1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
25 #include "stor-layout.h"
28 #include "basic-block.h"
30 #include "hash-table.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
43 #include "tree-pass.h"
44 #include "tree-ssa-propagate.h"
46 /* The basic structure describing an equivalency created by traversing
47 an edge. Traversing the edge effectively means that we can assume
48 that we've seen an assignment LHS = RHS. */
49 struct edge_equivalency
55 /* This routine finds and records edge equivalences for every edge
58 When complete, each edge that creates an equivalency will have an
59 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
60 The caller is responsible for freeing the AUX fields. */
63 associate_equivalences_with_edges (void)
67 /* Walk over each block. If the block ends with a control statement,
68 then it might create a useful equivalence. */
69 FOR_EACH_BB_FN (bb
, cfun
)
71 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
74 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
75 then there is nothing to do. */
79 stmt
= gsi_stmt (gsi
);
84 /* A COND_EXPR may create an equivalency in a variety of different
86 if (gimple_code (stmt
) == GIMPLE_COND
)
90 struct edge_equivalency
*equivalency
;
91 enum tree_code code
= gimple_cond_code (stmt
);
93 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
95 /* Equality tests may create one or two equivalences. */
96 if (code
== EQ_EXPR
|| code
== NE_EXPR
)
98 tree op0
= gimple_cond_lhs (stmt
);
99 tree op1
= gimple_cond_rhs (stmt
);
101 /* Special case comparing booleans against a constant as we
102 know the value of OP0 on both arms of the branch. i.e., we
103 can record an equivalence for OP0 rather than COND. */
104 if (TREE_CODE (op0
) == SSA_NAME
105 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0
)
106 && TREE_CODE (TREE_TYPE (op0
)) == BOOLEAN_TYPE
107 && is_gimple_min_invariant (op1
))
111 equivalency
= XNEW (struct edge_equivalency
);
112 equivalency
->lhs
= op0
;
113 equivalency
->rhs
= (integer_zerop (op1
)
115 : boolean_true_node
);
116 true_edge
->aux
= equivalency
;
118 equivalency
= XNEW (struct edge_equivalency
);
119 equivalency
->lhs
= op0
;
120 equivalency
->rhs
= (integer_zerop (op1
)
122 : boolean_false_node
);
123 false_edge
->aux
= equivalency
;
127 equivalency
= XNEW (struct edge_equivalency
);
128 equivalency
->lhs
= op0
;
129 equivalency
->rhs
= (integer_zerop (op1
)
131 : boolean_false_node
);
132 true_edge
->aux
= equivalency
;
134 equivalency
= XNEW (struct edge_equivalency
);
135 equivalency
->lhs
= op0
;
136 equivalency
->rhs
= (integer_zerop (op1
)
138 : boolean_true_node
);
139 false_edge
->aux
= equivalency
;
143 else if (TREE_CODE (op0
) == SSA_NAME
144 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0
)
145 && (is_gimple_min_invariant (op1
)
146 || (TREE_CODE (op1
) == SSA_NAME
147 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1
))))
149 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
150 the sign of a variable compared against zero. If
151 we're honoring signed zeros, then we cannot record
152 this value unless we know that the value is nonzero. */
153 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0
)))
154 && (TREE_CODE (op1
) != REAL_CST
155 || REAL_VALUES_EQUAL (dconst0
, TREE_REAL_CST (op1
))))
158 equivalency
= XNEW (struct edge_equivalency
);
159 equivalency
->lhs
= op0
;
160 equivalency
->rhs
= op1
;
162 true_edge
->aux
= equivalency
;
164 false_edge
->aux
= equivalency
;
169 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
172 /* For a SWITCH_EXPR, a case label which represents a single
173 value and which is the only case label which reaches the
174 target block creates an equivalence. */
175 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
177 tree cond
= gimple_switch_index (stmt
);
179 if (TREE_CODE (cond
) == SSA_NAME
180 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond
))
182 int i
, n_labels
= gimple_switch_num_labels (stmt
);
183 tree
*info
= XCNEWVEC (tree
, last_basic_block_for_fn (cfun
));
185 /* Walk over the case label vector. Record blocks
186 which are reached by a single case label which represents
188 for (i
= 0; i
< n_labels
; i
++)
190 tree label
= gimple_switch_label (stmt
, i
);
191 basic_block bb
= label_to_block (CASE_LABEL (label
));
193 if (CASE_HIGH (label
)
196 info
[bb
->index
] = error_mark_node
;
198 info
[bb
->index
] = label
;
201 /* Now walk over the blocks to determine which ones were
202 marked as being reached by a useful case label. */
203 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
); i
++)
208 && node
!= error_mark_node
)
210 tree x
= fold_convert (TREE_TYPE (cond
), CASE_LOW (node
));
211 struct edge_equivalency
*equivalency
;
213 /* Record an equivalency on the edge from BB to basic
215 equivalency
= XNEW (struct edge_equivalency
);
216 equivalency
->rhs
= x
;
217 equivalency
->lhs
= cond
;
218 find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, i
))->aux
=
230 /* Translating out of SSA sometimes requires inserting copies and
231 constant initializations on edges to eliminate PHI nodes.
233 In some cases those copies and constant initializations are
234 redundant because the target already has the value on the
235 RHS of the assignment.
237 We previously tried to catch these cases after translating
238 out of SSA form. However, that code often missed cases. Worse
239 yet, the cases it missed were also often missed by the RTL
240 optimizers. Thus the resulting code had redundant instructions.
242 This pass attempts to detect these situations before translating
245 The key concept that this pass is built upon is that these
246 redundant copies and constant initializations often occur
247 due to constant/copy propagating equivalences resulting from
248 COND_EXPRs and SWITCH_EXPRs.
250 We want to do those propagations as they can sometimes allow
251 the SSA optimizers to do a better job. However, in the cases
252 where such propagations do not result in further optimization,
253 we would like to "undo" the propagation to avoid the redundant
254 copies and constant initializations.
256 This pass works by first associating equivalences with edges in
257 the CFG. For example, the edge leading from a SWITCH_EXPR to
258 its associated CASE_LABEL will have an equivalency between
259 SWITCH_COND and the value in the case label.
261 Once we have found the edge equivalences, we proceed to walk
262 the CFG in dominator order. As we traverse edges we record
263 equivalences associated with those edges we traverse.
265 When we encounter a PHI node, we walk its arguments to see if we
266 have an equivalence for the PHI argument. If so, then we replace
269 Equivalences are looked up based on their value (think of it as
270 the RHS of an assignment). A value may be an SSA_NAME or an
271 invariant. We may have several SSA_NAMEs with the same value,
272 so with each value we have a list of SSA_NAMEs that have the
276 /* Main structure for recording equivalences into our hash table. */
277 struct equiv_hash_elt
279 /* The value/key of this entry. */
282 /* List of SSA_NAMEs which have the same value/key. */
283 vec
<tree
> equivalences
;
286 /* Value to ssa name equivalence hashtable helpers. */
288 struct val_ssa_equiv_hash_traits
: default_hashmap_traits
290 static inline hashval_t
hash (tree
);
291 static inline bool equal_keys (tree
, tree
);
292 template<typename T
> static inline void remove (T
&);
296 val_ssa_equiv_hash_traits::hash (tree value
)
298 return iterative_hash_expr (value
, 0);
302 val_ssa_equiv_hash_traits::equal_keys (tree value1
, tree value2
)
304 return operand_equal_p (value1
, value2
, 0);
307 /* Free an instance of equiv_hash_elt. */
311 val_ssa_equiv_hash_traits::remove (T
&elt
)
313 elt
.m_value
.release ();
316 /* Global hash table implementing a mapping from invariant values
317 to a list of SSA_NAMEs which have the same value. We might be
318 able to reuse tree-vn for this code. */
319 static hash_map
<tree
, vec
<tree
>, val_ssa_equiv_hash_traits
> *val_ssa_equiv
;
321 static void uncprop_into_successor_phis (basic_block
);
323 /* Remove the most recently recorded equivalency for VALUE. */
326 remove_equivalence (tree value
)
328 val_ssa_equiv
->get (value
)->pop ();
331 /* Record EQUIVALENCE = VALUE into our hash table. */
334 record_equiv (tree value
, tree equivalence
)
336 val_ssa_equiv
->get_or_insert (value
).safe_push (equivalence
);
339 class uncprop_dom_walker
: public dom_walker
342 uncprop_dom_walker (cdi_direction direction
) : dom_walker (direction
) {}
344 virtual void before_dom_children (basic_block
);
345 virtual void after_dom_children (basic_block
);
349 /* As we enter each block we record the value for any edge equivalency
350 leading to this block. If no such edge equivalency exists, then we
351 record NULL. These equivalences are live until we leave the dominator
352 subtree rooted at the block where we record the equivalency. */
353 auto_vec
<tree
, 2> m_equiv_stack
;
356 /* We have finished processing the dominator children of BB, perform
357 any finalization actions in preparation for leaving this node in
358 the dominator tree. */
361 uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED
)
363 /* Pop the topmost value off the equiv stack. */
364 tree value
= m_equiv_stack
.pop ();
366 /* If that value was non-null, then pop the topmost equivalency off
367 its equivalency stack. */
369 remove_equivalence (value
);
372 /* Unpropagate values from PHI nodes in successor blocks of BB. */
375 uncprop_into_successor_phis (basic_block bb
)
380 /* For each successor edge, first temporarily record any equivalence
381 on that edge. Then unpropagate values in any PHI nodes at the
382 destination of the edge. Then remove the temporary equivalence. */
383 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
385 gimple_seq phis
= phi_nodes (e
->dest
);
386 gimple_stmt_iterator gsi
;
388 /* If there are no PHI nodes in this destination, then there is
389 no sense in recording any equivalences. */
390 if (gimple_seq_empty_p (phis
))
393 /* Record any equivalency associated with E. */
396 struct edge_equivalency
*equiv
= (struct edge_equivalency
*) e
->aux
;
397 record_equiv (equiv
->rhs
, equiv
->lhs
);
400 /* Walk over the PHI nodes, unpropagating values. */
401 for (gsi
= gsi_start (phis
) ; !gsi_end_p (gsi
); gsi_next (&gsi
))
403 gimple phi
= gsi_stmt (gsi
);
404 tree arg
= PHI_ARG_DEF (phi
, e
->dest_idx
);
405 tree res
= PHI_RESULT (phi
);
407 /* If the argument is not an invariant and can be potentially
408 coalesced with the result, then there's no point in
409 un-propagating the argument. */
410 if (!is_gimple_min_invariant (arg
)
411 && gimple_can_coalesce_p (arg
, res
))
414 /* Lookup this argument's value in the hash table. */
415 vec
<tree
> *equivalences
= val_ssa_equiv
->get (arg
);
418 /* Walk every equivalence with the same value. If we find
419 one that can potentially coalesce with the PHI rsult,
420 then replace the value in the argument with its equivalent
421 SSA_NAME. Use the most recent equivalence as hopefully
422 that results in shortest lifetimes. */
423 for (int j
= equivalences
->length () - 1; j
>= 0; j
--)
425 tree equiv
= (*equivalences
)[j
];
427 if (gimple_can_coalesce_p (equiv
, res
))
429 SET_PHI_ARG_DEF (phi
, e
->dest_idx
, equiv
);
436 /* If we had an equivalence associated with this edge, remove it. */
439 struct edge_equivalency
*equiv
= (struct edge_equivalency
*) e
->aux
;
440 remove_equivalence (equiv
->rhs
);
445 /* Ignoring loop backedges, if BB has precisely one incoming edge then
446 return that edge. Otherwise return NULL. */
448 single_incoming_edge_ignoring_loop_edges (basic_block bb
)
454 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
456 /* A loop back edge can be identified by the destination of
457 the edge dominating the source of the edge. */
458 if (dominated_by_p (CDI_DOMINATORS
, e
->src
, e
->dest
))
461 /* If we have already seen a non-loop edge, then we must have
462 multiple incoming non-loop edges and thus we return NULL. */
466 /* This is the first non-loop incoming edge we have found. Record
475 uncprop_dom_walker::before_dom_children (basic_block bb
)
479 bool recorded
= false;
481 /* If this block is dominated by a single incoming edge and that edge
482 has an equivalency, then record the equivalency and push the
483 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
484 parent
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
487 e
= single_incoming_edge_ignoring_loop_edges (bb
);
489 if (e
&& e
->src
== parent
&& e
->aux
)
491 struct edge_equivalency
*equiv
= (struct edge_equivalency
*) e
->aux
;
493 record_equiv (equiv
->rhs
, equiv
->lhs
);
494 m_equiv_stack
.safe_push (equiv
->rhs
);
500 m_equiv_stack
.safe_push (NULL_TREE
);
502 uncprop_into_successor_phis (bb
);
507 const pass_data pass_data_uncprop
=
509 GIMPLE_PASS
, /* type */
510 "uncprop", /* name */
511 OPTGROUP_NONE
, /* optinfo_flags */
512 TV_TREE_SSA_UNCPROP
, /* tv_id */
513 ( PROP_cfg
| PROP_ssa
), /* properties_required */
514 0, /* properties_provided */
515 0, /* properties_destroyed */
516 0, /* todo_flags_start */
517 0, /* todo_flags_finish */
520 class pass_uncprop
: public gimple_opt_pass
523 pass_uncprop (gcc::context
*ctxt
)
524 : gimple_opt_pass (pass_data_uncprop
, ctxt
)
527 /* opt_pass methods: */
528 opt_pass
* clone () { return new pass_uncprop (m_ctxt
); }
529 virtual bool gate (function
*) { return flag_tree_dom
!= 0; }
530 virtual unsigned int execute (function
*);
532 }; // class pass_uncprop
535 pass_uncprop::execute (function
*fun
)
539 associate_equivalences_with_edges ();
541 /* Create our global data structures. */
543 = new hash_map
<tree
, vec
<tree
>, val_ssa_equiv_hash_traits
> (1024);
545 /* We're going to do a dominator walk, so ensure that we have
546 dominance information. */
547 calculate_dominance_info (CDI_DOMINATORS
);
549 /* Recursively walk the dominator tree undoing unprofitable
550 constant/copy propagations. */
551 uncprop_dom_walker (CDI_DOMINATORS
).walk (fun
->cfg
->x_entry_block_ptr
);
553 /* we just need to empty elements out of the hash table, and cleanup the
554 AUX field on the edges. */
555 delete val_ssa_equiv
;
556 val_ssa_equiv
= NULL
;
557 FOR_EACH_BB_FN (bb
, fun
)
562 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
577 make_pass_uncprop (gcc::context
*ctxt
)
579 return new pass_uncprop (ctxt
);