[AArch64] Properly handle mvn-register and add EON+shift pattern and cost appropriately
[official-gcc.git] / gcc / vtable-verify.c
blob8ced83518d9ae7f183cc2ce28f31291f74ad651b
1 /* Copyright (C) 2013-2015 Free Software Foundation, Inc.
3 This file is part of GCC.
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
8 version.
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 for more details.
15 You should have received a copy of the GNU General Public License
16 along with GCC; see the file COPYING3. If not see
17 <http://www.gnu.org/licenses/>. */
19 /* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers
20 before using them for virtual method dispatches. */
22 /* This file is part of the vtable security feature implementation.
23 The vtable security feature is designed to detect when a virtual
24 call is about to be made through an invalid vtable pointer
25 (possibly due to data corruption or malicious attacks). The
26 compiler finds every virtual call, and inserts a verification call
27 before the virtual call. The verification call takes the actual
28 vtable pointer value in the object through which the virtual call
29 is being made, and compares the vtable pointer against a set of all
30 valid vtable pointers that the object could contain (this set is
31 based on the declared type of the object). If the pointer is in
32 the valid set, execution is allowed to continue; otherwise the
33 program is halted.
35 There are several pieces needed in order to make this work: 1. For
36 every virtual class in the program (i.e. a class that contains
37 virtual methods), we need to build the set of all possible valid
38 vtables that an object of that class could point to. This includes
39 vtables for any class(es) that inherit from the class under
40 consideration. 2. For every such data set we build up, we need a
41 way to find and reference the data set. This is complicated by the
42 fact that the real vtable addresses are not known until runtime,
43 when the program is loaded into memory, but we need to reference the
44 sets at compile time when we are inserting verification calls into
45 the program. 3. We need to find every virtual call in the program,
46 and insert the verification call (with the appropriate arguments)
47 before the virtual call. 4. We need some runtime library pieces:
48 the code to build up the data sets at runtime; the code to actually
49 perform the verification using the data sets; and some code to set
50 protections on the data sets, so they themselves do not become
51 hacker targets.
53 To find and reference the set of valid vtable pointers for any given
54 virtual class, we create a special global variable for each virtual
55 class. We refer to this as the "vtable map variable" for that
56 class. The vtable map variable has the type "void *", and is
57 initialized by the compiler to NULL. At runtime when the set of
58 valid vtable pointers for a virtual class, e.g. class Foo, is built,
59 the vtable map variable for class Foo is made to point to the set.
60 During compile time, when the compiler is inserting verification
61 calls into the program, it passes the vtable map variable for the
62 appropriate class to the verification call, so that at runtime the
63 verification call can find the appropriate data set.
65 The actual set of valid vtable pointers for a virtual class,
66 e.g. class Foo, cannot be built until runtime, when the vtables get
67 loaded into memory and their addresses are known. But the knowledge
68 about which vtables belong in which class' hierarchy is only known
69 at compile time. Therefore at compile time we collect class
70 hierarchy and vtable information about every virtual class, and we
71 generate calls to build up the data sets at runtime. To build the
72 data sets, we call one of the functions we add to the runtime
73 library, __VLTRegisterPair. __VLTRegisterPair takes two arguments,
74 a vtable map variable and the address of a vtable. If the vtable
75 map variable is currently NULL, it creates a new data set (hash
76 table), makes the vtable map variable point to the new data set, and
77 inserts the vtable address into the data set. If the vtable map
78 variable is not NULL, it just inserts the vtable address into the
79 data set. In order to make sure that our data sets are built before
80 any verification calls happen, we create a special constructor
81 initialization function for each compilation unit, give it a very
82 high initialization priority, and insert all of our calls to
83 __VLTRegisterPair into our special constructor initialization
84 function.
86 The vtable verification feature is controlled by the flag
87 '-fvtable-verify='. There are three flavors of this:
88 '-fvtable-verify=std', '-fvtable-verify=preinit', and
89 '-fvtable-verify=none'. If the option '-fvtable-verfy=preinit' is
90 used, then our constructor initialization function gets put into the
91 preinit array. This is necessary if there are data sets that need
92 to be built very early in execution. If the constructor
93 initialization function gets put into the preinit array, the we also
94 add calls to __VLTChangePermission at the beginning and end of the
95 function. The call at the beginning sets the permissions on the
96 data sets and vtable map variables to read/write, and the one at the
97 end makes them read-only. If the '-fvtable-verify=std' option is
98 used, the constructor initialization functions are executed at their
99 normal time, and the __VLTChangePermission calls are handled
100 differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc).
101 The option '-fvtable-verify=none' turns off vtable verification.
103 This file contains code for the tree pass that goes through all the
104 statements in each basic block, looking for virtual calls, and
105 inserting a call to __VLTVerifyVtablePointer (with appropriate
106 arguments) before each one. It also contains the hash table
107 functions for the data structures used for collecting the class
108 hierarchy data and building/maintaining the vtable map variable data
109 are defined in gcc/vtable-verify.h. These data structures are
110 shared with the code in the C++ front end that collects the class
111 hierarchy & vtable information and generates the vtable map
112 variables (see cp/vtable-class-hierarchy.c). This tree pass should
113 run just before the gimple is converted to RTL.
115 Some implementation details for this pass:
117 To find all of the virtual calls, we iterate through all the
118 gimple statements in each basic block, looking for any call
119 statement with the code "OBJ_TYPE_REF". Once we have found the
120 virtual call, we need to find the vtable pointer through which the
121 call is being made, and the type of the object containing the
122 pointer (to find the appropriate vtable map variable). We then use
123 these to build a call to __VLTVerifyVtablePointer, passing the
124 vtable map variable, and the vtable pointer. We insert the
125 verification call just after the gimple statement that gets the
126 vtable pointer out of the object, and we update the next
127 statement to depend on the result returned from
128 __VLTVerifyVtablePointer (the vtable pointer value), to ensure
129 subsequent compiler phases don't remove or reorder the call (it's no
130 good to have the verification occur after the virtual call, for
131 example). To find the vtable pointer being used (and the type of
132 the object) we search backwards through the def_stmts chain from the
133 virtual call (see verify_bb_vtables for more details). */
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "hash-set.h"
139 #include "machmode.h"
140 #include "vec.h"
141 #include "double-int.h"
142 #include "input.h"
143 #include "alias.h"
144 #include "symtab.h"
145 #include "options.h"
146 #include "wide-int.h"
147 #include "inchash.h"
148 #include "tree.h"
149 #include "fold-const.h"
150 #include "predict.h"
151 #include "tm.h"
152 #include "hard-reg-set.h"
153 #include "input.h"
154 #include "function.h"
155 #include "dominance.h"
156 #include "cfg.h"
157 #include "basic-block.h"
158 #include "tree-ssa-alias.h"
159 #include "internal-fn.h"
160 #include "gimple-expr.h"
161 #include "is-a.h"
162 #include "gimple.h"
163 #include "gimple-iterator.h"
164 #include "gimple-ssa.h"
165 #include "tree-phinodes.h"
166 #include "ssa-iterators.h"
167 #include "stringpool.h"
168 #include "tree-ssanames.h"
169 #include "tree-pass.h"
170 #include "cfgloop.h"
172 #include "vtable-verify.h"
174 unsigned num_vtable_map_nodes = 0;
175 int total_num_virtual_calls = 0;
176 int total_num_verified_vcalls = 0;
178 extern GTY(()) tree verify_vtbl_ptr_fndecl;
179 tree verify_vtbl_ptr_fndecl = NULL_TREE;
181 /* Keep track of whether or not any virtual call were verified. */
182 static bool any_verification_calls_generated = false;
184 unsigned int vtable_verify_main (void);
187 /* The following few functions are for the vtbl pointer hash table
188 in the 'registered' field of the struct vtable_map_node. The hash
189 table keeps track of which vtable pointers have been used in
190 calls to __VLTRegisterPair with that particular vtable map variable. */
192 /* This function checks to see if a particular VTABLE_DECL and OFFSET are
193 already in the 'registered' hash table for NODE. */
195 bool
196 vtbl_map_node_registration_find (struct vtbl_map_node *node,
197 tree vtable_decl,
198 unsigned offset)
200 struct vtable_registration key;
201 struct vtable_registration **slot;
203 gcc_assert (node && node->registered);
205 key.vtable_decl = vtable_decl;
206 slot = node->registered->find_slot (&key, NO_INSERT);
208 if (slot && (*slot))
210 unsigned i;
211 for (i = 0; i < ((*slot)->offsets).length (); ++i)
212 if ((*slot)->offsets[i] == offset)
213 return true;
216 return false;
219 /* This function inserts VTABLE_DECL and OFFSET into the 'registered'
220 hash table for NODE. It returns a boolean indicating whether or not
221 it actually inserted anything. */
223 bool
224 vtbl_map_node_registration_insert (struct vtbl_map_node *node,
225 tree vtable_decl,
226 unsigned offset)
228 struct vtable_registration key;
229 struct vtable_registration **slot;
230 bool inserted_something = false;
232 if (!node || !node->registered)
233 return false;
235 key.vtable_decl = vtable_decl;
236 slot = node->registered->find_slot (&key, INSERT);
238 if (! *slot)
240 struct vtable_registration *node;
241 node = XNEW (struct vtable_registration);
242 node->vtable_decl = vtable_decl;
244 (node->offsets).create (10);
245 (node->offsets).safe_push (offset);
246 *slot = node;
247 inserted_something = true;
249 else
251 /* We found the vtable_decl slot; we need to see if it already
252 contains the offset. If not, we need to add the offset. */
253 unsigned i;
254 bool found = false;
255 for (i = 0; i < ((*slot)->offsets).length () && !found; ++i)
256 if ((*slot)->offsets[i] == offset)
257 found = true;
259 if (!found)
261 ((*slot)->offsets).safe_push (offset);
262 inserted_something = true;
265 return inserted_something;
268 /* Hashtable functions for vtable_registration hashtables. */
270 inline hashval_t
271 registration_hasher::hash (const vtable_registration *p)
273 const struct vtable_registration *n = (const struct vtable_registration *) p;
274 return (hashval_t) (DECL_UID (n->vtable_decl));
277 inline bool
278 registration_hasher::equal (const vtable_registration *p1,
279 const vtable_registration *p2)
281 const struct vtable_registration *n1 =
282 (const struct vtable_registration *) p1;
283 const struct vtable_registration *n2 =
284 (const struct vtable_registration *) p2;
285 return (DECL_UID (n1->vtable_decl) == DECL_UID (n2->vtable_decl));
288 /* End of hashtable functions for "registered" hashtables. */
292 /* Hashtable definition and functions for vtbl_map_hash. */
294 struct vtbl_map_hasher : typed_noop_remove <struct vtbl_map_node>
296 typedef struct vtbl_map_node *value_type;
297 typedef struct vtbl_map_node *compare_type;
298 static inline hashval_t hash (const vtbl_map_node *);
299 static inline bool equal (const vtbl_map_node *, const vtbl_map_node *);
302 /* Returns a hash code for P. */
304 inline hashval_t
305 vtbl_map_hasher::hash (const vtbl_map_node *p)
307 const struct vtbl_map_node n = *((const struct vtbl_map_node *) p);
308 return (hashval_t) IDENTIFIER_HASH_VALUE (n.class_name);
311 /* Returns nonzero if P1 and P2 are equal. */
313 inline bool
314 vtbl_map_hasher::equal (const vtbl_map_node *p1, const vtbl_map_node *p2)
316 const struct vtbl_map_node n1 = *((const struct vtbl_map_node *) p1);
317 const struct vtbl_map_node n2 = *((const struct vtbl_map_node *) p2);
318 return (IDENTIFIER_HASH_VALUE (n1.class_name) ==
319 IDENTIFIER_HASH_VALUE (n2.class_name));
322 /* Here are the two structures into which we insert vtable map nodes.
323 We use two data structures because of the vastly different ways we need
324 to find the nodes for various tasks (see comments in vtable-verify.h
325 for more details. */
327 typedef hash_table<vtbl_map_hasher> vtbl_map_table_type;
328 typedef vtbl_map_table_type::iterator vtbl_map_iterator_type;
330 /* Vtable map variable nodes stored in a hash table. */
331 static vtbl_map_table_type *vtbl_map_hash;
333 /* Vtable map variable nodes stored in a vector. */
334 vec<struct vtbl_map_node *> vtbl_map_nodes_vec;
336 /* Return vtbl_map node for CLASS_NAME without creating a new one. */
338 struct vtbl_map_node *
339 vtbl_map_get_node (tree class_type)
341 struct vtbl_map_node key;
342 struct vtbl_map_node **slot;
344 tree class_type_decl;
345 tree class_name;
346 unsigned int type_quals;
348 if (!vtbl_map_hash)
349 return NULL;
351 gcc_assert (TREE_CODE (class_type) == RECORD_TYPE);
354 /* Find the TYPE_DECL for the class. */
355 class_type_decl = TYPE_NAME (class_type);
357 /* Verify that there aren't any qualifiers on the type. */
358 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
359 gcc_assert (type_quals == TYPE_UNQUALIFIED);
361 /* Get the mangled name for the unqualified type. */
362 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
363 class_name = DECL_ASSEMBLER_NAME (class_type_decl);
365 key.class_name = class_name;
366 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, NO_INSERT);
367 if (!slot)
368 return NULL;
369 return *slot;
372 /* Return vtbl_map node assigned to BASE_CLASS_TYPE. Create new one
373 when needed. */
375 struct vtbl_map_node *
376 find_or_create_vtbl_map_node (tree base_class_type)
378 struct vtbl_map_node key;
379 struct vtbl_map_node *node;
380 struct vtbl_map_node **slot;
381 tree class_type_decl;
382 unsigned int type_quals;
384 if (!vtbl_map_hash)
385 vtbl_map_hash = new vtbl_map_table_type (10);
387 /* Find the TYPE_DECL for the class. */
388 class_type_decl = TYPE_NAME (base_class_type);
390 /* Verify that there aren't any type qualifiers on type. */
391 type_quals = TYPE_QUALS (TREE_TYPE (class_type_decl));
392 gcc_assert (type_quals == TYPE_UNQUALIFIED);
394 gcc_assert (HAS_DECL_ASSEMBLER_NAME_P (class_type_decl));
395 key.class_name = DECL_ASSEMBLER_NAME (class_type_decl);
396 slot = (struct vtbl_map_node **) vtbl_map_hash->find_slot (&key, INSERT);
398 if (*slot)
399 return *slot;
401 node = XNEW (struct vtbl_map_node);
402 node->vtbl_map_decl = NULL_TREE;
403 node->class_name = key.class_name;
404 node->uid = num_vtable_map_nodes++;
406 node->class_info = XNEW (struct vtv_graph_node);
407 node->class_info->class_type = base_class_type;
408 node->class_info->class_uid = node->uid;
409 node->class_info->num_processed_children = 0;
411 (node->class_info->parents).create (4);
412 (node->class_info->children).create (4);
414 node->registered = new register_table_type (16);
416 node->is_used = false;
418 vtbl_map_nodes_vec.safe_push (node);
419 gcc_assert (vtbl_map_nodes_vec[node->uid] == node);
421 *slot = node;
422 return node;
425 /* End of hashtable functions for vtable_map variables hash table. */
427 /* Given a gimple STMT, this function checks to see if the statement
428 is an assignment, the rhs of which is getting the vtable pointer
429 value out of an object. (i.e. it's the value we need to verify
430 because its the vtable pointer that will be used for a virtual
431 call). */
433 static bool
434 is_vtable_assignment_stmt (gimple stmt)
437 if (gimple_code (stmt) != GIMPLE_ASSIGN)
438 return false;
439 else
441 tree lhs = gimple_assign_lhs (stmt);
442 tree rhs = gimple_assign_rhs1 (stmt);
444 if (TREE_CODE (lhs) != SSA_NAME)
445 return false;
447 if (TREE_CODE (rhs) != COMPONENT_REF)
448 return false;
450 if (! (TREE_OPERAND (rhs, 1))
451 || (TREE_CODE (TREE_OPERAND (rhs, 1)) != FIELD_DECL))
452 return false;
454 if (! DECL_VIRTUAL_P (TREE_OPERAND (rhs, 1)))
455 return false;
458 return true;
461 /* This function attempts to recover the declared class of an object
462 that is used in making a virtual call. We try to get the type from
463 the type cast in the gimple assignment statement that extracts the
464 vtable pointer from the object (DEF_STMT). The gimple statement
465 usually looks something like this:
467 D.2201_4 = MEM[(struct Event *)this_1(D)]._vptr.Event */
469 static tree
470 extract_object_class_type (tree rhs)
472 tree result = NULL_TREE;
474 /* Try to find and extract the type cast from that stmt. */
475 if (TREE_CODE (rhs) == COMPONENT_REF)
477 tree op0 = TREE_OPERAND (rhs, 0);
478 tree op1 = TREE_OPERAND (rhs, 1);
480 if (TREE_CODE (op1) == FIELD_DECL
481 && DECL_VIRTUAL_P (op1))
483 if (TREE_CODE (op0) == COMPONENT_REF
484 && TREE_CODE (TREE_OPERAND (op0, 0)) == MEM_REF
485 && TREE_CODE (TREE_TYPE (TREE_OPERAND (op0, 0)))== RECORD_TYPE)
486 result = TREE_TYPE (TREE_OPERAND (op0, 0));
487 else
488 result = TREE_TYPE (op0);
490 else if (TREE_CODE (op0) == COMPONENT_REF)
492 result = extract_object_class_type (op0);
493 if (result == NULL_TREE
494 && TREE_CODE (op1) == COMPONENT_REF)
495 result = extract_object_class_type (op1);
499 return result;
502 /* This function traces forward through the def-use chain of an SSA
503 variable to see if it ever gets used in a virtual function call. It
504 returns a boolean indicating whether or not it found a virtual call in
505 the use chain. */
507 static bool
508 var_is_used_for_virtual_call_p (tree lhs, int *mem_ref_depth)
510 imm_use_iterator imm_iter;
511 bool found_vcall = false;
512 use_operand_p use_p;
514 if (TREE_CODE (lhs) != SSA_NAME)
515 return false;
517 if (*mem_ref_depth > 2)
518 return false;
520 /* Iterate through the immediate uses of the current variable. If
521 it's a virtual function call, we're done. Otherwise, if there's
522 an LHS for the use stmt, add the ssa var to the work list
523 (assuming it's not already in the list and is not a variable
524 we've already examined. */
526 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
528 gimple stmt2 = USE_STMT (use_p);
530 if (is_gimple_call (stmt2))
532 tree fncall = gimple_call_fn (stmt2);
533 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
534 found_vcall = true;
535 else
536 return false;
538 else if (gimple_code (stmt2) == GIMPLE_PHI)
540 found_vcall = var_is_used_for_virtual_call_p
541 (gimple_phi_result (stmt2),
542 mem_ref_depth);
544 else if (is_gimple_assign (stmt2))
546 tree rhs = gimple_assign_rhs1 (stmt2);
547 if (TREE_CODE (rhs) == ADDR_EXPR
548 || TREE_CODE (rhs) == MEM_REF)
549 *mem_ref_depth = *mem_ref_depth + 1;
551 if (TREE_CODE (rhs) == COMPONENT_REF)
553 while (TREE_CODE (TREE_OPERAND (rhs, 0)) == COMPONENT_REF)
554 rhs = TREE_OPERAND (rhs, 0);
556 if (TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
557 || TREE_CODE (TREE_OPERAND (rhs, 0)) == MEM_REF)
558 *mem_ref_depth = *mem_ref_depth + 1;
561 if (*mem_ref_depth < 3)
562 found_vcall = var_is_used_for_virtual_call_p
563 (gimple_assign_lhs (stmt2),
564 mem_ref_depth);
567 else
568 break;
570 if (found_vcall)
571 return true;
574 return false;
577 /* Search through all the statements in a basic block (BB), searching
578 for virtual method calls. For each virtual method dispatch, find
579 the vptr value used, and the statically declared type of the
580 object; retrieve the vtable map variable for the type of the
581 object; generate a call to __VLTVerifyVtablePointer; and insert the
582 generated call into the basic block, after the point where the vptr
583 value is gotten out of the object and before the virtual method
584 dispatch. Make the virtual method dispatch depend on the return
585 value from the verification call, so that subsequent optimizations
586 cannot reorder the two calls. */
588 static void
589 verify_bb_vtables (basic_block bb)
591 gimple_seq stmts;
592 gimple stmt = NULL;
593 gimple_stmt_iterator gsi_vtbl_assign;
594 gimple_stmt_iterator gsi_virtual_call;
596 stmts = bb_seq (bb);
597 gsi_virtual_call = gsi_start (stmts);
598 for (; !gsi_end_p (gsi_virtual_call); gsi_next (&gsi_virtual_call))
600 stmt = gsi_stmt (gsi_virtual_call);
602 /* Count virtual calls. */
603 if (is_gimple_call (stmt))
605 tree fncall = gimple_call_fn (stmt);
606 if (fncall && TREE_CODE (fncall) == OBJ_TYPE_REF)
607 total_num_virtual_calls++;
610 if (is_vtable_assignment_stmt (stmt))
612 tree lhs = gimple_assign_lhs (stmt);
613 tree vtbl_var_decl = NULL_TREE;
614 struct vtbl_map_node *vtable_map_node;
615 tree vtbl_decl = NULL_TREE;
616 gcall *call_stmt;
617 const char *vtable_name = "<unknown>";
618 tree tmp0;
619 bool found;
620 int mem_ref_depth = 0;
622 /* Make sure this vptr field access is for a virtual call. */
623 if (!var_is_used_for_virtual_call_p (lhs, &mem_ref_depth))
624 continue;
626 /* Now we have found the virtual method dispatch and
627 the preceding access of the _vptr.* field... Next
628 we need to find the statically declared type of
629 the object, so we can find and use the right
630 vtable map variable in the verification call. */
631 tree class_type = extract_object_class_type
632 (gimple_assign_rhs1 (stmt));
634 gsi_vtbl_assign = gsi_for_stmt (stmt);
636 if (class_type
637 && (TREE_CODE (class_type) == RECORD_TYPE)
638 && TYPE_BINFO (class_type))
640 /* Get the vtable VAR_DECL for the type. */
641 vtbl_var_decl = BINFO_VTABLE (TYPE_BINFO (class_type));
643 if (TREE_CODE (vtbl_var_decl) == POINTER_PLUS_EXPR)
644 vtbl_var_decl = TREE_OPERAND (TREE_OPERAND (vtbl_var_decl, 0),
647 gcc_assert (vtbl_var_decl);
649 vtbl_decl = vtbl_var_decl;
650 vtable_map_node = vtbl_map_get_node
651 (TYPE_MAIN_VARIANT (class_type));
653 gcc_assert (verify_vtbl_ptr_fndecl);
655 /* Given the vtable pointer for the base class of the
656 object, build the call to __VLTVerifyVtablePointer to
657 verify that the object's vtable pointer (contained in
658 lhs) is in the set of valid vtable pointers for the
659 base class. */
661 if (vtable_map_node && vtable_map_node->vtbl_map_decl)
663 vtable_map_node->is_used = true;
664 vtbl_var_decl = vtable_map_node->vtbl_map_decl;
666 if (TREE_CODE (vtbl_decl) == VAR_DECL)
667 vtable_name = IDENTIFIER_POINTER (DECL_NAME (vtbl_decl));
669 /* Call different routines if we are interested in
670 trace information to debug problems. */
671 if (flag_vtv_debug)
673 int len1 = IDENTIFIER_LENGTH
674 (DECL_NAME (vtbl_var_decl));
675 int len2 = strlen (vtable_name);
677 call_stmt = gimple_build_call
678 (verify_vtbl_ptr_fndecl, 4,
679 build1 (ADDR_EXPR,
680 TYPE_POINTER_TO
681 (TREE_TYPE (vtbl_var_decl)),
682 vtbl_var_decl),
683 lhs,
684 build_string_literal
685 (len1 + 1,
686 IDENTIFIER_POINTER
687 (DECL_NAME
688 (vtbl_var_decl))),
689 build_string_literal (len2 + 1,
690 vtable_name));
692 else
693 call_stmt = gimple_build_call
694 (verify_vtbl_ptr_fndecl, 2,
695 build1 (ADDR_EXPR,
696 TYPE_POINTER_TO
697 (TREE_TYPE (vtbl_var_decl)),
698 vtbl_var_decl),
699 lhs);
702 /* Create a new SSA_NAME var to hold the call's
703 return value, and make the call_stmt use the
704 variable for that purpose. */
705 tmp0 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "VTV");
706 gimple_call_set_lhs (call_stmt, tmp0);
707 update_stmt (call_stmt);
709 /* Replace all uses of lhs with tmp0. */
710 found = false;
711 imm_use_iterator iterator;
712 gimple use_stmt;
713 FOR_EACH_IMM_USE_STMT (use_stmt, iterator, lhs)
715 use_operand_p use_p;
716 if (use_stmt == call_stmt)
717 continue;
718 FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
719 SET_USE (use_p, tmp0);
720 update_stmt (use_stmt);
721 found = true;
724 gcc_assert (found);
726 /* Insert the new verification call just after the
727 statement that gets the vtable pointer out of the
728 object. */
729 gcc_assert (gsi_stmt (gsi_vtbl_assign) == stmt);
730 gsi_insert_after (&gsi_vtbl_assign, call_stmt,
731 GSI_NEW_STMT);
733 any_verification_calls_generated = true;
734 total_num_verified_vcalls++;
741 /* Definition of this optimization pass. */
743 namespace {
745 const pass_data pass_data_vtable_verify =
747 GIMPLE_PASS, /* type */
748 "vtable-verify", /* name */
749 OPTGROUP_NONE, /* optinfo_flags */
750 TV_VTABLE_VERIFICATION, /* tv_id */
751 ( PROP_cfg | PROP_ssa ), /* properties_required */
752 0, /* properties_provided */
753 0, /* properties_destroyed */
754 0, /* todo_flags_start */
755 TODO_update_ssa, /* todo_flags_finish */
758 class pass_vtable_verify : public gimple_opt_pass
760 public:
761 pass_vtable_verify (gcc::context *ctxt)
762 : gimple_opt_pass (pass_data_vtable_verify, ctxt)
765 /* opt_pass methods: */
766 virtual bool gate (function *) { return (flag_vtable_verify); }
767 virtual unsigned int execute (function *);
769 }; // class pass_vtable_verify
771 /* Loop through all the basic blocks in the current function, passing them to
772 verify_bb_vtables, which searches for virtual calls, and inserts
773 calls to __VLTVerifyVtablePointer. */
775 unsigned int
776 pass_vtable_verify::execute (function *fun)
778 unsigned int ret = 1;
779 basic_block bb;
781 FOR_ALL_BB_FN (bb, fun)
782 verify_bb_vtables (bb);
784 return ret;
787 } // anon namespace
789 gimple_opt_pass *
790 make_pass_vtable_verify (gcc::context *ctxt)
792 return new pass_vtable_verify (ctxt);
795 #include "gt-vtable-verify.h"