1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
34 #include "coretypes.h"
43 #include "insn-config.h"
46 #include "tree-pass.h"
51 #include "cfgcleanup.h"
56 #include "function-abi.h"
58 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
60 /* Set to true when we are running first pass of try_optimize_cfg loop. */
61 static bool first_pass
;
63 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
64 static bool crossjumps_occurred
;
66 /* Set to true if we couldn't run an optimization due to stale liveness
67 information; we should run df_analyze to enable more opportunities. */
68 static bool block_was_dirty
;
70 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
71 static bool try_crossjump_bb (int, basic_block
);
72 static bool outgoing_edges_match (int, basic_block
, basic_block
);
73 static enum replace_direction
old_insns_match_p (int, rtx_insn
*, rtx_insn
*);
75 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
76 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
77 static bool try_optimize_cfg (int);
78 static bool try_simplify_condjump (basic_block
);
79 static bool try_forward_edges (int, basic_block
);
80 static edge
thread_jump (edge
, basic_block
);
81 static bool mark_effect (rtx
, bitmap
);
82 static void notice_new_block (basic_block
);
83 static void update_forwarder_flag (basic_block
);
84 static void merge_memattrs (rtx
, rtx
);
86 /* Set flags for newly created block. */
89 notice_new_block (basic_block bb
)
94 if (forwarder_block_p (bb
))
95 bb
->flags
|= BB_FORWARDER_BLOCK
;
98 /* Recompute forwarder flag after block has been modified. */
101 update_forwarder_flag (basic_block bb
)
103 if (forwarder_block_p (bb
))
104 bb
->flags
|= BB_FORWARDER_BLOCK
;
106 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
113 try_simplify_condjump (basic_block cbranch_block
)
115 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
116 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
117 rtx_insn
*cbranch_insn
;
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
123 /* Verify that we've got a normal conditional branch at the end
125 cbranch_insn
= BB_END (cbranch_block
);
126 if (!any_condjump_p (cbranch_insn
))
129 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
130 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block
= cbranch_fallthru_edge
->dest
;
136 if (!single_pred_p (jump_block
)
137 || jump_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
138 || !FORWARDER_BLOCK_P (jump_block
))
140 jump_dest_block
= single_succ (jump_block
);
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
153 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block
= cbranch_jump_edge
->dest
;
160 if (cbranch_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
161 || jump_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
162 || !can_fallthru (jump_block
, cbranch_dest_block
))
165 /* Invert the conditional branch. */
166 if (!invert_jump (as_a
<rtx_jump_insn
*> (cbranch_insn
),
167 block_label (jump_dest_block
), 0))
171 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
172 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
174 /* Success. Update the CFG to match. Note that after this point
175 the edge variable names appear backwards; the redirection is done
176 this way to preserve edge profile data. */
177 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
179 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
181 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
182 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
183 update_br_prob_note (cbranch_block
);
185 /* Delete the block with the unconditional jump, and clean up the mess. */
186 delete_basic_block (jump_block
);
187 tidy_fallthru_edge (cbranch_jump_edge
);
188 update_forwarder_flag (cbranch_block
);
193 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
194 on register. Used by jump threading. */
197 mark_effect (rtx exp
, regset nonequal
)
200 switch (GET_CODE (exp
))
202 /* In case we do clobber the register, mark it as equal, as we know the
203 value is dead so it don't have to match. */
205 dest
= XEXP (exp
, 0);
207 bitmap_clear_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
211 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
213 dest
= SET_DEST (exp
);
218 bitmap_set_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
226 /* Return true if X contains a register in NONEQUAL. */
228 mentions_nonequal_regs (const_rtx x
, regset nonequal
)
230 subrtx_iterator::array_type array
;
231 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
236 unsigned int end_regno
= END_REGNO (x
);
237 for (unsigned int regno
= REGNO (x
); regno
< end_regno
; ++regno
)
238 if (REGNO_REG_SET_P (nonequal
, regno
))
245 /* Attempt to prove that the basic block B will have no side effects and
246 always continues in the same edge if reached via E. Return the edge
247 if exist, NULL otherwise. */
250 thread_jump (edge e
, basic_block b
)
252 rtx set1
, set2
, cond1
, cond2
;
254 enum rtx_code code1
, code2
, reversed_code2
;
255 bool reverse1
= false;
259 reg_set_iterator rsi
;
261 /* Jump threading may cause fixup_partitions to introduce new crossing edges,
262 which is not allowed after reload. */
263 gcc_checking_assert (!reload_completed
|| !crtl
->has_bb_partition
);
265 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
268 /* At the moment, we do handle only conditional jumps, but later we may
269 want to extend this code to tablejumps and others. */
270 if (EDGE_COUNT (e
->src
->succs
) != 2)
272 if (EDGE_COUNT (b
->succs
) != 2)
274 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
278 /* Second branch must end with onlyjump, as we will eliminate the jump. */
279 if (!any_condjump_p (BB_END (e
->src
)))
282 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
284 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
288 set1
= pc_set (BB_END (e
->src
));
289 set2
= pc_set (BB_END (b
));
290 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
291 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
294 cond1
= XEXP (SET_SRC (set1
), 0);
295 cond2
= XEXP (SET_SRC (set2
), 0);
297 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
299 code1
= GET_CODE (cond1
);
301 code2
= GET_CODE (cond2
);
302 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
304 if (!comparison_dominates_p (code1
, code2
)
305 && !comparison_dominates_p (code1
, reversed_code2
))
308 /* Ensure that the comparison operators are equivalent.
309 ??? This is far too pessimistic. We should allow swapped operands,
310 different CCmodes, or for example comparisons for interval, that
311 dominate even when operands are not equivalent. */
312 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
313 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
316 /* Punt if BB_END (e->src) is doloop-like conditional jump that modifies
317 the registers used in cond1. */
318 if (modified_in_p (cond1
, BB_END (e
->src
)))
321 /* Short circuit cases where block B contains some side effects, as we can't
323 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
324 insn
= NEXT_INSN (insn
))
325 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
327 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
333 /* First process all values computed in the source basic block. */
334 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
335 insn
!= NEXT_INSN (BB_END (e
->src
));
336 insn
= NEXT_INSN (insn
))
338 cselib_process_insn (insn
);
340 nonequal
= BITMAP_ALLOC (NULL
);
341 CLEAR_REG_SET (nonequal
);
343 /* Now assume that we've continued by the edge E to B and continue
344 processing as if it were same basic block.
345 Our goal is to prove that whole block is an NOOP. */
347 for (insn
= NEXT_INSN (BB_HEAD (b
));
348 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
349 insn
= NEXT_INSN (insn
))
351 /* cond2 must not mention any register that is not equal to the
352 former block. Check this before processing that instruction,
353 as BB_END (b) could contain also clobbers. */
354 if (insn
== BB_END (b
)
355 && mentions_nonequal_regs (cond2
, nonequal
))
360 rtx pat
= PATTERN (insn
);
362 if (GET_CODE (pat
) == PARALLEL
)
364 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
365 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
368 failed
|= mark_effect (pat
, nonequal
);
371 cselib_process_insn (insn
);
374 /* Later we should clear nonequal of dead registers. So far we don't
375 have life information in cfg_cleanup. */
378 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
382 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
385 BITMAP_FREE (nonequal
);
387 if ((comparison_dominates_p (code1
, code2
) != 0)
388 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
389 return BRANCH_EDGE (b
);
391 return FALLTHRU_EDGE (b
);
394 BITMAP_FREE (nonequal
);
399 /* Attempt to forward edges leaving basic block B.
400 Return true if successful. */
403 try_forward_edges (int mode
, basic_block b
)
405 bool changed
= false;
407 edge e
, *threaded_edges
= NULL
;
409 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
411 basic_block target
, first
;
412 location_t goto_locus
;
414 bool threaded
= false;
415 int nthreaded_edges
= 0;
416 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
417 bool new_target_threaded
= false;
419 /* Skip complex edges because we don't know how to update them.
421 Still handle fallthru edges, as we can succeed to forward fallthru
422 edge to the same place as the branch edge of conditional branch
423 and turn conditional branch to an unconditional branch. */
424 if (e
->flags
& EDGE_COMPLEX
)
430 target
= first
= e
->dest
;
431 counter
= NUM_FIXED_BLOCKS
;
432 goto_locus
= e
->goto_locus
;
434 while (counter
< n_basic_blocks_for_fn (cfun
))
436 basic_block new_target
= NULL
;
437 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
439 if (FORWARDER_BLOCK_P (target
)
440 && single_succ (target
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
442 /* Bypass trivial infinite loops. */
443 new_target
= single_succ (target
);
444 if (target
== new_target
)
445 counter
= n_basic_blocks_for_fn (cfun
);
448 /* When not optimizing, ensure that edges or forwarder
449 blocks with different locus are not optimized out. */
450 location_t new_locus
= single_succ_edge (target
)->goto_locus
;
451 location_t locus
= goto_locus
;
453 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
454 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
455 && new_locus
!= locus
)
459 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
462 rtx_insn
*last
= BB_END (target
);
463 if (DEBUG_INSN_P (last
))
464 last
= prev_nondebug_insn (last
);
465 if (last
&& INSN_P (last
))
466 new_locus
= INSN_LOCATION (last
);
468 new_locus
= UNKNOWN_LOCATION
;
470 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
471 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
472 && new_locus
!= locus
)
476 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
485 /* Allow to thread only over one edge at time to simplify updating
487 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
489 edge t
= thread_jump (e
, target
);
493 threaded_edges
= XNEWVEC (edge
,
494 n_basic_blocks_for_fn (cfun
));
499 /* Detect an infinite loop across blocks not
500 including the start block. */
501 for (i
= 0; i
< nthreaded_edges
; ++i
)
502 if (threaded_edges
[i
] == t
)
504 if (i
< nthreaded_edges
)
506 counter
= n_basic_blocks_for_fn (cfun
);
511 /* Detect an infinite loop across the start block. */
515 gcc_assert (nthreaded_edges
516 < (n_basic_blocks_for_fn (cfun
)
517 - NUM_FIXED_BLOCKS
));
518 threaded_edges
[nthreaded_edges
++] = t
;
520 new_target
= t
->dest
;
521 new_target_threaded
= true;
529 /* Do not turn non-crossing jump to crossing. Depending on target
530 it may require different instruction pattern. */
531 if ((e
->flags
& EDGE_CROSSING
)
532 || BB_PARTITION (first
) == BB_PARTITION (new_target
))
535 threaded
|= new_target_threaded
;
539 if (counter
>= n_basic_blocks_for_fn (cfun
))
542 fprintf (dump_file
, "Infinite loop in BB %i.\n",
545 else if (target
== first
)
546 ; /* We didn't do anything. */
549 /* Save the values now, as the edge may get removed. */
550 profile_count edge_count
= e
->count ();
553 e
->goto_locus
= goto_locus
;
555 /* Don't force if target is exit block. */
556 if (threaded
&& target
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
558 notice_new_block (redirect_edge_and_branch_force (e
, target
));
560 fprintf (dump_file
, "Conditionals threaded.\n");
562 else if (!redirect_edge_and_branch (e
, target
))
566 "Forwarding edge %i->%i to %i failed.\n",
567 b
->index
, e
->dest
->index
, target
->index
);
572 /* We successfully forwarded the edge. Now update profile
573 data: for each edge we traversed in the chain, remove
574 the original edge's execution count. */
579 if (!single_succ_p (first
))
581 gcc_assert (n
< nthreaded_edges
);
582 t
= threaded_edges
[n
++];
583 gcc_assert (t
->src
== first
);
584 update_bb_profile_for_threading (first
, edge_count
, t
);
585 update_br_prob_note (first
);
589 first
->count
-= edge_count
;
590 /* It is possible that as the result of
591 threading we've removed edge as it is
592 threaded to the fallthru edge. Avoid
593 getting out of sync. */
594 if (n
< nthreaded_edges
595 && first
== threaded_edges
[n
]->src
)
597 t
= single_succ_edge (first
);
602 while (first
!= target
);
610 free (threaded_edges
);
615 /* Blocks A and B are to be merged into a single block. A has no incoming
616 fallthru edge, so it can be moved before B without adding or modifying
617 any jumps (aside from the jump from A to B). */
620 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
624 /* If we are partitioning hot/cold basic blocks, we don't want to
625 mess up unconditional or indirect jumps that cross between hot
628 Basic block partitioning may result in some jumps that appear to
629 be optimizable (or blocks that appear to be mergeable), but which really
630 must be left untouched (they are required to make it safely across
631 partition boundaries). See the comments at the top of
632 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
634 if (BB_PARTITION (a
) != BB_PARTITION (b
))
637 barrier
= next_nonnote_insn (BB_END (a
));
638 gcc_assert (BARRIER_P (barrier
));
639 delete_insn (barrier
);
641 /* Scramble the insn chain. */
642 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
643 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
647 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
650 /* Swap the records for the two blocks around. */
653 link_block (a
, b
->prev_bb
);
655 /* Now blocks A and B are contiguous. Merge them. */
659 /* Blocks A and B are to be merged into a single block. B has no outgoing
660 fallthru edge, so it can be moved after A without adding or modifying
661 any jumps (aside from the jump from A to B). */
664 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
666 rtx_insn
*barrier
, *real_b_end
;
668 rtx_jump_table_data
*table
;
670 /* If we are partitioning hot/cold basic blocks, we don't want to
671 mess up unconditional or indirect jumps that cross between hot
674 Basic block partitioning may result in some jumps that appear to
675 be optimizable (or blocks that appear to be mergeable), but which really
676 must be left untouched (they are required to make it safely across
677 partition boundaries). See the comments at the top of
678 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
680 if (BB_PARTITION (a
) != BB_PARTITION (b
))
683 real_b_end
= BB_END (b
);
685 /* If there is a jump table following block B temporarily add the jump table
686 to block B so that it will also be moved to the correct location. */
687 if (tablejump_p (BB_END (b
), &label
, &table
)
688 && prev_active_insn (label
) == BB_END (b
))
693 /* There had better have been a barrier there. Delete it. */
694 barrier
= NEXT_INSN (BB_END (b
));
695 if (barrier
&& BARRIER_P (barrier
))
696 delete_insn (barrier
);
699 /* Scramble the insn chain. */
700 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
702 /* Restore the real end of b. */
703 BB_END (b
) = real_b_end
;
706 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
709 /* Now blocks A and B are contiguous. Merge them. */
713 /* Attempt to merge basic blocks that are potentially non-adjacent.
714 Return NULL iff the attempt failed, otherwise return basic block
715 where cleanup_cfg should continue. Because the merging commonly
716 moves basic block away or introduces another optimization
717 possibility, return basic block just before B so cleanup_cfg don't
720 It may be good idea to return basic block before C in the case
721 C has been moved after B and originally appeared earlier in the
722 insn sequence, but we have no information available about the
723 relative ordering of these two. Hopefully it is not too common. */
726 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
730 /* If we are partitioning hot/cold basic blocks, we don't want to
731 mess up unconditional or indirect jumps that cross between hot
734 Basic block partitioning may result in some jumps that appear to
735 be optimizable (or blocks that appear to be mergeable), but which really
736 must be left untouched (they are required to make it safely across
737 partition boundaries). See the comments at the top of
738 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
740 if (BB_PARTITION (b
) != BB_PARTITION (c
))
743 /* If B has a fallthru edge to C, no need to move anything. */
744 if (e
->flags
& EDGE_FALLTHRU
)
746 int b_index
= b
->index
, c_index
= c
->index
;
748 /* Protect the loop latches. */
749 if (current_loops
&& c
->loop_father
->latch
== c
)
753 update_forwarder_flag (b
);
756 fprintf (dump_file
, "Merged %d and %d without moving.\n",
759 return b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? b
: b
->prev_bb
;
762 /* Otherwise we will need to move code around. Do that only if expensive
763 transformations are allowed. */
764 else if (mode
& CLEANUP_EXPENSIVE
)
766 edge tmp_edge
, b_fallthru_edge
;
767 bool c_has_outgoing_fallthru
;
768 bool b_has_incoming_fallthru
;
770 /* Avoid overactive code motion, as the forwarder blocks should be
771 eliminated by edge redirection instead. One exception might have
772 been if B is a forwarder block and C has no fallthru edge, but
773 that should be cleaned up by bb-reorder instead. */
774 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
777 /* We must make sure to not munge nesting of lexical blocks,
778 and loop notes. This is done by squeezing out all the notes
779 and leaving them there to lie. Not ideal, but functional. */
781 tmp_edge
= find_fallthru_edge (c
->succs
);
782 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
784 tmp_edge
= find_fallthru_edge (b
->preds
);
785 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
786 b_fallthru_edge
= tmp_edge
;
789 next
= next
->prev_bb
;
791 /* Otherwise, we're going to try to move C after B. If C does
792 not have an outgoing fallthru, then it can be moved
793 immediately after B without introducing or modifying jumps. */
794 if (! c_has_outgoing_fallthru
)
796 merge_blocks_move_successor_nojumps (b
, c
);
797 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
800 /* If B does not have an incoming fallthru, then it can be moved
801 immediately before C without introducing or modifying jumps.
802 C cannot be the first block, so we do not have to worry about
803 accessing a non-existent block. */
805 if (b_has_incoming_fallthru
)
809 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
811 bb
= force_nonfallthru (b_fallthru_edge
);
813 notice_new_block (bb
);
816 merge_blocks_move_predecessor_nojumps (b
, c
);
817 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
824 /* Removes the memory attributes of MEM expression
825 if they are not equal. */
828 merge_memattrs (rtx x
, rtx y
)
837 if (x
== 0 || y
== 0)
842 if (code
!= GET_CODE (y
))
845 if (GET_MODE (x
) != GET_MODE (y
))
848 if (code
== MEM
&& !mem_attrs_eq_p (MEM_ATTRS (x
), MEM_ATTRS (y
)))
852 else if (! MEM_ATTRS (y
))
856 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
858 set_mem_alias_set (x
, 0);
859 set_mem_alias_set (y
, 0);
862 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
866 clear_mem_offset (x
);
867 clear_mem_offset (y
);
869 else if (MEM_OFFSET_KNOWN_P (x
) != MEM_OFFSET_KNOWN_P (y
)
870 || (MEM_OFFSET_KNOWN_P (x
)
871 && maybe_ne (MEM_OFFSET (x
), MEM_OFFSET (y
))))
873 clear_mem_offset (x
);
874 clear_mem_offset (y
);
877 if (!MEM_SIZE_KNOWN_P (x
))
879 else if (!MEM_SIZE_KNOWN_P (y
))
881 else if (known_le (MEM_SIZE (x
), MEM_SIZE (y
)))
882 set_mem_size (x
, MEM_SIZE (y
));
883 else if (known_le (MEM_SIZE (y
), MEM_SIZE (x
)))
884 set_mem_size (y
, MEM_SIZE (x
));
887 /* The sizes aren't ordered, so we can't merge them. */
892 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
893 set_mem_align (y
, MEM_ALIGN (x
));
898 if (MEM_READONLY_P (x
) != MEM_READONLY_P (y
))
900 MEM_READONLY_P (x
) = 0;
901 MEM_READONLY_P (y
) = 0;
903 if (MEM_NOTRAP_P (x
) != MEM_NOTRAP_P (y
))
905 MEM_NOTRAP_P (x
) = 0;
906 MEM_NOTRAP_P (y
) = 0;
908 if (MEM_VOLATILE_P (x
) != MEM_VOLATILE_P (y
))
910 MEM_VOLATILE_P (x
) = 1;
911 MEM_VOLATILE_P (y
) = 1;
915 fmt
= GET_RTX_FORMAT (code
);
916 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
921 /* Two vectors must have the same length. */
922 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
925 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
926 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
931 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
938 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
939 different single sets S1 and S2. */
942 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
947 if (p1
== s1
&& p2
== s2
)
950 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
953 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
956 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
958 e1
= XVECEXP (p1
, 0, i
);
959 e2
= XVECEXP (p2
, 0, i
);
960 if (e1
== s1
&& e2
== s2
)
963 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
973 /* NOTE1 is the REG_EQUAL note, if any, attached to an insn
974 that is a single_set with a SET_SRC of SRC1. Similarly
977 So effectively NOTE1/NOTE2 are an alternate form of
978 SRC1/SRC2 respectively.
980 Return nonzero if SRC1 or NOTE1 has the same constant
981 integer value as SRC2 or NOTE2. Else return zero. */
983 values_equal_p (rtx note1
, rtx note2
, rtx src1
, rtx src2
)
987 && CONST_INT_P (XEXP (note1
, 0))
988 && rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0)))
993 && CONST_INT_P (src1
)
994 && CONST_INT_P (src2
)
995 && rtx_equal_p (src1
, src2
))
999 && CONST_INT_P (src2
)
1000 && rtx_equal_p (XEXP (note1
, 0), src2
))
1004 && CONST_INT_P (src1
)
1005 && rtx_equal_p (XEXP (note2
, 0), src1
))
1011 /* Examine register notes on I1 and I2 and return:
1012 - dir_forward if I1 can be replaced by I2, or
1013 - dir_backward if I2 can be replaced by I1, or
1014 - dir_both if both are the case. */
1016 static enum replace_direction
1017 can_replace_by (rtx_insn
*i1
, rtx_insn
*i2
)
1019 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
1022 /* Check for 2 sets. */
1023 s1
= single_set (i1
);
1024 s2
= single_set (i2
);
1025 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
1028 /* Check that the 2 sets set the same dest. */
1031 if (!(reload_completed
1032 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1035 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1036 set dest to the same value. */
1037 note1
= find_reg_equal_equiv_note (i1
);
1038 note2
= find_reg_equal_equiv_note (i2
);
1040 src1
= SET_SRC (s1
);
1041 src2
= SET_SRC (s2
);
1043 if (!values_equal_p (note1
, note2
, src1
, src2
))
1046 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1049 /* Although the 2 sets set dest to the same value, we cannot replace
1050 (set (dest) (const_int))
1053 because we don't know if the reg is live and has the same value at the
1054 location of replacement. */
1055 c1
= CONST_INT_P (src1
);
1056 c2
= CONST_INT_P (src2
);
1062 return dir_backward
;
1067 /* Merges directions A and B. */
1069 static enum replace_direction
1070 merge_dir (enum replace_direction a
, enum replace_direction b
)
1072 /* Implements the following table:
1091 /* Array of flags indexed by reg note kind, true if the given
1092 reg note is CFA related. */
1093 static const bool reg_note_cfa_p
[] = {
1095 #define DEF_REG_NOTE(NAME) false,
1096 #define REG_CFA_NOTE(NAME) true,
1097 #include "reg-notes.def"
1103 /* Return true if I1 and I2 have identical CFA notes (the same order
1104 and equivalent content). */
1107 insns_have_identical_cfa_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1110 for (n1
= REG_NOTES (i1
), n2
= REG_NOTES (i2
); ;
1111 n1
= XEXP (n1
, 1), n2
= XEXP (n2
, 1))
1113 /* Skip over reg notes not related to CFI information. */
1114 while (n1
&& !reg_note_cfa_p
[REG_NOTE_KIND (n1
)])
1116 while (n2
&& !reg_note_cfa_p
[REG_NOTE_KIND (n2
)])
1118 if (n1
== NULL_RTX
&& n2
== NULL_RTX
)
1120 if (n1
== NULL_RTX
|| n2
== NULL_RTX
)
1122 if (XEXP (n1
, 0) == XEXP (n2
, 0))
1124 else if (XEXP (n1
, 0) == NULL_RTX
|| XEXP (n2
, 0) == NULL_RTX
)
1126 else if (!(reload_completed
1127 ? rtx_renumbered_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))
1128 : rtx_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))))
1133 /* Examine I1 and I2 and return:
1134 - dir_forward if I1 can be replaced by I2, or
1135 - dir_backward if I2 can be replaced by I1, or
1136 - dir_both if both are the case. */
1138 static enum replace_direction
1139 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx_insn
*i1
, rtx_insn
*i2
)
1143 /* Verify that I1 and I2 are equivalent. */
1144 if (GET_CODE (i1
) != GET_CODE (i2
))
1147 /* __builtin_unreachable() may lead to empty blocks (ending with
1148 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1149 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1152 /* ??? Do not allow cross-jumping between different stack levels. */
1153 p1
= find_reg_note (i1
, REG_ARGS_SIZE
, NULL
);
1154 p2
= find_reg_note (i2
, REG_ARGS_SIZE
, NULL
);
1159 if (!rtx_equal_p (p1
, p2
))
1162 /* ??? Worse, this adjustment had better be constant lest we
1163 have differing incoming stack levels. */
1164 if (!frame_pointer_needed
1165 && known_eq (find_args_size_adjust (i1
), HOST_WIDE_INT_MIN
))
1171 /* Do not allow cross-jumping between frame related insns and other
1173 if (RTX_FRAME_RELATED_P (i1
) != RTX_FRAME_RELATED_P (i2
))
1179 if (GET_CODE (p1
) != GET_CODE (p2
))
1182 /* If this is a CALL_INSN, compare register usage information.
1183 If we don't check this on stack register machines, the two
1184 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1185 numbers of stack registers in the same basic block.
1186 If we don't check this on machines with delay slots, a delay slot may
1187 be filled that clobbers a parameter expected by the subroutine.
1189 ??? We take the simple route for now and assume that if they're
1190 equal, they were constructed identically.
1192 Also check for identical exception regions. */
1196 /* Ensure the same EH region. */
1197 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1198 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1203 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1206 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1207 CALL_INSN_FUNCTION_USAGE (i2
))
1208 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1211 /* For address sanitizer, never crossjump __asan_report_* builtins,
1212 otherwise errors might be reported on incorrect lines. */
1213 if (flag_sanitize
& SANITIZE_ADDRESS
)
1215 rtx call
= get_call_rtx_from (i1
);
1216 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
1218 rtx symbol
= XEXP (XEXP (call
, 0), 0);
1219 if (SYMBOL_REF_DECL (symbol
)
1220 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
1222 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
1224 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1225 >= BUILT_IN_ASAN_REPORT_LOAD1
1226 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1227 <= BUILT_IN_ASAN_STOREN
)
1233 if (insn_callee_abi (i1
) != insn_callee_abi (i2
))
1237 /* If both i1 and i2 are frame related, verify all the CFA notes
1238 in the same order and with the same content. */
1239 if (RTX_FRAME_RELATED_P (i1
) && !insns_have_identical_cfa_notes (i1
, i2
))
1243 /* If cross_jump_death_matters is not 0, the insn's mode
1244 indicates whether or not the insn contains any stack-like
1247 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1249 /* If register stack conversion has already been done, then
1250 death notes must also be compared before it is certain that
1251 the two instruction streams match. */
1254 HARD_REG_SET i1_regset
, i2_regset
;
1256 CLEAR_HARD_REG_SET (i1_regset
);
1257 CLEAR_HARD_REG_SET (i2_regset
);
1259 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1260 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1261 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1263 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1264 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1265 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1267 if (i1_regset
!= i2_regset
)
1272 if (reload_completed
1273 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1276 return can_replace_by (i1
, i2
);
1279 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1280 flow_find_head_matching_sequence, ensure the notes match. */
1283 merge_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1285 /* If the merged insns have different REG_EQUAL notes, then
1287 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1288 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1290 if (equiv1
&& !equiv2
)
1291 remove_note (i1
, equiv1
);
1292 else if (!equiv1
&& equiv2
)
1293 remove_note (i2
, equiv2
);
1294 else if (equiv1
&& equiv2
1295 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1297 remove_note (i1
, equiv1
);
1298 remove_note (i2
, equiv2
);
1302 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1303 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1304 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1305 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1306 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1309 walk_to_nondebug_insn (rtx_insn
**i1
, basic_block
*bb1
, bool follow_fallthru
,
1314 *did_fallthru
= false;
1317 while (!NONDEBUG_INSN_P (*i1
))
1319 if (*i1
!= BB_HEAD (*bb1
))
1321 *i1
= PREV_INSN (*i1
);
1325 if (!follow_fallthru
)
1328 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1329 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1330 || !single_succ_p (fallthru
->src
))
1333 *bb1
= fallthru
->src
;
1334 *i1
= BB_END (*bb1
);
1335 *did_fallthru
= true;
1339 /* Look through the insns at the end of BB1 and BB2 and find the longest
1340 sequence that are either equivalent, or allow forward or backward
1341 replacement. Store the first insns for that sequence in *F1 and *F2 and
1342 return the sequence length.
1344 DIR_P indicates the allowed replacement direction on function entry, and
1345 the actual replacement direction on function exit. If NULL, only equivalent
1346 sequences are allowed.
1348 To simplify callers of this function, if the blocks match exactly,
1349 store the head of the blocks in *F1 and *F2. */
1352 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1353 rtx_insn
**f2
, enum replace_direction
*dir_p
)
1355 rtx_insn
*i1
, *i2
, *last1
, *last2
, *afterlast1
, *afterlast2
;
1357 enum replace_direction dir
, last_dir
, afterlast_dir
;
1358 bool follow_fallthru
, did_fallthru
;
1364 afterlast_dir
= dir
;
1365 last_dir
= afterlast_dir
;
1367 /* Skip simple jumps at the end of the blocks. Complex jumps still
1368 need to be compared for equivalence, which we'll do below. */
1371 last1
= afterlast1
= last2
= afterlast2
= NULL
;
1373 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1376 i1
= PREV_INSN (i1
);
1381 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1384 /* Count everything except for unconditional jump as insn.
1385 Don't count any jumps if dir_p is NULL. */
1386 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
&& dir_p
)
1388 i2
= PREV_INSN (i2
);
1393 /* In the following example, we can replace all jumps to C by jumps to A.
1395 This removes 4 duplicate insns.
1396 [bb A] insn1 [bb C] insn1
1402 We could also replace all jumps to A by jumps to C, but that leaves B
1403 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1404 step, all jumps to B would be replaced with jumps to the middle of C,
1405 achieving the same result with more effort.
1406 So we allow only the first possibility, which means that we don't allow
1407 fallthru in the block that's being replaced. */
1409 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1410 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1414 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1415 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1419 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1422 /* Do not turn corssing edge to non-crossing or vice versa after
1424 if (BB_PARTITION (BLOCK_FOR_INSN (i1
))
1425 != BB_PARTITION (BLOCK_FOR_INSN (i2
))
1426 && reload_completed
)
1429 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1430 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1433 merge_memattrs (i1
, i2
);
1435 /* Don't begin a cross-jump with a NOTE insn. */
1438 merge_notes (i1
, i2
);
1440 afterlast1
= last1
, afterlast2
= last2
;
1441 last1
= i1
, last2
= i2
;
1442 afterlast_dir
= last_dir
;
1444 if (active_insn_p (i1
))
1448 i1
= PREV_INSN (i1
);
1449 i2
= PREV_INSN (i2
);
1452 /* Include preceding notes and labels in the cross-jump. One,
1453 this may bring us to the head of the blocks as requested above.
1454 Two, it keeps line number notes as matched as may be. */
1457 bb1
= BLOCK_FOR_INSN (last1
);
1458 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1459 last1
= PREV_INSN (last1
);
1461 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1462 last1
= PREV_INSN (last1
);
1464 bb2
= BLOCK_FOR_INSN (last2
);
1465 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1466 last2
= PREV_INSN (last2
);
1468 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1469 last2
= PREV_INSN (last2
);
1480 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1481 the head of the two blocks. Do not include jumps at the end.
1482 If STOP_AFTER is nonzero, stop after finding that many matching
1483 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1484 non-zero, only count active insns. */
1487 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1488 rtx_insn
**f2
, int stop_after
)
1490 rtx_insn
*i1
, *i2
, *last1
, *last2
, *beforelast1
, *beforelast2
;
1494 int nehedges1
= 0, nehedges2
= 0;
1496 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1497 if (e
->flags
& EDGE_EH
)
1499 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1500 if (e
->flags
& EDGE_EH
)
1505 last1
= beforelast1
= last2
= beforelast2
= NULL
;
1509 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1510 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1512 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1514 i1
= NEXT_INSN (i1
);
1517 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1519 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1521 i2
= NEXT_INSN (i2
);
1524 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1525 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1528 if (NOTE_P (i1
) || NOTE_P (i2
)
1529 || JUMP_P (i1
) || JUMP_P (i2
))
1532 /* A sanity check to make sure we're not merging insns with different
1533 effects on EH. If only one of them ends a basic block, it shouldn't
1534 have an EH edge; if both end a basic block, there should be the same
1535 number of EH edges. */
1536 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1538 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1540 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1541 && nehedges1
!= nehedges2
))
1544 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1547 merge_memattrs (i1
, i2
);
1549 /* Don't begin a cross-jump with a NOTE insn. */
1552 merge_notes (i1
, i2
);
1554 beforelast1
= last1
, beforelast2
= last2
;
1555 last1
= i1
, last2
= i2
;
1556 if (!stop_after
|| active_insn_p (i1
))
1560 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1561 || (stop_after
> 0 && ninsns
== stop_after
))
1564 i1
= NEXT_INSN (i1
);
1565 i2
= NEXT_INSN (i2
);
1577 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1578 the branch instruction. This means that if we commonize the control
1579 flow before end of the basic block, the semantic remains unchanged.
1581 We may assume that there exists one edge with a common destination. */
1584 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1586 int nehedges1
= 0, nehedges2
= 0;
1587 edge fallthru1
= 0, fallthru2
= 0;
1591 /* If we performed shrink-wrapping, edges to the exit block can
1592 only be distinguished for JUMP_INSNs. The two paths may differ in
1593 whether they went through the prologue. Sibcalls are fine, we know
1594 that we either didn't need or inserted an epilogue before them. */
1595 if (crtl
->shrink_wrapped
1596 && single_succ_p (bb1
)
1597 && single_succ (bb1
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
1598 && (!JUMP_P (BB_END (bb1
))
1599 /* Punt if the only successor is a fake edge to exit, the jump
1600 must be some weird one. */
1601 || (single_succ_edge (bb1
)->flags
& EDGE_FAKE
) != 0)
1602 && !(CALL_P (BB_END (bb1
)) && SIBLING_CALL_P (BB_END (bb1
))))
1605 /* If BB1 has only one successor, we may be looking at either an
1606 unconditional jump, or a fake edge to exit. */
1607 if (single_succ_p (bb1
)
1608 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1609 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1610 return (single_succ_p (bb2
)
1611 && (single_succ_edge (bb2
)->flags
1612 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1613 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1615 /* Match conditional jumps - this may get tricky when fallthru and branch
1616 edges are crossed. */
1617 if (EDGE_COUNT (bb1
->succs
) == 2
1618 && any_condjump_p (BB_END (bb1
))
1619 && onlyjump_p (BB_END (bb1
)))
1621 edge b1
, f1
, b2
, f2
;
1622 bool reverse
, match
;
1623 rtx set1
, set2
, cond1
, cond2
;
1624 enum rtx_code code1
, code2
;
1626 if (EDGE_COUNT (bb2
->succs
) != 2
1627 || !any_condjump_p (BB_END (bb2
))
1628 || !onlyjump_p (BB_END (bb2
)))
1631 b1
= BRANCH_EDGE (bb1
);
1632 b2
= BRANCH_EDGE (bb2
);
1633 f1
= FALLTHRU_EDGE (bb1
);
1634 f2
= FALLTHRU_EDGE (bb2
);
1636 /* Get around possible forwarders on fallthru edges. Other cases
1637 should be optimized out already. */
1638 if (FORWARDER_BLOCK_P (f1
->dest
))
1639 f1
= single_succ_edge (f1
->dest
);
1641 if (FORWARDER_BLOCK_P (f2
->dest
))
1642 f2
= single_succ_edge (f2
->dest
);
1644 /* To simplify use of this function, return false if there are
1645 unneeded forwarder blocks. These will get eliminated later
1646 during cleanup_cfg. */
1647 if (FORWARDER_BLOCK_P (f1
->dest
)
1648 || FORWARDER_BLOCK_P (f2
->dest
)
1649 || FORWARDER_BLOCK_P (b1
->dest
)
1650 || FORWARDER_BLOCK_P (b2
->dest
))
1653 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1655 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1660 set1
= pc_set (BB_END (bb1
));
1661 set2
= pc_set (BB_END (bb2
));
1662 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1663 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1666 cond1
= XEXP (SET_SRC (set1
), 0);
1667 cond2
= XEXP (SET_SRC (set2
), 0);
1668 code1
= GET_CODE (cond1
);
1670 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1672 code2
= GET_CODE (cond2
);
1674 if (code2
== UNKNOWN
)
1677 /* Verify codes and operands match. */
1678 match
= ((code1
== code2
1679 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1680 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1681 || (code1
== swap_condition (code2
)
1682 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1684 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1687 /* If we return true, we will join the blocks. Which means that
1688 we will only have one branch prediction bit to work with. Thus
1689 we require the existing branches to have probabilities that are
1692 && optimize_bb_for_speed_p (bb1
)
1693 && optimize_bb_for_speed_p (bb2
))
1695 profile_probability prob2
;
1697 if (b1
->dest
== b2
->dest
)
1698 prob2
= b2
->probability
;
1700 /* Do not use f2 probability as f2 may be forwarded. */
1701 prob2
= b2
->probability
.invert ();
1703 /* Fail if the difference in probabilities is greater than 50%.
1704 This rules out two well-predicted branches with opposite
1706 if (b1
->probability
.differs_lot_from_p (prob2
))
1711 "Outcomes of branch in bb %i and %i differ too"
1712 " much (", bb1
->index
, bb2
->index
);
1713 b1
->probability
.dump (dump_file
);
1714 prob2
.dump (dump_file
);
1715 fprintf (dump_file
, ")\n");
1721 if (dump_file
&& match
)
1722 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1723 bb1
->index
, bb2
->index
);
1728 /* Generic case - we are seeing a computed jump, table jump or trapping
1731 /* Check whether there are tablejumps in the end of BB1 and BB2.
1732 Return true if they are identical. */
1734 rtx_insn
*label1
, *label2
;
1735 rtx_jump_table_data
*table1
, *table2
;
1737 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1738 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1739 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1741 /* The labels should never be the same rtx. If they really are same
1742 the jump tables are same too. So disable crossjumping of blocks BB1
1743 and BB2 because when deleting the common insns in the end of BB1
1744 by delete_basic_block () the jump table would be deleted too. */
1745 /* If LABEL2 is referenced in BB1->END do not do anything
1746 because we would loose information when replacing
1747 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1748 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1750 /* Set IDENTICAL to true when the tables are identical. */
1751 bool identical
= false;
1754 p1
= PATTERN (table1
);
1755 p2
= PATTERN (table2
);
1756 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1760 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1761 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1762 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1763 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1768 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1769 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1777 /* Temporarily replace references to LABEL1 with LABEL2
1778 in BB1->END so that we could compare the instructions. */
1779 replace_label_in_insn (BB_END (bb1
), label1
, label2
, false);
1781 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1783 if (dump_file
&& match
)
1785 "Tablejumps in bb %i and %i match.\n",
1786 bb1
->index
, bb2
->index
);
1788 /* Set the original label in BB1->END because when deleting
1789 a block whose end is a tablejump, the tablejump referenced
1790 from the instruction is deleted too. */
1791 replace_label_in_insn (BB_END (bb1
), label2
, label1
, false);
1800 /* Find the last non-debug non-note instruction in each bb, except
1801 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1802 handles that case specially. old_insns_match_p does not handle
1803 other types of instruction notes. */
1804 rtx_insn
*last1
= BB_END (bb1
);
1805 rtx_insn
*last2
= BB_END (bb2
);
1806 while (!NOTE_INSN_BASIC_BLOCK_P (last1
) &&
1807 (DEBUG_INSN_P (last1
) || NOTE_P (last1
)))
1808 last1
= PREV_INSN (last1
);
1809 while (!NOTE_INSN_BASIC_BLOCK_P (last2
) &&
1810 (DEBUG_INSN_P (last2
) || NOTE_P (last2
)))
1811 last2
= PREV_INSN (last2
);
1812 gcc_assert (last1
&& last2
);
1814 /* First ensure that the instructions match. There may be many outgoing
1815 edges so this test is generally cheaper. */
1816 if (old_insns_match_p (mode
, last1
, last2
) != dir_both
)
1819 /* Search the outgoing edges, ensure that the counts do match, find possible
1820 fallthru and exception handling edges since these needs more
1822 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1825 bool nonfakeedges
= false;
1826 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1828 e2
= EDGE_SUCC (bb2
, ei
.index
);
1830 if ((e1
->flags
& EDGE_FAKE
) == 0)
1831 nonfakeedges
= true;
1833 if (e1
->flags
& EDGE_EH
)
1836 if (e2
->flags
& EDGE_EH
)
1839 if (e1
->flags
& EDGE_FALLTHRU
)
1841 if (e2
->flags
& EDGE_FALLTHRU
)
1845 /* If number of edges of various types does not match, fail. */
1846 if (nehedges1
!= nehedges2
1847 || (fallthru1
!= 0) != (fallthru2
!= 0))
1850 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1851 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1852 attempt to optimize, as the two basic blocks might have different
1853 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1854 traps there should be REG_ARG_SIZE notes, they could be missing
1855 for __builtin_unreachable () uses though. */
1857 && !ACCUMULATE_OUTGOING_ARGS
1859 || !find_reg_note (last1
, REG_ARGS_SIZE
, NULL
)))
1862 /* fallthru edges must be forwarded to the same destination. */
1865 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1866 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1867 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1868 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1874 /* Ensure the same EH region. */
1876 rtx n1
= find_reg_note (last1
, REG_EH_REGION
, 0);
1877 rtx n2
= find_reg_note (last2
, REG_EH_REGION
, 0);
1882 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1886 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1887 version of sequence abstraction. */
1888 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1892 basic_block d1
= e1
->dest
;
1894 if (FORWARDER_BLOCK_P (d1
))
1895 d1
= EDGE_SUCC (d1
, 0)->dest
;
1897 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1899 basic_block d2
= e2
->dest
;
1900 if (FORWARDER_BLOCK_P (d2
))
1901 d2
= EDGE_SUCC (d2
, 0)->dest
;
1913 /* Returns true if BB basic block has a preserve label. */
1916 block_has_preserve_label (basic_block bb
)
1920 && LABEL_PRESERVE_P (block_label (bb
)));
1923 /* E1 and E2 are edges with the same destination block. Search their
1924 predecessors for common code. If found, redirect control flow from
1925 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1926 or the other way around (dir_backward). DIR specifies the allowed
1927 replacement direction. */
1930 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1931 enum replace_direction dir
)
1934 basic_block src1
= e1
->src
, src2
= e2
->src
;
1935 basic_block redirect_to
, redirect_from
, to_remove
;
1936 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1937 rtx_insn
*newpos1
, *newpos2
;
1941 newpos1
= newpos2
= NULL
;
1943 /* Search backward through forwarder blocks. We don't need to worry
1944 about multiple entry or chained forwarders, as they will be optimized
1945 away. We do this to look past the unconditional jump following a
1946 conditional jump that is required due to the current CFG shape. */
1947 if (single_pred_p (src1
)
1948 && FORWARDER_BLOCK_P (src1
))
1949 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1951 if (single_pred_p (src2
)
1952 && FORWARDER_BLOCK_P (src2
))
1953 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1955 /* Nothing to do if we reach ENTRY, or a common source block. */
1956 if (src1
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) || src2
1957 == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1962 /* Seeing more than 1 forwarder blocks would confuse us later... */
1963 if (FORWARDER_BLOCK_P (e1
->dest
)
1964 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1967 if (FORWARDER_BLOCK_P (e2
->dest
)
1968 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1971 /* Likewise with dead code (possibly newly created by the other optimizations
1973 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1976 /* Do not turn corssing edge to non-crossing or vice versa after reload. */
1977 if (BB_PARTITION (src1
) != BB_PARTITION (src2
)
1978 && reload_completed
)
1981 /* Look for the common insn sequence, part the first ... */
1982 if (!outgoing_edges_match (mode
, src1
, src2
))
1985 /* ... and part the second. */
1986 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
1990 if (newpos1
!= NULL_RTX
)
1991 src1
= BLOCK_FOR_INSN (newpos1
);
1992 if (newpos2
!= NULL_RTX
)
1993 src2
= BLOCK_FOR_INSN (newpos2
);
1995 /* Check that SRC1 and SRC2 have preds again. They may have changed
1996 above due to the call to flow_find_cross_jump. */
1997 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
2000 if (dir
== dir_backward
)
2002 std::swap (osrc1
, osrc2
);
2003 std::swap (src1
, src2
);
2005 std::swap (newpos1
, newpos2
);
2008 /* Don't proceed with the crossjump unless we found a sufficient number
2009 of matching instructions or the 'from' block was totally matched
2010 (such that its predecessors will hopefully be redirected and the
2012 if ((nmatch
< param_min_crossjump_insns
)
2013 && (newpos1
!= BB_HEAD (src1
)))
2016 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
2017 if (block_has_preserve_label (e1
->dest
)
2018 && (e1
->flags
& EDGE_ABNORMAL
))
2021 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2023 If we have tablejumps in the end of SRC1 and SRC2
2024 they have been already compared for equivalence in outgoing_edges_match ()
2025 so replace the references to TABLE1 by references to TABLE2. */
2027 rtx_insn
*label1
, *label2
;
2028 rtx_jump_table_data
*table1
, *table2
;
2030 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
2031 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
2032 && label1
!= label2
)
2036 /* Replace references to LABEL1 with LABEL2. */
2037 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2039 /* Do not replace the label in SRC1->END because when deleting
2040 a block whose end is a tablejump, the tablejump referenced
2041 from the instruction is deleted too. */
2042 if (insn
!= BB_END (osrc1
))
2043 replace_label_in_insn (insn
, label1
, label2
, true);
2048 /* Avoid splitting if possible. We must always split when SRC2 has
2049 EH predecessor edges, or we may end up with basic blocks with both
2050 normal and EH predecessor edges. */
2051 if (newpos2
== BB_HEAD (src2
)
2052 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
2056 if (newpos2
== BB_HEAD (src2
))
2058 /* Skip possible basic block header. */
2059 if (LABEL_P (newpos2
))
2060 newpos2
= NEXT_INSN (newpos2
);
2061 while (DEBUG_INSN_P (newpos2
))
2062 newpos2
= NEXT_INSN (newpos2
);
2063 if (NOTE_P (newpos2
))
2064 newpos2
= NEXT_INSN (newpos2
);
2065 while (DEBUG_INSN_P (newpos2
))
2066 newpos2
= NEXT_INSN (newpos2
);
2070 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
2071 src2
->index
, nmatch
);
2072 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
2077 "Cross jumping from bb %i to bb %i; %i common insns\n",
2078 src1
->index
, src2
->index
, nmatch
);
2080 /* We may have some registers visible through the block. */
2081 df_set_bb_dirty (redirect_to
);
2084 redirect_edges_to
= redirect_to
;
2086 redirect_edges_to
= osrc2
;
2088 /* Recompute the counts of destinations of outgoing edges. */
2089 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
2093 basic_block d
= s
->dest
;
2095 if (FORWARDER_BLOCK_P (d
))
2096 d
= single_succ (d
);
2098 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
2100 basic_block d2
= s2
->dest
;
2101 if (FORWARDER_BLOCK_P (d2
))
2102 d2
= single_succ (d2
);
2107 /* Take care to update possible forwarder blocks. We verified
2108 that there is no more than one in the chain, so we can't run
2109 into infinite loop. */
2110 if (FORWARDER_BLOCK_P (s
->dest
))
2111 s
->dest
->count
+= s
->count ();
2113 if (FORWARDER_BLOCK_P (s2
->dest
))
2114 s2
->dest
->count
-= s
->count ();
2116 s
->probability
= s
->probability
.combine_with_count
2117 (redirect_edges_to
->count
,
2118 s2
->probability
, src1
->count
);
2121 /* Adjust count for the block. An earlier jump
2122 threading pass may have left the profile in an inconsistent
2123 state (see update_bb_profile_for_threading) so we must be
2124 prepared for overflows. */
2128 tmp
->count
+= src1
->count
;
2129 if (tmp
== redirect_edges_to
)
2131 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
2134 update_br_prob_note (redirect_edges_to
);
2136 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2138 /* Skip possible basic block header. */
2139 if (LABEL_P (newpos1
))
2140 newpos1
= NEXT_INSN (newpos1
);
2142 while (DEBUG_INSN_P (newpos1
))
2143 newpos1
= NEXT_INSN (newpos1
);
2145 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2146 newpos1
= NEXT_INSN (newpos1
);
2148 /* Skip also prologue and function markers. */
2149 while (DEBUG_INSN_P (newpos1
)
2150 || (NOTE_P (newpos1
)
2151 && (NOTE_KIND (newpos1
) == NOTE_INSN_PROLOGUE_END
2152 || NOTE_KIND (newpos1
) == NOTE_INSN_FUNCTION_BEG
)))
2153 newpos1
= NEXT_INSN (newpos1
);
2155 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2156 to_remove
= single_succ (redirect_from
);
2158 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2159 delete_basic_block (to_remove
);
2161 update_forwarder_flag (redirect_from
);
2162 if (redirect_to
!= src2
)
2163 update_forwarder_flag (src2
);
2168 /* Search the predecessors of BB for common insn sequences. When found,
2169 share code between them by redirecting control flow. Return true if
2170 any changes made. */
2173 try_crossjump_bb (int mode
, basic_block bb
)
2175 edge e
, e2
, fallthru
;
2177 unsigned max
, ix
, ix2
;
2179 /* Nothing to do if there is not at least two incoming edges. */
2180 if (EDGE_COUNT (bb
->preds
) < 2)
2183 /* Don't crossjump if this block ends in a computed jump,
2184 unless we are optimizing for size. */
2185 if (optimize_bb_for_size_p (bb
)
2186 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2187 && computed_jump_p (BB_END (bb
)))
2190 /* If we are partitioning hot/cold basic blocks, we don't want to
2191 mess up unconditional or indirect jumps that cross between hot
2194 Basic block partitioning may result in some jumps that appear to
2195 be optimizable (or blocks that appear to be mergeable), but which really
2196 must be left untouched (they are required to make it safely across
2197 partition boundaries). See the comments at the top of
2198 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2200 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2201 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2202 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2205 /* It is always cheapest to redirect a block that ends in a branch to
2206 a block that falls through into BB, as that adds no branches to the
2207 program. We'll try that combination first. */
2209 max
= param_max_crossjump_edges
;
2211 if (EDGE_COUNT (bb
->preds
) > max
)
2214 fallthru
= find_fallthru_edge (bb
->preds
);
2217 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2219 e
= EDGE_PRED (bb
, ix
);
2222 /* As noted above, first try with the fallthru predecessor (or, a
2223 fallthru predecessor if we are in cfglayout mode). */
2226 /* Don't combine the fallthru edge into anything else.
2227 If there is a match, we'll do it the other way around. */
2230 /* If nothing changed since the last attempt, there is nothing
2233 && !((e
->src
->flags
& BB_MODIFIED
)
2234 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2237 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2245 /* Non-obvious work limiting check: Recognize that we're going
2246 to call try_crossjump_bb on every basic block. So if we have
2247 two blocks with lots of outgoing edges (a switch) and they
2248 share lots of common destinations, then we would do the
2249 cross-jump check once for each common destination.
2251 Now, if the blocks actually are cross-jump candidates, then
2252 all of their destinations will be shared. Which means that
2253 we only need check them for cross-jump candidacy once. We
2254 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2255 choosing to do the check from the block for which the edge
2256 in question is the first successor of A. */
2257 if (EDGE_SUCC (e
->src
, 0) != e
)
2260 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2262 e2
= EDGE_PRED (bb
, ix2
);
2267 /* We've already checked the fallthru edge above. */
2271 /* The "first successor" check above only prevents multiple
2272 checks of crossjump(A,B). In order to prevent redundant
2273 checks of crossjump(B,A), require that A be the block
2274 with the lowest index. */
2275 if (e
->src
->index
> e2
->src
->index
)
2278 /* If nothing changed since the last attempt, there is nothing
2281 && !((e
->src
->flags
& BB_MODIFIED
)
2282 || (e2
->src
->flags
& BB_MODIFIED
)))
2285 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2287 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2297 crossjumps_occurred
= true;
2302 /* Search the successors of BB for common insn sequences. When found,
2303 share code between them by moving it across the basic block
2304 boundary. Return true if any changes made. */
2307 try_head_merge_bb (basic_block bb
)
2309 basic_block final_dest_bb
= NULL
;
2310 int max_match
= INT_MAX
;
2312 rtx_insn
**headptr
, **currptr
, **nextptr
;
2313 bool changed
, moveall
;
2315 rtx_insn
*e0_last_head
;
2317 rtx_insn
*move_before
;
2318 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2319 rtx_insn
*jump
= BB_END (bb
);
2320 regset live
, live_union
;
2322 /* Nothing to do if there is not at least two outgoing edges. */
2326 /* Don't crossjump if this block ends in a computed jump,
2327 unless we are optimizing for size. */
2328 if (optimize_bb_for_size_p (bb
)
2329 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2330 && computed_jump_p (BB_END (bb
)))
2333 cond
= get_condition (jump
, &move_before
, true, false);
2334 if (cond
== NULL_RTX
)
2337 for (ix
= 0; ix
< nedges
; ix
++)
2338 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2341 for (ix
= 0; ix
< nedges
; ix
++)
2343 edge e
= EDGE_SUCC (bb
, ix
);
2344 basic_block other_bb
= e
->dest
;
2346 if (df_get_bb_dirty (other_bb
))
2348 block_was_dirty
= true;
2352 if (e
->flags
& EDGE_ABNORMAL
)
2355 /* Normally, all destination blocks must only be reachable from this
2356 block, i.e. they must have one incoming edge.
2358 There is one special case we can handle, that of multiple consecutive
2359 jumps where the first jumps to one of the targets of the second jump.
2360 This happens frequently in switch statements for default labels.
2361 The structure is as follows:
2367 jump with targets A, B, C, D...
2369 has two incoming edges, from FINAL_DEST_BB and BB
2371 In this case, we can try to move the insns through BB and into
2373 if (EDGE_COUNT (other_bb
->preds
) != 1)
2375 edge incoming_edge
, incoming_bb_other_edge
;
2378 if (final_dest_bb
!= NULL
2379 || EDGE_COUNT (other_bb
->preds
) != 2)
2382 /* We must be able to move the insns across the whole block. */
2383 move_before
= BB_HEAD (bb
);
2384 while (!NONDEBUG_INSN_P (move_before
))
2385 move_before
= NEXT_INSN (move_before
);
2387 if (EDGE_COUNT (bb
->preds
) != 1)
2389 incoming_edge
= EDGE_PRED (bb
, 0);
2390 final_dest_bb
= incoming_edge
->src
;
2391 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2393 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2394 if (incoming_bb_other_edge
!= incoming_edge
)
2396 if (incoming_bb_other_edge
->dest
!= other_bb
)
2401 e0
= EDGE_SUCC (bb
, 0);
2402 e0_last_head
= NULL
;
2405 for (ix
= 1; ix
< nedges
; ix
++)
2407 edge e
= EDGE_SUCC (bb
, ix
);
2408 rtx_insn
*e0_last
, *e_last
;
2411 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2412 &e0_last
, &e_last
, 0);
2416 if (nmatch
< max_match
)
2419 e0_last_head
= e0_last
;
2423 /* If we matched an entire block, we probably have to avoid moving the
2426 && e0_last_head
== BB_END (e0
->dest
)
2427 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2428 || control_flow_insn_p (e0_last_head
)))
2433 e0_last_head
= prev_real_nondebug_insn (e0_last_head
);
2439 /* We must find a union of the live registers at each of the end points. */
2440 live
= BITMAP_ALLOC (NULL
);
2441 live_union
= BITMAP_ALLOC (NULL
);
2443 currptr
= XNEWVEC (rtx_insn
*, nedges
);
2444 headptr
= XNEWVEC (rtx_insn
*, nedges
);
2445 nextptr
= XNEWVEC (rtx_insn
*, nedges
);
2447 for (ix
= 0; ix
< nedges
; ix
++)
2450 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2451 rtx_insn
*head
= BB_HEAD (merge_bb
);
2453 while (!NONDEBUG_INSN_P (head
))
2454 head
= NEXT_INSN (head
);
2458 /* Compute the end point and live information */
2459 for (j
= 1; j
< max_match
; j
++)
2461 head
= NEXT_INSN (head
);
2462 while (!NONDEBUG_INSN_P (head
));
2463 simulate_backwards_to_point (merge_bb
, live
, head
);
2464 IOR_REG_SET (live_union
, live
);
2467 /* If we're moving across two blocks, verify the validity of the
2468 first move, then adjust the target and let the loop below deal
2469 with the final move. */
2470 if (final_dest_bb
!= NULL
)
2472 rtx_insn
*move_upto
;
2474 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2475 jump
, e0
->dest
, live_union
,
2479 if (move_upto
== NULL_RTX
)
2482 while (e0_last_head
!= move_upto
)
2484 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2486 e0_last_head
= PREV_INSN (e0_last_head
);
2489 if (e0_last_head
== NULL_RTX
)
2492 jump
= BB_END (final_dest_bb
);
2493 cond
= get_condition (jump
, &move_before
, true, false);
2494 if (cond
== NULL_RTX
)
2500 rtx_insn
*move_upto
;
2501 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2502 move_before
, jump
, e0
->dest
, live_union
,
2504 if (!moveall
&& move_upto
== NULL_RTX
)
2506 if (jump
== move_before
)
2509 /* Try again, using a different insertion point. */
2515 if (final_dest_bb
&& !moveall
)
2516 /* We haven't checked whether a partial move would be OK for the first
2517 move, so we have to fail this case. */
2523 if (currptr
[0] == move_upto
)
2525 for (ix
= 0; ix
< nedges
; ix
++)
2527 rtx_insn
*curr
= currptr
[ix
];
2529 curr
= NEXT_INSN (curr
);
2530 while (!NONDEBUG_INSN_P (curr
));
2535 /* If we can't currently move all of the identical insns, remember
2536 each insn after the range that we'll merge. */
2538 for (ix
= 0; ix
< nedges
; ix
++)
2540 rtx_insn
*curr
= currptr
[ix
];
2542 curr
= NEXT_INSN (curr
);
2543 while (!NONDEBUG_INSN_P (curr
));
2547 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2548 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2549 if (final_dest_bb
!= NULL
)
2550 df_set_bb_dirty (final_dest_bb
);
2551 df_set_bb_dirty (bb
);
2552 for (ix
= 1; ix
< nedges
; ix
++)
2554 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2555 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2559 if (jump
== move_before
)
2562 /* For the unmerged insns, try a different insertion point. */
2565 for (ix
= 0; ix
< nedges
; ix
++)
2566 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2576 crossjumps_occurred
|= changed
;
2581 /* Return true if BB contains just bb note, or bb note followed
2582 by only DEBUG_INSNs. */
2585 trivially_empty_bb_p (basic_block bb
)
2587 rtx_insn
*insn
= BB_END (bb
);
2591 if (insn
== BB_HEAD (bb
))
2593 if (!DEBUG_INSN_P (insn
))
2595 insn
= PREV_INSN (insn
);
2599 /* Return true if BB contains just a return and possibly a USE of the
2600 return value. Fill in *RET and *USE with the return and use insns
2601 if any found, otherwise NULL. All CLOBBERs are ignored. */
2604 bb_is_just_return (basic_block bb
, rtx_insn
**ret
, rtx_insn
**use
)
2609 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2612 FOR_BB_INSNS (bb
, insn
)
2613 if (NONDEBUG_INSN_P (insn
))
2615 rtx pat
= PATTERN (insn
);
2617 if (!*ret
&& ANY_RETURN_P (pat
))
2619 else if (!*ret
&& !*use
&& GET_CODE (pat
) == USE
2620 && REG_P (XEXP (pat
, 0))
2621 && REG_FUNCTION_VALUE_P (XEXP (pat
, 0)))
2623 else if (GET_CODE (pat
) != CLOBBER
)
2630 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2631 instructions etc. Return nonzero if changes were made. */
2634 try_optimize_cfg (int mode
)
2636 bool changed_overall
= false;
2639 basic_block bb
, b
, next
;
2641 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2644 crossjumps_occurred
= false;
2646 FOR_EACH_BB_FN (bb
, cfun
)
2647 update_forwarder_flag (bb
);
2649 if (! targetm
.cannot_modify_jumps_p ())
2652 /* Attempt to merge blocks as made possible by edge removal. If
2653 a block has only one successor, and the successor has only
2654 one predecessor, they may be combined. */
2657 block_was_dirty
= false;
2663 "\n\ntry_optimize_cfg iteration %i\n\n",
2666 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
2667 != EXIT_BLOCK_PTR_FOR_FN (cfun
);)
2671 bool changed_here
= false;
2673 /* Delete trivially dead basic blocks. This is either
2674 blocks with no predecessors, or empty blocks with no
2675 successors. However if the empty block with no
2676 successors is the successor of the ENTRY_BLOCK, it is
2677 kept. This ensures that the ENTRY_BLOCK will have a
2678 successor which is a precondition for many RTL
2679 passes. Empty blocks may result from expanding
2680 __builtin_unreachable (). */
2681 if (EDGE_COUNT (b
->preds
) == 0
2682 || (EDGE_COUNT (b
->succs
) == 0
2683 && trivially_empty_bb_p (b
)
2684 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->dest
2688 if (EDGE_COUNT (b
->preds
) > 0)
2693 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2696 for (insn
= BB_FOOTER (b
);
2697 insn
; insn
= NEXT_INSN (insn
))
2698 if (BARRIER_P (insn
))
2701 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2702 if ((e
->flags
& EDGE_FALLTHRU
))
2705 && BB_FOOTER (e
->src
) == NULL
)
2707 BB_FOOTER (e
->src
) = BB_FOOTER (b
);
2708 BB_FOOTER (b
) = NULL
;
2711 emit_barrier_after_bb (e
->src
);
2716 rtx_insn
*last
= get_last_bb_insn (b
);
2717 if (last
&& BARRIER_P (last
))
2718 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2719 if ((e
->flags
& EDGE_FALLTHRU
))
2720 emit_barrier_after (BB_END (e
->src
));
2723 delete_basic_block (b
);
2725 /* Avoid trying to remove the exit block. */
2726 b
= (c
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? c
->next_bb
: c
);
2730 /* Remove code labels no longer used. */
2731 if (single_pred_p (b
)
2732 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2733 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2734 && LABEL_P (BB_HEAD (b
))
2735 && !LABEL_PRESERVE_P (BB_HEAD (b
))
2736 /* If the previous block ends with a branch to this
2737 block, we can't delete the label. Normally this
2738 is a condjump that is yet to be simplified, but
2739 if CASE_DROPS_THRU, this can be a tablejump with
2740 some element going to the same place as the
2741 default (fallthru). */
2742 && (single_pred (b
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
)
2743 || !JUMP_P (BB_END (single_pred (b
)))
2744 || ! label_is_jump_target_p (BB_HEAD (b
),
2745 BB_END (single_pred (b
)))))
2747 delete_insn (BB_HEAD (b
));
2749 fprintf (dump_file
, "Deleted label in block %i.\n",
2753 /* If we fall through an empty block, we can remove it. */
2754 if (!(mode
& (CLEANUP_CFGLAYOUT
| CLEANUP_NO_INSN_DEL
))
2755 && single_pred_p (b
)
2756 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2757 && !LABEL_P (BB_HEAD (b
))
2758 && FORWARDER_BLOCK_P (b
)
2759 /* Note that forwarder_block_p true ensures that
2760 there is a successor for this block. */
2761 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2762 && n_basic_blocks_for_fn (cfun
) > NUM_FIXED_BLOCKS
+ 1)
2766 "Deleting fallthru block %i.\n",
2769 c
= ((b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2770 ? b
->next_bb
: b
->prev_bb
);
2771 redirect_edge_succ_nodup (single_pred_edge (b
),
2773 delete_basic_block (b
);
2779 /* Merge B with its single successor, if any. */
2780 if (single_succ_p (b
)
2781 && (s
= single_succ_edge (b
))
2782 && !(s
->flags
& EDGE_COMPLEX
)
2783 && (c
= s
->dest
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2784 && single_pred_p (c
)
2787 /* When not in cfg_layout mode use code aware of reordering
2788 INSN. This code possibly creates new basic blocks so it
2789 does not fit merge_blocks interface and is kept here in
2790 hope that it will become useless once more of compiler
2791 is transformed to use cfg_layout mode. */
2793 if ((mode
& CLEANUP_CFGLAYOUT
)
2794 && can_merge_blocks_p (b
, c
))
2796 merge_blocks (b
, c
);
2797 update_forwarder_flag (b
);
2798 changed_here
= true;
2800 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2801 /* If the jump insn has side effects,
2802 we can't kill the edge. */
2803 && (!JUMP_P (BB_END (b
))
2804 || (reload_completed
2805 ? simplejump_p (BB_END (b
))
2806 : (onlyjump_p (BB_END (b
))
2807 && !tablejump_p (BB_END (b
),
2809 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2812 changed_here
= true;
2816 /* Try to change a branch to a return to just that return. */
2817 rtx_insn
*ret
, *use
;
2818 if (single_succ_p (b
)
2819 && onlyjump_p (BB_END (b
))
2820 && bb_is_just_return (single_succ (b
), &ret
, &use
))
2822 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2826 emit_insn_before (copy_insn (PATTERN (use
)),
2829 fprintf (dump_file
, "Changed jump %d->%d to return.\n",
2830 b
->index
, single_succ (b
)->index
);
2831 redirect_edge_succ (single_succ_edge (b
),
2832 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2833 single_succ_edge (b
)->flags
&= ~EDGE_CROSSING
;
2834 changed_here
= true;
2838 /* Try to change a conditional branch to a return to the
2839 respective conditional return. */
2840 if (EDGE_COUNT (b
->succs
) == 2
2841 && any_condjump_p (BB_END (b
))
2842 && bb_is_just_return (BRANCH_EDGE (b
)->dest
, &ret
, &use
))
2844 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2848 emit_insn_before (copy_insn (PATTERN (use
)),
2851 fprintf (dump_file
, "Changed conditional jump %d->%d "
2852 "to conditional return.\n",
2853 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2854 redirect_edge_succ (BRANCH_EDGE (b
),
2855 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2856 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2857 changed_here
= true;
2861 /* Try to flip a conditional branch that falls through to
2862 a return so that it becomes a conditional return and a
2863 new jump to the original branch target. */
2864 if (EDGE_COUNT (b
->succs
) == 2
2865 && BRANCH_EDGE (b
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2866 && any_condjump_p (BB_END (b
))
2867 && bb_is_just_return (FALLTHRU_EDGE (b
)->dest
, &ret
, &use
))
2869 if (invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2870 JUMP_LABEL (BB_END (b
)), 0))
2872 basic_block new_ft
= BRANCH_EDGE (b
)->dest
;
2873 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2877 emit_insn_before (copy_insn (PATTERN (use
)),
2880 fprintf (dump_file
, "Changed conditional jump "
2881 "%d->%d to conditional return, adding "
2882 "fall-through jump.\n",
2883 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2884 redirect_edge_succ (BRANCH_EDGE (b
),
2885 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2886 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2887 std::swap (BRANCH_EDGE (b
)->probability
,
2888 FALLTHRU_EDGE (b
)->probability
);
2889 update_br_prob_note (b
);
2890 basic_block jb
= force_nonfallthru (FALLTHRU_EDGE (b
));
2891 notice_new_block (jb
);
2892 if (!redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (jb
)),
2893 block_label (new_ft
), 0))
2895 redirect_edge_succ (single_succ_edge (jb
), new_ft
);
2896 changed_here
= true;
2900 /* Invert the jump back to what it was. This should
2902 if (!invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2903 JUMP_LABEL (BB_END (b
)), 0))
2909 /* Simplify branch over branch. */
2910 if ((mode
& CLEANUP_EXPENSIVE
)
2911 && !(mode
& CLEANUP_CFGLAYOUT
)
2912 && try_simplify_condjump (b
))
2913 changed_here
= true;
2915 /* If B has a single outgoing edge, but uses a
2916 non-trivial jump instruction without side-effects, we
2917 can either delete the jump entirely, or replace it
2918 with a simple unconditional jump. */
2919 if (single_succ_p (b
)
2920 && single_succ (b
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2921 && onlyjump_p (BB_END (b
))
2922 && !CROSSING_JUMP_P (BB_END (b
))
2923 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2925 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2927 update_forwarder_flag (b
);
2928 changed_here
= true;
2931 /* Simplify branch to branch. */
2932 if (try_forward_edges (mode
, b
))
2934 update_forwarder_flag (b
);
2935 changed_here
= true;
2938 /* Look for shared code between blocks. */
2939 if ((mode
& CLEANUP_CROSSJUMP
)
2940 && try_crossjump_bb (mode
, b
))
2941 changed_here
= true;
2943 if ((mode
& CLEANUP_CROSSJUMP
)
2944 /* This can lengthen register lifetimes. Do it only after
2947 && try_head_merge_bb (b
))
2948 changed_here
= true;
2950 /* Don't get confused by the index shift caused by
2958 if ((mode
& CLEANUP_CROSSJUMP
)
2959 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR_FOR_FN (cfun
)))
2962 if (block_was_dirty
)
2964 /* This should only be set by head-merging. */
2965 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
2971 /* Edge forwarding in particular can cause hot blocks previously
2972 reached by both hot and cold blocks to become dominated only
2973 by cold blocks. This will cause the verification below to fail,
2974 and lead to now cold code in the hot section. This is not easy
2975 to detect and fix during edge forwarding, and in some cases
2976 is only visible after newly unreachable blocks are deleted,
2977 which will be done in fixup_partitions. */
2978 if ((mode
& CLEANUP_NO_PARTITIONING
) == 0)
2980 fixup_partitions ();
2981 checking_verify_flow_info ();
2985 changed_overall
|= changed
;
2991 FOR_ALL_BB_FN (b
, cfun
)
2992 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
2994 return changed_overall
;
2997 /* Delete all unreachable basic blocks. */
3000 delete_unreachable_blocks (void)
3002 bool changed
= false;
3003 basic_block b
, prev_bb
;
3005 find_unreachable_blocks ();
3007 /* When we're in GIMPLE mode and there may be debug bind insns, we
3008 should delete blocks in reverse dominator order, so as to get a
3009 chance to substitute all released DEFs into debug bind stmts. If
3010 we don't have dominators information, walking blocks backward
3011 gets us a better chance of retaining most debug information than
3013 if (MAY_HAVE_DEBUG_BIND_INSNS
&& current_ir_type () == IR_GIMPLE
3014 && dom_info_available_p (CDI_DOMINATORS
))
3016 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3017 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3019 prev_bb
= b
->prev_bb
;
3021 if (!(b
->flags
& BB_REACHABLE
))
3023 /* Speed up the removal of blocks that don't dominate
3024 others. Walking backwards, this should be the common
3026 if (!first_dom_son (CDI_DOMINATORS
, b
))
3027 delete_basic_block (b
);
3030 auto_vec
<basic_block
> h
3031 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
3037 prev_bb
= b
->prev_bb
;
3039 gcc_assert (!(b
->flags
& BB_REACHABLE
));
3041 delete_basic_block (b
);
3051 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3052 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3054 prev_bb
= b
->prev_bb
;
3056 if (!(b
->flags
& BB_REACHABLE
))
3058 delete_basic_block (b
);
3065 tidy_fallthru_edges ();
3069 /* Delete any jump tables never referenced. We can't delete them at the
3070 time of removing tablejump insn as they are referenced by the preceding
3071 insns computing the destination, so we delay deleting and garbagecollect
3072 them once life information is computed. */
3074 delete_dead_jumptables (void)
3078 /* A dead jump table does not belong to any basic block. Scan insns
3079 between two adjacent basic blocks. */
3080 FOR_EACH_BB_FN (bb
, cfun
)
3082 rtx_insn
*insn
, *next
;
3084 for (insn
= NEXT_INSN (BB_END (bb
));
3085 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
3088 next
= NEXT_INSN (insn
);
3090 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
3091 && JUMP_TABLE_DATA_P (next
))
3093 rtx_insn
*label
= insn
, *jump
= next
;
3096 fprintf (dump_file
, "Dead jumptable %i removed\n",
3099 next
= NEXT_INSN (next
);
3101 delete_insn (label
);
3108 /* Tidy the CFG by deleting unreachable code and whatnot. */
3111 cleanup_cfg (int mode
)
3113 bool changed
= false;
3115 /* Set the cfglayout mode flag here. We could update all the callers
3116 but that is just inconvenient, especially given that we eventually
3117 want to have cfglayout mode as the default. */
3118 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3119 mode
|= CLEANUP_CFGLAYOUT
;
3121 timevar_push (TV_CLEANUP_CFG
);
3122 if (delete_unreachable_blocks ())
3125 /* We've possibly created trivially dead code. Cleanup it right
3126 now to introduce more opportunities for try_optimize_cfg. */
3127 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
3128 && !reload_completed
)
3129 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3134 /* To tail-merge blocks ending in the same noreturn function (e.g.
3135 a call to abort) we have to insert fake edges to exit. Do this
3136 here once. The fake edges do not interfere with any other CFG
3138 if (mode
& CLEANUP_CROSSJUMP
)
3139 add_noreturn_fake_exit_edges ();
3141 if (!dbg_cnt (cfg_cleanup
))
3144 while (try_optimize_cfg (mode
))
3146 delete_unreachable_blocks (), changed
= true;
3147 if (!(mode
& CLEANUP_NO_INSN_DEL
))
3149 /* Try to remove some trivially dead insns when doing an expensive
3150 cleanup. But delete_trivially_dead_insns doesn't work after
3151 reload (it only handles pseudos) and run_fast_dce is too costly
3152 to run in every iteration.
3154 For effective cross jumping, we really want to run a fast DCE to
3155 clean up any dead conditions, or they get in the way of performing
3158 Other transformations in cleanup_cfg are not so sensitive to dead
3159 code, so delete_trivially_dead_insns or even doing nothing at all
3161 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
3162 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3164 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occurred
)
3167 mode
&= ~CLEANUP_FORCE_FAST_DCE
;
3174 if (mode
& CLEANUP_CROSSJUMP
)
3175 remove_fake_exit_edges ();
3177 if (mode
& CLEANUP_FORCE_FAST_DCE
)
3180 /* Don't call delete_dead_jumptables in cfglayout mode, because
3181 that function assumes that jump tables are in the insns stream.
3182 But we also don't _have_ to delete dead jumptables in cfglayout
3183 mode because we shouldn't even be looking at things that are
3184 not in a basic block. Dead jumptables are cleaned up when
3185 going out of cfglayout mode. */
3186 if (!(mode
& CLEANUP_CFGLAYOUT
))
3187 delete_dead_jumptables ();
3189 /* ??? We probably do this way too often. */
3192 || (mode
& CLEANUP_CFG_CHANGED
)))
3194 timevar_push (TV_REPAIR_LOOPS
);
3195 /* The above doesn't preserve dominance info if available. */
3196 gcc_assert (!dom_info_available_p (CDI_DOMINATORS
));
3197 calculate_dominance_info (CDI_DOMINATORS
);
3198 fix_loop_structure (NULL
);
3199 free_dominance_info (CDI_DOMINATORS
);
3200 timevar_pop (TV_REPAIR_LOOPS
);
3203 timevar_pop (TV_CLEANUP_CFG
);
3210 const pass_data pass_data_jump
=
3212 RTL_PASS
, /* type */
3214 OPTGROUP_NONE
, /* optinfo_flags */
3215 TV_JUMP
, /* tv_id */
3216 0, /* properties_required */
3217 0, /* properties_provided */
3218 0, /* properties_destroyed */
3219 0, /* todo_flags_start */
3220 0, /* todo_flags_finish */
3223 class pass_jump
: public rtl_opt_pass
3226 pass_jump (gcc::context
*ctxt
)
3227 : rtl_opt_pass (pass_data_jump
, ctxt
)
3230 /* opt_pass methods: */
3231 virtual unsigned int execute (function
*);
3233 }; // class pass_jump
3236 pass_jump::execute (function
*)
3238 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3240 dump_flow_info (dump_file
, dump_flags
);
3241 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
3242 | (flag_thread_jumps
&& flag_expensive_optimizations
3243 ? CLEANUP_THREADING
: 0));
3250 make_pass_jump (gcc::context
*ctxt
)
3252 return new pass_jump (ctxt
);
3257 const pass_data pass_data_jump_after_combine
=
3259 RTL_PASS
, /* type */
3260 "jump_after_combine", /* name */
3261 OPTGROUP_NONE
, /* optinfo_flags */
3262 TV_JUMP
, /* tv_id */
3263 0, /* properties_required */
3264 0, /* properties_provided */
3265 0, /* properties_destroyed */
3266 0, /* todo_flags_start */
3267 0, /* todo_flags_finish */
3270 class pass_jump_after_combine
: public rtl_opt_pass
3273 pass_jump_after_combine (gcc::context
*ctxt
)
3274 : rtl_opt_pass (pass_data_jump_after_combine
, ctxt
)
3277 /* opt_pass methods: */
3278 virtual bool gate (function
*)
3280 return flag_thread_jumps
&& flag_expensive_optimizations
;
3282 virtual unsigned int execute (function
*);
3284 }; // class pass_jump_after_combine
3287 pass_jump_after_combine::execute (function
*)
3289 /* Jump threading does not keep dominators up-to-date. */
3290 free_dominance_info (CDI_DOMINATORS
);
3291 cleanup_cfg (CLEANUP_THREADING
);
3298 make_pass_jump_after_combine (gcc::context
*ctxt
)
3300 return new pass_jump_after_combine (ctxt
);
3305 const pass_data pass_data_jump2
=
3307 RTL_PASS
, /* type */
3309 OPTGROUP_NONE
, /* optinfo_flags */
3310 TV_JUMP
, /* tv_id */
3311 0, /* properties_required */
3312 0, /* properties_provided */
3313 0, /* properties_destroyed */
3314 0, /* todo_flags_start */
3315 0, /* todo_flags_finish */
3318 class pass_jump2
: public rtl_opt_pass
3321 pass_jump2 (gcc::context
*ctxt
)
3322 : rtl_opt_pass (pass_data_jump2
, ctxt
)
3325 /* opt_pass methods: */
3326 virtual unsigned int execute (function
*)
3328 cleanup_cfg (flag_crossjumping
? CLEANUP_CROSSJUMP
: 0);
3332 }; // class pass_jump2
3337 make_pass_jump2 (gcc::context
*ctxt
)
3339 return new pass_jump2 (ctxt
);