PR target/47111
[official-gcc.git] / gcc / loop-unroll.c
blob67d6ea0cf64deab1ba7d9811d23007691d947b68
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36 #include "target.h"
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
46 What we do:
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
73 /* Information about induction variables to split. */
75 struct iv_to_split
77 rtx insn; /* The insn in that the induction variable occurs. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
82 unsigned n_loc;
83 unsigned loc[3]; /* Location where the definition of the induction
84 variable occurs in the insn. For example if
85 N_LOC is 2, the expression is located at
86 XEXP (XEXP (single_set, loc[0]), loc[1]). */
89 /* Information about accumulators to expand. */
91 struct var_to_expand
93 rtx insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
104 unsigned accum_pos; /* The position in which the accumulator is placed in
105 the insn src. For example in x = x + something
106 accum_pos is 0 while in x = something + x accum_pos
107 is 1. */
110 /* Information about optimization applied in
111 the unrolled loop. */
113 struct opt_info
115 htab_t insns_to_split; /* A hashtable of insns to split. */
116 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
117 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
118 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
119 to expand. */
120 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
121 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
122 unsigned first_new_block; /* The first basic block that was
123 duplicated. */
124 basic_block loop_exit; /* The loop exit basic block. */
125 basic_block loop_preheader; /* The loop preheader basic block. */
128 static void decide_unrolling_and_peeling (int);
129 static void peel_loops_completely (int);
130 static void decide_peel_simple (struct loop *, int);
131 static void decide_peel_once_rolling (struct loop *, int);
132 static void decide_peel_completely (struct loop *, int);
133 static void decide_unroll_stupid (struct loop *, int);
134 static void decide_unroll_constant_iterations (struct loop *, int);
135 static void decide_unroll_runtime_iterations (struct loop *, int);
136 static void peel_loop_simple (struct loop *);
137 static void peel_loop_completely (struct loop *);
138 static void unroll_loop_stupid (struct loop *);
139 static void unroll_loop_constant_iterations (struct loop *);
140 static void unroll_loop_runtime_iterations (struct loop *);
141 static struct opt_info *analyze_insns_in_loop (struct loop *);
142 static void opt_info_start_duplication (struct opt_info *);
143 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
144 static void free_opt_info (struct opt_info *);
145 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
146 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
147 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
148 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
149 static void insert_var_expansion_initialization (struct var_to_expand *,
150 basic_block);
151 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
152 basic_block);
153 static rtx get_expansion (struct var_to_expand *);
155 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
156 void
157 unroll_and_peel_loops (int flags)
159 struct loop *loop;
160 bool check;
161 loop_iterator li;
163 /* First perform complete loop peeling (it is almost surely a win,
164 and affects parameters for further decision a lot). */
165 peel_loops_completely (flags);
167 /* Now decide rest of unrolling and peeling. */
168 decide_unrolling_and_peeling (flags);
170 /* Scan the loops, inner ones first. */
171 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
173 check = true;
174 /* And perform the appropriate transformations. */
175 switch (loop->lpt_decision.decision)
177 case LPT_PEEL_COMPLETELY:
178 /* Already done. */
179 gcc_unreachable ();
180 case LPT_PEEL_SIMPLE:
181 peel_loop_simple (loop);
182 break;
183 case LPT_UNROLL_CONSTANT:
184 unroll_loop_constant_iterations (loop);
185 break;
186 case LPT_UNROLL_RUNTIME:
187 unroll_loop_runtime_iterations (loop);
188 break;
189 case LPT_UNROLL_STUPID:
190 unroll_loop_stupid (loop);
191 break;
192 case LPT_NONE:
193 check = false;
194 break;
195 default:
196 gcc_unreachable ();
198 if (check)
200 #ifdef ENABLE_CHECKING
201 verify_dominators (CDI_DOMINATORS);
202 verify_loop_structure ();
203 #endif
207 iv_analysis_done ();
210 /* Check whether exit of the LOOP is at the end of loop body. */
212 static bool
213 loop_exit_at_end_p (struct loop *loop)
215 struct niter_desc *desc = get_simple_loop_desc (loop);
216 rtx insn;
218 if (desc->in_edge->dest != loop->latch)
219 return false;
221 /* Check that the latch is empty. */
222 FOR_BB_INSNS (loop->latch, insn)
224 if (INSN_P (insn))
225 return false;
228 return true;
231 /* Depending on FLAGS, check whether to peel loops completely and do so. */
232 static void
233 peel_loops_completely (int flags)
235 struct loop *loop;
236 loop_iterator li;
238 /* Scan the loops, the inner ones first. */
239 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
241 loop->lpt_decision.decision = LPT_NONE;
243 if (dump_file)
244 fprintf (dump_file,
245 "\n;; *** Considering loop %d for complete peeling ***\n",
246 loop->num);
248 loop->ninsns = num_loop_insns (loop);
250 decide_peel_once_rolling (loop, flags);
251 if (loop->lpt_decision.decision == LPT_NONE)
252 decide_peel_completely (loop, flags);
254 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
256 peel_loop_completely (loop);
257 #ifdef ENABLE_CHECKING
258 verify_dominators (CDI_DOMINATORS);
259 verify_loop_structure ();
260 #endif
265 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
266 static void
267 decide_unrolling_and_peeling (int flags)
269 struct loop *loop;
270 loop_iterator li;
272 /* Scan the loops, inner ones first. */
273 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
275 loop->lpt_decision.decision = LPT_NONE;
277 if (dump_file)
278 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
280 /* Do not peel cold areas. */
281 if (optimize_loop_for_size_p (loop))
283 if (dump_file)
284 fprintf (dump_file, ";; Not considering loop, cold area\n");
285 continue;
288 /* Can the loop be manipulated? */
289 if (!can_duplicate_loop_p (loop))
291 if (dump_file)
292 fprintf (dump_file,
293 ";; Not considering loop, cannot duplicate\n");
294 continue;
297 /* Skip non-innermost loops. */
298 if (loop->inner)
300 if (dump_file)
301 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
302 continue;
305 loop->ninsns = num_loop_insns (loop);
306 loop->av_ninsns = average_num_loop_insns (loop);
308 /* Try transformations one by one in decreasing order of
309 priority. */
311 decide_unroll_constant_iterations (loop, flags);
312 if (loop->lpt_decision.decision == LPT_NONE)
313 decide_unroll_runtime_iterations (loop, flags);
314 if (loop->lpt_decision.decision == LPT_NONE)
315 decide_unroll_stupid (loop, flags);
316 if (loop->lpt_decision.decision == LPT_NONE)
317 decide_peel_simple (loop, flags);
321 /* Decide whether the LOOP is once rolling and suitable for complete
322 peeling. */
323 static void
324 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
326 struct niter_desc *desc;
328 if (dump_file)
329 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
331 /* Is the loop small enough? */
332 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
334 if (dump_file)
335 fprintf (dump_file, ";; Not considering loop, is too big\n");
336 return;
339 /* Check for simple loops. */
340 desc = get_simple_loop_desc (loop);
342 /* Check number of iterations. */
343 if (!desc->simple_p
344 || desc->assumptions
345 || desc->infinite
346 || !desc->const_iter
347 || desc->niter != 0)
349 if (dump_file)
350 fprintf (dump_file,
351 ";; Unable to prove that the loop rolls exactly once\n");
352 return;
355 /* Success. */
356 if (dump_file)
357 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
358 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
361 /* Decide whether the LOOP is suitable for complete peeling. */
362 static void
363 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
365 unsigned npeel;
366 struct niter_desc *desc;
368 if (dump_file)
369 fprintf (dump_file, "\n;; Considering peeling completely\n");
371 /* Skip non-innermost loops. */
372 if (loop->inner)
374 if (dump_file)
375 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
376 return;
379 /* Do not peel cold areas. */
380 if (optimize_loop_for_size_p (loop))
382 if (dump_file)
383 fprintf (dump_file, ";; Not considering loop, cold area\n");
384 return;
387 /* Can the loop be manipulated? */
388 if (!can_duplicate_loop_p (loop))
390 if (dump_file)
391 fprintf (dump_file,
392 ";; Not considering loop, cannot duplicate\n");
393 return;
396 /* npeel = number of iterations to peel. */
397 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
398 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
399 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
401 /* Is the loop small enough? */
402 if (!npeel)
404 if (dump_file)
405 fprintf (dump_file, ";; Not considering loop, is too big\n");
406 return;
409 /* Check for simple loops. */
410 desc = get_simple_loop_desc (loop);
412 /* Check number of iterations. */
413 if (!desc->simple_p
414 || desc->assumptions
415 || !desc->const_iter
416 || desc->infinite)
418 if (dump_file)
419 fprintf (dump_file,
420 ";; Unable to prove that the loop iterates constant times\n");
421 return;
424 if (desc->niter > npeel - 1)
426 if (dump_file)
428 fprintf (dump_file,
429 ";; Not peeling loop completely, rolls too much (");
430 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
431 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
433 return;
436 /* Success. */
437 if (dump_file)
438 fprintf (dump_file, ";; Decided to peel loop completely\n");
439 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
442 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
443 completely. The transformation done:
445 for (i = 0; i < 4; i++)
446 body;
450 i = 0;
451 body; i++;
452 body; i++;
453 body; i++;
454 body; i++;
456 static void
457 peel_loop_completely (struct loop *loop)
459 sbitmap wont_exit;
460 unsigned HOST_WIDE_INT npeel;
461 unsigned i;
462 VEC (edge, heap) *remove_edges;
463 edge ein;
464 struct niter_desc *desc = get_simple_loop_desc (loop);
465 struct opt_info *opt_info = NULL;
467 npeel = desc->niter;
469 if (npeel)
471 bool ok;
473 wont_exit = sbitmap_alloc (npeel + 1);
474 sbitmap_ones (wont_exit);
475 RESET_BIT (wont_exit, 0);
476 if (desc->noloop_assumptions)
477 RESET_BIT (wont_exit, 1);
479 remove_edges = NULL;
481 if (flag_split_ivs_in_unroller)
482 opt_info = analyze_insns_in_loop (loop);
484 opt_info_start_duplication (opt_info);
485 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
486 npeel,
487 wont_exit, desc->out_edge,
488 &remove_edges,
489 DLTHE_FLAG_UPDATE_FREQ
490 | DLTHE_FLAG_COMPLETTE_PEEL
491 | (opt_info
492 ? DLTHE_RECORD_COPY_NUMBER : 0));
493 gcc_assert (ok);
495 free (wont_exit);
497 if (opt_info)
499 apply_opt_in_copies (opt_info, npeel, false, true);
500 free_opt_info (opt_info);
503 /* Remove the exit edges. */
504 FOR_EACH_VEC_ELT (edge, remove_edges, i, ein)
505 remove_path (ein);
506 VEC_free (edge, heap, remove_edges);
509 ein = desc->in_edge;
510 free_simple_loop_desc (loop);
512 /* Now remove the unreachable part of the last iteration and cancel
513 the loop. */
514 remove_path (ein);
516 if (dump_file)
517 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
520 /* Decide whether to unroll LOOP iterating constant number of times
521 and how much. */
523 static void
524 decide_unroll_constant_iterations (struct loop *loop, int flags)
526 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
527 struct niter_desc *desc;
529 if (!(flags & UAP_UNROLL))
531 /* We were not asked to, just return back silently. */
532 return;
535 if (dump_file)
536 fprintf (dump_file,
537 "\n;; Considering unrolling loop with constant "
538 "number of iterations\n");
540 /* nunroll = total number of copies of the original loop body in
541 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
542 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
543 nunroll_by_av
544 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
545 if (nunroll > nunroll_by_av)
546 nunroll = nunroll_by_av;
547 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
548 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
550 /* Skip big loops. */
551 if (nunroll <= 1)
553 if (dump_file)
554 fprintf (dump_file, ";; Not considering loop, is too big\n");
555 return;
558 /* Check for simple loops. */
559 desc = get_simple_loop_desc (loop);
561 /* Check number of iterations. */
562 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
564 if (dump_file)
565 fprintf (dump_file,
566 ";; Unable to prove that the loop iterates constant times\n");
567 return;
570 /* Check whether the loop rolls enough to consider. */
571 if (desc->niter < 2 * nunroll)
573 if (dump_file)
574 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
575 return;
578 /* Success; now compute number of iterations to unroll. We alter
579 nunroll so that as few as possible copies of loop body are
580 necessary, while still not decreasing the number of unrollings
581 too much (at most by 1). */
582 best_copies = 2 * nunroll + 10;
584 i = 2 * nunroll + 2;
585 if (i - 1 >= desc->niter)
586 i = desc->niter - 2;
588 for (; i >= nunroll - 1; i--)
590 unsigned exit_mod = desc->niter % (i + 1);
592 if (!loop_exit_at_end_p (loop))
593 n_copies = exit_mod + i + 1;
594 else if (exit_mod != (unsigned) i
595 || desc->noloop_assumptions != NULL_RTX)
596 n_copies = exit_mod + i + 2;
597 else
598 n_copies = i + 1;
600 if (n_copies < best_copies)
602 best_copies = n_copies;
603 best_unroll = i;
607 if (dump_file)
608 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
609 best_unroll + 1, best_copies, nunroll);
611 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
612 loop->lpt_decision.times = best_unroll;
614 if (dump_file)
615 fprintf (dump_file,
616 ";; Decided to unroll the constant times rolling loop, %d times.\n",
617 loop->lpt_decision.times);
620 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
621 times. The transformation does this:
623 for (i = 0; i < 102; i++)
624 body;
628 i = 0;
629 body; i++;
630 body; i++;
631 while (i < 102)
633 body; i++;
634 body; i++;
635 body; i++;
636 body; i++;
639 static void
640 unroll_loop_constant_iterations (struct loop *loop)
642 unsigned HOST_WIDE_INT niter;
643 unsigned exit_mod;
644 sbitmap wont_exit;
645 unsigned i;
646 VEC (edge, heap) *remove_edges;
647 edge e;
648 unsigned max_unroll = loop->lpt_decision.times;
649 struct niter_desc *desc = get_simple_loop_desc (loop);
650 bool exit_at_end = loop_exit_at_end_p (loop);
651 struct opt_info *opt_info = NULL;
652 bool ok;
654 niter = desc->niter;
656 /* Should not get here (such loop should be peeled instead). */
657 gcc_assert (niter > max_unroll + 1);
659 exit_mod = niter % (max_unroll + 1);
661 wont_exit = sbitmap_alloc (max_unroll + 1);
662 sbitmap_ones (wont_exit);
664 remove_edges = NULL;
665 if (flag_split_ivs_in_unroller
666 || flag_variable_expansion_in_unroller)
667 opt_info = analyze_insns_in_loop (loop);
669 if (!exit_at_end)
671 /* The exit is not at the end of the loop; leave exit test
672 in the first copy, so that the loops that start with test
673 of exit condition have continuous body after unrolling. */
675 if (dump_file)
676 fprintf (dump_file, ";; Condition on beginning of loop.\n");
678 /* Peel exit_mod iterations. */
679 RESET_BIT (wont_exit, 0);
680 if (desc->noloop_assumptions)
681 RESET_BIT (wont_exit, 1);
683 if (exit_mod)
685 opt_info_start_duplication (opt_info);
686 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
687 exit_mod,
688 wont_exit, desc->out_edge,
689 &remove_edges,
690 DLTHE_FLAG_UPDATE_FREQ
691 | (opt_info && exit_mod > 1
692 ? DLTHE_RECORD_COPY_NUMBER
693 : 0));
694 gcc_assert (ok);
696 if (opt_info && exit_mod > 1)
697 apply_opt_in_copies (opt_info, exit_mod, false, false);
699 desc->noloop_assumptions = NULL_RTX;
700 desc->niter -= exit_mod;
701 desc->niter_max -= exit_mod;
704 SET_BIT (wont_exit, 1);
706 else
708 /* Leave exit test in last copy, for the same reason as above if
709 the loop tests the condition at the end of loop body. */
711 if (dump_file)
712 fprintf (dump_file, ";; Condition on end of loop.\n");
714 /* We know that niter >= max_unroll + 2; so we do not need to care of
715 case when we would exit before reaching the loop. So just peel
716 exit_mod + 1 iterations. */
717 if (exit_mod != max_unroll
718 || desc->noloop_assumptions)
720 RESET_BIT (wont_exit, 0);
721 if (desc->noloop_assumptions)
722 RESET_BIT (wont_exit, 1);
724 opt_info_start_duplication (opt_info);
725 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
726 exit_mod + 1,
727 wont_exit, desc->out_edge,
728 &remove_edges,
729 DLTHE_FLAG_UPDATE_FREQ
730 | (opt_info && exit_mod > 0
731 ? DLTHE_RECORD_COPY_NUMBER
732 : 0));
733 gcc_assert (ok);
735 if (opt_info && exit_mod > 0)
736 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
738 desc->niter -= exit_mod + 1;
739 desc->niter_max -= exit_mod + 1;
740 desc->noloop_assumptions = NULL_RTX;
742 SET_BIT (wont_exit, 0);
743 SET_BIT (wont_exit, 1);
746 RESET_BIT (wont_exit, max_unroll);
749 /* Now unroll the loop. */
751 opt_info_start_duplication (opt_info);
752 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
753 max_unroll,
754 wont_exit, desc->out_edge,
755 &remove_edges,
756 DLTHE_FLAG_UPDATE_FREQ
757 | (opt_info
758 ? DLTHE_RECORD_COPY_NUMBER
759 : 0));
760 gcc_assert (ok);
762 if (opt_info)
764 apply_opt_in_copies (opt_info, max_unroll, true, true);
765 free_opt_info (opt_info);
768 free (wont_exit);
770 if (exit_at_end)
772 basic_block exit_block = get_bb_copy (desc->in_edge->src);
773 /* Find a new in and out edge; they are in the last copy we have made. */
775 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
777 desc->out_edge = EDGE_SUCC (exit_block, 0);
778 desc->in_edge = EDGE_SUCC (exit_block, 1);
780 else
782 desc->out_edge = EDGE_SUCC (exit_block, 1);
783 desc->in_edge = EDGE_SUCC (exit_block, 0);
787 desc->niter /= max_unroll + 1;
788 desc->niter_max /= max_unroll + 1;
789 desc->niter_expr = GEN_INT (desc->niter);
791 /* Remove the edges. */
792 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
793 remove_path (e);
794 VEC_free (edge, heap, remove_edges);
796 if (dump_file)
797 fprintf (dump_file,
798 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
799 max_unroll, num_loop_insns (loop));
802 /* Decide whether to unroll LOOP iterating runtime computable number of times
803 and how much. */
804 static void
805 decide_unroll_runtime_iterations (struct loop *loop, int flags)
807 unsigned nunroll, nunroll_by_av, i;
808 struct niter_desc *desc;
810 if (!(flags & UAP_UNROLL))
812 /* We were not asked to, just return back silently. */
813 return;
816 if (dump_file)
817 fprintf (dump_file,
818 "\n;; Considering unrolling loop with runtime "
819 "computable number of iterations\n");
821 /* nunroll = total number of copies of the original loop body in
822 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
823 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
824 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
825 if (nunroll > nunroll_by_av)
826 nunroll = nunroll_by_av;
827 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
828 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
830 if (targetm.loop_unroll_adjust)
831 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
833 /* Skip big loops. */
834 if (nunroll <= 1)
836 if (dump_file)
837 fprintf (dump_file, ";; Not considering loop, is too big\n");
838 return;
841 /* Check for simple loops. */
842 desc = get_simple_loop_desc (loop);
844 /* Check simpleness. */
845 if (!desc->simple_p || desc->assumptions)
847 if (dump_file)
848 fprintf (dump_file,
849 ";; Unable to prove that the number of iterations "
850 "can be counted in runtime\n");
851 return;
854 if (desc->const_iter)
856 if (dump_file)
857 fprintf (dump_file, ";; Loop iterates constant times\n");
858 return;
861 /* If we have profile feedback, check whether the loop rolls. */
862 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
864 if (dump_file)
865 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
866 return;
869 /* Success; now force nunroll to be power of 2, as we are unable to
870 cope with overflows in computation of number of iterations. */
871 for (i = 1; 2 * i <= nunroll; i *= 2)
872 continue;
874 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
875 loop->lpt_decision.times = i - 1;
877 if (dump_file)
878 fprintf (dump_file,
879 ";; Decided to unroll the runtime computable "
880 "times rolling loop, %d times.\n",
881 loop->lpt_decision.times);
884 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
885 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
886 and NULL is returned instead. */
888 basic_block
889 split_edge_and_insert (edge e, rtx insns)
891 basic_block bb;
893 if (!insns)
894 return NULL;
895 bb = split_edge (e);
896 emit_insn_after (insns, BB_END (bb));
898 /* ??? We used to assume that INSNS can contain control flow insns, and
899 that we had to try to find sub basic blocks in BB to maintain a valid
900 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
901 and call break_superblocks when going out of cfglayout mode. But it
902 turns out that this never happens; and that if it does ever happen,
903 the verify_flow_info call in loop_optimizer_finalize would fail.
905 There are two reasons why we expected we could have control flow insns
906 in INSNS. The first is when a comparison has to be done in parts, and
907 the second is when the number of iterations is computed for loops with
908 the number of iterations known at runtime. In both cases, test cases
909 to get control flow in INSNS appear to be impossible to construct:
911 * If do_compare_rtx_and_jump needs several branches to do comparison
912 in a mode that needs comparison by parts, we cannot analyze the
913 number of iterations of the loop, and we never get to unrolling it.
915 * The code in expand_divmod that was suspected to cause creation of
916 branching code seems to be only accessed for signed division. The
917 divisions used by # of iterations analysis are always unsigned.
918 Problems might arise on architectures that emits branching code
919 for some operations that may appear in the unroller (especially
920 for division), but we have no such architectures.
922 Considering all this, it was decided that we should for now assume
923 that INSNS can in theory contain control flow insns, but in practice
924 it never does. So we don't handle the theoretical case, and should
925 a real failure ever show up, we have a pretty good clue for how to
926 fix it. */
928 return bb;
931 /* Unroll LOOP for that we are able to count number of iterations in runtime
932 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
933 extra care for case n < 0):
935 for (i = 0; i < n; i++)
936 body;
940 i = 0;
941 mod = n % 4;
943 switch (mod)
945 case 3:
946 body; i++;
947 case 2:
948 body; i++;
949 case 1:
950 body; i++;
951 case 0: ;
954 while (i < n)
956 body; i++;
957 body; i++;
958 body; i++;
959 body; i++;
962 static void
963 unroll_loop_runtime_iterations (struct loop *loop)
965 rtx old_niter, niter, init_code, branch_code, tmp;
966 unsigned i, j, p;
967 basic_block preheader, *body, swtch, ezc_swtch;
968 VEC (basic_block, heap) *dom_bbs;
969 sbitmap wont_exit;
970 int may_exit_copy;
971 unsigned n_peel;
972 VEC (edge, heap) *remove_edges;
973 edge e;
974 bool extra_zero_check, last_may_exit;
975 unsigned max_unroll = loop->lpt_decision.times;
976 struct niter_desc *desc = get_simple_loop_desc (loop);
977 bool exit_at_end = loop_exit_at_end_p (loop);
978 struct opt_info *opt_info = NULL;
979 bool ok;
981 if (flag_split_ivs_in_unroller
982 || flag_variable_expansion_in_unroller)
983 opt_info = analyze_insns_in_loop (loop);
985 /* Remember blocks whose dominators will have to be updated. */
986 dom_bbs = NULL;
988 body = get_loop_body (loop);
989 for (i = 0; i < loop->num_nodes; i++)
991 VEC (basic_block, heap) *ldom;
992 basic_block bb;
994 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
995 FOR_EACH_VEC_ELT (basic_block, ldom, j, bb)
996 if (!flow_bb_inside_loop_p (loop, bb))
997 VEC_safe_push (basic_block, heap, dom_bbs, bb);
999 VEC_free (basic_block, heap, ldom);
1001 free (body);
1003 if (!exit_at_end)
1005 /* Leave exit in first copy (for explanation why see comment in
1006 unroll_loop_constant_iterations). */
1007 may_exit_copy = 0;
1008 n_peel = max_unroll - 1;
1009 extra_zero_check = true;
1010 last_may_exit = false;
1012 else
1014 /* Leave exit in last copy (for explanation why see comment in
1015 unroll_loop_constant_iterations). */
1016 may_exit_copy = max_unroll;
1017 n_peel = max_unroll;
1018 extra_zero_check = false;
1019 last_may_exit = true;
1022 /* Get expression for number of iterations. */
1023 start_sequence ();
1024 old_niter = niter = gen_reg_rtx (desc->mode);
1025 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1026 if (tmp != niter)
1027 emit_move_insn (niter, tmp);
1029 /* Count modulo by ANDing it with max_unroll; we use the fact that
1030 the number of unrollings is a power of two, and thus this is correct
1031 even if there is overflow in the computation. */
1032 niter = expand_simple_binop (desc->mode, AND,
1033 niter,
1034 GEN_INT (max_unroll),
1035 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1037 init_code = get_insns ();
1038 end_sequence ();
1039 unshare_all_rtl_in_chain (init_code);
1041 /* Precondition the loop. */
1042 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1044 remove_edges = NULL;
1046 wont_exit = sbitmap_alloc (max_unroll + 2);
1048 /* Peel the first copy of loop body (almost always we must leave exit test
1049 here; the only exception is when we have extra zero check and the number
1050 of iterations is reliable. Also record the place of (possible) extra
1051 zero check. */
1052 sbitmap_zero (wont_exit);
1053 if (extra_zero_check
1054 && !desc->noloop_assumptions)
1055 SET_BIT (wont_exit, 1);
1056 ezc_swtch = loop_preheader_edge (loop)->src;
1057 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1058 1, wont_exit, desc->out_edge,
1059 &remove_edges,
1060 DLTHE_FLAG_UPDATE_FREQ);
1061 gcc_assert (ok);
1063 /* Record the place where switch will be built for preconditioning. */
1064 swtch = split_edge (loop_preheader_edge (loop));
1066 for (i = 0; i < n_peel; i++)
1068 /* Peel the copy. */
1069 sbitmap_zero (wont_exit);
1070 if (i != n_peel - 1 || !last_may_exit)
1071 SET_BIT (wont_exit, 1);
1072 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1073 1, wont_exit, desc->out_edge,
1074 &remove_edges,
1075 DLTHE_FLAG_UPDATE_FREQ);
1076 gcc_assert (ok);
1078 /* Create item for switch. */
1079 j = n_peel - i - (extra_zero_check ? 0 : 1);
1080 p = REG_BR_PROB_BASE / (i + 2);
1082 preheader = split_edge (loop_preheader_edge (loop));
1083 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1084 block_label (preheader), p,
1085 NULL_RTX);
1087 /* We rely on the fact that the compare and jump cannot be optimized out,
1088 and hence the cfg we create is correct. */
1089 gcc_assert (branch_code != NULL_RTX);
1091 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1092 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1093 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1094 e = make_edge (swtch, preheader,
1095 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1096 e->probability = p;
1099 if (extra_zero_check)
1101 /* Add branch for zero iterations. */
1102 p = REG_BR_PROB_BASE / (max_unroll + 1);
1103 swtch = ezc_swtch;
1104 preheader = split_edge (loop_preheader_edge (loop));
1105 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1106 block_label (preheader), p,
1107 NULL_RTX);
1108 gcc_assert (branch_code != NULL_RTX);
1110 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1111 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1112 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1113 e = make_edge (swtch, preheader,
1114 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1115 e->probability = p;
1118 /* Recount dominators for outer blocks. */
1119 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1121 /* And unroll loop. */
1123 sbitmap_ones (wont_exit);
1124 RESET_BIT (wont_exit, may_exit_copy);
1125 opt_info_start_duplication (opt_info);
1127 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1128 max_unroll,
1129 wont_exit, desc->out_edge,
1130 &remove_edges,
1131 DLTHE_FLAG_UPDATE_FREQ
1132 | (opt_info
1133 ? DLTHE_RECORD_COPY_NUMBER
1134 : 0));
1135 gcc_assert (ok);
1137 if (opt_info)
1139 apply_opt_in_copies (opt_info, max_unroll, true, true);
1140 free_opt_info (opt_info);
1143 free (wont_exit);
1145 if (exit_at_end)
1147 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1148 /* Find a new in and out edge; they are in the last copy we have
1149 made. */
1151 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1153 desc->out_edge = EDGE_SUCC (exit_block, 0);
1154 desc->in_edge = EDGE_SUCC (exit_block, 1);
1156 else
1158 desc->out_edge = EDGE_SUCC (exit_block, 1);
1159 desc->in_edge = EDGE_SUCC (exit_block, 0);
1163 /* Remove the edges. */
1164 FOR_EACH_VEC_ELT (edge, remove_edges, i, e)
1165 remove_path (e);
1166 VEC_free (edge, heap, remove_edges);
1168 /* We must be careful when updating the number of iterations due to
1169 preconditioning and the fact that the value must be valid at entry
1170 of the loop. After passing through the above code, we see that
1171 the correct new number of iterations is this: */
1172 gcc_assert (!desc->const_iter);
1173 desc->niter_expr =
1174 simplify_gen_binary (UDIV, desc->mode, old_niter,
1175 GEN_INT (max_unroll + 1));
1176 desc->niter_max /= max_unroll + 1;
1177 if (exit_at_end)
1179 desc->niter_expr =
1180 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1181 desc->noloop_assumptions = NULL_RTX;
1182 desc->niter_max--;
1185 if (dump_file)
1186 fprintf (dump_file,
1187 ";; Unrolled loop %d times, counting # of iterations "
1188 "in runtime, %i insns\n",
1189 max_unroll, num_loop_insns (loop));
1191 VEC_free (basic_block, heap, dom_bbs);
1194 /* Decide whether to simply peel LOOP and how much. */
1195 static void
1196 decide_peel_simple (struct loop *loop, int flags)
1198 unsigned npeel;
1199 struct niter_desc *desc;
1201 if (!(flags & UAP_PEEL))
1203 /* We were not asked to, just return back silently. */
1204 return;
1207 if (dump_file)
1208 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1210 /* npeel = number of iterations to peel. */
1211 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1212 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1213 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1215 /* Skip big loops. */
1216 if (!npeel)
1218 if (dump_file)
1219 fprintf (dump_file, ";; Not considering loop, is too big\n");
1220 return;
1223 /* Check for simple loops. */
1224 desc = get_simple_loop_desc (loop);
1226 /* Check number of iterations. */
1227 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1229 if (dump_file)
1230 fprintf (dump_file, ";; Loop iterates constant times\n");
1231 return;
1234 /* Do not simply peel loops with branches inside -- it increases number
1235 of mispredicts. */
1236 if (num_loop_branches (loop) > 1)
1238 if (dump_file)
1239 fprintf (dump_file, ";; Not peeling, contains branches\n");
1240 return;
1243 if (loop->header->count)
1245 unsigned niter = expected_loop_iterations (loop);
1246 if (niter + 1 > npeel)
1248 if (dump_file)
1250 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1251 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1252 (HOST_WIDEST_INT) (niter + 1));
1253 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1254 npeel);
1256 return;
1258 npeel = niter + 1;
1260 else
1262 /* For now we have no good heuristics to decide whether loop peeling
1263 will be effective, so disable it. */
1264 if (dump_file)
1265 fprintf (dump_file,
1266 ";; Not peeling loop, no evidence it will be profitable\n");
1267 return;
1270 /* Success. */
1271 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1272 loop->lpt_decision.times = npeel;
1274 if (dump_file)
1275 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1276 loop->lpt_decision.times);
1279 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1280 while (cond)
1281 body;
1285 if (!cond) goto end;
1286 body;
1287 if (!cond) goto end;
1288 body;
1289 while (cond)
1290 body;
1291 end: ;
1293 static void
1294 peel_loop_simple (struct loop *loop)
1296 sbitmap wont_exit;
1297 unsigned npeel = loop->lpt_decision.times;
1298 struct niter_desc *desc = get_simple_loop_desc (loop);
1299 struct opt_info *opt_info = NULL;
1300 bool ok;
1302 if (flag_split_ivs_in_unroller && npeel > 1)
1303 opt_info = analyze_insns_in_loop (loop);
1305 wont_exit = sbitmap_alloc (npeel + 1);
1306 sbitmap_zero (wont_exit);
1308 opt_info_start_duplication (opt_info);
1310 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1311 npeel, wont_exit, NULL,
1312 NULL, DLTHE_FLAG_UPDATE_FREQ
1313 | (opt_info
1314 ? DLTHE_RECORD_COPY_NUMBER
1315 : 0));
1316 gcc_assert (ok);
1318 free (wont_exit);
1320 if (opt_info)
1322 apply_opt_in_copies (opt_info, npeel, false, false);
1323 free_opt_info (opt_info);
1326 if (desc->simple_p)
1328 if (desc->const_iter)
1330 desc->niter -= npeel;
1331 desc->niter_expr = GEN_INT (desc->niter);
1332 desc->noloop_assumptions = NULL_RTX;
1334 else
1336 /* We cannot just update niter_expr, as its value might be clobbered
1337 inside loop. We could handle this by counting the number into
1338 temporary just like we do in runtime unrolling, but it does not
1339 seem worthwhile. */
1340 free_simple_loop_desc (loop);
1343 if (dump_file)
1344 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1347 /* Decide whether to unroll LOOP stupidly and how much. */
1348 static void
1349 decide_unroll_stupid (struct loop *loop, int flags)
1351 unsigned nunroll, nunroll_by_av, i;
1352 struct niter_desc *desc;
1354 if (!(flags & UAP_UNROLL_ALL))
1356 /* We were not asked to, just return back silently. */
1357 return;
1360 if (dump_file)
1361 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1363 /* nunroll = total number of copies of the original loop body in
1364 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1365 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1366 nunroll_by_av
1367 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1368 if (nunroll > nunroll_by_av)
1369 nunroll = nunroll_by_av;
1370 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1371 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1373 if (targetm.loop_unroll_adjust)
1374 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1376 /* Skip big loops. */
1377 if (nunroll <= 1)
1379 if (dump_file)
1380 fprintf (dump_file, ";; Not considering loop, is too big\n");
1381 return;
1384 /* Check for simple loops. */
1385 desc = get_simple_loop_desc (loop);
1387 /* Check simpleness. */
1388 if (desc->simple_p && !desc->assumptions)
1390 if (dump_file)
1391 fprintf (dump_file, ";; The loop is simple\n");
1392 return;
1395 /* Do not unroll loops with branches inside -- it increases number
1396 of mispredicts. */
1397 if (num_loop_branches (loop) > 1)
1399 if (dump_file)
1400 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1401 return;
1404 /* If we have profile feedback, check whether the loop rolls. */
1405 if (loop->header->count
1406 && expected_loop_iterations (loop) < 2 * nunroll)
1408 if (dump_file)
1409 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1410 return;
1413 /* Success. Now force nunroll to be power of 2, as it seems that this
1414 improves results (partially because of better alignments, partially
1415 because of some dark magic). */
1416 for (i = 1; 2 * i <= nunroll; i *= 2)
1417 continue;
1419 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1420 loop->lpt_decision.times = i - 1;
1422 if (dump_file)
1423 fprintf (dump_file,
1424 ";; Decided to unroll the loop stupidly, %d times.\n",
1425 loop->lpt_decision.times);
1428 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1429 while (cond)
1430 body;
1434 while (cond)
1436 body;
1437 if (!cond) break;
1438 body;
1439 if (!cond) break;
1440 body;
1441 if (!cond) break;
1442 body;
1445 static void
1446 unroll_loop_stupid (struct loop *loop)
1448 sbitmap wont_exit;
1449 unsigned nunroll = loop->lpt_decision.times;
1450 struct niter_desc *desc = get_simple_loop_desc (loop);
1451 struct opt_info *opt_info = NULL;
1452 bool ok;
1454 if (flag_split_ivs_in_unroller
1455 || flag_variable_expansion_in_unroller)
1456 opt_info = analyze_insns_in_loop (loop);
1459 wont_exit = sbitmap_alloc (nunroll + 1);
1460 sbitmap_zero (wont_exit);
1461 opt_info_start_duplication (opt_info);
1463 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1464 nunroll, wont_exit,
1465 NULL, NULL,
1466 DLTHE_FLAG_UPDATE_FREQ
1467 | (opt_info
1468 ? DLTHE_RECORD_COPY_NUMBER
1469 : 0));
1470 gcc_assert (ok);
1472 if (opt_info)
1474 apply_opt_in_copies (opt_info, nunroll, true, true);
1475 free_opt_info (opt_info);
1478 free (wont_exit);
1480 if (desc->simple_p)
1482 /* We indeed may get here provided that there are nontrivial assumptions
1483 for a loop to be really simple. We could update the counts, but the
1484 problem is that we are unable to decide which exit will be taken
1485 (not really true in case the number of iterations is constant,
1486 but noone will do anything with this information, so we do not
1487 worry about it). */
1488 desc->simple_p = false;
1491 if (dump_file)
1492 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1493 nunroll, num_loop_insns (loop));
1496 /* A hash function for information about insns to split. */
1498 static hashval_t
1499 si_info_hash (const void *ivts)
1501 return (hashval_t) INSN_UID (((const struct iv_to_split *) ivts)->insn);
1504 /* An equality functions for information about insns to split. */
1506 static int
1507 si_info_eq (const void *ivts1, const void *ivts2)
1509 const struct iv_to_split *const i1 = (const struct iv_to_split *) ivts1;
1510 const struct iv_to_split *const i2 = (const struct iv_to_split *) ivts2;
1512 return i1->insn == i2->insn;
1515 /* Return a hash for VES, which is really a "var_to_expand *". */
1517 static hashval_t
1518 ve_info_hash (const void *ves)
1520 return (hashval_t) INSN_UID (((const struct var_to_expand *) ves)->insn);
1523 /* Return true if IVTS1 and IVTS2 (which are really both of type
1524 "var_to_expand *") refer to the same instruction. */
1526 static int
1527 ve_info_eq (const void *ivts1, const void *ivts2)
1529 const struct var_to_expand *const i1 = (const struct var_to_expand *) ivts1;
1530 const struct var_to_expand *const i2 = (const struct var_to_expand *) ivts2;
1532 return i1->insn == i2->insn;
1535 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1536 Set *DEBUG_USES to the number of debug insns that reference the
1537 variable. */
1539 bool
1540 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1541 int *debug_uses)
1543 basic_block *body, bb;
1544 unsigned i;
1545 int count_ref = 0;
1546 rtx insn;
1548 body = get_loop_body (loop);
1549 for (i = 0; i < loop->num_nodes; i++)
1551 bb = body[i];
1553 FOR_BB_INSNS (bb, insn)
1554 if (!rtx_referenced_p (reg, insn))
1555 continue;
1556 else if (DEBUG_INSN_P (insn))
1557 ++*debug_uses;
1558 else if (++count_ref > 1)
1559 break;
1561 free (body);
1562 return (count_ref == 1);
1565 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1567 static void
1568 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1570 basic_block *body, bb;
1571 unsigned i;
1572 rtx insn;
1574 body = get_loop_body (loop);
1575 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1577 bb = body[i];
1579 FOR_BB_INSNS (bb, insn)
1580 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1581 continue;
1582 else
1584 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1585 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1586 if (!--debug_uses)
1587 break;
1590 free (body);
1593 /* Determine whether INSN contains an accumulator
1594 which can be expanded into separate copies,
1595 one for each copy of the LOOP body.
1597 for (i = 0 ; i < n; i++)
1598 sum += a[i];
1602 sum += a[i]
1603 ....
1604 i = i+1;
1605 sum1 += a[i]
1606 ....
1607 i = i+1
1608 sum2 += a[i];
1609 ....
1611 Return NULL if INSN contains no opportunity for expansion of accumulator.
1612 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1613 information and return a pointer to it.
1616 static struct var_to_expand *
1617 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1619 rtx set, dest, src;
1620 struct var_to_expand *ves;
1621 unsigned accum_pos;
1622 enum rtx_code code;
1623 int debug_uses = 0;
1625 set = single_set (insn);
1626 if (!set)
1627 return NULL;
1629 dest = SET_DEST (set);
1630 src = SET_SRC (set);
1631 code = GET_CODE (src);
1633 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1634 return NULL;
1636 if (FLOAT_MODE_P (GET_MODE (dest)))
1638 if (!flag_associative_math)
1639 return NULL;
1640 /* In the case of FMA, we're also changing the rounding. */
1641 if (code == FMA && !flag_unsafe_math_optimizations)
1642 return NULL;
1645 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1646 in MD. But if there is no optab to generate the insn, we can not
1647 perform the variable expansion. This can happen if an MD provides
1648 an insn but not a named pattern to generate it, for example to avoid
1649 producing code that needs additional mode switches like for x87/mmx.
1651 So we check have_insn_for which looks for an optab for the operation
1652 in SRC. If it doesn't exist, we can't perform the expansion even
1653 though INSN is valid. */
1654 if (!have_insn_for (code, GET_MODE (src)))
1655 return NULL;
1657 if (!REG_P (dest)
1658 && !(GET_CODE (dest) == SUBREG
1659 && REG_P (SUBREG_REG (dest))))
1660 return NULL;
1662 /* Find the accumulator use within the operation. */
1663 if (code == FMA)
1665 /* We only support accumulation via FMA in the ADD position. */
1666 if (!rtx_equal_p (dest, XEXP (src, 2)))
1667 return NULL;
1668 accum_pos = 2;
1670 else if (rtx_equal_p (dest, XEXP (src, 0)))
1671 accum_pos = 0;
1672 else if (rtx_equal_p (dest, XEXP (src, 1)))
1674 /* The method of expansion that we are using; which includes the
1675 initialization of the expansions with zero and the summation of
1676 the expansions at the end of the computation will yield wrong
1677 results for (x = something - x) thus avoid using it in that case. */
1678 if (code == MINUS)
1679 return NULL;
1680 accum_pos = 1;
1682 else
1683 return NULL;
1685 /* It must not otherwise be used. */
1686 if (code == FMA)
1688 if (rtx_referenced_p (dest, XEXP (src, 0))
1689 || rtx_referenced_p (dest, XEXP (src, 1)))
1690 return NULL;
1692 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1693 return NULL;
1695 /* It must be used in exactly one insn. */
1696 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1697 return NULL;
1699 if (dump_file)
1701 fprintf (dump_file, "\n;; Expanding Accumulator ");
1702 print_rtl (dump_file, dest);
1703 fprintf (dump_file, "\n");
1706 if (debug_uses)
1707 /* Instead of resetting the debug insns, we could replace each
1708 debug use in the loop with the sum or product of all expanded
1709 accummulators. Since we'll only know of all expansions at the
1710 end, we'd have to keep track of which vars_to_expand a debug
1711 insn in the loop references, take note of each copy of the
1712 debug insn during unrolling, and when it's all done, compute
1713 the sum or product of each variable and adjust the original
1714 debug insn and each copy thereof. What a pain! */
1715 reset_debug_uses_in_loop (loop, dest, debug_uses);
1717 /* Record the accumulator to expand. */
1718 ves = XNEW (struct var_to_expand);
1719 ves->insn = insn;
1720 ves->reg = copy_rtx (dest);
1721 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1722 ves->next = NULL;
1723 ves->op = GET_CODE (src);
1724 ves->expansion_count = 0;
1725 ves->reuse_expansion = 0;
1726 ves->accum_pos = accum_pos;
1727 return ves;
1730 /* Determine whether there is an induction variable in INSN that
1731 we would like to split during unrolling.
1733 I.e. replace
1735 i = i + 1;
1737 i = i + 1;
1739 i = i + 1;
1742 type chains by
1744 i0 = i + 1
1746 i = i0 + 1
1748 i = i0 + 2
1751 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1752 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1753 pointer to it. */
1755 static struct iv_to_split *
1756 analyze_iv_to_split_insn (rtx insn)
1758 rtx set, dest;
1759 struct rtx_iv iv;
1760 struct iv_to_split *ivts;
1761 bool ok;
1763 /* For now we just split the basic induction variables. Later this may be
1764 extended for example by selecting also addresses of memory references. */
1765 set = single_set (insn);
1766 if (!set)
1767 return NULL;
1769 dest = SET_DEST (set);
1770 if (!REG_P (dest))
1771 return NULL;
1773 if (!biv_p (insn, dest))
1774 return NULL;
1776 ok = iv_analyze_result (insn, dest, &iv);
1778 /* This used to be an assert under the assumption that if biv_p returns
1779 true that iv_analyze_result must also return true. However, that
1780 assumption is not strictly correct as evidenced by pr25569.
1782 Returning NULL when iv_analyze_result returns false is safe and
1783 avoids the problems in pr25569 until the iv_analyze_* routines
1784 can be fixed, which is apparently hard and time consuming
1785 according to their author. */
1786 if (! ok)
1787 return NULL;
1789 if (iv.step == const0_rtx
1790 || iv.mode != iv.extend_mode)
1791 return NULL;
1793 /* Record the insn to split. */
1794 ivts = XNEW (struct iv_to_split);
1795 ivts->insn = insn;
1796 ivts->base_var = NULL_RTX;
1797 ivts->step = iv.step;
1798 ivts->next = NULL;
1799 ivts->n_loc = 1;
1800 ivts->loc[0] = 1;
1802 return ivts;
1805 /* Determines which of insns in LOOP can be optimized.
1806 Return a OPT_INFO struct with the relevant hash tables filled
1807 with all insns to be optimized. The FIRST_NEW_BLOCK field
1808 is undefined for the return value. */
1810 static struct opt_info *
1811 analyze_insns_in_loop (struct loop *loop)
1813 basic_block *body, bb;
1814 unsigned i;
1815 struct opt_info *opt_info = XCNEW (struct opt_info);
1816 rtx insn;
1817 struct iv_to_split *ivts = NULL;
1818 struct var_to_expand *ves = NULL;
1819 PTR *slot1;
1820 PTR *slot2;
1821 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1822 edge exit;
1823 bool can_apply = false;
1825 iv_analysis_loop_init (loop);
1827 body = get_loop_body (loop);
1829 if (flag_split_ivs_in_unroller)
1831 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1832 si_info_hash, si_info_eq, free);
1833 opt_info->iv_to_split_head = NULL;
1834 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1837 /* Record the loop exit bb and loop preheader before the unrolling. */
1838 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1840 if (VEC_length (edge, edges) == 1)
1842 exit = VEC_index (edge, edges, 0);
1843 if (!(exit->flags & EDGE_COMPLEX))
1845 opt_info->loop_exit = split_edge (exit);
1846 can_apply = true;
1850 if (flag_variable_expansion_in_unroller
1851 && can_apply)
1853 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1854 ve_info_hash,
1855 ve_info_eq, free);
1856 opt_info->var_to_expand_head = NULL;
1857 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1860 for (i = 0; i < loop->num_nodes; i++)
1862 bb = body[i];
1863 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1864 continue;
1866 FOR_BB_INSNS (bb, insn)
1868 if (!INSN_P (insn))
1869 continue;
1871 if (opt_info->insns_to_split)
1872 ivts = analyze_iv_to_split_insn (insn);
1874 if (ivts)
1876 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1877 gcc_assert (*slot1 == NULL);
1878 *slot1 = ivts;
1879 *opt_info->iv_to_split_tail = ivts;
1880 opt_info->iv_to_split_tail = &ivts->next;
1881 continue;
1884 if (opt_info->insns_with_var_to_expand)
1885 ves = analyze_insn_to_expand_var (loop, insn);
1887 if (ves)
1889 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1890 gcc_assert (*slot2 == NULL);
1891 *slot2 = ves;
1892 *opt_info->var_to_expand_tail = ves;
1893 opt_info->var_to_expand_tail = &ves->next;
1898 VEC_free (edge, heap, edges);
1899 free (body);
1900 return opt_info;
1903 /* Called just before loop duplication. Records start of duplicated area
1904 to OPT_INFO. */
1906 static void
1907 opt_info_start_duplication (struct opt_info *opt_info)
1909 if (opt_info)
1910 opt_info->first_new_block = last_basic_block;
1913 /* Determine the number of iterations between initialization of the base
1914 variable and the current copy (N_COPY). N_COPIES is the total number
1915 of newly created copies. UNROLLING is true if we are unrolling
1916 (not peeling) the loop. */
1918 static unsigned
1919 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1921 if (unrolling)
1923 /* If we are unrolling, initialization is done in the original loop
1924 body (number 0). */
1925 return n_copy;
1927 else
1929 /* If we are peeling, the copy in that the initialization occurs has
1930 number 1. The original loop (number 0) is the last. */
1931 if (n_copy)
1932 return n_copy - 1;
1933 else
1934 return n_copies;
1938 /* Locate in EXPR the expression corresponding to the location recorded
1939 in IVTS, and return a pointer to the RTX for this location. */
1941 static rtx *
1942 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1944 unsigned i;
1945 rtx *ret = &expr;
1947 for (i = 0; i < ivts->n_loc; i++)
1948 ret = &XEXP (*ret, ivts->loc[i]);
1950 return ret;
1953 /* Allocate basic variable for the induction variable chain. */
1955 static void
1956 allocate_basic_variable (struct iv_to_split *ivts)
1958 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1960 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1963 /* Insert initialization of basic variable of IVTS before INSN, taking
1964 the initial value from INSN. */
1966 static void
1967 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1969 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1970 rtx seq;
1972 start_sequence ();
1973 expr = force_operand (expr, ivts->base_var);
1974 if (expr != ivts->base_var)
1975 emit_move_insn (ivts->base_var, expr);
1976 seq = get_insns ();
1977 end_sequence ();
1979 emit_insn_before (seq, insn);
1982 /* Replace the use of induction variable described in IVTS in INSN
1983 by base variable + DELTA * step. */
1985 static void
1986 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1988 rtx expr, *loc, seq, incr, var;
1989 enum machine_mode mode = GET_MODE (ivts->base_var);
1990 rtx src, dest, set;
1992 /* Construct base + DELTA * step. */
1993 if (!delta)
1994 expr = ivts->base_var;
1995 else
1997 incr = simplify_gen_binary (MULT, mode,
1998 ivts->step, gen_int_mode (delta, mode));
1999 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2000 ivts->base_var, incr);
2003 /* Figure out where to do the replacement. */
2004 loc = get_ivts_expr (single_set (insn), ivts);
2006 /* If we can make the replacement right away, we're done. */
2007 if (validate_change (insn, loc, expr, 0))
2008 return;
2010 /* Otherwise, force EXPR into a register and try again. */
2011 start_sequence ();
2012 var = gen_reg_rtx (mode);
2013 expr = force_operand (expr, var);
2014 if (expr != var)
2015 emit_move_insn (var, expr);
2016 seq = get_insns ();
2017 end_sequence ();
2018 emit_insn_before (seq, insn);
2020 if (validate_change (insn, loc, var, 0))
2021 return;
2023 /* The last chance. Try recreating the assignment in insn
2024 completely from scratch. */
2025 set = single_set (insn);
2026 gcc_assert (set);
2028 start_sequence ();
2029 *loc = var;
2030 src = copy_rtx (SET_SRC (set));
2031 dest = copy_rtx (SET_DEST (set));
2032 src = force_operand (src, dest);
2033 if (src != dest)
2034 emit_move_insn (dest, src);
2035 seq = get_insns ();
2036 end_sequence ();
2038 emit_insn_before (seq, insn);
2039 delete_insn (insn);
2043 /* Return one expansion of the accumulator recorded in struct VE. */
2045 static rtx
2046 get_expansion (struct var_to_expand *ve)
2048 rtx reg;
2050 if (ve->reuse_expansion == 0)
2051 reg = ve->reg;
2052 else
2053 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
2055 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
2056 ve->reuse_expansion = 0;
2057 else
2058 ve->reuse_expansion++;
2060 return reg;
2064 /* Given INSN replace the uses of the accumulator recorded in VE
2065 with a new register. */
2067 static void
2068 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2070 rtx new_reg, set;
2071 bool really_new_expansion = false;
2073 set = single_set (insn);
2074 gcc_assert (set);
2076 /* Generate a new register only if the expansion limit has not been
2077 reached. Else reuse an already existing expansion. */
2078 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2080 really_new_expansion = true;
2081 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2083 else
2084 new_reg = get_expansion (ve);
2086 validate_change (insn, &SET_DEST (set), new_reg, 1);
2087 validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
2089 if (apply_change_group ())
2090 if (really_new_expansion)
2092 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
2093 ve->expansion_count++;
2097 /* Initialize the variable expansions in loop preheader. PLACE is the
2098 loop-preheader basic block where the initialization of the
2099 expansions should take place. The expansions are initialized with
2100 (-0) when the operation is plus or minus to honor sign zero. This
2101 way we can prevent cases where the sign of the final result is
2102 effected by the sign of the expansion. Here is an example to
2103 demonstrate this:
2105 for (i = 0 ; i < n; i++)
2106 sum += something;
2110 sum += something
2111 ....
2112 i = i+1;
2113 sum1 += something
2114 ....
2115 i = i+1
2116 sum2 += something;
2117 ....
2119 When SUM is initialized with -zero and SOMETHING is also -zero; the
2120 final result of sum should be -zero thus the expansions sum1 and sum2
2121 should be initialized with -zero as well (otherwise we will get +zero
2122 as the final result). */
2124 static void
2125 insert_var_expansion_initialization (struct var_to_expand *ve,
2126 basic_block place)
2128 rtx seq, var, zero_init, insn;
2129 unsigned i;
2130 enum machine_mode mode = GET_MODE (ve->reg);
2131 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2133 if (VEC_length (rtx, ve->var_expansions) == 0)
2134 return;
2136 start_sequence ();
2137 switch (ve->op)
2139 case FMA:
2140 /* Note that we only accumulate FMA via the ADD operand. */
2141 case PLUS:
2142 case MINUS:
2143 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2145 if (honor_signed_zero_p)
2146 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2147 else
2148 zero_init = CONST0_RTX (mode);
2149 emit_move_insn (var, zero_init);
2151 break;
2153 case MULT:
2154 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2156 zero_init = CONST1_RTX (GET_MODE (var));
2157 emit_move_insn (var, zero_init);
2159 break;
2161 default:
2162 gcc_unreachable ();
2165 seq = get_insns ();
2166 end_sequence ();
2168 insn = BB_HEAD (place);
2169 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2170 insn = NEXT_INSN (insn);
2172 emit_insn_after (seq, insn);
2175 /* Combine the variable expansions at the loop exit. PLACE is the
2176 loop exit basic block where the summation of the expansions should
2177 take place. */
2179 static void
2180 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2182 rtx sum = ve->reg;
2183 rtx expr, seq, var, insn;
2184 unsigned i;
2186 if (VEC_length (rtx, ve->var_expansions) == 0)
2187 return;
2189 start_sequence ();
2190 switch (ve->op)
2192 case FMA:
2193 /* Note that we only accumulate FMA via the ADD operand. */
2194 case PLUS:
2195 case MINUS:
2196 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2197 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2198 break;
2200 case MULT:
2201 FOR_EACH_VEC_ELT (rtx, ve->var_expansions, i, var)
2202 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2203 break;
2205 default:
2206 gcc_unreachable ();
2209 expr = force_operand (sum, ve->reg);
2210 if (expr != ve->reg)
2211 emit_move_insn (ve->reg, expr);
2212 seq = get_insns ();
2213 end_sequence ();
2215 insn = BB_HEAD (place);
2216 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2217 insn = NEXT_INSN (insn);
2219 emit_insn_after (seq, insn);
2222 /* Apply loop optimizations in loop copies using the
2223 data which gathered during the unrolling. Structure
2224 OPT_INFO record that data.
2226 UNROLLING is true if we unrolled (not peeled) the loop.
2227 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2228 the loop (as it should happen in complete unrolling, but not in ordinary
2229 peeling of the loop). */
2231 static void
2232 apply_opt_in_copies (struct opt_info *opt_info,
2233 unsigned n_copies, bool unrolling,
2234 bool rewrite_original_loop)
2236 unsigned i, delta;
2237 basic_block bb, orig_bb;
2238 rtx insn, orig_insn, next;
2239 struct iv_to_split ivts_templ, *ivts;
2240 struct var_to_expand ve_templ, *ves;
2242 /* Sanity check -- we need to put initialization in the original loop
2243 body. */
2244 gcc_assert (!unrolling || rewrite_original_loop);
2246 /* Allocate the basic variables (i0). */
2247 if (opt_info->insns_to_split)
2248 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2249 allocate_basic_variable (ivts);
2251 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2253 bb = BASIC_BLOCK (i);
2254 orig_bb = get_bb_original (bb);
2256 /* bb->aux holds position in copy sequence initialized by
2257 duplicate_loop_to_header_edge. */
2258 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2259 unrolling);
2260 bb->aux = 0;
2261 orig_insn = BB_HEAD (orig_bb);
2262 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2264 next = NEXT_INSN (insn);
2265 if (!INSN_P (insn))
2266 continue;
2268 while (!INSN_P (orig_insn))
2269 orig_insn = NEXT_INSN (orig_insn);
2271 ivts_templ.insn = orig_insn;
2272 ve_templ.insn = orig_insn;
2274 /* Apply splitting iv optimization. */
2275 if (opt_info->insns_to_split)
2277 ivts = (struct iv_to_split *)
2278 htab_find (opt_info->insns_to_split, &ivts_templ);
2280 if (ivts)
2282 gcc_assert (GET_CODE (PATTERN (insn))
2283 == GET_CODE (PATTERN (orig_insn)));
2285 if (!delta)
2286 insert_base_initialization (ivts, insn);
2287 split_iv (ivts, insn, delta);
2290 /* Apply variable expansion optimization. */
2291 if (unrolling && opt_info->insns_with_var_to_expand)
2293 ves = (struct var_to_expand *)
2294 htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2295 if (ves)
2297 gcc_assert (GET_CODE (PATTERN (insn))
2298 == GET_CODE (PATTERN (orig_insn)));
2299 expand_var_during_unrolling (ves, insn);
2302 orig_insn = NEXT_INSN (orig_insn);
2306 if (!rewrite_original_loop)
2307 return;
2309 /* Initialize the variable expansions in the loop preheader
2310 and take care of combining them at the loop exit. */
2311 if (opt_info->insns_with_var_to_expand)
2313 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2314 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2315 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2316 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2319 /* Rewrite also the original loop body. Find them as originals of the blocks
2320 in the last copied iteration, i.e. those that have
2321 get_bb_copy (get_bb_original (bb)) == bb. */
2322 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2324 bb = BASIC_BLOCK (i);
2325 orig_bb = get_bb_original (bb);
2326 if (get_bb_copy (orig_bb) != bb)
2327 continue;
2329 delta = determine_split_iv_delta (0, n_copies, unrolling);
2330 for (orig_insn = BB_HEAD (orig_bb);
2331 orig_insn != NEXT_INSN (BB_END (bb));
2332 orig_insn = next)
2334 next = NEXT_INSN (orig_insn);
2336 if (!INSN_P (orig_insn))
2337 continue;
2339 ivts_templ.insn = orig_insn;
2340 if (opt_info->insns_to_split)
2342 ivts = (struct iv_to_split *)
2343 htab_find (opt_info->insns_to_split, &ivts_templ);
2344 if (ivts)
2346 if (!delta)
2347 insert_base_initialization (ivts, orig_insn);
2348 split_iv (ivts, orig_insn, delta);
2349 continue;
2357 /* Release OPT_INFO. */
2359 static void
2360 free_opt_info (struct opt_info *opt_info)
2362 if (opt_info->insns_to_split)
2363 htab_delete (opt_info->insns_to_split);
2364 if (opt_info->insns_with_var_to_expand)
2366 struct var_to_expand *ves;
2368 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2369 VEC_free (rtx, heap, ves->var_expansions);
2370 htab_delete (opt_info->insns_with_var_to_expand);
2372 free (opt_info);