1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "stor-layout.h"
30 #include "basic-block.h"
32 #include "dwarf2out.h"
33 #include "dwarf2asm.h"
35 #include "hash-table.h"
38 #include "common/common-target.h"
39 #include "tree-pass.h"
41 #include "except.h" /* expand_builtin_dwarf_sp_column */
42 #include "expr.h" /* init_return_column_size */
43 #include "regs.h" /* expand_builtin_init_dwarf_reg_sizes */
44 #include "output.h" /* asm_out_file */
45 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
48 /* ??? Poison these here until it can be done generically. They've been
49 totally replaced in this file; make sure it stays that way. */
50 #undef DWARF2_UNWIND_INFO
51 #undef DWARF2_FRAME_INFO
52 #if (GCC_VERSION >= 3000)
53 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
56 #ifndef INCOMING_RETURN_ADDR_RTX
57 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
60 /* Maximum size (in bytes) of an artificially generated label. */
61 #define MAX_ARTIFICIAL_LABEL_BYTES 30
63 /* A collected description of an entire row of the abstract CFI table. */
64 typedef struct GTY(()) dw_cfi_row_struct
66 /* The expression that computes the CFA, expressed in two different ways.
67 The CFA member for the simple cases, and the full CFI expression for
68 the complex cases. The later will be a DW_CFA_cfa_expression. */
72 /* The expressions for any register column that is saved. */
76 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
77 typedef struct GTY(()) reg_saved_in_data_struct
{
83 /* Since we no longer have a proper CFG, we're going to create a facsimile
84 of one on the fly while processing the frame-related insns.
86 We create dw_trace_info structures for each extended basic block beginning
87 and ending at a "save point". Save points are labels, barriers, certain
88 notes, and of course the beginning and end of the function.
90 As we encounter control transfer insns, we propagate the "current"
91 row state across the edges to the starts of traces. When checking is
92 enabled, we validate that we propagate the same data from all sources.
94 All traces are members of the TRACE_INFO array, in the order in which
95 they appear in the instruction stream.
97 All save points are present in the TRACE_INDEX hash, mapping the insn
98 starting a trace to the dw_trace_info describing the trace. */
102 /* The insn that begins the trace. */
105 /* The row state at the beginning and end of the trace. */
106 dw_cfi_row
*beg_row
, *end_row
;
108 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
109 while scanning insns. However, the args_size value is irrelevant at
110 any point except can_throw_internal_p insns. Therefore the "delay"
111 sizes the values that must actually be emitted for this trace. */
112 HOST_WIDE_INT beg_true_args_size
, end_true_args_size
;
113 HOST_WIDE_INT beg_delay_args_size
, end_delay_args_size
;
115 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
118 /* The following variables contain data used in interpreting frame related
119 expressions. These are not part of the "real" row state as defined by
120 Dwarf, but it seems like they need to be propagated into a trace in case
121 frame related expressions have been sunk. */
122 /* ??? This seems fragile. These variables are fragments of a larger
123 expression. If we do not keep the entire expression together, we risk
124 not being able to put it together properly. Consider forcing targets
125 to generate self-contained expressions and dropping all of the magic
126 interpretation code in this file. Or at least refusing to shrink wrap
127 any frame related insn that doesn't contain a complete expression. */
129 /* The register used for saving registers to the stack, and its offset
131 dw_cfa_location cfa_store
;
133 /* A temporary register holding an integral value used in adjusting SP
134 or setting up the store_reg. The "offset" field holds the integer
135 value, not an offset. */
136 dw_cfa_location cfa_temp
;
138 /* A set of registers saved in other registers. This is the inverse of
139 the row->reg_save info, if the entry is a DW_CFA_register. This is
140 implemented as a flat array because it normally contains zero or 1
141 entry, depending on the target. IA-64 is the big spender here, using
142 a maximum of 5 entries. */
143 vec
<reg_saved_in_data
> regs_saved_in_regs
;
145 /* An identifier for this trace. Used only for debugging dumps. */
148 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
149 bool switch_sections
;
151 /* True if we've seen different values incoming to beg_true_args_size. */
152 bool args_size_undefined
;
156 typedef dw_trace_info
*dw_trace_info_ref
;
159 /* Hashtable helpers. */
161 struct trace_info_hasher
: typed_noop_remove
<dw_trace_info
>
163 typedef dw_trace_info value_type
;
164 typedef dw_trace_info compare_type
;
165 static inline hashval_t
hash (const value_type
*);
166 static inline bool equal (const value_type
*, const compare_type
*);
170 trace_info_hasher::hash (const value_type
*ti
)
172 return INSN_UID (ti
->head
);
176 trace_info_hasher::equal (const value_type
*a
, const compare_type
*b
)
178 return a
->head
== b
->head
;
182 /* The variables making up the pseudo-cfg, as described above. */
183 static vec
<dw_trace_info
> trace_info
;
184 static vec
<dw_trace_info_ref
> trace_work_list
;
185 static hash_table
<trace_info_hasher
> *trace_index
;
187 /* A vector of call frame insns for the CIE. */
190 /* The state of the first row of the FDE table, which includes the
191 state provided by the CIE. */
192 static GTY(()) dw_cfi_row
*cie_cfi_row
;
194 static GTY(()) reg_saved_in_data
*cie_return_save
;
196 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
198 /* The insn after which a new CFI note should be emitted. */
199 static rtx add_cfi_insn
;
201 /* When non-null, add_cfi will add the CFI to this vector. */
202 static cfi_vec
*add_cfi_vec
;
204 /* The current instruction trace. */
205 static dw_trace_info
*cur_trace
;
207 /* The current, i.e. most recently generated, row of the CFI table. */
208 static dw_cfi_row
*cur_row
;
210 /* A copy of the current CFA, for use during the processing of a
212 static dw_cfa_location
*cur_cfa
;
214 /* We delay emitting a register save until either (a) we reach the end
215 of the prologue or (b) the register is clobbered. This clusters
216 register saves so that there are fewer pc advances. */
221 HOST_WIDE_INT cfa_offset
;
225 static vec
<queued_reg_save
> queued_reg_saves
;
227 /* True if any CFI directives were emitted at the current insn. */
228 static bool any_cfis_emitted
;
230 /* Short-hand for commonly used register numbers. */
231 static unsigned dw_stack_pointer_regnum
;
232 static unsigned dw_frame_pointer_regnum
;
234 /* Hook used by __throw. */
237 expand_builtin_dwarf_sp_column (void)
239 unsigned int dwarf_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
240 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum
, 1));
243 /* MEM is a memory reference for the register size table, each element of
244 which has mode MODE. Initialize column C as a return address column. */
247 init_return_column_size (enum machine_mode mode
, rtx mem
, unsigned int c
)
249 HOST_WIDE_INT offset
= c
* GET_MODE_SIZE (mode
);
250 HOST_WIDE_INT size
= GET_MODE_SIZE (Pmode
);
251 emit_move_insn (adjust_address (mem
, mode
, offset
),
252 gen_int_mode (size
, mode
));
255 /* Generate code to initialize the register size table. */
258 expand_builtin_init_dwarf_reg_sizes (tree address
)
261 enum machine_mode mode
= TYPE_MODE (char_type_node
);
262 rtx addr
= expand_normal (address
);
263 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
264 bool wrote_return_column
= false;
266 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
268 unsigned int dnum
= DWARF_FRAME_REGNUM (i
);
269 unsigned int rnum
= DWARF2_FRAME_REG_OUT (dnum
, 1);
271 if (rnum
< DWARF_FRAME_REGISTERS
)
273 HOST_WIDE_INT offset
= rnum
* GET_MODE_SIZE (mode
);
274 enum machine_mode save_mode
= reg_raw_mode
[i
];
277 if (HARD_REGNO_CALL_PART_CLOBBERED (i
, save_mode
))
278 save_mode
= choose_hard_reg_mode (i
, 1, true);
279 if (dnum
== DWARF_FRAME_RETURN_COLUMN
)
281 if (save_mode
== VOIDmode
)
283 wrote_return_column
= true;
285 size
= GET_MODE_SIZE (save_mode
);
289 emit_move_insn (adjust_address (mem
, mode
, offset
),
290 gen_int_mode (size
, mode
));
294 if (!wrote_return_column
)
295 init_return_column_size (mode
, mem
, DWARF_FRAME_RETURN_COLUMN
);
297 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
298 init_return_column_size (mode
, mem
, DWARF_ALT_FRAME_RETURN_COLUMN
);
301 targetm
.init_dwarf_reg_sizes_extra (address
);
305 static dw_trace_info
*
306 get_trace_info (rtx insn
)
310 return trace_index
->find_with_hash (&dummy
, INSN_UID (insn
));
314 save_point_p (rtx insn
)
316 /* Labels, except those that are really jump tables. */
318 return inside_basic_block_p (insn
);
320 /* We split traces at the prologue/epilogue notes because those
321 are points at which the unwind info is usually stable. This
322 makes it easier to find spots with identical unwind info so
323 that we can use remember/restore_state opcodes. */
325 switch (NOTE_KIND (insn
))
327 case NOTE_INSN_PROLOGUE_END
:
328 case NOTE_INSN_EPILOGUE_BEG
:
335 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
337 static inline HOST_WIDE_INT
338 div_data_align (HOST_WIDE_INT off
)
340 HOST_WIDE_INT r
= off
/ DWARF_CIE_DATA_ALIGNMENT
;
341 gcc_assert (r
* DWARF_CIE_DATA_ALIGNMENT
== off
);
345 /* Return true if we need a signed version of a given opcode
346 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
349 need_data_align_sf_opcode (HOST_WIDE_INT off
)
351 return DWARF_CIE_DATA_ALIGNMENT
< 0 ? off
> 0 : off
< 0;
354 /* Return a pointer to a newly allocated Call Frame Instruction. */
356 static inline dw_cfi_ref
359 dw_cfi_ref cfi
= ggc_alloc
<dw_cfi_node
> ();
361 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
362 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
367 /* Return a newly allocated CFI row, with no defined data. */
372 dw_cfi_row
*row
= ggc_cleared_alloc
<dw_cfi_row
> ();
374 row
->cfa
.reg
= INVALID_REGNUM
;
379 /* Return a copy of an existing CFI row. */
382 copy_cfi_row (dw_cfi_row
*src
)
384 dw_cfi_row
*dst
= ggc_alloc
<dw_cfi_row
> ();
387 dst
->reg_save
= vec_safe_copy (src
->reg_save
);
392 /* Generate a new label for the CFI info to refer to. */
395 dwarf2out_cfi_label (void)
397 int num
= dwarf2out_cfi_label_num
++;
400 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", num
);
402 return xstrdup (label
);
405 /* Add CFI either to the current insn stream or to a vector, or both. */
408 add_cfi (dw_cfi_ref cfi
)
410 any_cfis_emitted
= true;
412 if (add_cfi_insn
!= NULL
)
414 add_cfi_insn
= emit_note_after (NOTE_INSN_CFI
, add_cfi_insn
);
415 NOTE_CFI (add_cfi_insn
) = cfi
;
418 if (add_cfi_vec
!= NULL
)
419 vec_safe_push (*add_cfi_vec
, cfi
);
423 add_cfi_args_size (HOST_WIDE_INT size
)
425 dw_cfi_ref cfi
= new_cfi ();
427 /* While we can occasionally have args_size < 0 internally, this state
428 should not persist at a point we actually need an opcode. */
429 gcc_assert (size
>= 0);
431 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
432 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
438 add_cfi_restore (unsigned reg
)
440 dw_cfi_ref cfi
= new_cfi ();
442 cfi
->dw_cfi_opc
= (reg
& ~0x3f ? DW_CFA_restore_extended
: DW_CFA_restore
);
443 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
448 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
449 that the register column is no longer saved. */
452 update_row_reg_save (dw_cfi_row
*row
, unsigned column
, dw_cfi_ref cfi
)
454 if (vec_safe_length (row
->reg_save
) <= column
)
455 vec_safe_grow_cleared (row
->reg_save
, column
+ 1);
456 (*row
->reg_save
)[column
] = cfi
;
459 /* This function fills in aa dw_cfa_location structure from a dwarf location
460 descriptor sequence. */
463 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_node
*loc
)
465 struct dw_loc_descr_node
*ptr
;
467 cfa
->base_offset
= 0;
471 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
473 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
509 cfa
->reg
= op
- DW_OP_reg0
;
512 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
546 cfa
->reg
= op
- DW_OP_breg0
;
547 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
550 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
551 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
556 case DW_OP_plus_uconst
:
557 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
565 /* Find the previous value for the CFA, iteratively. CFI is the opcode
566 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
567 one level of remember/restore state processing. */
570 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
, dw_cfa_location
*remember
)
572 switch (cfi
->dw_cfi_opc
)
574 case DW_CFA_def_cfa_offset
:
575 case DW_CFA_def_cfa_offset_sf
:
576 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
578 case DW_CFA_def_cfa_register
:
579 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
582 case DW_CFA_def_cfa_sf
:
583 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
584 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
586 case DW_CFA_def_cfa_expression
:
587 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
590 case DW_CFA_remember_state
:
591 gcc_assert (!remember
->in_use
);
593 remember
->in_use
= 1;
595 case DW_CFA_restore_state
:
596 gcc_assert (remember
->in_use
);
598 remember
->in_use
= 0;
606 /* Determine if two dw_cfa_location structures define the same data. */
609 cfa_equal_p (const dw_cfa_location
*loc1
, const dw_cfa_location
*loc2
)
611 return (loc1
->reg
== loc2
->reg
612 && loc1
->offset
== loc2
->offset
613 && loc1
->indirect
== loc2
->indirect
614 && (loc1
->indirect
== 0
615 || loc1
->base_offset
== loc2
->base_offset
));
618 /* Determine if two CFI operands are identical. */
621 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t
, dw_cfi_oprnd
*a
, dw_cfi_oprnd
*b
)
625 case dw_cfi_oprnd_unused
:
627 case dw_cfi_oprnd_reg_num
:
628 return a
->dw_cfi_reg_num
== b
->dw_cfi_reg_num
;
629 case dw_cfi_oprnd_offset
:
630 return a
->dw_cfi_offset
== b
->dw_cfi_offset
;
631 case dw_cfi_oprnd_addr
:
632 return (a
->dw_cfi_addr
== b
->dw_cfi_addr
633 || strcmp (a
->dw_cfi_addr
, b
->dw_cfi_addr
) == 0);
634 case dw_cfi_oprnd_loc
:
635 return loc_descr_equal_p (a
->dw_cfi_loc
, b
->dw_cfi_loc
);
640 /* Determine if two CFI entries are identical. */
643 cfi_equal_p (dw_cfi_ref a
, dw_cfi_ref b
)
645 enum dwarf_call_frame_info opc
;
647 /* Make things easier for our callers, including missing operands. */
650 if (a
== NULL
|| b
== NULL
)
653 /* Obviously, the opcodes must match. */
655 if (opc
!= b
->dw_cfi_opc
)
658 /* Compare the two operands, re-using the type of the operands as
659 already exposed elsewhere. */
660 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc
),
661 &a
->dw_cfi_oprnd1
, &b
->dw_cfi_oprnd1
)
662 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc
),
663 &a
->dw_cfi_oprnd2
, &b
->dw_cfi_oprnd2
));
666 /* Determine if two CFI_ROW structures are identical. */
669 cfi_row_equal_p (dw_cfi_row
*a
, dw_cfi_row
*b
)
671 size_t i
, n_a
, n_b
, n_max
;
675 if (!cfi_equal_p (a
->cfa_cfi
, b
->cfa_cfi
))
678 else if (!cfa_equal_p (&a
->cfa
, &b
->cfa
))
681 n_a
= vec_safe_length (a
->reg_save
);
682 n_b
= vec_safe_length (b
->reg_save
);
683 n_max
= MAX (n_a
, n_b
);
685 for (i
= 0; i
< n_max
; ++i
)
687 dw_cfi_ref r_a
= NULL
, r_b
= NULL
;
690 r_a
= (*a
->reg_save
)[i
];
692 r_b
= (*b
->reg_save
)[i
];
694 if (!cfi_equal_p (r_a
, r_b
))
701 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
702 what opcode to emit. Returns the CFI opcode to effect the change, or
703 NULL if NEW_CFA == OLD_CFA. */
706 def_cfa_0 (dw_cfa_location
*old_cfa
, dw_cfa_location
*new_cfa
)
710 /* If nothing changed, no need to issue any call frame instructions. */
711 if (cfa_equal_p (old_cfa
, new_cfa
))
716 if (new_cfa
->reg
== old_cfa
->reg
&& !new_cfa
->indirect
&& !old_cfa
->indirect
)
718 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
719 the CFA register did not change but the offset did. The data
720 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
721 in the assembler via the .cfi_def_cfa_offset directive. */
722 if (new_cfa
->offset
< 0)
723 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset_sf
;
725 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
726 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= new_cfa
->offset
;
728 else if (new_cfa
->offset
== old_cfa
->offset
729 && old_cfa
->reg
!= INVALID_REGNUM
730 && !new_cfa
->indirect
731 && !old_cfa
->indirect
)
733 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
734 indicating the CFA register has changed to <register> but the
735 offset has not changed. */
736 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
737 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
739 else if (new_cfa
->indirect
== 0)
741 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
742 indicating the CFA register has changed to <register> with
743 the specified offset. The data factoring for DW_CFA_def_cfa_sf
744 happens in output_cfi, or in the assembler via the .cfi_def_cfa
746 if (new_cfa
->offset
< 0)
747 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_sf
;
749 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
750 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
751 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= new_cfa
->offset
;
755 /* Construct a DW_CFA_def_cfa_expression instruction to
756 calculate the CFA using a full location expression since no
757 register-offset pair is available. */
758 struct dw_loc_descr_node
*loc_list
;
760 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
761 loc_list
= build_cfa_loc (new_cfa
, 0);
762 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
768 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
771 def_cfa_1 (dw_cfa_location
*new_cfa
)
775 if (cur_trace
->cfa_store
.reg
== new_cfa
->reg
&& new_cfa
->indirect
== 0)
776 cur_trace
->cfa_store
.offset
= new_cfa
->offset
;
778 cfi
= def_cfa_0 (&cur_row
->cfa
, new_cfa
);
781 cur_row
->cfa
= *new_cfa
;
782 cur_row
->cfa_cfi
= (cfi
->dw_cfi_opc
== DW_CFA_def_cfa_expression
789 /* Add the CFI for saving a register. REG is the CFA column number.
790 If SREG is -1, the register is saved at OFFSET from the CFA;
791 otherwise it is saved in SREG. */
794 reg_save (unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
796 dw_fde_ref fde
= cfun
? cfun
->fde
: NULL
;
797 dw_cfi_ref cfi
= new_cfi ();
799 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
801 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
803 && fde
->stack_realign
804 && sreg
== INVALID_REGNUM
)
806 cfi
->dw_cfi_opc
= DW_CFA_expression
;
807 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
808 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
809 = build_cfa_aligned_loc (&cur_row
->cfa
, offset
,
810 fde
->stack_realignment
);
812 else if (sreg
== INVALID_REGNUM
)
814 if (need_data_align_sf_opcode (offset
))
815 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
816 else if (reg
& ~0x3f)
817 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
819 cfi
->dw_cfi_opc
= DW_CFA_offset
;
820 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
822 else if (sreg
== reg
)
824 /* While we could emit something like DW_CFA_same_value or
825 DW_CFA_restore, we never expect to see something like that
826 in a prologue. This is more likely to be a bug. A backend
827 can always bypass this by using REG_CFA_RESTORE directly. */
832 cfi
->dw_cfi_opc
= DW_CFA_register
;
833 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
837 update_row_reg_save (cur_row
, reg
, cfi
);
840 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
841 and adjust data structures to match. */
844 notice_args_size (rtx insn
)
846 HOST_WIDE_INT args_size
, delta
;
849 note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL
);
853 args_size
= INTVAL (XEXP (note
, 0));
854 delta
= args_size
- cur_trace
->end_true_args_size
;
858 cur_trace
->end_true_args_size
= args_size
;
860 /* If the CFA is computed off the stack pointer, then we must adjust
861 the computation of the CFA as well. */
862 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
864 gcc_assert (!cur_cfa
->indirect
);
866 /* Convert a change in args_size (always a positive in the
867 direction of stack growth) to a change in stack pointer. */
868 #ifndef STACK_GROWS_DOWNWARD
871 cur_cfa
->offset
+= delta
;
875 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
876 data within the trace related to EH insns and args_size. */
879 notice_eh_throw (rtx insn
)
881 HOST_WIDE_INT args_size
;
883 args_size
= cur_trace
->end_true_args_size
;
884 if (cur_trace
->eh_head
== NULL
)
886 cur_trace
->eh_head
= insn
;
887 cur_trace
->beg_delay_args_size
= args_size
;
888 cur_trace
->end_delay_args_size
= args_size
;
890 else if (cur_trace
->end_delay_args_size
!= args_size
)
892 cur_trace
->end_delay_args_size
= args_size
;
894 /* ??? If the CFA is the stack pointer, search backward for the last
895 CFI note and insert there. Given that the stack changed for the
896 args_size change, there *must* be such a note in between here and
898 add_cfi_args_size (args_size
);
902 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
903 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
904 used in places where rtl is prohibited. */
906 static inline unsigned
907 dwf_regno (const_rtx reg
)
909 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
910 return DWARF_FRAME_REGNUM (REGNO (reg
));
913 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
916 compare_reg_or_pc (rtx x
, rtx y
)
918 if (REG_P (x
) && REG_P (y
))
919 return REGNO (x
) == REGNO (y
);
923 /* Record SRC as being saved in DEST. DEST may be null to delete an
924 existing entry. SRC may be a register or PC_RTX. */
927 record_reg_saved_in_reg (rtx dest
, rtx src
)
929 reg_saved_in_data
*elt
;
932 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, elt
)
933 if (compare_reg_or_pc (elt
->orig_reg
, src
))
936 cur_trace
->regs_saved_in_regs
.unordered_remove (i
);
938 elt
->saved_in_reg
= dest
;
945 reg_saved_in_data e
= {src
, dest
};
946 cur_trace
->regs_saved_in_regs
.safe_push (e
);
949 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
950 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
953 queue_reg_save (rtx reg
, rtx sreg
, HOST_WIDE_INT offset
)
956 queued_reg_save e
= {reg
, sreg
, offset
};
959 /* Duplicates waste space, but it's also necessary to remove them
960 for correctness, since the queue gets output in reverse order. */
961 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
962 if (compare_reg_or_pc (q
->reg
, reg
))
968 queued_reg_saves
.safe_push (e
);
971 /* Output all the entries in QUEUED_REG_SAVES. */
974 dwarf2out_flush_queued_reg_saves (void)
979 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
981 unsigned int reg
, sreg
;
983 record_reg_saved_in_reg (q
->saved_reg
, q
->reg
);
985 if (q
->reg
== pc_rtx
)
986 reg
= DWARF_FRAME_RETURN_COLUMN
;
988 reg
= dwf_regno (q
->reg
);
990 sreg
= dwf_regno (q
->saved_reg
);
992 sreg
= INVALID_REGNUM
;
993 reg_save (reg
, sreg
, q
->cfa_offset
);
996 queued_reg_saves
.truncate (0);
999 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1000 location for? Or, does it clobber a register which we've previously
1001 said that some other register is saved in, and for which we now
1002 have a new location for? */
1005 clobbers_queued_reg_save (const_rtx insn
)
1010 FOR_EACH_VEC_ELT (queued_reg_saves
, iq
, q
)
1013 reg_saved_in_data
*rir
;
1015 if (modified_in_p (q
->reg
, insn
))
1018 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, ir
, rir
)
1019 if (compare_reg_or_pc (q
->reg
, rir
->orig_reg
)
1020 && modified_in_p (rir
->saved_in_reg
, insn
))
1027 /* What register, if any, is currently saved in REG? */
1030 reg_saved_in (rtx reg
)
1032 unsigned int regn
= REGNO (reg
);
1034 reg_saved_in_data
*rir
;
1037 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1038 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1041 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, rir
)
1042 if (regn
== REGNO (rir
->saved_in_reg
))
1043 return rir
->orig_reg
;
1048 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1051 dwarf2out_frame_debug_def_cfa (rtx pat
)
1053 memset (cur_cfa
, 0, sizeof (*cur_cfa
));
1055 if (GET_CODE (pat
) == PLUS
)
1057 cur_cfa
->offset
= INTVAL (XEXP (pat
, 1));
1058 pat
= XEXP (pat
, 0);
1062 cur_cfa
->indirect
= 1;
1063 pat
= XEXP (pat
, 0);
1064 if (GET_CODE (pat
) == PLUS
)
1066 cur_cfa
->base_offset
= INTVAL (XEXP (pat
, 1));
1067 pat
= XEXP (pat
, 0);
1070 /* ??? If this fails, we could be calling into the _loc functions to
1071 define a full expression. So far no port does that. */
1072 gcc_assert (REG_P (pat
));
1073 cur_cfa
->reg
= dwf_regno (pat
);
1076 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1079 dwarf2out_frame_debug_adjust_cfa (rtx pat
)
1083 gcc_assert (GET_CODE (pat
) == SET
);
1084 dest
= XEXP (pat
, 0);
1085 src
= XEXP (pat
, 1);
1087 switch (GET_CODE (src
))
1090 gcc_assert (dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
);
1091 cur_cfa
->offset
-= INTVAL (XEXP (src
, 1));
1101 cur_cfa
->reg
= dwf_regno (dest
);
1102 gcc_assert (cur_cfa
->indirect
== 0);
1105 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1108 dwarf2out_frame_debug_cfa_offset (rtx set
)
1110 HOST_WIDE_INT offset
;
1111 rtx src
, addr
, span
;
1112 unsigned int sregno
;
1114 src
= XEXP (set
, 1);
1115 addr
= XEXP (set
, 0);
1116 gcc_assert (MEM_P (addr
));
1117 addr
= XEXP (addr
, 0);
1119 /* As documented, only consider extremely simple addresses. */
1120 switch (GET_CODE (addr
))
1123 gcc_assert (dwf_regno (addr
) == cur_cfa
->reg
);
1124 offset
= -cur_cfa
->offset
;
1127 gcc_assert (dwf_regno (XEXP (addr
, 0)) == cur_cfa
->reg
);
1128 offset
= INTVAL (XEXP (addr
, 1)) - cur_cfa
->offset
;
1137 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1141 span
= targetm
.dwarf_register_span (src
);
1142 sregno
= dwf_regno (src
);
1145 /* ??? We'd like to use queue_reg_save, but we need to come up with
1146 a different flushing heuristic for epilogues. */
1148 reg_save (sregno
, INVALID_REGNUM
, offset
);
1151 /* We have a PARALLEL describing where the contents of SRC live.
1152 Adjust the offset for each piece of the PARALLEL. */
1153 HOST_WIDE_INT span_offset
= offset
;
1155 gcc_assert (GET_CODE (span
) == PARALLEL
);
1157 const int par_len
= XVECLEN (span
, 0);
1158 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1160 rtx elem
= XVECEXP (span
, 0, par_index
);
1161 sregno
= dwf_regno (src
);
1162 reg_save (sregno
, INVALID_REGNUM
, span_offset
);
1163 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1168 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1171 dwarf2out_frame_debug_cfa_register (rtx set
)
1174 unsigned sregno
, dregno
;
1176 src
= XEXP (set
, 1);
1177 dest
= XEXP (set
, 0);
1179 record_reg_saved_in_reg (dest
, src
);
1181 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1183 sregno
= dwf_regno (src
);
1185 dregno
= dwf_regno (dest
);
1187 /* ??? We'd like to use queue_reg_save, but we need to come up with
1188 a different flushing heuristic for epilogues. */
1189 reg_save (sregno
, dregno
, 0);
1192 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1195 dwarf2out_frame_debug_cfa_expression (rtx set
)
1197 rtx src
, dest
, span
;
1198 dw_cfi_ref cfi
= new_cfi ();
1201 dest
= SET_DEST (set
);
1202 src
= SET_SRC (set
);
1204 gcc_assert (REG_P (src
));
1205 gcc_assert (MEM_P (dest
));
1207 span
= targetm
.dwarf_register_span (src
);
1210 regno
= dwf_regno (src
);
1212 cfi
->dw_cfi_opc
= DW_CFA_expression
;
1213 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= regno
;
1214 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
1215 = mem_loc_descriptor (XEXP (dest
, 0), get_address_mode (dest
),
1216 GET_MODE (dest
), VAR_INIT_STATUS_INITIALIZED
);
1218 /* ??? We'd like to use queue_reg_save, were the interface different,
1219 and, as above, we could manage flushing for epilogues. */
1221 update_row_reg_save (cur_row
, regno
, cfi
);
1224 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1227 dwarf2out_frame_debug_cfa_restore (rtx reg
)
1229 gcc_assert (REG_P (reg
));
1231 rtx span
= targetm
.dwarf_register_span (reg
);
1234 unsigned int regno
= dwf_regno (reg
);
1235 add_cfi_restore (regno
);
1236 update_row_reg_save (cur_row
, regno
, NULL
);
1240 /* We have a PARALLEL describing where the contents of REG live.
1241 Restore the register for each piece of the PARALLEL. */
1242 gcc_assert (GET_CODE (span
) == PARALLEL
);
1244 const int par_len
= XVECLEN (span
, 0);
1245 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1247 reg
= XVECEXP (span
, 0, par_index
);
1248 gcc_assert (REG_P (reg
));
1249 unsigned int regno
= dwf_regno (reg
);
1250 add_cfi_restore (regno
);
1251 update_row_reg_save (cur_row
, regno
, NULL
);
1256 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1257 ??? Perhaps we should note in the CIE where windows are saved (instead of
1258 assuming 0(cfa)) and what registers are in the window. */
1261 dwarf2out_frame_debug_cfa_window_save (void)
1263 dw_cfi_ref cfi
= new_cfi ();
1265 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
1269 /* Record call frame debugging information for an expression EXPR,
1270 which either sets SP or FP (adjusting how we calculate the frame
1271 address) or saves a register to the stack or another register.
1272 LABEL indicates the address of EXPR.
1274 This function encodes a state machine mapping rtxes to actions on
1275 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1276 users need not read the source code.
1278 The High-Level Picture
1280 Changes in the register we use to calculate the CFA: Currently we
1281 assume that if you copy the CFA register into another register, we
1282 should take the other one as the new CFA register; this seems to
1283 work pretty well. If it's wrong for some target, it's simple
1284 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1286 Changes in the register we use for saving registers to the stack:
1287 This is usually SP, but not always. Again, we deduce that if you
1288 copy SP into another register (and SP is not the CFA register),
1289 then the new register is the one we will be using for register
1290 saves. This also seems to work.
1292 Register saves: There's not much guesswork about this one; if
1293 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1294 register save, and the register used to calculate the destination
1295 had better be the one we think we're using for this purpose.
1296 It's also assumed that a copy from a call-saved register to another
1297 register is saving that register if RTX_FRAME_RELATED_P is set on
1298 that instruction. If the copy is from a call-saved register to
1299 the *same* register, that means that the register is now the same
1300 value as in the caller.
1302 Except: If the register being saved is the CFA register, and the
1303 offset is nonzero, we are saving the CFA, so we assume we have to
1304 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1305 the intent is to save the value of SP from the previous frame.
1307 In addition, if a register has previously been saved to a different
1310 Invariants / Summaries of Rules
1312 cfa current rule for calculating the CFA. It usually
1313 consists of a register and an offset. This is
1314 actually stored in *cur_cfa, but abbreviated
1315 for the purposes of this documentation.
1316 cfa_store register used by prologue code to save things to the stack
1317 cfa_store.offset is the offset from the value of
1318 cfa_store.reg to the actual CFA
1319 cfa_temp register holding an integral value. cfa_temp.offset
1320 stores the value, which will be used to adjust the
1321 stack pointer. cfa_temp is also used like cfa_store,
1322 to track stores to the stack via fp or a temp reg.
1324 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1325 with cfa.reg as the first operand changes the cfa.reg and its
1326 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1329 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1330 expression yielding a constant. This sets cfa_temp.reg
1331 and cfa_temp.offset.
1333 Rule 5: Create a new register cfa_store used to save items to the
1336 Rules 10-14: Save a register to the stack. Define offset as the
1337 difference of the original location and cfa_store's
1338 location (or cfa_temp's location if cfa_temp is used).
1340 Rules 16-20: If AND operation happens on sp in prologue, we assume
1341 stack is realigned. We will use a group of DW_OP_XXX
1342 expressions to represent the location of the stored
1343 register instead of CFA+offset.
1347 "{a,b}" indicates a choice of a xor b.
1348 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1351 (set <reg1> <reg2>:cfa.reg)
1352 effects: cfa.reg = <reg1>
1353 cfa.offset unchanged
1354 cfa_temp.reg = <reg1>
1355 cfa_temp.offset = cfa.offset
1358 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1359 {<const_int>,<reg>:cfa_temp.reg}))
1360 effects: cfa.reg = sp if fp used
1361 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1362 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1363 if cfa_store.reg==sp
1366 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1367 effects: cfa.reg = fp
1368 cfa_offset += +/- <const_int>
1371 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1372 constraints: <reg1> != fp
1374 effects: cfa.reg = <reg1>
1375 cfa_temp.reg = <reg1>
1376 cfa_temp.offset = cfa.offset
1379 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1380 constraints: <reg1> != fp
1382 effects: cfa_store.reg = <reg1>
1383 cfa_store.offset = cfa.offset - cfa_temp.offset
1386 (set <reg> <const_int>)
1387 effects: cfa_temp.reg = <reg>
1388 cfa_temp.offset = <const_int>
1391 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1392 effects: cfa_temp.reg = <reg1>
1393 cfa_temp.offset |= <const_int>
1396 (set <reg> (high <exp>))
1400 (set <reg> (lo_sum <exp> <const_int>))
1401 effects: cfa_temp.reg = <reg>
1402 cfa_temp.offset = <const_int>
1405 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1406 effects: cfa_store.offset -= <const_int>
1407 cfa.offset = cfa_store.offset if cfa.reg == sp
1409 cfa.base_offset = -cfa_store.offset
1412 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1413 effects: cfa_store.offset += -/+ mode_size(mem)
1414 cfa.offset = cfa_store.offset if cfa.reg == sp
1416 cfa.base_offset = -cfa_store.offset
1419 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1422 effects: cfa.reg = <reg1>
1423 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1426 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1427 effects: cfa.reg = <reg1>
1428 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1431 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1432 effects: cfa.reg = <reg1>
1433 cfa.base_offset = -cfa_temp.offset
1434 cfa_temp.offset -= mode_size(mem)
1437 (set <reg> {unspec, unspec_volatile})
1438 effects: target-dependent
1441 (set sp (and: sp <const_int>))
1442 constraints: cfa_store.reg == sp
1443 effects: cfun->fde.stack_realign = 1
1444 cfa_store.offset = 0
1445 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1448 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1449 effects: cfa_store.offset += -/+ mode_size(mem)
1452 (set (mem ({pre_inc, pre_dec} sp)) fp)
1453 constraints: fde->stack_realign == 1
1454 effects: cfa_store.offset = 0
1455 cfa.reg != HARD_FRAME_POINTER_REGNUM
1458 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1459 constraints: fde->stack_realign == 1
1461 && cfa.indirect == 0
1462 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1463 effects: Use DW_CFA_def_cfa_expression to define cfa
1464 cfa.reg == fde->drap_reg */
1467 dwarf2out_frame_debug_expr (rtx expr
)
1469 rtx src
, dest
, span
;
1470 HOST_WIDE_INT offset
;
1473 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1474 the PARALLEL independently. The first element is always processed if
1475 it is a SET. This is for backward compatibility. Other elements
1476 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1477 flag is set in them. */
1478 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1481 int limit
= XVECLEN (expr
, 0);
1484 /* PARALLELs have strict read-modify-write semantics, so we
1485 ought to evaluate every rvalue before changing any lvalue.
1486 It's cumbersome to do that in general, but there's an
1487 easy approximation that is enough for all current users:
1488 handle register saves before register assignments. */
1489 if (GET_CODE (expr
) == PARALLEL
)
1490 for (par_index
= 0; par_index
< limit
; par_index
++)
1492 elem
= XVECEXP (expr
, 0, par_index
);
1493 if (GET_CODE (elem
) == SET
1494 && MEM_P (SET_DEST (elem
))
1495 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1496 dwarf2out_frame_debug_expr (elem
);
1499 for (par_index
= 0; par_index
< limit
; par_index
++)
1501 elem
= XVECEXP (expr
, 0, par_index
);
1502 if (GET_CODE (elem
) == SET
1503 && (!MEM_P (SET_DEST (elem
)) || GET_CODE (expr
) == SEQUENCE
)
1504 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1505 dwarf2out_frame_debug_expr (elem
);
1510 gcc_assert (GET_CODE (expr
) == SET
);
1512 src
= SET_SRC (expr
);
1513 dest
= SET_DEST (expr
);
1517 rtx rsi
= reg_saved_in (src
);
1524 switch (GET_CODE (dest
))
1527 switch (GET_CODE (src
))
1529 /* Setting FP from SP. */
1531 if (cur_cfa
->reg
== dwf_regno (src
))
1534 /* Update the CFA rule wrt SP or FP. Make sure src is
1535 relative to the current CFA register.
1537 We used to require that dest be either SP or FP, but the
1538 ARM copies SP to a temporary register, and from there to
1539 FP. So we just rely on the backends to only set
1540 RTX_FRAME_RELATED_P on appropriate insns. */
1541 cur_cfa
->reg
= dwf_regno (dest
);
1542 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1543 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1547 /* Saving a register in a register. */
1548 gcc_assert (!fixed_regs
[REGNO (dest
)]
1549 /* For the SPARC and its register window. */
1550 || (dwf_regno (src
) == DWARF_FRAME_RETURN_COLUMN
));
1552 /* After stack is aligned, we can only save SP in FP
1553 if drap register is used. In this case, we have
1554 to restore stack pointer with the CFA value and we
1555 don't generate this DWARF information. */
1557 && fde
->stack_realign
1558 && REGNO (src
) == STACK_POINTER_REGNUM
)
1559 gcc_assert (REGNO (dest
) == HARD_FRAME_POINTER_REGNUM
1560 && fde
->drap_reg
!= INVALID_REGNUM
1561 && cur_cfa
->reg
!= dwf_regno (src
));
1563 queue_reg_save (src
, dest
, 0);
1570 if (dest
== stack_pointer_rtx
)
1574 switch (GET_CODE (XEXP (src
, 1)))
1577 offset
= INTVAL (XEXP (src
, 1));
1580 gcc_assert (dwf_regno (XEXP (src
, 1))
1581 == cur_trace
->cfa_temp
.reg
);
1582 offset
= cur_trace
->cfa_temp
.offset
;
1588 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1590 /* Restoring SP from FP in the epilogue. */
1591 gcc_assert (cur_cfa
->reg
== dw_frame_pointer_regnum
);
1592 cur_cfa
->reg
= dw_stack_pointer_regnum
;
1594 else if (GET_CODE (src
) == LO_SUM
)
1595 /* Assume we've set the source reg of the LO_SUM from sp. */
1598 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1600 if (GET_CODE (src
) != MINUS
)
1602 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1603 cur_cfa
->offset
+= offset
;
1604 if (cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
)
1605 cur_trace
->cfa_store
.offset
+= offset
;
1607 else if (dest
== hard_frame_pointer_rtx
)
1610 /* Either setting the FP from an offset of the SP,
1611 or adjusting the FP */
1612 gcc_assert (frame_pointer_needed
);
1614 gcc_assert (REG_P (XEXP (src
, 0))
1615 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1616 && CONST_INT_P (XEXP (src
, 1)));
1617 offset
= INTVAL (XEXP (src
, 1));
1618 if (GET_CODE (src
) != MINUS
)
1620 cur_cfa
->offset
+= offset
;
1621 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1625 gcc_assert (GET_CODE (src
) != MINUS
);
1628 if (REG_P (XEXP (src
, 0))
1629 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1630 && CONST_INT_P (XEXP (src
, 1)))
1632 /* Setting a temporary CFA register that will be copied
1633 into the FP later on. */
1634 offset
= - INTVAL (XEXP (src
, 1));
1635 cur_cfa
->offset
+= offset
;
1636 cur_cfa
->reg
= dwf_regno (dest
);
1637 /* Or used to save regs to the stack. */
1638 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1639 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1643 else if (REG_P (XEXP (src
, 0))
1644 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1645 && XEXP (src
, 1) == stack_pointer_rtx
)
1647 /* Setting a scratch register that we will use instead
1648 of SP for saving registers to the stack. */
1649 gcc_assert (cur_cfa
->reg
== dw_stack_pointer_regnum
);
1650 cur_trace
->cfa_store
.reg
= dwf_regno (dest
);
1651 cur_trace
->cfa_store
.offset
1652 = cur_cfa
->offset
- cur_trace
->cfa_temp
.offset
;
1656 else if (GET_CODE (src
) == LO_SUM
1657 && CONST_INT_P (XEXP (src
, 1)))
1659 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1660 cur_trace
->cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1669 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1670 cur_trace
->cfa_temp
.offset
= INTVAL (src
);
1675 gcc_assert (REG_P (XEXP (src
, 0))
1676 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1677 && CONST_INT_P (XEXP (src
, 1)));
1679 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1680 cur_trace
->cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1683 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1684 which will fill in all of the bits. */
1691 case UNSPEC_VOLATILE
:
1692 /* All unspecs should be represented by REG_CFA_* notes. */
1698 /* If this AND operation happens on stack pointer in prologue,
1699 we assume the stack is realigned and we extract the
1701 if (fde
&& XEXP (src
, 0) == stack_pointer_rtx
)
1703 /* We interpret reg_save differently with stack_realign set.
1704 Thus we must flush whatever we have queued first. */
1705 dwarf2out_flush_queued_reg_saves ();
1707 gcc_assert (cur_trace
->cfa_store
.reg
1708 == dwf_regno (XEXP (src
, 0)));
1709 fde
->stack_realign
= 1;
1710 fde
->stack_realignment
= INTVAL (XEXP (src
, 1));
1711 cur_trace
->cfa_store
.offset
= 0;
1713 if (cur_cfa
->reg
!= dw_stack_pointer_regnum
1714 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1715 fde
->drap_reg
= cur_cfa
->reg
;
1726 /* Saving a register to the stack. Make sure dest is relative to the
1728 switch (GET_CODE (XEXP (dest
, 0)))
1734 /* We can't handle variable size modifications. */
1735 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1))
1737 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1739 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1740 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1742 cur_trace
->cfa_store
.offset
+= offset
;
1743 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1744 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1746 if (GET_CODE (XEXP (dest
, 0)) == POST_MODIFY
)
1747 offset
-= cur_trace
->cfa_store
.offset
;
1749 offset
= -cur_trace
->cfa_store
.offset
;
1756 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1757 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1760 gcc_assert ((REGNO (XEXP (XEXP (dest
, 0), 0))
1761 == STACK_POINTER_REGNUM
)
1762 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1764 cur_trace
->cfa_store
.offset
+= offset
;
1766 /* Rule 18: If stack is aligned, we will use FP as a
1767 reference to represent the address of the stored
1770 && fde
->stack_realign
1772 && REGNO (src
) == HARD_FRAME_POINTER_REGNUM
)
1774 gcc_assert (cur_cfa
->reg
!= dw_frame_pointer_regnum
);
1775 cur_trace
->cfa_store
.offset
= 0;
1778 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1779 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1781 if (GET_CODE (XEXP (dest
, 0)) == POST_DEC
)
1782 offset
+= -cur_trace
->cfa_store
.offset
;
1784 offset
= -cur_trace
->cfa_store
.offset
;
1788 /* With an offset. */
1795 gcc_assert (CONST_INT_P (XEXP (XEXP (dest
, 0), 1))
1796 && REG_P (XEXP (XEXP (dest
, 0), 0)));
1797 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1798 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1801 regno
= dwf_regno (XEXP (XEXP (dest
, 0), 0));
1803 if (cur_cfa
->reg
== regno
)
1804 offset
-= cur_cfa
->offset
;
1805 else if (cur_trace
->cfa_store
.reg
== regno
)
1806 offset
-= cur_trace
->cfa_store
.offset
;
1809 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1810 offset
-= cur_trace
->cfa_temp
.offset
;
1816 /* Without an offset. */
1819 unsigned int regno
= dwf_regno (XEXP (dest
, 0));
1821 if (cur_cfa
->reg
== regno
)
1822 offset
= -cur_cfa
->offset
;
1823 else if (cur_trace
->cfa_store
.reg
== regno
)
1824 offset
= -cur_trace
->cfa_store
.offset
;
1827 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1828 offset
= -cur_trace
->cfa_temp
.offset
;
1835 gcc_assert (cur_trace
->cfa_temp
.reg
1836 == dwf_regno (XEXP (XEXP (dest
, 0), 0)));
1837 offset
= -cur_trace
->cfa_temp
.offset
;
1838 cur_trace
->cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1846 /* If the source operand of this MEM operation is a memory,
1847 we only care how much stack grew. */
1852 && REGNO (src
) != STACK_POINTER_REGNUM
1853 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1854 && dwf_regno (src
) == cur_cfa
->reg
)
1856 /* We're storing the current CFA reg into the stack. */
1858 if (cur_cfa
->offset
== 0)
1861 /* If stack is aligned, putting CFA reg into stack means
1862 we can no longer use reg + offset to represent CFA.
1863 Here we use DW_CFA_def_cfa_expression instead. The
1864 result of this expression equals to the original CFA
1867 && fde
->stack_realign
1868 && cur_cfa
->indirect
== 0
1869 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1871 gcc_assert (fde
->drap_reg
== cur_cfa
->reg
);
1873 cur_cfa
->indirect
= 1;
1874 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1875 cur_cfa
->base_offset
= offset
;
1876 cur_cfa
->offset
= 0;
1878 fde
->drap_reg_saved
= 1;
1882 /* If the source register is exactly the CFA, assume
1883 we're saving SP like any other register; this happens
1885 queue_reg_save (stack_pointer_rtx
, NULL_RTX
, offset
);
1890 /* Otherwise, we'll need to look in the stack to
1891 calculate the CFA. */
1892 rtx x
= XEXP (dest
, 0);
1896 gcc_assert (REG_P (x
));
1898 cur_cfa
->reg
= dwf_regno (x
);
1899 cur_cfa
->base_offset
= offset
;
1900 cur_cfa
->indirect
= 1;
1906 span
= targetm
.dwarf_register_span (src
);
1911 queue_reg_save (src
, NULL_RTX
, offset
);
1914 /* We have a PARALLEL describing where the contents of SRC live.
1915 Queue register saves for each piece of the PARALLEL. */
1916 HOST_WIDE_INT span_offset
= offset
;
1918 gcc_assert (GET_CODE (span
) == PARALLEL
);
1920 const int par_len
= XVECLEN (span
, 0);
1921 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1923 rtx elem
= XVECEXP (span
, 0, par_index
);
1924 queue_reg_save (elem
, NULL_RTX
, span_offset
);
1925 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1935 /* Record call frame debugging information for INSN, which either sets
1936 SP or FP (adjusting how we calculate the frame address) or saves a
1937 register to the stack. */
1940 dwarf2out_frame_debug (rtx insn
)
1943 bool handled_one
= false;
1945 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1946 switch (REG_NOTE_KIND (note
))
1948 case REG_FRAME_RELATED_EXPR
:
1949 insn
= XEXP (note
, 0);
1952 case REG_CFA_DEF_CFA
:
1953 dwarf2out_frame_debug_def_cfa (XEXP (note
, 0));
1957 case REG_CFA_ADJUST_CFA
:
1962 if (GET_CODE (n
) == PARALLEL
)
1963 n
= XVECEXP (n
, 0, 0);
1965 dwarf2out_frame_debug_adjust_cfa (n
);
1969 case REG_CFA_OFFSET
:
1972 n
= single_set (insn
);
1973 dwarf2out_frame_debug_cfa_offset (n
);
1977 case REG_CFA_REGISTER
:
1982 if (GET_CODE (n
) == PARALLEL
)
1983 n
= XVECEXP (n
, 0, 0);
1985 dwarf2out_frame_debug_cfa_register (n
);
1989 case REG_CFA_EXPRESSION
:
1992 n
= single_set (insn
);
1993 dwarf2out_frame_debug_cfa_expression (n
);
1997 case REG_CFA_RESTORE
:
2002 if (GET_CODE (n
) == PARALLEL
)
2003 n
= XVECEXP (n
, 0, 0);
2006 dwarf2out_frame_debug_cfa_restore (n
);
2010 case REG_CFA_SET_VDRAP
:
2014 dw_fde_ref fde
= cfun
->fde
;
2017 gcc_assert (fde
->vdrap_reg
== INVALID_REGNUM
);
2019 fde
->vdrap_reg
= dwf_regno (n
);
2025 case REG_CFA_WINDOW_SAVE
:
2026 dwarf2out_frame_debug_cfa_window_save ();
2030 case REG_CFA_FLUSH_QUEUE
:
2031 /* The actual flush happens elsewhere. */
2041 insn
= PATTERN (insn
);
2043 dwarf2out_frame_debug_expr (insn
);
2045 /* Check again. A parallel can save and update the same register.
2046 We could probably check just once, here, but this is safer than
2047 removing the check at the start of the function. */
2048 if (clobbers_queued_reg_save (insn
))
2049 dwarf2out_flush_queued_reg_saves ();
2053 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2056 change_cfi_row (dw_cfi_row
*old_row
, dw_cfi_row
*new_row
)
2058 size_t i
, n_old
, n_new
, n_max
;
2061 if (new_row
->cfa_cfi
&& !cfi_equal_p (old_row
->cfa_cfi
, new_row
->cfa_cfi
))
2062 add_cfi (new_row
->cfa_cfi
);
2065 cfi
= def_cfa_0 (&old_row
->cfa
, &new_row
->cfa
);
2070 n_old
= vec_safe_length (old_row
->reg_save
);
2071 n_new
= vec_safe_length (new_row
->reg_save
);
2072 n_max
= MAX (n_old
, n_new
);
2074 for (i
= 0; i
< n_max
; ++i
)
2076 dw_cfi_ref r_old
= NULL
, r_new
= NULL
;
2079 r_old
= (*old_row
->reg_save
)[i
];
2081 r_new
= (*new_row
->reg_save
)[i
];
2085 else if (r_new
== NULL
)
2086 add_cfi_restore (i
);
2087 else if (!cfi_equal_p (r_old
, r_new
))
2092 /* Examine CFI and return true if a cfi label and set_loc is needed
2093 beforehand. Even when generating CFI assembler instructions, we
2094 still have to add the cfi to the list so that lookup_cfa_1 works
2095 later on. When -g2 and above we even need to force emitting of
2096 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2097 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2098 and so don't use convert_cfa_to_fb_loc_list. */
2101 cfi_label_required_p (dw_cfi_ref cfi
)
2103 if (!dwarf2out_do_cfi_asm ())
2106 if (dwarf_version
== 2
2107 && debug_info_level
> DINFO_LEVEL_TERSE
2108 && (write_symbols
== DWARF2_DEBUG
2109 || write_symbols
== VMS_AND_DWARF2_DEBUG
))
2111 switch (cfi
->dw_cfi_opc
)
2113 case DW_CFA_def_cfa_offset
:
2114 case DW_CFA_def_cfa_offset_sf
:
2115 case DW_CFA_def_cfa_register
:
2116 case DW_CFA_def_cfa
:
2117 case DW_CFA_def_cfa_sf
:
2118 case DW_CFA_def_cfa_expression
:
2119 case DW_CFA_restore_state
:
2128 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2129 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2132 add_cfis_to_fde (void)
2134 dw_fde_ref fde
= cfun
->fde
;
2135 rtx_insn
*insn
, *next
;
2136 /* We always start with a function_begin label. */
2139 for (insn
= get_insns (); insn
; insn
= next
)
2141 next
= NEXT_INSN (insn
);
2143 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2145 fde
->dw_fde_switch_cfi_index
= vec_safe_length (fde
->dw_fde_cfi
);
2146 /* Don't attempt to advance_loc4 between labels
2147 in different sections. */
2151 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2153 bool required
= cfi_label_required_p (NOTE_CFI (insn
));
2155 if (NOTE_P (next
) && NOTE_KIND (next
) == NOTE_INSN_CFI
)
2157 required
|= cfi_label_required_p (NOTE_CFI (next
));
2158 next
= NEXT_INSN (next
);
2160 else if (active_insn_p (next
)
2161 || (NOTE_P (next
) && (NOTE_KIND (next
)
2162 == NOTE_INSN_SWITCH_TEXT_SECTIONS
)))
2165 next
= NEXT_INSN (next
);
2168 int num
= dwarf2out_cfi_label_num
;
2169 const char *label
= dwarf2out_cfi_label ();
2173 /* Set the location counter to the new label. */
2175 xcfi
->dw_cfi_opc
= (first
? DW_CFA_set_loc
2176 : DW_CFA_advance_loc4
);
2177 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
2178 vec_safe_push (fde
->dw_fde_cfi
, xcfi
);
2180 tmp
= emit_note_before (NOTE_INSN_CFI_LABEL
, insn
);
2181 NOTE_LABEL_NUMBER (tmp
) = num
;
2186 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2187 vec_safe_push (fde
->dw_fde_cfi
, NOTE_CFI (insn
));
2188 insn
= NEXT_INSN (insn
);
2190 while (insn
!= next
);
2196 /* If LABEL is the start of a trace, then initialize the state of that
2197 trace from CUR_TRACE and CUR_ROW. */
2200 maybe_record_trace_start (rtx start
, rtx origin
)
2203 HOST_WIDE_INT args_size
;
2205 ti
= get_trace_info (start
);
2206 gcc_assert (ti
!= NULL
);
2210 fprintf (dump_file
, " saw edge from trace %u to %u (via %s %d)\n",
2211 cur_trace
->id
, ti
->id
,
2212 (origin
? rtx_name
[(int) GET_CODE (origin
)] : "fallthru"),
2213 (origin
? INSN_UID (origin
) : 0));
2216 args_size
= cur_trace
->end_true_args_size
;
2217 if (ti
->beg_row
== NULL
)
2219 /* This is the first time we've encountered this trace. Propagate
2220 state across the edge and push the trace onto the work list. */
2221 ti
->beg_row
= copy_cfi_row (cur_row
);
2222 ti
->beg_true_args_size
= args_size
;
2224 ti
->cfa_store
= cur_trace
->cfa_store
;
2225 ti
->cfa_temp
= cur_trace
->cfa_temp
;
2226 ti
->regs_saved_in_regs
= cur_trace
->regs_saved_in_regs
.copy ();
2228 trace_work_list
.safe_push (ti
);
2231 fprintf (dump_file
, "\tpush trace %u to worklist\n", ti
->id
);
2236 /* We ought to have the same state incoming to a given trace no
2237 matter how we arrive at the trace. Anything else means we've
2238 got some kind of optimization error. */
2239 gcc_checking_assert (cfi_row_equal_p (cur_row
, ti
->beg_row
));
2241 /* The args_size is allowed to conflict if it isn't actually used. */
2242 if (ti
->beg_true_args_size
!= args_size
)
2243 ti
->args_size_undefined
= true;
2247 /* Similarly, but handle the args_size and CFA reset across EH
2248 and non-local goto edges. */
2251 maybe_record_trace_start_abnormal (rtx start
, rtx origin
)
2253 HOST_WIDE_INT save_args_size
, delta
;
2254 dw_cfa_location save_cfa
;
2256 save_args_size
= cur_trace
->end_true_args_size
;
2257 if (save_args_size
== 0)
2259 maybe_record_trace_start (start
, origin
);
2263 delta
= -save_args_size
;
2264 cur_trace
->end_true_args_size
= 0;
2266 save_cfa
= cur_row
->cfa
;
2267 if (cur_row
->cfa
.reg
== dw_stack_pointer_regnum
)
2269 /* Convert a change in args_size (always a positive in the
2270 direction of stack growth) to a change in stack pointer. */
2271 #ifndef STACK_GROWS_DOWNWARD
2274 cur_row
->cfa
.offset
+= delta
;
2277 maybe_record_trace_start (start
, origin
);
2279 cur_trace
->end_true_args_size
= save_args_size
;
2280 cur_row
->cfa
= save_cfa
;
2283 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2284 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2287 create_trace_edges (rtx insn
)
2294 rtx_jump_table_data
*table
;
2296 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
2299 if (tablejump_p (insn
, NULL
, &table
))
2301 rtvec vec
= table
->get_labels ();
2303 n
= GET_NUM_ELEM (vec
);
2304 for (i
= 0; i
< n
; ++i
)
2306 lab
= XEXP (RTVEC_ELT (vec
, i
), 0);
2307 maybe_record_trace_start (lab
, insn
);
2310 else if (computed_jump_p (insn
))
2312 for (lab
= forced_labels
; lab
; lab
= XEXP (lab
, 1))
2313 maybe_record_trace_start (XEXP (lab
, 0), insn
);
2315 else if (returnjump_p (insn
))
2317 else if ((tmp
= extract_asm_operands (PATTERN (insn
))) != NULL
)
2319 n
= ASM_OPERANDS_LABEL_LENGTH (tmp
);
2320 for (i
= 0; i
< n
; ++i
)
2322 lab
= XEXP (ASM_OPERANDS_LABEL (tmp
, i
), 0);
2323 maybe_record_trace_start (lab
, insn
);
2328 lab
= JUMP_LABEL (insn
);
2329 gcc_assert (lab
!= NULL
);
2330 maybe_record_trace_start (lab
, insn
);
2333 else if (CALL_P (insn
))
2335 /* Sibling calls don't have edges inside this function. */
2336 if (SIBLING_CALL_P (insn
))
2339 /* Process non-local goto edges. */
2340 if (can_nonlocal_goto (insn
))
2341 for (lab
= nonlocal_goto_handler_labels
; lab
; lab
= XEXP (lab
, 1))
2342 maybe_record_trace_start_abnormal (XEXP (lab
, 0), insn
);
2344 else if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2346 rtx seq
= PATTERN (insn
);
2347 int i
, n
= XVECLEN (seq
, 0);
2348 for (i
= 0; i
< n
; ++i
)
2349 create_trace_edges (XVECEXP (seq
, 0, i
));
2353 /* Process EH edges. */
2354 if (CALL_P (insn
) || cfun
->can_throw_non_call_exceptions
)
2356 eh_landing_pad lp
= get_eh_landing_pad_from_rtx (insn
);
2358 maybe_record_trace_start_abnormal (lp
->landing_pad
, insn
);
2362 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2365 scan_insn_after (rtx insn
)
2367 if (RTX_FRAME_RELATED_P (insn
))
2368 dwarf2out_frame_debug (insn
);
2369 notice_args_size (insn
);
2372 /* Scan the trace beginning at INSN and create the CFI notes for the
2373 instructions therein. */
2376 scan_trace (dw_trace_info
*trace
)
2378 rtx prev
, insn
= trace
->head
;
2379 dw_cfa_location this_cfa
;
2382 fprintf (dump_file
, "Processing trace %u : start at %s %d\n",
2383 trace
->id
, rtx_name
[(int) GET_CODE (insn
)],
2386 trace
->end_row
= copy_cfi_row (trace
->beg_row
);
2387 trace
->end_true_args_size
= trace
->beg_true_args_size
;
2390 cur_row
= trace
->end_row
;
2392 this_cfa
= cur_row
->cfa
;
2393 cur_cfa
= &this_cfa
;
2395 for (prev
= insn
, insn
= NEXT_INSN (insn
);
2397 prev
= insn
, insn
= NEXT_INSN (insn
))
2401 /* Do everything that happens "before" the insn. */
2402 add_cfi_insn
= prev
;
2404 /* Notice the end of a trace. */
2405 if (BARRIER_P (insn
))
2407 /* Don't bother saving the unneeded queued registers at all. */
2408 queued_reg_saves
.truncate (0);
2411 if (save_point_p (insn
))
2413 /* Propagate across fallthru edges. */
2414 dwarf2out_flush_queued_reg_saves ();
2415 maybe_record_trace_start (insn
, NULL
);
2419 if (DEBUG_INSN_P (insn
) || !inside_basic_block_p (insn
))
2422 /* Handle all changes to the row state. Sequences require special
2423 handling for the positioning of the notes. */
2424 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2426 rtx elt
, pat
= PATTERN (insn
);
2427 int i
, n
= XVECLEN (pat
, 0);
2429 control
= XVECEXP (pat
, 0, 0);
2430 if (can_throw_internal (control
))
2431 notice_eh_throw (control
);
2432 dwarf2out_flush_queued_reg_saves ();
2434 if (JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
))
2436 /* ??? Hopefully multiple delay slots are not annulled. */
2437 gcc_assert (n
== 2);
2438 gcc_assert (!RTX_FRAME_RELATED_P (control
));
2439 gcc_assert (!find_reg_note (control
, REG_ARGS_SIZE
, NULL
));
2441 elt
= XVECEXP (pat
, 0, 1);
2443 if (INSN_FROM_TARGET_P (elt
))
2445 HOST_WIDE_INT restore_args_size
;
2446 cfi_vec save_row_reg_save
;
2448 /* If ELT is an instruction from target of an annulled
2449 branch, the effects are for the target only and so
2450 the args_size and CFA along the current path
2451 shouldn't change. */
2452 add_cfi_insn
= NULL
;
2453 restore_args_size
= cur_trace
->end_true_args_size
;
2454 cur_cfa
= &cur_row
->cfa
;
2455 save_row_reg_save
= vec_safe_copy (cur_row
->reg_save
);
2457 scan_insn_after (elt
);
2459 /* ??? Should we instead save the entire row state? */
2460 gcc_assert (!queued_reg_saves
.length ());
2462 create_trace_edges (control
);
2464 cur_trace
->end_true_args_size
= restore_args_size
;
2465 cur_row
->cfa
= this_cfa
;
2466 cur_row
->reg_save
= save_row_reg_save
;
2467 cur_cfa
= &this_cfa
;
2471 /* If ELT is a annulled branch-taken instruction (i.e.
2472 executed only when branch is not taken), the args_size
2473 and CFA should not change through the jump. */
2474 create_trace_edges (control
);
2476 /* Update and continue with the trace. */
2477 add_cfi_insn
= insn
;
2478 scan_insn_after (elt
);
2479 def_cfa_1 (&this_cfa
);
2484 /* The insns in the delay slot should all be considered to happen
2485 "before" a call insn. Consider a call with a stack pointer
2486 adjustment in the delay slot. The backtrace from the callee
2487 should include the sp adjustment. Unfortunately, that leaves
2488 us with an unavoidable unwinding error exactly at the call insn
2489 itself. For jump insns we'd prefer to avoid this error by
2490 placing the notes after the sequence. */
2491 if (JUMP_P (control
))
2492 add_cfi_insn
= insn
;
2494 for (i
= 1; i
< n
; ++i
)
2496 elt
= XVECEXP (pat
, 0, i
);
2497 scan_insn_after (elt
);
2500 /* Make sure any register saves are visible at the jump target. */
2501 dwarf2out_flush_queued_reg_saves ();
2502 any_cfis_emitted
= false;
2504 /* However, if there is some adjustment on the call itself, e.g.
2505 a call_pop, that action should be considered to happen after
2506 the call returns. */
2507 add_cfi_insn
= insn
;
2508 scan_insn_after (control
);
2512 /* Flush data before calls and jumps, and of course if necessary. */
2513 if (can_throw_internal (insn
))
2515 notice_eh_throw (insn
);
2516 dwarf2out_flush_queued_reg_saves ();
2518 else if (!NONJUMP_INSN_P (insn
)
2519 || clobbers_queued_reg_save (insn
)
2520 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2521 dwarf2out_flush_queued_reg_saves ();
2522 any_cfis_emitted
= false;
2524 add_cfi_insn
= insn
;
2525 scan_insn_after (insn
);
2529 /* Between frame-related-p and args_size we might have otherwise
2530 emitted two cfa adjustments. Do it now. */
2531 def_cfa_1 (&this_cfa
);
2533 /* Minimize the number of advances by emitting the entire queue
2534 once anything is emitted. */
2535 if (any_cfis_emitted
2536 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2537 dwarf2out_flush_queued_reg_saves ();
2539 /* Note that a test for control_flow_insn_p does exactly the
2540 same tests as are done to actually create the edges. So
2541 always call the routine and let it not create edges for
2542 non-control-flow insns. */
2543 create_trace_edges (control
);
2546 add_cfi_insn
= NULL
;
2552 /* Scan the function and create the initial set of CFI notes. */
2555 create_cfi_notes (void)
2559 gcc_checking_assert (!queued_reg_saves
.exists ());
2560 gcc_checking_assert (!trace_work_list
.exists ());
2562 /* Always begin at the entry trace. */
2563 ti
= &trace_info
[0];
2566 while (!trace_work_list
.is_empty ())
2568 ti
= trace_work_list
.pop ();
2572 queued_reg_saves
.release ();
2573 trace_work_list
.release ();
2576 /* Return the insn before the first NOTE_INSN_CFI after START. */
2579 before_next_cfi_note (rtx start
)
2584 if (NOTE_P (start
) && NOTE_KIND (start
) == NOTE_INSN_CFI
)
2587 start
= NEXT_INSN (start
);
2592 /* Insert CFI notes between traces to properly change state between them. */
2595 connect_traces (void)
2597 unsigned i
, n
= trace_info
.length ();
2598 dw_trace_info
*prev_ti
, *ti
;
2600 /* ??? Ideally, we should have both queued and processed every trace.
2601 However the current representation of constant pools on various targets
2602 is indistinguishable from unreachable code. Assume for the moment that
2603 we can simply skip over such traces. */
2604 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2605 these are not "real" instructions, and should not be considered.
2606 This could be generically useful for tablejump data as well. */
2607 /* Remove all unprocessed traces from the list. */
2608 for (i
= n
- 1; i
> 0; --i
)
2610 ti
= &trace_info
[i
];
2611 if (ti
->beg_row
== NULL
)
2613 trace_info
.ordered_remove (i
);
2617 gcc_assert (ti
->end_row
!= NULL
);
2620 /* Work from the end back to the beginning. This lets us easily insert
2621 remember/restore_state notes in the correct order wrt other notes. */
2622 prev_ti
= &trace_info
[n
- 1];
2623 for (i
= n
- 1; i
> 0; --i
)
2625 dw_cfi_row
*old_row
;
2628 prev_ti
= &trace_info
[i
- 1];
2630 add_cfi_insn
= ti
->head
;
2632 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2633 for the portion of the function in the alternate text
2634 section. The row state at the very beginning of that
2635 new FDE will be exactly the row state from the CIE. */
2636 if (ti
->switch_sections
)
2637 old_row
= cie_cfi_row
;
2640 old_row
= prev_ti
->end_row
;
2641 /* If there's no change from the previous end state, fine. */
2642 if (cfi_row_equal_p (old_row
, ti
->beg_row
))
2644 /* Otherwise check for the common case of sharing state with
2645 the beginning of an epilogue, but not the end. Insert
2646 remember/restore opcodes in that case. */
2647 else if (cfi_row_equal_p (prev_ti
->beg_row
, ti
->beg_row
))
2651 /* Note that if we blindly insert the remember at the
2652 start of the trace, we can wind up increasing the
2653 size of the unwind info due to extra advance opcodes.
2654 Instead, put the remember immediately before the next
2655 state change. We know there must be one, because the
2656 state at the beginning and head of the trace differ. */
2657 add_cfi_insn
= before_next_cfi_note (prev_ti
->head
);
2659 cfi
->dw_cfi_opc
= DW_CFA_remember_state
;
2662 add_cfi_insn
= ti
->head
;
2664 cfi
->dw_cfi_opc
= DW_CFA_restore_state
;
2667 old_row
= prev_ti
->beg_row
;
2669 /* Otherwise, we'll simply change state from the previous end. */
2672 change_cfi_row (old_row
, ti
->beg_row
);
2674 if (dump_file
&& add_cfi_insn
!= ti
->head
)
2678 fprintf (dump_file
, "Fixup between trace %u and %u:\n",
2679 prev_ti
->id
, ti
->id
);
2684 note
= NEXT_INSN (note
);
2685 gcc_assert (NOTE_P (note
) && NOTE_KIND (note
) == NOTE_INSN_CFI
);
2686 output_cfi_directive (dump_file
, NOTE_CFI (note
));
2688 while (note
!= add_cfi_insn
);
2692 /* Connect args_size between traces that have can_throw_internal insns. */
2693 if (cfun
->eh
->lp_array
)
2695 HOST_WIDE_INT prev_args_size
= 0;
2697 for (i
= 0; i
< n
; ++i
)
2699 ti
= &trace_info
[i
];
2701 if (ti
->switch_sections
)
2703 if (ti
->eh_head
== NULL
)
2705 gcc_assert (!ti
->args_size_undefined
);
2707 if (ti
->beg_delay_args_size
!= prev_args_size
)
2709 /* ??? Search back to previous CFI note. */
2710 add_cfi_insn
= PREV_INSN (ti
->eh_head
);
2711 add_cfi_args_size (ti
->beg_delay_args_size
);
2714 prev_args_size
= ti
->end_delay_args_size
;
2719 /* Set up the pseudo-cfg of instruction traces, as described at the
2720 block comment at the top of the file. */
2723 create_pseudo_cfg (void)
2725 bool saw_barrier
, switch_sections
;
2730 /* The first trace begins at the start of the function,
2731 and begins with the CIE row state. */
2732 trace_info
.create (16);
2733 memset (&ti
, 0, sizeof (ti
));
2734 ti
.head
= get_insns ();
2735 ti
.beg_row
= cie_cfi_row
;
2736 ti
.cfa_store
= cie_cfi_row
->cfa
;
2737 ti
.cfa_temp
.reg
= INVALID_REGNUM
;
2738 trace_info
.quick_push (ti
);
2740 if (cie_return_save
)
2741 ti
.regs_saved_in_regs
.safe_push (*cie_return_save
);
2743 /* Walk all the insns, collecting start of trace locations. */
2744 saw_barrier
= false;
2745 switch_sections
= false;
2746 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2748 if (BARRIER_P (insn
))
2750 else if (NOTE_P (insn
)
2751 && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2753 /* We should have just seen a barrier. */
2754 gcc_assert (saw_barrier
);
2755 switch_sections
= true;
2757 /* Watch out for save_point notes between basic blocks.
2758 In particular, a note after a barrier. Do not record these,
2759 delaying trace creation until the label. */
2760 else if (save_point_p (insn
)
2761 && (LABEL_P (insn
) || !saw_barrier
))
2763 memset (&ti
, 0, sizeof (ti
));
2765 ti
.switch_sections
= switch_sections
;
2766 ti
.id
= trace_info
.length () - 1;
2767 trace_info
.safe_push (ti
);
2769 saw_barrier
= false;
2770 switch_sections
= false;
2774 /* Create the trace index after we've finished building trace_info,
2775 avoiding stale pointer problems due to reallocation. */
2777 = new hash_table
<trace_info_hasher
> (trace_info
.length ());
2779 FOR_EACH_VEC_ELT (trace_info
, i
, tp
)
2781 dw_trace_info
**slot
;
2784 fprintf (dump_file
, "Creating trace %u : start at %s %d%s\n", i
,
2785 rtx_name
[(int) GET_CODE (tp
->head
)], INSN_UID (tp
->head
),
2786 tp
->switch_sections
? " (section switch)" : "");
2788 slot
= trace_index
->find_slot_with_hash (tp
, INSN_UID (tp
->head
), INSERT
);
2789 gcc_assert (*slot
== NULL
);
2794 /* Record the initial position of the return address. RTL is
2795 INCOMING_RETURN_ADDR_RTX. */
2798 initial_return_save (rtx rtl
)
2800 unsigned int reg
= INVALID_REGNUM
;
2801 HOST_WIDE_INT offset
= 0;
2803 switch (GET_CODE (rtl
))
2806 /* RA is in a register. */
2807 reg
= dwf_regno (rtl
);
2811 /* RA is on the stack. */
2812 rtl
= XEXP (rtl
, 0);
2813 switch (GET_CODE (rtl
))
2816 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
2821 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2822 offset
= INTVAL (XEXP (rtl
, 1));
2826 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2827 offset
= -INTVAL (XEXP (rtl
, 1));
2837 /* The return address is at some offset from any value we can
2838 actually load. For instance, on the SPARC it is in %i7+8. Just
2839 ignore the offset for now; it doesn't matter for unwinding frames. */
2840 gcc_assert (CONST_INT_P (XEXP (rtl
, 1)));
2841 initial_return_save (XEXP (rtl
, 0));
2848 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
2850 if (reg
!= INVALID_REGNUM
)
2851 record_reg_saved_in_reg (rtl
, pc_rtx
);
2852 reg_save (DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cur_row
->cfa
.offset
);
2857 create_cie_data (void)
2859 dw_cfa_location loc
;
2860 dw_trace_info cie_trace
;
2862 dw_stack_pointer_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
2863 dw_frame_pointer_regnum
= DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
);
2865 memset (&cie_trace
, 0, sizeof (cie_trace
));
2866 cur_trace
= &cie_trace
;
2868 add_cfi_vec
= &cie_cfi_vec
;
2869 cie_cfi_row
= cur_row
= new_cfi_row ();
2871 /* On entry, the Canonical Frame Address is at SP. */
2872 memset (&loc
, 0, sizeof (loc
));
2873 loc
.reg
= dw_stack_pointer_regnum
;
2874 loc
.offset
= INCOMING_FRAME_SP_OFFSET
;
2877 if (targetm
.debug_unwind_info () == UI_DWARF2
2878 || targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
2880 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2882 /* For a few targets, we have the return address incoming into a
2883 register, but choose a different return column. This will result
2884 in a DW_CFA_register for the return, and an entry in
2885 regs_saved_in_regs to match. If the target later stores that
2886 return address register to the stack, we want to be able to emit
2887 the DW_CFA_offset against the return column, not the intermediate
2888 save register. Save the contents of regs_saved_in_regs so that
2889 we can re-initialize it at the start of each function. */
2890 switch (cie_trace
.regs_saved_in_regs
.length ())
2895 cie_return_save
= ggc_alloc
<reg_saved_in_data
> ();
2896 *cie_return_save
= cie_trace
.regs_saved_in_regs
[0];
2897 cie_trace
.regs_saved_in_regs
.release ();
2909 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
2910 state at each location within the function. These notes will be
2911 emitted during pass_final. */
2914 execute_dwarf2_frame (void)
2916 /* The first time we're called, compute the incoming frame state. */
2917 if (cie_cfi_vec
== NULL
)
2920 dwarf2out_alloc_current_fde ();
2922 create_pseudo_cfg ();
2925 create_cfi_notes ();
2929 /* Free all the data we allocated. */
2934 FOR_EACH_VEC_ELT (trace_info
, i
, ti
)
2935 ti
->regs_saved_in_regs
.release ();
2937 trace_info
.release ();
2945 /* Convert a DWARF call frame info. operation to its string name */
2948 dwarf_cfi_name (unsigned int cfi_opc
)
2950 const char *name
= get_DW_CFA_name (cfi_opc
);
2955 return "DW_CFA_<unknown>";
2958 /* This routine will generate the correct assembly data for a location
2959 description based on a cfi entry with a complex address. */
2962 output_cfa_loc (dw_cfi_ref cfi
, int for_eh
)
2964 dw_loc_descr_ref loc
;
2967 if (cfi
->dw_cfi_opc
== DW_CFA_expression
)
2970 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2971 dw2_asm_output_data (1, r
, NULL
);
2972 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
2975 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
2977 /* Output the size of the block. */
2978 size
= size_of_locs (loc
);
2979 dw2_asm_output_data_uleb128 (size
, NULL
);
2981 /* Now output the operations themselves. */
2982 output_loc_sequence (loc
, for_eh
);
2985 /* Similar, but used for .cfi_escape. */
2988 output_cfa_loc_raw (dw_cfi_ref cfi
)
2990 dw_loc_descr_ref loc
;
2993 if (cfi
->dw_cfi_opc
== DW_CFA_expression
)
2996 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
2997 fprintf (asm_out_file
, "%#x,", r
);
2998 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3001 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3003 /* Output the size of the block. */
3004 size
= size_of_locs (loc
);
3005 dw2_asm_output_data_uleb128_raw (size
);
3006 fputc (',', asm_out_file
);
3008 /* Now output the operations themselves. */
3009 output_loc_sequence_raw (loc
);
3012 /* Output a Call Frame Information opcode and its operand(s). */
3015 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
3020 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
3021 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
3022 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
3023 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
3024 ((unsigned HOST_WIDE_INT
)
3025 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
));
3026 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
3028 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3029 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3030 "DW_CFA_offset, column %#lx", r
);
3031 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3032 dw2_asm_output_data_uleb128 (off
, NULL
);
3034 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
3036 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3037 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3038 "DW_CFA_restore, column %#lx", r
);
3042 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
3043 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
3045 switch (cfi
->dw_cfi_opc
)
3047 case DW_CFA_set_loc
:
3049 dw2_asm_output_encoded_addr_rtx (
3050 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3051 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
3054 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
3055 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
3056 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3059 case DW_CFA_advance_loc1
:
3060 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3061 fde
->dw_fde_current_label
, NULL
);
3062 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3065 case DW_CFA_advance_loc2
:
3066 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3067 fde
->dw_fde_current_label
, NULL
);
3068 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3071 case DW_CFA_advance_loc4
:
3072 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3073 fde
->dw_fde_current_label
, NULL
);
3074 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3077 case DW_CFA_MIPS_advance_loc8
:
3078 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3079 fde
->dw_fde_current_label
, NULL
);
3080 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3083 case DW_CFA_offset_extended
:
3084 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3085 dw2_asm_output_data_uleb128 (r
, NULL
);
3086 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3087 dw2_asm_output_data_uleb128 (off
, NULL
);
3090 case DW_CFA_def_cfa
:
3091 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3092 dw2_asm_output_data_uleb128 (r
, NULL
);
3093 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
3096 case DW_CFA_offset_extended_sf
:
3097 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3098 dw2_asm_output_data_uleb128 (r
, NULL
);
3099 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3100 dw2_asm_output_data_sleb128 (off
, NULL
);
3103 case DW_CFA_def_cfa_sf
:
3104 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3105 dw2_asm_output_data_uleb128 (r
, NULL
);
3106 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3107 dw2_asm_output_data_sleb128 (off
, NULL
);
3110 case DW_CFA_restore_extended
:
3111 case DW_CFA_undefined
:
3112 case DW_CFA_same_value
:
3113 case DW_CFA_def_cfa_register
:
3114 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3115 dw2_asm_output_data_uleb128 (r
, NULL
);
3118 case DW_CFA_register
:
3119 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3120 dw2_asm_output_data_uleb128 (r
, NULL
);
3121 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
3122 dw2_asm_output_data_uleb128 (r
, NULL
);
3125 case DW_CFA_def_cfa_offset
:
3126 case DW_CFA_GNU_args_size
:
3127 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
3130 case DW_CFA_def_cfa_offset_sf
:
3131 off
= div_data_align (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3132 dw2_asm_output_data_sleb128 (off
, NULL
);
3135 case DW_CFA_GNU_window_save
:
3138 case DW_CFA_def_cfa_expression
:
3139 case DW_CFA_expression
:
3140 output_cfa_loc (cfi
, for_eh
);
3143 case DW_CFA_GNU_negative_offset_extended
:
3144 /* Obsoleted by DW_CFA_offset_extended_sf. */
3153 /* Similar, but do it via assembler directives instead. */
3156 output_cfi_directive (FILE *f
, dw_cfi_ref cfi
)
3158 unsigned long r
, r2
;
3160 switch (cfi
->dw_cfi_opc
)
3162 case DW_CFA_advance_loc
:
3163 case DW_CFA_advance_loc1
:
3164 case DW_CFA_advance_loc2
:
3165 case DW_CFA_advance_loc4
:
3166 case DW_CFA_MIPS_advance_loc8
:
3167 case DW_CFA_set_loc
:
3168 /* Should only be created in a code path not followed when emitting
3169 via directives. The assembler is going to take care of this for
3170 us. But this routines is also used for debugging dumps, so
3172 gcc_assert (f
!= asm_out_file
);
3173 fprintf (f
, "\t.cfi_advance_loc\n");
3177 case DW_CFA_offset_extended
:
3178 case DW_CFA_offset_extended_sf
:
3179 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3180 fprintf (f
, "\t.cfi_offset %lu, "HOST_WIDE_INT_PRINT_DEC
"\n",
3181 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3184 case DW_CFA_restore
:
3185 case DW_CFA_restore_extended
:
3186 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3187 fprintf (f
, "\t.cfi_restore %lu\n", r
);
3190 case DW_CFA_undefined
:
3191 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3192 fprintf (f
, "\t.cfi_undefined %lu\n", r
);
3195 case DW_CFA_same_value
:
3196 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3197 fprintf (f
, "\t.cfi_same_value %lu\n", r
);
3200 case DW_CFA_def_cfa
:
3201 case DW_CFA_def_cfa_sf
:
3202 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3203 fprintf (f
, "\t.cfi_def_cfa %lu, "HOST_WIDE_INT_PRINT_DEC
"\n",
3204 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3207 case DW_CFA_def_cfa_register
:
3208 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3209 fprintf (f
, "\t.cfi_def_cfa_register %lu\n", r
);
3212 case DW_CFA_register
:
3213 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3214 r2
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, 1);
3215 fprintf (f
, "\t.cfi_register %lu, %lu\n", r
, r2
);
3218 case DW_CFA_def_cfa_offset
:
3219 case DW_CFA_def_cfa_offset_sf
:
3220 fprintf (f
, "\t.cfi_def_cfa_offset "
3221 HOST_WIDE_INT_PRINT_DEC
"\n",
3222 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3225 case DW_CFA_remember_state
:
3226 fprintf (f
, "\t.cfi_remember_state\n");
3228 case DW_CFA_restore_state
:
3229 fprintf (f
, "\t.cfi_restore_state\n");
3232 case DW_CFA_GNU_args_size
:
3233 if (f
== asm_out_file
)
3235 fprintf (f
, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size
);
3236 dw2_asm_output_data_uleb128_raw (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3238 fprintf (f
, "\t%s args_size "HOST_WIDE_INT_PRINT_DEC
,
3239 ASM_COMMENT_START
, cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3244 fprintf (f
, "\t.cfi_GNU_args_size "HOST_WIDE_INT_PRINT_DEC
"\n",
3245 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3249 case DW_CFA_GNU_window_save
:
3250 fprintf (f
, "\t.cfi_window_save\n");
3253 case DW_CFA_def_cfa_expression
:
3254 if (f
!= asm_out_file
)
3256 fprintf (f
, "\t.cfi_def_cfa_expression ...\n");
3260 case DW_CFA_expression
:
3261 if (f
!= asm_out_file
)
3263 fprintf (f
, "\t.cfi_cfa_expression ...\n");
3266 fprintf (f
, "\t.cfi_escape %#x,", cfi
->dw_cfi_opc
);
3267 output_cfa_loc_raw (cfi
);
3277 dwarf2out_emit_cfi (dw_cfi_ref cfi
)
3279 if (dwarf2out_do_cfi_asm ())
3280 output_cfi_directive (asm_out_file
, cfi
);
3284 dump_cfi_row (FILE *f
, dw_cfi_row
*row
)
3292 dw_cfa_location dummy
;
3293 memset (&dummy
, 0, sizeof (dummy
));
3294 dummy
.reg
= INVALID_REGNUM
;
3295 cfi
= def_cfa_0 (&dummy
, &row
->cfa
);
3297 output_cfi_directive (f
, cfi
);
3299 FOR_EACH_VEC_SAFE_ELT (row
->reg_save
, i
, cfi
)
3301 output_cfi_directive (f
, cfi
);
3304 void debug_cfi_row (dw_cfi_row
*row
);
3307 debug_cfi_row (dw_cfi_row
*row
)
3309 dump_cfi_row (stderr
, row
);
3313 /* Save the result of dwarf2out_do_frame across PCH.
3314 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3315 static GTY(()) signed char saved_do_cfi_asm
= 0;
3317 /* Decide whether we want to emit frame unwind information for the current
3318 translation unit. */
3321 dwarf2out_do_frame (void)
3323 /* We want to emit correct CFA location expressions or lists, so we
3324 have to return true if we're going to output debug info, even if
3325 we're not going to output frame or unwind info. */
3326 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3329 if (saved_do_cfi_asm
> 0)
3332 if (targetm
.debug_unwind_info () == UI_DWARF2
)
3335 if ((flag_unwind_tables
|| flag_exceptions
)
3336 && targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
3342 /* Decide whether to emit frame unwind via assembler directives. */
3345 dwarf2out_do_cfi_asm (void)
3349 if (saved_do_cfi_asm
!= 0)
3350 return saved_do_cfi_asm
> 0;
3352 /* Assume failure for a moment. */
3353 saved_do_cfi_asm
= -1;
3355 if (!flag_dwarf2_cfi_asm
|| !dwarf2out_do_frame ())
3357 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE
)
3360 /* Make sure the personality encoding is one the assembler can support.
3361 In particular, aligned addresses can't be handled. */
3362 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3363 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3365 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3366 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3369 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3370 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3371 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3372 && !flag_unwind_tables
&& !flag_exceptions
3373 && targetm_common
.except_unwind_info (&global_options
) != UI_DWARF2
)
3377 saved_do_cfi_asm
= 1;
3383 const pass_data pass_data_dwarf2_frame
=
3385 RTL_PASS
, /* type */
3386 "dwarf2", /* name */
3387 OPTGROUP_NONE
, /* optinfo_flags */
3388 TV_FINAL
, /* tv_id */
3389 0, /* properties_required */
3390 0, /* properties_provided */
3391 0, /* properties_destroyed */
3392 0, /* todo_flags_start */
3393 0, /* todo_flags_finish */
3396 class pass_dwarf2_frame
: public rtl_opt_pass
3399 pass_dwarf2_frame (gcc::context
*ctxt
)
3400 : rtl_opt_pass (pass_data_dwarf2_frame
, ctxt
)
3403 /* opt_pass methods: */
3404 virtual bool gate (function
*);
3405 virtual unsigned int execute (function
*) { return execute_dwarf2_frame (); }
3407 }; // class pass_dwarf2_frame
3410 pass_dwarf2_frame::gate (function
*)
3412 #ifndef HAVE_prologue
3413 /* Targets which still implement the prologue in assembler text
3414 cannot use the generic dwarf2 unwinding. */
3418 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3419 from the optimized shrink-wrapping annotations that we will compute.
3420 For now, only produce the CFI notes for dwarf2. */
3421 return dwarf2out_do_frame ();
3427 make_pass_dwarf2_frame (gcc::context
*ctxt
)
3429 return new pass_dwarf2_frame (ctxt
);
3432 #include "gt-dwarf2cfi.h"