block */
8367 gimple_split_block
, /* split_block */
8368 gimple_move_block_after
, /* move_block_after */
8369 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8370 gimple_merge_blocks
, /* merge_blocks */
8371 gimple_predict_edge
, /* predict_edge */
8372 gimple_predicted_by_p
, /* predicted_by_p */
8373 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8374 gimple_duplicate_bb
, /* duplicate_block */
8375 gimple_split_edge
, /* split_edge */
8376 gimple_make_forwarder_block
, /* make_forward_block */
8377 NULL
, /* tidy_fallthru_edge */
8378 NULL
, /* force_nonfallthru */
8379 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8380 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8381 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8382 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8383 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8384 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8385 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8386 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8387 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8388 flush_pending_stmts
, /* flush_pending_stmts */
8389 gimple_empty_block_p
, /* block_empty_p */
8390 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8391 gimple_account_profile_record
,
8395 /* Split all critical edges. */
8398 split_critical_edges (void)
8404 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8405 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8406 mappings around the calls to split_edge. */
8407 start_recording_case_labels ();
8408 FOR_ALL_BB_FN (bb
, cfun
)
8410 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8412 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8414 /* PRE inserts statements to edges and expects that
8415 since split_critical_edges was done beforehand, committing edge
8416 insertions will not split more edges. In addition to critical
8417 edges we must split edges that have multiple successors and
8418 end by control flow statements, such as RESX.
8419 Go ahead and split them too. This matches the logic in
8420 gimple_find_edge_insert_loc. */
8421 else if ((!single_pred_p (e
->dest
)
8422 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8423 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8424 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8425 && !(e
->flags
& EDGE_ABNORMAL
))
8427 gimple_stmt_iterator gsi
;
8429 gsi
= gsi_last_bb (e
->src
);
8430 if (!gsi_end_p (gsi
)
8431 && stmt_ends_bb_p (gsi_stmt (gsi
))
8432 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8433 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8439 end_recording_case_labels ();
8445 const pass_data pass_data_split_crit_edges
=
8447 GIMPLE_PASS
, /* type */
8448 "crited", /* name */
8449 OPTGROUP_NONE
, /* optinfo_flags */
8450 TV_TREE_SPLIT_EDGES
, /* tv_id */
8451 PROP_cfg
, /* properties_required */
8452 PROP_no_crit_edges
, /* properties_provided */
8453 0, /* properties_destroyed */
8454 0, /* todo_flags_start */
8455 0, /* todo_flags_finish */
8458 class pass_split_crit_edges
: public gimple_opt_pass
8461 pass_split_crit_edges (gcc::context
*ctxt
)
8462 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8465 /* opt_pass methods: */
8466 virtual unsigned int execute (function
*) { return split_critical_edges (); }
8468 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8469 }; // class pass_split_crit_edges
8474 make_pass_split_crit_edges (gcc::context
*ctxt
)
8476 return new pass_split_crit_edges (ctxt
);
8480 /* Insert COND expression which is GIMPLE_COND after STMT
8481 in basic block BB with appropriate basic block split
8482 and creation of a new conditionally executed basic block.
8483 Return created basic block. */
8485 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
)
8487 edge fall
= split_block (bb
, stmt
);
8488 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
8491 /* Insert cond statement. */
8492 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
8493 if (gsi_end_p (iter
))
8494 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
8496 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
8498 /* Create conditionally executed block. */
8499 new_bb
= create_empty_bb (bb
);
8500 make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
8501 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
8503 /* Fix edge for split bb. */
8504 fall
->flags
= EDGE_FALSE_VALUE
;
8506 /* Update dominance info. */
8507 if (dom_info_available_p (CDI_DOMINATORS
))
8509 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
8510 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
8513 /* Update loop info. */
8515 add_bb_to_loop (new_bb
, bb
->loop_father
);
8520 /* Build a ternary operation and gimplify it. Emit code before GSI.
8521 Return the gimple_val holding the result. */
8524 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8525 tree type
, tree a
, tree b
, tree c
)
8528 location_t loc
= gimple_location (gsi_stmt (*gsi
));
8530 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
8533 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8537 /* Build a binary operation and gimplify it. Emit code before GSI.
8538 Return the gimple_val holding the result. */
8541 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8542 tree type
, tree a
, tree b
)
8546 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
8549 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8553 /* Build a unary operation and gimplify it. Emit code before GSI.
8554 Return the gimple_val holding the result. */
8557 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
8562 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
8565 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8571 /* Given a basic block B which ends with a conditional and has
8572 precisely two successors, determine which of the edges is taken if
8573 the conditional is true and which is taken if the conditional is
8574 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8577 extract_true_false_edges_from_block (basic_block b
,
8581 edge e
= EDGE_SUCC (b
, 0);
8583 if (e
->flags
& EDGE_TRUE_VALUE
)
8586 *false_edge
= EDGE_SUCC (b
, 1);
8591 *true_edge
= EDGE_SUCC (b
, 1);
8596 /* From a controlling predicate in the immediate dominator DOM of
8597 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8598 predicate evaluates to true and false and store them to
8599 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8600 they are non-NULL. Returns true if the edges can be determined,
8601 else return false. */
8604 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
8605 edge
*true_controlled_edge
,
8606 edge
*false_controlled_edge
)
8608 basic_block bb
= phiblock
;
8609 edge true_edge
, false_edge
, tem
;
8610 edge e0
= NULL
, e1
= NULL
;
8612 /* We have to verify that one edge into the PHI node is dominated
8613 by the true edge of the predicate block and the other edge
8614 dominated by the false edge. This ensures that the PHI argument
8615 we are going to take is completely determined by the path we
8616 take from the predicate block.
8617 We can only use BB dominance checks below if the destination of
8618 the true/false edges are dominated by their edge, thus only
8619 have a single predecessor. */
8620 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
8621 tem
= EDGE_PRED (bb
, 0);
8622 if (tem
== true_edge
8623 || (single_pred_p (true_edge
->dest
)
8624 && (tem
->src
== true_edge
->dest
8625 || dominated_by_p (CDI_DOMINATORS
,
8626 tem
->src
, true_edge
->dest
))))
8628 else if (tem
== false_edge
8629 || (single_pred_p (false_edge
->dest
)
8630 && (tem
->src
== false_edge
->dest
8631 || dominated_by_p (CDI_DOMINATORS
,
8632 tem
->src
, false_edge
->dest
))))
8636 tem
= EDGE_PRED (bb
, 1);
8637 if (tem
== true_edge
8638 || (single_pred_p (true_edge
->dest
)
8639 && (tem
->src
== true_edge
->dest
8640 || dominated_by_p (CDI_DOMINATORS
,
8641 tem
->src
, true_edge
->dest
))))
8643 else if (tem
== false_edge
8644 || (single_pred_p (false_edge
->dest
)
8645 && (tem
->src
== false_edge
->dest
8646 || dominated_by_p (CDI_DOMINATORS
,
8647 tem
->src
, false_edge
->dest
))))
8654 if (true_controlled_edge
)
8655 *true_controlled_edge
= e0
;
8656 if (false_controlled_edge
)
8657 *false_controlled_edge
= e1
;
8664 /* Emit return warnings. */
8668 const pass_data pass_data_warn_function_return
=
8670 GIMPLE_PASS
, /* type */
8671 "*warn_function_return", /* name */
8672 OPTGROUP_NONE
, /* optinfo_flags */
8673 TV_NONE
, /* tv_id */
8674 PROP_cfg
, /* properties_required */
8675 0, /* properties_provided */
8676 0, /* properties_destroyed */
8677 0, /* todo_flags_start */
8678 0, /* todo_flags_finish */
8681 class pass_warn_function_return
: public gimple_opt_pass
8684 pass_warn_function_return (gcc::context
*ctxt
)
8685 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
8688 /* opt_pass methods: */
8689 virtual unsigned int execute (function
*);
8691 }; // class pass_warn_function_return
8694 pass_warn_function_return::execute (function
*fun
)
8696 source_location location
;
8701 if (!targetm
.warn_func_return (fun
->decl
))
8704 /* If we have a path to EXIT, then we do return. */
8705 if (TREE_THIS_VOLATILE (fun
->decl
)
8706 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
8708 location
= UNKNOWN_LOCATION
;
8709 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
8711 last
= last_stmt (e
->src
);
8712 if ((gimple_code (last
) == GIMPLE_RETURN
8713 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
8714 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
8717 if (location
== UNKNOWN_LOCATION
)
8718 location
= cfun
->function_end_locus
;
8719 warning_at (location
, 0, "%<noreturn%> function does return");
8722 /* If we see "return;" in some basic block, then we do reach the end
8723 without returning a value. */
8724 else if (warn_return_type
8725 && !TREE_NO_WARNING (fun
->decl
)
8726 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0
8727 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
8729 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
8731 gimple
*last
= last_stmt (e
->src
);
8732 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
8734 && gimple_return_retval (return_stmt
) == NULL
8735 && !gimple_no_warning_p (last
))
8737 location
= gimple_location (last
);
8738 if (location
== UNKNOWN_LOCATION
)
8739 location
= fun
->function_end_locus
;
8740 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
8741 TREE_NO_WARNING (fun
->decl
) = 1;
8752 make_pass_warn_function_return (gcc::context
*ctxt
)
8754 return new pass_warn_function_return (ctxt
);
8757 /* Walk a gimplified function and warn for functions whose return value is
8758 ignored and attribute((warn_unused_result)) is set. This is done before
8759 inlining, so we don't have to worry about that. */
8762 do_warn_unused_result (gimple_seq seq
)
8765 gimple_stmt_iterator i
;
8767 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
8769 gimple
*g
= gsi_stmt (i
);
8771 switch (gimple_code (g
))
8774 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
8777 do_warn_unused_result (gimple_try_eval (g
));
8778 do_warn_unused_result (gimple_try_cleanup (g
));
8781 do_warn_unused_result (gimple_catch_handler (
8782 as_a
<gcatch
*> (g
)));
8784 case GIMPLE_EH_FILTER
:
8785 do_warn_unused_result (gimple_eh_filter_failure (g
));
8789 if (gimple_call_lhs (g
))
8791 if (gimple_call_internal_p (g
))
8794 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8795 LHS. All calls whose value is ignored should be
8796 represented like this. Look for the attribute. */
8797 fdecl
= gimple_call_fndecl (g
);
8798 ftype
= gimple_call_fntype (g
);
8800 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
8802 location_t loc
= gimple_location (g
);
8805 warning_at (loc
, OPT_Wunused_result
,
8806 "ignoring return value of %qD, "
8807 "declared with attribute warn_unused_result",
8810 warning_at (loc
, OPT_Wunused_result
,
8811 "ignoring return value of function "
8812 "declared with attribute warn_unused_result");
8817 /* Not a container, not a call, or a call whose value is used. */
8825 const pass_data pass_data_warn_unused_result
=
8827 GIMPLE_PASS
, /* type */
8828 "*warn_unused_result", /* name */
8829 OPTGROUP_NONE
, /* optinfo_flags */
8830 TV_NONE
, /* tv_id */
8831 PROP_gimple_any
, /* properties_required */
8832 0, /* properties_provided */
8833 0, /* properties_destroyed */
8834 0, /* todo_flags_start */
8835 0, /* todo_flags_finish */
8838 class pass_warn_unused_result
: public gimple_opt_pass
8841 pass_warn_unused_result (gcc::context
*ctxt
)
8842 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
8845 /* opt_pass methods: */
8846 virtual bool gate (function
*) { return flag_warn_unused_result
; }
8847 virtual unsigned int execute (function
*)
8849 do_warn_unused_result (gimple_body (current_function_decl
));
8853 }; // class pass_warn_unused_result
8858 make_pass_warn_unused_result (gcc::context
*ctxt
)
8860 return new pass_warn_unused_result (ctxt
);
8863 /* IPA passes, compilation of earlier functions or inlining
8864 might have changed some properties, such as marked functions nothrow,
8865 pure, const or noreturn.
8866 Remove redundant edges and basic blocks, and create new ones if necessary.
8868 This pass can't be executed as stand alone pass from pass manager, because
8869 in between inlining and this fixup the verify_flow_info would fail. */
8872 execute_fixup_cfg (void)
8875 gimple_stmt_iterator gsi
;
8877 gcov_type count_scale
;
8882 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl
)->count
,
8883 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
);
8885 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
=
8886 cgraph_node::get (current_function_decl
)->count
;
8887 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
=
8888 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
,
8891 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
8892 e
->count
= apply_scale (e
->count
, count_scale
);
8894 FOR_EACH_BB_FN (bb
, cfun
)
8896 bb
->count
= apply_scale (bb
->count
, count_scale
);
8897 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
8899 gimple
*stmt
= gsi_stmt (gsi
);
8900 tree decl
= is_gimple_call (stmt
)
8901 ? gimple_call_fndecl (stmt
)
8905 int flags
= gimple_call_flags (stmt
);
8906 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
8908 if (gimple_purge_dead_abnormal_call_edges (bb
))
8909 todo
|= TODO_cleanup_cfg
;
8911 if (gimple_in_ssa_p (cfun
))
8913 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
8918 if (flags
& ECF_NORETURN
8919 && fixup_noreturn_call (stmt
))
8920 todo
|= TODO_cleanup_cfg
;
8923 /* Remove stores to variables we marked write-only.
8924 Keep access when store has side effect, i.e. in case when source
8926 if (gimple_store_p (stmt
)
8927 && !gimple_has_side_effects (stmt
))
8929 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
8931 if (TREE_CODE (lhs
) == VAR_DECL
8932 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
8933 && varpool_node::get (lhs
)->writeonly
)
8935 unlink_stmt_vdef (stmt
);
8936 gsi_remove (&gsi
, true);
8937 release_defs (stmt
);
8938 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
8942 /* For calls we can simply remove LHS when it is known
8943 to be write-only. */
8944 if (is_gimple_call (stmt
)
8945 && gimple_get_lhs (stmt
))
8947 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
8949 if (TREE_CODE (lhs
) == VAR_DECL
8950 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
8951 && varpool_node::get (lhs
)->writeonly
)
8953 gimple_call_set_lhs (stmt
, NULL
);
8955 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
8959 if (maybe_clean_eh_stmt (stmt
)
8960 && gimple_purge_dead_eh_edges (bb
))
8961 todo
|= TODO_cleanup_cfg
;
8965 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8966 e
->count
= apply_scale (e
->count
, count_scale
);
8968 /* If we have a basic block with no successors that does not
8969 end with a control statement or a noreturn call end it with
8970 a call to __builtin_unreachable. This situation can occur
8971 when inlining a noreturn call that does in fact return. */
8972 if (EDGE_COUNT (bb
->succs
) == 0)
8974 gimple
*stmt
= last_stmt (bb
);
8976 || (!is_ctrl_stmt (stmt
)
8977 && (!is_gimple_call (stmt
)
8978 || (gimple_call_flags (stmt
) & ECF_NORETURN
) == 0)))
8980 if (stmt
&& is_gimple_call (stmt
))
8981 gimple_call_set_ctrl_altering (stmt
, false);
8982 stmt
= gimple_build_call
8983 (builtin_decl_implicit (BUILT_IN_UNREACHABLE
), 0);
8984 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
8985 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
8989 if (count_scale
!= REG_BR_PROB_BASE
)
8990 compute_function_frequency ();
8993 && (todo
& TODO_cleanup_cfg
))
8994 loops_state_set (LOOPS_NEED_FIXUP
);
9001 const pass_data pass_data_fixup_cfg
=
9003 GIMPLE_PASS
, /* type */
9004 "fixup_cfg", /* name */
9005 OPTGROUP_NONE
, /* optinfo_flags */
9006 TV_NONE
, /* tv_id */
9007 PROP_cfg
, /* properties_required */
9008 0, /* properties_provided */
9009 0, /* properties_destroyed */
9010 0, /* todo_flags_start */
9011 0, /* todo_flags_finish */
9014 class pass_fixup_cfg
: public gimple_opt_pass
9017 pass_fixup_cfg (gcc::context
*ctxt
)
9018 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9021 /* opt_pass methods: */
9022 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9023 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9025 }; // class pass_fixup_cfg
9030 make_pass_fixup_cfg (gcc::context
*ctxt
)
9032 return new pass_fixup_cfg (ctxt
);
9035 /* Garbage collection support for edge_def. */
9037 extern void gt_ggc_mx (tree
&);
9038 extern void gt_ggc_mx (gimple
*&);
9039 extern void gt_ggc_mx (rtx
&);
9040 extern void gt_ggc_mx (basic_block
&);
9043 gt_ggc_mx (rtx_insn
*& x
)
9046 gt_ggc_mx_rtx_def ((void *) x
);
9050 gt_ggc_mx (edge_def
*e
)
9052 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9054 gt_ggc_mx (e
->dest
);
9055 if (current_ir_type () == IR_GIMPLE
)
9056 gt_ggc_mx (e
->insns
.g
);
9058 gt_ggc_mx (e
->insns
.r
);
9062 /* PCH support for edge_def. */
9064 extern void gt_pch_nx (tree
&);
9065 extern void gt_pch_nx (gimple
*&);
9066 extern void gt_pch_nx (rtx
&);
9067 extern void gt_pch_nx (basic_block
&);
9070 gt_pch_nx (rtx_insn
*& x
)
9073 gt_pch_nx_rtx_def ((void *) x
);
9077 gt_pch_nx (edge_def
*e
)
9079 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9081 gt_pch_nx (e
->dest
);
9082 if (current_ir_type () == IR_GIMPLE
)
9083 gt_pch_nx (e
->insns
.g
);
9085 gt_pch_nx (e
->insns
.r
);
9090 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9092 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9093 op (&(e
->src
), cookie
);
9094 op (&(e
->dest
), cookie
);
9095 if (current_ir_type () == IR_GIMPLE
)
9096 op (&(e
->insns
.g
), cookie
);
9098 op (&(e
->insns
.r
), cookie
);
9099 op (&(block
), cookie
);