(read_braced_string): Check for EOF. If encountered issue an error message.
[official-gcc.git] / gcc / cfganal.c
blob186a6c422d5373f1ac902f3671dd1b3b2a8f40f5
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "toplev.h"
33 #include "tm_p.h"
35 /* Store the data structures necessary for depth-first search. */
36 struct depth_first_search_dsS {
37 /* stack for backtracking during the algorithm */
38 basic_block *stack;
40 /* number of edges in the stack. That is, positions 0, ..., sp-1
41 have edges. */
42 unsigned int sp;
44 /* record of basic blocks already seen by depth-first search */
45 sbitmap visited_blocks;
47 typedef struct depth_first_search_dsS *depth_first_search_ds;
49 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
50 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
51 basic_block);
52 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds);
53 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
54 static void remove_fake_successors (basic_block);
55 static bool need_fake_edge_p (rtx);
56 static bool flow_active_insn_p (rtx);
58 /* Like active_insn_p, except keep the return value clobber around
59 even after reload. */
61 static bool
62 flow_active_insn_p (rtx insn)
64 if (active_insn_p (insn))
65 return true;
67 /* A clobber of the function return value exists for buggy
68 programs that fail to return a value. Its effect is to
69 keep the return value from being live across the entire
70 function. If we allow it to be skipped, we introduce the
71 possibility for register livetime aborts. */
72 if (GET_CODE (PATTERN (insn)) == CLOBBER
73 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG
74 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
75 return true;
77 return false;
80 /* Return true if the block has no effect and only forwards control flow to
81 its single destination. */
83 bool
84 forwarder_block_p (basic_block bb)
86 rtx insn;
88 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
89 || !bb->succ || bb->succ->succ_next)
90 return false;
92 for (insn = bb->head; insn != bb->end; insn = NEXT_INSN (insn))
93 if (INSN_P (insn) && flow_active_insn_p (insn))
94 return false;
96 return (!INSN_P (insn)
97 || (GET_CODE (insn) == JUMP_INSN && simplejump_p (insn))
98 || !flow_active_insn_p (insn));
101 /* Return nonzero if we can reach target from src by falling through. */
103 bool
104 can_fallthru (basic_block src, basic_block target)
106 rtx insn = src->end;
107 rtx insn2 = target->head;
109 if (src->next_bb != target)
110 return 0;
112 if (!active_insn_p (insn2))
113 insn2 = next_active_insn (insn2);
115 /* ??? Later we may add code to move jump tables offline. */
116 return next_active_insn (insn) == insn2;
119 /* Mark the back edges in DFS traversal.
120 Return nonzero if a loop (natural or otherwise) is present.
121 Inspired by Depth_First_Search_PP described in:
123 Advanced Compiler Design and Implementation
124 Steven Muchnick
125 Morgan Kaufmann, 1997
127 and heavily borrowed from flow_depth_first_order_compute. */
129 bool
130 mark_dfs_back_edges (void)
132 edge *stack;
133 int *pre;
134 int *post;
135 int sp;
136 int prenum = 1;
137 int postnum = 1;
138 sbitmap visited;
139 bool found = false;
141 /* Allocate the preorder and postorder number arrays. */
142 pre = (int *) xcalloc (last_basic_block, sizeof (int));
143 post = (int *) xcalloc (last_basic_block, sizeof (int));
145 /* Allocate stack for back-tracking up CFG. */
146 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
147 sp = 0;
149 /* Allocate bitmap to track nodes that have been visited. */
150 visited = sbitmap_alloc (last_basic_block);
152 /* None of the nodes in the CFG have been visited yet. */
153 sbitmap_zero (visited);
155 /* Push the first edge on to the stack. */
156 stack[sp++] = ENTRY_BLOCK_PTR->succ;
158 while (sp)
160 edge e;
161 basic_block src;
162 basic_block dest;
164 /* Look at the edge on the top of the stack. */
165 e = stack[sp - 1];
166 src = e->src;
167 dest = e->dest;
168 e->flags &= ~EDGE_DFS_BACK;
170 /* Check if the edge destination has been visited yet. */
171 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
173 /* Mark that we have visited the destination. */
174 SET_BIT (visited, dest->index);
176 pre[dest->index] = prenum++;
177 if (dest->succ)
179 /* Since the DEST node has been visited for the first
180 time, check its successors. */
181 stack[sp++] = dest->succ;
183 else
184 post[dest->index] = postnum++;
186 else
188 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
189 && pre[src->index] >= pre[dest->index]
190 && post[dest->index] == 0)
191 e->flags |= EDGE_DFS_BACK, found = true;
193 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
194 post[src->index] = postnum++;
196 if (e->succ_next)
197 stack[sp - 1] = e->succ_next;
198 else
199 sp--;
203 free (pre);
204 free (post);
205 free (stack);
206 sbitmap_free (visited);
208 return found;
211 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
213 void
214 set_edge_can_fallthru_flag (void)
216 basic_block bb;
218 FOR_EACH_BB (bb)
220 edge e;
222 for (e = bb->succ; e; e = e->succ_next)
224 e->flags &= ~EDGE_CAN_FALLTHRU;
226 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
227 if (e->flags & EDGE_FALLTHRU)
228 e->flags |= EDGE_CAN_FALLTHRU;
231 /* If the BB ends with an invertible condjump all (2) edges are
232 CAN_FALLTHRU edges. */
233 if (!bb->succ || !bb->succ->succ_next || bb->succ->succ_next->succ_next)
234 continue;
235 if (!any_condjump_p (bb->end))
236 continue;
237 if (!invert_jump (bb->end, JUMP_LABEL (bb->end), 0))
238 continue;
239 invert_jump (bb->end, JUMP_LABEL (bb->end), 0);
240 bb->succ->flags |= EDGE_CAN_FALLTHRU;
241 bb->succ->succ_next->flags |= EDGE_CAN_FALLTHRU;
245 /* Return true if we need to add fake edge to exit.
246 Helper function for the flow_call_edges_add. */
248 static bool
249 need_fake_edge_p (rtx insn)
251 if (!INSN_P (insn))
252 return false;
254 if ((GET_CODE (insn) == CALL_INSN
255 && !SIBLING_CALL_P (insn)
256 && !find_reg_note (insn, REG_NORETURN, NULL)
257 && !find_reg_note (insn, REG_ALWAYS_RETURN, NULL)
258 && !CONST_OR_PURE_CALL_P (insn)))
259 return true;
261 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
262 && MEM_VOLATILE_P (PATTERN (insn)))
263 || (GET_CODE (PATTERN (insn)) == PARALLEL
264 && asm_noperands (insn) != -1
265 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
266 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
269 /* Add fake edges to the function exit for any non constant and non noreturn
270 calls, volatile inline assembly in the bitmap of blocks specified by
271 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
272 that were split.
274 The goal is to expose cases in which entering a basic block does not imply
275 that all subsequent instructions must be executed. */
278 flow_call_edges_add (sbitmap blocks)
280 int i;
281 int blocks_split = 0;
282 int last_bb = last_basic_block;
283 bool check_last_block = false;
285 if (n_basic_blocks == 0)
286 return 0;
288 if (! blocks)
289 check_last_block = true;
290 else
291 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
293 /* In the last basic block, before epilogue generation, there will be
294 a fallthru edge to EXIT. Special care is required if the last insn
295 of the last basic block is a call because make_edge folds duplicate
296 edges, which would result in the fallthru edge also being marked
297 fake, which would result in the fallthru edge being removed by
298 remove_fake_edges, which would result in an invalid CFG.
300 Moreover, we can't elide the outgoing fake edge, since the block
301 profiler needs to take this into account in order to solve the minimal
302 spanning tree in the case that the call doesn't return.
304 Handle this by adding a dummy instruction in a new last basic block. */
305 if (check_last_block)
307 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
308 rtx insn = bb->end;
310 /* Back up past insns that must be kept in the same block as a call. */
311 while (insn != bb->head
312 && keep_with_call_p (insn))
313 insn = PREV_INSN (insn);
315 if (need_fake_edge_p (insn))
317 edge e;
319 for (e = bb->succ; e; e = e->succ_next)
320 if (e->dest == EXIT_BLOCK_PTR)
322 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
323 commit_edge_insertions ();
324 break;
329 /* Now add fake edges to the function exit for any non constant
330 calls since there is no way that we can determine if they will
331 return or not... */
333 for (i = 0; i < last_bb; i++)
335 basic_block bb = BASIC_BLOCK (i);
336 rtx insn;
337 rtx prev_insn;
339 if (!bb)
340 continue;
342 if (blocks && !TEST_BIT (blocks, i))
343 continue;
345 for (insn = bb->end; ; insn = prev_insn)
347 prev_insn = PREV_INSN (insn);
348 if (need_fake_edge_p (insn))
350 edge e;
351 rtx split_at_insn = insn;
353 /* Don't split the block between a call and an insn that should
354 remain in the same block as the call. */
355 if (GET_CODE (insn) == CALL_INSN)
356 while (split_at_insn != bb->end
357 && keep_with_call_p (NEXT_INSN (split_at_insn)))
358 split_at_insn = NEXT_INSN (split_at_insn);
360 /* The handling above of the final block before the epilogue
361 should be enough to verify that there is no edge to the exit
362 block in CFG already. Calling make_edge in such case would
363 cause us to mark that edge as fake and remove it later. */
365 #ifdef ENABLE_CHECKING
366 if (split_at_insn == bb->end)
367 for (e = bb->succ; e; e = e->succ_next)
368 if (e->dest == EXIT_BLOCK_PTR)
369 abort ();
370 #endif
372 /* Note that the following may create a new basic block
373 and renumber the existing basic blocks. */
374 if (split_at_insn != bb->end)
376 e = split_block (bb, split_at_insn);
377 if (e)
378 blocks_split++;
381 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
384 if (insn == bb->head)
385 break;
389 if (blocks_split)
390 verify_flow_info ();
392 return blocks_split;
395 /* Find unreachable blocks. An unreachable block will have 0 in
396 the reachable bit in block->flags. A nonzero value indicates the
397 block is reachable. */
399 void
400 find_unreachable_blocks (void)
402 edge e;
403 basic_block *tos, *worklist, bb;
405 tos = worklist =
406 (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
408 /* Clear all the reachability flags. */
410 FOR_EACH_BB (bb)
411 bb->flags &= ~BB_REACHABLE;
413 /* Add our starting points to the worklist. Almost always there will
414 be only one. It isn't inconceivable that we might one day directly
415 support Fortran alternate entry points. */
417 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
419 *tos++ = e->dest;
421 /* Mark the block reachable. */
422 e->dest->flags |= BB_REACHABLE;
425 /* Iterate: find everything reachable from what we've already seen. */
427 while (tos != worklist)
429 basic_block b = *--tos;
431 for (e = b->succ; e; e = e->succ_next)
432 if (!(e->dest->flags & BB_REACHABLE))
434 *tos++ = e->dest;
435 e->dest->flags |= BB_REACHABLE;
439 free (worklist);
442 /* Functions to access an edge list with a vector representation.
443 Enough data is kept such that given an index number, the
444 pred and succ that edge represents can be determined, or
445 given a pred and a succ, its index number can be returned.
446 This allows algorithms which consume a lot of memory to
447 represent the normally full matrix of edge (pred,succ) with a
448 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
449 wasted space in the client code due to sparse flow graphs. */
451 /* This functions initializes the edge list. Basically the entire
452 flowgraph is processed, and all edges are assigned a number,
453 and the data structure is filled in. */
455 struct edge_list *
456 create_edge_list (void)
458 struct edge_list *elist;
459 edge e;
460 int num_edges;
461 int block_count;
462 basic_block bb;
464 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
466 num_edges = 0;
468 /* Determine the number of edges in the flow graph by counting successor
469 edges on each basic block. */
470 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
472 for (e = bb->succ; e; e = e->succ_next)
473 num_edges++;
476 elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
477 elist->num_blocks = block_count;
478 elist->num_edges = num_edges;
479 elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
481 num_edges = 0;
483 /* Follow successors of blocks, and register these edges. */
484 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
485 for (e = bb->succ; e; e = e->succ_next)
486 elist->index_to_edge[num_edges++] = e;
488 return elist;
491 /* This function free's memory associated with an edge list. */
493 void
494 free_edge_list (struct edge_list *elist)
496 if (elist)
498 free (elist->index_to_edge);
499 free (elist);
503 /* This function provides debug output showing an edge list. */
505 void
506 print_edge_list (FILE *f, struct edge_list *elist)
508 int x;
510 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
511 elist->num_blocks - 2, elist->num_edges);
513 for (x = 0; x < elist->num_edges; x++)
515 fprintf (f, " %-4d - edge(", x);
516 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
517 fprintf (f, "entry,");
518 else
519 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
521 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
522 fprintf (f, "exit)\n");
523 else
524 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
528 /* This function provides an internal consistency check of an edge list,
529 verifying that all edges are present, and that there are no
530 extra edges. */
532 void
533 verify_edge_list (FILE *f, struct edge_list *elist)
535 int pred, succ, index;
536 edge e;
537 basic_block bb, p, s;
539 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
541 for (e = bb->succ; e; e = e->succ_next)
543 pred = e->src->index;
544 succ = e->dest->index;
545 index = EDGE_INDEX (elist, e->src, e->dest);
546 if (index == EDGE_INDEX_NO_EDGE)
548 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
549 continue;
552 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
553 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
554 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
555 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
556 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
557 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
561 /* We've verified that all the edges are in the list, now lets make sure
562 there are no spurious edges in the list. */
564 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
565 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
567 int found_edge = 0;
569 for (e = p->succ; e; e = e->succ_next)
570 if (e->dest == s)
572 found_edge = 1;
573 break;
576 for (e = s->pred; e; e = e->pred_next)
577 if (e->src == p)
579 found_edge = 1;
580 break;
583 if (EDGE_INDEX (elist, p, s)
584 == EDGE_INDEX_NO_EDGE && found_edge != 0)
585 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
586 p->index, s->index);
587 if (EDGE_INDEX (elist, p, s)
588 != EDGE_INDEX_NO_EDGE && found_edge == 0)
589 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
590 p->index, s->index, EDGE_INDEX (elist, p, s));
594 /* This routine will determine what, if any, edge there is between
595 a specified predecessor and successor. */
598 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
600 int x;
602 for (x = 0; x < NUM_EDGES (edge_list); x++)
603 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
604 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
605 return x;
607 return (EDGE_INDEX_NO_EDGE);
610 /* Dump the list of basic blocks in the bitmap NODES. */
612 void
613 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
615 int node;
617 if (! nodes)
618 return;
620 fprintf (file, "%s { ", str);
621 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
622 fputs ("}\n", file);
625 /* Dump the list of edges in the array EDGE_LIST. */
627 void
628 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
630 int i;
632 if (! edge_list)
633 return;
635 fprintf (file, "%s { ", str);
636 for (i = 0; i < num_edges; i++)
637 fprintf (file, "%d->%d ", edge_list[i]->src->index,
638 edge_list[i]->dest->index);
640 fputs ("}\n", file);
644 /* This routine will remove any fake successor edges for a basic block.
645 When the edge is removed, it is also removed from whatever predecessor
646 list it is in. */
648 static void
649 remove_fake_successors (basic_block bb)
651 edge e;
653 for (e = bb->succ; e;)
655 edge tmp = e;
657 e = e->succ_next;
658 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
659 remove_edge (tmp);
663 /* This routine will remove all fake edges from the flow graph. If
664 we remove all fake successors, it will automatically remove all
665 fake predecessors. */
667 void
668 remove_fake_edges (void)
670 basic_block bb;
672 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
673 remove_fake_successors (bb);
676 /* This function will add a fake edge between any block which has no
677 successors, and the exit block. Some data flow equations require these
678 edges to exist. */
680 void
681 add_noreturn_fake_exit_edges (void)
683 basic_block bb;
685 FOR_EACH_BB (bb)
686 if (bb->succ == NULL)
687 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
690 /* This function adds a fake edge between any infinite loops to the
691 exit block. Some optimizations require a path from each node to
692 the exit node.
694 See also Morgan, Figure 3.10, pp. 82-83.
696 The current implementation is ugly, not attempting to minimize the
697 number of inserted fake edges. To reduce the number of fake edges
698 to insert, add fake edges from _innermost_ loops containing only
699 nodes not reachable from the exit block. */
701 void
702 connect_infinite_loops_to_exit (void)
704 basic_block unvisited_block;
705 struct depth_first_search_dsS dfs_ds;
707 /* Perform depth-first search in the reverse graph to find nodes
708 reachable from the exit block. */
709 flow_dfs_compute_reverse_init (&dfs_ds);
710 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
712 /* Repeatedly add fake edges, updating the unreachable nodes. */
713 while (1)
715 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
716 if (!unvisited_block)
717 break;
719 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
720 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
723 flow_dfs_compute_reverse_finish (&dfs_ds);
724 return;
727 /* Compute reverse top sort order */
729 void
730 flow_reverse_top_sort_order_compute (int *rts_order)
732 edge *stack;
733 int sp;
734 int postnum = 0;
735 sbitmap visited;
737 /* Allocate stack for back-tracking up CFG. */
738 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
739 sp = 0;
741 /* Allocate bitmap to track nodes that have been visited. */
742 visited = sbitmap_alloc (last_basic_block);
744 /* None of the nodes in the CFG have been visited yet. */
745 sbitmap_zero (visited);
747 /* Push the first edge on to the stack. */
748 stack[sp++] = ENTRY_BLOCK_PTR->succ;
750 while (sp)
752 edge e;
753 basic_block src;
754 basic_block dest;
756 /* Look at the edge on the top of the stack. */
757 e = stack[sp - 1];
758 src = e->src;
759 dest = e->dest;
761 /* Check if the edge destination has been visited yet. */
762 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
764 /* Mark that we have visited the destination. */
765 SET_BIT (visited, dest->index);
767 if (dest->succ)
768 /* Since the DEST node has been visited for the first
769 time, check its successors. */
770 stack[sp++] = dest->succ;
771 else
772 rts_order[postnum++] = dest->index;
774 else
776 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
777 rts_order[postnum++] = src->index;
779 if (e->succ_next)
780 stack[sp - 1] = e->succ_next;
781 else
782 sp--;
786 free (stack);
787 sbitmap_free (visited);
790 /* Compute the depth first search order and store in the array
791 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
792 RC_ORDER is nonzero, return the reverse completion number for each
793 node. Returns the number of nodes visited. A depth first search
794 tries to get as far away from the starting point as quickly as
795 possible. */
798 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
800 edge *stack;
801 int sp;
802 int dfsnum = 0;
803 int rcnum = n_basic_blocks - 1;
804 sbitmap visited;
806 /* Allocate stack for back-tracking up CFG. */
807 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
808 sp = 0;
810 /* Allocate bitmap to track nodes that have been visited. */
811 visited = sbitmap_alloc (last_basic_block);
813 /* None of the nodes in the CFG have been visited yet. */
814 sbitmap_zero (visited);
816 /* Push the first edge on to the stack. */
817 stack[sp++] = ENTRY_BLOCK_PTR->succ;
819 while (sp)
821 edge e;
822 basic_block src;
823 basic_block dest;
825 /* Look at the edge on the top of the stack. */
826 e = stack[sp - 1];
827 src = e->src;
828 dest = e->dest;
830 /* Check if the edge destination has been visited yet. */
831 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
833 /* Mark that we have visited the destination. */
834 SET_BIT (visited, dest->index);
836 if (dfs_order)
837 dfs_order[dfsnum] = dest->index;
839 dfsnum++;
841 if (dest->succ)
842 /* Since the DEST node has been visited for the first
843 time, check its successors. */
844 stack[sp++] = dest->succ;
845 else if (rc_order)
846 /* There are no successors for the DEST node so assign
847 its reverse completion number. */
848 rc_order[rcnum--] = dest->index;
850 else
852 if (! e->succ_next && src != ENTRY_BLOCK_PTR
853 && rc_order)
854 /* There are no more successors for the SRC node
855 so assign its reverse completion number. */
856 rc_order[rcnum--] = src->index;
858 if (e->succ_next)
859 stack[sp - 1] = e->succ_next;
860 else
861 sp--;
865 free (stack);
866 sbitmap_free (visited);
868 /* The number of nodes visited should not be greater than
869 n_basic_blocks. */
870 if (dfsnum > n_basic_blocks)
871 abort ();
873 /* There are some nodes left in the CFG that are unreachable. */
874 if (dfsnum < n_basic_blocks)
875 abort ();
877 return dfsnum;
880 struct dfst_node
882 unsigned nnodes;
883 struct dfst_node **node;
884 struct dfst_node *up;
887 /* Compute a preorder transversal ordering such that a sub-tree which
888 is the source of a cross edge appears before the sub-tree which is
889 the destination of the cross edge. This allows for easy detection
890 of all the entry blocks for a loop.
892 The ordering is compute by:
894 1) Generating a depth first spanning tree.
896 2) Walking the resulting tree from right to left. */
898 void
899 flow_preorder_transversal_compute (int *pot_order)
901 edge e;
902 edge *stack;
903 int i;
904 int max_successors;
905 int sp;
906 sbitmap visited;
907 struct dfst_node *node;
908 struct dfst_node *dfst;
909 basic_block bb;
911 /* Allocate stack for back-tracking up CFG. */
912 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
913 sp = 0;
915 /* Allocate the tree. */
916 dfst = (struct dfst_node *) xcalloc (last_basic_block,
917 sizeof (struct dfst_node));
919 FOR_EACH_BB (bb)
921 max_successors = 0;
922 for (e = bb->succ; e; e = e->succ_next)
923 max_successors++;
925 dfst[bb->index].node
926 = (max_successors
927 ? (struct dfst_node **) xcalloc (max_successors,
928 sizeof (struct dfst_node *))
929 : NULL);
932 /* Allocate bitmap to track nodes that have been visited. */
933 visited = sbitmap_alloc (last_basic_block);
935 /* None of the nodes in the CFG have been visited yet. */
936 sbitmap_zero (visited);
938 /* Push the first edge on to the stack. */
939 stack[sp++] = ENTRY_BLOCK_PTR->succ;
941 while (sp)
943 basic_block src;
944 basic_block dest;
946 /* Look at the edge on the top of the stack. */
947 e = stack[sp - 1];
948 src = e->src;
949 dest = e->dest;
951 /* Check if the edge destination has been visited yet. */
952 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
954 /* Mark that we have visited the destination. */
955 SET_BIT (visited, dest->index);
957 /* Add the destination to the preorder tree. */
958 if (src != ENTRY_BLOCK_PTR)
960 dfst[src->index].node[dfst[src->index].nnodes++]
961 = &dfst[dest->index];
962 dfst[dest->index].up = &dfst[src->index];
965 if (dest->succ)
966 /* Since the DEST node has been visited for the first
967 time, check its successors. */
968 stack[sp++] = dest->succ;
971 else if (e->succ_next)
972 stack[sp - 1] = e->succ_next;
973 else
974 sp--;
977 free (stack);
978 sbitmap_free (visited);
980 /* Record the preorder transversal order by
981 walking the tree from right to left. */
983 i = 0;
984 node = &dfst[ENTRY_BLOCK_PTR->next_bb->index];
985 pot_order[i++] = 0;
987 while (node)
989 if (node->nnodes)
991 node = node->node[--node->nnodes];
992 pot_order[i++] = node - dfst;
994 else
995 node = node->up;
998 /* Free the tree. */
1000 for (i = 0; i < last_basic_block; i++)
1001 if (dfst[i].node)
1002 free (dfst[i].node);
1004 free (dfst);
1007 /* Compute the depth first search order on the _reverse_ graph and
1008 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1009 Returns the number of nodes visited.
1011 The computation is split into three pieces:
1013 flow_dfs_compute_reverse_init () creates the necessary data
1014 structures.
1016 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1017 structures. The block will start the search.
1019 flow_dfs_compute_reverse_execute () continues (or starts) the
1020 search using the block on the top of the stack, stopping when the
1021 stack is empty.
1023 flow_dfs_compute_reverse_finish () destroys the necessary data
1024 structures.
1026 Thus, the user will probably call ..._init(), call ..._add_bb() to
1027 add a beginning basic block to the stack, call ..._execute(),
1028 possibly add another bb to the stack and again call ..._execute(),
1029 ..., and finally call _finish(). */
1031 /* Initialize the data structures used for depth-first search on the
1032 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1033 added to the basic block stack. DATA is the current depth-first
1034 search context. If INITIALIZE_STACK is nonzero, there is an
1035 element on the stack. */
1037 static void
1038 flow_dfs_compute_reverse_init (depth_first_search_ds data)
1040 /* Allocate stack for back-tracking up CFG. */
1041 data->stack = (basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
1042 * sizeof (basic_block));
1043 data->sp = 0;
1045 /* Allocate bitmap to track nodes that have been visited. */
1046 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
1048 /* None of the nodes in the CFG have been visited yet. */
1049 sbitmap_zero (data->visited_blocks);
1051 return;
1054 /* Add the specified basic block to the top of the dfs data
1055 structures. When the search continues, it will start at the
1056 block. */
1058 static void
1059 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
1061 data->stack[data->sp++] = bb;
1062 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
1065 /* Continue the depth-first search through the reverse graph starting with the
1066 block at the stack's top and ending when the stack is empty. Visited nodes
1067 are marked. Returns an unvisited basic block, or NULL if there is none
1068 available. */
1070 static basic_block
1071 flow_dfs_compute_reverse_execute (depth_first_search_ds data)
1073 basic_block bb;
1074 edge e;
1076 while (data->sp > 0)
1078 bb = data->stack[--data->sp];
1080 /* Perform depth-first search on adjacent vertices. */
1081 for (e = bb->pred; e; e = e->pred_next)
1082 if (!TEST_BIT (data->visited_blocks,
1083 e->src->index - (INVALID_BLOCK + 1)))
1084 flow_dfs_compute_reverse_add_bb (data, e->src);
1087 /* Determine if there are unvisited basic blocks. */
1088 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
1089 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
1090 return bb;
1092 return NULL;
1095 /* Destroy the data structures needed for depth-first search on the
1096 reverse graph. */
1098 static void
1099 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
1101 free (data->stack);
1102 sbitmap_free (data->visited_blocks);
1105 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1106 if REVERSE, go against direction of edges. Returns number of blocks
1107 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1109 dfs_enumerate_from (basic_block bb, int reverse,
1110 bool (*predicate) (basic_block, void *),
1111 basic_block *rslt, int rslt_max, void *data)
1113 basic_block *st, lbb;
1114 int sp = 0, tv = 0;
1116 st = xcalloc (rslt_max, sizeof (basic_block));
1117 rslt[tv++] = st[sp++] = bb;
1118 bb->flags |= BB_VISITED;
1119 while (sp)
1121 edge e;
1122 lbb = st[--sp];
1123 if (reverse)
1125 for (e = lbb->pred; e; e = e->pred_next)
1126 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
1128 if (tv == rslt_max)
1129 abort ();
1130 rslt[tv++] = st[sp++] = e->src;
1131 e->src->flags |= BB_VISITED;
1134 else
1136 for (e = lbb->succ; e; e = e->succ_next)
1137 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
1139 if (tv == rslt_max)
1140 abort ();
1141 rslt[tv++] = st[sp++] = e->dest;
1142 e->dest->flags |= BB_VISITED;
1146 free (st);
1147 for (sp = 0; sp < tv; sp++)
1148 rslt[sp]->flags &= ~BB_VISITED;
1149 return tv;