strub: use opt_for_fn during ipa
[official-gcc.git] / gcc / stor-layout.cc
blob0c095aa3c3ce087663ee5edf93689116ef9c0f26
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 #include "calls.h"
47 /* Data type for the expressions representing sizes of data types.
48 It is the first integer type laid out. */
49 tree sizetype_tab[(int) stk_type_kind_last];
51 /* If nonzero, this is an upper limit on alignment of structure fields.
52 The value is measured in bits. */
53 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
55 static tree self_referential_size (tree);
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
60 HOST_WIDE_INT, tree);
61 extern void debug_rli (record_layout_info);
63 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
64 to serve as the actual size-expression for a type or decl. */
66 tree
67 variable_size (tree size)
69 /* Obviously. */
70 if (TREE_CONSTANT (size))
71 return size;
73 /* If the size is self-referential, we can't make a SAVE_EXPR (see
74 save_expr for the rationale). But we can do something else. */
75 if (CONTAINS_PLACEHOLDER_P (size))
76 return self_referential_size (size);
78 /* If we are in the global binding level, we can't make a SAVE_EXPR
79 since it may end up being shared across functions, so it is up
80 to the front-end to deal with this case. */
81 if (lang_hooks.decls.global_bindings_p ())
82 return size;
84 return save_expr (size);
87 /* An array of functions used for self-referential size computation. */
88 static GTY(()) vec<tree, va_gc> *size_functions;
90 /* Return true if T is a self-referential component reference. */
92 static bool
93 self_referential_component_ref_p (tree t)
95 if (TREE_CODE (t) != COMPONENT_REF)
96 return false;
98 while (REFERENCE_CLASS_P (t))
99 t = TREE_OPERAND (t, 0);
101 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
111 enum tree_code code = TREE_CODE (*tp);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
118 *walk_subtrees = 0;
119 return NULL_TREE;
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
126 *walk_subtrees = 0;
127 return NULL_TREE;
130 /* Default case: the component reference. */
131 else if (self_referential_component_ref_p (*tp))
133 *walk_subtrees = 0;
134 return NULL_TREE;
137 /* We're not supposed to have them in self-referential size trees
138 because we wouldn't properly control when they are evaluated.
139 However, not creating superfluous SAVE_EXPRs requires accurate
140 tracking of readonly-ness all the way down to here, which we
141 cannot always guarantee in practice. So punt in this case. */
142 else if (code == SAVE_EXPR)
143 return error_mark_node;
145 else if (code == STATEMENT_LIST)
146 gcc_unreachable ();
148 return copy_tree_r (tp, walk_subtrees, data);
151 /* Given a SIZE expression that is self-referential, return an equivalent
152 expression to serve as the actual size expression for a type. */
154 static tree
155 self_referential_size (tree size)
157 static unsigned HOST_WIDE_INT fnno = 0;
158 vec<tree> self_refs = vNULL;
159 tree param_type_list = NULL, param_decl_list = NULL;
160 tree t, ref, return_type, fntype, fnname, fndecl;
161 unsigned int i;
162 char buf[128];
163 vec<tree, va_gc> *args = NULL;
165 /* Do not factor out simple operations. */
166 t = skip_simple_constant_arithmetic (size);
167 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
168 return size;
170 /* Collect the list of self-references in the expression. */
171 find_placeholder_in_expr (size, &self_refs);
172 gcc_assert (self_refs.length () > 0);
174 /* Obtain a private copy of the expression. */
175 t = size;
176 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
177 return size;
178 size = t;
180 /* Build the parameter and argument lists in parallel; also
181 substitute the former for the latter in the expression. */
182 vec_alloc (args, self_refs.length ());
183 FOR_EACH_VEC_ELT (self_refs, i, ref)
185 tree subst, param_name, param_type, param_decl;
187 if (DECL_P (ref))
189 /* We shouldn't have true variables here. */
190 gcc_assert (TREE_READONLY (ref));
191 subst = ref;
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (TREE_CODE (ref) == ADDR_EXPR)
195 subst = ref;
196 /* Default case: the component reference. */
197 else
198 subst = TREE_OPERAND (ref, 1);
200 sprintf (buf, "p%d", i);
201 param_name = get_identifier (buf);
202 param_type = TREE_TYPE (ref);
203 param_decl
204 = build_decl (input_location, PARM_DECL, param_name, param_type);
205 DECL_ARG_TYPE (param_decl) = param_type;
206 DECL_ARTIFICIAL (param_decl) = 1;
207 TREE_READONLY (param_decl) = 1;
209 size = substitute_in_expr (size, subst, param_decl);
211 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
212 param_decl_list = chainon (param_decl, param_decl_list);
213 args->quick_push (ref);
216 self_refs.release ();
218 /* Append 'void' to indicate that the number of parameters is fixed. */
219 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
221 /* The 3 lists have been created in reverse order. */
222 param_type_list = nreverse (param_type_list);
223 param_decl_list = nreverse (param_decl_list);
225 /* Build the function type. */
226 return_type = TREE_TYPE (size);
227 fntype = build_function_type (return_type, param_type_list);
229 /* Build the function declaration. */
230 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
231 fnname = get_file_function_name (buf);
232 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
233 for (t = param_decl_list; t; t = DECL_CHAIN (t))
234 DECL_CONTEXT (t) = fndecl;
235 DECL_ARGUMENTS (fndecl) = param_decl_list;
236 DECL_RESULT (fndecl)
237 = build_decl (input_location, RESULT_DECL, 0, return_type);
238 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
240 /* The function has been created by the compiler and we don't
241 want to emit debug info for it. */
242 DECL_ARTIFICIAL (fndecl) = 1;
243 DECL_IGNORED_P (fndecl) = 1;
245 /* It is supposed to be "const" and never throw. */
246 TREE_READONLY (fndecl) = 1;
247 TREE_NOTHROW (fndecl) = 1;
249 /* We want it to be inlined when this is deemed profitable, as
250 well as discarded if every call has been integrated. */
251 DECL_DECLARED_INLINE_P (fndecl) = 1;
253 /* It is made up of a unique return statement. */
254 DECL_INITIAL (fndecl) = make_node (BLOCK);
255 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
256 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
257 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
258 TREE_STATIC (fndecl) = 1;
260 /* Put it onto the list of size functions. */
261 vec_safe_push (size_functions, fndecl);
263 /* Replace the original expression with a call to the size function. */
264 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
267 /* Take, queue and compile all the size functions. It is essential that
268 the size functions be gimplified at the very end of the compilation
269 in order to guarantee transparent handling of self-referential sizes.
270 Otherwise the GENERIC inliner would not be able to inline them back
271 at each of their call sites, thus creating artificial non-constant
272 size expressions which would trigger nasty problems later on. */
274 void
275 finalize_size_functions (void)
277 unsigned int i;
278 tree fndecl;
280 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
282 allocate_struct_function (fndecl, false);
283 set_cfun (NULL);
284 dump_function (TDI_original, fndecl);
286 /* As these functions are used to describe the layout of variable-length
287 structures, debug info generation needs their implementation. */
288 debug_hooks->size_function (fndecl);
289 gimplify_function_tree (fndecl);
290 cgraph_node::finalize_function (fndecl, false);
293 vec_free (size_functions);
296 /* Return a machine mode of class MCLASS with SIZE bits of precision,
297 if one exists. The mode may have padding bits as well the SIZE
298 value bits. If LIMIT is nonzero, disregard modes wider than
299 MAX_FIXED_MODE_SIZE. */
301 opt_machine_mode
302 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
304 machine_mode mode;
305 int i;
307 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
308 return opt_machine_mode ();
310 /* Get the first mode which has this size, in the specified class. */
311 FOR_EACH_MODE_IN_CLASS (mode, mclass)
312 if (known_eq (GET_MODE_PRECISION (mode), size))
313 return mode;
315 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
316 for (i = 0; i < NUM_INT_N_ENTS; i ++)
317 if (known_eq (int_n_data[i].bitsize, size)
318 && int_n_enabled_p[i])
319 return int_n_data[i].m;
321 return opt_machine_mode ();
324 /* Similar, except passed a tree node. */
326 opt_machine_mode
327 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
329 unsigned HOST_WIDE_INT uhwi;
330 unsigned int ui;
332 if (!tree_fits_uhwi_p (size))
333 return opt_machine_mode ();
334 uhwi = tree_to_uhwi (size);
335 ui = uhwi;
336 if (uhwi != ui)
337 return opt_machine_mode ();
338 return mode_for_size (ui, mclass, limit);
341 /* Return the narrowest mode of class MCLASS that contains at least
342 SIZE bits. Abort if no such mode exists. */
344 machine_mode
345 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
347 machine_mode mode = VOIDmode;
348 int i;
350 /* Get the first mode which has at least this size, in the
351 specified class. */
352 FOR_EACH_MODE_IN_CLASS (mode, mclass)
353 if (known_ge (GET_MODE_PRECISION (mode), size))
354 break;
356 gcc_assert (mode != VOIDmode);
358 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
359 for (i = 0; i < NUM_INT_N_ENTS; i ++)
360 if (known_ge (int_n_data[i].bitsize, size)
361 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
362 && int_n_enabled_p[i])
363 mode = int_n_data[i].m;
365 return mode;
368 /* Return an integer mode of exactly the same size as MODE, if one exists. */
370 opt_scalar_int_mode
371 int_mode_for_mode (machine_mode mode)
373 switch (GET_MODE_CLASS (mode))
375 case MODE_INT:
376 case MODE_PARTIAL_INT:
377 return as_a <scalar_int_mode> (mode);
379 case MODE_COMPLEX_INT:
380 case MODE_COMPLEX_FLOAT:
381 case MODE_FLOAT:
382 case MODE_DECIMAL_FLOAT:
383 case MODE_FRACT:
384 case MODE_ACCUM:
385 case MODE_UFRACT:
386 case MODE_UACCUM:
387 case MODE_VECTOR_BOOL:
388 case MODE_VECTOR_INT:
389 case MODE_VECTOR_FLOAT:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
396 case MODE_OPAQUE:
397 return opt_scalar_int_mode ();
399 case MODE_RANDOM:
400 if (mode == BLKmode)
401 return opt_scalar_int_mode ();
403 /* fall through */
405 case MODE_CC:
406 default:
407 gcc_unreachable ();
411 /* Find a mode that can be used for efficient bitwise operations on MODE,
412 if one exists. */
414 opt_machine_mode
415 bitwise_mode_for_mode (machine_mode mode)
417 /* Quick exit if we already have a suitable mode. */
418 scalar_int_mode int_mode;
419 if (is_a <scalar_int_mode> (mode, &int_mode)
420 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
421 return int_mode;
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
426 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
428 /* Try to replace complex modes with complex modes. In general we
429 expect both components to be processed independently, so we only
430 care whether there is a register for the inner mode. */
431 if (COMPLEX_MODE_P (mode))
433 machine_mode trial = mode;
434 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
435 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
436 && have_regs_of_mode[GET_MODE_INNER (trial)])
437 return trial;
440 /* Try to replace vector modes with vector modes. Also try using vector
441 modes if an integer mode would be too big. */
442 if (VECTOR_MODE_P (mode)
443 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
445 machine_mode trial = mode;
446 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
447 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
448 && have_regs_of_mode[trial]
449 && targetm.vector_mode_supported_p (trial))
450 return trial;
453 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
454 return mode_for_size (bitsize, MODE_INT, true);
457 /* Find a type that can be used for efficient bitwise operations on MODE.
458 Return null if no such mode exists. */
460 tree
461 bitwise_type_for_mode (machine_mode mode)
463 if (!bitwise_mode_for_mode (mode).exists (&mode))
464 return NULL_TREE;
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
479 /* Find a mode that is suitable for representing a vector with NUNITS
480 elements of mode INNERMODE, if one exists. The returned mode can be
481 either an integer mode or a vector mode. */
483 opt_machine_mode
484 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
486 machine_mode mode;
488 /* First, look for a supported vector type. */
489 if (SCALAR_FLOAT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_FLOAT;
491 else if (SCALAR_FRACT_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_FRACT;
493 else if (SCALAR_UFRACT_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UFRACT;
495 else if (SCALAR_ACCUM_MODE_P (innermode))
496 mode = MIN_MODE_VECTOR_ACCUM;
497 else if (SCALAR_UACCUM_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_UACCUM;
499 else
500 mode = MIN_MODE_VECTOR_INT;
502 /* Only check the broader vector_mode_supported_any_target_p here.
503 We'll filter through target-specific availability and
504 vector_mode_supported_p later in vector_type_mode. */
505 FOR_EACH_MODE_FROM (mode, mode)
506 if (known_eq (GET_MODE_NUNITS (mode), nunits)
507 && GET_MODE_INNER (mode) == innermode
508 && targetm.vector_mode_supported_any_target_p (mode))
509 return mode;
511 /* For integers, try mapping it to a same-sized scalar mode. */
512 if (GET_MODE_CLASS (innermode) == MODE_INT)
514 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
515 if (int_mode_for_size (nbits, 0).exists (&mode)
516 && have_regs_of_mode[mode])
517 return mode;
520 return opt_machine_mode ();
523 /* If a piece of code is using vector mode VECTOR_MODE and also wants
524 to operate on elements of mode ELEMENT_MODE, return the vector mode
525 it should use for those elements. If NUNITS is nonzero, ensure that
526 the mode has exactly NUNITS elements, otherwise pick whichever vector
527 size pairs the most naturally with VECTOR_MODE; this may mean choosing
528 a mode with a different size and/or number of elements, depending on
529 what the target prefers. Return an empty opt_machine_mode if there
530 is no supported vector mode with the required properties.
532 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
533 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
535 opt_machine_mode
536 related_vector_mode (machine_mode vector_mode, scalar_mode element_mode,
537 poly_uint64 nunits)
539 gcc_assert (VECTOR_MODE_P (vector_mode));
540 return targetm.vectorize.related_mode (vector_mode, element_mode, nunits);
543 /* If a piece of code is using vector mode VECTOR_MODE and also wants
544 to operate on integer vectors with the same element size and number
545 of elements, return the vector mode it should use. Return an empty
546 opt_machine_mode if there is no supported vector mode with the
547 required properties.
549 Unlike mode_for_vector. any returned mode is guaranteed to satisfy
550 both VECTOR_MODE_P and targetm.vector_mode_supported_p. */
552 opt_machine_mode
553 related_int_vector_mode (machine_mode vector_mode)
555 gcc_assert (VECTOR_MODE_P (vector_mode));
556 scalar_int_mode int_mode;
557 if (int_mode_for_mode (GET_MODE_INNER (vector_mode)).exists (&int_mode))
558 return related_vector_mode (vector_mode, int_mode,
559 GET_MODE_NUNITS (vector_mode));
560 return opt_machine_mode ();
563 /* Return the alignment of MODE. This will be bounded by 1 and
564 BIGGEST_ALIGNMENT. */
566 unsigned int
567 get_mode_alignment (machine_mode mode)
569 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
572 /* Return the natural mode of an array, given that it is SIZE bytes in
573 total and has elements of type ELEM_TYPE. */
575 static machine_mode
576 mode_for_array (tree elem_type, tree size)
578 tree elem_size;
579 poly_uint64 int_size, int_elem_size;
580 unsigned HOST_WIDE_INT num_elems;
581 bool limit_p;
583 /* One-element arrays get the component type's mode. */
584 elem_size = TYPE_SIZE (elem_type);
585 if (simple_cst_equal (size, elem_size))
586 return TYPE_MODE (elem_type);
588 limit_p = true;
589 if (poly_int_tree_p (size, &int_size)
590 && poly_int_tree_p (elem_size, &int_elem_size)
591 && maybe_ne (int_elem_size, 0U)
592 && constant_multiple_p (int_size, int_elem_size, &num_elems))
594 machine_mode elem_mode = TYPE_MODE (elem_type);
595 machine_mode mode;
596 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
597 return mode;
598 if (targetm.array_mode_supported_p (elem_mode, num_elems))
599 limit_p = false;
601 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
604 /* Subroutine of layout_decl: Force alignment required for the data type.
605 But if the decl itself wants greater alignment, don't override that. */
607 static inline void
608 do_type_align (tree type, tree decl)
610 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
612 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
613 if (TREE_CODE (decl) == FIELD_DECL)
614 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
616 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
617 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
620 /* Set the size, mode and alignment of a ..._DECL node.
621 TYPE_DECL does need this for C++.
622 Note that LABEL_DECL and CONST_DECL nodes do not need this,
623 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
624 Don't call layout_decl for them.
626 KNOWN_ALIGN is the amount of alignment we can assume this
627 decl has with no special effort. It is relevant only for FIELD_DECLs
628 and depends on the previous fields.
629 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
630 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
631 the record will be aligned to suit. */
633 void
634 layout_decl (tree decl, unsigned int known_align)
636 tree type = TREE_TYPE (decl);
637 enum tree_code code = TREE_CODE (decl);
638 rtx rtl = NULL_RTX;
639 location_t loc = DECL_SOURCE_LOCATION (decl);
641 if (code == CONST_DECL)
642 return;
644 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
645 || code == TYPE_DECL || code == FIELD_DECL);
647 rtl = DECL_RTL_IF_SET (decl);
649 if (type == error_mark_node)
650 type = void_type_node;
652 /* Usually the size and mode come from the data type without change,
653 however, the front-end may set the explicit width of the field, so its
654 size may not be the same as the size of its type. This happens with
655 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
656 also happens with other fields. For example, the C++ front-end creates
657 zero-sized fields corresponding to empty base classes, and depends on
658 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
659 size in bytes from the size in bits. If we have already set the mode,
660 don't set it again since we can be called twice for FIELD_DECLs. */
662 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
663 if (DECL_MODE (decl) == VOIDmode)
664 SET_DECL_MODE (decl, TYPE_MODE (type));
666 if (DECL_SIZE (decl) == 0)
668 DECL_SIZE (decl) = TYPE_SIZE (type);
669 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
671 else if (DECL_SIZE_UNIT (decl) == 0)
672 DECL_SIZE_UNIT (decl)
673 = fold_convert_loc (loc, sizetype,
674 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
675 bitsize_unit_node));
677 if (code != FIELD_DECL)
678 /* For non-fields, update the alignment from the type. */
679 do_type_align (type, decl);
680 else
681 /* For fields, it's a bit more complicated... */
683 bool old_user_align = DECL_USER_ALIGN (decl);
684 bool zero_bitfield = false;
685 bool packed_p = DECL_PACKED (decl);
686 unsigned int mfa;
688 if (DECL_BIT_FIELD (decl))
690 DECL_BIT_FIELD_TYPE (decl) = type;
692 /* A zero-length bit-field affects the alignment of the next
693 field. In essence such bit-fields are not influenced by
694 any packing due to #pragma pack or attribute packed. */
695 if (integer_zerop (DECL_SIZE (decl))
696 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
698 zero_bitfield = true;
699 packed_p = false;
700 if (PCC_BITFIELD_TYPE_MATTERS)
701 do_type_align (type, decl);
702 else
704 #ifdef EMPTY_FIELD_BOUNDARY
705 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
707 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
708 DECL_USER_ALIGN (decl) = 0;
710 #endif
714 /* See if we can use an ordinary integer mode for a bit-field.
715 Conditions are: a fixed size that is correct for another mode,
716 occupying a complete byte or bytes on proper boundary. */
717 if (TYPE_SIZE (type) != 0
718 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
719 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
721 machine_mode xmode;
722 if (mode_for_size_tree (DECL_SIZE (decl),
723 MODE_INT, 1).exists (&xmode))
725 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
726 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
727 && (known_align == 0 || known_align >= xalign))
729 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
730 SET_DECL_MODE (decl, xmode);
731 DECL_BIT_FIELD (decl) = 0;
736 /* Turn off DECL_BIT_FIELD if we won't need it set. */
737 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
738 && known_align >= TYPE_ALIGN (type)
739 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
740 DECL_BIT_FIELD (decl) = 0;
742 else if (packed_p && DECL_USER_ALIGN (decl))
743 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
744 round up; we'll reduce it again below. We want packing to
745 supersede USER_ALIGN inherited from the type, but defer to
746 alignment explicitly specified on the field decl. */;
747 else
748 do_type_align (type, decl);
750 /* If the field is packed and not explicitly aligned, give it the
751 minimum alignment. Note that do_type_align may set
752 DECL_USER_ALIGN, so we need to check old_user_align instead. */
753 if (packed_p
754 && !old_user_align)
755 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
757 if (! packed_p && ! DECL_USER_ALIGN (decl))
759 /* Some targets (i.e. i386, VMS) limit struct field alignment
760 to a lower boundary than alignment of variables unless
761 it was overridden by attribute aligned. */
762 #ifdef BIGGEST_FIELD_ALIGNMENT
763 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
764 (unsigned) BIGGEST_FIELD_ALIGNMENT));
765 #endif
766 #ifdef ADJUST_FIELD_ALIGN
767 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
768 DECL_ALIGN (decl)));
769 #endif
772 if (zero_bitfield)
773 mfa = initial_max_fld_align * BITS_PER_UNIT;
774 else
775 mfa = maximum_field_alignment;
776 /* Should this be controlled by DECL_USER_ALIGN, too? */
777 if (mfa != 0)
778 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
781 /* Evaluate nonconstant size only once, either now or as soon as safe. */
782 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
783 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
784 if (DECL_SIZE_UNIT (decl) != 0
785 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
786 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
788 /* If requested, warn about definitions of large data objects. */
789 if ((code == PARM_DECL || (code == VAR_DECL && !DECL_NONLOCAL_FRAME (decl)))
790 && !DECL_EXTERNAL (decl))
792 tree size = DECL_SIZE_UNIT (decl);
794 if (size != 0 && TREE_CODE (size) == INTEGER_CST)
796 /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
797 as if PTRDIFF_MAX had been specified, with the value
798 being that on the target rather than the host. */
799 unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
800 if (max_size == HOST_WIDE_INT_MAX)
801 max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
803 if (compare_tree_int (size, max_size) > 0)
804 warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
805 "maximum object size %wu",
806 decl, size, max_size);
810 /* If the RTL was already set, update its mode and mem attributes. */
811 if (rtl)
813 PUT_MODE (rtl, DECL_MODE (decl));
814 SET_DECL_RTL (decl, 0);
815 if (MEM_P (rtl))
816 set_mem_attributes (rtl, decl, 1);
817 SET_DECL_RTL (decl, rtl);
821 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
822 results of a previous call to layout_decl and calls it again. */
824 void
825 relayout_decl (tree decl)
827 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
828 SET_DECL_MODE (decl, VOIDmode);
829 if (!DECL_USER_ALIGN (decl))
830 SET_DECL_ALIGN (decl, 0);
831 if (DECL_RTL_SET_P (decl))
832 SET_DECL_RTL (decl, 0);
834 layout_decl (decl, 0);
837 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
838 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
839 is to be passed to all other layout functions for this record. It is the
840 responsibility of the caller to call `free' for the storage returned.
841 Note that garbage collection is not permitted until we finish laying
842 out the record. */
844 record_layout_info
845 start_record_layout (tree t)
847 record_layout_info rli = XNEW (struct record_layout_info_s);
849 rli->t = t;
851 /* If the type has a minimum specified alignment (via an attribute
852 declaration, for example) use it -- otherwise, start with a
853 one-byte alignment. */
854 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
855 rli->unpacked_align = rli->record_align;
856 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
858 #ifdef STRUCTURE_SIZE_BOUNDARY
859 /* Packed structures don't need to have minimum size. */
860 if (! TYPE_PACKED (t))
862 unsigned tmp;
864 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
865 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
866 if (maximum_field_alignment != 0)
867 tmp = MIN (tmp, maximum_field_alignment);
868 rli->record_align = MAX (rli->record_align, tmp);
870 #endif
872 rli->offset = size_zero_node;
873 rli->bitpos = bitsize_zero_node;
874 rli->prev_field = 0;
875 rli->pending_statics = 0;
876 rli->packed_maybe_necessary = 0;
877 rli->remaining_in_alignment = 0;
879 return rli;
882 /* Fold sizetype value X to bitsizetype, given that X represents a type
883 size or offset. */
885 static tree
886 bits_from_bytes (tree x)
888 if (POLY_INT_CST_P (x))
889 /* The runtime calculation isn't allowed to overflow sizetype;
890 increasing the runtime values must always increase the size
891 or offset of the object. This means that the object imposes
892 a maximum value on the runtime parameters, but we don't record
893 what that is. */
894 return build_poly_int_cst
895 (bitsizetype,
896 poly_wide_int::from (poly_int_cst_value (x),
897 TYPE_PRECISION (bitsizetype),
898 TYPE_SIGN (TREE_TYPE (x))));
899 x = fold_convert (bitsizetype, x);
900 gcc_checking_assert (x);
901 return x;
904 /* Return the combined bit position for the byte offset OFFSET and the
905 bit position BITPOS.
907 These functions operate on byte and bit positions present in FIELD_DECLs
908 and assume that these expressions result in no (intermediate) overflow.
909 This assumption is necessary to fold the expressions as much as possible,
910 so as to avoid creating artificially variable-sized types in languages
911 supporting variable-sized types like Ada. */
913 tree
914 bit_from_pos (tree offset, tree bitpos)
916 return size_binop (PLUS_EXPR, bitpos,
917 size_binop (MULT_EXPR, bits_from_bytes (offset),
918 bitsize_unit_node));
921 /* Return the combined truncated byte position for the byte offset OFFSET and
922 the bit position BITPOS. */
924 tree
925 byte_from_pos (tree offset, tree bitpos)
927 tree bytepos;
928 if (TREE_CODE (bitpos) == MULT_EXPR
929 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
930 bytepos = TREE_OPERAND (bitpos, 0);
931 else
932 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
933 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
936 /* Split the bit position POS into a byte offset *POFFSET and a bit
937 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
939 void
940 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
941 tree pos)
943 tree toff_align = bitsize_int (off_align);
944 if (TREE_CODE (pos) == MULT_EXPR
945 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
947 *poffset = size_binop (MULT_EXPR,
948 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
949 size_int (off_align / BITS_PER_UNIT));
950 *pbitpos = bitsize_zero_node;
952 else
954 *poffset = size_binop (MULT_EXPR,
955 fold_convert (sizetype,
956 size_binop (FLOOR_DIV_EXPR, pos,
957 toff_align)),
958 size_int (off_align / BITS_PER_UNIT));
959 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
963 /* Given a pointer to bit and byte offsets and an offset alignment,
964 normalize the offsets so they are within the alignment. */
966 void
967 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
969 /* If the bit position is now larger than it should be, adjust it
970 downwards. */
971 if (compare_tree_int (*pbitpos, off_align) >= 0)
973 tree offset, bitpos;
974 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
975 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
976 *pbitpos = bitpos;
980 /* Print debugging information about the information in RLI. */
982 DEBUG_FUNCTION void
983 debug_rli (record_layout_info rli)
985 print_node_brief (stderr, "type", rli->t, 0);
986 print_node_brief (stderr, "\noffset", rli->offset, 0);
987 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
989 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
990 rli->record_align, rli->unpacked_align,
991 rli->offset_align);
993 /* The ms_struct code is the only that uses this. */
994 if (targetm.ms_bitfield_layout_p (rli->t))
995 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
997 if (rli->packed_maybe_necessary)
998 fprintf (stderr, "packed may be necessary\n");
1000 if (!vec_safe_is_empty (rli->pending_statics))
1002 fprintf (stderr, "pending statics:\n");
1003 debug (rli->pending_statics);
1007 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
1008 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
1010 void
1011 normalize_rli (record_layout_info rli)
1013 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
1016 /* Returns the size in bytes allocated so far. */
1018 tree
1019 rli_size_unit_so_far (record_layout_info rli)
1021 return byte_from_pos (rli->offset, rli->bitpos);
1024 /* Returns the size in bits allocated so far. */
1026 tree
1027 rli_size_so_far (record_layout_info rli)
1029 return bit_from_pos (rli->offset, rli->bitpos);
1032 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1033 the next available location within the record is given by KNOWN_ALIGN.
1034 Update the variable alignment fields in RLI, and return the alignment
1035 to give the FIELD. */
1037 unsigned int
1038 update_alignment_for_field (record_layout_info rli, tree field,
1039 unsigned int known_align)
1041 /* The alignment required for FIELD. */
1042 unsigned int desired_align;
1043 /* The type of this field. */
1044 tree type = TREE_TYPE (field);
1045 /* True if the field was explicitly aligned by the user. */
1046 bool user_align;
1047 bool is_bitfield;
1049 /* Do not attempt to align an ERROR_MARK node */
1050 if (TREE_CODE (type) == ERROR_MARK)
1051 return 0;
1053 /* Lay out the field so we know what alignment it needs. */
1054 layout_decl (field, known_align);
1055 desired_align = DECL_ALIGN (field);
1056 user_align = DECL_USER_ALIGN (field);
1058 is_bitfield = (type != error_mark_node
1059 && DECL_BIT_FIELD_TYPE (field)
1060 && ! integer_zerop (TYPE_SIZE (type)));
1062 /* Record must have at least as much alignment as any field.
1063 Otherwise, the alignment of the field within the record is
1064 meaningless. */
1065 if (targetm.ms_bitfield_layout_p (rli->t))
1067 /* Here, the alignment of the underlying type of a bitfield can
1068 affect the alignment of a record; even a zero-sized field
1069 can do this. The alignment should be to the alignment of
1070 the type, except that for zero-size bitfields this only
1071 applies if there was an immediately prior, nonzero-size
1072 bitfield. (That's the way it is, experimentally.) */
1073 if (!is_bitfield
1074 || ((DECL_SIZE (field) == NULL_TREE
1075 || !integer_zerop (DECL_SIZE (field)))
1076 ? !DECL_PACKED (field)
1077 : (rli->prev_field
1078 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1079 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1081 unsigned int type_align = TYPE_ALIGN (type);
1082 if (!is_bitfield && DECL_PACKED (field))
1083 type_align = desired_align;
1084 else
1085 type_align = MAX (type_align, desired_align);
1086 if (maximum_field_alignment != 0)
1087 type_align = MIN (type_align, maximum_field_alignment);
1088 rli->record_align = MAX (rli->record_align, type_align);
1089 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1092 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1094 /* Named bit-fields cause the entire structure to have the
1095 alignment implied by their type. Some targets also apply the same
1096 rules to unnamed bitfields. */
1097 if (DECL_NAME (field) != 0
1098 || targetm.align_anon_bitfield ())
1100 unsigned int type_align = TYPE_ALIGN (type);
1102 #ifdef ADJUST_FIELD_ALIGN
1103 if (! TYPE_USER_ALIGN (type))
1104 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1105 #endif
1107 /* Targets might chose to handle unnamed and hence possibly
1108 zero-width bitfield. Those are not influenced by #pragmas
1109 or packed attributes. */
1110 if (integer_zerop (DECL_SIZE (field)))
1112 if (initial_max_fld_align)
1113 type_align = MIN (type_align,
1114 initial_max_fld_align * BITS_PER_UNIT);
1116 else if (maximum_field_alignment != 0)
1117 type_align = MIN (type_align, maximum_field_alignment);
1118 else if (DECL_PACKED (field))
1119 type_align = MIN (type_align, BITS_PER_UNIT);
1121 /* The alignment of the record is increased to the maximum
1122 of the current alignment, the alignment indicated on the
1123 field (i.e., the alignment specified by an __aligned__
1124 attribute), and the alignment indicated by the type of
1125 the field. */
1126 rli->record_align = MAX (rli->record_align, desired_align);
1127 rli->record_align = MAX (rli->record_align, type_align);
1129 if (warn_packed)
1130 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1131 user_align |= TYPE_USER_ALIGN (type);
1134 else
1136 rli->record_align = MAX (rli->record_align, desired_align);
1137 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1140 TYPE_USER_ALIGN (rli->t) |= user_align;
1142 return desired_align;
1145 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1146 the field alignment of FIELD or FIELD isn't aligned. */
1148 static void
1149 handle_warn_if_not_align (tree field, unsigned int record_align)
1151 tree type = TREE_TYPE (field);
1153 if (type == error_mark_node)
1154 return;
1156 unsigned int warn_if_not_align = 0;
1158 int opt_w = 0;
1160 if (warn_if_not_aligned)
1162 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1163 if (!warn_if_not_align)
1164 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1165 if (warn_if_not_align)
1166 opt_w = OPT_Wif_not_aligned;
1169 if (!warn_if_not_align
1170 && warn_packed_not_aligned
1171 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1173 warn_if_not_align = TYPE_ALIGN (type);
1174 opt_w = OPT_Wpacked_not_aligned;
1177 if (!warn_if_not_align)
1178 return;
1180 tree context = DECL_CONTEXT (field);
1182 warn_if_not_align /= BITS_PER_UNIT;
1183 record_align /= BITS_PER_UNIT;
1184 if ((record_align % warn_if_not_align) != 0)
1185 warning (opt_w, "alignment %u of %qT is less than %u",
1186 record_align, context, warn_if_not_align);
1188 tree off = byte_position (field);
1189 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1191 if (TREE_CODE (off) == INTEGER_CST)
1192 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1193 field, off, context, warn_if_not_align);
1194 else
1195 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1196 field, off, context, warn_if_not_align);
1200 /* Called from place_field to handle unions. */
1202 static void
1203 place_union_field (record_layout_info rli, tree field)
1205 update_alignment_for_field (rli, field, /*known_align=*/0);
1207 DECL_FIELD_OFFSET (field) = size_zero_node;
1208 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1209 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1210 handle_warn_if_not_align (field, rli->record_align);
1212 /* If this is an ERROR_MARK return *after* having set the
1213 field at the start of the union. This helps when parsing
1214 invalid fields. */
1215 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1216 return;
1218 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1219 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1220 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1222 /* We assume the union's size will be a multiple of a byte so we don't
1223 bother with BITPOS. */
1224 if (TREE_CODE (rli->t) == UNION_TYPE)
1225 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1226 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1227 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1228 DECL_SIZE_UNIT (field), rli->offset);
1231 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1232 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1233 units of alignment than the underlying TYPE. */
1234 static int
1235 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1236 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1238 /* Note that the calculation of OFFSET might overflow; we calculate it so
1239 that we still get the right result as long as ALIGN is a power of two. */
1240 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1242 offset = offset % align;
1243 return ((offset + size + align - 1) / align
1244 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1247 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1248 is a FIELD_DECL to be added after those fields already present in
1249 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1250 callers that desire that behavior must manually perform that step.) */
1252 void
1253 place_field (record_layout_info rli, tree field)
1255 /* The alignment required for FIELD. */
1256 unsigned int desired_align;
1257 /* The alignment FIELD would have if we just dropped it into the
1258 record as it presently stands. */
1259 unsigned int known_align;
1260 unsigned int actual_align;
1261 /* The type of this field. */
1262 tree type = TREE_TYPE (field);
1264 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1266 /* If FIELD is static, then treat it like a separate variable, not
1267 really like a structure field. If it is a FUNCTION_DECL, it's a
1268 method. In both cases, all we do is lay out the decl, and we do
1269 it *after* the record is laid out. */
1270 if (VAR_P (field))
1272 vec_safe_push (rli->pending_statics, field);
1273 return;
1276 /* Enumerators and enum types which are local to this class need not
1277 be laid out. Likewise for initialized constant fields. */
1278 else if (TREE_CODE (field) != FIELD_DECL)
1279 return;
1281 /* Unions are laid out very differently than records, so split
1282 that code off to another function. */
1283 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1285 place_union_field (rli, field);
1286 return;
1289 else if (TREE_CODE (type) == ERROR_MARK)
1291 /* Place this field at the current allocation position, so we
1292 maintain monotonicity. */
1293 DECL_FIELD_OFFSET (field) = rli->offset;
1294 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1295 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1296 handle_warn_if_not_align (field, rli->record_align);
1297 return;
1300 if (AGGREGATE_TYPE_P (type)
1301 && TYPE_TYPELESS_STORAGE (type))
1302 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1304 /* Work out the known alignment so far. Note that A & (-A) is the
1305 value of the least-significant bit in A that is one. */
1306 if (! integer_zerop (rli->bitpos))
1307 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1308 else if (integer_zerop (rli->offset))
1309 known_align = 0;
1310 else if (tree_fits_uhwi_p (rli->offset))
1311 known_align = (BITS_PER_UNIT
1312 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1313 else
1314 known_align = rli->offset_align;
1316 desired_align = update_alignment_for_field (rli, field, known_align);
1317 if (known_align == 0)
1318 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1320 if (warn_packed && DECL_PACKED (field))
1322 if (known_align >= TYPE_ALIGN (type))
1324 if (TYPE_ALIGN (type) > desired_align)
1326 if (STRICT_ALIGNMENT)
1327 warning (OPT_Wattributes, "packed attribute causes "
1328 "inefficient alignment for %q+D", field);
1329 /* Don't warn if DECL_PACKED was set by the type. */
1330 else if (!TYPE_PACKED (rli->t))
1331 warning (OPT_Wattributes, "packed attribute is "
1332 "unnecessary for %q+D", field);
1335 else
1336 rli->packed_maybe_necessary = 1;
1339 /* Does this field automatically have alignment it needs by virtue
1340 of the fields that precede it and the record's own alignment? */
1341 if (known_align < desired_align
1342 && (! targetm.ms_bitfield_layout_p (rli->t)
1343 || rli->prev_field == NULL))
1345 /* No, we need to skip space before this field.
1346 Bump the cumulative size to multiple of field alignment. */
1348 if (!targetm.ms_bitfield_layout_p (rli->t)
1349 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION
1350 && !TYPE_ARTIFICIAL (rli->t))
1351 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1353 /* If the alignment is still within offset_align, just align
1354 the bit position. */
1355 if (desired_align < rli->offset_align)
1356 rli->bitpos = round_up (rli->bitpos, desired_align);
1357 else
1359 /* First adjust OFFSET by the partial bits, then align. */
1360 rli->offset
1361 = size_binop (PLUS_EXPR, rli->offset,
1362 fold_convert (sizetype,
1363 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1364 bitsize_unit_node)));
1365 rli->bitpos = bitsize_zero_node;
1367 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1370 if (! TREE_CONSTANT (rli->offset))
1371 rli->offset_align = desired_align;
1374 /* Handle compatibility with PCC. Note that if the record has any
1375 variable-sized fields, we need not worry about compatibility. */
1376 if (PCC_BITFIELD_TYPE_MATTERS
1377 && ! targetm.ms_bitfield_layout_p (rli->t)
1378 && TREE_CODE (field) == FIELD_DECL
1379 && type != error_mark_node
1380 && DECL_BIT_FIELD (field)
1381 && (! DECL_PACKED (field)
1382 /* Enter for these packed fields only to issue a warning. */
1383 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1384 && maximum_field_alignment == 0
1385 && ! integer_zerop (DECL_SIZE (field))
1386 && tree_fits_uhwi_p (DECL_SIZE (field))
1387 && tree_fits_uhwi_p (rli->offset)
1388 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1390 unsigned int type_align = TYPE_ALIGN (type);
1391 tree dsize = DECL_SIZE (field);
1392 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1393 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1394 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1396 #ifdef ADJUST_FIELD_ALIGN
1397 if (! TYPE_USER_ALIGN (type))
1398 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1399 #endif
1401 /* A bit field may not span more units of alignment of its type
1402 than its type itself. Advance to next boundary if necessary. */
1403 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1405 if (DECL_PACKED (field))
1407 if (warn_packed_bitfield_compat == 1)
1408 inform
1409 (input_location,
1410 "offset of packed bit-field %qD has changed in GCC 4.4",
1411 field);
1413 else
1414 rli->bitpos = round_up (rli->bitpos, type_align);
1417 if (! DECL_PACKED (field))
1418 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1420 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1421 TYPE_WARN_IF_NOT_ALIGN (type));
1424 #ifdef BITFIELD_NBYTES_LIMITED
1425 if (BITFIELD_NBYTES_LIMITED
1426 && ! targetm.ms_bitfield_layout_p (rli->t)
1427 && TREE_CODE (field) == FIELD_DECL
1428 && type != error_mark_node
1429 && DECL_BIT_FIELD_TYPE (field)
1430 && ! DECL_PACKED (field)
1431 && ! integer_zerop (DECL_SIZE (field))
1432 && tree_fits_uhwi_p (DECL_SIZE (field))
1433 && tree_fits_uhwi_p (rli->offset)
1434 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1436 unsigned int type_align = TYPE_ALIGN (type);
1437 tree dsize = DECL_SIZE (field);
1438 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1439 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1440 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1442 #ifdef ADJUST_FIELD_ALIGN
1443 if (! TYPE_USER_ALIGN (type))
1444 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1445 #endif
1447 if (maximum_field_alignment != 0)
1448 type_align = MIN (type_align, maximum_field_alignment);
1449 /* ??? This test is opposite the test in the containing if
1450 statement, so this code is unreachable currently. */
1451 else if (DECL_PACKED (field))
1452 type_align = MIN (type_align, BITS_PER_UNIT);
1454 /* A bit field may not span the unit of alignment of its type.
1455 Advance to next boundary if necessary. */
1456 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1457 rli->bitpos = round_up (rli->bitpos, type_align);
1459 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1460 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1461 TYPE_WARN_IF_NOT_ALIGN (type));
1463 #endif
1465 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1466 A subtlety:
1467 When a bit field is inserted into a packed record, the whole
1468 size of the underlying type is used by one or more same-size
1469 adjacent bitfields. (That is, if its long:3, 32 bits is
1470 used in the record, and any additional adjacent long bitfields are
1471 packed into the same chunk of 32 bits. However, if the size
1472 changes, a new field of that size is allocated.) In an unpacked
1473 record, this is the same as using alignment, but not equivalent
1474 when packing.
1476 Note: for compatibility, we use the type size, not the type alignment
1477 to determine alignment, since that matches the documentation */
1479 if (targetm.ms_bitfield_layout_p (rli->t))
1481 tree prev_saved = rli->prev_field;
1482 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1484 /* This is a bitfield if it exists. */
1485 if (rli->prev_field)
1487 bool realign_p = known_align < desired_align;
1489 /* If both are bitfields, nonzero, and the same size, this is
1490 the middle of a run. Zero declared size fields are special
1491 and handled as "end of run". (Note: it's nonzero declared
1492 size, but equal type sizes!) (Since we know that both
1493 the current and previous fields are bitfields by the
1494 time we check it, DECL_SIZE must be present for both.) */
1495 if (DECL_BIT_FIELD_TYPE (field)
1496 && !integer_zerop (DECL_SIZE (field))
1497 && !integer_zerop (DECL_SIZE (rli->prev_field))
1498 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1499 && tree_fits_uhwi_p (TYPE_SIZE (type))
1500 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1502 /* We're in the middle of a run of equal type size fields; make
1503 sure we realign if we run out of bits. (Not decl size,
1504 type size!) */
1505 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1507 if (rli->remaining_in_alignment < bitsize)
1509 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1511 /* out of bits; bump up to next 'word'. */
1512 rli->bitpos
1513 = size_binop (PLUS_EXPR, rli->bitpos,
1514 bitsize_int (rli->remaining_in_alignment));
1515 rli->prev_field = field;
1516 if (typesize < bitsize)
1517 rli->remaining_in_alignment = 0;
1518 else
1519 rli->remaining_in_alignment = typesize - bitsize;
1521 else
1523 rli->remaining_in_alignment -= bitsize;
1524 realign_p = false;
1527 else
1529 /* End of a run: if leaving a run of bitfields of the same type
1530 size, we have to "use up" the rest of the bits of the type
1531 size.
1533 Compute the new position as the sum of the size for the prior
1534 type and where we first started working on that type.
1535 Note: since the beginning of the field was aligned then
1536 of course the end will be too. No round needed. */
1538 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1540 rli->bitpos
1541 = size_binop (PLUS_EXPR, rli->bitpos,
1542 bitsize_int (rli->remaining_in_alignment));
1544 else
1545 /* We "use up" size zero fields; the code below should behave
1546 as if the prior field was not a bitfield. */
1547 prev_saved = NULL;
1549 /* Cause a new bitfield to be captured, either this time (if
1550 currently a bitfield) or next time we see one. */
1551 if (!DECL_BIT_FIELD_TYPE (field)
1552 || integer_zerop (DECL_SIZE (field)))
1553 rli->prev_field = NULL;
1556 /* Does this field automatically have alignment it needs by virtue
1557 of the fields that precede it and the record's own alignment? */
1558 if (realign_p)
1560 /* If the alignment is still within offset_align, just align
1561 the bit position. */
1562 if (desired_align < rli->offset_align)
1563 rli->bitpos = round_up (rli->bitpos, desired_align);
1564 else
1566 /* First adjust OFFSET by the partial bits, then align. */
1567 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1568 bitsize_unit_node);
1569 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1570 fold_convert (sizetype, d));
1571 rli->bitpos = bitsize_zero_node;
1573 rli->offset = round_up (rli->offset,
1574 desired_align / BITS_PER_UNIT);
1577 if (! TREE_CONSTANT (rli->offset))
1578 rli->offset_align = desired_align;
1581 normalize_rli (rli);
1584 /* If we're starting a new run of same type size bitfields
1585 (or a run of non-bitfields), set up the "first of the run"
1586 fields.
1588 That is, if the current field is not a bitfield, or if there
1589 was a prior bitfield the type sizes differ, or if there wasn't
1590 a prior bitfield the size of the current field is nonzero.
1592 Note: we must be sure to test ONLY the type size if there was
1593 a prior bitfield and ONLY for the current field being zero if
1594 there wasn't. */
1596 if (!DECL_BIT_FIELD_TYPE (field)
1597 || (prev_saved != NULL
1598 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1599 : !integer_zerop (DECL_SIZE (field))))
1601 /* Never smaller than a byte for compatibility. */
1602 unsigned int type_align = BITS_PER_UNIT;
1604 /* (When not a bitfield), we could be seeing a flex array (with
1605 no DECL_SIZE). Since we won't be using remaining_in_alignment
1606 until we see a bitfield (and come by here again) we just skip
1607 calculating it. */
1608 if (DECL_SIZE (field) != NULL
1609 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1610 && tree_fits_uhwi_p (DECL_SIZE (field)))
1612 unsigned HOST_WIDE_INT bitsize
1613 = tree_to_uhwi (DECL_SIZE (field));
1614 unsigned HOST_WIDE_INT typesize
1615 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1617 if (typesize < bitsize)
1618 rli->remaining_in_alignment = 0;
1619 else
1620 rli->remaining_in_alignment = typesize - bitsize;
1623 /* Now align (conventionally) for the new type. */
1624 if (! DECL_PACKED (field))
1625 type_align = TYPE_ALIGN (TREE_TYPE (field));
1627 if (maximum_field_alignment != 0)
1628 type_align = MIN (type_align, maximum_field_alignment);
1630 rli->bitpos = round_up (rli->bitpos, type_align);
1632 /* If we really aligned, don't allow subsequent bitfields
1633 to undo that. */
1634 rli->prev_field = NULL;
1638 /* Offset so far becomes the position of this field after normalizing. */
1639 normalize_rli (rli);
1640 DECL_FIELD_OFFSET (field) = rli->offset;
1641 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1642 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1643 handle_warn_if_not_align (field, rli->record_align);
1645 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1646 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1647 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1649 /* If this field ended up more aligned than we thought it would be (we
1650 approximate this by seeing if its position changed), lay out the field
1651 again; perhaps we can use an integral mode for it now. */
1652 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1653 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1654 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1655 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1656 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1657 actual_align = (BITS_PER_UNIT
1658 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1659 else
1660 actual_align = DECL_OFFSET_ALIGN (field);
1661 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1662 store / extract bit field operations will check the alignment of the
1663 record against the mode of bit fields. */
1665 if (known_align != actual_align)
1666 layout_decl (field, actual_align);
1668 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1669 rli->prev_field = field;
1671 /* Now add size of this field to the size of the record. If the size is
1672 not constant, treat the field as being a multiple of bytes and just
1673 adjust the offset, resetting the bit position. Otherwise, apportion the
1674 size amongst the bit position and offset. First handle the case of an
1675 unspecified size, which can happen when we have an invalid nested struct
1676 definition, such as struct j { struct j { int i; } }. The error message
1677 is printed in finish_struct. */
1678 if (DECL_SIZE (field) == 0)
1679 /* Do nothing. */;
1680 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1681 || TREE_OVERFLOW (DECL_SIZE (field)))
1683 rli->offset
1684 = size_binop (PLUS_EXPR, rli->offset,
1685 fold_convert (sizetype,
1686 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1687 bitsize_unit_node)));
1688 rli->offset
1689 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1690 rli->bitpos = bitsize_zero_node;
1691 rli->offset_align = MIN (rli->offset_align, desired_align);
1693 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1694 bitsize_int (rli->offset_align)))
1696 tree type = strip_array_types (TREE_TYPE (field));
1697 /* The above adjusts offset_align just based on the start of the
1698 field. The field might not have a size that is a multiple of
1699 that offset_align though. If the field is an array of fixed
1700 sized elements, assume there can be any multiple of those
1701 sizes. If it is a variable length aggregate or array of
1702 variable length aggregates, assume worst that the end is
1703 just BITS_PER_UNIT aligned. */
1704 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1706 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1708 unsigned HOST_WIDE_INT sz
1709 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1710 rli->offset_align = MIN (rli->offset_align, sz);
1713 else
1714 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1717 else if (targetm.ms_bitfield_layout_p (rli->t))
1719 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1721 /* If FIELD is the last field and doesn't end at the full length
1722 of the type then pad the struct out to the full length of the
1723 last type. */
1724 if (DECL_BIT_FIELD_TYPE (field)
1725 && !integer_zerop (DECL_SIZE (field)))
1727 /* We have to scan, because non-field DECLS are also here. */
1728 tree probe = field;
1729 while ((probe = DECL_CHAIN (probe)))
1730 if (TREE_CODE (probe) == FIELD_DECL)
1731 break;
1732 if (!probe)
1733 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1734 bitsize_int (rli->remaining_in_alignment));
1737 normalize_rli (rli);
1739 else
1741 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1742 normalize_rli (rli);
1746 /* Assuming that all the fields have been laid out, this function uses
1747 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1748 indicated by RLI. */
1750 static void
1751 finalize_record_size (record_layout_info rli)
1753 tree unpadded_size, unpadded_size_unit;
1755 /* Now we want just byte and bit offsets, so set the offset alignment
1756 to be a byte and then normalize. */
1757 rli->offset_align = BITS_PER_UNIT;
1758 normalize_rli (rli);
1760 /* Determine the desired alignment. */
1761 #ifdef ROUND_TYPE_ALIGN
1762 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1763 rli->record_align));
1764 #else
1765 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1766 #endif
1768 /* Compute the size so far. Be sure to allow for extra bits in the
1769 size in bytes. We have guaranteed above that it will be no more
1770 than a single byte. */
1771 unpadded_size = rli_size_so_far (rli);
1772 unpadded_size_unit = rli_size_unit_so_far (rli);
1773 if (! integer_zerop (rli->bitpos))
1774 unpadded_size_unit
1775 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1777 /* Round the size up to be a multiple of the required alignment. */
1778 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1779 TYPE_SIZE_UNIT (rli->t)
1780 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1782 if (TREE_CONSTANT (unpadded_size)
1783 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1784 && input_location != BUILTINS_LOCATION
1785 && !TYPE_ARTIFICIAL (rli->t))
1787 tree pad_size
1788 = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (rli->t), unpadded_size_unit);
1789 warning (OPT_Wpadded,
1790 "padding struct size to alignment boundary with %E bytes", pad_size);
1793 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1794 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1795 && TREE_CONSTANT (unpadded_size))
1797 tree unpacked_size;
1799 #ifdef ROUND_TYPE_ALIGN
1800 rli->unpacked_align
1801 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1802 #else
1803 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1804 #endif
1806 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1807 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1809 if (TYPE_NAME (rli->t))
1811 tree name;
1813 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1814 name = TYPE_NAME (rli->t);
1815 else
1816 name = DECL_NAME (TYPE_NAME (rli->t));
1818 if (STRICT_ALIGNMENT)
1819 warning (OPT_Wpacked, "packed attribute causes inefficient "
1820 "alignment for %qE", name);
1821 else
1822 warning (OPT_Wpacked,
1823 "packed attribute is unnecessary for %qE", name);
1825 else
1827 if (STRICT_ALIGNMENT)
1828 warning (OPT_Wpacked,
1829 "packed attribute causes inefficient alignment");
1830 else
1831 warning (OPT_Wpacked, "packed attribute is unnecessary");
1837 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1839 void
1840 compute_record_mode (tree type)
1842 tree field;
1843 machine_mode mode = VOIDmode;
1845 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1846 However, if possible, we use a mode that fits in a register
1847 instead, in order to allow for better optimization down the
1848 line. */
1849 SET_TYPE_MODE (type, BLKmode);
1851 poly_uint64 type_size;
1852 if (!poly_int_tree_p (TYPE_SIZE (type), &type_size))
1853 return;
1855 /* A record which has any BLKmode members must itself be
1856 BLKmode; it can't go in a register. Unless the member is
1857 BLKmode only because it isn't aligned. */
1858 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1860 if (TREE_CODE (field) != FIELD_DECL)
1861 continue;
1863 poly_uint64 field_size;
1864 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1865 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1866 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1867 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1868 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1869 || !tree_fits_poly_uint64_p (bit_position (field))
1870 || DECL_SIZE (field) == 0
1871 || !poly_int_tree_p (DECL_SIZE (field), &field_size))
1872 return;
1874 /* If this field is the whole struct, remember its mode so
1875 that, say, we can put a double in a class into a DF
1876 register instead of forcing it to live in the stack. */
1877 if (known_eq (field_size, type_size)
1878 /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1879 wider types (e.g. int32), despite precision being less. Ensure
1880 that the TYPE_MODE of the struct does not get set to the partial
1881 int mode if there is a wider type also in the struct. */
1882 && known_gt (GET_MODE_PRECISION (DECL_MODE (field)),
1883 GET_MODE_PRECISION (mode)))
1884 mode = DECL_MODE (field);
1886 /* With some targets, it is sub-optimal to access an aligned
1887 BLKmode structure as a scalar. */
1888 if (targetm.member_type_forces_blk (field, mode))
1889 return;
1892 /* If we only have one real field; use its mode if that mode's size
1893 matches the type's size. This generally only applies to RECORD_TYPE.
1894 For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1895 If the widest field is MODE_PARTIAL_INT, and the union will be passed
1896 by reference, then use that mode. */
1897 if ((TREE_CODE (type) == RECORD_TYPE
1898 || (TREE_CODE (type) == UNION_TYPE
1899 && (GET_MODE_CLASS (mode) == MODE_INT
1900 || (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
1901 && (targetm.calls.pass_by_reference
1902 (pack_cumulative_args (0),
1903 function_arg_info (type, mode, /*named=*/false)))))))
1904 && mode != VOIDmode
1905 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1907 else
1908 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1910 /* If structure's known alignment is less than what the scalar
1911 mode would need, and it matters, then stick with BLKmode. */
1912 if (mode != BLKmode
1913 && STRICT_ALIGNMENT
1914 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1915 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1917 /* If this is the only reason this type is BLKmode, then
1918 don't force containing types to be BLKmode. */
1919 TYPE_NO_FORCE_BLK (type) = 1;
1920 mode = BLKmode;
1923 SET_TYPE_MODE (type, mode);
1926 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1927 out. */
1929 static void
1930 finalize_type_size (tree type)
1932 /* Normally, use the alignment corresponding to the mode chosen.
1933 However, where strict alignment is not required, avoid
1934 over-aligning structures, since most compilers do not do this
1935 alignment. */
1936 bool tua_cleared_p = false;
1937 if (TYPE_MODE (type) != BLKmode
1938 && TYPE_MODE (type) != VOIDmode
1939 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1941 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1943 /* Don't override a larger alignment requirement coming from a user
1944 alignment of one of the fields. */
1945 if (mode_align >= TYPE_ALIGN (type))
1947 SET_TYPE_ALIGN (type, mode_align);
1948 /* Remember that we're about to reset this flag. */
1949 tua_cleared_p = TYPE_USER_ALIGN (type);
1950 TYPE_USER_ALIGN (type) = false;
1954 /* Do machine-dependent extra alignment. */
1955 #ifdef ROUND_TYPE_ALIGN
1956 SET_TYPE_ALIGN (type,
1957 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1958 #endif
1960 /* If we failed to find a simple way to calculate the unit size
1961 of the type, find it by division. */
1962 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1963 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1964 result will fit in sizetype. We will get more efficient code using
1965 sizetype, so we force a conversion. */
1966 TYPE_SIZE_UNIT (type)
1967 = fold_convert (sizetype,
1968 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1969 bitsize_unit_node));
1971 if (TYPE_SIZE (type) != 0)
1973 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1974 TYPE_SIZE_UNIT (type)
1975 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1978 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1979 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1980 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1981 if (TYPE_SIZE_UNIT (type) != 0
1982 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1983 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1985 /* Handle empty records as per the x86-64 psABI. */
1986 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1988 /* Also layout any other variants of the type. */
1989 if (TYPE_NEXT_VARIANT (type)
1990 || type != TYPE_MAIN_VARIANT (type))
1992 tree variant;
1993 /* Record layout info of this variant. */
1994 tree size = TYPE_SIZE (type);
1995 tree size_unit = TYPE_SIZE_UNIT (type);
1996 unsigned int align = TYPE_ALIGN (type);
1997 unsigned int precision = TYPE_PRECISION (type);
1998 unsigned int user_align = TYPE_USER_ALIGN (type);
1999 machine_mode mode = TYPE_MODE (type);
2000 bool empty_p = TYPE_EMPTY_P (type);
2001 bool typeless = AGGREGATE_TYPE_P (type) && TYPE_TYPELESS_STORAGE (type);
2003 /* Copy it into all variants. */
2004 for (variant = TYPE_MAIN_VARIANT (type);
2005 variant != NULL_TREE;
2006 variant = TYPE_NEXT_VARIANT (variant))
2008 TYPE_SIZE (variant) = size;
2009 TYPE_SIZE_UNIT (variant) = size_unit;
2010 unsigned valign = align;
2011 if (TYPE_USER_ALIGN (variant))
2013 valign = MAX (valign, TYPE_ALIGN (variant));
2014 /* If we reset TYPE_USER_ALIGN on the main variant, we might
2015 need to reset it on the variants too. TYPE_MODE will be set
2016 to MODE in this variant, so we can use that. */
2017 if (tua_cleared_p && GET_MODE_ALIGNMENT (mode) >= valign)
2018 TYPE_USER_ALIGN (variant) = false;
2020 else
2021 TYPE_USER_ALIGN (variant) = user_align;
2022 SET_TYPE_ALIGN (variant, valign);
2023 TYPE_PRECISION (variant) = precision;
2024 SET_TYPE_MODE (variant, mode);
2025 TYPE_EMPTY_P (variant) = empty_p;
2026 if (AGGREGATE_TYPE_P (variant))
2027 TYPE_TYPELESS_STORAGE (variant) = typeless;
2032 /* Return a new underlying object for a bitfield started with FIELD. */
2034 static tree
2035 start_bitfield_representative (tree field)
2037 tree repr = make_node (FIELD_DECL);
2038 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
2039 /* Force the representative to begin at a BITS_PER_UNIT aligned
2040 boundary - C++ may use tail-padding of a base object to
2041 continue packing bits so the bitfield region does not start
2042 at bit zero (see g++.dg/abi/bitfield5.C for example).
2043 Unallocated bits may happen for other reasons as well,
2044 for example Ada which allows explicit bit-granular structure layout. */
2045 DECL_FIELD_BIT_OFFSET (repr)
2046 = size_binop (BIT_AND_EXPR,
2047 DECL_FIELD_BIT_OFFSET (field),
2048 bitsize_int (~(BITS_PER_UNIT - 1)));
2049 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
2050 DECL_SIZE (repr) = DECL_SIZE (field);
2051 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
2052 DECL_PACKED (repr) = DECL_PACKED (field);
2053 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
2054 /* There are no indirect accesses to this field. If we introduce
2055 some then they have to use the record alias set. This makes
2056 sure to properly conflict with [indirect] accesses to addressable
2057 fields of the bitfield group. */
2058 DECL_NONADDRESSABLE_P (repr) = 1;
2059 return repr;
2062 /* Finish up a bitfield group that was started by creating the underlying
2063 object REPR with the last field in the bitfield group FIELD. */
2065 static void
2066 finish_bitfield_representative (tree repr, tree field)
2068 unsigned HOST_WIDE_INT bitsize, maxbitsize;
2069 tree nextf, size;
2071 size = size_diffop (DECL_FIELD_OFFSET (field),
2072 DECL_FIELD_OFFSET (repr));
2073 while (TREE_CODE (size) == COMPOUND_EXPR)
2074 size = TREE_OPERAND (size, 1);
2075 gcc_assert (tree_fits_uhwi_p (size));
2076 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2077 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2078 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2079 + tree_to_uhwi (DECL_SIZE (field)));
2081 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2082 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2084 /* Now nothing tells us how to pad out bitsize ... */
2085 if (TREE_CODE (DECL_CONTEXT (field)) == RECORD_TYPE)
2087 nextf = DECL_CHAIN (field);
2088 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2089 nextf = DECL_CHAIN (nextf);
2091 else
2092 nextf = NULL_TREE;
2093 if (nextf)
2095 tree maxsize;
2096 /* If there was an error, the field may be not laid out
2097 correctly. Don't bother to do anything. */
2098 if (TREE_TYPE (nextf) == error_mark_node)
2100 TREE_TYPE (repr) = error_mark_node;
2101 return;
2103 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2104 DECL_FIELD_OFFSET (repr));
2105 if (tree_fits_uhwi_p (maxsize))
2107 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2108 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2109 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2110 /* If the group ends within a bitfield nextf does not need to be
2111 aligned to BITS_PER_UNIT. Thus round up. */
2112 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2114 else
2115 maxbitsize = bitsize;
2117 else
2119 /* Note that if the C++ FE sets up tail-padding to be re-used it
2120 creates a as-base variant of the type with TYPE_SIZE adjusted
2121 accordingly. So it is safe to include tail-padding here. */
2122 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2123 (DECL_CONTEXT (field));
2124 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2125 /* We cannot generally rely on maxsize to fold to an integer constant,
2126 so use bitsize as fallback for this case. */
2127 if (tree_fits_uhwi_p (maxsize))
2128 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2129 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2130 else
2131 maxbitsize = bitsize;
2134 /* Only if we don't artificially break up the representative in
2135 the middle of a large bitfield with different possibly
2136 overlapping representatives. And all representatives start
2137 at byte offset. */
2138 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2140 /* Find the smallest nice mode to use. */
2141 opt_scalar_int_mode mode_iter;
2142 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2143 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2144 break;
2146 scalar_int_mode mode;
2147 if (!mode_iter.exists (&mode)
2148 || GET_MODE_BITSIZE (mode) > maxbitsize
2149 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2151 if (TREE_CODE (TREE_TYPE (field)) == BITINT_TYPE)
2153 struct bitint_info info;
2154 unsigned prec = TYPE_PRECISION (TREE_TYPE (field));
2155 bool ok = targetm.c.bitint_type_info (prec, &info);
2156 gcc_assert (ok);
2157 scalar_int_mode limb_mode
2158 = as_a <scalar_int_mode> (info.abi_limb_mode);
2159 unsigned lprec = GET_MODE_PRECISION (limb_mode);
2160 if (prec > lprec)
2162 /* For middle/large/huge _BitInt prefer bitsize being a multiple
2163 of limb precision. */
2164 unsigned HOST_WIDE_INT bsz = CEIL (bitsize, lprec) * lprec;
2165 if (bsz <= maxbitsize)
2166 bitsize = bsz;
2169 /* We really want a BLKmode representative only as a last resort,
2170 considering the member b in
2171 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2172 Otherwise we simply want to split the representative up
2173 allowing for overlaps within the bitfield region as required for
2174 struct { int a : 7; int b : 7;
2175 int c : 10; int d; } __attribute__((packed));
2176 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2177 DECL_SIZE (repr) = bitsize_int (bitsize);
2178 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2179 SET_DECL_MODE (repr, BLKmode);
2180 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2181 bitsize / BITS_PER_UNIT);
2183 else
2185 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2186 DECL_SIZE (repr) = bitsize_int (modesize);
2187 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2188 SET_DECL_MODE (repr, mode);
2189 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2192 /* Remember whether the bitfield group is at the end of the
2193 structure or not. */
2194 DECL_CHAIN (repr) = nextf;
2197 /* Compute and set FIELD_DECLs for the underlying objects we should
2198 use for bitfield access for the structure T. */
2200 void
2201 finish_bitfield_layout (tree t)
2203 tree field, prev;
2204 tree repr = NULL_TREE;
2206 if (TREE_CODE (t) == QUAL_UNION_TYPE)
2207 return;
2209 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2210 field; field = DECL_CHAIN (field))
2212 if (TREE_CODE (field) != FIELD_DECL)
2213 continue;
2215 /* In the C++ memory model, consecutive bit fields in a structure are
2216 considered one memory location and updating a memory location
2217 may not store into adjacent memory locations. */
2218 if (!repr
2219 && DECL_BIT_FIELD_TYPE (field))
2221 /* Start new representative. */
2222 repr = start_bitfield_representative (field);
2224 else if (repr
2225 && ! DECL_BIT_FIELD_TYPE (field))
2227 /* Finish off new representative. */
2228 finish_bitfield_representative (repr, prev);
2229 repr = NULL_TREE;
2231 else if (DECL_BIT_FIELD_TYPE (field))
2233 gcc_assert (repr != NULL_TREE);
2235 /* Zero-size bitfields finish off a representative and
2236 do not have a representative themselves. This is
2237 required by the C++ memory model. */
2238 if (integer_zerop (DECL_SIZE (field)))
2240 finish_bitfield_representative (repr, prev);
2241 repr = NULL_TREE;
2244 /* We assume that either DECL_FIELD_OFFSET of the representative
2245 and each bitfield member is a constant or they are equal.
2246 This is because we need to be able to compute the bit-offset
2247 of each field relative to the representative in get_bit_range
2248 during RTL expansion.
2249 If these constraints are not met, simply force a new
2250 representative to be generated. That will at most
2251 generate worse code but still maintain correctness with
2252 respect to the C++ memory model. */
2253 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2254 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2255 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2256 DECL_FIELD_OFFSET (field), 0)))
2258 finish_bitfield_representative (repr, prev);
2259 repr = start_bitfield_representative (field);
2262 else
2263 continue;
2265 if (repr)
2266 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2268 if (TREE_CODE (t) == RECORD_TYPE)
2269 prev = field;
2270 else if (repr)
2272 finish_bitfield_representative (repr, field);
2273 repr = NULL_TREE;
2277 if (repr)
2278 finish_bitfield_representative (repr, prev);
2281 /* Do all of the work required to layout the type indicated by RLI,
2282 once the fields have been laid out. This function will call `free'
2283 for RLI, unless FREE_P is false. Passing a value other than false
2284 for FREE_P is bad practice; this option only exists to support the
2285 G++ 3.2 ABI. */
2287 void
2288 finish_record_layout (record_layout_info rli, int free_p)
2290 tree variant;
2292 /* Compute the final size. */
2293 finalize_record_size (rli);
2295 /* Compute the TYPE_MODE for the record. */
2296 compute_record_mode (rli->t);
2298 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2299 finalize_type_size (rli->t);
2301 /* Compute bitfield representatives. */
2302 finish_bitfield_layout (rli->t);
2304 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2305 With C++ templates, it is too early to do this when the attribute
2306 is being parsed. */
2307 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2308 variant = TYPE_NEXT_VARIANT (variant))
2310 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2311 TYPE_REVERSE_STORAGE_ORDER (variant)
2312 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2315 /* Lay out any static members. This is done now because their type
2316 may use the record's type. */
2317 while (!vec_safe_is_empty (rli->pending_statics))
2318 layout_decl (rli->pending_statics->pop (), 0);
2320 /* Clean up. */
2321 if (free_p)
2323 vec_free (rli->pending_statics);
2324 free (rli);
2329 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2330 NAME, its fields are chained in reverse on FIELDS.
2332 If ALIGN_TYPE is non-null, it is given the same alignment as
2333 ALIGN_TYPE. */
2335 void
2336 finish_builtin_struct (tree type, const char *name, tree fields,
2337 tree align_type)
2339 tree tail, next;
2341 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2343 DECL_FIELD_CONTEXT (fields) = type;
2344 next = DECL_CHAIN (fields);
2345 DECL_CHAIN (fields) = tail;
2347 TYPE_FIELDS (type) = tail;
2349 if (align_type)
2351 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2352 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2353 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2354 TYPE_WARN_IF_NOT_ALIGN (align_type));
2357 layout_type (type);
2358 #if 0 /* not yet, should get fixed properly later */
2359 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2360 #else
2361 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2362 TYPE_DECL, get_identifier (name), type);
2363 #endif
2364 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2365 layout_decl (TYPE_NAME (type), 0);
2368 /* Calculate the mode, size, and alignment for TYPE.
2369 For an array type, calculate the element separation as well.
2370 Record TYPE on the chain of permanent or temporary types
2371 so that dbxout will find out about it.
2373 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2374 layout_type does nothing on such a type.
2376 If the type is incomplete, its TYPE_SIZE remains zero. */
2378 void
2379 layout_type (tree type)
2381 gcc_assert (type);
2383 if (type == error_mark_node)
2384 return;
2386 /* We don't want finalize_type_size to copy an alignment attribute to
2387 variants that don't have it. */
2388 type = TYPE_MAIN_VARIANT (type);
2390 /* Do nothing if type has been laid out before. */
2391 if (TYPE_SIZE (type))
2392 return;
2394 switch (TREE_CODE (type))
2396 case LANG_TYPE:
2397 /* This kind of type is the responsibility
2398 of the language-specific code. */
2399 gcc_unreachable ();
2401 case BOOLEAN_TYPE:
2402 case INTEGER_TYPE:
2403 case ENUMERAL_TYPE:
2405 scalar_int_mode mode
2406 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2407 SET_TYPE_MODE (type, mode);
2408 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2409 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2410 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2411 break;
2414 case BITINT_TYPE:
2416 struct bitint_info info;
2417 int cnt;
2418 bool ok = targetm.c.bitint_type_info (TYPE_PRECISION (type), &info);
2419 gcc_assert (ok);
2420 scalar_int_mode limb_mode
2421 = as_a <scalar_int_mode> (info.abi_limb_mode);
2422 if (TYPE_PRECISION (type) <= GET_MODE_PRECISION (limb_mode))
2424 SET_TYPE_MODE (type, limb_mode);
2425 gcc_assert (info.abi_limb_mode == info.limb_mode);
2426 cnt = 1;
2428 else
2430 SET_TYPE_MODE (type, BLKmode);
2431 cnt = CEIL (TYPE_PRECISION (type), GET_MODE_PRECISION (limb_mode));
2432 gcc_assert (info.abi_limb_mode == info.limb_mode
2433 || !info.big_endian == !WORDS_BIG_ENDIAN);
2435 TYPE_SIZE (type) = bitsize_int (cnt * GET_MODE_BITSIZE (limb_mode));
2436 TYPE_SIZE_UNIT (type) = size_int (cnt * GET_MODE_SIZE (limb_mode));
2437 SET_TYPE_ALIGN (type, GET_MODE_ALIGNMENT (limb_mode));
2438 if (cnt > 1)
2440 /* Use same mode as compute_record_mode would use for a structure
2441 containing cnt limb_mode elements. */
2442 machine_mode mode = mode_for_size_tree (TYPE_SIZE (type),
2443 MODE_INT, 1).else_blk ();
2444 if (mode == BLKmode)
2445 break;
2446 finalize_type_size (type);
2447 SET_TYPE_MODE (type, mode);
2448 if (STRICT_ALIGNMENT
2449 && !(TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
2450 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
2452 /* If this is the only reason this type is BLKmode, then
2453 don't force containing types to be BLKmode. */
2454 TYPE_NO_FORCE_BLK (type) = 1;
2455 SET_TYPE_MODE (type, BLKmode);
2457 if (TYPE_NEXT_VARIANT (type) || type != TYPE_MAIN_VARIANT (type))
2458 for (tree variant = TYPE_MAIN_VARIANT (type);
2459 variant != NULL_TREE;
2460 variant = TYPE_NEXT_VARIANT (variant))
2462 SET_TYPE_MODE (variant, mode);
2463 if (STRICT_ALIGNMENT
2464 && !(TYPE_ALIGN (variant) >= BIGGEST_ALIGNMENT
2465 || (TYPE_ALIGN (variant)
2466 >= GET_MODE_ALIGNMENT (mode))))
2468 TYPE_NO_FORCE_BLK (variant) = 1;
2469 SET_TYPE_MODE (variant, BLKmode);
2472 return;
2474 break;
2477 case REAL_TYPE:
2479 /* Allow the caller to choose the type mode, which is how decimal
2480 floats are distinguished from binary ones. */
2481 if (TYPE_MODE (type) == VOIDmode)
2482 SET_TYPE_MODE
2483 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2484 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2485 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2486 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2487 break;
2490 case FIXED_POINT_TYPE:
2492 /* TYPE_MODE (type) has been set already. */
2493 scalar_mode mode = SCALAR_TYPE_MODE (type);
2494 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2495 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2496 break;
2499 case COMPLEX_TYPE:
2500 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2501 if (TYPE_MODE (TREE_TYPE (type)) == BLKmode)
2503 gcc_checking_assert (TREE_CODE (TREE_TYPE (type)) == BITINT_TYPE);
2504 SET_TYPE_MODE (type, BLKmode);
2505 TYPE_SIZE (type)
2506 = int_const_binop (MULT_EXPR, TYPE_SIZE (TREE_TYPE (type)),
2507 bitsize_int (2));
2508 TYPE_SIZE_UNIT (type)
2509 = int_const_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (type)),
2510 bitsize_int (2));
2511 break;
2513 SET_TYPE_MODE (type,
2514 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2516 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2517 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2518 break;
2520 case VECTOR_TYPE:
2522 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2523 tree innertype = TREE_TYPE (type);
2525 /* Find an appropriate mode for the vector type. */
2526 if (TYPE_MODE (type) == VOIDmode)
2527 SET_TYPE_MODE (type,
2528 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2529 nunits).else_blk ());
2531 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2532 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2533 /* Several boolean vector elements may fit in a single unit. */
2534 if (VECTOR_BOOLEAN_TYPE_P (type)
2535 && type->type_common.mode != BLKmode)
2536 TYPE_SIZE_UNIT (type)
2537 = size_int (GET_MODE_SIZE (type->type_common.mode));
2538 else
2539 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2540 TYPE_SIZE_UNIT (innertype),
2541 size_int (nunits));
2542 TYPE_SIZE (type) = int_const_binop
2543 (MULT_EXPR,
2544 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2545 bitsize_int (BITS_PER_UNIT));
2547 /* For vector types, we do not default to the mode's alignment.
2548 Instead, query a target hook, defaulting to natural alignment.
2549 This prevents ABI changes depending on whether or not native
2550 vector modes are supported. */
2551 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2553 /* However, if the underlying mode requires a bigger alignment than
2554 what the target hook provides, we cannot use the mode. For now,
2555 simply reject that case. */
2556 gcc_assert (TYPE_ALIGN (type)
2557 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2558 break;
2561 case VOID_TYPE:
2562 /* This is an incomplete type and so doesn't have a size. */
2563 SET_TYPE_ALIGN (type, 1);
2564 TYPE_USER_ALIGN (type) = 0;
2565 SET_TYPE_MODE (type, VOIDmode);
2566 break;
2568 case OFFSET_TYPE:
2569 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2570 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2571 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2572 integral, which may be an __intN. */
2573 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2574 TYPE_PRECISION (type) = POINTER_SIZE;
2575 break;
2577 case FUNCTION_TYPE:
2578 case METHOD_TYPE:
2579 /* It's hard to see what the mode and size of a function ought to
2580 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2581 make it consistent with that. */
2582 SET_TYPE_MODE (type,
2583 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2584 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2585 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2586 break;
2588 case POINTER_TYPE:
2589 case REFERENCE_TYPE:
2591 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2592 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2593 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2594 TYPE_UNSIGNED (type) = 1;
2595 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2597 break;
2599 case ARRAY_TYPE:
2601 tree index = TYPE_DOMAIN (type);
2602 tree element = TREE_TYPE (type);
2604 /* We need to know both bounds in order to compute the size. */
2605 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2606 && TYPE_SIZE (element))
2608 tree ub = TYPE_MAX_VALUE (index);
2609 tree lb = TYPE_MIN_VALUE (index);
2610 tree element_size = TYPE_SIZE (element);
2611 tree length;
2613 /* Make sure that an array of zero-sized element is zero-sized
2614 regardless of its extent. */
2615 if (integer_zerop (element_size))
2616 length = size_zero_node;
2618 /* The computation should happen in the original signedness so
2619 that (possible) negative values are handled appropriately
2620 when determining overflow. */
2621 else
2623 /* ??? When it is obvious that the range is signed
2624 represent it using ssizetype. */
2625 if (TREE_CODE (lb) == INTEGER_CST
2626 && TREE_CODE (ub) == INTEGER_CST
2627 && TYPE_UNSIGNED (TREE_TYPE (lb))
2628 && tree_int_cst_lt (ub, lb))
2630 lb = wide_int_to_tree (ssizetype,
2631 offset_int::from (wi::to_wide (lb),
2632 SIGNED));
2633 ub = wide_int_to_tree (ssizetype,
2634 offset_int::from (wi::to_wide (ub),
2635 SIGNED));
2637 length
2638 = fold_convert (sizetype,
2639 size_binop (PLUS_EXPR,
2640 build_int_cst (TREE_TYPE (lb), 1),
2641 size_binop (MINUS_EXPR, ub, lb)));
2644 /* ??? We have no way to distinguish a null-sized array from an
2645 array spanning the whole sizetype range, so we arbitrarily
2646 decide that [0, -1] is the only valid representation. */
2647 if (integer_zerop (length)
2648 && TREE_OVERFLOW (length)
2649 && integer_zerop (lb))
2650 length = size_zero_node;
2652 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2653 bits_from_bytes (length));
2655 /* If we know the size of the element, calculate the total size
2656 directly, rather than do some division thing below. This
2657 optimization helps Fortran assumed-size arrays (where the
2658 size of the array is determined at runtime) substantially. */
2659 if (TYPE_SIZE_UNIT (element))
2660 TYPE_SIZE_UNIT (type)
2661 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2664 /* Now round the alignment and size,
2665 using machine-dependent criteria if any. */
2667 unsigned align = TYPE_ALIGN (element);
2668 if (TYPE_USER_ALIGN (type))
2669 align = MAX (align, TYPE_ALIGN (type));
2670 else
2671 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2672 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2673 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2674 TYPE_WARN_IF_NOT_ALIGN (element));
2675 #ifdef ROUND_TYPE_ALIGN
2676 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2677 #else
2678 align = MAX (align, BITS_PER_UNIT);
2679 #endif
2680 SET_TYPE_ALIGN (type, align);
2681 SET_TYPE_MODE (type, BLKmode);
2682 if (TYPE_SIZE (type) != 0
2683 && ! targetm.member_type_forces_blk (type, VOIDmode)
2684 /* BLKmode elements force BLKmode aggregate;
2685 else extract/store fields may lose. */
2686 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2687 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2689 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2690 TYPE_SIZE (type)));
2691 if (TYPE_MODE (type) != BLKmode
2692 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2693 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2695 TYPE_NO_FORCE_BLK (type) = 1;
2696 SET_TYPE_MODE (type, BLKmode);
2699 if (AGGREGATE_TYPE_P (element))
2700 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2701 /* When the element size is constant, check that it is at least as
2702 large as the element alignment. */
2703 if (TYPE_SIZE_UNIT (element)
2704 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2705 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2706 TYPE_ALIGN_UNIT. */
2707 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2708 && !integer_zerop (TYPE_SIZE_UNIT (element)))
2710 if (compare_tree_int (TYPE_SIZE_UNIT (element),
2711 TYPE_ALIGN_UNIT (element)) < 0)
2712 error ("alignment of array elements is greater than "
2713 "element size");
2714 else if (TYPE_ALIGN_UNIT (element) > 1
2715 && (wi::zext (wi::to_wide (TYPE_SIZE_UNIT (element)),
2716 ffs_hwi (TYPE_ALIGN_UNIT (element)) - 1)
2717 != 0))
2718 error ("size of array element is not a multiple of its "
2719 "alignment");
2721 break;
2724 case RECORD_TYPE:
2725 case UNION_TYPE:
2726 case QUAL_UNION_TYPE:
2728 tree field;
2729 record_layout_info rli;
2731 /* Initialize the layout information. */
2732 rli = start_record_layout (type);
2734 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2735 in the reverse order in building the COND_EXPR that denotes
2736 its size. We reverse them again later. */
2737 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2738 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2740 /* Place all the fields. */
2741 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2742 place_field (rli, field);
2744 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2745 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2747 /* Finish laying out the record. */
2748 finish_record_layout (rli, /*free_p=*/true);
2750 break;
2752 default:
2753 gcc_unreachable ();
2756 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2757 records and unions, finish_record_layout already called this
2758 function. */
2759 if (!RECORD_OR_UNION_TYPE_P (type))
2760 finalize_type_size (type);
2762 /* We should never see alias sets on incomplete aggregates. And we
2763 should not call layout_type on not incomplete aggregates. */
2764 if (AGGREGATE_TYPE_P (type))
2765 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2768 /* Return the least alignment required for type TYPE. */
2770 unsigned int
2771 min_align_of_type (tree type)
2773 unsigned int align = TYPE_ALIGN (type);
2774 if (!TYPE_USER_ALIGN (type))
2776 align = MIN (align, BIGGEST_ALIGNMENT);
2777 #ifdef BIGGEST_FIELD_ALIGNMENT
2778 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2779 #endif
2780 unsigned int field_align = align;
2781 #ifdef ADJUST_FIELD_ALIGN
2782 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2783 #endif
2784 align = MIN (align, field_align);
2786 return align / BITS_PER_UNIT;
2789 /* Create and return a type for signed integers of PRECISION bits. */
2791 tree
2792 make_signed_type (int precision)
2794 tree type = make_node (INTEGER_TYPE);
2796 TYPE_PRECISION (type) = precision;
2798 fixup_signed_type (type);
2799 return type;
2802 /* Create and return a type for unsigned integers of PRECISION bits. */
2804 tree
2805 make_unsigned_type (int precision)
2807 tree type = make_node (INTEGER_TYPE);
2809 TYPE_PRECISION (type) = precision;
2811 fixup_unsigned_type (type);
2812 return type;
2815 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2816 and SATP. */
2818 tree
2819 make_fract_type (int precision, int unsignedp, int satp)
2821 tree type = make_node (FIXED_POINT_TYPE);
2823 TYPE_PRECISION (type) = precision;
2825 if (satp)
2826 TYPE_SATURATING (type) = 1;
2828 /* Lay out the type: set its alignment, size, etc. */
2829 TYPE_UNSIGNED (type) = unsignedp;
2830 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2831 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2832 layout_type (type);
2834 return type;
2837 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2838 and SATP. */
2840 tree
2841 make_accum_type (int precision, int unsignedp, int satp)
2843 tree type = make_node (FIXED_POINT_TYPE);
2845 TYPE_PRECISION (type) = precision;
2847 if (satp)
2848 TYPE_SATURATING (type) = 1;
2850 /* Lay out the type: set its alignment, size, etc. */
2851 TYPE_UNSIGNED (type) = unsignedp;
2852 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2853 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2854 layout_type (type);
2856 return type;
2859 /* Initialize sizetypes so layout_type can use them. */
2861 void
2862 initialize_sizetypes (void)
2864 int precision, bprecision;
2866 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2867 if (strcmp (SIZETYPE, "unsigned int") == 0)
2868 precision = INT_TYPE_SIZE;
2869 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2870 precision = LONG_TYPE_SIZE;
2871 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2872 precision = LONG_LONG_TYPE_SIZE;
2873 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2874 precision = SHORT_TYPE_SIZE;
2875 else
2877 int i;
2879 precision = -1;
2880 for (i = 0; i < NUM_INT_N_ENTS; i++)
2881 if (int_n_enabled_p[i])
2883 char name[50], altname[50];
2884 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2885 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
2887 if (strcmp (name, SIZETYPE) == 0
2888 || strcmp (altname, SIZETYPE) == 0)
2890 precision = int_n_data[i].bitsize;
2893 if (precision == -1)
2894 gcc_unreachable ();
2897 bprecision
2898 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2899 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2900 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2901 bprecision = HOST_BITS_PER_DOUBLE_INT;
2903 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2904 sizetype = make_node (INTEGER_TYPE);
2905 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2906 TYPE_PRECISION (sizetype) = precision;
2907 TYPE_UNSIGNED (sizetype) = 1;
2908 bitsizetype = make_node (INTEGER_TYPE);
2909 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2910 TYPE_PRECISION (bitsizetype) = bprecision;
2911 TYPE_UNSIGNED (bitsizetype) = 1;
2913 /* Now layout both types manually. */
2914 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2915 SET_TYPE_MODE (sizetype, mode);
2916 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2917 TYPE_SIZE (sizetype) = bitsize_int (precision);
2918 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2919 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2921 mode = smallest_int_mode_for_size (bprecision);
2922 SET_TYPE_MODE (bitsizetype, mode);
2923 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2924 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2925 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2926 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2928 /* Create the signed variants of *sizetype. */
2929 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2930 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2931 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2932 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2935 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2936 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2937 for TYPE, based on the PRECISION and whether or not the TYPE
2938 IS_UNSIGNED. PRECISION need not correspond to a width supported
2939 natively by the hardware; for example, on a machine with 8-bit,
2940 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2941 61. */
2943 void
2944 set_min_and_max_values_for_integral_type (tree type,
2945 int precision,
2946 signop sgn)
2948 /* For bitfields with zero width we end up creating integer types
2949 with zero precision. Don't assign any minimum/maximum values
2950 to those types, they don't have any valid value. */
2951 if (precision < 1)
2952 return;
2954 gcc_assert (precision <= WIDE_INT_MAX_PRECISION);
2956 TYPE_MIN_VALUE (type)
2957 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2958 TYPE_MAX_VALUE (type)
2959 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2962 /* Set the extreme values of TYPE based on its precision in bits,
2963 then lay it out. Used when make_signed_type won't do
2964 because the tree code is not INTEGER_TYPE. */
2966 void
2967 fixup_signed_type (tree type)
2969 int precision = TYPE_PRECISION (type);
2971 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2973 /* Lay out the type: set its alignment, size, etc. */
2974 layout_type (type);
2977 /* Set the extreme values of TYPE based on its precision in bits,
2978 then lay it out. This is used both in `make_unsigned_type'
2979 and for enumeral types. */
2981 void
2982 fixup_unsigned_type (tree type)
2984 int precision = TYPE_PRECISION (type);
2986 TYPE_UNSIGNED (type) = 1;
2988 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2990 /* Lay out the type: set its alignment, size, etc. */
2991 layout_type (type);
2994 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2995 starting at BITPOS.
2997 BITREGION_START is the bit position of the first bit in this
2998 sequence of bit fields. BITREGION_END is the last bit in this
2999 sequence. If these two fields are non-zero, we should restrict the
3000 memory access to that range. Otherwise, we are allowed to touch
3001 any adjacent non bit-fields.
3003 ALIGN is the alignment of the underlying object in bits.
3004 VOLATILEP says whether the bitfield is volatile. */
3006 bit_field_mode_iterator
3007 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3008 poly_int64 bitregion_start,
3009 poly_int64 bitregion_end,
3010 unsigned int align, bool volatilep)
3011 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
3012 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
3013 m_bitregion_end (bitregion_end), m_align (align),
3014 m_volatilep (volatilep), m_count (0)
3016 if (known_eq (m_bitregion_end, 0))
3018 /* We can assume that any aligned chunk of ALIGN bits that overlaps
3019 the bitfield is mapped and won't trap, provided that ALIGN isn't
3020 too large. The cap is the biggest required alignment for data,
3021 or at least the word size. And force one such chunk at least. */
3022 unsigned HOST_WIDE_INT units
3023 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
3024 if (bitsize <= 0)
3025 bitsize = 1;
3026 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
3027 m_bitregion_end = end - end % units - 1;
3031 /* Calls to this function return successively larger modes that can be used
3032 to represent the bitfield. Return true if another bitfield mode is
3033 available, storing it in *OUT_MODE if so. */
3035 bool
3036 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
3038 scalar_int_mode mode;
3039 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
3041 unsigned int unit = GET_MODE_BITSIZE (mode);
3043 /* Skip modes that don't have full precision. */
3044 if (unit != GET_MODE_PRECISION (mode))
3045 continue;
3047 /* Stop if the mode is too wide to handle efficiently. */
3048 if (unit > MAX_FIXED_MODE_SIZE)
3049 break;
3051 /* Don't deliver more than one multiword mode; the smallest one
3052 should be used. */
3053 if (m_count > 0 && unit > BITS_PER_WORD)
3054 break;
3056 /* Skip modes that are too small. */
3057 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
3058 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
3059 if (subend > unit)
3060 continue;
3062 /* Stop if the mode goes outside the bitregion. */
3063 HOST_WIDE_INT start = m_bitpos - substart;
3064 if (maybe_ne (m_bitregion_start, 0)
3065 && maybe_lt (start, m_bitregion_start))
3066 break;
3067 HOST_WIDE_INT end = start + unit;
3068 if (maybe_gt (end, m_bitregion_end + 1))
3069 break;
3071 /* Stop if the mode requires too much alignment. */
3072 if (GET_MODE_ALIGNMENT (mode) > m_align
3073 && targetm.slow_unaligned_access (mode, m_align))
3074 break;
3076 *out_mode = mode;
3077 m_mode = GET_MODE_WIDER_MODE (mode);
3078 m_count++;
3079 return true;
3081 return false;
3084 /* Return true if smaller modes are generally preferred for this kind
3085 of bitfield. */
3087 bool
3088 bit_field_mode_iterator::prefer_smaller_modes ()
3090 return (m_volatilep
3091 ? targetm.narrow_volatile_bitfield ()
3092 : !SLOW_BYTE_ACCESS);
3095 /* Find the best machine mode to use when referencing a bit field of length
3096 BITSIZE bits starting at BITPOS.
3098 BITREGION_START is the bit position of the first bit in this
3099 sequence of bit fields. BITREGION_END is the last bit in this
3100 sequence. If these two fields are non-zero, we should restrict the
3101 memory access to that range. Otherwise, we are allowed to touch
3102 any adjacent non bit-fields.
3104 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
3105 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
3106 doesn't want to apply a specific limit.
3108 If no mode meets all these conditions, we return VOIDmode.
3110 The underlying object is known to be aligned to a boundary of ALIGN bits.
3112 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
3113 smallest mode meeting these conditions.
3115 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
3116 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
3117 all the conditions.
3119 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
3120 decide which of the above modes should be used. */
3122 bool
3123 get_best_mode (int bitsize, int bitpos,
3124 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
3125 unsigned int align,
3126 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
3127 scalar_int_mode *best_mode)
3129 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
3130 bitregion_end, align, volatilep);
3131 scalar_int_mode mode;
3132 bool found = false;
3133 while (iter.next_mode (&mode)
3134 /* ??? For historical reasons, reject modes that would normally
3135 receive greater alignment, even if unaligned accesses are
3136 acceptable. This has both advantages and disadvantages.
3137 Removing this check means that something like:
3139 struct s { unsigned int x; unsigned int y; };
3140 int f (struct s *s) { return s->x == 0 && s->y == 0; }
3142 can be implemented using a single load and compare on
3143 64-bit machines that have no alignment restrictions.
3144 For example, on powerpc64-linux-gnu, we would generate:
3146 ld 3,0(3)
3147 cntlzd 3,3
3148 srdi 3,3,6
3151 rather than:
3153 lwz 9,0(3)
3154 cmpwi 7,9,0
3155 bne 7,.L3
3156 lwz 3,4(3)
3157 cntlzw 3,3
3158 srwi 3,3,5
3159 extsw 3,3
3161 .p2align 4,,15
3162 .L3:
3163 li 3,0
3166 However, accessing more than one field can make life harder
3167 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
3168 has a series of unsigned short copies followed by a series of
3169 unsigned short comparisons. With this check, both the copies
3170 and comparisons remain 16-bit accesses and FRE is able
3171 to eliminate the latter. Without the check, the comparisons
3172 can be done using 2 64-bit operations, which FRE isn't able
3173 to handle in the same way.
3175 Either way, it would probably be worth disabling this check
3176 during expand. One particular example where removing the
3177 check would help is the get_best_mode call in store_bit_field.
3178 If we are given a memory bitregion of 128 bits that is aligned
3179 to a 64-bit boundary, and the bitfield we want to modify is
3180 in the second half of the bitregion, this check causes
3181 store_bitfield to turn the memory into a 64-bit reference
3182 to the _first_ half of the region. We later use
3183 adjust_bitfield_address to get a reference to the correct half,
3184 but doing so looks to adjust_bitfield_address as though we are
3185 moving past the end of the original object, so it drops the
3186 associated MEM_EXPR and MEM_OFFSET. Removing the check
3187 causes store_bit_field to keep a 128-bit memory reference,
3188 so that the final bitfield reference still has a MEM_EXPR
3189 and MEM_OFFSET. */
3190 && GET_MODE_ALIGNMENT (mode) <= align
3191 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3193 *best_mode = mode;
3194 found = true;
3195 if (iter.prefer_smaller_modes ())
3196 break;
3199 return found;
3202 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3203 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3205 void
3206 get_mode_bounds (scalar_int_mode mode, int sign,
3207 scalar_int_mode target_mode,
3208 rtx *mmin, rtx *mmax)
3210 unsigned size = GET_MODE_PRECISION (mode);
3211 unsigned HOST_WIDE_INT min_val, max_val;
3213 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3215 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3216 if (mode == BImode)
3218 if (STORE_FLAG_VALUE < 0)
3220 min_val = STORE_FLAG_VALUE;
3221 max_val = 0;
3223 else
3225 min_val = 0;
3226 max_val = STORE_FLAG_VALUE;
3229 else if (sign)
3231 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3232 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3234 else
3236 min_val = 0;
3237 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3240 *mmin = gen_int_mode (min_val, target_mode);
3241 *mmax = gen_int_mode (max_val, target_mode);
3244 #include "gt-stor-layout.h"