final.c (output_addr_const): Use target opening and closing parentheses.
[official-gcc.git] / gcc / config / mn10200 / mn10200.h
blob997f1aabcc172802d58448f0e1789d77d5877fec
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10200 series
3 Copyright (C) 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 #include "svr4.h"
26 /* Get rid of svr4.h stuff we don't want/need. */
27 #undef ASM_SPEC
28 #undef ASM_FINAL_SPEC
29 #undef LIB_SPEC
30 #undef ENDFILE_SPEC
31 #undef LINK_SPEC
32 #undef STARTFILE_SPEC
34 /* Names to predefine in the preprocessor for this target machine. */
36 #define CPP_PREDEFINES "-D__mn10200__ -D__MN10200__ -D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L -D__INT_MAX__=32767"
38 /* Run-time compilation parameters selecting different hardware subsets. */
40 /* We don't have any switched on the mn10200. Though there are some things
41 that might be worth a switch:
43 -mspace to optimize even more for space.
45 -mrelax to enable the relaxing linker. */
47 extern int target_flags;
49 /* Macros used in the machine description to test the flags. */
51 /* Macro to define tables used to set the flags.
52 This is a list in braces of pairs in braces,
53 each pair being { "NAME", VALUE }
54 where VALUE is the bits to set or minus the bits to clear.
55 An empty string NAME is used to identify the default VALUE. */
57 #define TARGET_SWITCHES \
58 {{ "", TARGET_DEFAULT, 0}}
60 #ifndef TARGET_DEFAULT
61 #define TARGET_DEFAULT 0
62 #endif
64 /* Print subsidiary information on the compiler version in use. */
66 #define TARGET_VERSION fprintf (stderr, " (MN10200)");
69 /* Target machine storage layout */
71 /* Define this if most significant bit is lowest numbered
72 in instructions that operate on numbered bit-fields.
73 This is not true on the Matsushita MN10300. */
74 #define BITS_BIG_ENDIAN 0
76 /* Define this if most significant byte of a word is the lowest numbered. */
77 /* This is not true on the Matsushita MN10200. */
78 #define BYTES_BIG_ENDIAN 0
80 /* Define this if most significant word of a multiword number is lowest
81 numbered.
82 This is not true on the Matsushita MN10200. */
83 #define WORDS_BIG_ENDIAN 0
85 /* Number of bits in an addressable storage unit */
86 #define BITS_PER_UNIT 8
88 /* Width in bits of a "word", which is the contents of a machine register.
89 Note that this is not necessarily the width of data type `int';
90 if using 16-bit ints on a 68000, this would still be 32.
91 But on a machine with 16-bit registers, this would be 16.
93 This is a white lie. Registers are really 24bits, but most operations
94 only operate on 16 bits. GCC chokes badly if we set this to a value
95 that is not a power of two. */
96 #define BITS_PER_WORD 16
98 /* Width of a word, in units (bytes). */
99 #define UNITS_PER_WORD 2
101 /* Width in bits of a pointer.
102 See also the macro `Pmode' defined below.
104 This differs from Pmode because we need to allocate 32bits of space
105 to hold the 24bit pointers on this machine. */
106 #define POINTER_SIZE 32
108 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
109 #define PARM_BOUNDARY 16
111 /* The stack goes in 16 bit lumps. */
112 #define STACK_BOUNDARY 16
114 /* Allocation boundary (in *bits*) for the code of a function.
115 8 is the minimum boundary; it's unclear if bigger alignments
116 would improve performance. */
117 #define FUNCTION_BOUNDARY 8
119 /* No data type wants to be aligned rounder than this. */
120 #define BIGGEST_ALIGNMENT 16
122 /* Alignment of field after `int : 0' in a structure. */
123 #define EMPTY_FIELD_BOUNDARY 16
125 /* Seems to be how the Matsushita compiler does things, and there's
126 no real reason to be different. */
127 #define STRUCTURE_SIZE_BOUNDARY 16
128 #undef PCC_BITFIELD_TYPE_MATTERS
130 /* Define this if move instructions will actually fail to work
131 when given unaligned data. */
132 #define STRICT_ALIGNMENT 1
134 /* Define this as 1 if `char' should by default be signed; else as 0. */
135 #define DEFAULT_SIGNED_CHAR 0
137 /* Standard register usage. */
139 /* Number of actual hardware registers.
140 The hardware registers are assigned numbers for the compiler
141 from 0 to just below FIRST_PSEUDO_REGISTER.
143 All registers that the compiler knows about must be given numbers,
144 even those that are not normally considered general registers.
146 XXX Long term we should probably expose the MDR register, we use
147 it for division, multiplication, and some extension operations. */
149 #define FIRST_PSEUDO_REGISTER 8
151 /* 1 for registers that have pervasive standard uses
152 and are not available for the register allocator. */
154 #define FIXED_REGISTERS \
155 { 0, 0, 0, 0, 0, 0, 0, 1}
157 /* 1 for registers not available across function calls.
158 These must include the FIXED_REGISTERS and also any
159 registers that can be used without being saved.
160 The latter must include the registers where values are returned
161 and the register where structure-value addresses are passed.
162 Aside from that, you can include as many other registers as you
163 like. */
165 #define CALL_USED_REGISTERS \
166 { 1, 1, 0, 0, 1, 0, 0, 1}
168 #define REG_ALLOC_ORDER \
169 { 0, 1, 4, 2, 3, 5, 6, 7}
171 /* Return number of consecutive hard regs needed starting at reg REGNO
172 to hold something of mode MODE.
174 This is ordinarily the length in words of a value of mode MODE
175 but can be less for certain modes in special long registers. */
177 #define HARD_REGNO_NREGS(REGNO, MODE) \
178 ((MODE) == PSImode ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
179 / UNITS_PER_WORD))
181 /* Value is 1 if hard register REGNO can hold a value of machine-mode
182 MODE.
184 We allow any register to hold a PSImode value. We allow any register
185 to hold values <= 16 bits. For values > 16 bits we require aligned
186 register pairs. */
187 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
188 ((MODE) == PSImode ? 1 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 2)
190 /* Value is 1 if it is a good idea to tie two pseudo registers
191 when one has mode MODE1 and one has mode MODE2.
192 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
193 for any hard reg, then this must be 0 for correct output. */
194 #define MODES_TIEABLE_P(MODE1, MODE2) \
195 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 2 && GET_MODE_SIZE (MODE2) <= 2))
197 /* 4 data, and effectively 2 address registers is small as far as I'm
198 concerned. Especially since we use 2 data registers for argument
199 passing and return values.
201 We used to define CLASS_LIKELY_SPILLED_P as true for DATA_REGS too,
202 but we've made improvements to the port which greatly reduce register
203 pressure. As a result we no longer need to define CLASS_LIKELY_SPILLED_P
204 for DATA_REGS (and by not defining it we get significantly better code). */
205 #define SMALL_REGISTER_CLASSES 1
206 #define CLASS_LIKELY_SPILLED_P(CLASS) (CLASS == ADDRESS_REGS)
208 /* Define the classes of registers for register constraints in the
209 machine description. Also define ranges of constants.
211 One of the classes must always be named ALL_REGS and include all hard regs.
212 If there is more than one class, another class must be named NO_REGS
213 and contain no registers.
215 The name GENERAL_REGS must be the name of a class (or an alias for
216 another name such as ALL_REGS). This is the class of registers
217 that is allowed by "g" or "r" in a register constraint.
218 Also, registers outside this class are allocated only when
219 instructions express preferences for them.
221 The classes must be numbered in nondecreasing order; that is,
222 a larger-numbered class must never be contained completely
223 in a smaller-numbered class.
225 For any two classes, it is very desirable that there be another
226 class that represents their union. */
228 enum reg_class {
229 NO_REGS, DATA_REGS, ADDRESS_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
232 #define N_REG_CLASSES (int) LIM_REG_CLASSES
234 /* Give names of register classes as strings for dump file. */
236 #define REG_CLASS_NAMES \
237 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
238 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
240 /* Define which registers fit in which classes.
241 This is an initializer for a vector of HARD_REG_SET
242 of length N_REG_CLASSES. */
244 #define REG_CLASS_CONTENTS \
245 { {0}, /* No regs */ \
246 {0x0f}, /* DATA_REGS */ \
247 {0xf0}, /* ADDRESS_REGS */ \
248 {0xff}, /* GENERAL_REGS */ \
249 {0xff}, /* ALL_REGS */ \
252 /* The same information, inverted:
253 Return the class number of the smallest class containing
254 reg number REGNO. This could be a conditional expression
255 or could index an array. */
257 #define REGNO_REG_CLASS(REGNO) \
258 ((REGNO) < 4 ? DATA_REGS : ADDRESS_REGS)
260 /* The class value for index registers, and the one for base regs. */
262 #define INDEX_REG_CLASS DATA_REGS
263 #define BASE_REG_CLASS ADDRESS_REGS
265 /* Get reg_class from a letter such as appears in the machine description. */
267 #define REG_CLASS_FROM_LETTER(C) \
268 ((C) == 'd' ? DATA_REGS : \
269 (C) == 'a' ? ADDRESS_REGS : NO_REGS)
271 /* Macros to check register numbers against specific register classes. */
273 /* These assume that REGNO is a hard or pseudo reg number.
274 They give nonzero only if REGNO is a hard reg of the suitable class
275 or a pseudo reg currently allocated to a suitable hard reg.
276 Since they use reg_renumber, they are safe only once reg_renumber
277 has been allocated, which happens in local-alloc.c. */
279 #define REGNO_OK_FOR_BASE_P(regno) \
280 (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
281 || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
283 #define REGNO_OK_FOR_INDEX_P(regno) \
284 (((regno) >= 0 && regno < 4) \
285 || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
288 /* Given an rtx X being reloaded into a reg required to be
289 in class CLASS, return the class of reg to actually use.
290 In general this is just CLASS; but on some machines
291 in some cases it is preferable to use a more restrictive class. */
293 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
294 ((GET_MODE (X) != PSImode && GET_MODE (X) != VOIDmode) ? DATA_REGS : CLASS)
296 /* We want to use DATA_REGS for anything that is not PSImode. */
297 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
298 ((MODE != PSImode && MODE != VOIDmode) ? DATA_REGS : CLASS)
300 /* We have/need secondary reloads on the mn10200. Mostly to deal
301 with problems using address registers. */
302 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
303 secondary_reload_class(CLASS,MODE,IN, 1)
305 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,IN) \
306 secondary_reload_class(CLASS,MODE,IN, 0)
308 /* Return the maximum number of consecutive registers
309 needed to represent mode MODE in a register of class CLASS. */
311 #define CLASS_MAX_NREGS(CLASS, MODE) \
312 ((MODE) == PSImode ? 1 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
314 /* The letters I, J, K, L, M, N, O, P in a register constraint string
315 can be used to stand for particular ranges of immediate operands.
316 This macro defines what the ranges are.
317 C is the letter, and VALUE is a constant value.
318 Return 1 if VALUE is in the range specified by C. */
320 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
321 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
323 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
324 #define CONST_OK_FOR_J(VALUE) ((VALUE) >= 1 && (VALUE) <= 3)
325 #define CONST_OK_FOR_K(VALUE) ((VALUE) >= 1 && (VALUE) <= 4)
326 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 15)
327 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 255)
329 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
330 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
331 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
332 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
333 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
334 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : 0)
336 /* Similar, but for floating constants, and defining letters G and H.
337 Here VALUE is the CONST_DOUBLE rtx itself.
339 `G' is a floating-point zero. */
341 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
342 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
343 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
344 : 0)
348 /* Stack layout; function entry, exit and calling. */
350 /* Define this if pushing a word on the stack
351 makes the stack pointer a smaller address. */
353 #define STACK_GROWS_DOWNWARD
355 /* Define this if the nominal address of the stack frame
356 is at the high-address end of the local variables;
357 that is, each additional local variable allocated
358 goes at a more negative offset in the frame. */
360 #define FRAME_GROWS_DOWNWARD
362 /* Offset within stack frame to start allocating local variables at.
363 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
364 first local allocated. Otherwise, it is the offset to the BEGINNING
365 of the first local allocated. */
367 #define STARTING_FRAME_OFFSET 0
369 /* Offset of first parameter from the argument pointer register value. */
370 /* Is equal to the size of the saved fp + pc, even if an fp isn't
371 saved since the value is used before we know. */
373 #define FIRST_PARM_OFFSET(FNDECL) (current_function_needs_context ? 8 : 4)
375 /* Specify the registers used for certain standard purposes.
376 The values of these macros are register numbers. */
378 /* Register to use for pushing function arguments. */
379 #define STACK_POINTER_REGNUM 7
381 /* Base register for access to local variables of the function. */
382 #define FRAME_POINTER_REGNUM 6
384 /* Base register for access to arguments of the function. */
385 #define ARG_POINTER_REGNUM 6
387 /* Register in which static-chain is passed to a function. */
388 #define STATIC_CHAIN_REGNUM 4
390 /* Value should be nonzero if functions must have frame pointers.
391 Zero means the frame pointer need not be set up (and parms
392 may be accessed via the stack pointer) in functions that seem suitable.
393 This is computed in `reload', in reload1.c.
395 We allow frame pointers to be eliminated when not having one will
396 not interfere with debugging. */
397 #define ACCUMULATE_OUTGOING_ARGS 1
398 #define FRAME_POINTER_REQUIRED 0
399 #define CAN_DEBUG_WITHOUT_FP
401 /* Store in the variable DEPTH the initial difference between the
402 frame pointer reg contents and the stack pointer reg contents,
403 as of the start of the function body. This depends on the layout
404 of the fixed parts of the stack frame and on how registers are saved. */
406 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = total_frame_size()
408 /* Various type size information.
410 The mn10200 has a limited number of small registers. Sizes of basic
411 data types are adjusted accordingly. */
412 #define SHORT_TYPE_SIZE 16
413 #define INT_TYPE_SIZE 16
414 #define LONG_TYPE_SIZE 32
415 #define LONG_LONG_TYPE_SIZE 32
416 #define FLOAT_TYPE_SIZE 32
417 #define DOUBLE_TYPE_SIZE 32
418 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
420 /* Any size less than 64bits will work; but a smarter definition
421 can make G++ code smaller and faster. Most operations on the
422 mn10200 occur on 16bit hunks, so the best size for a boolean
423 is 16bits. */
424 #define BOOL_TYPE_SIZE 16
426 /* The difference of two pointers must be at least 24bits since pointers
427 are 24bits; however, no basic data type is 24bits, so we have to round
428 up to a 32bits for the difference of pointers. */
429 #undef SIZE_TYPE
430 #undef PTRDIFF_TYPE
431 #define SIZE_TYPE "long unsigned int"
432 #define PTRDIFF_TYPE "long unsigned int"
434 /* Note sizeof (WCHAR_TYPE) must be equal to the value of WCHAR_TYPE_SIZE! */
435 #undef WCHAR_TYPE
436 #define WCHAR_TYPE "int"
438 #undef WCHAR_TYPE_SIZE
439 #define WCHAR_TYPE_SIZE BITS_PER_WORD
441 #define MAX_FIXED_MODE_SIZE 32
443 /* A guess for the MN10200. */
444 #define PROMOTE_PROTOTYPES 1
446 /* Value is the number of bytes of arguments automatically
447 popped when returning from a subroutine call.
448 FUNDECL is the declaration node of the function (as a tree),
449 FUNTYPE is the data type of the function (as a tree),
450 or for a library call it is an identifier node for the subroutine name.
451 SIZE is the number of bytes of arguments passed on the stack. */
453 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
455 /* 1 if N is a possible register number for function argument passing. */
457 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
459 /* Define a data type for recording info about an argument list
460 during the scan of that argument list. This data type should
461 hold all necessary information about the function itself
462 and about the args processed so far, enough to enable macros
463 such as FUNCTION_ARG to determine where the next arg should go. */
465 #define CUMULATIVE_ARGS struct cum_arg
466 struct cum_arg { int nbytes; };
468 /* Initialize a variable CUM of type CUMULATIVE_ARGS
469 for a call to a function whose data type is FNTYPE.
470 For a library call, FNTYPE is 0.
472 On the MN10200, the offset starts at 0. */
474 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
475 ((CUM).nbytes = 0)
477 /* Update the data in CUM to advance over an argument
478 of mode MODE and data type TYPE.
479 (TYPE is null for libcalls where that information may not be available.) */
481 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
482 ((CUM).nbytes += ((MODE) != BLKmode \
483 ? (MODE) == PSImode ? 2 : \
484 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
485 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
487 /* Define where to put the arguments to a function.
488 Value is zero to push the argument on the stack,
489 or a hard register in which to store the argument.
491 MODE is the argument's machine mode.
492 TYPE is the data type of the argument (as a tree).
493 This is null for libcalls where that information may
494 not be available.
495 CUM is a variable of type CUMULATIVE_ARGS which gives info about
496 the preceding args and about the function being called.
497 NAMED is nonzero if this argument is a named parameter
498 (otherwise it is an extra parameter matching an ellipsis). */
500 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
501 function_arg (&CUM, MODE, TYPE, NAMED)
503 /* Implement `va_arg'. */
504 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
505 mn10200_va_arg (valist, type)
507 /* For "large" items, we pass them by invisible reference, and the
508 callee is responsible for copying the data item if it might be
509 modified. */
510 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
511 ((TYPE) && int_size_in_bytes (TYPE) > 8)
513 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
514 ((TYPE) && int_size_in_bytes (TYPE) > 8)
516 /* Define how to find the value returned by a function.
517 VALTYPE is the data type of the value (as a tree).
518 If the precise function being called is known, FUNC is its FUNCTION_DECL;
519 otherwise, FUNC is 0. */
521 #define FUNCTION_VALUE(VALTYPE, FUNC) \
522 gen_rtx_REG (TYPE_MODE (VALTYPE), TYPE_MODE (VALTYPE) == PSImode ? 4 : 0)
524 /* Define how to find the value returned by a library function
525 assuming the value has mode MODE. */
527 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, (MODE) == PSImode ? 4 : 0)
529 /* 1 if N is a possible register number for a function value. */
531 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4)
533 /* Return values > 8 bytes in length in memory. */
534 #define DEFAULT_PCC_STRUCT_RETURN 0
535 #define RETURN_IN_MEMORY(TYPE) \
536 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
538 /* Register in which address to store a structure value
539 is passed to a function. On the MN10200 it's passed as
540 the first parameter. */
542 #define STRUCT_VALUE 0
544 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
545 the stack pointer does not matter. The value is tested only in
546 functions that have frame pointers.
547 No definition is equivalent to always zero. */
549 #define EXIT_IGNORE_STACK 1
551 /* Output assembler code to FILE to increment profiler label # LABELNO
552 for profiling a function entry.
554 ?!? Profiling is not currently supported. */
556 #define FUNCTION_PROFILER(FILE, LABELNO) ;
558 /* Yes, we actually support trampolines on this machine, even though
559 nobody is likely to ever use them. */
560 #define TRAMPOLINE_TEMPLATE(FILE) \
561 do { \
562 fprintf (FILE, "\t.byte 0xfd\n"); \
563 fprintf (FILE, "\t.byte 0x00\n"); \
564 fprintf (FILE, "\t.byte 0x00\n"); \
565 fprintf (FILE, "\tmov (a3),a0\n"); \
566 fprintf (FILE, "\tadd -4,a3\n"); \
567 fprintf (FILE, "\tmov a0,(0,a3)\n"); \
568 fprintf (FILE, "\tmov (21,a0),a0\n"); \
569 fprintf (FILE, "\tmov a0,(4,a3)\n"); \
570 fprintf (FILE, "\tmov (0,a3),a0\n"); \
571 fprintf (FILE, "\tmov (17,a0),a0\n"); \
572 fprintf (FILE, "\tadd 4,a3\n"); \
573 fprintf (FILE, "\trts\n"); \
574 fprintf (FILE, "\t.long 0\n"); \
575 fprintf (FILE, "\t.long 0\n"); \
576 } while (0)
578 /* Length in units of the trampoline for entering a nested function. */
580 #define TRAMPOLINE_SIZE 0x1c
582 /* Emit RTL insns to initialize the variable parts of a trampoline.
583 FNADDR is an RTX for the address of the function's pure code.
584 CXT is an RTX for the static chain value for the function. */
586 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
588 emit_move_insn (gen_rtx_MEM (PSImode, plus_constant ((TRAMP), 20)), \
589 (CXT)); \
590 emit_move_insn (gen_rtx_MEM (PSImode, plus_constant ((TRAMP), 24)), \
591 (FNADDR)); \
594 /* A C expression whose value is RTL representing the value of the return
595 address for the frame COUNT steps up from the current frame. */
597 #define RETURN_ADDR_RTX(COUNT, FRAME) \
598 ((COUNT == 0) \
599 ? gen_rtx_MEM (Pmode, frame_pointer_rtx) \
600 : (rtx) 0)
603 /* Addressing modes, and classification of registers for them. */
606 /* 1 if X is an rtx for a constant that is a valid address. */
608 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
610 /* Extra constraints. */
611 #define OK_FOR_R(OP) \
612 (GET_CODE (OP) == MEM \
613 && GET_MODE (OP) == QImode \
614 && REG_P (XEXP (OP, 0)))
616 /* Q is used for sp + <something> in the {zero,sign}_extendpsisi2 patterns. */
617 #define EXTRA_CONSTRAINT(OP, C) \
618 ((C) == 'R' ? OK_FOR_R (OP) : \
619 (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : \
620 (C) == 'Q' ? GET_CODE (OP) == PLUS : 0)
622 /* Maximum number of registers that can appear in a valid memory address. */
624 #define MAX_REGS_PER_ADDRESS 2
626 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
627 and check its validity for a certain class.
628 We have two alternate definitions for each of them.
629 The usual definition accepts all pseudo regs; the other rejects
630 them unless they have been allocated suitable hard regs.
631 The symbol REG_OK_STRICT causes the latter definition to be used.
633 Most source files want to accept pseudo regs in the hope that
634 they will get allocated to the class that the insn wants them to be in.
635 Source files for reload pass need to be strict.
636 After reload, it makes no difference, since pseudo regs have
637 been eliminated by then. */
639 #ifndef REG_OK_STRICT
640 /* Nonzero if X is a hard reg that can be used as an index
641 or if it is a pseudo reg. */
642 #define REG_OK_FOR_INDEX_P(X) \
643 (((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= FIRST_PSEUDO_REGISTER))
644 /* Nonzero if X is a hard reg that can be used as a base reg
645 or if it is a pseudo reg. */
646 #define REG_OK_FOR_BASE_P(X) \
647 (((REGNO (X) >= 4 && REGNO(X) <= 8) || REGNO (X) >= FIRST_PSEUDO_REGISTER))
648 #else
649 /* Nonzero if X is a hard reg that can be used as an index. */
650 #define REG_OK_FOR_INDEX_P(X) \
651 REGNO_OK_FOR_INDEX_P (REGNO (X))
652 /* Nonzero if X is a hard reg that can be used as a base reg. */
653 #define REG_OK_FOR_BASE_P(X) \
654 REGNO_OK_FOR_BASE_P (REGNO (X))
655 #endif
658 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
659 that is a valid memory address for an instruction.
660 The MODE argument is the machine mode for the MEM expression
661 that wants to use this address.
663 We used to allow reg+reg addresses for QImode and HImode; however,
664 they tended to cause the register allocator to run out of registers.
665 Basically, an indexed load/store always keeps 2 data and one address
666 register live, which is just too many for this machine.
668 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
669 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
671 /* Accept either REG or SUBREG where a register is valid. */
673 #define RTX_OK_FOR_BASE_P(X) \
674 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
675 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
676 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
678 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
680 if ((MODE != PSImode) && CONSTANT_ADDRESS_P (X)) \
681 goto ADDR; \
682 if (RTX_OK_FOR_BASE_P (X)) \
683 goto ADDR; \
684 if (GET_CODE (X) == PLUS) \
686 rtx base = 0, index = 0; \
687 if (RTX_OK_FOR_BASE_P (XEXP (X, 0))) \
688 base = XEXP (X, 0), index = XEXP (X, 1); \
689 if (RTX_OK_FOR_BASE_P (XEXP (X, 1))) \
690 base = XEXP (X, 1), index = XEXP (X, 0); \
691 if (base != 0 && index != 0) \
693 if (GET_CODE (index) == CONST_INT) \
694 goto ADDR; \
700 /* Try machine-dependent ways of modifying an illegitimate address
701 to be legitimate. If we find one, return the new, valid address.
702 This macro is used in only one place: `memory_address' in explow.c.
704 OLDX is the address as it was before break_out_memory_refs was called.
705 In some cases it is useful to look at this to decide what needs to be done.
707 MODE and WIN are passed so that this macro can use
708 GO_IF_LEGITIMATE_ADDRESS.
710 It is always safe for this macro to do nothing. It exists to recognize
711 opportunities to optimize the output. */
713 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
715 /* Go to LABEL if ADDR (a legitimate address expression)
716 has an effect that depends on the machine mode it is used for. */
718 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
720 /* Nonzero if the constant value X is a legitimate general operand.
721 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
723 #define LEGITIMATE_CONSTANT_P(X) 1
726 /* Tell final.c how to eliminate redundant test instructions. */
728 /* Here we define machine-dependent flags and fields in cc_status
729 (see `conditions.h'). No extra ones are needed for the vax. */
731 /* Store in cc_status the expressions
732 that the condition codes will describe
733 after execution of an instruction whose pattern is EXP.
734 Do not alter them if the instruction would not alter the cc's. */
736 #define CC_OVERFLOW_UNUSABLE 0x200
737 #define CC_NO_CARRY CC_NO_OVERFLOW
738 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
740 /* The mn10200 has a limited number of registers, so CSE of function
741 addresses generally makes code worse due to register pressure. */
742 #define NO_FUNCTION_CSE
744 /* Compute the cost of computing a constant rtl expression RTX
745 whose rtx-code is CODE. The body of this macro is a portion
746 of a switch statement. If the code is computed here,
747 return it with a return statement. Otherwise, break from the switch. */
749 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
750 case CONST_INT: \
751 /* Zeros are extremely cheap. */ \
752 if (INTVAL (RTX) == 0) \
753 return 0; \
754 /* If it fits in 8 bits, then it's still relatively cheap. */ \
755 if (INT_8_BITS (INTVAL (RTX))) \
756 return 1; \
757 /* This is the "base" cost, includes constants where either the \
758 upper or lower 16bits are all zeros. */ \
759 if (INT_16_BITS (INTVAL (RTX)) \
760 || (INTVAL (RTX) & 0xffff) == 0 \
761 || (INTVAL (RTX) & 0xffff0000) == 0) \
762 return 2; \
763 return 4; \
764 /* These are more costly than a CONST_INT, but we can relax them, \
765 so they're less costly than a CONST_DOUBLE. */ \
766 case CONST: \
767 case LABEL_REF: \
768 case SYMBOL_REF: \
769 return 6; \
770 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
771 so their cost is very high. */ \
772 case CONST_DOUBLE: \
773 return 8;
775 /* Make moves between different classes more expensive than moves
776 within the same class. */
777 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 2)
779 /* Provide the costs of a rtl expression. This is in the body of a
780 switch on CODE.
782 ?!? This probably needs more work. The definitions below were first
783 taken from the H8 port, then tweaked slightly to improve code density
784 on various sample codes. */
786 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
787 case MOD: \
788 case DIV: \
789 return 8; \
790 case MULT: \
791 return (GET_MODE (RTX) == SImode ? 20 : 8);
793 /* Nonzero if access to memory by bytes or half words is no faster
794 than accessing full words. */
795 #define SLOW_BYTE_ACCESS 1
797 /* According expr.c, a value of around 6 should minimize code size, and
798 for the MN10200 series, code size our primary concern. */
799 #define MOVE_RATIO 6
801 #define TEXT_SECTION_ASM_OP "\t.section .text"
802 #define DATA_SECTION_ASM_OP "\t.section .data"
803 #define BSS_SECTION_ASM_OP "\t.section .bss"
805 /* Output at beginning/end of assembler file. */
806 #undef ASM_FILE_START
807 #define ASM_FILE_START(FILE) asm_file_start(FILE)
809 #define ASM_COMMENT_START "#"
811 /* Output to assembler file text saying following lines
812 may contain character constants, extra white space, comments, etc. */
814 #define ASM_APP_ON "#APP\n"
816 /* Output to assembler file text saying following lines
817 no longer contain unusual constructs. */
819 #define ASM_APP_OFF "#NO_APP\n"
821 /* This is how to output an assembler line defining a `double' constant.
822 It is .dfloat or .gfloat, depending. */
824 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
825 do { char dstr[30]; \
826 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
827 fprintf (FILE, "\t.double %s\n", dstr); \
828 } while (0)
831 /* This is how to output an assembler line defining a `float' constant. */
832 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
833 do { char dstr[30]; \
834 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
835 fprintf (FILE, "\t.float %s\n", dstr); \
836 } while (0)
838 /* This is how to output an assembler line defining an `int' constant. */
840 #define ASM_OUTPUT_INT(FILE, VALUE) \
841 ( fprintf (FILE, "\t.long "), \
842 output_addr_const (FILE, (VALUE)), \
843 fprintf (FILE, "\n"))
845 /* Likewise for `char' and `short' constants. */
847 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
848 ( fprintf (FILE, "\t.hword "), \
849 output_addr_const (FILE, (VALUE)), \
850 fprintf (FILE, "\n"))
852 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
853 ( fprintf (FILE, "\t.byte "), \
854 output_addr_const (FILE, (VALUE)), \
855 fprintf (FILE, "\n"))
857 /* This is how to output an assembler line for a numeric constant byte. */
858 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
859 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
861 /* This says how to output the assembler to define a global
862 uninitialized but not common symbol.
863 Try to use asm_output_bss to implement this macro. */
865 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
866 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
868 /* This is how to output the definition of a user-level label named NAME,
869 such as the label on a static function or variable NAME. */
871 #define ASM_OUTPUT_LABEL(FILE, NAME) \
872 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
874 /* This is how to output a command to make the user-level label named NAME
875 defined for reference from other files. */
877 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
878 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
880 /* This is how to output a reference to a user-level label named NAME.
881 `assemble_name' uses this. */
883 #undef ASM_OUTPUT_LABELREF
884 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
885 do { \
886 const char* real_name; \
887 STRIP_NAME_ENCODING (real_name, (NAME)); \
888 fprintf (FILE, "_%s", real_name); \
889 } while (0)
891 /* Store in OUTPUT a string (made with alloca) containing
892 an assembler-name for a local static variable named NAME.
893 LABELNO is an integer which is different for each call. */
895 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
896 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
897 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
899 /* This is how we tell the assembler that two symbols have the same value. */
901 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
902 do { assemble_name(FILE, NAME1); \
903 fputs(" = ", FILE); \
904 assemble_name(FILE, NAME2); \
905 fputc('\n', FILE); } while (0)
908 /* How to refer to registers in assembler output.
909 This sequence is indexed by compiler's hard-register-number (see above). */
911 #define REGISTER_NAMES \
912 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3"}
914 /* Print an instruction operand X on file FILE.
915 look in mn10200.c for details */
917 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
919 /* Print a memory operand whose address is X, on file FILE.
920 This uses a function in output-vax.c. */
922 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
924 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
925 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
927 /* This is how to output an element of a case-vector that is absolute. */
929 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
930 asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
932 /* This is how to output an element of a case-vector that is relative. */
934 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
935 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
937 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
938 if ((LOG) != 0) \
939 fprintf (FILE, "\t.align %d\n", (LOG))
941 /* We don't have to worry about dbx compatibility for the mn10200. */
942 #define DEFAULT_GDB_EXTENSIONS 1
944 /* Use stabs debugging info by default. */
945 #undef PREFERRED_DEBUGGING_TYPE
946 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
948 #define DBX_REGISTER_NUMBER(REGNO) REGNO
950 /* GDB always assumes the current function's frame begins at the value
951 of the stack pointer upon entry to the current function. Accessing
952 local variables and parameters passed on the stack is done using the
953 base of the frame + an offset provided by GCC.
955 For functions which have frame pointers this method works fine;
956 the (frame pointer) == (stack pointer at function entry) and GCC provides
957 an offset relative to the frame pointer.
959 This loses for functions without a frame pointer; GCC provides an offset
960 which is relative to the stack pointer after adjusting for the function's
961 frame size. GDB would prefer the offset to be relative to the value of
962 the stack pointer at the function's entry. Yuk! */
963 #define DEBUGGER_AUTO_OFFSET(X) \
964 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
965 + (frame_pointer_needed ? 0 : -total_frame_size ()))
967 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
968 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
969 + (frame_pointer_needed ? 0 : -total_frame_size ()))
971 /* Define to use software floating point emulator for REAL_ARITHMETIC and
972 decimal <-> binary conversion. */
973 #define REAL_ARITHMETIC
975 /* Specify the machine mode that this machine uses
976 for the index in the tablejump instruction. */
977 #define CASE_VECTOR_MODE Pmode
979 /* Dispatch tables on the mn10200 are extremely expensive in terms of code
980 and readonly data size. So we crank up the case threshold value to
981 encourage a series of if/else comparisons to implement many small switch
982 statements. In theory, this value could be increased much more if we
983 were solely optimizing for space, but we keep it "reasonable" to avoid
984 serious code efficiency lossage. */
985 #define CASE_VALUES_THRESHOLD 8
987 /* Define if operations between registers always perform the operation
988 on the full register even if a narrower mode is specified. */
989 #define WORD_REGISTER_OPERATIONS
991 /* We could define this either way. Using ZERO_EXTEND for QImode makes slightly
992 fast and more compact code. */
993 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
995 /* Specify the tree operation to be used to convert reals to integers. */
996 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
998 /* This flag, if defined, says the same insns that convert to a signed fixnum
999 also convert validly to an unsigned one. */
1000 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1002 /* This is the kind of divide that is easiest to do in the general case. */
1003 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1005 /* Max number of bytes we can move from memory to memory
1006 in one reasonably fast instruction. */
1007 #define MOVE_MAX 2
1009 /* Define if shifts truncate the shift count
1010 which implies one can omit a sign-extension or zero-extension
1011 of a shift count. */
1012 #define SHIFT_COUNT_TRUNCATED 1
1014 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1015 is done just by pretending it is already truncated. */
1016 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) (OUTPREC != 32)
1018 /* Specify the machine mode that pointers have.
1019 After generation of rtl, the compiler makes no further distinction
1020 between pointers and any other objects of this machine mode. */
1021 #define Pmode PSImode
1023 /* A function address in a call instruction
1024 is a byte address (for indexing purposes)
1025 so give the MEM rtx a byte's mode. */
1026 #define FUNCTION_MODE QImode
1028 /* Perform target dependent optabs initialization. */
1029 #define MODHI3_LIBCALL "__modhi3"
1030 #define DIVHI3_LIBCALL "__divhi3"
1032 #define INIT_TARGET_OPTABS \
1033 do { \
1034 sdiv_optab->handlers[(int) HImode].libfunc \
1035 = init_one_libfunc (DIVHI3_LIBCALL); \
1036 smod_optab->handlers[(int) HImode].libfunc \
1037 = init_one_libfunc (MODHI3_LIBCALL); \
1038 } while (0)
1040 /* The assembler op to get a word. */
1042 #define FILE_ASM_OP "\t.file\n"
1044 #define PREDICATE_CODES \
1045 {"call_address_operand", { SYMBOL_REF, REG }}, \
1046 {"constant_memory_operand", { MEM }}, \
1047 {"psimode_truncation_operand",{ PLUS, CONST_INT, CONST_DOUBLE, CONST, \
1048 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM }},\
1049 {"extendpsi_operand", { PLUS, CONST_INT, CONST_DOUBLE, CONST, \
1050 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM }}, \
1051 {"nshift_operator", { ASHIFTRT, LSHIFTRT, ASHIFT }},
1053 extern struct rtx_def *zero_dreg;
1054 extern struct rtx_def *zero_areg;