[AArch64] Properly handle mvn-register and add EON+shift pattern and cost appropriately
[official-gcc.git] / gcc / hash-table.c
blob3127e9c839432ad43b381548b404aebd638d9bc2
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2015 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's hashtab. */
25 #ifdef GENERATOR_FILE
26 #include "bconfig.h"
27 #else
28 #include "config.h"
29 #endif
30 #include "system.h"
31 #include "coretypes.h"
32 #include "hash-table.h"
35 /* Table of primes and multiplicative inverses.
37 Note that these are not minimally reduced inverses. Unlike when generating
38 code to divide by a constant, we want to be able to use the same algorithm
39 all the time. All of these inverses (are implied to) have bit 32 set.
41 For the record, here's the function that computed the table; it's a
42 vastly simplified version of the function of the same name from gcc. */
44 struct prime_ent const prime_tab[] = {
45 { 7, 0x24924925, 0x9999999b, 2 },
46 { 13, 0x3b13b13c, 0x745d1747, 3 },
47 { 31, 0x08421085, 0x1a7b9612, 4 },
48 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
49 { 127, 0x02040811, 0x0624dd30, 6 },
50 { 251, 0x05197f7e, 0x073260a5, 7 },
51 { 509, 0x01824366, 0x02864fc8, 8 },
52 { 1021, 0x00c0906d, 0x014191f7, 9 },
53 { 2039, 0x0121456f, 0x0161e69e, 10 },
54 { 4093, 0x00300902, 0x00501908, 11 },
55 { 8191, 0x00080041, 0x00180241, 12 },
56 { 16381, 0x000c0091, 0x00140191, 13 },
57 { 32749, 0x002605a5, 0x002a06e6, 14 },
58 { 65521, 0x000f00e2, 0x00110122, 15 },
59 { 131071, 0x00008001, 0x00018003, 16 },
60 { 262139, 0x00014002, 0x0001c004, 17 },
61 { 524287, 0x00002001, 0x00006001, 18 },
62 { 1048573, 0x00003001, 0x00005001, 19 },
63 { 2097143, 0x00004801, 0x00005801, 20 },
64 { 4194301, 0x00000c01, 0x00001401, 21 },
65 { 8388593, 0x00001e01, 0x00002201, 22 },
66 { 16777213, 0x00000301, 0x00000501, 23 },
67 { 33554393, 0x00001381, 0x00001481, 24 },
68 { 67108859, 0x00000141, 0x000001c1, 25 },
69 { 134217689, 0x000004e1, 0x00000521, 26 },
70 { 268435399, 0x00000391, 0x000003b1, 27 },
71 { 536870909, 0x00000019, 0x00000029, 28 },
72 { 1073741789, 0x0000008d, 0x00000095, 29 },
73 { 2147483647, 0x00000003, 0x00000007, 30 },
74 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
75 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
78 /* The following function returns an index into the above table of the
79 nearest prime number which is greater than N, and near a power of two. */
81 unsigned int
82 hash_table_higher_prime_index (unsigned long n)
84 unsigned int low = 0;
85 unsigned int high = sizeof (prime_tab) / sizeof (prime_tab[0]);
87 while (low != high)
89 unsigned int mid = low + (high - low) / 2;
90 if (n > prime_tab[mid].prime)
91 low = mid + 1;
92 else
93 high = mid;
96 /* If we've run out of primes, abort. */
97 gcc_assert (n <= prime_tab[low].prime);
99 return low;