Typo in ChangeLog entry for PR fortran/42131
[official-gcc.git] / gcc / graphite-interchange.c
blob280a14e6d45844c96b61c85479594e9654bc0975
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "output.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "toplev.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "cfgloop.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-pass.h"
42 #include "domwalk.h"
43 #include "value-prof.h"
44 #include "pointer-set.h"
45 #include "gimple.h"
46 #include "params.h"
48 #ifdef HAVE_cloog
49 #include "cloog/cloog.h"
50 #include "ppl_c.h"
51 #include "sese.h"
52 #include "graphite-ppl.h"
53 #include "graphite.h"
54 #include "graphite-poly.h"
56 /* Builds a linear expression, of dimension DIM, representing PDR's
57 memory access:
59 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
61 For an array A[10][20] with two subscript locations s0 and s1, the
62 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
63 corresponds to a memory stride of 20.
65 OFFSET is a number of dimensions to prepend before the
66 subscript dimensions: s_0, s_1, ..., s_n.
68 Thus, the final linear expression has the following format:
69 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
70 where the expression itself is:
71 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
73 static ppl_Linear_Expression_t
74 build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
76 ppl_Linear_Expression_t res;
77 ppl_Linear_Expression_t le;
78 ppl_dimension_type i;
79 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
80 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
81 Value size, sub_size;
82 graphite_dim_t dim = offset + pdr_dim (pdr);
84 ppl_new_Linear_Expression_with_dimension (&res, dim);
86 value_init (size);
87 value_set_si (size, 1);
88 value_init (sub_size);
89 value_set_si (sub_size, 1);
91 for (i = last - 1; i >= first; i--)
93 ppl_set_coef_gmp (res, i + offset, size);
95 ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
96 ppl_set_coef (le, i, 1);
97 ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
98 value_multiply (size, size, sub_size);
99 ppl_delete_Linear_Expression (le);
102 value_clear (sub_size);
103 value_clear (size);
104 return res;
107 /* Builds a partial difference equations and inserts them
108 into pointset powerset polyhedron P. Polyhedron is assumed
109 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
111 TIME_DEPTH is the time dimension w.r.t. which we are
112 differentiating.
113 OFFSET represents the number of dimensions between
114 columns t_{time_depth} and t'_{time_depth}.
115 DIM_SCTR is the number of scattering dimensions. It is
116 essentially the dimensionality of the T vector.
118 The following equations are inserted into the polyhedron P:
119 | t_1 = t_1'
120 | ...
121 | t_{time_depth-1} = t'_{time_depth-1}
122 | t_{time_depth} = t'_{time_depth} + 1
123 | t_{time_depth+1} = t'_{time_depth + 1}
124 | ...
125 | t_{dim_sctr} = t'_{dim_sctr}. */
127 static void
128 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
129 ppl_dimension_type time_depth,
130 ppl_dimension_type offset,
131 ppl_dimension_type dim_sctr)
133 ppl_Constraint_t new_cstr;
134 ppl_Linear_Expression_t le;
135 ppl_dimension_type i;
136 ppl_dimension_type dim;
137 ppl_Pointset_Powerset_C_Polyhedron_t temp;
139 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
140 This is the core part of this alogrithm, since this
141 constraint asks for the memory access stride (difference)
142 between two consecutive points in time dimensions. */
144 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
145 ppl_new_Linear_Expression_with_dimension (&le, dim);
146 ppl_set_coef (le, time_depth, 1);
147 ppl_set_coef (le, time_depth + offset, -1);
148 ppl_set_inhomogeneous (le, 1);
149 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
150 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
151 ppl_delete_Linear_Expression (le);
152 ppl_delete_Constraint (new_cstr);
154 /* Add equalities:
155 | t1 = t1'
156 | ...
157 | t_{time_depth-1} = t'_{time_depth-1}
158 | t_{time_depth+1} = t'_{time_depth+1}
159 | ...
160 | t_{dim_sctr} = t'_{dim_sctr}
162 This means that all the time dimensions are equal except for
163 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
164 step. More to this: we should be carefull not to add equalities
165 to the 'coupled' dimensions, which happens when the one dimension
166 is stripmined dimension, and the other dimension corresponds
167 to the point loop inside stripmined dimension. */
169 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
171 for (i = 0; i < dim_sctr; i++)
172 if (i != time_depth)
174 ppl_new_Linear_Expression_with_dimension (&le, dim);
175 ppl_set_coef (le, i, 1);
176 ppl_set_coef (le, i + offset, -1);
177 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
178 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
180 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
182 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
183 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
185 else
186 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
187 ppl_delete_Linear_Expression (le);
188 ppl_delete_Constraint (new_cstr);
191 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
195 /* Set STRIDE to the stride of PDR in memory by advancing by one in
196 the loop at DEPTH. */
198 static void
199 memory_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
201 ppl_dimension_type time_depth;
202 ppl_Linear_Expression_t le, lma;
203 ppl_Constraint_t new_cstr;
204 ppl_dimension_type i, *map;
205 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
206 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
207 poly_bb_p pbb = PDR_PBB (pdr);
208 ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
209 + pbb_nb_local_vars (pbb)
210 + pbb_dim_iter_domain (pbb);
211 ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
212 ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
213 + pbb_nb_local_vars (pbb);
214 ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
215 ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
216 ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
218 /* The resulting polyhedron should have the following format:
219 T|I|T'|I'|G|S|S'|l1|l2
220 where:
221 | T = t_1..t_{dim_sctr}
222 | I = i_1..i_{dim_iter_domain}
223 | T'= t'_1..t'_{dim_sctr}
224 | I'= i'_1..i'_{dim_iter_domain}
225 | G = g_1..g_{nb_params}
226 | S = s_1..s_{nb_subscripts}
227 | S'= s'_1..s'_{nb_subscripts}
228 | l1 and l2 are scalars.
230 Some invariants:
231 offset = dim_sctr + dim_iter_domain + nb_local_vars
232 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
234 /* Construct the T|I|0|0|G|0|0|0|0 part. */
236 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
237 (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
238 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
239 (sctr, 2 * nb_subscripts + 2);
240 ppl_insert_dimensions_pointset (sctr, offset, offset);
243 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
245 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
246 (&p1, PDR_ACCESSES (pdr));
247 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
248 (p1, nb_subscripts + 2);
249 ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
250 ppl_insert_dimensions_pointset (p1, offset, offset);
253 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
255 lma = build_linearized_memory_access (offset + dim_sctr, pdr);
256 ppl_set_coef (lma, dim_L1, -1);
257 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
258 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
259 ppl_delete_Linear_Expression (lma);
260 ppl_delete_Constraint (new_cstr);
263 /* Now intersect all the parts to get the polyhedron P1:
264 T|I|0|0|G|0|0|0 |0
265 0|I|0|0|G|S|0|0 |0
266 0|0|0|0|0|S|0|l1|0
267 ------------------
268 T|I|0|0|G|S|0|l1|0. */
270 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
271 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
273 /* Build P2, which would have the following form:
274 0|0|T'|I'|G|0|S'|0|l2
276 P2 is built, by remapping the P1 polyhedron:
277 T|I|0|0|G|S|0|l1|0
279 using the following mapping:
280 T->T'
281 I->I'
282 S->S'
283 l1->l2. */
285 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
286 (&p2, p1);
288 map = ppl_new_id_map (new_dim);
290 /* TI -> T'I'. */
291 for (i = 0; i < offset; i++)
292 ppl_interchange (map, i, i + offset);
294 /* l1 -> l2. */
295 ppl_interchange (map, dim_L1, dim_L2);
297 /* S -> S'. */
298 for (i = 0; i < nb_subscripts; i++)
299 ppl_interchange (map, offset + offsetg + i,
300 offset + offsetg + nb_subscripts + i);
302 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
303 free (map);
306 time_depth = psct_dynamic_dim (pbb, depth);
308 /* P1 = P1 inter P2. */
309 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
310 build_partial_difference (&p1, time_depth, offset, dim_sctr);
312 /* Maximise the expression L2 - L1. */
314 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
315 ppl_set_coef (le, dim_L2, 1);
316 ppl_set_coef (le, dim_L1, -1);
317 ppl_max_for_le_pointset (p1, le, stride);
320 if (dump_file && (dump_flags & TDF_DETAILS))
322 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
323 pbb_index (pbb), PDR_ID (pdr), (int) depth);
324 value_print (dump_file, " %s ", stride);
327 ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
328 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
329 ppl_delete_Linear_Expression (le);
332 /* Sets STRIDES to the sum of all the strides of the data references accessed */
334 static void
335 memory_strides_in_loop_depth (poly_bb_p pbb, graphite_dim_t depth, Value strides)
337 int i;
338 poly_dr_p pdr;
339 Value s, n;
341 value_set_si (strides, 0);
342 value_init (s);
343 value_init (n);
345 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
347 value_set_si (n, PDR_NB_REFS (pdr));
349 memory_stride_in_loop (s, depth, pdr);
350 value_multiply (s, s, n);
351 value_addto (strides, strides, s);
354 value_clear (s);
355 value_clear (n);
358 /* Returns true when it is profitable to interchange time dimensions DEPTH1
359 and DEPTH2 with DEPTH1 < DEPTH2 for PBB.
361 Example:
363 | int a[100][100];
365 | int
366 | foo (int N)
368 | int j;
369 | int i;
371 | for (i = 0; i < N; i++)
372 | for (j = 0; j < N; j++)
373 | a[j][2 * i] += 1;
375 | return a[N][12];
378 The data access A[j][i] is described like this:
380 | i j N a s0 s1 1
381 | 0 0 0 1 0 0 -5 = 0
382 | 0 -1 0 0 1 0 0 = 0
383 |-2 0 0 0 0 1 0 = 0
384 | 0 0 0 0 1 0 0 >= 0
385 | 0 0 0 0 0 1 0 >= 0
386 | 0 0 0 0 -1 0 100 >= 0
387 | 0 0 0 0 0 -1 100 >= 0
389 The linearized memory access L to A[100][100] is:
391 | i j N a s0 s1 1
392 | 0 0 0 0 100 1 0
394 TODO: the shown format is not valid as it does not show the fact
395 that the iteration domain "i j" is transformed using the scattering.
397 Next, to measure the impact of iterating once in loop "i", we build
398 a maximization problem: first, we add to DR accesses the dimensions
399 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
400 L1 and L2 are the linearized memory access functions.
402 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
403 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
404 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
405 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
406 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
407 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
408 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
409 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
410 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
412 Then, we generate the polyhedron P2 by interchanging the dimensions
413 (s0, s2), (s1, s3), (L1, L2), (k, i)
415 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
416 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
417 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
418 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
419 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
420 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
421 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
422 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
423 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
425 then we add to P2 the equality k = i + 1:
427 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
429 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
431 Similarly, to determine the impact of one iteration on loop "j", we
432 interchange (k, j), we add "k = j + 1", and we compute D2 the
433 maximal value of the difference.
435 Finally, the profitability test is D1 < D2: if in the outer loop
436 the strides are smaller than in the inner loop, then it is
437 profitable to interchange the loops at DEPTH1 and DEPTH2. */
439 static bool
440 pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2,
441 poly_bb_p pbb)
443 Value d1, d2;
444 bool res;
446 gcc_assert (depth1 < depth2);
448 value_init (d1);
449 value_init (d2);
451 memory_strides_in_loop_depth (pbb, depth1, d1);
452 memory_strides_in_loop_depth (pbb, depth2, d2);
454 res = value_lt (d1, d2);
456 value_clear (d1);
457 value_clear (d2);
459 return res;
462 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
463 scattering and assigns the resulting polyhedron to the transformed
464 scattering. */
466 static void
467 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
468 poly_bb_p pbb)
470 ppl_dimension_type i, dim;
471 ppl_dimension_type *map;
472 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
473 ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
474 ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
476 ppl_Polyhedron_space_dimension (poly, &dim);
477 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
479 for (i = 0; i < dim; i++)
480 map[i] = i;
482 map[dim1] = dim2;
483 map[dim2] = dim1;
485 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
486 free (map);
489 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
490 the statements below LST. */
492 static void
493 lst_apply_interchange (lst_p lst, int depth1, int depth2)
495 if (!lst)
496 return;
498 if (LST_LOOP_P (lst))
500 int i;
501 lst_p l;
503 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
504 lst_apply_interchange (l, depth1, depth2);
506 else
507 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
510 /* Return true when the interchange of loops at depths DEPTH1 and
511 DEPTH2 to all the statements below LST is profitable. */
513 static bool
514 lst_interchange_profitable_p (lst_p lst, int depth1, int depth2)
516 if (!lst)
517 return false;
519 if (LST_LOOP_P (lst))
521 int i;
522 lst_p l;
523 bool res = false;
525 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
527 bool profitable = lst_interchange_profitable_p (l, depth1, depth2);
529 if (profitable && !LST_LOOP_P (lst)
530 && dump_file && (dump_flags & TDF_DETAILS))
531 fprintf (dump_file,
532 "Interchanging loops at depths %d and %d is profitable for stmt_%d.\n",
533 depth1, depth2, pbb_index (LST_PBB (lst)));
535 res |= profitable;
538 return res;
540 else
541 return pbb_interchange_profitable_p (depth1, depth2, LST_PBB (lst));
544 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
545 perfect: i.e. there are no sequence of statements. */
547 static bool
548 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
550 if (loop1 == loop2)
551 return true;
553 if (!LST_LOOP_P (loop1))
554 return false;
556 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
557 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
560 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
561 nest. To continue the naming tradition, this function is called
562 after perfect_nestify. NEST is set to the perfectly nested loop
563 that is created. BEFORE/AFTER are set to the loops distributed
564 before/after the loop NEST. */
566 static void
567 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
568 lst_p *nest, lst_p *after)
570 poly_bb_p first, last;
572 gcc_assert (loop1 && loop2
573 && loop1 != loop2
574 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
576 first = LST_PBB (lst_find_first_pbb (loop2));
577 last = LST_PBB (lst_find_last_pbb (loop2));
579 *before = copy_lst (loop1);
580 *nest = copy_lst (loop1);
581 *after = copy_lst (loop1);
583 lst_remove_all_before_including_pbb (*before, first, false);
584 lst_remove_all_before_including_pbb (*after, last, true);
586 lst_remove_all_before_excluding_pbb (*nest, first, true);
587 lst_remove_all_before_excluding_pbb (*nest, last, false);
590 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
591 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
592 interchange. CREATED_LOOP_BEFORE/CREATED_LOOP_AFTER are set to
593 true if the loop distribution created a loop before/after LOOP1. */
595 static bool
596 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2,
597 lst_p *before, lst_p *nest, lst_p *after)
599 int depth1 = lst_depth (loop1);
600 int depth2 = lst_depth (loop2);
601 lst_p transformed;
603 *before = NULL;
604 *after = NULL;
605 *nest = NULL;
607 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
608 return false;
610 if (!lst_perfectly_nested_p (loop1, loop2))
611 lst_perfect_nestify (loop1, loop2, before, nest, after);
613 lst_apply_interchange (loop2, depth1, depth2);
615 /* Sync the transformed LST information and the PBB scatterings
616 before using the scatterings in the data dependence analysis. */
617 if (*before || *nest || *after)
619 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
620 *before, *nest, *after);
621 lst_update_scattering (transformed);
622 free_lst (transformed);
625 if (graphite_legal_transform (scop))
627 if (dump_file && (dump_flags & TDF_DETAILS))
628 fprintf (dump_file,
629 "Loops at depths %d and %d will be interchanged.\n",
630 depth1, depth2);
632 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
633 lst_insert_in_sequence (*before, loop1, true);
634 lst_insert_in_sequence (*after, loop1, false);
636 if (*nest)
638 lst_replace (loop1, *nest);
639 free_lst (loop1);
642 return true;
645 /* Undo the transform. */
646 lst_apply_interchange (loop2, depth2, depth1);
647 *before = NULL;
648 *after = NULL;
649 *nest = NULL;
650 return false;
653 static bool lst_do_interchange_1 (scop_p, lst_p, int *);
655 /* Try to interchange LOOP with all the loops contained in the body of
656 LST. Return true if it did interchanged some loops. INDEX points
657 to the next element to be processed by lst_do_interchange. */
659 static bool
660 lst_try_interchange (scop_p scop, lst_p loop, lst_p lst, int *index)
662 int i;
663 lst_p l;
664 lst_p before, nest, after;
665 bool res;
667 if (!lst || !LST_LOOP_P (lst))
668 return false;
670 res = lst_try_interchange_loops (scop, loop, lst, &before, &nest, &after);
672 if (before)
674 res |= lst_do_interchange_1 (scop, before, index);
675 (*index)++;
678 if (nest)
679 res |= lst_do_interchange_1 (scop, nest, index);
680 else
681 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
682 res |= lst_try_interchange (scop, loop, l, index);
684 if (after)
686 res |= lst_do_interchange_1 (scop, after, index);
687 (*index)++;
690 (*index)++;
691 return res;
694 /* Interchanges all the loops of LOOP that are considered profitable
695 to interchange. Return true if it did interchanged some loops.
696 INDEX points to the next element to be processed by
697 lst_do_interchange. */
699 static bool
700 lst_do_interchange_1 (scop_p scop, lst_p loop, int *index)
702 int i;
703 lst_p l;
704 bool res = false;
706 if (!loop || !LST_LOOP_P (loop))
707 return false;
709 for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l); i++)
710 res |= lst_try_interchange (scop, loop, l, index);
712 return res;
715 /* Interchanges all the loops of LOOP and the loops of its body that
716 are considered profitable to interchange. Return true if it did
717 interchanged some loops. INDEX points to the next element to be
718 processed in the LST_SEQ (LOOP) vector. */
720 static bool
721 lst_do_interchange (scop_p scop, lst_p loop, int *index)
723 lst_p l;
724 bool res = false;
726 if (!loop || !LST_LOOP_P (loop))
727 return false;
729 if (lst_depth (loop) >= 0)
730 res = lst_do_interchange_1 (scop, loop, index);
732 while (VEC_iterate (lst_p, LST_SEQ (loop), *index, l))
733 if (LST_LOOP_P (l))
734 res |= lst_do_interchange (scop, l, index);
735 else
736 (*index)++;
738 (*index)++;
739 return res;
742 /* Interchanges all the loop depths that are considered profitable for SCOP. */
744 bool
745 scop_do_interchange (scop_p scop)
747 int i = 0;
748 bool res = lst_do_interchange (scop, SCOP_TRANSFORMED_SCHEDULE (scop), &i);
750 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
752 return res;
756 #endif