Use rtx_insn for various target.def hooks
[official-gcc.git] / gcc / fwprop.c
blobe9ee25e1c87c758acec2494c4e9e847de23e3ced
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 #include "sparseset.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "flags.h"
33 #include "obstack.h"
34 #include "basic-block.h"
35 #include "df.h"
36 #include "target.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "emit-rtl.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead.
105 We used to use reaching definitions to find which uses have a
106 single reaching definition (sounds obvious...), but this is too
107 complex a problem in nasty testcases like PR33928. Now we use the
108 multiple definitions problem in df-problems.c. The similarity
109 between that problem and SSA form creation is taken further, in
110 that fwprop does a dominator walk to create its chains; however,
111 instead of creating a PHI function where multiple definitions meet
112 I just punt and record only singleton use-def chains, which is
113 all that is needed by fwprop. */
116 static int num_changes;
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
122 /* The MD bitmaps are trimmed to include only live registers to cut
123 memory usage on testcases like insn-recog.c. Track live registers
124 in the basic block and do not perform forward propagation if the
125 destination is a dead pseudo occurring in a note. */
126 static bitmap local_md;
127 static bitmap local_lr;
129 /* Return the only def in USE's use-def chain, or NULL if there is
130 more than one def in the chain. */
132 static inline df_ref
133 get_def_for_use (df_ref use)
135 return use_def_ref[DF_REF_ID (use)];
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140 TOP_FLAG says which artificials uses should be used, when DEF_REC
141 is an artificial def vector. LOCAL_MD is modified as after a
142 df_md_simulate_* function; we do more or less the same processing
143 done there, so we do not use those functions. */
145 #define DF_MD_GEN_FLAGS \
146 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
148 static void
149 process_defs (df_ref def, int top_flag)
151 for (; def; def = DF_REF_NEXT_LOC (def))
153 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
154 unsigned int dregno;
156 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
157 continue;
159 dregno = DF_REF_REGNO (def);
160 if (curr_def)
161 reg_defs_stack.safe_push (curr_def);
162 else
164 /* Do not store anything if "transitioning" from NULL to NULL. But
165 otherwise, push a special entry on the stack to tell the
166 leave_block callback that the entry in reg_defs was NULL. */
167 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
169 else
170 reg_defs_stack.safe_push (def);
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175 bitmap_set_bit (local_md, dregno);
176 reg_defs[dregno] = NULL;
178 else
180 bitmap_clear_bit (local_md, dregno);
181 reg_defs[dregno] = def;
187 /* Fill the use_def_ref vector with values for the uses in USE_REC,
188 taking reaching definitions info from LOCAL_MD and REG_DEFS.
189 TOP_FLAG says which artificials uses should be used, when USE_REC
190 is an artificial use vector. */
192 static void
193 process_uses (df_ref use, int top_flag)
195 for (; use; use = DF_REF_NEXT_LOC (use))
196 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
198 unsigned int uregno = DF_REF_REGNO (use);
199 if (reg_defs[uregno]
200 && !bitmap_bit_p (local_md, uregno)
201 && bitmap_bit_p (local_lr, uregno))
202 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
206 class single_def_use_dom_walker : public dom_walker
208 public:
209 single_def_use_dom_walker (cdi_direction direction)
210 : dom_walker (direction) {}
211 virtual void before_dom_children (basic_block);
212 virtual void after_dom_children (basic_block);
215 void
216 single_def_use_dom_walker::before_dom_children (basic_block bb)
218 int bb_index = bb->index;
219 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221 rtx_insn *insn;
223 bitmap_copy (local_md, &md_bb_info->in);
224 bitmap_copy (local_lr, &lr_bb_info->in);
226 /* Push a marker for the leave_block callback. */
227 reg_defs_stack.safe_push (NULL);
229 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
236 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
239 unsigned int uid = INSN_UID (insn);
240 process_uses (DF_INSN_UID_USES (uid), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
242 process_defs (DF_INSN_UID_DEFS (uid), 0);
243 df_simulate_one_insn_forwards (bb, insn, local_lr);
246 process_uses (df_get_artificial_uses (bb_index), 0);
247 process_defs (df_get_artificial_defs (bb_index), 0);
250 /* Pop the definitions created in this basic block when leaving its
251 dominated parts. */
253 void
254 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
256 df_ref saved_def;
257 while ((saved_def = reg_defs_stack.pop ()) != NULL)
259 unsigned int dregno = DF_REF_REGNO (saved_def);
261 /* See also process_defs. */
262 if (saved_def == reg_defs[dregno])
263 reg_defs[dregno] = NULL;
264 else
265 reg_defs[dregno] = saved_def;
270 /* Build a vector holding the reaching definitions of uses reached by a
271 single dominating definition. */
273 static void
274 build_single_def_use_links (void)
276 /* We use the multiple definitions problem to compute our restricted
277 use-def chains. */
278 df_set_flags (DF_EQ_NOTES);
279 df_md_add_problem ();
280 df_note_add_problem ();
281 df_analyze ();
282 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
284 use_def_ref.create (DF_USES_TABLE_SIZE ());
285 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
287 reg_defs.create (max_reg_num ());
288 reg_defs.safe_grow_cleared (max_reg_num ());
290 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
291 local_md = BITMAP_ALLOC (NULL);
292 local_lr = BITMAP_ALLOC (NULL);
294 /* Walk the dominator tree looking for single reaching definitions
295 dominating the uses. This is similar to how SSA form is built. */
296 single_def_use_dom_walker (CDI_DOMINATORS)
297 .walk (cfun->cfg->x_entry_block_ptr);
299 BITMAP_FREE (local_lr);
300 BITMAP_FREE (local_md);
301 reg_defs.release ();
302 reg_defs_stack.release ();
306 /* Do not try to replace constant addresses or addresses of local and
307 argument slots. These MEM expressions are made only once and inserted
308 in many instructions, as well as being used to control symbol table
309 output. It is not safe to clobber them.
311 There are some uncommon cases where the address is already in a register
312 for some reason, but we cannot take advantage of that because we have
313 no easy way to unshare the MEM. In addition, looking up all stack
314 addresses is costly. */
316 static bool
317 can_simplify_addr (rtx addr)
319 rtx reg;
321 if (CONSTANT_ADDRESS_P (addr))
322 return false;
324 if (GET_CODE (addr) == PLUS)
325 reg = XEXP (addr, 0);
326 else
327 reg = addr;
329 return (!REG_P (reg)
330 || (REGNO (reg) != FRAME_POINTER_REGNUM
331 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
332 && REGNO (reg) != ARG_POINTER_REGNUM));
335 /* Returns a canonical version of X for the address, from the point of view,
336 that all multiplications are represented as MULT instead of the multiply
337 by a power of 2 being represented as ASHIFT.
339 Every ASHIFT we find has been made by simplify_gen_binary and was not
340 there before, so it is not shared. So we can do this in place. */
342 static void
343 canonicalize_address (rtx x)
345 for (;;)
346 switch (GET_CODE (x))
348 case ASHIFT:
349 if (CONST_INT_P (XEXP (x, 1))
350 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
351 && INTVAL (XEXP (x, 1)) >= 0)
353 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
354 PUT_CODE (x, MULT);
355 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
356 GET_MODE (x));
359 x = XEXP (x, 0);
360 break;
362 case PLUS:
363 if (GET_CODE (XEXP (x, 0)) == PLUS
364 || GET_CODE (XEXP (x, 0)) == ASHIFT
365 || GET_CODE (XEXP (x, 0)) == CONST)
366 canonicalize_address (XEXP (x, 0));
368 x = XEXP (x, 1);
369 break;
371 case CONST:
372 x = XEXP (x, 0);
373 break;
375 default:
376 return;
380 /* OLD is a memory address. Return whether it is good to use NEW instead,
381 for a memory access in the given MODE. */
383 static bool
384 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
385 addr_space_t as, bool speed)
387 int gain;
389 if (rtx_equal_p (old_rtx, new_rtx)
390 || !memory_address_addr_space_p (mode, new_rtx, as))
391 return false;
393 /* Copy propagation is always ok. */
394 if (REG_P (old_rtx) && REG_P (new_rtx))
395 return true;
397 /* Prefer the new address if it is less expensive. */
398 gain = (address_cost (old_rtx, mode, as, speed)
399 - address_cost (new_rtx, mode, as, speed));
401 /* If the addresses have equivalent cost, prefer the new address
402 if it has the highest `set_src_cost'. That has the potential of
403 eliminating the most insns without additional costs, and it
404 is the same that cse.c used to do. */
405 if (gain == 0)
406 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
408 return (gain > 0);
412 /* Flags for the last parameter of propagate_rtx_1. */
414 enum {
415 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
416 if it is false, propagate_rtx_1 returns false if, for at least
417 one occurrence OLD, it failed to collapse the result to a constant.
418 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
419 collapse to zero if replacing (reg:M B) with (reg:M A).
421 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
422 propagate_rtx_1 just tries to make cheaper and valid memory
423 addresses. */
424 PR_CAN_APPEAR = 1,
426 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
427 outside memory addresses. This is needed because propagate_rtx_1 does
428 not do any analysis on memory; thus it is very conservative and in general
429 it will fail if non-read-only MEMs are found in the source expression.
431 PR_HANDLE_MEM is set when the source of the propagation was not
432 another MEM. Then, it is safe not to treat non-read-only MEMs as
433 ``opaque'' objects. */
434 PR_HANDLE_MEM = 2,
436 /* Set when costs should be optimized for speed. */
437 PR_OPTIMIZE_FOR_SPEED = 4
441 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
442 resulting expression. Replace *PX with a new RTL expression if an
443 occurrence of OLD was found.
445 This is only a wrapper around simplify-rtx.c: do not add any pattern
446 matching code here. (The sole exception is the handling of LO_SUM, but
447 that is because there is no simplify_gen_* function for LO_SUM). */
449 static bool
450 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
452 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
453 enum rtx_code code = GET_CODE (x);
454 enum machine_mode mode = GET_MODE (x);
455 enum machine_mode op_mode;
456 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
457 bool valid_ops = true;
459 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
461 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
462 they have side effects or not). */
463 *px = (side_effects_p (x)
464 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
465 : gen_rtx_SCRATCH (GET_MODE (x)));
466 return false;
469 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
470 address, and we are *not* inside one. */
471 if (x == old_rtx)
473 *px = new_rtx;
474 return can_appear;
477 /* If this is an expression, try recursive substitution. */
478 switch (GET_RTX_CLASS (code))
480 case RTX_UNARY:
481 op0 = XEXP (x, 0);
482 op_mode = GET_MODE (op0);
483 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
484 if (op0 == XEXP (x, 0))
485 return true;
486 tem = simplify_gen_unary (code, mode, op0, op_mode);
487 break;
489 case RTX_BIN_ARITH:
490 case RTX_COMM_ARITH:
491 op0 = XEXP (x, 0);
492 op1 = XEXP (x, 1);
493 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
494 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
495 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
496 return true;
497 tem = simplify_gen_binary (code, mode, op0, op1);
498 break;
500 case RTX_COMPARE:
501 case RTX_COMM_COMPARE:
502 op0 = XEXP (x, 0);
503 op1 = XEXP (x, 1);
504 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
505 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
506 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
507 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
508 return true;
509 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
510 break;
512 case RTX_TERNARY:
513 case RTX_BITFIELD_OPS:
514 op0 = XEXP (x, 0);
515 op1 = XEXP (x, 1);
516 op2 = XEXP (x, 2);
517 op_mode = GET_MODE (op0);
518 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
519 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
520 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
521 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
522 return true;
523 if (op_mode == VOIDmode)
524 op_mode = GET_MODE (op0);
525 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
526 break;
528 case RTX_EXTRA:
529 /* The only case we try to handle is a SUBREG. */
530 if (code == SUBREG)
532 op0 = XEXP (x, 0);
533 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
534 if (op0 == XEXP (x, 0))
535 return true;
536 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
537 SUBREG_BYTE (x));
539 break;
541 case RTX_OBJ:
542 if (code == MEM && x != new_rtx)
544 rtx new_op0;
545 op0 = XEXP (x, 0);
547 /* There are some addresses that we cannot work on. */
548 if (!can_simplify_addr (op0))
549 return true;
551 op0 = new_op0 = targetm.delegitimize_address (op0);
552 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
553 flags | PR_CAN_APPEAR);
555 /* Dismiss transformation that we do not want to carry on. */
556 if (!valid_ops
557 || new_op0 == op0
558 || !(GET_MODE (new_op0) == GET_MODE (op0)
559 || GET_MODE (new_op0) == VOIDmode))
560 return true;
562 canonicalize_address (new_op0);
564 /* Copy propagations are always ok. Otherwise check the costs. */
565 if (!(REG_P (old_rtx) && REG_P (new_rtx))
566 && !should_replace_address (op0, new_op0, GET_MODE (x),
567 MEM_ADDR_SPACE (x),
568 flags & PR_OPTIMIZE_FOR_SPEED))
569 return true;
571 tem = replace_equiv_address_nv (x, new_op0);
574 else if (code == LO_SUM)
576 op0 = XEXP (x, 0);
577 op1 = XEXP (x, 1);
579 /* The only simplification we do attempts to remove references to op0
580 or make it constant -- in both cases, op0's invalidity will not
581 make the result invalid. */
582 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
583 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
584 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
585 return true;
587 /* (lo_sum (high x) x) -> x */
588 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
589 tem = op1;
590 else
591 tem = gen_rtx_LO_SUM (mode, op0, op1);
593 /* OP1 is likely not a legitimate address, otherwise there would have
594 been no LO_SUM. We want it to disappear if it is invalid, return
595 false in that case. */
596 return memory_address_p (mode, tem);
599 else if (code == REG)
601 if (rtx_equal_p (x, old_rtx))
603 *px = new_rtx;
604 return can_appear;
607 break;
609 default:
610 break;
613 /* No change, no trouble. */
614 if (tem == NULL_RTX)
615 return true;
617 *px = tem;
619 /* The replacement we made so far is valid, if all of the recursive
620 replacements were valid, or we could simplify everything to
621 a constant. */
622 return valid_ops || can_appear || CONSTANT_P (tem);
626 /* for_each_rtx traversal function that returns 1 if BODY points to
627 a non-constant mem. */
629 static int
630 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
632 rtx x = *body;
633 return MEM_P (x) && !MEM_READONLY_P (x);
637 /* Replace all occurrences of OLD in X with NEW and try to simplify the
638 resulting expression (in mode MODE). Return a new expression if it is
639 a constant, otherwise X.
641 Simplifications where occurrences of NEW collapse to a constant are always
642 accepted. All simplifications are accepted if NEW is a pseudo too.
643 Otherwise, we accept simplifications that have a lower or equal cost. */
645 static rtx
646 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
647 bool speed)
649 rtx tem;
650 bool collapsed;
651 int flags;
653 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
654 return NULL_RTX;
656 flags = 0;
657 if (REG_P (new_rtx)
658 || CONSTANT_P (new_rtx)
659 || (GET_CODE (new_rtx) == SUBREG
660 && REG_P (SUBREG_REG (new_rtx))
661 && (GET_MODE_SIZE (mode)
662 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
663 flags |= PR_CAN_APPEAR;
664 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
665 flags |= PR_HANDLE_MEM;
667 if (speed)
668 flags |= PR_OPTIMIZE_FOR_SPEED;
670 tem = x;
671 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
672 if (tem == x || !collapsed)
673 return NULL_RTX;
675 /* gen_lowpart_common will not be able to process VOIDmode entities other
676 than CONST_INTs. */
677 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
678 return NULL_RTX;
680 if (GET_MODE (tem) == VOIDmode)
681 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
682 else
683 gcc_assert (GET_MODE (tem) == mode);
685 return tem;
691 /* Return true if the register from reference REF is killed
692 between FROM to (but not including) TO. */
694 static bool
695 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
697 rtx_insn *insn;
699 for (insn = from; insn != to; insn = NEXT_INSN (insn))
701 df_ref def;
702 if (!INSN_P (insn))
703 continue;
705 FOR_EACH_INSN_DEF (def, insn)
706 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
707 return true;
709 return false;
713 /* Check if the given DEF is available in INSN. This would require full
714 computation of available expressions; we check only restricted conditions:
715 - if DEF is the sole definition of its register, go ahead;
716 - in the same basic block, we check for no definitions killing the
717 definition of DEF_INSN;
718 - if USE's basic block has DEF's basic block as the sole predecessor,
719 we check if the definition is killed after DEF_INSN or before
720 TARGET_INSN insn, in their respective basic blocks. */
721 static bool
722 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
724 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
725 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
726 int regno;
727 df_ref def;
729 /* We used to have a def reaching a use that is _before_ the def,
730 with the def not dominating the use even though the use and def
731 are in the same basic block, when a register may be used
732 uninitialized in a loop. This should not happen anymore since
733 we do not use reaching definitions, but still we test for such
734 cases and assume that DEF is not available. */
735 if (def_bb == target_bb
736 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
737 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
738 return true;
740 /* Check if the reg in USE has only one definition. We already
741 know that this definition reaches use, or we wouldn't be here.
742 However, this is invalid for hard registers because if they are
743 live at the beginning of the function it does not mean that we
744 have an uninitialized access. */
745 regno = DF_REF_REGNO (use);
746 def = DF_REG_DEF_CHAIN (regno);
747 if (def
748 && DF_REF_NEXT_REG (def) == NULL
749 && regno >= FIRST_PSEUDO_REGISTER)
750 return false;
752 /* Check locally if we are in the same basic block. */
753 if (def_bb == target_bb)
754 return local_ref_killed_between_p (use, def_insn, target_insn);
756 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
757 if (single_pred_p (target_bb)
758 && single_pred (target_bb) == def_bb)
760 df_ref x;
762 /* See if USE is killed between DEF_INSN and the last insn in the
763 basic block containing DEF_INSN. */
764 x = df_bb_regno_last_def_find (def_bb, regno);
765 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
766 return true;
768 /* See if USE is killed between TARGET_INSN and the first insn in the
769 basic block containing TARGET_INSN. */
770 x = df_bb_regno_first_def_find (target_bb, regno);
771 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
772 return true;
774 return false;
777 /* Otherwise assume the worst case. */
778 return true;
782 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
783 would require full computation of available expressions;
784 we check only restricted conditions, see use_killed_between. */
785 static bool
786 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
788 df_ref use;
789 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
790 rtx def_set = single_set (def_insn);
791 rtx_insn *next;
793 gcc_assert (def_set);
795 /* If target_insn comes right after def_insn, which is very common
796 for addresses, we can use a quicker test. Ignore debug insns
797 other than target insns for this. */
798 next = NEXT_INSN (def_insn);
799 while (next && next != target_insn && DEBUG_INSN_P (next))
800 next = NEXT_INSN (next);
801 if (next == target_insn && REG_P (SET_DEST (def_set)))
803 rtx def_reg = SET_DEST (def_set);
805 /* If the insn uses the reg that it defines, the substitution is
806 invalid. */
807 FOR_EACH_INSN_INFO_USE (use, insn_info)
808 if (rtx_equal_p (DF_REF_REG (use), def_reg))
809 return false;
810 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
811 if (rtx_equal_p (DF_REF_REG (use), def_reg))
812 return false;
814 else
816 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
818 /* Look at all the uses of DEF_INSN, and see if they are not
819 killed between DEF_INSN and TARGET_INSN. */
820 FOR_EACH_INSN_INFO_USE (use, insn_info)
822 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
823 return false;
824 if (use_killed_between (use, def_insn, target_insn))
825 return false;
827 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
829 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
830 return false;
831 if (use_killed_between (use, def_insn, target_insn))
832 return false;
836 return true;
840 static df_ref *active_defs;
841 #ifdef ENABLE_CHECKING
842 static sparseset active_defs_check;
843 #endif
845 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
846 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
847 too, for checking purposes. */
849 static void
850 register_active_defs (df_ref use)
852 for (; use; use = DF_REF_NEXT_LOC (use))
854 df_ref def = get_def_for_use (use);
855 int regno = DF_REF_REGNO (use);
857 #ifdef ENABLE_CHECKING
858 sparseset_set_bit (active_defs_check, regno);
859 #endif
860 active_defs[regno] = def;
865 /* Build the use->def links that we use to update the dataflow info
866 for new uses. Note that building the links is very cheap and if
867 it were done earlier, they could be used to rule out invalid
868 propagations (in addition to what is done in all_uses_available_at).
869 I'm not doing this yet, though. */
871 static void
872 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
874 #ifdef ENABLE_CHECKING
875 sparseset_clear (active_defs_check);
876 #endif
877 register_active_defs (DF_INSN_USES (def_insn));
878 register_active_defs (DF_INSN_USES (insn));
879 register_active_defs (DF_INSN_EQ_USES (insn));
883 /* Update the USE_DEF_REF array for the given use, using the active definitions
884 in the ACTIVE_DEFS array to match pseudos to their def. */
886 static inline void
887 update_uses (df_ref use)
889 for (; use; use = DF_REF_NEXT_LOC (use))
891 int regno = DF_REF_REGNO (use);
893 /* Set up the use-def chain. */
894 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
895 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
897 #ifdef ENABLE_CHECKING
898 gcc_assert (sparseset_bit_p (active_defs_check, regno));
899 #endif
900 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
905 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
906 uses if NOTES_ONLY is true. */
908 static void
909 update_df (rtx_insn *insn, rtx note)
911 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
913 if (note)
915 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
916 df_notes_rescan (insn);
918 else
920 df_uses_create (&PATTERN (insn), insn, 0);
921 df_insn_rescan (insn);
922 update_uses (DF_INSN_INFO_USES (insn_info));
925 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
929 /* Try substituting NEW into LOC, which originated from forward propagation
930 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
931 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
932 new insn is not recognized. Return whether the substitution was
933 performed. */
935 static bool
936 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
937 bool set_reg_equal)
939 rtx_insn *insn = DF_REF_INSN (use);
940 rtx set = single_set (insn);
941 rtx note = NULL_RTX;
942 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
943 int old_cost = 0;
944 bool ok;
946 update_df_init (def_insn, insn);
948 /* forward_propagate_subreg may be operating on an instruction with
949 multiple sets. If so, assume the cost of the new instruction is
950 not greater than the old one. */
951 if (set)
952 old_cost = set_src_cost (SET_SRC (set), speed);
953 if (dump_file)
955 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
956 print_inline_rtx (dump_file, *loc, 2);
957 fprintf (dump_file, "\n with ");
958 print_inline_rtx (dump_file, new_rtx, 2);
959 fprintf (dump_file, "\n");
962 validate_unshare_change (insn, loc, new_rtx, true);
963 if (!verify_changes (0))
965 if (dump_file)
966 fprintf (dump_file, "Changes to insn %d not recognized\n",
967 INSN_UID (insn));
968 ok = false;
971 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
972 && set
973 && set_src_cost (SET_SRC (set), speed) > old_cost)
975 if (dump_file)
976 fprintf (dump_file, "Changes to insn %d not profitable\n",
977 INSN_UID (insn));
978 ok = false;
981 else
983 if (dump_file)
984 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
985 ok = true;
988 if (ok)
990 confirm_change_group ();
991 num_changes++;
993 else
995 cancel_changes (0);
997 /* Can also record a simplified value in a REG_EQUAL note,
998 making a new one if one does not already exist. */
999 if (set_reg_equal)
1001 if (dump_file)
1002 fprintf (dump_file, " Setting REG_EQUAL note\n");
1004 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1008 if ((ok || note) && !CONSTANT_P (new_rtx))
1009 update_df (insn, note);
1011 return ok;
1014 /* For the given single_set INSN, containing SRC known to be a
1015 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1016 is redundant due to the register being set by a LOAD_EXTEND_OP
1017 load from memory. */
1019 static bool
1020 free_load_extend (rtx src, rtx_insn *insn)
1022 rtx reg;
1023 df_ref def, use;
1025 reg = XEXP (src, 0);
1026 #ifdef LOAD_EXTEND_OP
1027 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1028 #endif
1029 return false;
1031 FOR_EACH_INSN_USE (use, insn)
1032 if (!DF_REF_IS_ARTIFICIAL (use)
1033 && DF_REF_TYPE (use) == DF_REF_REG_USE
1034 && DF_REF_REG (use) == reg)
1035 break;
1036 if (!use)
1037 return false;
1039 def = get_def_for_use (use);
1040 if (!def)
1041 return false;
1043 if (DF_REF_IS_ARTIFICIAL (def))
1044 return false;
1046 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1048 rtx patt = PATTERN (DF_REF_INSN (def));
1050 if (GET_CODE (patt) == SET
1051 && GET_CODE (SET_SRC (patt)) == MEM
1052 && rtx_equal_p (SET_DEST (patt), reg))
1053 return true;
1055 return false;
1058 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1060 static bool
1061 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1063 rtx use_reg = DF_REF_REG (use);
1064 rtx_insn *use_insn;
1065 rtx src;
1067 /* Only consider subregs... */
1068 enum machine_mode use_mode = GET_MODE (use_reg);
1069 if (GET_CODE (use_reg) != SUBREG
1070 || !REG_P (SET_DEST (def_set)))
1071 return false;
1073 /* If this is a paradoxical SUBREG... */
1074 if (GET_MODE_SIZE (use_mode)
1075 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1077 /* If this is a paradoxical SUBREG, we have no idea what value the
1078 extra bits would have. However, if the operand is equivalent to
1079 a SUBREG whose operand is the same as our mode, and all the modes
1080 are within a word, we can just use the inner operand because
1081 these SUBREGs just say how to treat the register. */
1082 use_insn = DF_REF_INSN (use);
1083 src = SET_SRC (def_set);
1084 if (GET_CODE (src) == SUBREG
1085 && REG_P (SUBREG_REG (src))
1086 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1087 && GET_MODE (SUBREG_REG (src)) == use_mode
1088 && subreg_lowpart_p (src)
1089 && all_uses_available_at (def_insn, use_insn))
1090 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1091 def_insn, false);
1094 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1095 is the low part of the reg being extended then just use the inner
1096 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1097 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1098 or due to the operation being a no-op when applied to registers.
1099 For example, if we have:
1101 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1102 B: (... (subreg:SI (reg:DI X)) ...)
1104 and mode_rep_extended says that Y is already sign-extended,
1105 the backend will typically allow A to be combined with the
1106 definition of Y or, failing that, allow A to be deleted after
1107 reload through register tying. Introducing more uses of Y
1108 prevents both optimisations. */
1109 else if (subreg_lowpart_p (use_reg))
1111 use_insn = DF_REF_INSN (use);
1112 src = SET_SRC (def_set);
1113 if ((GET_CODE (src) == ZERO_EXTEND
1114 || GET_CODE (src) == SIGN_EXTEND)
1115 && REG_P (XEXP (src, 0))
1116 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1117 && GET_MODE (XEXP (src, 0)) == use_mode
1118 && !free_load_extend (src, def_insn)
1119 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1120 != (int) GET_CODE (src))
1121 && all_uses_available_at (def_insn, use_insn))
1122 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1123 def_insn, false);
1126 return false;
1129 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1131 static bool
1132 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1134 rtx_insn *use_insn = DF_REF_INSN (use);
1135 rtx src, use_pat, asm_operands, new_rtx, *loc;
1136 int speed_p, i;
1137 df_ref uses;
1139 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1141 src = SET_SRC (def_set);
1142 use_pat = PATTERN (use_insn);
1144 /* In __asm don't replace if src might need more registers than
1145 reg, as that could increase register pressure on the __asm. */
1146 uses = DF_INSN_USES (def_insn);
1147 if (uses && DF_REF_NEXT_LOC (uses))
1148 return false;
1150 update_df_init (def_insn, use_insn);
1151 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1152 asm_operands = NULL_RTX;
1153 switch (GET_CODE (use_pat))
1155 case ASM_OPERANDS:
1156 asm_operands = use_pat;
1157 break;
1158 case SET:
1159 if (MEM_P (SET_DEST (use_pat)))
1161 loc = &SET_DEST (use_pat);
1162 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1163 if (new_rtx)
1164 validate_unshare_change (use_insn, loc, new_rtx, true);
1166 asm_operands = SET_SRC (use_pat);
1167 break;
1168 case PARALLEL:
1169 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1170 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1172 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1174 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1175 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1176 src, speed_p);
1177 if (new_rtx)
1178 validate_unshare_change (use_insn, loc, new_rtx, true);
1180 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1182 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1183 asm_operands = XVECEXP (use_pat, 0, i);
1184 break;
1185 default:
1186 gcc_unreachable ();
1189 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1190 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1192 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1193 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1194 if (new_rtx)
1195 validate_unshare_change (use_insn, loc, new_rtx, true);
1198 if (num_changes_pending () == 0 || !apply_change_group ())
1199 return false;
1201 update_df (use_insn, NULL);
1202 num_changes++;
1203 return true;
1206 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1207 result. */
1209 static bool
1210 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1212 rtx_insn *use_insn = DF_REF_INSN (use);
1213 rtx use_set = single_set (use_insn);
1214 rtx src, reg, new_rtx, *loc;
1215 bool set_reg_equal;
1216 enum machine_mode mode;
1217 int asm_use = -1;
1219 if (INSN_CODE (use_insn) < 0)
1220 asm_use = asm_noperands (PATTERN (use_insn));
1222 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1223 return false;
1225 /* Do not propagate into PC, CC0, etc. */
1226 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1227 return false;
1229 /* If def and use are subreg, check if they match. */
1230 reg = DF_REF_REG (use);
1231 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1233 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1234 return false;
1236 /* Check if the def had a subreg, but the use has the whole reg. */
1237 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1238 return false;
1239 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1240 previous case, the optimization is possible and often useful indeed. */
1241 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1242 reg = SUBREG_REG (reg);
1244 /* Make sure that we can treat REG as having the same mode as the
1245 source of DEF_SET. */
1246 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1247 return false;
1249 /* Check if the substitution is valid (last, because it's the most
1250 expensive check!). */
1251 src = SET_SRC (def_set);
1252 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1253 return false;
1255 /* Check if the def is loading something from the constant pool; in this
1256 case we would undo optimization such as compress_float_constant.
1257 Still, we can set a REG_EQUAL note. */
1258 if (MEM_P (src) && MEM_READONLY_P (src))
1260 rtx x = avoid_constant_pool_reference (src);
1261 if (x != src && use_set)
1263 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1264 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1265 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1266 if (old_rtx != new_rtx)
1267 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1269 return false;
1272 if (asm_use >= 0)
1273 return forward_propagate_asm (use, def_insn, def_set, reg);
1275 /* Else try simplifying. */
1277 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1279 loc = &SET_DEST (use_set);
1280 set_reg_equal = false;
1282 else if (!use_set)
1284 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1285 set_reg_equal = false;
1287 else
1289 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1290 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1291 loc = &XEXP (note, 0);
1292 else
1293 loc = &SET_SRC (use_set);
1295 /* Do not replace an existing REG_EQUAL note if the insn is not
1296 recognized. Either we're already replacing in the note, or we'll
1297 separately try plugging the definition in the note and simplifying.
1298 And only install a REQ_EQUAL note when the destination is a REG
1299 that isn't mentioned in USE_SET, as the note would be invalid
1300 otherwise. We also don't want to install a note if we are merely
1301 propagating a pseudo since verifying that this pseudo isn't dead
1302 is a pain; moreover such a note won't help anything. */
1303 set_reg_equal = (note == NULL_RTX
1304 && REG_P (SET_DEST (use_set))
1305 && !REG_P (src)
1306 && !(GET_CODE (src) == SUBREG
1307 && REG_P (SUBREG_REG (src)))
1308 && !reg_mentioned_p (SET_DEST (use_set),
1309 SET_SRC (use_set)));
1312 if (GET_MODE (*loc) == VOIDmode)
1313 mode = GET_MODE (SET_DEST (use_set));
1314 else
1315 mode = GET_MODE (*loc);
1317 new_rtx = propagate_rtx (*loc, mode, reg, src,
1318 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1320 if (!new_rtx)
1321 return false;
1323 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1327 /* Given a use USE of an insn, if it has a single reaching
1328 definition, try to forward propagate it into that insn.
1329 Return true if cfg cleanup will be needed. */
1331 static bool
1332 forward_propagate_into (df_ref use)
1334 df_ref def;
1335 rtx_insn *def_insn, *use_insn;
1336 rtx def_set;
1337 rtx parent;
1339 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1340 return false;
1341 if (DF_REF_IS_ARTIFICIAL (use))
1342 return false;
1344 /* Only consider uses that have a single definition. */
1345 def = get_def_for_use (use);
1346 if (!def)
1347 return false;
1348 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1349 return false;
1350 if (DF_REF_IS_ARTIFICIAL (def))
1351 return false;
1353 /* Do not propagate loop invariant definitions inside the loop. */
1354 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1355 return false;
1357 /* Check if the use is still present in the insn! */
1358 use_insn = DF_REF_INSN (use);
1359 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1360 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1361 else
1362 parent = PATTERN (use_insn);
1364 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1365 return false;
1367 def_insn = DF_REF_INSN (def);
1368 if (multiple_sets (def_insn))
1369 return false;
1370 def_set = single_set (def_insn);
1371 if (!def_set)
1372 return false;
1374 /* Only try one kind of propagation. If two are possible, we'll
1375 do it on the following iterations. */
1376 if (forward_propagate_and_simplify (use, def_insn, def_set)
1377 || forward_propagate_subreg (use, def_insn, def_set))
1379 if (cfun->can_throw_non_call_exceptions
1380 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1381 && purge_dead_edges (DF_REF_BB (use)))
1382 return true;
1384 return false;
1388 static void
1389 fwprop_init (void)
1391 num_changes = 0;
1392 calculate_dominance_info (CDI_DOMINATORS);
1394 /* We do not always want to propagate into loops, so we have to find
1395 loops and be careful about them. Avoid CFG modifications so that
1396 we don't have to update dominance information afterwards for
1397 build_single_def_use_links. */
1398 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1400 build_single_def_use_links ();
1401 df_set_flags (DF_DEFER_INSN_RESCAN);
1403 active_defs = XNEWVEC (df_ref, max_reg_num ());
1404 #ifdef ENABLE_CHECKING
1405 active_defs_check = sparseset_alloc (max_reg_num ());
1406 #endif
1409 static void
1410 fwprop_done (void)
1412 loop_optimizer_finalize ();
1414 use_def_ref.release ();
1415 free (active_defs);
1416 #ifdef ENABLE_CHECKING
1417 sparseset_free (active_defs_check);
1418 #endif
1420 free_dominance_info (CDI_DOMINATORS);
1421 cleanup_cfg (0);
1422 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1424 if (dump_file)
1425 fprintf (dump_file,
1426 "\nNumber of successful forward propagations: %d\n\n",
1427 num_changes);
1431 /* Main entry point. */
1433 static bool
1434 gate_fwprop (void)
1436 return optimize > 0 && flag_forward_propagate;
1439 static unsigned int
1440 fwprop (void)
1442 unsigned i;
1443 bool need_cleanup = false;
1445 fwprop_init ();
1447 /* Go through all the uses. df_uses_create will create new ones at the
1448 end, and we'll go through them as well.
1450 Do not forward propagate addresses into loops until after unrolling.
1451 CSE did so because it was able to fix its own mess, but we are not. */
1453 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1455 df_ref use = DF_USES_GET (i);
1456 if (use)
1457 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1458 || DF_REF_BB (use)->loop_father == NULL
1459 /* The outer most loop is not really a loop. */
1460 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1461 need_cleanup |= forward_propagate_into (use);
1464 fwprop_done ();
1465 if (need_cleanup)
1466 cleanup_cfg (0);
1467 return 0;
1470 namespace {
1472 const pass_data pass_data_rtl_fwprop =
1474 RTL_PASS, /* type */
1475 "fwprop1", /* name */
1476 OPTGROUP_NONE, /* optinfo_flags */
1477 TV_FWPROP, /* tv_id */
1478 0, /* properties_required */
1479 0, /* properties_provided */
1480 0, /* properties_destroyed */
1481 0, /* todo_flags_start */
1482 TODO_df_finish, /* todo_flags_finish */
1485 class pass_rtl_fwprop : public rtl_opt_pass
1487 public:
1488 pass_rtl_fwprop (gcc::context *ctxt)
1489 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1492 /* opt_pass methods: */
1493 virtual bool gate (function *) { return gate_fwprop (); }
1494 virtual unsigned int execute (function *) { return fwprop (); }
1496 }; // class pass_rtl_fwprop
1498 } // anon namespace
1500 rtl_opt_pass *
1501 make_pass_rtl_fwprop (gcc::context *ctxt)
1503 return new pass_rtl_fwprop (ctxt);
1506 static unsigned int
1507 fwprop_addr (void)
1509 unsigned i;
1510 bool need_cleanup = false;
1512 fwprop_init ();
1514 /* Go through all the uses. df_uses_create will create new ones at the
1515 end, and we'll go through them as well. */
1516 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1518 df_ref use = DF_USES_GET (i);
1519 if (use)
1520 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1521 && DF_REF_BB (use)->loop_father != NULL
1522 /* The outer most loop is not really a loop. */
1523 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1524 need_cleanup |= forward_propagate_into (use);
1527 fwprop_done ();
1529 if (need_cleanup)
1530 cleanup_cfg (0);
1531 return 0;
1534 namespace {
1536 const pass_data pass_data_rtl_fwprop_addr =
1538 RTL_PASS, /* type */
1539 "fwprop2", /* name */
1540 OPTGROUP_NONE, /* optinfo_flags */
1541 TV_FWPROP, /* tv_id */
1542 0, /* properties_required */
1543 0, /* properties_provided */
1544 0, /* properties_destroyed */
1545 0, /* todo_flags_start */
1546 TODO_df_finish, /* todo_flags_finish */
1549 class pass_rtl_fwprop_addr : public rtl_opt_pass
1551 public:
1552 pass_rtl_fwprop_addr (gcc::context *ctxt)
1553 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1556 /* opt_pass methods: */
1557 virtual bool gate (function *) { return gate_fwprop (); }
1558 virtual unsigned int execute (function *) { return fwprop_addr (); }
1560 }; // class pass_rtl_fwprop_addr
1562 } // anon namespace
1564 rtl_opt_pass *
1565 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1567 return new pass_rtl_fwprop_addr (ctxt);