1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
47 /* Type of value ranges. See value_range_d for a description of these
49 enum value_range_type
{ VR_UNDEFINED
, VR_RANGE
, VR_ANTI_RANGE
, VR_VARYING
};
51 /* Range of values that can be associated with an SSA_NAME after VRP
55 /* Lattice value represented by this range. */
56 enum value_range_type type
;
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
77 typedef struct value_range_d value_range_t
;
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
83 /* Return true if the SSA name NAME is live on the edge E. */
86 live_on_edge (edge e
, tree name
)
88 return (live
[e
->dest
->index
]
89 && TEST_BIT (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
92 /* Local functions. */
93 static int compare_values (tree val1
, tree val2
);
94 static int compare_values_warnv (tree val1
, tree val2
, bool *);
95 static void vrp_meet (value_range_t
*, value_range_t
*);
96 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
97 tree
, tree
, bool, bool *,
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
105 struct assert_locus_d
107 /* Basic block where the assertion would be inserted. */
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si
;
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code
;
120 /* Value being compared against. */
123 /* Expression to compare. */
126 /* Next node in the linked list. */
127 struct assert_locus_d
*next
;
130 typedef struct assert_locus_d
*assert_locus_t
;
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for
;
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t
*asserts_for
;
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values
;
144 static value_range_t
**vr_value
;
145 static bool values_propagated
;
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
150 static int *vr_phi_edge_counts
;
157 static VEC (edge
, heap
) *to_remove_edges
;
158 DEF_VEC_O(switch_update
);
159 DEF_VEC_ALLOC_O(switch_update
, heap
);
160 static VEC (switch_update
, heap
) *to_update_switch_stmts
;
163 /* Return the maximum value for TYPE. */
166 vrp_val_max (const_tree type
)
168 if (!INTEGRAL_TYPE_P (type
))
171 return TYPE_MAX_VALUE (type
);
174 /* Return the minimum value for TYPE. */
177 vrp_val_min (const_tree type
)
179 if (!INTEGRAL_TYPE_P (type
))
182 return TYPE_MIN_VALUE (type
);
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
192 vrp_val_is_max (const_tree val
)
194 tree type_max
= vrp_val_max (TREE_TYPE (val
));
195 return (val
== type_max
196 || (type_max
!= NULL_TREE
197 && operand_equal_p (val
, type_max
, 0)));
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
204 vrp_val_is_min (const_tree val
)
206 tree type_min
= vrp_val_min (TREE_TYPE (val
));
207 return (val
== type_min
208 || (type_min
!= NULL_TREE
209 && operand_equal_p (val
, type_min
, 0)));
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
220 needs_overflow_infinity (const_tree type
)
222 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
232 supports_overflow_infinity (const_tree type
)
234 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type
));
238 return (min
!= NULL_TREE
239 && CONSTANT_CLASS_P (min
)
241 && CONSTANT_CLASS_P (max
));
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
248 make_overflow_infinity (tree val
)
250 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
251 val
= copy_node (val
);
252 TREE_OVERFLOW (val
) = 1;
256 /* Return a negative overflow infinity for TYPE. */
259 negative_overflow_infinity (tree type
)
261 gcc_checking_assert (supports_overflow_infinity (type
));
262 return make_overflow_infinity (vrp_val_min (type
));
265 /* Return a positive overflow infinity for TYPE. */
268 positive_overflow_infinity (tree type
)
270 gcc_checking_assert (supports_overflow_infinity (type
));
271 return make_overflow_infinity (vrp_val_max (type
));
274 /* Return whether VAL is a negative overflow infinity. */
277 is_negative_overflow_infinity (const_tree val
)
279 return (needs_overflow_infinity (TREE_TYPE (val
))
280 && CONSTANT_CLASS_P (val
)
281 && TREE_OVERFLOW (val
)
282 && vrp_val_is_min (val
));
285 /* Return whether VAL is a positive overflow infinity. */
288 is_positive_overflow_infinity (const_tree val
)
290 return (needs_overflow_infinity (TREE_TYPE (val
))
291 && CONSTANT_CLASS_P (val
)
292 && TREE_OVERFLOW (val
)
293 && vrp_val_is_max (val
));
296 /* Return whether VAL is a positive or negative overflow infinity. */
299 is_overflow_infinity (const_tree val
)
301 return (needs_overflow_infinity (TREE_TYPE (val
))
302 && CONSTANT_CLASS_P (val
)
303 && TREE_OVERFLOW (val
)
304 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
310 stmt_overflow_infinity (gimple stmt
)
312 if (is_gimple_assign (stmt
)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
324 avoid_overflow_infinity (tree val
)
326 if (!is_overflow_infinity (val
))
329 if (vrp_val_is_max (val
))
330 return vrp_val_max (TREE_TYPE (val
));
333 gcc_checking_assert (vrp_val_is_min (val
));
334 return vrp_val_min (TREE_TYPE (val
));
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
343 nonnull_arg_p (const_tree arg
)
345 tree t
, attrs
, fntype
;
346 unsigned HOST_WIDE_INT arg_num
;
348 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
350 /* The static chain decl is always non null. */
351 if (arg
== cfun
->static_chain_decl
)
354 fntype
= TREE_TYPE (current_function_decl
);
355 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs
== NULL_TREE
)
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs
) == NULL_TREE
)
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
368 t
= DECL_CHAIN (t
), arg_num
++)
374 gcc_assert (t
== arg
);
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
379 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
387 /* Set value range VR to VR_VARYING. */
390 set_value_range_to_varying (value_range_t
*vr
)
392 vr
->type
= VR_VARYING
;
393 vr
->min
= vr
->max
= NULL_TREE
;
395 bitmap_clear (vr
->equiv
);
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
402 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
403 tree max
, bitmap equiv
)
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
411 gcc_assert (min
&& max
);
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
414 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
416 cmp
= compare_values (min
, max
);
417 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
419 if (needs_overflow_infinity (TREE_TYPE (min
)))
420 gcc_assert (!is_overflow_infinity (min
)
421 || !is_overflow_infinity (max
));
424 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
425 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
427 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
428 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr
->equiv
== NULL
439 vr
->equiv
= BITMAP_ALLOC (NULL
);
441 if (equiv
!= vr
->equiv
)
443 if (equiv
&& !bitmap_empty_p (equiv
))
444 bitmap_copy (vr
->equiv
, equiv
);
446 bitmap_clear (vr
->equiv
);
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
461 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
462 tree min
, tree max
, bitmap equiv
)
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
466 && t
!= VR_ANTI_RANGE
)
467 || TREE_CODE (min
) != INTEGER_CST
468 || TREE_CODE (max
) != INTEGER_CST
)
470 set_value_range (vr
, t
, min
, max
, equiv
);
474 /* Wrong order for min and max, to swap them and the VR type we need
476 if (tree_int_cst_lt (max
, min
))
478 tree one
= build_int_cst (TREE_TYPE (min
), 1);
479 tree tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
480 max
= int_const_binop (MINUS_EXPR
, min
, one
);
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max
, min
))
488 set_value_range_to_varying (vr
);
492 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t
== VR_ANTI_RANGE
)
498 bool is_min
= vrp_val_is_min (min
);
499 bool is_max
= vrp_val_is_max (max
);
501 if (is_min
&& is_max
)
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr
);
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
510 && integer_zerop (max
)))
512 tree one
= build_int_cst (TREE_TYPE (max
), 1);
513 min
= int_const_binop (PLUS_EXPR
, max
, one
);
514 max
= vrp_val_max (TREE_TYPE (max
));
519 tree one
= build_int_cst (TREE_TYPE (min
), 1);
520 max
= int_const_binop (MINUS_EXPR
, min
, one
);
521 min
= vrp_val_min (TREE_TYPE (min
));
526 set_value_range (vr
, t
, min
, max
, equiv
);
529 /* Copy value range FROM into value range TO. */
532 copy_value_range (value_range_t
*to
, value_range_t
*from
)
534 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
543 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
545 gcc_assert (is_gimple_min_invariant (val
));
546 val
= avoid_overflow_infinity (val
);
547 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
557 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
558 bool overflow_infinity
)
562 if (overflow_infinity
&& !supports_overflow_infinity (type
))
564 set_value_range_to_varying (vr
);
568 zero
= build_int_cst (type
, 0);
569 set_value_range (vr
, VR_RANGE
, zero
,
571 ? positive_overflow_infinity (type
)
572 : TYPE_MAX_VALUE (type
)),
576 /* Set value range VR to a non-NULL range of type TYPE. */
579 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
581 tree zero
= build_int_cst (type
, 0);
582 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
586 /* Set value range VR to a NULL range of type TYPE. */
589 set_value_range_to_null (value_range_t
*vr
, tree type
)
591 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
598 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
600 if (TYPE_PRECISION (type
) == 1)
601 set_value_range_to_varying (vr
);
603 set_value_range (vr
, VR_RANGE
,
604 build_int_cst (type
, 0), build_int_cst (type
, 1),
609 /* Set value range VR to VR_UNDEFINED. */
612 set_value_range_to_undefined (value_range_t
*vr
)
614 vr
->type
= VR_UNDEFINED
;
615 vr
->min
= vr
->max
= NULL_TREE
;
617 bitmap_clear (vr
->equiv
);
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
625 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
629 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
630 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
633 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
634 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
635 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
637 set_value_range_to_varying (vr
);
640 cmp
= compare_values (min
, max
);
642 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
643 else if (cmp
== 0 || cmp
== 1)
646 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
650 set_value_range_to_varying (vr
);
653 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
657 /* Return value range information for VAR.
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
662 static value_range_t
*
663 get_value_range (const_tree var
)
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
669 unsigned ver
= SSA_NAME_VERSION (var
);
671 /* If we have no recorded ranges, then return NULL. */
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver
>= num_vr_values
)
679 return CONST_CAST (value_range_t
*, &vr_const_varying
);
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated
)
687 return CONST_CAST (value_range_t
*, &vr_const_varying
);
689 /* Create a default value range. */
690 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
692 /* Defer allocating the equivalence set. */
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym
= SSA_NAME_VAR (var
);
698 if (SSA_NAME_IS_DEFAULT_DEF (var
)
699 && TREE_CODE (sym
) == PARM_DECL
)
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym
))
705 && nonnull_arg_p (sym
))
706 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
708 set_value_range_to_varying (vr
);
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
717 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
721 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
723 if (is_overflow_infinity (val1
))
724 return is_overflow_infinity (val2
);
728 /* Return true, if the bitmaps B1 and B2 are equal. */
731 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
734 || ((!b1
|| bitmap_empty_p (b1
))
735 && (!b2
|| bitmap_empty_p (b2
)))
737 && bitmap_equal_p (b1
, b2
)));
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
751 update_value_range (const_tree var
, value_range_t
*new_vr
)
753 value_range_t
*old_vr
;
756 /* Update the value range, if necessary. */
757 old_vr
= get_value_range (var
);
758 is_new
= old_vr
->type
!= new_vr
->type
759 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
760 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
761 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
764 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
767 BITMAP_FREE (new_vr
->equiv
);
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
777 add_equivalence (bitmap
*equiv
, const_tree var
)
779 unsigned ver
= SSA_NAME_VERSION (var
);
780 value_range_t
*vr
= vr_value
[ver
];
783 *equiv
= BITMAP_ALLOC (NULL
);
784 bitmap_set_bit (*equiv
, ver
);
786 bitmap_ior_into (*equiv
, vr
->equiv
);
790 /* Return true if VR is ~[0, 0]. */
793 range_is_nonnull (value_range_t
*vr
)
795 return vr
->type
== VR_ANTI_RANGE
796 && integer_zerop (vr
->min
)
797 && integer_zerop (vr
->max
);
801 /* Return true if VR is [0, 0]. */
804 range_is_null (value_range_t
*vr
)
806 return vr
->type
== VR_RANGE
807 && integer_zerop (vr
->min
)
808 && integer_zerop (vr
->max
);
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
815 range_int_cst_p (value_range_t
*vr
)
817 return (vr
->type
== VR_RANGE
818 && TREE_CODE (vr
->max
) == INTEGER_CST
819 && TREE_CODE (vr
->min
) == INTEGER_CST
820 && !TREE_OVERFLOW (vr
->max
)
821 && !TREE_OVERFLOW (vr
->min
));
824 /* Return true if VR is a INTEGER_CST singleton. */
827 range_int_cst_singleton_p (value_range_t
*vr
)
829 return (range_int_cst_p (vr
)
830 && tree_int_cst_equal (vr
->min
, vr
->max
));
833 /* Return true if value range VR involves at least one symbol. */
836 symbolic_range_p (value_range_t
*vr
)
838 return (!is_gimple_min_invariant (vr
->min
)
839 || !is_gimple_min_invariant (vr
->max
));
842 /* Return true if value range VR uses an overflow infinity. */
845 overflow_infinity_range_p (value_range_t
*vr
)
847 return (vr
->type
== VR_RANGE
848 && (is_overflow_infinity (vr
->min
)
849 || is_overflow_infinity (vr
->max
)));
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
859 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
861 gcc_assert (vr
->type
== VR_RANGE
);
862 if (is_overflow_infinity (vr
->min
))
864 *strict_overflow_p
= true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
868 if (is_overflow_infinity (vr
->max
))
870 *strict_overflow_p
= true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
878 /* Return true if the result of assignment STMT is know to be non-negative.
879 If the return value is based on the assumption that signed overflow is
880 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
881 *STRICT_OVERFLOW_P.*/
884 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
886 enum tree_code code
= gimple_assign_rhs_code (stmt
);
887 switch (get_gimple_rhs_class (code
))
889 case GIMPLE_UNARY_RHS
:
890 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
891 gimple_expr_type (stmt
),
892 gimple_assign_rhs1 (stmt
),
894 case GIMPLE_BINARY_RHS
:
895 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
896 gimple_expr_type (stmt
),
897 gimple_assign_rhs1 (stmt
),
898 gimple_assign_rhs2 (stmt
),
900 case GIMPLE_TERNARY_RHS
:
902 case GIMPLE_SINGLE_RHS
:
903 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
905 case GIMPLE_INVALID_RHS
:
912 /* Return true if return value of call STMT is know to be non-negative.
913 If the return value is based on the assumption that signed overflow is
914 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
915 *STRICT_OVERFLOW_P.*/
918 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
920 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
921 gimple_call_arg (stmt
, 0) : NULL_TREE
;
922 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
923 gimple_call_arg (stmt
, 1) : NULL_TREE
;
925 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
926 gimple_call_fndecl (stmt
),
932 /* Return true if STMT is know to to compute a non-negative value.
933 If the return value is based on the assumption that signed overflow is
934 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
935 *STRICT_OVERFLOW_P.*/
938 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
940 switch (gimple_code (stmt
))
943 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
945 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
951 /* Return true if the result of assignment STMT is know to be non-zero.
952 If the return value is based on the assumption that signed overflow is
953 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
954 *STRICT_OVERFLOW_P.*/
957 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
959 enum tree_code code
= gimple_assign_rhs_code (stmt
);
960 switch (get_gimple_rhs_class (code
))
962 case GIMPLE_UNARY_RHS
:
963 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
964 gimple_expr_type (stmt
),
965 gimple_assign_rhs1 (stmt
),
967 case GIMPLE_BINARY_RHS
:
968 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
969 gimple_expr_type (stmt
),
970 gimple_assign_rhs1 (stmt
),
971 gimple_assign_rhs2 (stmt
),
973 case GIMPLE_TERNARY_RHS
:
975 case GIMPLE_SINGLE_RHS
:
976 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
978 case GIMPLE_INVALID_RHS
:
985 /* Return true if STMT is know to to compute a non-zero value.
986 If the return value is based on the assumption that signed overflow is
987 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
988 *STRICT_OVERFLOW_P.*/
991 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
993 switch (gimple_code (stmt
))
996 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
998 return gimple_alloca_call_p (stmt
);
1004 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1008 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1010 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1013 /* If we have an expression of the form &X->a, then the expression
1014 is nonnull if X is nonnull. */
1015 if (is_gimple_assign (stmt
)
1016 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1018 tree expr
= gimple_assign_rhs1 (stmt
);
1019 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1021 if (base
!= NULL_TREE
1022 && TREE_CODE (base
) == MEM_REF
1023 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1025 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1026 if (range_is_nonnull (vr
))
1034 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1035 a gimple invariant, or SSA_NAME +- CST. */
1038 valid_value_p (tree expr
)
1040 if (TREE_CODE (expr
) == SSA_NAME
)
1043 if (TREE_CODE (expr
) == PLUS_EXPR
1044 || TREE_CODE (expr
) == MINUS_EXPR
)
1045 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1046 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1048 return is_gimple_min_invariant (expr
);
1054 -2 if those are incomparable. */
1056 operand_less_p (tree val
, tree val2
)
1058 /* LT is folded faster than GE and others. Inline the common case. */
1059 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1061 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1062 return INT_CST_LT_UNSIGNED (val
, val2
);
1065 if (INT_CST_LT (val
, val2
))
1073 fold_defer_overflow_warnings ();
1075 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1077 fold_undefer_and_ignore_overflow_warnings ();
1080 || TREE_CODE (tcmp
) != INTEGER_CST
)
1083 if (!integer_zerop (tcmp
))
1087 /* val >= val2, not considering overflow infinity. */
1088 if (is_negative_overflow_infinity (val
))
1089 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1090 else if (is_positive_overflow_infinity (val2
))
1091 return is_positive_overflow_infinity (val
) ? 0 : 1;
1096 /* Compare two values VAL1 and VAL2. Return
1098 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1101 +1 if VAL1 > VAL2, and
1104 This is similar to tree_int_cst_compare but supports pointer values
1105 and values that cannot be compared at compile time.
1107 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1108 true if the return value is only valid if we assume that signed
1109 overflow is undefined. */
1112 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1117 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1119 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1120 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1121 /* Convert the two values into the same type. This is needed because
1122 sizetype causes sign extension even for unsigned types. */
1123 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1124 STRIP_USELESS_TYPE_CONVERSION (val2
);
1126 if ((TREE_CODE (val1
) == SSA_NAME
1127 || TREE_CODE (val1
) == PLUS_EXPR
1128 || TREE_CODE (val1
) == MINUS_EXPR
)
1129 && (TREE_CODE (val2
) == SSA_NAME
1130 || TREE_CODE (val2
) == PLUS_EXPR
1131 || TREE_CODE (val2
) == MINUS_EXPR
))
1133 tree n1
, c1
, n2
, c2
;
1134 enum tree_code code1
, code2
;
1136 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1137 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1138 same name, return -2. */
1139 if (TREE_CODE (val1
) == SSA_NAME
)
1147 code1
= TREE_CODE (val1
);
1148 n1
= TREE_OPERAND (val1
, 0);
1149 c1
= TREE_OPERAND (val1
, 1);
1150 if (tree_int_cst_sgn (c1
) == -1)
1152 if (is_negative_overflow_infinity (c1
))
1154 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1157 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1161 if (TREE_CODE (val2
) == SSA_NAME
)
1169 code2
= TREE_CODE (val2
);
1170 n2
= TREE_OPERAND (val2
, 0);
1171 c2
= TREE_OPERAND (val2
, 1);
1172 if (tree_int_cst_sgn (c2
) == -1)
1174 if (is_negative_overflow_infinity (c2
))
1176 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1179 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1183 /* Both values must use the same name. */
1187 if (code1
== SSA_NAME
1188 && code2
== SSA_NAME
)
1192 /* If overflow is defined we cannot simplify more. */
1193 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1196 if (strict_overflow_p
!= NULL
1197 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1198 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1199 *strict_overflow_p
= true;
1201 if (code1
== SSA_NAME
)
1203 if (code2
== PLUS_EXPR
)
1204 /* NAME < NAME + CST */
1206 else if (code2
== MINUS_EXPR
)
1207 /* NAME > NAME - CST */
1210 else if (code1
== PLUS_EXPR
)
1212 if (code2
== SSA_NAME
)
1213 /* NAME + CST > NAME */
1215 else if (code2
== PLUS_EXPR
)
1216 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1217 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1218 else if (code2
== MINUS_EXPR
)
1219 /* NAME + CST1 > NAME - CST2 */
1222 else if (code1
== MINUS_EXPR
)
1224 if (code2
== SSA_NAME
)
1225 /* NAME - CST < NAME */
1227 else if (code2
== PLUS_EXPR
)
1228 /* NAME - CST1 < NAME + CST2 */
1230 else if (code2
== MINUS_EXPR
)
1231 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1232 C1 and C2 are swapped in the call to compare_values. */
1233 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1239 /* We cannot compare non-constants. */
1240 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1243 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1245 /* We cannot compare overflowed values, except for overflow
1247 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1249 if (strict_overflow_p
!= NULL
)
1250 *strict_overflow_p
= true;
1251 if (is_negative_overflow_infinity (val1
))
1252 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1253 else if (is_negative_overflow_infinity (val2
))
1255 else if (is_positive_overflow_infinity (val1
))
1256 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1257 else if (is_positive_overflow_infinity (val2
))
1262 return tree_int_cst_compare (val1
, val2
);
1268 /* First see if VAL1 and VAL2 are not the same. */
1269 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1272 /* If VAL1 is a lower address than VAL2, return -1. */
1273 if (operand_less_p (val1
, val2
) == 1)
1276 /* If VAL1 is a higher address than VAL2, return +1. */
1277 if (operand_less_p (val2
, val1
) == 1)
1280 /* If VAL1 is different than VAL2, return +2.
1281 For integer constants we either have already returned -1 or 1
1282 or they are equivalent. We still might succeed in proving
1283 something about non-trivial operands. */
1284 if (TREE_CODE (val1
) != INTEGER_CST
1285 || TREE_CODE (val2
) != INTEGER_CST
)
1287 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1288 if (t
&& integer_onep (t
))
1296 /* Compare values like compare_values_warnv, but treat comparisons of
1297 nonconstants which rely on undefined overflow as incomparable. */
1300 compare_values (tree val1
, tree val2
)
1306 ret
= compare_values_warnv (val1
, val2
, &sop
);
1308 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1314 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1315 0 if VAL is not inside VR,
1316 -2 if we cannot tell either way.
1318 FIXME, the current semantics of this functions are a bit quirky
1319 when taken in the context of VRP. In here we do not care
1320 about VR's type. If VR is the anti-range ~[3, 5] the call
1321 value_inside_range (4, VR) will return 1.
1323 This is counter-intuitive in a strict sense, but the callers
1324 currently expect this. They are calling the function
1325 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1326 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1329 This also applies to value_ranges_intersect_p and
1330 range_includes_zero_p. The semantics of VR_RANGE and
1331 VR_ANTI_RANGE should be encoded here, but that also means
1332 adapting the users of these functions to the new semantics.
1334 Benchmark compile/20001226-1.c compilation time after changing this
1338 value_inside_range (tree val
, value_range_t
* vr
)
1342 cmp1
= operand_less_p (val
, vr
->min
);
1348 cmp2
= operand_less_p (vr
->max
, val
);
1356 /* Return true if value ranges VR0 and VR1 have a non-empty
1359 Benchmark compile/20001226-1.c compilation time after changing this
1364 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1366 /* The value ranges do not intersect if the maximum of the first range is
1367 less than the minimum of the second range or vice versa.
1368 When those relations are unknown, we can't do any better. */
1369 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1371 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1377 /* Return true if VR includes the value zero, false otherwise. FIXME,
1378 currently this will return false for an anti-range like ~[-4, 3].
1379 This will be wrong when the semantics of value_inside_range are
1380 modified (currently the users of this function expect these
1384 range_includes_zero_p (value_range_t
*vr
)
1388 gcc_assert (vr
->type
!= VR_UNDEFINED
1389 && vr
->type
!= VR_VARYING
1390 && !symbolic_range_p (vr
));
1392 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
1393 return (value_inside_range (zero
, vr
) == 1);
1396 /* Return true if *VR is know to only contain nonnegative values. */
1399 value_range_nonnegative_p (value_range_t
*vr
)
1401 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1402 which would return a useful value should be encoded as a
1404 if (vr
->type
== VR_RANGE
)
1406 int result
= compare_values (vr
->min
, integer_zero_node
);
1407 return (result
== 0 || result
== 1);
1413 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1414 false otherwise or if no value range information is available. */
1417 ssa_name_nonnegative_p (const_tree t
)
1419 value_range_t
*vr
= get_value_range (t
);
1421 if (INTEGRAL_TYPE_P (t
)
1422 && TYPE_UNSIGNED (t
))
1428 return value_range_nonnegative_p (vr
);
1431 /* If *VR has a value rante that is a single constant value return that,
1432 otherwise return NULL_TREE. */
1435 value_range_constant_singleton (value_range_t
*vr
)
1437 if (vr
->type
== VR_RANGE
1438 && operand_equal_p (vr
->min
, vr
->max
, 0)
1439 && is_gimple_min_invariant (vr
->min
))
1445 /* If OP has a value range with a single constant value return that,
1446 otherwise return NULL_TREE. This returns OP itself if OP is a
1450 op_with_constant_singleton_value_range (tree op
)
1452 if (is_gimple_min_invariant (op
))
1455 if (TREE_CODE (op
) != SSA_NAME
)
1458 return value_range_constant_singleton (get_value_range (op
));
1461 /* Return true if op is in a boolean [0, 1] value-range. */
1464 op_with_boolean_value_range_p (tree op
)
1468 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1471 if (integer_zerop (op
)
1472 || integer_onep (op
))
1475 if (TREE_CODE (op
) != SSA_NAME
)
1478 vr
= get_value_range (op
);
1479 return (vr
->type
== VR_RANGE
1480 && integer_zerop (vr
->min
)
1481 && integer_onep (vr
->max
));
1484 /* Extract value range information from an ASSERT_EXPR EXPR and store
1488 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1490 tree var
, cond
, limit
, min
, max
, type
;
1491 value_range_t
*var_vr
, *limit_vr
;
1492 enum tree_code cond_code
;
1494 var
= ASSERT_EXPR_VAR (expr
);
1495 cond
= ASSERT_EXPR_COND (expr
);
1497 gcc_assert (COMPARISON_CLASS_P (cond
));
1499 /* Find VAR in the ASSERT_EXPR conditional. */
1500 if (var
== TREE_OPERAND (cond
, 0)
1501 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1502 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1504 /* If the predicate is of the form VAR COMP LIMIT, then we just
1505 take LIMIT from the RHS and use the same comparison code. */
1506 cond_code
= TREE_CODE (cond
);
1507 limit
= TREE_OPERAND (cond
, 1);
1508 cond
= TREE_OPERAND (cond
, 0);
1512 /* If the predicate is of the form LIMIT COMP VAR, then we need
1513 to flip around the comparison code to create the proper range
1515 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1516 limit
= TREE_OPERAND (cond
, 0);
1517 cond
= TREE_OPERAND (cond
, 1);
1520 limit
= avoid_overflow_infinity (limit
);
1522 type
= TREE_TYPE (var
);
1523 gcc_assert (limit
!= var
);
1525 /* For pointer arithmetic, we only keep track of pointer equality
1527 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1529 set_value_range_to_varying (vr_p
);
1533 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1534 try to use LIMIT's range to avoid creating symbolic ranges
1536 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1538 /* LIMIT's range is only interesting if it has any useful information. */
1540 && (limit_vr
->type
== VR_UNDEFINED
1541 || limit_vr
->type
== VR_VARYING
1542 || symbolic_range_p (limit_vr
)))
1545 /* Initially, the new range has the same set of equivalences of
1546 VAR's range. This will be revised before returning the final
1547 value. Since assertions may be chained via mutually exclusive
1548 predicates, we will need to trim the set of equivalences before
1550 gcc_assert (vr_p
->equiv
== NULL
);
1551 add_equivalence (&vr_p
->equiv
, var
);
1553 /* Extract a new range based on the asserted comparison for VAR and
1554 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1555 will only use it for equality comparisons (EQ_EXPR). For any
1556 other kind of assertion, we cannot derive a range from LIMIT's
1557 anti-range that can be used to describe the new range. For
1558 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1559 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1560 no single range for x_2 that could describe LE_EXPR, so we might
1561 as well build the range [b_4, +INF] for it.
1562 One special case we handle is extracting a range from a
1563 range test encoded as (unsigned)var + CST <= limit. */
1564 if (TREE_CODE (cond
) == NOP_EXPR
1565 || TREE_CODE (cond
) == PLUS_EXPR
)
1567 if (TREE_CODE (cond
) == PLUS_EXPR
)
1569 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1570 TREE_OPERAND (cond
, 1));
1571 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1572 cond
= TREE_OPERAND (cond
, 0);
1576 min
= build_int_cst (TREE_TYPE (var
), 0);
1580 /* Make sure to not set TREE_OVERFLOW on the final type
1581 conversion. We are willingly interpreting large positive
1582 unsigned values as negative singed values here. */
1583 min
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (min
),
1585 max
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (max
),
1588 /* We can transform a max, min range to an anti-range or
1589 vice-versa. Use set_and_canonicalize_value_range which does
1591 if (cond_code
== LE_EXPR
)
1592 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1593 min
, max
, vr_p
->equiv
);
1594 else if (cond_code
== GT_EXPR
)
1595 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1596 min
, max
, vr_p
->equiv
);
1600 else if (cond_code
== EQ_EXPR
)
1602 enum value_range_type range_type
;
1606 range_type
= limit_vr
->type
;
1607 min
= limit_vr
->min
;
1608 max
= limit_vr
->max
;
1612 range_type
= VR_RANGE
;
1617 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1619 /* When asserting the equality VAR == LIMIT and LIMIT is another
1620 SSA name, the new range will also inherit the equivalence set
1622 if (TREE_CODE (limit
) == SSA_NAME
)
1623 add_equivalence (&vr_p
->equiv
, limit
);
1625 else if (cond_code
== NE_EXPR
)
1627 /* As described above, when LIMIT's range is an anti-range and
1628 this assertion is an inequality (NE_EXPR), then we cannot
1629 derive anything from the anti-range. For instance, if
1630 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1631 not imply that VAR's range is [0, 0]. So, in the case of
1632 anti-ranges, we just assert the inequality using LIMIT and
1635 If LIMIT_VR is a range, we can only use it to build a new
1636 anti-range if LIMIT_VR is a single-valued range. For
1637 instance, if LIMIT_VR is [0, 1], the predicate
1638 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1639 Rather, it means that for value 0 VAR should be ~[0, 0]
1640 and for value 1, VAR should be ~[1, 1]. We cannot
1641 represent these ranges.
1643 The only situation in which we can build a valid
1644 anti-range is when LIMIT_VR is a single-valued range
1645 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1646 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1648 && limit_vr
->type
== VR_RANGE
1649 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1651 min
= limit_vr
->min
;
1652 max
= limit_vr
->max
;
1656 /* In any other case, we cannot use LIMIT's range to build a
1657 valid anti-range. */
1661 /* If MIN and MAX cover the whole range for their type, then
1662 just use the original LIMIT. */
1663 if (INTEGRAL_TYPE_P (type
)
1664 && vrp_val_is_min (min
)
1665 && vrp_val_is_max (max
))
1668 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
1670 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1672 min
= TYPE_MIN_VALUE (type
);
1674 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1678 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1679 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1681 max
= limit_vr
->max
;
1684 /* If the maximum value forces us to be out of bounds, simply punt.
1685 It would be pointless to try and do anything more since this
1686 all should be optimized away above us. */
1687 if ((cond_code
== LT_EXPR
1688 && compare_values (max
, min
) == 0)
1689 || (CONSTANT_CLASS_P (max
) && TREE_OVERFLOW (max
)))
1690 set_value_range_to_varying (vr_p
);
1693 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1694 if (cond_code
== LT_EXPR
)
1696 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1697 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1698 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1699 build_int_cst (TREE_TYPE (max
), -1));
1701 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1702 build_int_cst (TREE_TYPE (max
), 1));
1704 TREE_NO_WARNING (max
) = 1;
1707 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1710 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1712 max
= TYPE_MAX_VALUE (type
);
1714 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1718 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1719 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1721 min
= limit_vr
->min
;
1724 /* If the minimum value forces us to be out of bounds, simply punt.
1725 It would be pointless to try and do anything more since this
1726 all should be optimized away above us. */
1727 if ((cond_code
== GT_EXPR
1728 && compare_values (min
, max
) == 0)
1729 || (CONSTANT_CLASS_P (min
) && TREE_OVERFLOW (min
)))
1730 set_value_range_to_varying (vr_p
);
1733 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1734 if (cond_code
== GT_EXPR
)
1736 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1737 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1738 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1739 build_int_cst (TREE_TYPE (min
), -1));
1741 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1742 build_int_cst (TREE_TYPE (min
), 1));
1744 TREE_NO_WARNING (min
) = 1;
1747 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1753 /* If VAR already had a known range, it may happen that the new
1754 range we have computed and VAR's range are not compatible. For
1758 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1760 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1762 While the above comes from a faulty program, it will cause an ICE
1763 later because p_8 and p_6 will have incompatible ranges and at
1764 the same time will be considered equivalent. A similar situation
1768 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1770 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1772 Again i_6 and i_7 will have incompatible ranges. It would be
1773 pointless to try and do anything with i_7's range because
1774 anything dominated by 'if (i_5 < 5)' will be optimized away.
1775 Note, due to the wa in which simulation proceeds, the statement
1776 i_7 = ASSERT_EXPR <...> we would never be visited because the
1777 conditional 'if (i_5 < 5)' always evaluates to false. However,
1778 this extra check does not hurt and may protect against future
1779 changes to VRP that may get into a situation similar to the
1780 NULL pointer dereference example.
1782 Note that these compatibility tests are only needed when dealing
1783 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1784 are both anti-ranges, they will always be compatible, because two
1785 anti-ranges will always have a non-empty intersection. */
1787 var_vr
= get_value_range (var
);
1789 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1790 ranges or anti-ranges. */
1791 if (vr_p
->type
== VR_VARYING
1792 || vr_p
->type
== VR_UNDEFINED
1793 || var_vr
->type
== VR_VARYING
1794 || var_vr
->type
== VR_UNDEFINED
1795 || symbolic_range_p (vr_p
)
1796 || symbolic_range_p (var_vr
))
1799 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1801 /* If the two ranges have a non-empty intersection, we can
1802 refine the resulting range. Since the assert expression
1803 creates an equivalency and at the same time it asserts a
1804 predicate, we can take the intersection of the two ranges to
1805 get better precision. */
1806 if (value_ranges_intersect_p (var_vr
, vr_p
))
1808 /* Use the larger of the two minimums. */
1809 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1814 /* Use the smaller of the two maximums. */
1815 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1820 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1824 /* The two ranges do not intersect, set the new range to
1825 VARYING, because we will not be able to do anything
1826 meaningful with it. */
1827 set_value_range_to_varying (vr_p
);
1830 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1831 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1833 /* A range and an anti-range will cancel each other only if
1834 their ends are the same. For instance, in the example above,
1835 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1836 so VR_P should be set to VR_VARYING. */
1837 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1838 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1839 set_value_range_to_varying (vr_p
);
1842 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1845 /* We want to compute the logical AND of the two ranges;
1846 there are three cases to consider.
1849 1. The VR_ANTI_RANGE range is completely within the
1850 VR_RANGE and the endpoints of the ranges are
1851 different. In that case the resulting range
1852 should be whichever range is more precise.
1853 Typically that will be the VR_RANGE.
1855 2. The VR_ANTI_RANGE is completely disjoint from
1856 the VR_RANGE. In this case the resulting range
1857 should be the VR_RANGE.
1859 3. There is some overlap between the VR_ANTI_RANGE
1862 3a. If the high limit of the VR_ANTI_RANGE resides
1863 within the VR_RANGE, then the result is a new
1864 VR_RANGE starting at the high limit of the
1865 VR_ANTI_RANGE + 1 and extending to the
1866 high limit of the original VR_RANGE.
1868 3b. If the low limit of the VR_ANTI_RANGE resides
1869 within the VR_RANGE, then the result is a new
1870 VR_RANGE starting at the low limit of the original
1871 VR_RANGE and extending to the low limit of the
1872 VR_ANTI_RANGE - 1. */
1873 if (vr_p
->type
== VR_ANTI_RANGE
)
1875 anti_min
= vr_p
->min
;
1876 anti_max
= vr_p
->max
;
1877 real_min
= var_vr
->min
;
1878 real_max
= var_vr
->max
;
1882 anti_min
= var_vr
->min
;
1883 anti_max
= var_vr
->max
;
1884 real_min
= vr_p
->min
;
1885 real_max
= vr_p
->max
;
1889 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1890 not including any endpoints. */
1891 if (compare_values (anti_max
, real_max
) == -1
1892 && compare_values (anti_min
, real_min
) == 1)
1894 /* If the range is covering the whole valid range of
1895 the type keep the anti-range. */
1896 if (!vrp_val_is_min (real_min
)
1897 || !vrp_val_is_max (real_max
))
1898 set_value_range (vr_p
, VR_RANGE
, real_min
,
1899 real_max
, vr_p
->equiv
);
1901 /* Case 2, VR_ANTI_RANGE completely disjoint from
1903 else if (compare_values (anti_min
, real_max
) == 1
1904 || compare_values (anti_max
, real_min
) == -1)
1906 set_value_range (vr_p
, VR_RANGE
, real_min
,
1907 real_max
, vr_p
->equiv
);
1909 /* Case 3a, the anti-range extends into the low
1910 part of the real range. Thus creating a new
1911 low for the real range. */
1912 else if (((cmp
= compare_values (anti_max
, real_min
)) == 1
1914 && compare_values (anti_max
, real_max
) == -1)
1916 gcc_assert (!is_positive_overflow_infinity (anti_max
));
1917 if (needs_overflow_infinity (TREE_TYPE (anti_max
))
1918 && vrp_val_is_max (anti_max
))
1920 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1922 set_value_range_to_varying (vr_p
);
1925 min
= positive_overflow_infinity (TREE_TYPE (var_vr
->min
));
1927 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1929 if (TYPE_PRECISION (TREE_TYPE (var_vr
->min
)) == 1
1930 && !TYPE_UNSIGNED (TREE_TYPE (var_vr
->min
)))
1931 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1933 build_int_cst (TREE_TYPE (var_vr
->min
),
1936 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1938 build_int_cst (TREE_TYPE (var_vr
->min
),
1942 min
= fold_build_pointer_plus_hwi (anti_max
, 1);
1944 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1946 /* Case 3b, the anti-range extends into the high
1947 part of the real range. Thus creating a new
1948 higher for the real range. */
1949 else if (compare_values (anti_min
, real_min
) == 1
1950 && ((cmp
= compare_values (anti_min
, real_max
)) == -1
1953 gcc_assert (!is_negative_overflow_infinity (anti_min
));
1954 if (needs_overflow_infinity (TREE_TYPE (anti_min
))
1955 && vrp_val_is_min (anti_min
))
1957 if (!supports_overflow_infinity (TREE_TYPE (var_vr
->min
)))
1959 set_value_range_to_varying (vr_p
);
1962 max
= negative_overflow_infinity (TREE_TYPE (var_vr
->min
));
1964 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr
->min
)))
1966 if (TYPE_PRECISION (TREE_TYPE (var_vr
->min
)) == 1
1967 && !TYPE_UNSIGNED (TREE_TYPE (var_vr
->min
)))
1968 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1970 build_int_cst (TREE_TYPE (var_vr
->min
),
1973 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1975 build_int_cst (TREE_TYPE (var_vr
->min
),
1979 max
= fold_build_pointer_plus_hwi (anti_min
, -1);
1981 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1988 /* Extract range information from SSA name VAR and store it in VR. If
1989 VAR has an interesting range, use it. Otherwise, create the
1990 range [VAR, VAR] and return it. This is useful in situations where
1991 we may have conditionals testing values of VARYING names. For
1998 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
2002 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
2004 value_range_t
*var_vr
= get_value_range (var
);
2006 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
2007 copy_value_range (vr
, var_vr
);
2009 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
2011 add_equivalence (&vr
->equiv
, var
);
2015 /* Wrapper around int_const_binop. If the operation overflows and we
2016 are not using wrapping arithmetic, then adjust the result to be
2017 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
2018 NULL_TREE if we need to use an overflow infinity representation but
2019 the type does not support it. */
2022 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
2026 res
= int_const_binop (code
, val1
, val2
);
2028 /* If we are using unsigned arithmetic, operate symbolically
2029 on -INF and +INF as int_const_binop only handles signed overflow. */
2030 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
2032 int checkz
= compare_values (res
, val1
);
2033 bool overflow
= false;
2035 /* Ensure that res = val1 [+*] val2 >= val1
2036 or that res = val1 - val2 <= val1. */
2037 if ((code
== PLUS_EXPR
2038 && !(checkz
== 1 || checkz
== 0))
2039 || (code
== MINUS_EXPR
2040 && !(checkz
== 0 || checkz
== -1)))
2044 /* Checking for multiplication overflow is done by dividing the
2045 output of the multiplication by the first input of the
2046 multiplication. If the result of that division operation is
2047 not equal to the second input of the multiplication, then the
2048 multiplication overflowed. */
2049 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
2051 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
2054 int check
= compare_values (tmp
, val2
);
2062 res
= copy_node (res
);
2063 TREE_OVERFLOW (res
) = 1;
2067 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
2068 /* If the singed operation wraps then int_const_binop has done
2069 everything we want. */
2071 else if ((TREE_OVERFLOW (res
)
2072 && !TREE_OVERFLOW (val1
)
2073 && !TREE_OVERFLOW (val2
))
2074 || is_overflow_infinity (val1
)
2075 || is_overflow_infinity (val2
))
2077 /* If the operation overflowed but neither VAL1 nor VAL2 are
2078 overflown, return -INF or +INF depending on the operation
2079 and the combination of signs of the operands. */
2080 int sgn1
= tree_int_cst_sgn (val1
);
2081 int sgn2
= tree_int_cst_sgn (val2
);
2083 if (needs_overflow_infinity (TREE_TYPE (res
))
2084 && !supports_overflow_infinity (TREE_TYPE (res
)))
2087 /* We have to punt on adding infinities of different signs,
2088 since we can't tell what the sign of the result should be.
2089 Likewise for subtracting infinities of the same sign. */
2090 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
2091 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
2092 && is_overflow_infinity (val1
)
2093 && is_overflow_infinity (val2
))
2096 /* Don't try to handle division or shifting of infinities. */
2097 if ((code
== TRUNC_DIV_EXPR
2098 || code
== FLOOR_DIV_EXPR
2099 || code
== CEIL_DIV_EXPR
2100 || code
== EXACT_DIV_EXPR
2101 || code
== ROUND_DIV_EXPR
2102 || code
== RSHIFT_EXPR
)
2103 && (is_overflow_infinity (val1
)
2104 || is_overflow_infinity (val2
)))
2107 /* Notice that we only need to handle the restricted set of
2108 operations handled by extract_range_from_binary_expr.
2109 Among them, only multiplication, addition and subtraction
2110 can yield overflow without overflown operands because we
2111 are working with integral types only... except in the
2112 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2113 for division too. */
2115 /* For multiplication, the sign of the overflow is given
2116 by the comparison of the signs of the operands. */
2117 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2118 /* For addition, the operands must be of the same sign
2119 to yield an overflow. Its sign is therefore that
2120 of one of the operands, for example the first. For
2121 infinite operands X + -INF is negative, not positive. */
2122 || (code
== PLUS_EXPR
2124 ? !is_negative_overflow_infinity (val2
)
2125 : is_positive_overflow_infinity (val2
)))
2126 /* For subtraction, non-infinite operands must be of
2127 different signs to yield an overflow. Its sign is
2128 therefore that of the first operand or the opposite of
2129 that of the second operand. A first operand of 0 counts
2130 as positive here, for the corner case 0 - (-INF), which
2131 overflows, but must yield +INF. For infinite operands 0
2132 - INF is negative, not positive. */
2133 || (code
== MINUS_EXPR
2135 ? !is_positive_overflow_infinity (val2
)
2136 : is_negative_overflow_infinity (val2
)))
2137 /* We only get in here with positive shift count, so the
2138 overflow direction is the same as the sign of val1.
2139 Actually rshift does not overflow at all, but we only
2140 handle the case of shifting overflowed -INF and +INF. */
2141 || (code
== RSHIFT_EXPR
2143 /* For division, the only case is -INF / -1 = +INF. */
2144 || code
== TRUNC_DIV_EXPR
2145 || code
== FLOOR_DIV_EXPR
2146 || code
== CEIL_DIV_EXPR
2147 || code
== EXACT_DIV_EXPR
2148 || code
== ROUND_DIV_EXPR
)
2149 return (needs_overflow_infinity (TREE_TYPE (res
))
2150 ? positive_overflow_infinity (TREE_TYPE (res
))
2151 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2153 return (needs_overflow_infinity (TREE_TYPE (res
))
2154 ? negative_overflow_infinity (TREE_TYPE (res
))
2155 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2162 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2163 bitmask if some bit is unset, it means for all numbers in the range
2164 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2165 bitmask if some bit is set, it means for all numbers in the range
2166 the bit is 1, otherwise it might be 0 or 1. */
2169 zero_nonzero_bits_from_vr (value_range_t
*vr
,
2170 double_int
*may_be_nonzero
,
2171 double_int
*must_be_nonzero
)
2173 *may_be_nonzero
= double_int_minus_one
;
2174 *must_be_nonzero
= double_int_zero
;
2175 if (!range_int_cst_p (vr
))
2178 if (range_int_cst_singleton_p (vr
))
2180 *may_be_nonzero
= tree_to_double_int (vr
->min
);
2181 *must_be_nonzero
= *may_be_nonzero
;
2183 else if (tree_int_cst_sgn (vr
->min
) >= 0
2184 || tree_int_cst_sgn (vr
->max
) < 0)
2186 double_int dmin
= tree_to_double_int (vr
->min
);
2187 double_int dmax
= tree_to_double_int (vr
->max
);
2188 double_int xor_mask
= double_int_xor (dmin
, dmax
);
2189 *may_be_nonzero
= double_int_ior (dmin
, dmax
);
2190 *must_be_nonzero
= double_int_and (dmin
, dmax
);
2191 if (xor_mask
.high
!= 0)
2193 unsigned HOST_WIDE_INT mask
2194 = ((unsigned HOST_WIDE_INT
) 1
2195 << floor_log2 (xor_mask
.high
)) - 1;
2196 may_be_nonzero
->low
= ALL_ONES
;
2197 may_be_nonzero
->high
|= mask
;
2198 must_be_nonzero
->low
= 0;
2199 must_be_nonzero
->high
&= ~mask
;
2201 else if (xor_mask
.low
!= 0)
2203 unsigned HOST_WIDE_INT mask
2204 = ((unsigned HOST_WIDE_INT
) 1
2205 << floor_log2 (xor_mask
.low
)) - 1;
2206 may_be_nonzero
->low
|= mask
;
2207 must_be_nonzero
->low
&= ~mask
;
2214 /* Helper to extract a value-range *VR for a multiplicative operation
2218 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2219 enum tree_code code
,
2220 value_range_t
*vr0
, value_range_t
*vr1
)
2222 enum value_range_type type
;
2229 /* Multiplications, divisions and shifts are a bit tricky to handle,
2230 depending on the mix of signs we have in the two ranges, we
2231 need to operate on different values to get the minimum and
2232 maximum values for the new range. One approach is to figure
2233 out all the variations of range combinations and do the
2236 However, this involves several calls to compare_values and it
2237 is pretty convoluted. It's simpler to do the 4 operations
2238 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2239 MAX1) and then figure the smallest and largest values to form
2241 gcc_assert (code
== MULT_EXPR
2242 || code
== TRUNC_DIV_EXPR
2243 || code
== FLOOR_DIV_EXPR
2244 || code
== CEIL_DIV_EXPR
2245 || code
== EXACT_DIV_EXPR
2246 || code
== ROUND_DIV_EXPR
2247 || code
== RSHIFT_EXPR
);
2248 gcc_assert ((vr0
->type
== VR_RANGE
2249 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2250 && vr0
->type
== vr1
->type
);
2254 /* Compute the 4 cross operations. */
2256 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2257 if (val
[0] == NULL_TREE
)
2260 if (vr1
->max
== vr1
->min
)
2264 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2265 if (val
[1] == NULL_TREE
)
2269 if (vr0
->max
== vr0
->min
)
2273 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2274 if (val
[2] == NULL_TREE
)
2278 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2282 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2283 if (val
[3] == NULL_TREE
)
2289 set_value_range_to_varying (vr
);
2293 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2297 for (i
= 1; i
< 4; i
++)
2299 if (!is_gimple_min_invariant (min
)
2300 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2301 || !is_gimple_min_invariant (max
)
2302 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2307 if (!is_gimple_min_invariant (val
[i
])
2308 || (TREE_OVERFLOW (val
[i
])
2309 && !is_overflow_infinity (val
[i
])))
2311 /* If we found an overflowed value, set MIN and MAX
2312 to it so that we set the resulting range to
2318 if (compare_values (val
[i
], min
) == -1)
2321 if (compare_values (val
[i
], max
) == 1)
2326 /* If either MIN or MAX overflowed, then set the resulting range to
2327 VARYING. But we do accept an overflow infinity
2329 if (min
== NULL_TREE
2330 || !is_gimple_min_invariant (min
)
2331 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2333 || !is_gimple_min_invariant (max
)
2334 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2336 set_value_range_to_varying (vr
);
2342 2) [-INF, +-INF(OVF)]
2343 3) [+-INF(OVF), +INF]
2344 4) [+-INF(OVF), +-INF(OVF)]
2345 We learn nothing when we have INF and INF(OVF) on both sides.
2346 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2348 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2349 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2351 set_value_range_to_varying (vr
);
2355 cmp
= compare_values (min
, max
);
2356 if (cmp
== -2 || cmp
== 1)
2358 /* If the new range has its limits swapped around (MIN > MAX),
2359 then the operation caused one of them to wrap around, mark
2360 the new range VARYING. */
2361 set_value_range_to_varying (vr
);
2364 set_value_range (vr
, type
, min
, max
, NULL
);
2367 /* Extract range information from a binary operation CODE based on
2368 the ranges of each of its operands, *VR0 and *VR1 with resulting
2369 type EXPR_TYPE. The resulting range is stored in *VR. */
2372 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2373 enum tree_code code
, tree expr_type
,
2374 value_range_t
*vr0_
, value_range_t
*vr1_
)
2376 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2377 enum value_range_type type
;
2378 tree min
= NULL_TREE
, max
= NULL_TREE
;
2381 if (!INTEGRAL_TYPE_P (expr_type
)
2382 && !POINTER_TYPE_P (expr_type
))
2384 set_value_range_to_varying (vr
);
2388 /* Not all binary expressions can be applied to ranges in a
2389 meaningful way. Handle only arithmetic operations. */
2390 if (code
!= PLUS_EXPR
2391 && code
!= MINUS_EXPR
2392 && code
!= POINTER_PLUS_EXPR
2393 && code
!= MULT_EXPR
2394 && code
!= TRUNC_DIV_EXPR
2395 && code
!= FLOOR_DIV_EXPR
2396 && code
!= CEIL_DIV_EXPR
2397 && code
!= EXACT_DIV_EXPR
2398 && code
!= ROUND_DIV_EXPR
2399 && code
!= TRUNC_MOD_EXPR
2400 && code
!= RSHIFT_EXPR
2403 && code
!= BIT_AND_EXPR
2404 && code
!= BIT_IOR_EXPR
2405 && code
!= BIT_XOR_EXPR
)
2407 set_value_range_to_varying (vr
);
2411 /* If both ranges are UNDEFINED, so is the result. */
2412 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2414 set_value_range_to_undefined (vr
);
2417 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2418 code. At some point we may want to special-case operations that
2419 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2421 else if (vr0
.type
== VR_UNDEFINED
)
2422 set_value_range_to_varying (&vr0
);
2423 else if (vr1
.type
== VR_UNDEFINED
)
2424 set_value_range_to_varying (&vr1
);
2426 /* The type of the resulting value range defaults to VR0.TYPE. */
2429 /* Refuse to operate on VARYING ranges, ranges of different kinds
2430 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2431 because we may be able to derive a useful range even if one of
2432 the operands is VR_VARYING or symbolic range. Similarly for
2433 divisions. TODO, we may be able to derive anti-ranges in
2435 if (code
!= BIT_AND_EXPR
2436 && code
!= BIT_IOR_EXPR
2437 && code
!= TRUNC_DIV_EXPR
2438 && code
!= FLOOR_DIV_EXPR
2439 && code
!= CEIL_DIV_EXPR
2440 && code
!= EXACT_DIV_EXPR
2441 && code
!= ROUND_DIV_EXPR
2442 && code
!= TRUNC_MOD_EXPR
2443 && (vr0
.type
== VR_VARYING
2444 || vr1
.type
== VR_VARYING
2445 || vr0
.type
!= vr1
.type
2446 || symbolic_range_p (&vr0
)
2447 || symbolic_range_p (&vr1
)))
2449 set_value_range_to_varying (vr
);
2453 /* Now evaluate the expression to determine the new range. */
2454 if (POINTER_TYPE_P (expr_type
))
2456 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2458 /* For MIN/MAX expressions with pointers, we only care about
2459 nullness, if both are non null, then the result is nonnull.
2460 If both are null, then the result is null. Otherwise they
2462 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2463 set_value_range_to_nonnull (vr
, expr_type
);
2464 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2465 set_value_range_to_null (vr
, expr_type
);
2467 set_value_range_to_varying (vr
);
2469 else if (code
== POINTER_PLUS_EXPR
)
2471 /* For pointer types, we are really only interested in asserting
2472 whether the expression evaluates to non-NULL. */
2473 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2474 set_value_range_to_nonnull (vr
, expr_type
);
2475 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2476 set_value_range_to_null (vr
, expr_type
);
2478 set_value_range_to_varying (vr
);
2480 else if (code
== BIT_AND_EXPR
)
2482 /* For pointer types, we are really only interested in asserting
2483 whether the expression evaluates to non-NULL. */
2484 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2485 set_value_range_to_nonnull (vr
, expr_type
);
2486 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2487 set_value_range_to_null (vr
, expr_type
);
2489 set_value_range_to_varying (vr
);
2492 set_value_range_to_varying (vr
);
2497 /* For integer ranges, apply the operation to each end of the
2498 range and see what we end up with. */
2499 if (code
== PLUS_EXPR
)
2501 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2502 VR_VARYING. It would take more effort to compute a precise
2503 range for such a case. For example, if we have op0 == 1 and
2504 op1 == -1 with their ranges both being ~[0,0], we would have
2505 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2506 Note that we are guaranteed to have vr0.type == vr1.type at
2508 if (vr0
.type
== VR_ANTI_RANGE
)
2510 set_value_range_to_varying (vr
);
2514 /* For operations that make the resulting range directly
2515 proportional to the original ranges, apply the operation to
2516 the same end of each range. */
2517 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2518 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2520 /* If both additions overflowed the range kind is still correct.
2521 This happens regularly with subtracting something in unsigned
2523 ??? See PR30318 for all the cases we do not handle. */
2524 if ((TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2525 && (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2527 min
= build_int_cst_wide (TREE_TYPE (min
),
2528 TREE_INT_CST_LOW (min
),
2529 TREE_INT_CST_HIGH (min
));
2530 max
= build_int_cst_wide (TREE_TYPE (max
),
2531 TREE_INT_CST_LOW (max
),
2532 TREE_INT_CST_HIGH (max
));
2535 else if (code
== MIN_EXPR
2536 || code
== MAX_EXPR
)
2538 if (vr0
.type
== VR_ANTI_RANGE
)
2540 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2541 the resulting VR_ANTI_RANGE is the same - intersection
2542 of the two ranges. */
2543 min
= vrp_int_const_binop (MAX_EXPR
, vr0
.min
, vr1
.min
);
2544 max
= vrp_int_const_binop (MIN_EXPR
, vr0
.max
, vr1
.max
);
2548 /* For operations that make the resulting range directly
2549 proportional to the original ranges, apply the operation to
2550 the same end of each range. */
2551 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2552 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2555 else if (code
== MULT_EXPR
)
2557 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2558 drop to VR_VARYING. It would take more effort to compute a
2559 precise range for such a case. For example, if we have
2560 op0 == 65536 and op1 == 65536 with their ranges both being
2561 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2562 we cannot claim that the product is in ~[0,0]. Note that we
2563 are guaranteed to have vr0.type == vr1.type at this
2565 if (vr0
.type
== VR_ANTI_RANGE
2566 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2568 set_value_range_to_varying (vr
);
2572 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2575 else if (code
== RSHIFT_EXPR
)
2577 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2578 then drop to VR_VARYING. Outside of this range we get undefined
2579 behavior from the shift operation. We cannot even trust
2580 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2581 shifts, and the operation at the tree level may be widened. */
2582 if (vr1
.type
!= VR_RANGE
2583 || !value_range_nonnegative_p (&vr1
)
2584 || TREE_CODE (vr1
.max
) != INTEGER_CST
2585 || compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
) - 1) == 1)
2587 set_value_range_to_varying (vr
);
2591 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2594 else if (code
== TRUNC_DIV_EXPR
2595 || code
== FLOOR_DIV_EXPR
2596 || code
== CEIL_DIV_EXPR
2597 || code
== EXACT_DIV_EXPR
2598 || code
== ROUND_DIV_EXPR
)
2600 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2602 /* For division, if op1 has VR_RANGE but op0 does not, something
2603 can be deduced just from that range. Say [min, max] / [4, max]
2604 gives [min / 4, max / 4] range. */
2605 if (vr1
.type
== VR_RANGE
2606 && !symbolic_range_p (&vr1
)
2607 && !range_includes_zero_p (&vr1
))
2609 vr0
.type
= type
= VR_RANGE
;
2610 vr0
.min
= vrp_val_min (expr_type
);
2611 vr0
.max
= vrp_val_max (expr_type
);
2615 set_value_range_to_varying (vr
);
2620 /* For divisions, if flag_non_call_exceptions is true, we must
2621 not eliminate a division by zero. */
2622 if (cfun
->can_throw_non_call_exceptions
2623 && (vr1
.type
!= VR_RANGE
2624 || symbolic_range_p (&vr1
)
2625 || range_includes_zero_p (&vr1
)))
2627 set_value_range_to_varying (vr
);
2631 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2632 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2634 if (vr0
.type
== VR_RANGE
2635 && (vr1
.type
!= VR_RANGE
2636 || symbolic_range_p (&vr1
)
2637 || range_includes_zero_p (&vr1
)))
2639 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2644 if (TYPE_UNSIGNED (expr_type
)
2645 || value_range_nonnegative_p (&vr1
))
2647 /* For unsigned division or when divisor is known
2648 to be non-negative, the range has to cover
2649 all numbers from 0 to max for positive max
2650 and all numbers from min to 0 for negative min. */
2651 cmp
= compare_values (vr0
.max
, zero
);
2654 else if (cmp
== 0 || cmp
== 1)
2658 cmp
= compare_values (vr0
.min
, zero
);
2661 else if (cmp
== 0 || cmp
== -1)
2668 /* Otherwise the range is -max .. max or min .. -min
2669 depending on which bound is bigger in absolute value,
2670 as the division can change the sign. */
2671 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2674 if (type
== VR_VARYING
)
2676 set_value_range_to_varying (vr
);
2682 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2686 else if (code
== TRUNC_MOD_EXPR
)
2688 if (vr1
.type
!= VR_RANGE
2689 || symbolic_range_p (&vr1
)
2690 || range_includes_zero_p (&vr1
)
2691 || vrp_val_is_min (vr1
.min
))
2693 set_value_range_to_varying (vr
);
2697 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2698 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
2699 if (tree_int_cst_lt (max
, vr1
.max
))
2701 max
= int_const_binop (MINUS_EXPR
, max
, integer_one_node
);
2702 /* If the dividend is non-negative the modulus will be
2703 non-negative as well. */
2704 if (TYPE_UNSIGNED (expr_type
)
2705 || value_range_nonnegative_p (&vr0
))
2706 min
= build_int_cst (TREE_TYPE (max
), 0);
2708 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
2710 else if (code
== MINUS_EXPR
)
2712 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2713 VR_VARYING. It would take more effort to compute a precise
2714 range for such a case. For example, if we have op0 == 1 and
2715 op1 == 1 with their ranges both being ~[0,0], we would have
2716 op0 - op1 == 0, so we cannot claim that the difference is in
2717 ~[0,0]. Note that we are guaranteed to have
2718 vr0.type == vr1.type at this point. */
2719 if (vr0
.type
== VR_ANTI_RANGE
)
2721 set_value_range_to_varying (vr
);
2725 /* For MINUS_EXPR, apply the operation to the opposite ends of
2727 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
2728 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
2730 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
2732 bool int_cst_range0
, int_cst_range1
;
2733 double_int may_be_nonzero0
, may_be_nonzero1
;
2734 double_int must_be_nonzero0
, must_be_nonzero1
;
2736 int_cst_range0
= zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
,
2738 int_cst_range1
= zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
,
2742 if (code
== BIT_AND_EXPR
)
2745 min
= double_int_to_tree (expr_type
,
2746 double_int_and (must_be_nonzero0
,
2748 dmax
= double_int_and (may_be_nonzero0
, may_be_nonzero1
);
2749 /* If both input ranges contain only negative values we can
2750 truncate the result range maximum to the minimum of the
2751 input range maxima. */
2752 if (int_cst_range0
&& int_cst_range1
2753 && tree_int_cst_sgn (vr0
.max
) < 0
2754 && tree_int_cst_sgn (vr1
.max
) < 0)
2756 dmax
= double_int_min (dmax
, tree_to_double_int (vr0
.max
),
2757 TYPE_UNSIGNED (expr_type
));
2758 dmax
= double_int_min (dmax
, tree_to_double_int (vr1
.max
),
2759 TYPE_UNSIGNED (expr_type
));
2761 /* If either input range contains only non-negative values
2762 we can truncate the result range maximum to the respective
2763 maximum of the input range. */
2764 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
2765 dmax
= double_int_min (dmax
, tree_to_double_int (vr0
.max
),
2766 TYPE_UNSIGNED (expr_type
));
2767 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
2768 dmax
= double_int_min (dmax
, tree_to_double_int (vr1
.max
),
2769 TYPE_UNSIGNED (expr_type
));
2770 max
= double_int_to_tree (expr_type
, dmax
);
2772 else if (code
== BIT_IOR_EXPR
)
2775 max
= double_int_to_tree (expr_type
,
2776 double_int_ior (may_be_nonzero0
,
2778 dmin
= double_int_ior (must_be_nonzero0
, must_be_nonzero1
);
2779 /* If the input ranges contain only positive values we can
2780 truncate the minimum of the result range to the maximum
2781 of the input range minima. */
2782 if (int_cst_range0
&& int_cst_range1
2783 && tree_int_cst_sgn (vr0
.min
) >= 0
2784 && tree_int_cst_sgn (vr1
.min
) >= 0)
2786 dmin
= double_int_max (dmin
, tree_to_double_int (vr0
.min
),
2787 TYPE_UNSIGNED (expr_type
));
2788 dmin
= double_int_max (dmin
, tree_to_double_int (vr1
.min
),
2789 TYPE_UNSIGNED (expr_type
));
2791 /* If either input range contains only negative values
2792 we can truncate the minimum of the result range to the
2793 respective minimum range. */
2794 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
2795 dmin
= double_int_max (dmin
, tree_to_double_int (vr0
.min
),
2796 TYPE_UNSIGNED (expr_type
));
2797 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
2798 dmin
= double_int_max (dmin
, tree_to_double_int (vr1
.min
),
2799 TYPE_UNSIGNED (expr_type
));
2800 min
= double_int_to_tree (expr_type
, dmin
);
2802 else if (code
== BIT_XOR_EXPR
)
2804 double_int result_zero_bits
, result_one_bits
;
2806 = double_int_ior (double_int_and (must_be_nonzero0
,
2809 (double_int_ior (may_be_nonzero0
,
2812 = double_int_ior (double_int_and
2814 double_int_not (may_be_nonzero1
)),
2817 double_int_not (may_be_nonzero0
)));
2818 max
= double_int_to_tree (expr_type
,
2819 double_int_not (result_zero_bits
));
2820 min
= double_int_to_tree (expr_type
, result_one_bits
);
2821 /* If the range has all positive or all negative values the
2822 result is better than VARYING. */
2823 if (tree_int_cst_sgn (min
) < 0
2824 || tree_int_cst_sgn (max
) >= 0)
2827 max
= min
= NULL_TREE
;
2833 /* If either MIN or MAX overflowed, then set the resulting range to
2834 VARYING. But we do accept an overflow infinity
2836 if (min
== NULL_TREE
2837 || !is_gimple_min_invariant (min
)
2838 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2840 || !is_gimple_min_invariant (max
)
2841 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2843 set_value_range_to_varying (vr
);
2849 2) [-INF, +-INF(OVF)]
2850 3) [+-INF(OVF), +INF]
2851 4) [+-INF(OVF), +-INF(OVF)]
2852 We learn nothing when we have INF and INF(OVF) on both sides.
2853 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2855 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2856 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2858 set_value_range_to_varying (vr
);
2862 cmp
= compare_values (min
, max
);
2863 if (cmp
== -2 || cmp
== 1)
2865 /* If the new range has its limits swapped around (MIN > MAX),
2866 then the operation caused one of them to wrap around, mark
2867 the new range VARYING. */
2868 set_value_range_to_varying (vr
);
2871 set_value_range (vr
, type
, min
, max
, NULL
);
2874 /* Extract range information from a binary expression OP0 CODE OP1 based on
2875 the ranges of each of its operands with resulting type EXPR_TYPE.
2876 The resulting range is stored in *VR. */
2879 extract_range_from_binary_expr (value_range_t
*vr
,
2880 enum tree_code code
,
2881 tree expr_type
, tree op0
, tree op1
)
2883 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2884 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
2886 /* Get value ranges for each operand. For constant operands, create
2887 a new value range with the operand to simplify processing. */
2888 if (TREE_CODE (op0
) == SSA_NAME
)
2889 vr0
= *(get_value_range (op0
));
2890 else if (is_gimple_min_invariant (op0
))
2891 set_value_range_to_value (&vr0
, op0
, NULL
);
2893 set_value_range_to_varying (&vr0
);
2895 if (TREE_CODE (op1
) == SSA_NAME
)
2896 vr1
= *(get_value_range (op1
));
2897 else if (is_gimple_min_invariant (op1
))
2898 set_value_range_to_value (&vr1
, op1
, NULL
);
2900 set_value_range_to_varying (&vr1
);
2902 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
2905 /* Extract range information from a unary operation CODE based on
2906 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2907 The The resulting range is stored in *VR. */
2910 extract_range_from_unary_expr_1 (value_range_t
*vr
,
2911 enum tree_code code
, tree type
,
2912 value_range_t
*vr0_
, tree op0_type
)
2914 value_range_t vr0
= *vr0_
;
2916 /* VRP only operates on integral and pointer types. */
2917 if (!(INTEGRAL_TYPE_P (op0_type
)
2918 || POINTER_TYPE_P (op0_type
))
2919 || !(INTEGRAL_TYPE_P (type
)
2920 || POINTER_TYPE_P (type
)))
2922 set_value_range_to_varying (vr
);
2926 /* If VR0 is UNDEFINED, so is the result. */
2927 if (vr0
.type
== VR_UNDEFINED
)
2929 set_value_range_to_undefined (vr
);
2933 if (CONVERT_EXPR_CODE_P (code
))
2935 tree inner_type
= op0_type
;
2936 tree outer_type
= type
;
2938 /* If the expression evaluates to a pointer, we are only interested in
2939 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2940 if (POINTER_TYPE_P (type
))
2942 if (range_is_nonnull (&vr0
))
2943 set_value_range_to_nonnull (vr
, type
);
2944 else if (range_is_null (&vr0
))
2945 set_value_range_to_null (vr
, type
);
2947 set_value_range_to_varying (vr
);
2951 /* If VR0 is varying and we increase the type precision, assume
2952 a full range for the following transformation. */
2953 if (vr0
.type
== VR_VARYING
2954 && INTEGRAL_TYPE_P (inner_type
)
2955 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
2957 vr0
.type
= VR_RANGE
;
2958 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
2959 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
2962 /* If VR0 is a constant range or anti-range and the conversion is
2963 not truncating we can convert the min and max values and
2964 canonicalize the resulting range. Otherwise we can do the
2965 conversion if the size of the range is less than what the
2966 precision of the target type can represent and the range is
2967 not an anti-range. */
2968 if ((vr0
.type
== VR_RANGE
2969 || vr0
.type
== VR_ANTI_RANGE
)
2970 && TREE_CODE (vr0
.min
) == INTEGER_CST
2971 && TREE_CODE (vr0
.max
) == INTEGER_CST
2972 && (!is_overflow_infinity (vr0
.min
)
2973 || (vr0
.type
== VR_RANGE
2974 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2975 && needs_overflow_infinity (outer_type
)
2976 && supports_overflow_infinity (outer_type
)))
2977 && (!is_overflow_infinity (vr0
.max
)
2978 || (vr0
.type
== VR_RANGE
2979 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
2980 && needs_overflow_infinity (outer_type
)
2981 && supports_overflow_infinity (outer_type
)))
2982 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
2983 || (vr0
.type
== VR_RANGE
2984 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
2985 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
2986 size_int (TYPE_PRECISION (outer_type
)))))))
2988 tree new_min
, new_max
;
2989 if (is_overflow_infinity (vr0
.min
))
2990 new_min
= negative_overflow_infinity (outer_type
);
2992 new_min
= force_fit_type_double (outer_type
,
2993 tree_to_double_int (vr0
.min
),
2995 if (is_overflow_infinity (vr0
.max
))
2996 new_max
= positive_overflow_infinity (outer_type
);
2998 new_max
= force_fit_type_double (outer_type
,
2999 tree_to_double_int (vr0
.max
),
3001 set_and_canonicalize_value_range (vr
, vr0
.type
,
3002 new_min
, new_max
, NULL
);
3006 set_value_range_to_varying (vr
);
3009 else if (code
== NEGATE_EXPR
)
3011 /* -X is simply 0 - X, so re-use existing code that also handles
3012 anti-ranges fine. */
3013 value_range_t zero
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3014 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3015 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3018 else if (code
== ABS_EXPR
)
3023 /* Pass through vr0 in the easy cases. */
3024 if (TYPE_UNSIGNED (type
)
3025 || value_range_nonnegative_p (&vr0
))
3027 copy_value_range (vr
, &vr0
);
3031 /* For the remaining varying or symbolic ranges we can't do anything
3033 if (vr0
.type
== VR_VARYING
3034 || symbolic_range_p (&vr0
))
3036 set_value_range_to_varying (vr
);
3040 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3042 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3043 && ((vr0
.type
== VR_RANGE
3044 && vrp_val_is_min (vr0
.min
))
3045 || (vr0
.type
== VR_ANTI_RANGE
3046 && !vrp_val_is_min (vr0
.min
))))
3048 set_value_range_to_varying (vr
);
3052 /* ABS_EXPR may flip the range around, if the original range
3053 included negative values. */
3054 if (is_overflow_infinity (vr0
.min
))
3055 min
= positive_overflow_infinity (type
);
3056 else if (!vrp_val_is_min (vr0
.min
))
3057 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3058 else if (!needs_overflow_infinity (type
))
3059 min
= TYPE_MAX_VALUE (type
);
3060 else if (supports_overflow_infinity (type
))
3061 min
= positive_overflow_infinity (type
);
3064 set_value_range_to_varying (vr
);
3068 if (is_overflow_infinity (vr0
.max
))
3069 max
= positive_overflow_infinity (type
);
3070 else if (!vrp_val_is_min (vr0
.max
))
3071 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3072 else if (!needs_overflow_infinity (type
))
3073 max
= TYPE_MAX_VALUE (type
);
3074 else if (supports_overflow_infinity (type
)
3075 /* We shouldn't generate [+INF, +INF] as set_value_range
3076 doesn't like this and ICEs. */
3077 && !is_positive_overflow_infinity (min
))
3078 max
= positive_overflow_infinity (type
);
3081 set_value_range_to_varying (vr
);
3085 cmp
= compare_values (min
, max
);
3087 /* If a VR_ANTI_RANGEs contains zero, then we have
3088 ~[-INF, min(MIN, MAX)]. */
3089 if (vr0
.type
== VR_ANTI_RANGE
)
3091 if (range_includes_zero_p (&vr0
))
3093 /* Take the lower of the two values. */
3097 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3098 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3099 flag_wrapv is set and the original anti-range doesn't include
3100 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3101 if (TYPE_OVERFLOW_WRAPS (type
))
3103 tree type_min_value
= TYPE_MIN_VALUE (type
);
3105 min
= (vr0
.min
!= type_min_value
3106 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3112 if (overflow_infinity_range_p (&vr0
))
3113 min
= negative_overflow_infinity (type
);
3115 min
= TYPE_MIN_VALUE (type
);
3120 /* All else has failed, so create the range [0, INF], even for
3121 flag_wrapv since TYPE_MIN_VALUE is in the original
3123 vr0
.type
= VR_RANGE
;
3124 min
= build_int_cst (type
, 0);
3125 if (needs_overflow_infinity (type
))
3127 if (supports_overflow_infinity (type
))
3128 max
= positive_overflow_infinity (type
);
3131 set_value_range_to_varying (vr
);
3136 max
= TYPE_MAX_VALUE (type
);
3140 /* If the range contains zero then we know that the minimum value in the
3141 range will be zero. */
3142 else if (range_includes_zero_p (&vr0
))
3146 min
= build_int_cst (type
, 0);
3150 /* If the range was reversed, swap MIN and MAX. */
3159 cmp
= compare_values (min
, max
);
3160 if (cmp
== -2 || cmp
== 1)
3162 /* If the new range has its limits swapped around (MIN > MAX),
3163 then the operation caused one of them to wrap around, mark
3164 the new range VARYING. */
3165 set_value_range_to_varying (vr
);
3168 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3171 else if (code
== BIT_NOT_EXPR
)
3173 /* ~X is simply -1 - X, so re-use existing code that also handles
3174 anti-ranges fine. */
3175 value_range_t minusone
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3176 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3177 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3178 type
, &minusone
, &vr0
);
3181 else if (code
== PAREN_EXPR
)
3183 copy_value_range (vr
, &vr0
);
3187 /* For unhandled operations fall back to varying. */
3188 set_value_range_to_varying (vr
);
3193 /* Extract range information from a unary expression CODE OP0 based on
3194 the range of its operand with resulting type TYPE.
3195 The resulting range is stored in *VR. */
3198 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3199 tree type
, tree op0
)
3201 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3203 /* Get value ranges for the operand. For constant operands, create
3204 a new value range with the operand to simplify processing. */
3205 if (TREE_CODE (op0
) == SSA_NAME
)
3206 vr0
= *(get_value_range (op0
));
3207 else if (is_gimple_min_invariant (op0
))
3208 set_value_range_to_value (&vr0
, op0
, NULL
);
3210 set_value_range_to_varying (&vr0
);
3212 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3216 /* Extract range information from a conditional expression STMT based on
3217 the ranges of each of its operands and the expression code. */
3220 extract_range_from_cond_expr (value_range_t
*vr
, gimple stmt
)
3223 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3224 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3226 /* Get value ranges for each operand. For constant operands, create
3227 a new value range with the operand to simplify processing. */
3228 op0
= gimple_assign_rhs2 (stmt
);
3229 if (TREE_CODE (op0
) == SSA_NAME
)
3230 vr0
= *(get_value_range (op0
));
3231 else if (is_gimple_min_invariant (op0
))
3232 set_value_range_to_value (&vr0
, op0
, NULL
);
3234 set_value_range_to_varying (&vr0
);
3236 op1
= gimple_assign_rhs3 (stmt
);
3237 if (TREE_CODE (op1
) == SSA_NAME
)
3238 vr1
= *(get_value_range (op1
));
3239 else if (is_gimple_min_invariant (op1
))
3240 set_value_range_to_value (&vr1
, op1
, NULL
);
3242 set_value_range_to_varying (&vr1
);
3244 /* The resulting value range is the union of the operand ranges */
3245 vrp_meet (&vr0
, &vr1
);
3246 copy_value_range (vr
, &vr0
);
3250 /* Extract range information from a comparison expression EXPR based
3251 on the range of its operand and the expression code. */
3254 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3255 tree type
, tree op0
, tree op1
)
3260 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3263 /* A disadvantage of using a special infinity as an overflow
3264 representation is that we lose the ability to record overflow
3265 when we don't have an infinity. So we have to ignore a result
3266 which relies on overflow. */
3268 if (val
&& !is_overflow_infinity (val
) && !sop
)
3270 /* Since this expression was found on the RHS of an assignment,
3271 its type may be different from _Bool. Convert VAL to EXPR's
3273 val
= fold_convert (type
, val
);
3274 if (is_gimple_min_invariant (val
))
3275 set_value_range_to_value (vr
, val
, vr
->equiv
);
3277 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3280 /* The result of a comparison is always true or false. */
3281 set_value_range_to_truthvalue (vr
, type
);
3284 /* Try to derive a nonnegative or nonzero range out of STMT relying
3285 primarily on generic routines in fold in conjunction with range data.
3286 Store the result in *VR */
3289 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3292 tree type
= gimple_expr_type (stmt
);
3294 if (INTEGRAL_TYPE_P (type
)
3295 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3296 set_value_range_to_nonnegative (vr
, type
,
3297 sop
|| stmt_overflow_infinity (stmt
));
3298 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3300 set_value_range_to_nonnull (vr
, type
);
3302 set_value_range_to_varying (vr
);
3306 /* Try to compute a useful range out of assignment STMT and store it
3310 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3312 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3314 if (code
== ASSERT_EXPR
)
3315 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3316 else if (code
== SSA_NAME
)
3317 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3318 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
3319 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3320 gimple_expr_type (stmt
),
3321 gimple_assign_rhs1 (stmt
),
3322 gimple_assign_rhs2 (stmt
));
3323 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3324 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3325 gimple_expr_type (stmt
),
3326 gimple_assign_rhs1 (stmt
));
3327 else if (code
== COND_EXPR
)
3328 extract_range_from_cond_expr (vr
, stmt
);
3329 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3330 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3331 gimple_expr_type (stmt
),
3332 gimple_assign_rhs1 (stmt
),
3333 gimple_assign_rhs2 (stmt
));
3334 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3335 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3336 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3338 set_value_range_to_varying (vr
);
3340 if (vr
->type
== VR_VARYING
)
3341 extract_range_basic (vr
, stmt
);
3344 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3345 would be profitable to adjust VR using scalar evolution information
3346 for VAR. If so, update VR with the new limits. */
3349 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3350 gimple stmt
, tree var
)
3352 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
3353 enum ev_direction dir
;
3355 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3356 better opportunities than a regular range, but I'm not sure. */
3357 if (vr
->type
== VR_ANTI_RANGE
)
3360 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3362 /* Like in PR19590, scev can return a constant function. */
3363 if (is_gimple_min_invariant (chrec
))
3365 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3369 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3372 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3373 tem
= op_with_constant_singleton_value_range (init
);
3376 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3377 tem
= op_with_constant_singleton_value_range (step
);
3381 /* If STEP is symbolic, we can't know whether INIT will be the
3382 minimum or maximum value in the range. Also, unless INIT is
3383 a simple expression, compare_values and possibly other functions
3384 in tree-vrp won't be able to handle it. */
3385 if (step
== NULL_TREE
3386 || !is_gimple_min_invariant (step
)
3387 || !valid_value_p (init
))
3390 dir
= scev_direction (chrec
);
3391 if (/* Do not adjust ranges if we do not know whether the iv increases
3392 or decreases, ... */
3393 dir
== EV_DIR_UNKNOWN
3394 /* ... or if it may wrap. */
3395 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3399 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3400 negative_overflow_infinity and positive_overflow_infinity,
3401 because we have concluded that the loop probably does not
3404 type
= TREE_TYPE (var
);
3405 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3406 tmin
= lower_bound_in_type (type
, type
);
3408 tmin
= TYPE_MIN_VALUE (type
);
3409 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3410 tmax
= upper_bound_in_type (type
, type
);
3412 tmax
= TYPE_MAX_VALUE (type
);
3414 /* Try to use estimated number of iterations for the loop to constrain the
3415 final value in the evolution. */
3416 if (TREE_CODE (step
) == INTEGER_CST
3417 && is_gimple_val (init
)
3418 && (TREE_CODE (init
) != SSA_NAME
3419 || get_value_range (init
)->type
== VR_RANGE
))
3423 if (estimated_loop_iterations (loop
, true, &nit
))
3425 value_range_t maxvr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3427 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (step
));
3430 dtmp
= double_int_mul_with_sign (tree_to_double_int (step
), nit
,
3431 unsigned_p
, &overflow
);
3432 /* If the multiplication overflowed we can't do a meaningful
3433 adjustment. Likewise if the result doesn't fit in the type
3434 of the induction variable. For a signed type we have to
3435 check whether the result has the expected signedness which
3436 is that of the step as number of iterations is unsigned. */
3438 && double_int_fits_to_tree_p (TREE_TYPE (init
), dtmp
)
3440 || ((dtmp
.high
^ TREE_INT_CST_HIGH (step
)) >= 0)))
3442 tem
= double_int_to_tree (TREE_TYPE (init
), dtmp
);
3443 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
3444 TREE_TYPE (init
), init
, tem
);
3445 /* Likewise if the addition did. */
3446 if (maxvr
.type
== VR_RANGE
)
3455 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3460 /* For VARYING or UNDEFINED ranges, just about anything we get
3461 from scalar evolutions should be better. */
3463 if (dir
== EV_DIR_DECREASES
)
3468 /* If we would create an invalid range, then just assume we
3469 know absolutely nothing. This may be over-conservative,
3470 but it's clearly safe, and should happen only in unreachable
3471 parts of code, or for invalid programs. */
3472 if (compare_values (min
, max
) == 1)
3475 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3477 else if (vr
->type
== VR_RANGE
)
3482 if (dir
== EV_DIR_DECREASES
)
3484 /* INIT is the maximum value. If INIT is lower than VR->MAX
3485 but no smaller than VR->MIN, set VR->MAX to INIT. */
3486 if (compare_values (init
, max
) == -1)
3489 /* According to the loop information, the variable does not
3490 overflow. If we think it does, probably because of an
3491 overflow due to arithmetic on a different INF value,
3493 if (is_negative_overflow_infinity (min
)
3494 || compare_values (min
, tmin
) == -1)
3500 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3501 if (compare_values (init
, min
) == 1)
3504 if (is_positive_overflow_infinity (max
)
3505 || compare_values (tmax
, max
) == -1)
3509 /* If we just created an invalid range with the minimum
3510 greater than the maximum, we fail conservatively.
3511 This should happen only in unreachable
3512 parts of code, or for invalid programs. */
3513 if (compare_values (min
, max
) == 1)
3516 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3520 /* Return true if VAR may overflow at STMT. This checks any available
3521 loop information to see if we can determine that VAR does not
3525 vrp_var_may_overflow (tree var
, gimple stmt
)
3528 tree chrec
, init
, step
;
3530 if (current_loops
== NULL
)
3533 l
= loop_containing_stmt (stmt
);
3538 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
3539 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3542 init
= initial_condition_in_loop_num (chrec
, l
->num
);
3543 step
= evolution_part_in_loop_num (chrec
, l
->num
);
3545 if (step
== NULL_TREE
3546 || !is_gimple_min_invariant (step
)
3547 || !valid_value_p (init
))
3550 /* If we get here, we know something useful about VAR based on the
3551 loop information. If it wraps, it may overflow. */
3553 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3557 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
3559 print_generic_expr (dump_file
, var
, 0);
3560 fprintf (dump_file
, ": loop information indicates does not overflow\n");
3567 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3569 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3570 all the values in the ranges.
3572 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3574 - Return NULL_TREE if it is not always possible to determine the
3575 value of the comparison.
3577 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3578 overflow infinity was used in the test. */
3582 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
3583 bool *strict_overflow_p
)
3585 /* VARYING or UNDEFINED ranges cannot be compared. */
3586 if (vr0
->type
== VR_VARYING
3587 || vr0
->type
== VR_UNDEFINED
3588 || vr1
->type
== VR_VARYING
3589 || vr1
->type
== VR_UNDEFINED
)
3592 /* Anti-ranges need to be handled separately. */
3593 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3595 /* If both are anti-ranges, then we cannot compute any
3597 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3600 /* These comparisons are never statically computable. */
3607 /* Equality can be computed only between a range and an
3608 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3609 if (vr0
->type
== VR_RANGE
)
3611 /* To simplify processing, make VR0 the anti-range. */
3612 value_range_t
*tmp
= vr0
;
3617 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
3619 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
3620 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
3621 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3626 if (!usable_range_p (vr0
, strict_overflow_p
)
3627 || !usable_range_p (vr1
, strict_overflow_p
))
3630 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3631 operands around and change the comparison code. */
3632 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3635 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
3641 if (comp
== EQ_EXPR
)
3643 /* Equality may only be computed if both ranges represent
3644 exactly one value. */
3645 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
3646 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
3648 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
3650 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
3652 if (cmp_min
== 0 && cmp_max
== 0)
3653 return boolean_true_node
;
3654 else if (cmp_min
!= -2 && cmp_max
!= -2)
3655 return boolean_false_node
;
3657 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3658 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
3659 strict_overflow_p
) == 1
3660 || compare_values_warnv (vr1
->min
, vr0
->max
,
3661 strict_overflow_p
) == 1)
3662 return boolean_false_node
;
3666 else if (comp
== NE_EXPR
)
3670 /* If VR0 is completely to the left or completely to the right
3671 of VR1, they are always different. Notice that we need to
3672 make sure that both comparisons yield similar results to
3673 avoid comparing values that cannot be compared at
3675 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3676 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3677 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
3678 return boolean_true_node
;
3680 /* If VR0 and VR1 represent a single value and are identical,
3682 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
3683 strict_overflow_p
) == 0
3684 && compare_values_warnv (vr1
->min
, vr1
->max
,
3685 strict_overflow_p
) == 0
3686 && compare_values_warnv (vr0
->min
, vr1
->min
,
3687 strict_overflow_p
) == 0
3688 && compare_values_warnv (vr0
->max
, vr1
->max
,
3689 strict_overflow_p
) == 0)
3690 return boolean_false_node
;
3692 /* Otherwise, they may or may not be different. */
3696 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3700 /* If VR0 is to the left of VR1, return true. */
3701 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
3702 if ((comp
== LT_EXPR
&& tst
== -1)
3703 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3705 if (overflow_infinity_range_p (vr0
)
3706 || overflow_infinity_range_p (vr1
))
3707 *strict_overflow_p
= true;
3708 return boolean_true_node
;
3711 /* If VR0 is to the right of VR1, return false. */
3712 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
3713 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3714 || (comp
== LE_EXPR
&& tst
== 1))
3716 if (overflow_infinity_range_p (vr0
)
3717 || overflow_infinity_range_p (vr1
))
3718 *strict_overflow_p
= true;
3719 return boolean_false_node
;
3722 /* Otherwise, we don't know. */
3730 /* Given a value range VR, a value VAL and a comparison code COMP, return
3731 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3732 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3733 always returns false. Return NULL_TREE if it is not always
3734 possible to determine the value of the comparison. Also set
3735 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3736 infinity was used in the test. */
3739 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
3740 bool *strict_overflow_p
)
3742 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3745 /* Anti-ranges need to be handled separately. */
3746 if (vr
->type
== VR_ANTI_RANGE
)
3748 /* For anti-ranges, the only predicates that we can compute at
3749 compile time are equality and inequality. */
3756 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3757 if (value_inside_range (val
, vr
) == 1)
3758 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
3763 if (!usable_range_p (vr
, strict_overflow_p
))
3766 if (comp
== EQ_EXPR
)
3768 /* EQ_EXPR may only be computed if VR represents exactly
3770 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
3772 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3774 return boolean_true_node
;
3775 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
3776 return boolean_false_node
;
3778 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
3779 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
3780 return boolean_false_node
;
3784 else if (comp
== NE_EXPR
)
3786 /* If VAL is not inside VR, then they are always different. */
3787 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
3788 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
3789 return boolean_true_node
;
3791 /* If VR represents exactly one value equal to VAL, then return
3793 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
3794 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
3795 return boolean_false_node
;
3797 /* Otherwise, they may or may not be different. */
3800 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
3804 /* If VR is to the left of VAL, return true. */
3805 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3806 if ((comp
== LT_EXPR
&& tst
== -1)
3807 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
3809 if (overflow_infinity_range_p (vr
))
3810 *strict_overflow_p
= true;
3811 return boolean_true_node
;
3814 /* If VR is to the right of VAL, return false. */
3815 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3816 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
3817 || (comp
== LE_EXPR
&& tst
== 1))
3819 if (overflow_infinity_range_p (vr
))
3820 *strict_overflow_p
= true;
3821 return boolean_false_node
;
3824 /* Otherwise, we don't know. */
3827 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
3831 /* If VR is to the right of VAL, return true. */
3832 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
3833 if ((comp
== GT_EXPR
&& tst
== 1)
3834 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
3836 if (overflow_infinity_range_p (vr
))
3837 *strict_overflow_p
= true;
3838 return boolean_true_node
;
3841 /* If VR is to the left of VAL, return false. */
3842 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
3843 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
3844 || (comp
== GE_EXPR
&& tst
== -1))
3846 if (overflow_infinity_range_p (vr
))
3847 *strict_overflow_p
= true;
3848 return boolean_false_node
;
3851 /* Otherwise, we don't know. */
3859 /* Debugging dumps. */
3861 void dump_value_range (FILE *, value_range_t
*);
3862 void debug_value_range (value_range_t
*);
3863 void dump_all_value_ranges (FILE *);
3864 void debug_all_value_ranges (void);
3865 void dump_vr_equiv (FILE *, bitmap
);
3866 void debug_vr_equiv (bitmap
);
3869 /* Dump value range VR to FILE. */
3872 dump_value_range (FILE *file
, value_range_t
*vr
)
3875 fprintf (file
, "[]");
3876 else if (vr
->type
== VR_UNDEFINED
)
3877 fprintf (file
, "UNDEFINED");
3878 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
3880 tree type
= TREE_TYPE (vr
->min
);
3882 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
3884 if (is_negative_overflow_infinity (vr
->min
))
3885 fprintf (file
, "-INF(OVF)");
3886 else if (INTEGRAL_TYPE_P (type
)
3887 && !TYPE_UNSIGNED (type
)
3888 && vrp_val_is_min (vr
->min
))
3889 fprintf (file
, "-INF");
3891 print_generic_expr (file
, vr
->min
, 0);
3893 fprintf (file
, ", ");
3895 if (is_positive_overflow_infinity (vr
->max
))
3896 fprintf (file
, "+INF(OVF)");
3897 else if (INTEGRAL_TYPE_P (type
)
3898 && vrp_val_is_max (vr
->max
))
3899 fprintf (file
, "+INF");
3901 print_generic_expr (file
, vr
->max
, 0);
3903 fprintf (file
, "]");
3910 fprintf (file
, " EQUIVALENCES: { ");
3912 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
3914 print_generic_expr (file
, ssa_name (i
), 0);
3915 fprintf (file
, " ");
3919 fprintf (file
, "} (%u elements)", c
);
3922 else if (vr
->type
== VR_VARYING
)
3923 fprintf (file
, "VARYING");
3925 fprintf (file
, "INVALID RANGE");
3929 /* Dump value range VR to stderr. */
3932 debug_value_range (value_range_t
*vr
)
3934 dump_value_range (stderr
, vr
);
3935 fprintf (stderr
, "\n");
3939 /* Dump value ranges of all SSA_NAMEs to FILE. */
3942 dump_all_value_ranges (FILE *file
)
3946 for (i
= 0; i
< num_vr_values
; i
++)
3950 print_generic_expr (file
, ssa_name (i
), 0);
3951 fprintf (file
, ": ");
3952 dump_value_range (file
, vr_value
[i
]);
3953 fprintf (file
, "\n");
3957 fprintf (file
, "\n");
3961 /* Dump all value ranges to stderr. */
3964 debug_all_value_ranges (void)
3966 dump_all_value_ranges (stderr
);
3970 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3971 create a new SSA name N and return the assertion assignment
3972 'V = ASSERT_EXPR <V, V OP W>'. */
3975 build_assert_expr_for (tree cond
, tree v
)
3980 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
3981 n
= duplicate_ssa_name (v
, NULL
);
3983 if (COMPARISON_CLASS_P (cond
))
3985 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
3986 assertion
= gimple_build_assign (n
, a
);
3988 else if (TREE_CODE (cond
) == SSA_NAME
)
3990 /* Given V, build the assignment N = true. */
3991 gcc_assert (v
== cond
);
3992 assertion
= gimple_build_assign (n
, boolean_true_node
);
3997 SSA_NAME_DEF_STMT (n
) = assertion
;
3999 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4000 operand of the ASSERT_EXPR. Register the new name and the old one
4001 in the replacement table so that we can fix the SSA web after
4002 adding all the ASSERT_EXPRs. */
4003 register_new_name_mapping (n
, v
);
4009 /* Return false if EXPR is a predicate expression involving floating
4013 fp_predicate (gimple stmt
)
4015 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4017 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4021 /* If the range of values taken by OP can be inferred after STMT executes,
4022 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4023 describes the inferred range. Return true if a range could be
4027 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4030 *comp_code_p
= ERROR_MARK
;
4032 /* Do not attempt to infer anything in names that flow through
4034 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4037 /* Similarly, don't infer anything from statements that may throw
4039 if (stmt_could_throw_p (stmt
))
4042 /* If STMT is the last statement of a basic block with no
4043 successors, there is no point inferring anything about any of its
4044 operands. We would not be able to find a proper insertion point
4045 for the assertion, anyway. */
4046 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
4049 /* We can only assume that a pointer dereference will yield
4050 non-NULL if -fdelete-null-pointer-checks is enabled. */
4051 if (flag_delete_null_pointer_checks
4052 && POINTER_TYPE_P (TREE_TYPE (op
))
4053 && gimple_code (stmt
) != GIMPLE_ASM
)
4055 unsigned num_uses
, num_loads
, num_stores
;
4057 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_loads
, &num_stores
);
4058 if (num_loads
+ num_stores
> 0)
4060 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4061 *comp_code_p
= NE_EXPR
;
4070 void dump_asserts_for (FILE *, tree
);
4071 void debug_asserts_for (tree
);
4072 void dump_all_asserts (FILE *);
4073 void debug_all_asserts (void);
4075 /* Dump all the registered assertions for NAME to FILE. */
4078 dump_asserts_for (FILE *file
, tree name
)
4082 fprintf (file
, "Assertions to be inserted for ");
4083 print_generic_expr (file
, name
, 0);
4084 fprintf (file
, "\n");
4086 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4089 fprintf (file
, "\t");
4090 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4091 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4094 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4095 loc
->e
->dest
->index
);
4096 dump_edge_info (file
, loc
->e
, 0);
4098 fprintf (file
, "\n\tPREDICATE: ");
4099 print_generic_expr (file
, name
, 0);
4100 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
4101 print_generic_expr (file
, loc
->val
, 0);
4102 fprintf (file
, "\n\n");
4106 fprintf (file
, "\n");
4110 /* Dump all the registered assertions for NAME to stderr. */
4113 debug_asserts_for (tree name
)
4115 dump_asserts_for (stderr
, name
);
4119 /* Dump all the registered assertions for all the names to FILE. */
4122 dump_all_asserts (FILE *file
)
4127 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4128 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4129 dump_asserts_for (file
, ssa_name (i
));
4130 fprintf (file
, "\n");
4134 /* Dump all the registered assertions for all the names to stderr. */
4137 debug_all_asserts (void)
4139 dump_all_asserts (stderr
);
4143 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4144 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4145 E->DEST, then register this location as a possible insertion point
4146 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4148 BB, E and SI provide the exact insertion point for the new
4149 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4150 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4151 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4152 must not be NULL. */
4155 register_new_assert_for (tree name
, tree expr
,
4156 enum tree_code comp_code
,
4160 gimple_stmt_iterator si
)
4162 assert_locus_t n
, loc
, last_loc
;
4163 basic_block dest_bb
;
4165 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4168 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4169 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4171 /* Never build an assert comparing against an integer constant with
4172 TREE_OVERFLOW set. This confuses our undefined overflow warning
4174 if (TREE_CODE (val
) == INTEGER_CST
4175 && TREE_OVERFLOW (val
))
4176 val
= build_int_cst_wide (TREE_TYPE (val
),
4177 TREE_INT_CST_LOW (val
), TREE_INT_CST_HIGH (val
));
4179 /* The new assertion A will be inserted at BB or E. We need to
4180 determine if the new location is dominated by a previously
4181 registered location for A. If we are doing an edge insertion,
4182 assume that A will be inserted at E->DEST. Note that this is not
4185 If E is a critical edge, it will be split. But even if E is
4186 split, the new block will dominate the same set of blocks that
4189 The reverse, however, is not true, blocks dominated by E->DEST
4190 will not be dominated by the new block created to split E. So,
4191 if the insertion location is on a critical edge, we will not use
4192 the new location to move another assertion previously registered
4193 at a block dominated by E->DEST. */
4194 dest_bb
= (bb
) ? bb
: e
->dest
;
4196 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4197 VAL at a block dominating DEST_BB, then we don't need to insert a new
4198 one. Similarly, if the same assertion already exists at a block
4199 dominated by DEST_BB and the new location is not on a critical
4200 edge, then update the existing location for the assertion (i.e.,
4201 move the assertion up in the dominance tree).
4203 Note, this is implemented as a simple linked list because there
4204 should not be more than a handful of assertions registered per
4205 name. If this becomes a performance problem, a table hashed by
4206 COMP_CODE and VAL could be implemented. */
4207 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4211 if (loc
->comp_code
== comp_code
4213 || operand_equal_p (loc
->val
, val
, 0))
4214 && (loc
->expr
== expr
4215 || operand_equal_p (loc
->expr
, expr
, 0)))
4217 /* If the assertion NAME COMP_CODE VAL has already been
4218 registered at a basic block that dominates DEST_BB, then
4219 we don't need to insert the same assertion again. Note
4220 that we don't check strict dominance here to avoid
4221 replicating the same assertion inside the same basic
4222 block more than once (e.g., when a pointer is
4223 dereferenced several times inside a block).
4225 An exception to this rule are edge insertions. If the
4226 new assertion is to be inserted on edge E, then it will
4227 dominate all the other insertions that we may want to
4228 insert in DEST_BB. So, if we are doing an edge
4229 insertion, don't do this dominance check. */
4231 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
4234 /* Otherwise, if E is not a critical edge and DEST_BB
4235 dominates the existing location for the assertion, move
4236 the assertion up in the dominance tree by updating its
4237 location information. */
4238 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4239 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4248 /* Update the last node of the list and move to the next one. */
4253 /* If we didn't find an assertion already registered for
4254 NAME COMP_CODE VAL, add a new one at the end of the list of
4255 assertions associated with NAME. */
4256 n
= XNEW (struct assert_locus_d
);
4260 n
->comp_code
= comp_code
;
4268 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4270 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4273 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4274 Extract a suitable test code and value and store them into *CODE_P and
4275 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4277 If no extraction was possible, return FALSE, otherwise return TRUE.
4279 If INVERT is true, then we invert the result stored into *CODE_P. */
4282 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4283 tree cond_op0
, tree cond_op1
,
4284 bool invert
, enum tree_code
*code_p
,
4287 enum tree_code comp_code
;
4290 /* Otherwise, we have a comparison of the form NAME COMP VAL
4291 or VAL COMP NAME. */
4292 if (name
== cond_op1
)
4294 /* If the predicate is of the form VAL COMP NAME, flip
4295 COMP around because we need to register NAME as the
4296 first operand in the predicate. */
4297 comp_code
= swap_tree_comparison (cond_code
);
4302 /* The comparison is of the form NAME COMP VAL, so the
4303 comparison code remains unchanged. */
4304 comp_code
= cond_code
;
4308 /* Invert the comparison code as necessary. */
4310 comp_code
= invert_tree_comparison (comp_code
, 0);
4312 /* VRP does not handle float types. */
4313 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4316 /* Do not register always-false predicates.
4317 FIXME: this works around a limitation in fold() when dealing with
4318 enumerations. Given 'enum { N1, N2 } x;', fold will not
4319 fold 'if (x > N2)' to 'if (0)'. */
4320 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4321 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4323 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4324 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4326 if (comp_code
== GT_EXPR
4328 || compare_values (val
, max
) == 0))
4331 if (comp_code
== LT_EXPR
4333 || compare_values (val
, min
) == 0))
4336 *code_p
= comp_code
;
4341 /* Try to register an edge assertion for SSA name NAME on edge E for
4342 the condition COND contributing to the conditional jump pointed to by BSI.
4343 Invert the condition COND if INVERT is true.
4344 Return true if an assertion for NAME could be registered. */
4347 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4348 enum tree_code cond_code
,
4349 tree cond_op0
, tree cond_op1
, bool invert
)
4352 enum tree_code comp_code
;
4353 bool retval
= false;
4355 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4358 invert
, &comp_code
, &val
))
4361 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4362 reachable from E. */
4363 if (live_on_edge (e
, name
)
4364 && !has_single_use (name
))
4366 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4370 /* In the case of NAME <= CST and NAME being defined as
4371 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4372 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4373 This catches range and anti-range tests. */
4374 if ((comp_code
== LE_EXPR
4375 || comp_code
== GT_EXPR
)
4376 && TREE_CODE (val
) == INTEGER_CST
4377 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4379 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4380 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4382 /* Extract CST2 from the (optional) addition. */
4383 if (is_gimple_assign (def_stmt
)
4384 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4386 name2
= gimple_assign_rhs1 (def_stmt
);
4387 cst2
= gimple_assign_rhs2 (def_stmt
);
4388 if (TREE_CODE (name2
) == SSA_NAME
4389 && TREE_CODE (cst2
) == INTEGER_CST
)
4390 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4393 /* Extract NAME2 from the (optional) sign-changing cast. */
4394 if (gimple_assign_cast_p (def_stmt
))
4396 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4397 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4398 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4399 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4400 name3
= gimple_assign_rhs1 (def_stmt
);
4403 /* If name3 is used later, create an ASSERT_EXPR for it. */
4404 if (name3
!= NULL_TREE
4405 && TREE_CODE (name3
) == SSA_NAME
4406 && (cst2
== NULL_TREE
4407 || TREE_CODE (cst2
) == INTEGER_CST
)
4408 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4409 && live_on_edge (e
, name3
)
4410 && !has_single_use (name3
))
4414 /* Build an expression for the range test. */
4415 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4416 if (cst2
!= NULL_TREE
)
4417 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4421 fprintf (dump_file
, "Adding assert for ");
4422 print_generic_expr (dump_file
, name3
, 0);
4423 fprintf (dump_file
, " from ");
4424 print_generic_expr (dump_file
, tmp
, 0);
4425 fprintf (dump_file
, "\n");
4428 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4433 /* If name2 is used later, create an ASSERT_EXPR for it. */
4434 if (name2
!= NULL_TREE
4435 && TREE_CODE (name2
) == SSA_NAME
4436 && TREE_CODE (cst2
) == INTEGER_CST
4437 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4438 && live_on_edge (e
, name2
)
4439 && !has_single_use (name2
))
4443 /* Build an expression for the range test. */
4445 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4446 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4447 if (cst2
!= NULL_TREE
)
4448 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4452 fprintf (dump_file
, "Adding assert for ");
4453 print_generic_expr (dump_file
, name2
, 0);
4454 fprintf (dump_file
, " from ");
4455 print_generic_expr (dump_file
, tmp
, 0);
4456 fprintf (dump_file
, "\n");
4459 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4468 /* OP is an operand of a truth value expression which is known to have
4469 a particular value. Register any asserts for OP and for any
4470 operands in OP's defining statement.
4472 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4473 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4476 register_edge_assert_for_1 (tree op
, enum tree_code code
,
4477 edge e
, gimple_stmt_iterator bsi
)
4479 bool retval
= false;
4482 enum tree_code rhs_code
;
4484 /* We only care about SSA_NAMEs. */
4485 if (TREE_CODE (op
) != SSA_NAME
)
4488 /* We know that OP will have a zero or nonzero value. If OP is used
4489 more than once go ahead and register an assert for OP.
4491 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4492 it will always be set for OP (because OP is used in a COND_EXPR in
4494 if (!has_single_use (op
))
4496 val
= build_int_cst (TREE_TYPE (op
), 0);
4497 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
4501 /* Now look at how OP is set. If it's set from a comparison,
4502 a truth operation or some bit operations, then we may be able
4503 to register information about the operands of that assignment. */
4504 op_def
= SSA_NAME_DEF_STMT (op
);
4505 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
4508 rhs_code
= gimple_assign_rhs_code (op_def
);
4510 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
4512 bool invert
= (code
== EQ_EXPR
? true : false);
4513 tree op0
= gimple_assign_rhs1 (op_def
);
4514 tree op1
= gimple_assign_rhs2 (op_def
);
4516 if (TREE_CODE (op0
) == SSA_NAME
)
4517 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
4519 if (TREE_CODE (op1
) == SSA_NAME
)
4520 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
4523 else if ((code
== NE_EXPR
4524 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
4526 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
4528 /* Recurse on each operand. */
4529 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4531 retval
|= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def
),
4534 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
4535 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
4537 /* Recurse, flipping CODE. */
4538 code
= invert_tree_comparison (code
, false);
4539 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4542 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
4544 /* Recurse through the copy. */
4545 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4548 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
4550 /* Recurse through the type conversion. */
4551 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
4558 /* Try to register an edge assertion for SSA name NAME on edge E for
4559 the condition COND contributing to the conditional jump pointed to by SI.
4560 Return true if an assertion for NAME could be registered. */
4563 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
4564 enum tree_code cond_code
, tree cond_op0
,
4568 enum tree_code comp_code
;
4569 bool retval
= false;
4570 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
4572 /* Do not attempt to infer anything in names that flow through
4574 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
4577 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4583 /* Register ASSERT_EXPRs for name. */
4584 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
4585 cond_op1
, is_else_edge
);
4588 /* If COND is effectively an equality test of an SSA_NAME against
4589 the value zero or one, then we may be able to assert values
4590 for SSA_NAMEs which flow into COND. */
4592 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4593 statement of NAME we can assert both operands of the BIT_AND_EXPR
4594 have nonzero value. */
4595 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
4596 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
4598 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4600 if (is_gimple_assign (def_stmt
)
4601 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
4603 tree op0
= gimple_assign_rhs1 (def_stmt
);
4604 tree op1
= gimple_assign_rhs2 (def_stmt
);
4605 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
4606 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
4610 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4611 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4613 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
4614 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
4616 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4618 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4619 necessarily zero value, or if type-precision is one. */
4620 if (is_gimple_assign (def_stmt
)
4621 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
4622 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
4623 || comp_code
== EQ_EXPR
)))
4625 tree op0
= gimple_assign_rhs1 (def_stmt
);
4626 tree op1
= gimple_assign_rhs2 (def_stmt
);
4627 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
4628 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
4636 /* Determine whether the outgoing edges of BB should receive an
4637 ASSERT_EXPR for each of the operands of BB's LAST statement.
4638 The last statement of BB must be a COND_EXPR.
4640 If any of the sub-graphs rooted at BB have an interesting use of
4641 the predicate operands, an assert location node is added to the
4642 list of assertions for the corresponding operands. */
4645 find_conditional_asserts (basic_block bb
, gimple last
)
4648 gimple_stmt_iterator bsi
;
4654 need_assert
= false;
4655 bsi
= gsi_for_stmt (last
);
4657 /* Look for uses of the operands in each of the sub-graphs
4658 rooted at BB. We need to check each of the outgoing edges
4659 separately, so that we know what kind of ASSERT_EXPR to
4661 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4666 /* Register the necessary assertions for each operand in the
4667 conditional predicate. */
4668 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
4670 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4671 gimple_cond_code (last
),
4672 gimple_cond_lhs (last
),
4673 gimple_cond_rhs (last
));
4686 /* Compare two case labels sorting first by the destination bb index
4687 and then by the case value. */
4690 compare_case_labels (const void *p1
, const void *p2
)
4692 const struct case_info
*ci1
= (const struct case_info
*) p1
;
4693 const struct case_info
*ci2
= (const struct case_info
*) p2
;
4694 int idx1
= ci1
->bb
->index
;
4695 int idx2
= ci2
->bb
->index
;
4699 else if (idx1
== idx2
)
4701 /* Make sure the default label is first in a group. */
4702 if (!CASE_LOW (ci1
->expr
))
4704 else if (!CASE_LOW (ci2
->expr
))
4707 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
4708 CASE_LOW (ci2
->expr
));
4714 /* Determine whether the outgoing edges of BB should receive an
4715 ASSERT_EXPR for each of the operands of BB's LAST statement.
4716 The last statement of BB must be a SWITCH_EXPR.
4718 If any of the sub-graphs rooted at BB have an interesting use of
4719 the predicate operands, an assert location node is added to the
4720 list of assertions for the corresponding operands. */
4723 find_switch_asserts (basic_block bb
, gimple last
)
4726 gimple_stmt_iterator bsi
;
4729 struct case_info
*ci
;
4730 size_t n
= gimple_switch_num_labels (last
);
4731 #if GCC_VERSION >= 4000
4734 /* Work around GCC 3.4 bug (PR 37086). */
4735 volatile unsigned int idx
;
4738 need_assert
= false;
4739 bsi
= gsi_for_stmt (last
);
4740 op
= gimple_switch_index (last
);
4741 if (TREE_CODE (op
) != SSA_NAME
)
4744 /* Build a vector of case labels sorted by destination label. */
4745 ci
= XNEWVEC (struct case_info
, n
);
4746 for (idx
= 0; idx
< n
; ++idx
)
4748 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
4749 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
4751 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
4753 for (idx
= 0; idx
< n
; ++idx
)
4756 tree cl
= ci
[idx
].expr
;
4757 basic_block cbb
= ci
[idx
].bb
;
4759 min
= CASE_LOW (cl
);
4760 max
= CASE_HIGH (cl
);
4762 /* If there are multiple case labels with the same destination
4763 we need to combine them to a single value range for the edge. */
4764 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
4766 /* Skip labels until the last of the group. */
4769 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
4772 /* Pick up the maximum of the case label range. */
4773 if (CASE_HIGH (ci
[idx
].expr
))
4774 max
= CASE_HIGH (ci
[idx
].expr
);
4776 max
= CASE_LOW (ci
[idx
].expr
);
4779 /* Nothing to do if the range includes the default label until we
4780 can register anti-ranges. */
4781 if (min
== NULL_TREE
)
4784 /* Find the edge to register the assert expr on. */
4785 e
= find_edge (bb
, cbb
);
4787 /* Register the necessary assertions for the operand in the
4789 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
4790 max
? GE_EXPR
: EQ_EXPR
,
4792 fold_convert (TREE_TYPE (op
),
4796 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
4798 fold_convert (TREE_TYPE (op
),
4808 /* Traverse all the statements in block BB looking for statements that
4809 may generate useful assertions for the SSA names in their operand.
4810 If a statement produces a useful assertion A for name N_i, then the
4811 list of assertions already generated for N_i is scanned to
4812 determine if A is actually needed.
4814 If N_i already had the assertion A at a location dominating the
4815 current location, then nothing needs to be done. Otherwise, the
4816 new location for A is recorded instead.
4818 1- For every statement S in BB, all the variables used by S are
4819 added to bitmap FOUND_IN_SUBGRAPH.
4821 2- If statement S uses an operand N in a way that exposes a known
4822 value range for N, then if N was not already generated by an
4823 ASSERT_EXPR, create a new assert location for N. For instance,
4824 if N is a pointer and the statement dereferences it, we can
4825 assume that N is not NULL.
4827 3- COND_EXPRs are a special case of #2. We can derive range
4828 information from the predicate but need to insert different
4829 ASSERT_EXPRs for each of the sub-graphs rooted at the
4830 conditional block. If the last statement of BB is a conditional
4831 expression of the form 'X op Y', then
4833 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4835 b) If the conditional is the only entry point to the sub-graph
4836 corresponding to the THEN_CLAUSE, recurse into it. On
4837 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4838 an ASSERT_EXPR is added for the corresponding variable.
4840 c) Repeat step (b) on the ELSE_CLAUSE.
4842 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4851 In this case, an assertion on the THEN clause is useful to
4852 determine that 'a' is always 9 on that edge. However, an assertion
4853 on the ELSE clause would be unnecessary.
4855 4- If BB does not end in a conditional expression, then we recurse
4856 into BB's dominator children.
4858 At the end of the recursive traversal, every SSA name will have a
4859 list of locations where ASSERT_EXPRs should be added. When a new
4860 location for name N is found, it is registered by calling
4861 register_new_assert_for. That function keeps track of all the
4862 registered assertions to prevent adding unnecessary assertions.
4863 For instance, if a pointer P_4 is dereferenced more than once in a
4864 dominator tree, only the location dominating all the dereference of
4865 P_4 will receive an ASSERT_EXPR.
4867 If this function returns true, then it means that there are names
4868 for which we need to generate ASSERT_EXPRs. Those assertions are
4869 inserted by process_assert_insertions. */
4872 find_assert_locations_1 (basic_block bb
, sbitmap live
)
4874 gimple_stmt_iterator si
;
4879 need_assert
= false;
4880 last
= last_stmt (bb
);
4882 /* If BB's last statement is a conditional statement involving integer
4883 operands, determine if we need to add ASSERT_EXPRs. */
4885 && gimple_code (last
) == GIMPLE_COND
4886 && !fp_predicate (last
)
4887 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4888 need_assert
|= find_conditional_asserts (bb
, last
);
4890 /* If BB's last statement is a switch statement involving integer
4891 operands, determine if we need to add ASSERT_EXPRs. */
4893 && gimple_code (last
) == GIMPLE_SWITCH
4894 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
4895 need_assert
|= find_switch_asserts (bb
, last
);
4897 /* Traverse all the statements in BB marking used names and looking
4898 for statements that may infer assertions for their used operands. */
4899 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
4905 stmt
= gsi_stmt (si
);
4907 if (is_gimple_debug (stmt
))
4910 /* See if we can derive an assertion for any of STMT's operands. */
4911 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
4914 enum tree_code comp_code
;
4916 /* Mark OP in our live bitmap. */
4917 SET_BIT (live
, SSA_NAME_VERSION (op
));
4919 /* If OP is used in such a way that we can infer a value
4920 range for it, and we don't find a previous assertion for
4921 it, create a new assertion location node for OP. */
4922 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
4924 /* If we are able to infer a nonzero value range for OP,
4925 then walk backwards through the use-def chain to see if OP
4926 was set via a typecast.
4928 If so, then we can also infer a nonzero value range
4929 for the operand of the NOP_EXPR. */
4930 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
4933 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
4935 while (is_gimple_assign (def_stmt
)
4936 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
4938 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
4940 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
4942 t
= gimple_assign_rhs1 (def_stmt
);
4943 def_stmt
= SSA_NAME_DEF_STMT (t
);
4945 /* Note we want to register the assert for the
4946 operand of the NOP_EXPR after SI, not after the
4948 if (! has_single_use (t
))
4950 register_new_assert_for (t
, t
, comp_code
, value
,
4957 /* If OP is used only once, namely in this STMT, don't
4958 bother creating an ASSERT_EXPR for it. Such an
4959 ASSERT_EXPR would do nothing but increase compile time. */
4960 if (!has_single_use (op
))
4962 register_new_assert_for (op
, op
, comp_code
, value
,
4970 /* Traverse all PHI nodes in BB marking used operands. */
4971 for (si
= gsi_start_phis (bb
); !gsi_end_p(si
); gsi_next (&si
))
4973 use_operand_p arg_p
;
4975 phi
= gsi_stmt (si
);
4977 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
4979 tree arg
= USE_FROM_PTR (arg_p
);
4980 if (TREE_CODE (arg
) == SSA_NAME
)
4981 SET_BIT (live
, SSA_NAME_VERSION (arg
));
4988 /* Do an RPO walk over the function computing SSA name liveness
4989 on-the-fly and deciding on assert expressions to insert.
4990 Returns true if there are assert expressions to be inserted. */
4993 find_assert_locations (void)
4995 int *rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4996 int *bb_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
4997 int *last_rpo
= XCNEWVEC (int, last_basic_block
+ NUM_FIXED_BLOCKS
);
5001 live
= XCNEWVEC (sbitmap
, last_basic_block
+ NUM_FIXED_BLOCKS
);
5002 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
5003 for (i
= 0; i
< rpo_cnt
; ++i
)
5006 need_asserts
= false;
5007 for (i
= rpo_cnt
-1; i
>= 0; --i
)
5009 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
5015 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
5016 sbitmap_zero (live
[rpo
[i
]]);
5019 /* Process BB and update the live information with uses in
5021 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
5023 /* Merge liveness into the predecessor blocks and free it. */
5024 if (!sbitmap_empty_p (live
[rpo
[i
]]))
5027 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5029 int pred
= e
->src
->index
;
5030 if (e
->flags
& EDGE_DFS_BACK
)
5035 live
[pred
] = sbitmap_alloc (num_ssa_names
);
5036 sbitmap_zero (live
[pred
]);
5038 sbitmap_a_or_b (live
[pred
], live
[pred
], live
[rpo
[i
]]);
5040 if (bb_rpo
[pred
] < pred_rpo
)
5041 pred_rpo
= bb_rpo
[pred
];
5044 /* Record the RPO number of the last visited block that needs
5045 live information from this block. */
5046 last_rpo
[rpo
[i
]] = pred_rpo
;
5050 sbitmap_free (live
[rpo
[i
]]);
5051 live
[rpo
[i
]] = NULL
;
5054 /* We can free all successors live bitmaps if all their
5055 predecessors have been visited already. */
5056 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5057 if (last_rpo
[e
->dest
->index
] == i
5058 && live
[e
->dest
->index
])
5060 sbitmap_free (live
[e
->dest
->index
]);
5061 live
[e
->dest
->index
] = NULL
;
5066 XDELETEVEC (bb_rpo
);
5067 XDELETEVEC (last_rpo
);
5068 for (i
= 0; i
< last_basic_block
+ NUM_FIXED_BLOCKS
; ++i
)
5070 sbitmap_free (live
[i
]);
5073 return need_asserts
;
5076 /* Create an ASSERT_EXPR for NAME and insert it in the location
5077 indicated by LOC. Return true if we made any edge insertions. */
5080 process_assert_insertions_for (tree name
, assert_locus_t loc
)
5082 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5089 /* If we have X <=> X do not insert an assert expr for that. */
5090 if (loc
->expr
== loc
->val
)
5093 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
5094 assert_stmt
= build_assert_expr_for (cond
, name
);
5097 /* We have been asked to insert the assertion on an edge. This
5098 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5099 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
5100 || (gimple_code (gsi_stmt (loc
->si
))
5103 gsi_insert_on_edge (loc
->e
, assert_stmt
);
5107 /* Otherwise, we can insert right after LOC->SI iff the
5108 statement must not be the last statement in the block. */
5109 stmt
= gsi_stmt (loc
->si
);
5110 if (!stmt_ends_bb_p (stmt
))
5112 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
5116 /* If STMT must be the last statement in BB, we can only insert new
5117 assertions on the non-abnormal edge out of BB. Note that since
5118 STMT is not control flow, there may only be one non-abnormal edge
5120 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
5121 if (!(e
->flags
& EDGE_ABNORMAL
))
5123 gsi_insert_on_edge (e
, assert_stmt
);
5131 /* Process all the insertions registered for every name N_i registered
5132 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5133 found in ASSERTS_FOR[i]. */
5136 process_assert_insertions (void)
5140 bool update_edges_p
= false;
5141 int num_asserts
= 0;
5143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5144 dump_all_asserts (dump_file
);
5146 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
5148 assert_locus_t loc
= asserts_for
[i
];
5153 assert_locus_t next
= loc
->next
;
5154 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
5162 gsi_commit_edge_inserts ();
5164 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
5169 /* Traverse the flowgraph looking for conditional jumps to insert range
5170 expressions. These range expressions are meant to provide information
5171 to optimizations that need to reason in terms of value ranges. They
5172 will not be expanded into RTL. For instance, given:
5181 this pass will transform the code into:
5187 x = ASSERT_EXPR <x, x < y>
5192 y = ASSERT_EXPR <y, x <= y>
5196 The idea is that once copy and constant propagation have run, other
5197 optimizations will be able to determine what ranges of values can 'x'
5198 take in different paths of the code, simply by checking the reaching
5199 definition of 'x'. */
5202 insert_range_assertions (void)
5204 need_assert_for
= BITMAP_ALLOC (NULL
);
5205 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
5207 calculate_dominance_info (CDI_DOMINATORS
);
5209 if (find_assert_locations ())
5211 process_assert_insertions ();
5212 update_ssa (TODO_update_ssa_no_phi
);
5215 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5217 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
5218 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
5222 BITMAP_FREE (need_assert_for
);
5225 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5226 and "struct" hacks. If VRP can determine that the
5227 array subscript is a constant, check if it is outside valid
5228 range. If the array subscript is a RANGE, warn if it is
5229 non-overlapping with valid range.
5230 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5233 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
5235 value_range_t
* vr
= NULL
;
5236 tree low_sub
, up_sub
;
5237 tree low_bound
, up_bound
, up_bound_p1
;
5240 if (TREE_NO_WARNING (ref
))
5243 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
5244 up_bound
= array_ref_up_bound (ref
);
5246 /* Can not check flexible arrays. */
5248 || TREE_CODE (up_bound
) != INTEGER_CST
)
5251 /* Accesses to trailing arrays via pointers may access storage
5252 beyond the types array bounds. */
5253 base
= get_base_address (ref
);
5254 if (base
&& TREE_CODE (base
) == MEM_REF
)
5256 tree cref
, next
= NULL_TREE
;
5258 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
5261 cref
= TREE_OPERAND (ref
, 0);
5262 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
5263 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
5264 next
&& TREE_CODE (next
) != FIELD_DECL
;
5265 next
= DECL_CHAIN (next
))
5268 /* If this is the last field in a struct type or a field in a
5269 union type do not warn. */
5274 low_bound
= array_ref_low_bound (ref
);
5275 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
, integer_one_node
);
5277 if (TREE_CODE (low_sub
) == SSA_NAME
)
5279 vr
= get_value_range (low_sub
);
5280 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
5282 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
5283 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
5287 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
5289 if (TREE_CODE (up_sub
) == INTEGER_CST
5290 && tree_int_cst_lt (up_bound
, up_sub
)
5291 && TREE_CODE (low_sub
) == INTEGER_CST
5292 && tree_int_cst_lt (low_sub
, low_bound
))
5294 warning_at (location
, OPT_Warray_bounds
,
5295 "array subscript is outside array bounds");
5296 TREE_NO_WARNING (ref
) = 1;
5299 else if (TREE_CODE (up_sub
) == INTEGER_CST
5300 && (ignore_off_by_one
5301 ? (tree_int_cst_lt (up_bound
, up_sub
)
5302 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
5303 : (tree_int_cst_lt (up_bound
, up_sub
)
5304 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
5306 warning_at (location
, OPT_Warray_bounds
,
5307 "array subscript is above array bounds");
5308 TREE_NO_WARNING (ref
) = 1;
5310 else if (TREE_CODE (low_sub
) == INTEGER_CST
5311 && tree_int_cst_lt (low_sub
, low_bound
))
5313 warning_at (location
, OPT_Warray_bounds
,
5314 "array subscript is below array bounds");
5315 TREE_NO_WARNING (ref
) = 1;
5319 /* Searches if the expr T, located at LOCATION computes
5320 address of an ARRAY_REF, and call check_array_ref on it. */
5323 search_for_addr_array (tree t
, location_t location
)
5325 while (TREE_CODE (t
) == SSA_NAME
)
5327 gimple g
= SSA_NAME_DEF_STMT (t
);
5329 if (gimple_code (g
) != GIMPLE_ASSIGN
)
5332 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
5333 != GIMPLE_SINGLE_RHS
)
5336 t
= gimple_assign_rhs1 (g
);
5340 /* We are only interested in addresses of ARRAY_REF's. */
5341 if (TREE_CODE (t
) != ADDR_EXPR
)
5344 /* Check each ARRAY_REFs in the reference chain. */
5347 if (TREE_CODE (t
) == ARRAY_REF
)
5348 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
5350 t
= TREE_OPERAND (t
, 0);
5352 while (handled_component_p (t
));
5354 if (TREE_CODE (t
) == MEM_REF
5355 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
5356 && !TREE_NO_WARNING (t
))
5358 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
5359 tree low_bound
, up_bound
, el_sz
;
5361 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
5362 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
5363 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
5366 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5367 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
5368 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
5370 || TREE_CODE (low_bound
) != INTEGER_CST
5372 || TREE_CODE (up_bound
) != INTEGER_CST
5374 || TREE_CODE (el_sz
) != INTEGER_CST
)
5377 idx
= mem_ref_offset (t
);
5378 idx
= double_int_sdiv (idx
, tree_to_double_int (el_sz
), TRUNC_DIV_EXPR
);
5379 if (double_int_scmp (idx
, double_int_zero
) < 0)
5381 warning_at (location
, OPT_Warray_bounds
,
5382 "array subscript is below array bounds");
5383 TREE_NO_WARNING (t
) = 1;
5385 else if (double_int_scmp (idx
,
5388 (tree_to_double_int (up_bound
),
5390 (tree_to_double_int (low_bound
))),
5391 double_int_one
)) > 0)
5393 warning_at (location
, OPT_Warray_bounds
,
5394 "array subscript is above array bounds");
5395 TREE_NO_WARNING (t
) = 1;
5400 /* walk_tree() callback that checks if *TP is
5401 an ARRAY_REF inside an ADDR_EXPR (in which an array
5402 subscript one outside the valid range is allowed). Call
5403 check_array_ref for each ARRAY_REF found. The location is
5407 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
5410 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5411 location_t location
;
5413 if (EXPR_HAS_LOCATION (t
))
5414 location
= EXPR_LOCATION (t
);
5417 location_t
*locp
= (location_t
*) wi
->info
;
5421 *walk_subtree
= TRUE
;
5423 if (TREE_CODE (t
) == ARRAY_REF
)
5424 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
5426 if (TREE_CODE (t
) == MEM_REF
5427 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
5428 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
5430 if (TREE_CODE (t
) == ADDR_EXPR
)
5431 *walk_subtree
= FALSE
;
5436 /* Walk over all statements of all reachable BBs and call check_array_bounds
5440 check_all_array_refs (void)
5443 gimple_stmt_iterator si
;
5449 bool executable
= false;
5451 /* Skip blocks that were found to be unreachable. */
5452 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5453 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
5457 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5459 gimple stmt
= gsi_stmt (si
);
5460 struct walk_stmt_info wi
;
5461 if (!gimple_has_location (stmt
))
5464 if (is_gimple_call (stmt
))
5467 size_t n
= gimple_call_num_args (stmt
);
5468 for (i
= 0; i
< n
; i
++)
5470 tree arg
= gimple_call_arg (stmt
, i
);
5471 search_for_addr_array (arg
, gimple_location (stmt
));
5476 memset (&wi
, 0, sizeof (wi
));
5477 wi
.info
= CONST_CAST (void *, (const void *)
5478 gimple_location_ptr (stmt
));
5480 walk_gimple_op (gsi_stmt (si
),
5488 /* Convert range assertion expressions into the implied copies and
5489 copy propagate away the copies. Doing the trivial copy propagation
5490 here avoids the need to run the full copy propagation pass after
5493 FIXME, this will eventually lead to copy propagation removing the
5494 names that had useful range information attached to them. For
5495 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5496 then N_i will have the range [3, +INF].
5498 However, by converting the assertion into the implied copy
5499 operation N_i = N_j, we will then copy-propagate N_j into the uses
5500 of N_i and lose the range information. We may want to hold on to
5501 ASSERT_EXPRs a little while longer as the ranges could be used in
5502 things like jump threading.
5504 The problem with keeping ASSERT_EXPRs around is that passes after
5505 VRP need to handle them appropriately.
5507 Another approach would be to make the range information a first
5508 class property of the SSA_NAME so that it can be queried from
5509 any pass. This is made somewhat more complex by the need for
5510 multiple ranges to be associated with one SSA_NAME. */
5513 remove_range_assertions (void)
5516 gimple_stmt_iterator si
;
5518 /* Note that the BSI iterator bump happens at the bottom of the
5519 loop and no bump is necessary if we're removing the statement
5520 referenced by the current BSI. */
5522 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
);)
5524 gimple stmt
= gsi_stmt (si
);
5527 if (is_gimple_assign (stmt
)
5528 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
5530 tree rhs
= gimple_assign_rhs1 (stmt
);
5532 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
5533 use_operand_p use_p
;
5534 imm_use_iterator iter
;
5536 gcc_assert (cond
!= boolean_false_node
);
5538 /* Propagate the RHS into every use of the LHS. */
5539 var
= ASSERT_EXPR_VAR (rhs
);
5540 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
,
5541 gimple_assign_lhs (stmt
))
5542 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
5544 SET_USE (use_p
, var
);
5545 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
5548 /* And finally, remove the copy, it is not needed. */
5549 gsi_remove (&si
, true);
5550 release_defs (stmt
);
5558 /* Return true if STMT is interesting for VRP. */
5561 stmt_interesting_for_vrp (gimple stmt
)
5563 if (gimple_code (stmt
) == GIMPLE_PHI
5564 && is_gimple_reg (gimple_phi_result (stmt
))
5565 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))
5566 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt
)))))
5568 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
5570 tree lhs
= gimple_get_lhs (stmt
);
5572 /* In general, assignments with virtual operands are not useful
5573 for deriving ranges, with the obvious exception of calls to
5574 builtin functions. */
5575 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
5576 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5577 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
5578 && ((is_gimple_call (stmt
)
5579 && gimple_call_fndecl (stmt
) != NULL_TREE
5580 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
5581 || !gimple_vuse (stmt
)))
5584 else if (gimple_code (stmt
) == GIMPLE_COND
5585 || gimple_code (stmt
) == GIMPLE_SWITCH
)
5592 /* Initialize local data structures for VRP. */
5595 vrp_initialize (void)
5599 values_propagated
= false;
5600 num_vr_values
= num_ssa_names
;
5601 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
5602 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
5606 gimple_stmt_iterator si
;
5608 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5610 gimple phi
= gsi_stmt (si
);
5611 if (!stmt_interesting_for_vrp (phi
))
5613 tree lhs
= PHI_RESULT (phi
);
5614 set_value_range_to_varying (get_value_range (lhs
));
5615 prop_set_simulate_again (phi
, false);
5618 prop_set_simulate_again (phi
, true);
5621 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5623 gimple stmt
= gsi_stmt (si
);
5625 /* If the statement is a control insn, then we do not
5626 want to avoid simulating the statement once. Failure
5627 to do so means that those edges will never get added. */
5628 if (stmt_ends_bb_p (stmt
))
5629 prop_set_simulate_again (stmt
, true);
5630 else if (!stmt_interesting_for_vrp (stmt
))
5634 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
5635 set_value_range_to_varying (get_value_range (def
));
5636 prop_set_simulate_again (stmt
, false);
5639 prop_set_simulate_again (stmt
, true);
5644 /* Return the singleton value-range for NAME or NAME. */
5647 vrp_valueize (tree name
)
5649 if (TREE_CODE (name
) == SSA_NAME
)
5651 value_range_t
*vr
= get_value_range (name
);
5652 if (vr
->type
== VR_RANGE
5653 && (vr
->min
== vr
->max
5654 || operand_equal_p (vr
->min
, vr
->max
, 0)))
5660 /* Visit assignment STMT. If it produces an interesting range, record
5661 the SSA name in *OUTPUT_P. */
5663 static enum ssa_prop_result
5664 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
5668 enum gimple_code code
= gimple_code (stmt
);
5669 lhs
= gimple_get_lhs (stmt
);
5671 /* We only keep track of ranges in integral and pointer types. */
5672 if (TREE_CODE (lhs
) == SSA_NAME
5673 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
5674 /* It is valid to have NULL MIN/MAX values on a type. See
5675 build_range_type. */
5676 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
5677 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
5678 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
5680 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
5682 /* Try folding the statement to a constant first. */
5683 tree tem
= gimple_fold_stmt_to_constant (stmt
, vrp_valueize
);
5684 if (tem
&& !is_overflow_infinity (tem
))
5685 set_value_range (&new_vr
, VR_RANGE
, tem
, tem
, NULL
);
5686 /* Then dispatch to value-range extracting functions. */
5687 else if (code
== GIMPLE_CALL
)
5688 extract_range_basic (&new_vr
, stmt
);
5690 extract_range_from_assignment (&new_vr
, stmt
);
5692 if (update_value_range (lhs
, &new_vr
))
5696 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5698 fprintf (dump_file
, "Found new range for ");
5699 print_generic_expr (dump_file
, lhs
, 0);
5700 fprintf (dump_file
, ": ");
5701 dump_value_range (dump_file
, &new_vr
);
5702 fprintf (dump_file
, "\n\n");
5705 if (new_vr
.type
== VR_VARYING
)
5706 return SSA_PROP_VARYING
;
5708 return SSA_PROP_INTERESTING
;
5711 return SSA_PROP_NOT_INTERESTING
;
5714 /* Every other statement produces no useful ranges. */
5715 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
5716 set_value_range_to_varying (get_value_range (def
));
5718 return SSA_PROP_VARYING
;
5721 /* Helper that gets the value range of the SSA_NAME with version I
5722 or a symbolic range containing the SSA_NAME only if the value range
5723 is varying or undefined. */
5725 static inline value_range_t
5726 get_vr_for_comparison (int i
)
5728 value_range_t vr
= *get_value_range (ssa_name (i
));
5730 /* If name N_i does not have a valid range, use N_i as its own
5731 range. This allows us to compare against names that may
5732 have N_i in their ranges. */
5733 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
5736 vr
.min
= ssa_name (i
);
5737 vr
.max
= ssa_name (i
);
5743 /* Compare all the value ranges for names equivalent to VAR with VAL
5744 using comparison code COMP. Return the same value returned by
5745 compare_range_with_value, including the setting of
5746 *STRICT_OVERFLOW_P. */
5749 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
5750 bool *strict_overflow_p
)
5756 int used_strict_overflow
;
5758 value_range_t equiv_vr
;
5760 /* Get the set of equivalences for VAR. */
5761 e
= get_value_range (var
)->equiv
;
5763 /* Start at -1. Set it to 0 if we do a comparison without relying
5764 on overflow, or 1 if all comparisons rely on overflow. */
5765 used_strict_overflow
= -1;
5767 /* Compare vars' value range with val. */
5768 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
5770 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5772 used_strict_overflow
= sop
? 1 : 0;
5774 /* If the equiv set is empty we have done all work we need to do. */
5778 && used_strict_overflow
> 0)
5779 *strict_overflow_p
= true;
5783 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
5785 equiv_vr
= get_vr_for_comparison (i
);
5787 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
5790 /* If we get different answers from different members
5791 of the equivalence set this check must be in a dead
5792 code region. Folding it to a trap representation
5793 would be correct here. For now just return don't-know. */
5803 used_strict_overflow
= 0;
5804 else if (used_strict_overflow
< 0)
5805 used_strict_overflow
= 1;
5810 && used_strict_overflow
> 0)
5811 *strict_overflow_p
= true;
5817 /* Given a comparison code COMP and names N1 and N2, compare all the
5818 ranges equivalent to N1 against all the ranges equivalent to N2
5819 to determine the value of N1 COMP N2. Return the same value
5820 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5821 whether we relied on an overflow infinity in the comparison. */
5825 compare_names (enum tree_code comp
, tree n1
, tree n2
,
5826 bool *strict_overflow_p
)
5830 bitmap_iterator bi1
, bi2
;
5832 int used_strict_overflow
;
5833 static bitmap_obstack
*s_obstack
= NULL
;
5834 static bitmap s_e1
= NULL
, s_e2
= NULL
;
5836 /* Compare the ranges of every name equivalent to N1 against the
5837 ranges of every name equivalent to N2. */
5838 e1
= get_value_range (n1
)->equiv
;
5839 e2
= get_value_range (n2
)->equiv
;
5841 /* Use the fake bitmaps if e1 or e2 are not available. */
5842 if (s_obstack
== NULL
)
5844 s_obstack
= XNEW (bitmap_obstack
);
5845 bitmap_obstack_initialize (s_obstack
);
5846 s_e1
= BITMAP_ALLOC (s_obstack
);
5847 s_e2
= BITMAP_ALLOC (s_obstack
);
5854 /* Add N1 and N2 to their own set of equivalences to avoid
5855 duplicating the body of the loop just to check N1 and N2
5857 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
5858 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
5860 /* If the equivalence sets have a common intersection, then the two
5861 names can be compared without checking their ranges. */
5862 if (bitmap_intersect_p (e1
, e2
))
5864 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5865 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5867 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
5869 : boolean_false_node
;
5872 /* Start at -1. Set it to 0 if we do a comparison without relying
5873 on overflow, or 1 if all comparisons rely on overflow. */
5874 used_strict_overflow
= -1;
5876 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5877 N2 to their own set of equivalences to avoid duplicating the body
5878 of the loop just to check N1 and N2 ranges. */
5879 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
5881 value_range_t vr1
= get_vr_for_comparison (i1
);
5883 t
= retval
= NULL_TREE
;
5884 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
5888 value_range_t vr2
= get_vr_for_comparison (i2
);
5890 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
5893 /* If we get different answers from different members
5894 of the equivalence set this check must be in a dead
5895 code region. Folding it to a trap representation
5896 would be correct here. For now just return don't-know. */
5900 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5901 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5907 used_strict_overflow
= 0;
5908 else if (used_strict_overflow
< 0)
5909 used_strict_overflow
= 1;
5915 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5916 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5917 if (used_strict_overflow
> 0)
5918 *strict_overflow_p
= true;
5923 /* None of the equivalent ranges are useful in computing this
5925 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
5926 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
5930 /* Helper function for vrp_evaluate_conditional_warnv. */
5933 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
5935 bool * strict_overflow_p
)
5937 value_range_t
*vr0
, *vr1
;
5939 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
5940 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
5943 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
5944 else if (vr0
&& vr1
== NULL
)
5945 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
5946 else if (vr0
== NULL
&& vr1
)
5947 return (compare_range_with_value
5948 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
5952 /* Helper function for vrp_evaluate_conditional_warnv. */
5955 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
5956 tree op1
, bool use_equiv_p
,
5957 bool *strict_overflow_p
, bool *only_ranges
)
5961 *only_ranges
= true;
5963 /* We only deal with integral and pointer types. */
5964 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5965 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
5971 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
5972 (code
, op0
, op1
, strict_overflow_p
)))
5974 *only_ranges
= false;
5975 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
5976 return compare_names (code
, op0
, op1
, strict_overflow_p
);
5977 else if (TREE_CODE (op0
) == SSA_NAME
)
5978 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
5979 else if (TREE_CODE (op1
) == SSA_NAME
)
5980 return (compare_name_with_value
5981 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
5984 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
5989 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5990 information. Return NULL if the conditional can not be evaluated.
5991 The ranges of all the names equivalent with the operands in COND
5992 will be used when trying to compute the value. If the result is
5993 based on undefined signed overflow, issue a warning if
5997 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
6003 /* Some passes and foldings leak constants with overflow flag set
6004 into the IL. Avoid doing wrong things with these and bail out. */
6005 if ((TREE_CODE (op0
) == INTEGER_CST
6006 && TREE_OVERFLOW (op0
))
6007 || (TREE_CODE (op1
) == INTEGER_CST
6008 && TREE_OVERFLOW (op1
)))
6012 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
6017 enum warn_strict_overflow_code wc
;
6018 const char* warnmsg
;
6020 if (is_gimple_min_invariant (ret
))
6022 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
6023 warnmsg
= G_("assuming signed overflow does not occur when "
6024 "simplifying conditional to constant");
6028 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
6029 warnmsg
= G_("assuming signed overflow does not occur when "
6030 "simplifying conditional");
6033 if (issue_strict_overflow_warning (wc
))
6035 location_t location
;
6037 if (!gimple_has_location (stmt
))
6038 location
= input_location
;
6040 location
= gimple_location (stmt
);
6041 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
6045 if (warn_type_limits
6046 && ret
&& only_ranges
6047 && TREE_CODE_CLASS (code
) == tcc_comparison
6048 && TREE_CODE (op0
) == SSA_NAME
)
6050 /* If the comparison is being folded and the operand on the LHS
6051 is being compared against a constant value that is outside of
6052 the natural range of OP0's type, then the predicate will
6053 always fold regardless of the value of OP0. If -Wtype-limits
6054 was specified, emit a warning. */
6055 tree type
= TREE_TYPE (op0
);
6056 value_range_t
*vr0
= get_value_range (op0
);
6058 if (vr0
->type
!= VR_VARYING
6059 && INTEGRAL_TYPE_P (type
)
6060 && vrp_val_is_min (vr0
->min
)
6061 && vrp_val_is_max (vr0
->max
)
6062 && is_gimple_min_invariant (op1
))
6064 location_t location
;
6066 if (!gimple_has_location (stmt
))
6067 location
= input_location
;
6069 location
= gimple_location (stmt
);
6071 warning_at (location
, OPT_Wtype_limits
,
6073 ? G_("comparison always false "
6074 "due to limited range of data type")
6075 : G_("comparison always true "
6076 "due to limited range of data type"));
6084 /* Visit conditional statement STMT. If we can determine which edge
6085 will be taken out of STMT's basic block, record it in
6086 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6087 SSA_PROP_VARYING. */
6089 static enum ssa_prop_result
6090 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
6095 *taken_edge_p
= NULL
;
6097 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6102 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
6103 print_gimple_stmt (dump_file
, stmt
, 0, 0);
6104 fprintf (dump_file
, "\nWith known ranges\n");
6106 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
6108 fprintf (dump_file
, "\t");
6109 print_generic_expr (dump_file
, use
, 0);
6110 fprintf (dump_file
, ": ");
6111 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
6114 fprintf (dump_file
, "\n");
6117 /* Compute the value of the predicate COND by checking the known
6118 ranges of each of its operands.
6120 Note that we cannot evaluate all the equivalent ranges here
6121 because those ranges may not yet be final and with the current
6122 propagation strategy, we cannot determine when the value ranges
6123 of the names in the equivalence set have changed.
6125 For instance, given the following code fragment
6129 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6133 Assume that on the first visit to i_14, i_5 has the temporary
6134 range [8, 8] because the second argument to the PHI function is
6135 not yet executable. We derive the range ~[0, 0] for i_14 and the
6136 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6137 the first time, since i_14 is equivalent to the range [8, 8], we
6138 determine that the predicate is always false.
6140 On the next round of propagation, i_13 is determined to be
6141 VARYING, which causes i_5 to drop down to VARYING. So, another
6142 visit to i_14 is scheduled. In this second visit, we compute the
6143 exact same range and equivalence set for i_14, namely ~[0, 0] and
6144 { i_5 }. But we did not have the previous range for i_5
6145 registered, so vrp_visit_assignment thinks that the range for
6146 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6147 is not visited again, which stops propagation from visiting
6148 statements in the THEN clause of that if().
6150 To properly fix this we would need to keep the previous range
6151 value for the names in the equivalence set. This way we would've
6152 discovered that from one visit to the other i_5 changed from
6153 range [8, 8] to VR_VARYING.
6155 However, fixing this apparent limitation may not be worth the
6156 additional checking. Testing on several code bases (GCC, DLV,
6157 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6158 4 more predicates folded in SPEC. */
6161 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
6162 gimple_cond_lhs (stmt
),
6163 gimple_cond_rhs (stmt
),
6168 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
6171 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6173 "\nIgnoring predicate evaluation because "
6174 "it assumes that signed overflow is undefined");
6179 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6181 fprintf (dump_file
, "\nPredicate evaluates to: ");
6182 if (val
== NULL_TREE
)
6183 fprintf (dump_file
, "DON'T KNOW\n");
6185 print_generic_stmt (dump_file
, val
, 0);
6188 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
6191 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6192 that includes the value VAL. The search is restricted to the range
6193 [START_IDX, n - 1] where n is the size of VEC.
6195 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6198 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6199 it is placed in IDX and false is returned.
6201 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6205 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
6207 size_t n
= gimple_switch_num_labels (stmt
);
6210 /* Find case label for minimum of the value range or the next one.
6211 At each iteration we are searching in [low, high - 1]. */
6213 for (low
= start_idx
, high
= n
; high
!= low
; )
6217 /* Note that i != high, so we never ask for n. */
6218 size_t i
= (high
+ low
) / 2;
6219 t
= gimple_switch_label (stmt
, i
);
6221 /* Cache the result of comparing CASE_LOW and val. */
6222 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
6226 /* Ranges cannot be empty. */
6235 if (CASE_HIGH (t
) != NULL
6236 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
6248 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6249 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6250 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6251 then MAX_IDX < MIN_IDX.
6252 Returns true if the default label is not needed. */
6255 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
6259 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
6260 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
6264 && max_take_default
)
6266 /* Only the default case label reached.
6267 Return an empty range. */
6274 bool take_default
= min_take_default
|| max_take_default
;
6278 if (max_take_default
)
6281 /* If the case label range is continuous, we do not need
6282 the default case label. Verify that. */
6283 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
6284 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
6285 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
6286 for (k
= i
+ 1; k
<= j
; ++k
)
6288 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
6289 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
6291 take_default
= true;
6295 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
6296 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
6301 return !take_default
;
6305 /* Visit switch statement STMT. If we can determine which edge
6306 will be taken out of STMT's basic block, record it in
6307 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6308 SSA_PROP_VARYING. */
6310 static enum ssa_prop_result
6311 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
6315 size_t i
= 0, j
= 0;
6318 *taken_edge_p
= NULL
;
6319 op
= gimple_switch_index (stmt
);
6320 if (TREE_CODE (op
) != SSA_NAME
)
6321 return SSA_PROP_VARYING
;
6323 vr
= get_value_range (op
);
6324 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6326 fprintf (dump_file
, "\nVisiting switch expression with operand ");
6327 print_generic_expr (dump_file
, op
, 0);
6328 fprintf (dump_file
, " with known range ");
6329 dump_value_range (dump_file
, vr
);
6330 fprintf (dump_file
, "\n");
6333 if (vr
->type
!= VR_RANGE
6334 || symbolic_range_p (vr
))
6335 return SSA_PROP_VARYING
;
6337 /* Find the single edge that is taken from the switch expression. */
6338 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
6340 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6344 gcc_assert (take_default
);
6345 val
= gimple_switch_default_label (stmt
);
6349 /* Check if labels with index i to j and maybe the default label
6350 are all reaching the same label. */
6352 val
= gimple_switch_label (stmt
, i
);
6354 && CASE_LABEL (gimple_switch_default_label (stmt
))
6355 != CASE_LABEL (val
))
6357 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6358 fprintf (dump_file
, " not a single destination for this "
6360 return SSA_PROP_VARYING
;
6362 for (++i
; i
<= j
; ++i
)
6364 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
6366 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6367 fprintf (dump_file
, " not a single destination for this "
6369 return SSA_PROP_VARYING
;
6374 *taken_edge_p
= find_edge (gimple_bb (stmt
),
6375 label_to_block (CASE_LABEL (val
)));
6377 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6379 fprintf (dump_file
, " will take edge to ");
6380 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
6383 return SSA_PROP_INTERESTING
;
6387 /* Evaluate statement STMT. If the statement produces a useful range,
6388 return SSA_PROP_INTERESTING and record the SSA name with the
6389 interesting range into *OUTPUT_P.
6391 If STMT is a conditional branch and we can determine its truth
6392 value, the taken edge is recorded in *TAKEN_EDGE_P.
6394 If STMT produces a varying value, return SSA_PROP_VARYING. */
6396 static enum ssa_prop_result
6397 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
6402 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6404 fprintf (dump_file
, "\nVisiting statement:\n");
6405 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
6406 fprintf (dump_file
, "\n");
6409 if (!stmt_interesting_for_vrp (stmt
))
6410 gcc_assert (stmt_ends_bb_p (stmt
));
6411 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6413 /* In general, assignments with virtual operands are not useful
6414 for deriving ranges, with the obvious exception of calls to
6415 builtin functions. */
6416 if ((is_gimple_call (stmt
)
6417 && gimple_call_fndecl (stmt
) != NULL_TREE
6418 && DECL_BUILT_IN (gimple_call_fndecl (stmt
)))
6419 || !gimple_vuse (stmt
))
6420 return vrp_visit_assignment_or_call (stmt
, output_p
);
6422 else if (gimple_code (stmt
) == GIMPLE_COND
)
6423 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
6424 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
6425 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
6427 /* All other statements produce nothing of interest for VRP, so mark
6428 their outputs varying and prevent further simulation. */
6429 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6430 set_value_range_to_varying (get_value_range (def
));
6432 return SSA_PROP_VARYING
;
6436 /* Meet operation for value ranges. Given two value ranges VR0 and
6437 VR1, store in VR0 a range that contains both VR0 and VR1. This
6438 may not be the smallest possible such range. */
6441 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
6443 if (vr0
->type
== VR_UNDEFINED
)
6445 copy_value_range (vr0
, vr1
);
6449 if (vr1
->type
== VR_UNDEFINED
)
6451 /* Nothing to do. VR0 already has the resulting range. */
6455 if (vr0
->type
== VR_VARYING
)
6457 /* Nothing to do. VR0 already has the resulting range. */
6461 if (vr1
->type
== VR_VARYING
)
6463 set_value_range_to_varying (vr0
);
6467 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
6472 /* Compute the convex hull of the ranges. The lower limit of
6473 the new range is the minimum of the two ranges. If they
6474 cannot be compared, then give up. */
6475 cmp
= compare_values (vr0
->min
, vr1
->min
);
6476 if (cmp
== 0 || cmp
== 1)
6483 /* Similarly, the upper limit of the new range is the maximum
6484 of the two ranges. If they cannot be compared, then
6486 cmp
= compare_values (vr0
->max
, vr1
->max
);
6487 if (cmp
== 0 || cmp
== -1)
6494 /* Check for useless ranges. */
6495 if (INTEGRAL_TYPE_P (TREE_TYPE (min
))
6496 && ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
6497 && (vrp_val_is_max (max
) || is_overflow_infinity (max
))))
6500 /* The resulting set of equivalences is the intersection of
6502 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6503 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6504 else if (vr0
->equiv
&& !vr1
->equiv
)
6505 bitmap_clear (vr0
->equiv
);
6507 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
6509 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
6511 /* Two anti-ranges meet only if their complements intersect.
6512 Only handle the case of identical ranges. */
6513 if (compare_values (vr0
->min
, vr1
->min
) == 0
6514 && compare_values (vr0
->max
, vr1
->max
) == 0
6515 && compare_values (vr0
->min
, vr0
->max
) == 0)
6517 /* The resulting set of equivalences is the intersection of
6519 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6520 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6521 else if (vr0
->equiv
&& !vr1
->equiv
)
6522 bitmap_clear (vr0
->equiv
);
6527 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
6529 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6530 only handle the case where the ranges have an empty intersection.
6531 The result of the meet operation is the anti-range. */
6532 if (!symbolic_range_p (vr0
)
6533 && !symbolic_range_p (vr1
)
6534 && !value_ranges_intersect_p (vr0
, vr1
))
6536 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6537 set. We need to compute the intersection of the two
6538 equivalence sets. */
6539 if (vr1
->type
== VR_ANTI_RANGE
)
6540 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
6542 /* The resulting set of equivalences is the intersection of
6544 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
6545 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
6546 else if (vr0
->equiv
&& !vr1
->equiv
)
6547 bitmap_clear (vr0
->equiv
);
6558 /* Failed to find an efficient meet. Before giving up and setting
6559 the result to VARYING, see if we can at least derive a useful
6560 anti-range. FIXME, all this nonsense about distinguishing
6561 anti-ranges from ranges is necessary because of the odd
6562 semantics of range_includes_zero_p and friends. */
6563 if (!symbolic_range_p (vr0
)
6564 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
6565 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
6566 && !symbolic_range_p (vr1
)
6567 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
6568 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
6570 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
6572 /* Since this meet operation did not result from the meeting of
6573 two equivalent names, VR0 cannot have any equivalences. */
6575 bitmap_clear (vr0
->equiv
);
6578 set_value_range_to_varying (vr0
);
6582 /* Visit all arguments for PHI node PHI that flow through executable
6583 edges. If a valid value range can be derived from all the incoming
6584 value ranges, set a new range for the LHS of PHI. */
6586 static enum ssa_prop_result
6587 vrp_visit_phi_node (gimple phi
)
6590 tree lhs
= PHI_RESULT (phi
);
6591 value_range_t
*lhs_vr
= get_value_range (lhs
);
6592 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6593 int edges
, old_edges
;
6596 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6598 fprintf (dump_file
, "\nVisiting PHI node: ");
6599 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
6603 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
6605 edge e
= gimple_phi_arg_edge (phi
, i
);
6607 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6610 "\n Argument #%d (%d -> %d %sexecutable)\n",
6611 (int) i
, e
->src
->index
, e
->dest
->index
,
6612 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
6615 if (e
->flags
& EDGE_EXECUTABLE
)
6617 tree arg
= PHI_ARG_DEF (phi
, i
);
6618 value_range_t vr_arg
;
6622 if (TREE_CODE (arg
) == SSA_NAME
)
6624 vr_arg
= *(get_value_range (arg
));
6628 if (is_overflow_infinity (arg
))
6630 arg
= copy_node (arg
);
6631 TREE_OVERFLOW (arg
) = 0;
6634 vr_arg
.type
= VR_RANGE
;
6637 vr_arg
.equiv
= NULL
;
6640 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6642 fprintf (dump_file
, "\t");
6643 print_generic_expr (dump_file
, arg
, dump_flags
);
6644 fprintf (dump_file
, "\n\tValue: ");
6645 dump_value_range (dump_file
, &vr_arg
);
6646 fprintf (dump_file
, "\n");
6649 vrp_meet (&vr_result
, &vr_arg
);
6651 if (vr_result
.type
== VR_VARYING
)
6656 if (vr_result
.type
== VR_VARYING
)
6658 else if (vr_result
.type
== VR_UNDEFINED
)
6661 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
6662 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
6664 /* To prevent infinite iterations in the algorithm, derive ranges
6665 when the new value is slightly bigger or smaller than the
6666 previous one. We don't do this if we have seen a new executable
6667 edge; this helps us avoid an overflow infinity for conditionals
6668 which are not in a loop. */
6670 && gimple_phi_num_args (phi
) > 1
6671 && edges
== old_edges
)
6673 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
6674 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
6676 /* For non VR_RANGE or for pointers fall back to varying if
6677 the range changed. */
6678 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
6679 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6680 && (cmp_min
!= 0 || cmp_max
!= 0))
6683 /* If the new minimum is smaller or larger than the previous
6684 one, go all the way to -INF. In the first case, to avoid
6685 iterating millions of times to reach -INF, and in the
6686 other case to avoid infinite bouncing between different
6688 if (cmp_min
> 0 || cmp_min
< 0)
6690 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
6691 || !vrp_var_may_overflow (lhs
, phi
))
6692 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
6693 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
6695 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
6698 /* Similarly, if the new maximum is smaller or larger than
6699 the previous one, go all the way to +INF. */
6700 if (cmp_max
< 0 || cmp_max
> 0)
6702 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
6703 || !vrp_var_may_overflow (lhs
, phi
))
6704 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
6705 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
6707 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
6710 /* If we dropped either bound to +-INF then if this is a loop
6711 PHI node SCEV may known more about its value-range. */
6712 if ((cmp_min
> 0 || cmp_min
< 0
6713 || cmp_max
< 0 || cmp_max
> 0)
6715 && (l
= loop_containing_stmt (phi
))
6716 && l
->header
== gimple_bb (phi
))
6717 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
6719 /* If we will end up with a (-INF, +INF) range, set it to
6720 VARYING. Same if the previous max value was invalid for
6721 the type and we end up with vr_result.min > vr_result.max. */
6722 if ((vrp_val_is_max (vr_result
.max
)
6723 && vrp_val_is_min (vr_result
.min
))
6724 || compare_values (vr_result
.min
,
6729 /* If the new range is different than the previous value, keep
6732 if (update_value_range (lhs
, &vr_result
))
6734 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6736 fprintf (dump_file
, "Found new range for ");
6737 print_generic_expr (dump_file
, lhs
, 0);
6738 fprintf (dump_file
, ": ");
6739 dump_value_range (dump_file
, &vr_result
);
6740 fprintf (dump_file
, "\n\n");
6743 return SSA_PROP_INTERESTING
;
6746 /* Nothing changed, don't add outgoing edges. */
6747 return SSA_PROP_NOT_INTERESTING
;
6749 /* No match found. Set the LHS to VARYING. */
6751 set_value_range_to_varying (lhs_vr
);
6752 return SSA_PROP_VARYING
;
6755 /* Simplify boolean operations if the source is known
6756 to be already a boolean. */
6758 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6760 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6762 bool need_conversion
;
6764 /* We handle only !=/== case here. */
6765 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
6767 op0
= gimple_assign_rhs1 (stmt
);
6768 if (!op_with_boolean_value_range_p (op0
))
6771 op1
= gimple_assign_rhs2 (stmt
);
6772 if (!op_with_boolean_value_range_p (op1
))
6775 /* Reduce number of cases to handle to NE_EXPR. As there is no
6776 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
6777 if (rhs_code
== EQ_EXPR
)
6779 if (TREE_CODE (op1
) == INTEGER_CST
)
6780 op1
= int_const_binop (BIT_XOR_EXPR
, op1
, integer_one_node
);
6785 lhs
= gimple_assign_lhs (stmt
);
6787 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
6789 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
6791 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
6792 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
6793 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
6796 /* For A != 0 we can substitute A itself. */
6797 if (integer_zerop (op1
))
6798 gimple_assign_set_rhs_with_ops (gsi
,
6800 ? NOP_EXPR
: TREE_CODE (op0
),
6802 /* For A != B we substitute A ^ B. Either with conversion. */
6803 else if (need_conversion
)
6806 tree tem
= create_tmp_reg (TREE_TYPE (op0
), NULL
);
6807 newop
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tem
, op0
, op1
);
6808 tem
= make_ssa_name (tem
, newop
);
6809 gimple_assign_set_lhs (newop
, tem
);
6810 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
6811 update_stmt (newop
);
6812 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
, NULL_TREE
);
6816 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
6817 update_stmt (gsi_stmt (*gsi
));
6822 /* Simplify a division or modulo operator to a right shift or
6823 bitwise and if the first operand is unsigned or is greater
6824 than zero and the second operand is an exact power of two. */
6827 simplify_div_or_mod_using_ranges (gimple stmt
)
6829 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
6831 tree op0
= gimple_assign_rhs1 (stmt
);
6832 tree op1
= gimple_assign_rhs2 (stmt
);
6833 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
6835 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
6837 val
= integer_one_node
;
6843 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
6847 && integer_onep (val
)
6848 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6850 location_t location
;
6852 if (!gimple_has_location (stmt
))
6853 location
= input_location
;
6855 location
= gimple_location (stmt
);
6856 warning_at (location
, OPT_Wstrict_overflow
,
6857 "assuming signed overflow does not occur when "
6858 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6862 if (val
&& integer_onep (val
))
6866 if (rhs_code
== TRUNC_DIV_EXPR
)
6868 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
6869 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
6870 gimple_assign_set_rhs1 (stmt
, op0
);
6871 gimple_assign_set_rhs2 (stmt
, t
);
6875 t
= build_int_cst (TREE_TYPE (op1
), 1);
6876 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
6877 t
= fold_convert (TREE_TYPE (op0
), t
);
6879 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
6880 gimple_assign_set_rhs1 (stmt
, op0
);
6881 gimple_assign_set_rhs2 (stmt
, t
);
6891 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6892 ABS_EXPR. If the operand is <= 0, then simplify the
6893 ABS_EXPR into a NEGATE_EXPR. */
6896 simplify_abs_using_ranges (gimple stmt
)
6899 tree op
= gimple_assign_rhs1 (stmt
);
6900 tree type
= TREE_TYPE (op
);
6901 value_range_t
*vr
= get_value_range (op
);
6903 if (TYPE_UNSIGNED (type
))
6905 val
= integer_zero_node
;
6911 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
6915 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
6920 if (integer_zerop (val
))
6921 val
= integer_one_node
;
6922 else if (integer_onep (val
))
6923 val
= integer_zero_node
;
6928 && (integer_onep (val
) || integer_zerop (val
)))
6930 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
6932 location_t location
;
6934 if (!gimple_has_location (stmt
))
6935 location
= input_location
;
6937 location
= gimple_location (stmt
);
6938 warning_at (location
, OPT_Wstrict_overflow
,
6939 "assuming signed overflow does not occur when "
6940 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6943 gimple_assign_set_rhs1 (stmt
, op
);
6944 if (integer_onep (val
))
6945 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
6947 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
6956 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6957 If all the bits that are being cleared by & are already
6958 known to be zero from VR, or all the bits that are being
6959 set by | are already known to be one from VR, the bit
6960 operation is redundant. */
6963 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
6965 tree op0
= gimple_assign_rhs1 (stmt
);
6966 tree op1
= gimple_assign_rhs2 (stmt
);
6967 tree op
= NULL_TREE
;
6968 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6969 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
6970 double_int may_be_nonzero0
, may_be_nonzero1
;
6971 double_int must_be_nonzero0
, must_be_nonzero1
;
6974 if (TREE_CODE (op0
) == SSA_NAME
)
6975 vr0
= *(get_value_range (op0
));
6976 else if (is_gimple_min_invariant (op0
))
6977 set_value_range_to_value (&vr0
, op0
, NULL
);
6981 if (TREE_CODE (op1
) == SSA_NAME
)
6982 vr1
= *(get_value_range (op1
));
6983 else if (is_gimple_min_invariant (op1
))
6984 set_value_range_to_value (&vr1
, op1
, NULL
);
6988 if (!zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
, &must_be_nonzero0
))
6990 if (!zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
, &must_be_nonzero1
))
6993 switch (gimple_assign_rhs_code (stmt
))
6996 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
6997 if (double_int_zero_p (mask
))
7002 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
7003 if (double_int_zero_p (mask
))
7010 mask
= double_int_and_not (may_be_nonzero0
, must_be_nonzero1
);
7011 if (double_int_zero_p (mask
))
7016 mask
= double_int_and_not (may_be_nonzero1
, must_be_nonzero0
);
7017 if (double_int_zero_p (mask
))
7027 if (op
== NULL_TREE
)
7030 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
, NULL
);
7031 update_stmt (gsi_stmt (*gsi
));
7035 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7036 a known value range VR.
7038 If there is one and only one value which will satisfy the
7039 conditional, then return that value. Else return NULL. */
7042 test_for_singularity (enum tree_code cond_code
, tree op0
,
7043 tree op1
, value_range_t
*vr
)
7048 /* Extract minimum/maximum values which satisfy the
7049 the conditional as it was written. */
7050 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
7052 /* This should not be negative infinity; there is no overflow
7054 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
7057 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
7059 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7060 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
7062 TREE_NO_WARNING (max
) = 1;
7065 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
7067 /* This should not be positive infinity; there is no overflow
7069 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
7072 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
7074 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
7075 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
7077 TREE_NO_WARNING (min
) = 1;
7081 /* Now refine the minimum and maximum values using any
7082 value range information we have for op0. */
7085 if (compare_values (vr
->min
, min
) == 1)
7087 if (compare_values (vr
->max
, max
) == -1)
7090 /* If the new min/max values have converged to a single value,
7091 then there is only one value which can satisfy the condition,
7092 return that value. */
7093 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
7099 /* Simplify a conditional using a relational operator to an equality
7100 test if the range information indicates only one value can satisfy
7101 the original conditional. */
7104 simplify_cond_using_ranges (gimple stmt
)
7106 tree op0
= gimple_cond_lhs (stmt
);
7107 tree op1
= gimple_cond_rhs (stmt
);
7108 enum tree_code cond_code
= gimple_cond_code (stmt
);
7110 if (cond_code
!= NE_EXPR
7111 && cond_code
!= EQ_EXPR
7112 && TREE_CODE (op0
) == SSA_NAME
7113 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7114 && is_gimple_min_invariant (op1
))
7116 value_range_t
*vr
= get_value_range (op0
);
7118 /* If we have range information for OP0, then we might be
7119 able to simplify this conditional. */
7120 if (vr
->type
== VR_RANGE
)
7122 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7128 fprintf (dump_file
, "Simplified relational ");
7129 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7130 fprintf (dump_file
, " into ");
7133 gimple_cond_set_code (stmt
, EQ_EXPR
);
7134 gimple_cond_set_lhs (stmt
, op0
);
7135 gimple_cond_set_rhs (stmt
, new_tree
);
7141 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7142 fprintf (dump_file
, "\n");
7148 /* Try again after inverting the condition. We only deal
7149 with integral types here, so no need to worry about
7150 issues with inverting FP comparisons. */
7151 cond_code
= invert_tree_comparison (cond_code
, false);
7152 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
7158 fprintf (dump_file
, "Simplified relational ");
7159 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7160 fprintf (dump_file
, " into ");
7163 gimple_cond_set_code (stmt
, NE_EXPR
);
7164 gimple_cond_set_lhs (stmt
, op0
);
7165 gimple_cond_set_rhs (stmt
, new_tree
);
7171 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7172 fprintf (dump_file
, "\n");
7183 /* Simplify a switch statement using the value range of the switch
7187 simplify_switch_using_ranges (gimple stmt
)
7189 tree op
= gimple_switch_index (stmt
);
7194 size_t i
= 0, j
= 0, n
, n2
;
7198 if (TREE_CODE (op
) == SSA_NAME
)
7200 vr
= get_value_range (op
);
7202 /* We can only handle integer ranges. */
7203 if (vr
->type
!= VR_RANGE
7204 || symbolic_range_p (vr
))
7207 /* Find case label for min/max of the value range. */
7208 take_default
= !find_case_label_range (stmt
, vr
->min
, vr
->max
, &i
, &j
);
7210 else if (TREE_CODE (op
) == INTEGER_CST
)
7212 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
7226 n
= gimple_switch_num_labels (stmt
);
7228 /* Bail out if this is just all edges taken. */
7234 /* Build a new vector of taken case labels. */
7235 vec2
= make_tree_vec (j
- i
+ 1 + (int)take_default
);
7238 /* Add the default edge, if necessary. */
7240 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
7242 for (; i
<= j
; ++i
, ++n2
)
7243 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
7245 /* Mark needed edges. */
7246 for (i
= 0; i
< n2
; ++i
)
7248 e
= find_edge (gimple_bb (stmt
),
7249 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
7250 e
->aux
= (void *)-1;
7253 /* Queue not needed edges for later removal. */
7254 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
7256 if (e
->aux
== (void *)-1)
7262 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7264 fprintf (dump_file
, "removing unreachable case label\n");
7266 VEC_safe_push (edge
, heap
, to_remove_edges
, e
);
7267 e
->flags
&= ~EDGE_EXECUTABLE
;
7270 /* And queue an update for the stmt. */
7273 VEC_safe_push (switch_update
, heap
, to_update_switch_stmts
, &su
);
7277 /* Simplify an integral conversion from an SSA name in STMT. */
7280 simplify_conversion_using_ranges (gimple stmt
)
7282 tree innerop
, middleop
, finaltype
;
7284 value_range_t
*innervr
;
7285 bool inner_unsigned_p
, middle_unsigned_p
, final_unsigned_p
;
7286 unsigned inner_prec
, middle_prec
, final_prec
;
7287 double_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
7289 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
7290 if (!INTEGRAL_TYPE_P (finaltype
))
7292 middleop
= gimple_assign_rhs1 (stmt
);
7293 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
7294 if (!is_gimple_assign (def_stmt
)
7295 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
7297 innerop
= gimple_assign_rhs1 (def_stmt
);
7298 if (TREE_CODE (innerop
) != SSA_NAME
)
7301 /* Get the value-range of the inner operand. */
7302 innervr
= get_value_range (innerop
);
7303 if (innervr
->type
!= VR_RANGE
7304 || TREE_CODE (innervr
->min
) != INTEGER_CST
7305 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
7308 /* Simulate the conversion chain to check if the result is equal if
7309 the middle conversion is removed. */
7310 innermin
= tree_to_double_int (innervr
->min
);
7311 innermax
= tree_to_double_int (innervr
->max
);
7313 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
7314 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
7315 final_prec
= TYPE_PRECISION (finaltype
);
7317 /* If the first conversion is not injective, the second must not
7319 if (double_int_cmp (double_int_sub (innermax
, innermin
),
7320 double_int_mask (middle_prec
), true) > 0
7321 && middle_prec
< final_prec
)
7323 /* We also want a medium value so that we can track the effect that
7324 narrowing conversions with sign change have. */
7325 inner_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (innerop
));
7326 if (inner_unsigned_p
)
7327 innermed
= double_int_rshift (double_int_mask (inner_prec
),
7328 1, inner_prec
, false);
7330 innermed
= double_int_zero
;
7331 if (double_int_cmp (innermin
, innermed
, inner_unsigned_p
) >= 0
7332 || double_int_cmp (innermed
, innermax
, inner_unsigned_p
) >= 0)
7333 innermed
= innermin
;
7335 middle_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (middleop
));
7336 middlemin
= double_int_ext (innermin
, middle_prec
, middle_unsigned_p
);
7337 middlemed
= double_int_ext (innermed
, middle_prec
, middle_unsigned_p
);
7338 middlemax
= double_int_ext (innermax
, middle_prec
, middle_unsigned_p
);
7340 /* Require that the final conversion applied to both the original
7341 and the intermediate range produces the same result. */
7342 final_unsigned_p
= TYPE_UNSIGNED (finaltype
);
7343 if (!double_int_equal_p (double_int_ext (middlemin
,
7344 final_prec
, final_unsigned_p
),
7345 double_int_ext (innermin
,
7346 final_prec
, final_unsigned_p
))
7347 || !double_int_equal_p (double_int_ext (middlemed
,
7348 final_prec
, final_unsigned_p
),
7349 double_int_ext (innermed
,
7350 final_prec
, final_unsigned_p
))
7351 || !double_int_equal_p (double_int_ext (middlemax
,
7352 final_prec
, final_unsigned_p
),
7353 double_int_ext (innermax
,
7354 final_prec
, final_unsigned_p
)))
7357 gimple_assign_set_rhs1 (stmt
, innerop
);
7362 /* Return whether the value range *VR fits in an integer type specified
7363 by PRECISION and UNSIGNED_P. */
7366 range_fits_type_p (value_range_t
*vr
, unsigned precision
, bool unsigned_p
)
7369 unsigned src_precision
;
7372 /* We can only handle integral and pointer types. */
7373 src_type
= TREE_TYPE (vr
->min
);
7374 if (!INTEGRAL_TYPE_P (src_type
)
7375 && !POINTER_TYPE_P (src_type
))
7378 /* An extension is always fine, so is an identity transform. */
7379 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
7380 if (src_precision
< precision
7381 || (src_precision
== precision
7382 && TYPE_UNSIGNED (src_type
) == unsigned_p
))
7385 /* Now we can only handle ranges with constant bounds. */
7386 if (vr
->type
!= VR_RANGE
7387 || TREE_CODE (vr
->min
) != INTEGER_CST
7388 || TREE_CODE (vr
->max
) != INTEGER_CST
)
7391 /* For precision-preserving sign-changes the MSB of the double-int
7393 if (src_precision
== precision
7394 && (TREE_INT_CST_HIGH (vr
->min
) | TREE_INT_CST_HIGH (vr
->max
)) < 0)
7397 /* Then we can perform the conversion on both ends and compare
7398 the result for equality. */
7399 tem
= double_int_ext (tree_to_double_int (vr
->min
), precision
, unsigned_p
);
7400 if (!double_int_equal_p (tree_to_double_int (vr
->min
), tem
))
7402 tem
= double_int_ext (tree_to_double_int (vr
->max
), precision
, unsigned_p
);
7403 if (!double_int_equal_p (tree_to_double_int (vr
->max
), tem
))
7409 /* Simplify a conversion from integral SSA name to float in STMT. */
7412 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
7414 tree rhs1
= gimple_assign_rhs1 (stmt
);
7415 value_range_t
*vr
= get_value_range (rhs1
);
7416 enum machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
7417 enum machine_mode mode
;
7421 /* We can only handle constant ranges. */
7422 if (vr
->type
!= VR_RANGE
7423 || TREE_CODE (vr
->min
) != INTEGER_CST
7424 || TREE_CODE (vr
->max
) != INTEGER_CST
)
7427 /* First check if we can use a signed type in place of an unsigned. */
7428 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
7429 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
7430 != CODE_FOR_nothing
)
7431 && range_fits_type_p (vr
, GET_MODE_PRECISION
7432 (TYPE_MODE (TREE_TYPE (rhs1
))), 0))
7433 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
7434 /* If we can do the conversion in the current input mode do nothing. */
7435 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
7436 TYPE_UNSIGNED (TREE_TYPE (rhs1
))))
7438 /* Otherwise search for a mode we can use, starting from the narrowest
7439 integer mode available. */
7442 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
7445 /* If we cannot do a signed conversion to float from mode
7446 or if the value-range does not fit in the signed type
7447 try with a wider mode. */
7448 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
7449 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), 0))
7452 mode
= GET_MODE_WIDER_MODE (mode
);
7453 /* But do not widen the input. Instead leave that to the
7454 optabs expansion code. */
7455 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
7458 while (mode
!= VOIDmode
);
7459 if (mode
== VOIDmode
)
7463 /* It works, insert a truncation or sign-change before the
7464 float conversion. */
7465 tem
= create_tmp_var (build_nonstandard_integer_type
7466 (GET_MODE_PRECISION (mode
), 0), NULL
);
7467 conv
= gimple_build_assign_with_ops (NOP_EXPR
, tem
, rhs1
, NULL_TREE
);
7468 tem
= make_ssa_name (tem
, conv
);
7469 gimple_assign_set_lhs (conv
, tem
);
7470 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
7471 gimple_assign_set_rhs1 (stmt
, tem
);
7477 /* Simplify STMT using ranges if possible. */
7480 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
7482 gimple stmt
= gsi_stmt (*gsi
);
7483 if (is_gimple_assign (stmt
))
7485 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
7486 tree rhs1
= gimple_assign_rhs1 (stmt
);
7492 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7493 if the RHS is zero or one, and the LHS are known to be boolean
7495 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7496 return simplify_truth_ops_using_ranges (gsi
, stmt
);
7499 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7500 and BIT_AND_EXPR respectively if the first operand is greater
7501 than zero and the second operand is an exact power of two. */
7502 case TRUNC_DIV_EXPR
:
7503 case TRUNC_MOD_EXPR
:
7504 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
7505 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
7506 return simplify_div_or_mod_using_ranges (stmt
);
7509 /* Transform ABS (X) into X or -X as appropriate. */
7511 if (TREE_CODE (rhs1
) == SSA_NAME
7512 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7513 return simplify_abs_using_ranges (stmt
);
7518 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7519 if all the bits being cleared are already cleared or
7520 all the bits being set are already set. */
7521 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7522 return simplify_bit_ops_using_ranges (gsi
, stmt
);
7526 if (TREE_CODE (rhs1
) == SSA_NAME
7527 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7528 return simplify_conversion_using_ranges (stmt
);
7532 if (TREE_CODE (rhs1
) == SSA_NAME
7533 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
7534 return simplify_float_conversion_using_ranges (gsi
, stmt
);
7541 else if (gimple_code (stmt
) == GIMPLE_COND
)
7542 return simplify_cond_using_ranges (stmt
);
7543 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
7544 return simplify_switch_using_ranges (stmt
);
7549 /* If the statement pointed by SI has a predicate whose value can be
7550 computed using the value range information computed by VRP, compute
7551 its value and return true. Otherwise, return false. */
7554 fold_predicate_in (gimple_stmt_iterator
*si
)
7556 bool assignment_p
= false;
7558 gimple stmt
= gsi_stmt (*si
);
7560 if (is_gimple_assign (stmt
)
7561 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
7563 assignment_p
= true;
7564 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
7565 gimple_assign_rhs1 (stmt
),
7566 gimple_assign_rhs2 (stmt
),
7569 else if (gimple_code (stmt
) == GIMPLE_COND
)
7570 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
7571 gimple_cond_lhs (stmt
),
7572 gimple_cond_rhs (stmt
),
7580 val
= fold_convert (gimple_expr_type (stmt
), val
);
7584 fprintf (dump_file
, "Folding predicate ");
7585 print_gimple_expr (dump_file
, stmt
, 0, 0);
7586 fprintf (dump_file
, " to ");
7587 print_generic_expr (dump_file
, val
, 0);
7588 fprintf (dump_file
, "\n");
7591 if (is_gimple_assign (stmt
))
7592 gimple_assign_set_rhs_from_tree (si
, val
);
7595 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
7596 if (integer_zerop (val
))
7597 gimple_cond_make_false (stmt
);
7598 else if (integer_onep (val
))
7599 gimple_cond_make_true (stmt
);
7610 /* Callback for substitute_and_fold folding the stmt at *SI. */
7613 vrp_fold_stmt (gimple_stmt_iterator
*si
)
7615 if (fold_predicate_in (si
))
7618 return simplify_stmt_using_ranges (si
);
7621 /* Stack of dest,src equivalency pairs that need to be restored after
7622 each attempt to thread a block's incoming edge to an outgoing edge.
7624 A NULL entry is used to mark the end of pairs which need to be
7626 static VEC(tree
,heap
) *stack
;
7628 /* A trivial wrapper so that we can present the generic jump threading
7629 code with a simple API for simplifying statements. STMT is the
7630 statement we want to simplify, WITHIN_STMT provides the location
7631 for any overflow warnings. */
7634 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
7636 /* We only use VRP information to simplify conditionals. This is
7637 overly conservative, but it's unclear if doing more would be
7638 worth the compile time cost. */
7639 if (gimple_code (stmt
) != GIMPLE_COND
)
7642 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
7643 gimple_cond_lhs (stmt
),
7644 gimple_cond_rhs (stmt
), within_stmt
);
7647 /* Blocks which have more than one predecessor and more than
7648 one successor present jump threading opportunities, i.e.,
7649 when the block is reached from a specific predecessor, we
7650 may be able to determine which of the outgoing edges will
7651 be traversed. When this optimization applies, we are able
7652 to avoid conditionals at runtime and we may expose secondary
7653 optimization opportunities.
7655 This routine is effectively a driver for the generic jump
7656 threading code. It basically just presents the generic code
7657 with edges that may be suitable for jump threading.
7659 Unlike DOM, we do not iterate VRP if jump threading was successful.
7660 While iterating may expose new opportunities for VRP, it is expected
7661 those opportunities would be very limited and the compile time cost
7662 to expose those opportunities would be significant.
7664 As jump threading opportunities are discovered, they are registered
7665 for later realization. */
7668 identify_jump_threads (void)
7675 /* Ugh. When substituting values earlier in this pass we can
7676 wipe the dominance information. So rebuild the dominator
7677 information as we need it within the jump threading code. */
7678 calculate_dominance_info (CDI_DOMINATORS
);
7680 /* We do not allow VRP information to be used for jump threading
7681 across a back edge in the CFG. Otherwise it becomes too
7682 difficult to avoid eliminating loop exit tests. Of course
7683 EDGE_DFS_BACK is not accurate at this time so we have to
7685 mark_dfs_back_edges ();
7687 /* Do not thread across edges we are about to remove. Just marking
7688 them as EDGE_DFS_BACK will do. */
7689 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7690 e
->flags
|= EDGE_DFS_BACK
;
7692 /* Allocate our unwinder stack to unwind any temporary equivalences
7693 that might be recorded. */
7694 stack
= VEC_alloc (tree
, heap
, 20);
7696 /* To avoid lots of silly node creation, we create a single
7697 conditional and just modify it in-place when attempting to
7699 dummy
= gimple_build_cond (EQ_EXPR
,
7700 integer_zero_node
, integer_zero_node
,
7703 /* Walk through all the blocks finding those which present a
7704 potential jump threading opportunity. We could set this up
7705 as a dominator walker and record data during the walk, but
7706 I doubt it's worth the effort for the classes of jump
7707 threading opportunities we are trying to identify at this
7708 point in compilation. */
7713 /* If the generic jump threading code does not find this block
7714 interesting, then there is nothing to do. */
7715 if (! potentially_threadable_block (bb
))
7718 /* We only care about blocks ending in a COND_EXPR. While there
7719 may be some value in handling SWITCH_EXPR here, I doubt it's
7720 terribly important. */
7721 last
= gsi_stmt (gsi_last_bb (bb
));
7723 /* We're basically looking for a switch or any kind of conditional with
7724 integral or pointer type arguments. Note the type of the second
7725 argument will be the same as the first argument, so no need to
7726 check it explicitly. */
7727 if (gimple_code (last
) == GIMPLE_SWITCH
7728 || (gimple_code (last
) == GIMPLE_COND
7729 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
7730 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
7731 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
7732 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
7733 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
7737 /* We've got a block with multiple predecessors and multiple
7738 successors which also ends in a suitable conditional or
7739 switch statement. For each predecessor, see if we can thread
7740 it to a specific successor. */
7741 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7743 /* Do not thread across back edges or abnormal edges
7745 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
7748 thread_across_edge (dummy
, e
, true, &stack
,
7749 simplify_stmt_for_jump_threading
);
7754 /* We do not actually update the CFG or SSA graphs at this point as
7755 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7756 handle ASSERT_EXPRs gracefully. */
7759 /* We identified all the jump threading opportunities earlier, but could
7760 not transform the CFG at that time. This routine transforms the
7761 CFG and arranges for the dominator tree to be rebuilt if necessary.
7763 Note the SSA graph update will occur during the normal TODO
7764 processing by the pass manager. */
7766 finalize_jump_threads (void)
7768 thread_through_all_blocks (false);
7769 VEC_free (tree
, heap
, stack
);
7773 /* Traverse all the blocks folding conditionals with known ranges. */
7780 values_propagated
= true;
7784 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
7785 dump_all_value_ranges (dump_file
);
7786 fprintf (dump_file
, "\n");
7789 substitute_and_fold (op_with_constant_singleton_value_range
,
7790 vrp_fold_stmt
, false);
7792 if (warn_array_bounds
)
7793 check_all_array_refs ();
7795 /* We must identify jump threading opportunities before we release
7796 the datastructures built by VRP. */
7797 identify_jump_threads ();
7799 /* Free allocated memory. */
7800 for (i
= 0; i
< num_vr_values
; i
++)
7803 BITMAP_FREE (vr_value
[i
]->equiv
);
7808 free (vr_phi_edge_counts
);
7810 /* So that we can distinguish between VRP data being available
7811 and not available. */
7813 vr_phi_edge_counts
= NULL
;
7817 /* Main entry point to VRP (Value Range Propagation). This pass is
7818 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7819 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7820 Programming Language Design and Implementation, pp. 67-78, 1995.
7821 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7823 This is essentially an SSA-CCP pass modified to deal with ranges
7824 instead of constants.
7826 While propagating ranges, we may find that two or more SSA name
7827 have equivalent, though distinct ranges. For instance,
7830 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7832 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7836 In the code above, pointer p_5 has range [q_2, q_2], but from the
7837 code we can also determine that p_5 cannot be NULL and, if q_2 had
7838 a non-varying range, p_5's range should also be compatible with it.
7840 These equivalences are created by two expressions: ASSERT_EXPR and
7841 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7842 result of another assertion, then we can use the fact that p_5 and
7843 p_4 are equivalent when evaluating p_5's range.
7845 Together with value ranges, we also propagate these equivalences
7846 between names so that we can take advantage of information from
7847 multiple ranges when doing final replacement. Note that this
7848 equivalency relation is transitive but not symmetric.
7850 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7851 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7852 in contexts where that assertion does not hold (e.g., in line 6).
7854 TODO, the main difference between this pass and Patterson's is that
7855 we do not propagate edge probabilities. We only compute whether
7856 edges can be taken or not. That is, instead of having a spectrum
7857 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7858 DON'T KNOW. In the future, it may be worthwhile to propagate
7859 probabilities to aid branch prediction. */
7868 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
7869 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
7872 insert_range_assertions ();
7874 /* Estimate number of iterations - but do not use undefined behavior
7875 for this. We can't do this lazily as other functions may compute
7876 this using undefined behavior. */
7877 free_numbers_of_iterations_estimates ();
7878 estimate_numbers_of_iterations (false);
7880 to_remove_edges
= VEC_alloc (edge
, heap
, 10);
7881 to_update_switch_stmts
= VEC_alloc (switch_update
, heap
, 5);
7882 threadedge_initialize_values ();
7885 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
7888 free_numbers_of_iterations_estimates ();
7890 /* ASSERT_EXPRs must be removed before finalizing jump threads
7891 as finalizing jump threads calls the CFG cleanup code which
7892 does not properly handle ASSERT_EXPRs. */
7893 remove_range_assertions ();
7895 /* If we exposed any new variables, go ahead and put them into
7896 SSA form now, before we handle jump threading. This simplifies
7897 interactions between rewriting of _DECL nodes into SSA form
7898 and rewriting SSA_NAME nodes into SSA form after block
7899 duplication and CFG manipulation. */
7900 update_ssa (TODO_update_ssa
);
7902 finalize_jump_threads ();
7904 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7905 CFG in a broken state and requires a cfg_cleanup run. */
7906 FOR_EACH_VEC_ELT (edge
, to_remove_edges
, i
, e
)
7908 /* Update SWITCH_EXPR case label vector. */
7909 FOR_EACH_VEC_ELT (switch_update
, to_update_switch_stmts
, i
, su
)
7912 size_t n
= TREE_VEC_LENGTH (su
->vec
);
7914 gimple_switch_set_num_labels (su
->stmt
, n
);
7915 for (j
= 0; j
< n
; j
++)
7916 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
7917 /* As we may have replaced the default label with a regular one
7918 make sure to make it a real default label again. This ensures
7919 optimal expansion. */
7920 label
= gimple_switch_default_label (su
->stmt
);
7921 CASE_LOW (label
) = NULL_TREE
;
7922 CASE_HIGH (label
) = NULL_TREE
;
7925 if (VEC_length (edge
, to_remove_edges
) > 0)
7926 free_dominance_info (CDI_DOMINATORS
);
7928 VEC_free (edge
, heap
, to_remove_edges
);
7929 VEC_free (switch_update
, heap
, to_update_switch_stmts
);
7930 threadedge_finalize_values ();
7933 loop_optimizer_finalize ();
7940 return flag_tree_vrp
!= 0;
7943 struct gimple_opt_pass pass_vrp
=
7948 gate_vrp
, /* gate */
7949 execute_vrp
, /* execute */
7952 0, /* static_pass_number */
7953 TV_TREE_VRP
, /* tv_id */
7954 PROP_ssa
, /* properties_required */
7955 0, /* properties_provided */
7956 0, /* properties_destroyed */
7957 0, /* todo_flags_start */
7962 | TODO_ggc_collect
/* todo_flags_finish */