Typo in ChangeLog entry for PR fortran/42131
[official-gcc.git] / gcc / function.c
blobb8042d08551897be55660ba4098f00b1694a8fc4
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 tree types_used_by_cur_var_decl = NULL;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function *function_p;
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
170 void
171 push_function_context (void)
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
183 void
184 pop_function_context (void)
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
199 void
200 free_after_parsing (struct function *f)
202 f->language = 0;
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
209 void
210 free_after_compilation (struct function *f)
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
231 HOST_WIDE_INT
232 get_frame_size (void)
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
258 return FALSE;
261 /* Return stack slot alignment in bits for TYPE and MODE. */
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
266 unsigned int alignment;
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
281 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
282 with machine mode MODE.
284 ALIGN controls the amount of alignment for the address of the slot:
285 0 means according to MODE,
286 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
287 -2 means use BITS_PER_UNIT,
288 positive specifies alignment boundary in bits.
290 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
292 We do not round to stack_boundary here. */
295 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
296 int align,
297 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
299 rtx x, addr;
300 int bigend_correction = 0;
301 unsigned int alignment, alignment_in_bits;
302 int frame_off, frame_alignment, frame_phase;
304 if (align == 0)
306 alignment = get_stack_local_alignment (NULL, mode);
307 alignment /= BITS_PER_UNIT;
309 else if (align == -1)
311 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
312 size = CEIL_ROUND (size, alignment);
314 else if (align == -2)
315 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
316 else
317 alignment = align / BITS_PER_UNIT;
319 alignment_in_bits = alignment * BITS_PER_UNIT;
321 if (FRAME_GROWS_DOWNWARD)
322 frame_offset -= size;
324 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
325 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
327 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
328 alignment = alignment_in_bits / BITS_PER_UNIT;
331 if (SUPPORTS_STACK_ALIGNMENT)
333 if (crtl->stack_alignment_estimated < alignment_in_bits)
335 if (!crtl->stack_realign_processed)
336 crtl->stack_alignment_estimated = alignment_in_bits;
337 else
339 /* If stack is realigned and stack alignment value
340 hasn't been finalized, it is OK not to increase
341 stack_alignment_estimated. The bigger alignment
342 requirement is recorded in stack_alignment_needed
343 below. */
344 gcc_assert (!crtl->stack_realign_finalized);
345 if (!crtl->stack_realign_needed)
347 /* It is OK to reduce the alignment as long as the
348 requested size is 0 or the estimated stack
349 alignment >= mode alignment. */
350 gcc_assert (reduce_alignment_ok
351 || size == 0
352 || (crtl->stack_alignment_estimated
353 >= GET_MODE_ALIGNMENT (mode)));
354 alignment_in_bits = crtl->stack_alignment_estimated;
355 alignment = alignment_in_bits / BITS_PER_UNIT;
361 if (crtl->stack_alignment_needed < alignment_in_bits)
362 crtl->stack_alignment_needed = alignment_in_bits;
363 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
364 crtl->max_used_stack_slot_alignment = alignment_in_bits;
366 /* Calculate how many bytes the start of local variables is off from
367 stack alignment. */
368 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
369 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
370 frame_phase = frame_off ? frame_alignment - frame_off : 0;
372 /* Round the frame offset to the specified alignment. The default is
373 to always honor requests to align the stack but a port may choose to
374 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
375 if (STACK_ALIGNMENT_NEEDED
376 || mode != BLKmode
377 || size != 0)
379 /* We must be careful here, since FRAME_OFFSET might be negative and
380 division with a negative dividend isn't as well defined as we might
381 like. So we instead assume that ALIGNMENT is a power of two and
382 use logical operations which are unambiguous. */
383 if (FRAME_GROWS_DOWNWARD)
384 frame_offset
385 = (FLOOR_ROUND (frame_offset - frame_phase,
386 (unsigned HOST_WIDE_INT) alignment)
387 + frame_phase);
388 else
389 frame_offset
390 = (CEIL_ROUND (frame_offset - frame_phase,
391 (unsigned HOST_WIDE_INT) alignment)
392 + frame_phase);
395 /* On a big-endian machine, if we are allocating more space than we will use,
396 use the least significant bytes of those that are allocated. */
397 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
398 bigend_correction = size - GET_MODE_SIZE (mode);
400 /* If we have already instantiated virtual registers, return the actual
401 address relative to the frame pointer. */
402 if (virtuals_instantiated)
403 addr = plus_constant (frame_pointer_rtx,
404 trunc_int_for_mode
405 (frame_offset + bigend_correction
406 + STARTING_FRAME_OFFSET, Pmode));
407 else
408 addr = plus_constant (virtual_stack_vars_rtx,
409 trunc_int_for_mode
410 (frame_offset + bigend_correction,
411 Pmode));
413 if (!FRAME_GROWS_DOWNWARD)
414 frame_offset += size;
416 x = gen_rtx_MEM (mode, addr);
417 set_mem_align (x, alignment_in_bits);
418 MEM_NOTRAP_P (x) = 1;
420 stack_slot_list
421 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
423 if (frame_offset_overflow (frame_offset, current_function_decl))
424 frame_offset = 0;
426 return x;
429 /* Wrap up assign_stack_local_1 with last parameter as false. */
432 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
434 return assign_stack_local_1 (mode, size, align, false);
438 /* In order to evaluate some expressions, such as function calls returning
439 structures in memory, we need to temporarily allocate stack locations.
440 We record each allocated temporary in the following structure.
442 Associated with each temporary slot is a nesting level. When we pop up
443 one level, all temporaries associated with the previous level are freed.
444 Normally, all temporaries are freed after the execution of the statement
445 in which they were created. However, if we are inside a ({...}) grouping,
446 the result may be in a temporary and hence must be preserved. If the
447 result could be in a temporary, we preserve it if we can determine which
448 one it is in. If we cannot determine which temporary may contain the
449 result, all temporaries are preserved. A temporary is preserved by
450 pretending it was allocated at the previous nesting level.
452 Automatic variables are also assigned temporary slots, at the nesting
453 level where they are defined. They are marked a "kept" so that
454 free_temp_slots will not free them. */
456 struct GTY(()) temp_slot {
457 /* Points to next temporary slot. */
458 struct temp_slot *next;
459 /* Points to previous temporary slot. */
460 struct temp_slot *prev;
461 /* The rtx to used to reference the slot. */
462 rtx slot;
463 /* The size, in units, of the slot. */
464 HOST_WIDE_INT size;
465 /* The type of the object in the slot, or zero if it doesn't correspond
466 to a type. We use this to determine whether a slot can be reused.
467 It can be reused if objects of the type of the new slot will always
468 conflict with objects of the type of the old slot. */
469 tree type;
470 /* The alignment (in bits) of the slot. */
471 unsigned int align;
472 /* Nonzero if this temporary is currently in use. */
473 char in_use;
474 /* Nonzero if this temporary has its address taken. */
475 char addr_taken;
476 /* Nesting level at which this slot is being used. */
477 int level;
478 /* Nonzero if this should survive a call to free_temp_slots. */
479 int keep;
480 /* The offset of the slot from the frame_pointer, including extra space
481 for alignment. This info is for combine_temp_slots. */
482 HOST_WIDE_INT base_offset;
483 /* The size of the slot, including extra space for alignment. This
484 info is for combine_temp_slots. */
485 HOST_WIDE_INT full_size;
488 /* A table of addresses that represent a stack slot. The table is a mapping
489 from address RTXen to a temp slot. */
490 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
492 /* Entry for the above hash table. */
493 struct GTY(()) temp_slot_address_entry {
494 hashval_t hash;
495 rtx address;
496 struct temp_slot *temp_slot;
499 /* Removes temporary slot TEMP from LIST. */
501 static void
502 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
504 if (temp->next)
505 temp->next->prev = temp->prev;
506 if (temp->prev)
507 temp->prev->next = temp->next;
508 else
509 *list = temp->next;
511 temp->prev = temp->next = NULL;
514 /* Inserts temporary slot TEMP to LIST. */
516 static void
517 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
519 temp->next = *list;
520 if (*list)
521 (*list)->prev = temp;
522 temp->prev = NULL;
523 *list = temp;
526 /* Returns the list of used temp slots at LEVEL. */
528 static struct temp_slot **
529 temp_slots_at_level (int level)
531 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
532 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
534 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
537 /* Returns the maximal temporary slot level. */
539 static int
540 max_slot_level (void)
542 if (!used_temp_slots)
543 return -1;
545 return VEC_length (temp_slot_p, used_temp_slots) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
558 /* Make temporary slot TEMP available. */
560 static void
561 make_slot_available (struct temp_slot *temp)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
569 /* Compute the hash value for an address -> temp slot mapping.
570 The value is cached on the mapping entry. */
571 static hashval_t
572 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
574 int do_not_record = 0;
575 return hash_rtx (t->address, GET_MODE (t->address),
576 &do_not_record, NULL, false);
579 /* Return the hash value for an address -> temp slot mapping. */
580 static hashval_t
581 temp_slot_address_hash (const void *p)
583 const struct temp_slot_address_entry *t;
584 t = (const struct temp_slot_address_entry *) p;
585 return t->hash;
588 /* Compare two address -> temp slot mapping entries. */
589 static int
590 temp_slot_address_eq (const void *p1, const void *p2)
592 const struct temp_slot_address_entry *t1, *t2;
593 t1 = (const struct temp_slot_address_entry *) p1;
594 t2 = (const struct temp_slot_address_entry *) p2;
595 return exp_equiv_p (t1->address, t2->address, 0, true);
598 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
599 static void
600 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
602 void **slot;
603 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
604 t->address = address;
605 t->temp_slot = temp_slot;
606 t->hash = temp_slot_address_compute_hash (t);
607 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
608 *slot = t;
611 /* Remove an address -> temp slot mapping entry if the temp slot is
612 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
613 static int
614 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
616 const struct temp_slot_address_entry *t;
617 t = (const struct temp_slot_address_entry *) *slot;
618 if (! t->temp_slot->in_use)
619 *slot = NULL;
620 return 1;
623 /* Remove all mappings of addresses to unused temp slots. */
624 static void
625 remove_unused_temp_slot_addresses (void)
627 htab_traverse (temp_slot_address_table,
628 remove_unused_temp_slot_addresses_1,
629 NULL);
632 /* Find the temp slot corresponding to the object at address X. */
634 static struct temp_slot *
635 find_temp_slot_from_address (rtx x)
637 struct temp_slot *p;
638 struct temp_slot_address_entry tmp, *t;
640 /* First try the easy way:
641 See if X exists in the address -> temp slot mapping. */
642 tmp.address = x;
643 tmp.temp_slot = NULL;
644 tmp.hash = temp_slot_address_compute_hash (&tmp);
645 t = (struct temp_slot_address_entry *)
646 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
647 if (t)
648 return t->temp_slot;
650 /* If we have a sum involving a register, see if it points to a temp
651 slot. */
652 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
653 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
654 return p;
655 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
656 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
657 return p;
659 /* Last resort: Address is a virtual stack var address. */
660 if (GET_CODE (x) == PLUS
661 && XEXP (x, 0) == virtual_stack_vars_rtx
662 && CONST_INT_P (XEXP (x, 1)))
664 int i;
665 for (i = max_slot_level (); i >= 0; i--)
666 for (p = *temp_slots_at_level (i); p; p = p->next)
668 if (INTVAL (XEXP (x, 1)) >= p->base_offset
669 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
670 return p;
674 return NULL;
677 /* Allocate a temporary stack slot and record it for possible later
678 reuse.
680 MODE is the machine mode to be given to the returned rtx.
682 SIZE is the size in units of the space required. We do no rounding here
683 since assign_stack_local will do any required rounding.
685 KEEP is 1 if this slot is to be retained after a call to
686 free_temp_slots. Automatic variables for a block are allocated
687 with this flag. KEEP values of 2 or 3 were needed respectively
688 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
689 or for SAVE_EXPRs, but they are now unused.
691 TYPE is the type that will be used for the stack slot. */
694 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
695 int keep, tree type)
697 unsigned int align;
698 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
699 rtx slot;
701 /* If SIZE is -1 it means that somebody tried to allocate a temporary
702 of a variable size. */
703 gcc_assert (size != -1);
705 /* These are now unused. */
706 gcc_assert (keep <= 1);
708 align = get_stack_local_alignment (type, mode);
710 /* Try to find an available, already-allocated temporary of the proper
711 mode which meets the size and alignment requirements. Choose the
712 smallest one with the closest alignment.
714 If assign_stack_temp is called outside of the tree->rtl expansion,
715 we cannot reuse the stack slots (that may still refer to
716 VIRTUAL_STACK_VARS_REGNUM). */
717 if (!virtuals_instantiated)
719 for (p = avail_temp_slots; p; p = p->next)
721 if (p->align >= align && p->size >= size
722 && GET_MODE (p->slot) == mode
723 && objects_must_conflict_p (p->type, type)
724 && (best_p == 0 || best_p->size > p->size
725 || (best_p->size == p->size && best_p->align > p->align)))
727 if (p->align == align && p->size == size)
729 selected = p;
730 cut_slot_from_list (selected, &avail_temp_slots);
731 best_p = 0;
732 break;
734 best_p = p;
739 /* Make our best, if any, the one to use. */
740 if (best_p)
742 selected = best_p;
743 cut_slot_from_list (selected, &avail_temp_slots);
745 /* If there are enough aligned bytes left over, make them into a new
746 temp_slot so that the extra bytes don't get wasted. Do this only
747 for BLKmode slots, so that we can be sure of the alignment. */
748 if (GET_MODE (best_p->slot) == BLKmode)
750 int alignment = best_p->align / BITS_PER_UNIT;
751 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
753 if (best_p->size - rounded_size >= alignment)
755 p = GGC_NEW (struct temp_slot);
756 p->in_use = p->addr_taken = 0;
757 p->size = best_p->size - rounded_size;
758 p->base_offset = best_p->base_offset + rounded_size;
759 p->full_size = best_p->full_size - rounded_size;
760 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
761 p->align = best_p->align;
762 p->type = best_p->type;
763 insert_slot_to_list (p, &avail_temp_slots);
765 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
766 stack_slot_list);
768 best_p->size = rounded_size;
769 best_p->full_size = rounded_size;
774 /* If we still didn't find one, make a new temporary. */
775 if (selected == 0)
777 HOST_WIDE_INT frame_offset_old = frame_offset;
779 p = GGC_NEW (struct temp_slot);
781 /* We are passing an explicit alignment request to assign_stack_local.
782 One side effect of that is assign_stack_local will not round SIZE
783 to ensure the frame offset remains suitably aligned.
785 So for requests which depended on the rounding of SIZE, we go ahead
786 and round it now. We also make sure ALIGNMENT is at least
787 BIGGEST_ALIGNMENT. */
788 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
789 p->slot = assign_stack_local (mode,
790 (mode == BLKmode
791 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
792 : size),
793 align);
795 p->align = align;
797 /* The following slot size computation is necessary because we don't
798 know the actual size of the temporary slot until assign_stack_local
799 has performed all the frame alignment and size rounding for the
800 requested temporary. Note that extra space added for alignment
801 can be either above or below this stack slot depending on which
802 way the frame grows. We include the extra space if and only if it
803 is above this slot. */
804 if (FRAME_GROWS_DOWNWARD)
805 p->size = frame_offset_old - frame_offset;
806 else
807 p->size = size;
809 /* Now define the fields used by combine_temp_slots. */
810 if (FRAME_GROWS_DOWNWARD)
812 p->base_offset = frame_offset;
813 p->full_size = frame_offset_old - frame_offset;
815 else
817 p->base_offset = frame_offset_old;
818 p->full_size = frame_offset - frame_offset_old;
821 selected = p;
824 p = selected;
825 p->in_use = 1;
826 p->addr_taken = 0;
827 p->type = type;
828 p->level = temp_slot_level;
829 p->keep = keep;
831 pp = temp_slots_at_level (p->level);
832 insert_slot_to_list (p, pp);
833 insert_temp_slot_address (XEXP (p->slot, 0), p);
835 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
836 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
837 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
839 /* If we know the alias set for the memory that will be used, use
840 it. If there's no TYPE, then we don't know anything about the
841 alias set for the memory. */
842 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
843 set_mem_align (slot, align);
845 /* If a type is specified, set the relevant flags. */
846 if (type != 0)
848 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
849 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
850 || TREE_CODE (type) == COMPLEX_TYPE));
852 MEM_NOTRAP_P (slot) = 1;
854 return slot;
857 /* Allocate a temporary stack slot and record it for possible later
858 reuse. First three arguments are same as in preceding function. */
861 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
863 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
866 /* Assign a temporary.
867 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
868 and so that should be used in error messages. In either case, we
869 allocate of the given type.
870 KEEP is as for assign_stack_temp.
871 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
872 it is 0 if a register is OK.
873 DONT_PROMOTE is 1 if we should not promote values in register
874 to wider modes. */
877 assign_temp (tree type_or_decl, int keep, int memory_required,
878 int dont_promote ATTRIBUTE_UNUSED)
880 tree type, decl;
881 enum machine_mode mode;
882 #ifdef PROMOTE_MODE
883 int unsignedp;
884 #endif
886 if (DECL_P (type_or_decl))
887 decl = type_or_decl, type = TREE_TYPE (decl);
888 else
889 decl = NULL, type = type_or_decl;
891 mode = TYPE_MODE (type);
892 #ifdef PROMOTE_MODE
893 unsignedp = TYPE_UNSIGNED (type);
894 #endif
896 if (mode == BLKmode || memory_required)
898 HOST_WIDE_INT size = int_size_in_bytes (type);
899 rtx tmp;
901 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
902 problems with allocating the stack space. */
903 if (size == 0)
904 size = 1;
906 /* Unfortunately, we don't yet know how to allocate variable-sized
907 temporaries. However, sometimes we can find a fixed upper limit on
908 the size, so try that instead. */
909 else if (size == -1)
910 size = max_int_size_in_bytes (type);
912 /* The size of the temporary may be too large to fit into an integer. */
913 /* ??? Not sure this should happen except for user silliness, so limit
914 this to things that aren't compiler-generated temporaries. The
915 rest of the time we'll die in assign_stack_temp_for_type. */
916 if (decl && size == -1
917 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
919 error ("size of variable %q+D is too large", decl);
920 size = 1;
923 tmp = assign_stack_temp_for_type (mode, size, keep, type);
924 return tmp;
927 #ifdef PROMOTE_MODE
928 if (! dont_promote)
929 mode = promote_mode (type, mode, &unsignedp);
930 #endif
932 return gen_reg_rtx (mode);
935 /* Combine temporary stack slots which are adjacent on the stack.
937 This allows for better use of already allocated stack space. This is only
938 done for BLKmode slots because we can be sure that we won't have alignment
939 problems in this case. */
941 static void
942 combine_temp_slots (void)
944 struct temp_slot *p, *q, *next, *next_q;
945 int num_slots;
947 /* We can't combine slots, because the information about which slot
948 is in which alias set will be lost. */
949 if (flag_strict_aliasing)
950 return;
952 /* If there are a lot of temp slots, don't do anything unless
953 high levels of optimization. */
954 if (! flag_expensive_optimizations)
955 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
956 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
957 return;
959 for (p = avail_temp_slots; p; p = next)
961 int delete_p = 0;
963 next = p->next;
965 if (GET_MODE (p->slot) != BLKmode)
966 continue;
968 for (q = p->next; q; q = next_q)
970 int delete_q = 0;
972 next_q = q->next;
974 if (GET_MODE (q->slot) != BLKmode)
975 continue;
977 if (p->base_offset + p->full_size == q->base_offset)
979 /* Q comes after P; combine Q into P. */
980 p->size += q->size;
981 p->full_size += q->full_size;
982 delete_q = 1;
984 else if (q->base_offset + q->full_size == p->base_offset)
986 /* P comes after Q; combine P into Q. */
987 q->size += p->size;
988 q->full_size += p->full_size;
989 delete_p = 1;
990 break;
992 if (delete_q)
993 cut_slot_from_list (q, &avail_temp_slots);
996 /* Either delete P or advance past it. */
997 if (delete_p)
998 cut_slot_from_list (p, &avail_temp_slots);
1002 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1003 slot that previously was known by OLD_RTX. */
1005 void
1006 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1008 struct temp_slot *p;
1010 if (rtx_equal_p (old_rtx, new_rtx))
1011 return;
1013 p = find_temp_slot_from_address (old_rtx);
1015 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1016 NEW_RTX is a register, see if one operand of the PLUS is a
1017 temporary location. If so, NEW_RTX points into it. Otherwise,
1018 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1019 in common between them. If so, try a recursive call on those
1020 values. */
1021 if (p == 0)
1023 if (GET_CODE (old_rtx) != PLUS)
1024 return;
1026 if (REG_P (new_rtx))
1028 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1029 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1030 return;
1032 else if (GET_CODE (new_rtx) != PLUS)
1033 return;
1035 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1039 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1040 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1041 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1042 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1044 return;
1047 /* Otherwise add an alias for the temp's address. */
1048 insert_temp_slot_address (new_rtx, p);
1051 /* If X could be a reference to a temporary slot, mark the fact that its
1052 address was taken. */
1054 void
1055 mark_temp_addr_taken (rtx x)
1057 struct temp_slot *p;
1059 if (x == 0)
1060 return;
1062 /* If X is not in memory or is at a constant address, it cannot be in
1063 a temporary slot. */
1064 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1065 return;
1067 p = find_temp_slot_from_address (XEXP (x, 0));
1068 if (p != 0)
1069 p->addr_taken = 1;
1072 /* If X could be a reference to a temporary slot, mark that slot as
1073 belonging to the to one level higher than the current level. If X
1074 matched one of our slots, just mark that one. Otherwise, we can't
1075 easily predict which it is, so upgrade all of them. Kept slots
1076 need not be touched.
1078 This is called when an ({...}) construct occurs and a statement
1079 returns a value in memory. */
1081 void
1082 preserve_temp_slots (rtx x)
1084 struct temp_slot *p = 0, *next;
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1088 if (x == 0)
1090 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1092 next = p->next;
1094 if (p->addr_taken)
1095 move_slot_to_level (p, temp_slot_level - 1);
1098 return;
1101 /* If X is a register that is being used as a pointer, see if we have
1102 a temporary slot we know it points to. To be consistent with
1103 the code below, we really should preserve all non-kept slots
1104 if we can't find a match, but that seems to be much too costly. */
1105 if (REG_P (x) && REG_POINTER (x))
1106 p = find_temp_slot_from_address (x);
1108 /* If X is not in memory or is at a constant address, it cannot be in
1109 a temporary slot, but it can contain something whose address was
1110 taken. */
1111 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1113 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1115 next = p->next;
1117 if (p->addr_taken)
1118 move_slot_to_level (p, temp_slot_level - 1);
1121 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1134 if (p->level == temp_slot_level)
1136 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1138 next = q->next;
1140 if (p != q && q->addr_taken)
1141 move_slot_to_level (q, temp_slot_level - 1);
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 p->addr_taken = 0;
1147 return;
1150 /* Otherwise, preserve all non-kept slots at this level. */
1151 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1153 next = p->next;
1155 if (!p->keep)
1156 move_slot_to_level (p, temp_slot_level - 1);
1160 /* Free all temporaries used so far. This is normally called at the
1161 end of generating code for a statement. */
1163 void
1164 free_temp_slots (void)
1166 struct temp_slot *p, *next;
1168 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1170 next = p->next;
1172 if (!p->keep)
1173 make_slot_available (p);
1176 remove_unused_temp_slot_addresses ();
1177 combine_temp_slots ();
1180 /* Push deeper into the nesting level for stack temporaries. */
1182 void
1183 push_temp_slots (void)
1185 temp_slot_level++;
1188 /* Pop a temporary nesting level. All slots in use in the current level
1189 are freed. */
1191 void
1192 pop_temp_slots (void)
1194 struct temp_slot *p, *next;
1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1198 next = p->next;
1199 make_slot_available (p);
1202 remove_unused_temp_slot_addresses ();
1203 combine_temp_slots ();
1205 temp_slot_level--;
1208 /* Initialize temporary slots. */
1210 void
1211 init_temp_slots (void)
1213 /* We have not allocated any temporaries yet. */
1214 avail_temp_slots = 0;
1215 used_temp_slots = 0;
1216 temp_slot_level = 0;
1218 /* Set up the table to map addresses to temp slots. */
1219 if (! temp_slot_address_table)
1220 temp_slot_address_table = htab_create_ggc (32,
1221 temp_slot_address_hash,
1222 temp_slot_address_eq,
1223 NULL);
1224 else
1225 htab_empty (temp_slot_address_table);
1228 /* These routines are responsible for converting virtual register references
1229 to the actual hard register references once RTL generation is complete.
1231 The following four variables are used for communication between the
1232 routines. They contain the offsets of the virtual registers from their
1233 respective hard registers. */
1235 static int in_arg_offset;
1236 static int var_offset;
1237 static int dynamic_offset;
1238 static int out_arg_offset;
1239 static int cfa_offset;
1241 /* In most machines, the stack pointer register is equivalent to the bottom
1242 of the stack. */
1244 #ifndef STACK_POINTER_OFFSET
1245 #define STACK_POINTER_OFFSET 0
1246 #endif
1248 /* If not defined, pick an appropriate default for the offset of dynamically
1249 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1250 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1252 #ifndef STACK_DYNAMIC_OFFSET
1254 /* The bottom of the stack points to the actual arguments. If
1255 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1256 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1257 stack space for register parameters is not pushed by the caller, but
1258 rather part of the fixed stack areas and hence not included in
1259 `crtl->outgoing_args_size'. Nevertheless, we must allow
1260 for it when allocating stack dynamic objects. */
1262 #if defined(REG_PARM_STACK_SPACE)
1263 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1264 ((ACCUMULATE_OUTGOING_ARGS \
1265 ? (crtl->outgoing_args_size \
1266 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1267 : REG_PARM_STACK_SPACE (FNDECL))) \
1268 : 0) + (STACK_POINTER_OFFSET))
1269 #else
1270 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1271 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1272 + (STACK_POINTER_OFFSET))
1273 #endif
1274 #endif
1277 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1278 is a virtual register, return the equivalent hard register and set the
1279 offset indirectly through the pointer. Otherwise, return 0. */
1281 static rtx
1282 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1284 rtx new_rtx;
1285 HOST_WIDE_INT offset;
1287 if (x == virtual_incoming_args_rtx)
1289 if (stack_realign_drap)
1291 /* Replace virtual_incoming_args_rtx with internal arg
1292 pointer if DRAP is used to realign stack. */
1293 new_rtx = crtl->args.internal_arg_pointer;
1294 offset = 0;
1296 else
1297 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1299 else if (x == virtual_stack_vars_rtx)
1300 new_rtx = frame_pointer_rtx, offset = var_offset;
1301 else if (x == virtual_stack_dynamic_rtx)
1302 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1303 else if (x == virtual_outgoing_args_rtx)
1304 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1305 else if (x == virtual_cfa_rtx)
1307 #ifdef FRAME_POINTER_CFA_OFFSET
1308 new_rtx = frame_pointer_rtx;
1309 #else
1310 new_rtx = arg_pointer_rtx;
1311 #endif
1312 offset = cfa_offset;
1314 else
1315 return NULL_RTX;
1317 *poffset = offset;
1318 return new_rtx;
1321 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1322 Instantiate any virtual registers present inside of *LOC. The expression
1323 is simplified, as much as possible, but is not to be considered "valid"
1324 in any sense implied by the target. If any change is made, set CHANGED
1325 to true. */
1327 static int
1328 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1330 HOST_WIDE_INT offset;
1331 bool *changed = (bool *) data;
1332 rtx x, new_rtx;
1334 x = *loc;
1335 if (x == 0)
1336 return 0;
1338 switch (GET_CODE (x))
1340 case REG:
1341 new_rtx = instantiate_new_reg (x, &offset);
1342 if (new_rtx)
1344 *loc = plus_constant (new_rtx, offset);
1345 if (changed)
1346 *changed = true;
1348 return -1;
1350 case PLUS:
1351 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1352 if (new_rtx)
1354 new_rtx = plus_constant (new_rtx, offset);
1355 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1356 if (changed)
1357 *changed = true;
1358 return -1;
1361 /* FIXME -- from old code */
1362 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1363 we can commute the PLUS and SUBREG because pointers into the
1364 frame are well-behaved. */
1365 break;
1367 default:
1368 break;
1371 return 0;
1374 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1375 matches the predicate for insn CODE operand OPERAND. */
1377 static int
1378 safe_insn_predicate (int code, int operand, rtx x)
1380 const struct insn_operand_data *op_data;
1382 if (code < 0)
1383 return true;
1385 op_data = &insn_data[code].operand[operand];
1386 if (op_data->predicate == NULL)
1387 return true;
1389 return op_data->predicate (x, op_data->mode);
1392 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1393 registers present inside of insn. The result will be a valid insn. */
1395 static void
1396 instantiate_virtual_regs_in_insn (rtx insn)
1398 HOST_WIDE_INT offset;
1399 int insn_code, i;
1400 bool any_change = false;
1401 rtx set, new_rtx, x, seq;
1403 /* There are some special cases to be handled first. */
1404 set = single_set (insn);
1405 if (set)
1407 /* We're allowed to assign to a virtual register. This is interpreted
1408 to mean that the underlying register gets assigned the inverse
1409 transformation. This is used, for example, in the handling of
1410 non-local gotos. */
1411 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1412 if (new_rtx)
1414 start_sequence ();
1416 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1417 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1418 GEN_INT (-offset));
1419 x = force_operand (x, new_rtx);
1420 if (x != new_rtx)
1421 emit_move_insn (new_rtx, x);
1423 seq = get_insns ();
1424 end_sequence ();
1426 emit_insn_before (seq, insn);
1427 delete_insn (insn);
1428 return;
1431 /* Handle a straight copy from a virtual register by generating a
1432 new add insn. The difference between this and falling through
1433 to the generic case is avoiding a new pseudo and eliminating a
1434 move insn in the initial rtl stream. */
1435 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1436 if (new_rtx && offset != 0
1437 && REG_P (SET_DEST (set))
1438 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1440 start_sequence ();
1442 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1443 new_rtx, GEN_INT (offset), SET_DEST (set),
1444 1, OPTAB_LIB_WIDEN);
1445 if (x != SET_DEST (set))
1446 emit_move_insn (SET_DEST (set), x);
1448 seq = get_insns ();
1449 end_sequence ();
1451 emit_insn_before (seq, insn);
1452 delete_insn (insn);
1453 return;
1456 extract_insn (insn);
1457 insn_code = INSN_CODE (insn);
1459 /* Handle a plus involving a virtual register by determining if the
1460 operands remain valid if they're modified in place. */
1461 if (GET_CODE (SET_SRC (set)) == PLUS
1462 && recog_data.n_operands >= 3
1463 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1464 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1465 && CONST_INT_P (recog_data.operand[2])
1466 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1468 offset += INTVAL (recog_data.operand[2]);
1470 /* If the sum is zero, then replace with a plain move. */
1471 if (offset == 0
1472 && REG_P (SET_DEST (set))
1473 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1475 start_sequence ();
1476 emit_move_insn (SET_DEST (set), new_rtx);
1477 seq = get_insns ();
1478 end_sequence ();
1480 emit_insn_before (seq, insn);
1481 delete_insn (insn);
1482 return;
1485 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1487 /* Using validate_change and apply_change_group here leaves
1488 recog_data in an invalid state. Since we know exactly what
1489 we want to check, do those two by hand. */
1490 if (safe_insn_predicate (insn_code, 1, new_rtx)
1491 && safe_insn_predicate (insn_code, 2, x))
1493 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1494 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1495 any_change = true;
1497 /* Fall through into the regular operand fixup loop in
1498 order to take care of operands other than 1 and 2. */
1502 else
1504 extract_insn (insn);
1505 insn_code = INSN_CODE (insn);
1508 /* In the general case, we expect virtual registers to appear only in
1509 operands, and then only as either bare registers or inside memories. */
1510 for (i = 0; i < recog_data.n_operands; ++i)
1512 x = recog_data.operand[i];
1513 switch (GET_CODE (x))
1515 case MEM:
1517 rtx addr = XEXP (x, 0);
1518 bool changed = false;
1520 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1521 if (!changed)
1522 continue;
1524 start_sequence ();
1525 x = replace_equiv_address (x, addr);
1526 /* It may happen that the address with the virtual reg
1527 was valid (e.g. based on the virtual stack reg, which might
1528 be acceptable to the predicates with all offsets), whereas
1529 the address now isn't anymore, for instance when the address
1530 is still offsetted, but the base reg isn't virtual-stack-reg
1531 anymore. Below we would do a force_reg on the whole operand,
1532 but this insn might actually only accept memory. Hence,
1533 before doing that last resort, try to reload the address into
1534 a register, so this operand stays a MEM. */
1535 if (!safe_insn_predicate (insn_code, i, x))
1537 addr = force_reg (GET_MODE (addr), addr);
1538 x = replace_equiv_address (x, addr);
1540 seq = get_insns ();
1541 end_sequence ();
1542 if (seq)
1543 emit_insn_before (seq, insn);
1545 break;
1547 case REG:
1548 new_rtx = instantiate_new_reg (x, &offset);
1549 if (new_rtx == NULL)
1550 continue;
1551 if (offset == 0)
1552 x = new_rtx;
1553 else
1555 start_sequence ();
1557 /* Careful, special mode predicates may have stuff in
1558 insn_data[insn_code].operand[i].mode that isn't useful
1559 to us for computing a new value. */
1560 /* ??? Recognize address_operand and/or "p" constraints
1561 to see if (plus new offset) is a valid before we put
1562 this through expand_simple_binop. */
1563 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1564 GEN_INT (offset), NULL_RTX,
1565 1, OPTAB_LIB_WIDEN);
1566 seq = get_insns ();
1567 end_sequence ();
1568 emit_insn_before (seq, insn);
1570 break;
1572 case SUBREG:
1573 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1574 if (new_rtx == NULL)
1575 continue;
1576 if (offset != 0)
1578 start_sequence ();
1579 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1580 GEN_INT (offset), NULL_RTX,
1581 1, OPTAB_LIB_WIDEN);
1582 seq = get_insns ();
1583 end_sequence ();
1584 emit_insn_before (seq, insn);
1586 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1587 GET_MODE (new_rtx), SUBREG_BYTE (x));
1588 gcc_assert (x);
1589 break;
1591 default:
1592 continue;
1595 /* At this point, X contains the new value for the operand.
1596 Validate the new value vs the insn predicate. Note that
1597 asm insns will have insn_code -1 here. */
1598 if (!safe_insn_predicate (insn_code, i, x))
1600 start_sequence ();
1601 if (REG_P (x))
1603 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1604 x = copy_to_reg (x);
1606 else
1607 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1608 seq = get_insns ();
1609 end_sequence ();
1610 if (seq)
1611 emit_insn_before (seq, insn);
1614 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1615 any_change = true;
1618 if (any_change)
1620 /* Propagate operand changes into the duplicates. */
1621 for (i = 0; i < recog_data.n_dups; ++i)
1622 *recog_data.dup_loc[i]
1623 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1625 /* Force re-recognition of the instruction for validation. */
1626 INSN_CODE (insn) = -1;
1629 if (asm_noperands (PATTERN (insn)) >= 0)
1631 if (!check_asm_operands (PATTERN (insn)))
1633 error_for_asm (insn, "impossible constraint in %<asm%>");
1634 delete_insn (insn);
1637 else
1639 if (recog_memoized (insn) < 0)
1640 fatal_insn_not_found (insn);
1644 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1645 do any instantiation required. */
1647 void
1648 instantiate_decl_rtl (rtx x)
1650 rtx addr;
1652 if (x == 0)
1653 return;
1655 /* If this is a CONCAT, recurse for the pieces. */
1656 if (GET_CODE (x) == CONCAT)
1658 instantiate_decl_rtl (XEXP (x, 0));
1659 instantiate_decl_rtl (XEXP (x, 1));
1660 return;
1663 /* If this is not a MEM, no need to do anything. Similarly if the
1664 address is a constant or a register that is not a virtual register. */
1665 if (!MEM_P (x))
1666 return;
1668 addr = XEXP (x, 0);
1669 if (CONSTANT_P (addr)
1670 || (REG_P (addr)
1671 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1672 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1673 return;
1675 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1678 /* Helper for instantiate_decls called via walk_tree: Process all decls
1679 in the given DECL_VALUE_EXPR. */
1681 static tree
1682 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1684 tree t = *tp;
1685 if (! EXPR_P (t))
1687 *walk_subtrees = 0;
1688 if (DECL_P (t) && DECL_RTL_SET_P (t))
1689 instantiate_decl_rtl (DECL_RTL (t));
1691 return NULL;
1694 /* Subroutine of instantiate_decls: Process all decls in the given
1695 BLOCK node and all its subblocks. */
1697 static void
1698 instantiate_decls_1 (tree let)
1700 tree t;
1702 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1704 if (DECL_RTL_SET_P (t))
1705 instantiate_decl_rtl (DECL_RTL (t));
1706 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1708 tree v = DECL_VALUE_EXPR (t);
1709 walk_tree (&v, instantiate_expr, NULL, NULL);
1713 /* Process all subblocks. */
1714 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1715 instantiate_decls_1 (t);
1718 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1719 all virtual registers in their DECL_RTL's. */
1721 static void
1722 instantiate_decls (tree fndecl)
1724 tree decl, t, next;
1726 /* Process all parameters of the function. */
1727 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1729 instantiate_decl_rtl (DECL_RTL (decl));
1730 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1731 if (DECL_HAS_VALUE_EXPR_P (decl))
1733 tree v = DECL_VALUE_EXPR (decl);
1734 walk_tree (&v, instantiate_expr, NULL, NULL);
1738 /* Now process all variables defined in the function or its subblocks. */
1739 instantiate_decls_1 (DECL_INITIAL (fndecl));
1741 t = cfun->local_decls;
1742 cfun->local_decls = NULL_TREE;
1743 for (; t; t = next)
1745 next = TREE_CHAIN (t);
1746 decl = TREE_VALUE (t);
1747 if (DECL_RTL_SET_P (decl))
1748 instantiate_decl_rtl (DECL_RTL (decl));
1749 ggc_free (t);
1753 /* Pass through the INSNS of function FNDECL and convert virtual register
1754 references to hard register references. */
1756 static unsigned int
1757 instantiate_virtual_regs (void)
1759 rtx insn;
1761 /* Compute the offsets to use for this function. */
1762 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1763 var_offset = STARTING_FRAME_OFFSET;
1764 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1765 out_arg_offset = STACK_POINTER_OFFSET;
1766 #ifdef FRAME_POINTER_CFA_OFFSET
1767 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1768 #else
1769 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1770 #endif
1772 /* Initialize recognition, indicating that volatile is OK. */
1773 init_recog ();
1775 /* Scan through all the insns, instantiating every virtual register still
1776 present. */
1777 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1778 if (INSN_P (insn))
1780 /* These patterns in the instruction stream can never be recognized.
1781 Fortunately, they shouldn't contain virtual registers either. */
1782 if (GET_CODE (PATTERN (insn)) == USE
1783 || GET_CODE (PATTERN (insn)) == CLOBBER
1784 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1785 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1786 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1787 continue;
1788 else if (DEBUG_INSN_P (insn))
1789 for_each_rtx (&INSN_VAR_LOCATION (insn),
1790 instantiate_virtual_regs_in_rtx, NULL);
1791 else
1792 instantiate_virtual_regs_in_insn (insn);
1794 if (INSN_DELETED_P (insn))
1795 continue;
1797 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1799 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1800 if (CALL_P (insn))
1801 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1802 instantiate_virtual_regs_in_rtx, NULL);
1805 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1806 instantiate_decls (current_function_decl);
1808 targetm.instantiate_decls ();
1810 /* Indicate that, from now on, assign_stack_local should use
1811 frame_pointer_rtx. */
1812 virtuals_instantiated = 1;
1813 return 0;
1816 struct rtl_opt_pass pass_instantiate_virtual_regs =
1819 RTL_PASS,
1820 "vregs", /* name */
1821 NULL, /* gate */
1822 instantiate_virtual_regs, /* execute */
1823 NULL, /* sub */
1824 NULL, /* next */
1825 0, /* static_pass_number */
1826 TV_NONE, /* tv_id */
1827 0, /* properties_required */
1828 0, /* properties_provided */
1829 0, /* properties_destroyed */
1830 0, /* todo_flags_start */
1831 TODO_dump_func /* todo_flags_finish */
1836 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1837 This means a type for which function calls must pass an address to the
1838 function or get an address back from the function.
1839 EXP may be a type node or an expression (whose type is tested). */
1842 aggregate_value_p (const_tree exp, const_tree fntype)
1844 int i, regno, nregs;
1845 rtx reg;
1847 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1849 /* DECL node associated with FNTYPE when relevant, which we might need to
1850 check for by-invisible-reference returns, typically for CALL_EXPR input
1851 EXPressions. */
1852 const_tree fndecl = NULL_TREE;
1854 if (fntype)
1855 switch (TREE_CODE (fntype))
1857 case CALL_EXPR:
1858 fndecl = get_callee_fndecl (fntype);
1859 fntype = (fndecl
1860 ? TREE_TYPE (fndecl)
1861 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1862 break;
1863 case FUNCTION_DECL:
1864 fndecl = fntype;
1865 fntype = TREE_TYPE (fndecl);
1866 break;
1867 case FUNCTION_TYPE:
1868 case METHOD_TYPE:
1869 break;
1870 case IDENTIFIER_NODE:
1871 fntype = 0;
1872 break;
1873 default:
1874 /* We don't expect other rtl types here. */
1875 gcc_unreachable ();
1878 if (TREE_CODE (type) == VOID_TYPE)
1879 return 0;
1881 /* If the front end has decided that this needs to be passed by
1882 reference, do so. */
1883 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1884 && DECL_BY_REFERENCE (exp))
1885 return 1;
1887 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1888 called function RESULT_DECL, meaning the function returns in memory by
1889 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1890 on the function type, which used to be the way to request such a return
1891 mechanism but might now be causing troubles at gimplification time if
1892 temporaries with the function type need to be created. */
1893 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1894 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1895 return 1;
1897 if (targetm.calls.return_in_memory (type, fntype))
1898 return 1;
1899 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1900 and thus can't be returned in registers. */
1901 if (TREE_ADDRESSABLE (type))
1902 return 1;
1903 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1904 return 1;
1905 /* Make sure we have suitable call-clobbered regs to return
1906 the value in; if not, we must return it in memory. */
1907 reg = hard_function_value (type, 0, fntype, 0);
1909 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1910 it is OK. */
1911 if (!REG_P (reg))
1912 return 0;
1914 regno = REGNO (reg);
1915 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1916 for (i = 0; i < nregs; i++)
1917 if (! call_used_regs[regno + i])
1918 return 1;
1919 return 0;
1922 /* Return true if we should assign DECL a pseudo register; false if it
1923 should live on the local stack. */
1925 bool
1926 use_register_for_decl (const_tree decl)
1928 if (!targetm.calls.allocate_stack_slots_for_args())
1929 return true;
1931 /* Honor volatile. */
1932 if (TREE_SIDE_EFFECTS (decl))
1933 return false;
1935 /* Honor addressability. */
1936 if (TREE_ADDRESSABLE (decl))
1937 return false;
1939 /* Only register-like things go in registers. */
1940 if (DECL_MODE (decl) == BLKmode)
1941 return false;
1943 /* If -ffloat-store specified, don't put explicit float variables
1944 into registers. */
1945 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1946 propagates values across these stores, and it probably shouldn't. */
1947 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1948 return false;
1950 /* If we're not interested in tracking debugging information for
1951 this decl, then we can certainly put it in a register. */
1952 if (DECL_IGNORED_P (decl))
1953 return true;
1955 if (optimize)
1956 return true;
1958 if (!DECL_REGISTER (decl))
1959 return false;
1961 switch (TREE_CODE (TREE_TYPE (decl)))
1963 case RECORD_TYPE:
1964 case UNION_TYPE:
1965 case QUAL_UNION_TYPE:
1966 /* When not optimizing, disregard register keyword for variables with
1967 types containing methods, otherwise the methods won't be callable
1968 from the debugger. */
1969 if (TYPE_METHODS (TREE_TYPE (decl)))
1970 return false;
1971 break;
1972 default:
1973 break;
1976 return true;
1979 /* Return true if TYPE should be passed by invisible reference. */
1981 bool
1982 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1983 tree type, bool named_arg)
1985 if (type)
1987 /* If this type contains non-trivial constructors, then it is
1988 forbidden for the middle-end to create any new copies. */
1989 if (TREE_ADDRESSABLE (type))
1990 return true;
1992 /* GCC post 3.4 passes *all* variable sized types by reference. */
1993 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1994 return true;
1997 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2000 /* Return true if TYPE, which is passed by reference, should be callee
2001 copied instead of caller copied. */
2003 bool
2004 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2005 tree type, bool named_arg)
2007 if (type && TREE_ADDRESSABLE (type))
2008 return false;
2009 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2012 /* Structures to communicate between the subroutines of assign_parms.
2013 The first holds data persistent across all parameters, the second
2014 is cleared out for each parameter. */
2016 struct assign_parm_data_all
2018 CUMULATIVE_ARGS args_so_far;
2019 struct args_size stack_args_size;
2020 tree function_result_decl;
2021 tree orig_fnargs;
2022 rtx first_conversion_insn;
2023 rtx last_conversion_insn;
2024 HOST_WIDE_INT pretend_args_size;
2025 HOST_WIDE_INT extra_pretend_bytes;
2026 int reg_parm_stack_space;
2029 struct assign_parm_data_one
2031 tree nominal_type;
2032 tree passed_type;
2033 rtx entry_parm;
2034 rtx stack_parm;
2035 enum machine_mode nominal_mode;
2036 enum machine_mode passed_mode;
2037 enum machine_mode promoted_mode;
2038 struct locate_and_pad_arg_data locate;
2039 int partial;
2040 BOOL_BITFIELD named_arg : 1;
2041 BOOL_BITFIELD passed_pointer : 1;
2042 BOOL_BITFIELD on_stack : 1;
2043 BOOL_BITFIELD loaded_in_reg : 1;
2046 /* A subroutine of assign_parms. Initialize ALL. */
2048 static void
2049 assign_parms_initialize_all (struct assign_parm_data_all *all)
2051 tree fntype;
2053 memset (all, 0, sizeof (*all));
2055 fntype = TREE_TYPE (current_function_decl);
2057 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2058 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2059 #else
2060 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2061 current_function_decl, -1);
2062 #endif
2064 #ifdef REG_PARM_STACK_SPACE
2065 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2066 #endif
2069 /* If ARGS contains entries with complex types, split the entry into two
2070 entries of the component type. Return a new list of substitutions are
2071 needed, else the old list. */
2073 static tree
2074 split_complex_args (tree args)
2076 tree p;
2078 /* Before allocating memory, check for the common case of no complex. */
2079 for (p = args; p; p = TREE_CHAIN (p))
2081 tree type = TREE_TYPE (p);
2082 if (TREE_CODE (type) == COMPLEX_TYPE
2083 && targetm.calls.split_complex_arg (type))
2084 goto found;
2086 return args;
2088 found:
2089 args = copy_list (args);
2091 for (p = args; p; p = TREE_CHAIN (p))
2093 tree type = TREE_TYPE (p);
2094 if (TREE_CODE (type) == COMPLEX_TYPE
2095 && targetm.calls.split_complex_arg (type))
2097 tree decl;
2098 tree subtype = TREE_TYPE (type);
2099 bool addressable = TREE_ADDRESSABLE (p);
2101 /* Rewrite the PARM_DECL's type with its component. */
2102 TREE_TYPE (p) = subtype;
2103 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2104 DECL_MODE (p) = VOIDmode;
2105 DECL_SIZE (p) = NULL;
2106 DECL_SIZE_UNIT (p) = NULL;
2107 /* If this arg must go in memory, put it in a pseudo here.
2108 We can't allow it to go in memory as per normal parms,
2109 because the usual place might not have the imag part
2110 adjacent to the real part. */
2111 DECL_ARTIFICIAL (p) = addressable;
2112 DECL_IGNORED_P (p) = addressable;
2113 TREE_ADDRESSABLE (p) = 0;
2114 layout_decl (p, 0);
2116 /* Build a second synthetic decl. */
2117 decl = build_decl (EXPR_LOCATION (p),
2118 PARM_DECL, NULL_TREE, subtype);
2119 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2120 DECL_ARTIFICIAL (decl) = addressable;
2121 DECL_IGNORED_P (decl) = addressable;
2122 layout_decl (decl, 0);
2124 /* Splice it in; skip the new decl. */
2125 TREE_CHAIN (decl) = TREE_CHAIN (p);
2126 TREE_CHAIN (p) = decl;
2127 p = decl;
2131 return args;
2134 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2135 the hidden struct return argument, and (abi willing) complex args.
2136 Return the new parameter list. */
2138 static tree
2139 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2141 tree fndecl = current_function_decl;
2142 tree fntype = TREE_TYPE (fndecl);
2143 tree fnargs = DECL_ARGUMENTS (fndecl);
2145 /* If struct value address is treated as the first argument, make it so. */
2146 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2147 && ! cfun->returns_pcc_struct
2148 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2150 tree type = build_pointer_type (TREE_TYPE (fntype));
2151 tree decl;
2153 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2154 PARM_DECL, NULL_TREE, type);
2155 DECL_ARG_TYPE (decl) = type;
2156 DECL_ARTIFICIAL (decl) = 1;
2157 DECL_IGNORED_P (decl) = 1;
2159 TREE_CHAIN (decl) = fnargs;
2160 fnargs = decl;
2161 all->function_result_decl = decl;
2164 all->orig_fnargs = fnargs;
2166 /* If the target wants to split complex arguments into scalars, do so. */
2167 if (targetm.calls.split_complex_arg)
2168 fnargs = split_complex_args (fnargs);
2170 return fnargs;
2173 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2174 data for the parameter. Incorporate ABI specifics such as pass-by-
2175 reference and type promotion. */
2177 static void
2178 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2179 struct assign_parm_data_one *data)
2181 tree nominal_type, passed_type;
2182 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2183 int unsignedp;
2185 memset (data, 0, sizeof (*data));
2187 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2188 if (!cfun->stdarg)
2189 data->named_arg = 1; /* No variadic parms. */
2190 else if (TREE_CHAIN (parm))
2191 data->named_arg = 1; /* Not the last non-variadic parm. */
2192 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2193 data->named_arg = 1; /* Only variadic ones are unnamed. */
2194 else
2195 data->named_arg = 0; /* Treat as variadic. */
2197 nominal_type = TREE_TYPE (parm);
2198 passed_type = DECL_ARG_TYPE (parm);
2200 /* Look out for errors propagating this far. Also, if the parameter's
2201 type is void then its value doesn't matter. */
2202 if (TREE_TYPE (parm) == error_mark_node
2203 /* This can happen after weird syntax errors
2204 or if an enum type is defined among the parms. */
2205 || TREE_CODE (parm) != PARM_DECL
2206 || passed_type == NULL
2207 || VOID_TYPE_P (nominal_type))
2209 nominal_type = passed_type = void_type_node;
2210 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2211 goto egress;
2214 /* Find mode of arg as it is passed, and mode of arg as it should be
2215 during execution of this function. */
2216 passed_mode = TYPE_MODE (passed_type);
2217 nominal_mode = TYPE_MODE (nominal_type);
2219 /* If the parm is to be passed as a transparent union, use the type of
2220 the first field for the tests below. We have already verified that
2221 the modes are the same. */
2222 if (TREE_CODE (passed_type) == UNION_TYPE
2223 && TYPE_TRANSPARENT_UNION (passed_type))
2224 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2226 /* See if this arg was passed by invisible reference. */
2227 if (pass_by_reference (&all->args_so_far, passed_mode,
2228 passed_type, data->named_arg))
2230 passed_type = nominal_type = build_pointer_type (passed_type);
2231 data->passed_pointer = true;
2232 passed_mode = nominal_mode = Pmode;
2235 /* Find mode as it is passed by the ABI. */
2236 unsignedp = TYPE_UNSIGNED (passed_type);
2237 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2238 TREE_TYPE (current_function_decl), 0);
2240 egress:
2241 data->nominal_type = nominal_type;
2242 data->passed_type = passed_type;
2243 data->nominal_mode = nominal_mode;
2244 data->passed_mode = passed_mode;
2245 data->promoted_mode = promoted_mode;
2248 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2250 static void
2251 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2252 struct assign_parm_data_one *data, bool no_rtl)
2254 int varargs_pretend_bytes = 0;
2256 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2257 data->promoted_mode,
2258 data->passed_type,
2259 &varargs_pretend_bytes, no_rtl);
2261 /* If the back-end has requested extra stack space, record how much is
2262 needed. Do not change pretend_args_size otherwise since it may be
2263 nonzero from an earlier partial argument. */
2264 if (varargs_pretend_bytes > 0)
2265 all->pretend_args_size = varargs_pretend_bytes;
2268 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2269 the incoming location of the current parameter. */
2271 static void
2272 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2273 struct assign_parm_data_one *data)
2275 HOST_WIDE_INT pretend_bytes = 0;
2276 rtx entry_parm;
2277 bool in_regs;
2279 if (data->promoted_mode == VOIDmode)
2281 data->entry_parm = data->stack_parm = const0_rtx;
2282 return;
2285 #ifdef FUNCTION_INCOMING_ARG
2286 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2287 data->passed_type, data->named_arg);
2288 #else
2289 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2290 data->passed_type, data->named_arg);
2291 #endif
2293 if (entry_parm == 0)
2294 data->promoted_mode = data->passed_mode;
2296 /* Determine parm's home in the stack, in case it arrives in the stack
2297 or we should pretend it did. Compute the stack position and rtx where
2298 the argument arrives and its size.
2300 There is one complexity here: If this was a parameter that would
2301 have been passed in registers, but wasn't only because it is
2302 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2303 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2304 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2305 as it was the previous time. */
2306 in_regs = entry_parm != 0;
2307 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2308 in_regs = true;
2309 #endif
2310 if (!in_regs && !data->named_arg)
2312 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2314 rtx tem;
2315 #ifdef FUNCTION_INCOMING_ARG
2316 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2317 data->passed_type, true);
2318 #else
2319 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2320 data->passed_type, true);
2321 #endif
2322 in_regs = tem != NULL;
2326 /* If this parameter was passed both in registers and in the stack, use
2327 the copy on the stack. */
2328 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2329 data->passed_type))
2330 entry_parm = 0;
2332 if (entry_parm)
2334 int partial;
2336 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2337 data->promoted_mode,
2338 data->passed_type,
2339 data->named_arg);
2340 data->partial = partial;
2342 /* The caller might already have allocated stack space for the
2343 register parameters. */
2344 if (partial != 0 && all->reg_parm_stack_space == 0)
2346 /* Part of this argument is passed in registers and part
2347 is passed on the stack. Ask the prologue code to extend
2348 the stack part so that we can recreate the full value.
2350 PRETEND_BYTES is the size of the registers we need to store.
2351 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2352 stack space that the prologue should allocate.
2354 Internally, gcc assumes that the argument pointer is aligned
2355 to STACK_BOUNDARY bits. This is used both for alignment
2356 optimizations (see init_emit) and to locate arguments that are
2357 aligned to more than PARM_BOUNDARY bits. We must preserve this
2358 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2359 a stack boundary. */
2361 /* We assume at most one partial arg, and it must be the first
2362 argument on the stack. */
2363 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2365 pretend_bytes = partial;
2366 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2368 /* We want to align relative to the actual stack pointer, so
2369 don't include this in the stack size until later. */
2370 all->extra_pretend_bytes = all->pretend_args_size;
2374 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2375 entry_parm ? data->partial : 0, current_function_decl,
2376 &all->stack_args_size, &data->locate);
2378 /* Update parm_stack_boundary if this parameter is passed in the
2379 stack. */
2380 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2381 crtl->parm_stack_boundary = data->locate.boundary;
2383 /* Adjust offsets to include the pretend args. */
2384 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2385 data->locate.slot_offset.constant += pretend_bytes;
2386 data->locate.offset.constant += pretend_bytes;
2388 data->entry_parm = entry_parm;
2391 /* A subroutine of assign_parms. If there is actually space on the stack
2392 for this parm, count it in stack_args_size and return true. */
2394 static bool
2395 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2396 struct assign_parm_data_one *data)
2398 /* Trivially true if we've no incoming register. */
2399 if (data->entry_parm == NULL)
2401 /* Also true if we're partially in registers and partially not,
2402 since we've arranged to drop the entire argument on the stack. */
2403 else if (data->partial != 0)
2405 /* Also true if the target says that it's passed in both registers
2406 and on the stack. */
2407 else if (GET_CODE (data->entry_parm) == PARALLEL
2408 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2410 /* Also true if the target says that there's stack allocated for
2411 all register parameters. */
2412 else if (all->reg_parm_stack_space > 0)
2414 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2415 else
2416 return false;
2418 all->stack_args_size.constant += data->locate.size.constant;
2419 if (data->locate.size.var)
2420 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2422 return true;
2425 /* A subroutine of assign_parms. Given that this parameter is allocated
2426 stack space by the ABI, find it. */
2428 static void
2429 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2431 rtx offset_rtx, stack_parm;
2432 unsigned int align, boundary;
2434 /* If we're passing this arg using a reg, make its stack home the
2435 aligned stack slot. */
2436 if (data->entry_parm)
2437 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2438 else
2439 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2441 stack_parm = crtl->args.internal_arg_pointer;
2442 if (offset_rtx != const0_rtx)
2443 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2444 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2446 if (!data->passed_pointer)
2448 set_mem_attributes (stack_parm, parm, 1);
2449 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2450 while promoted mode's size is needed. */
2451 if (data->promoted_mode != BLKmode
2452 && data->promoted_mode != DECL_MODE (parm))
2454 set_mem_size (stack_parm,
2455 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2456 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2458 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2459 data->promoted_mode);
2460 if (offset)
2461 set_mem_offset (stack_parm,
2462 plus_constant (MEM_OFFSET (stack_parm),
2463 -offset));
2468 boundary = data->locate.boundary;
2469 align = BITS_PER_UNIT;
2471 /* If we're padding upward, we know that the alignment of the slot
2472 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2473 intentionally forcing upward padding. Otherwise we have to come
2474 up with a guess at the alignment based on OFFSET_RTX. */
2475 if (data->locate.where_pad != downward || data->entry_parm)
2476 align = boundary;
2477 else if (CONST_INT_P (offset_rtx))
2479 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2480 align = align & -align;
2482 set_mem_align (stack_parm, align);
2484 if (data->entry_parm)
2485 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2487 data->stack_parm = stack_parm;
2490 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2491 always valid and contiguous. */
2493 static void
2494 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2496 rtx entry_parm = data->entry_parm;
2497 rtx stack_parm = data->stack_parm;
2499 /* If this parm was passed part in regs and part in memory, pretend it
2500 arrived entirely in memory by pushing the register-part onto the stack.
2501 In the special case of a DImode or DFmode that is split, we could put
2502 it together in a pseudoreg directly, but for now that's not worth
2503 bothering with. */
2504 if (data->partial != 0)
2506 /* Handle calls that pass values in multiple non-contiguous
2507 locations. The Irix 6 ABI has examples of this. */
2508 if (GET_CODE (entry_parm) == PARALLEL)
2509 emit_group_store (validize_mem (stack_parm), entry_parm,
2510 data->passed_type,
2511 int_size_in_bytes (data->passed_type));
2512 else
2514 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2515 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2516 data->partial / UNITS_PER_WORD);
2519 entry_parm = stack_parm;
2522 /* If we didn't decide this parm came in a register, by default it came
2523 on the stack. */
2524 else if (entry_parm == NULL)
2525 entry_parm = stack_parm;
2527 /* When an argument is passed in multiple locations, we can't make use
2528 of this information, but we can save some copying if the whole argument
2529 is passed in a single register. */
2530 else if (GET_CODE (entry_parm) == PARALLEL
2531 && data->nominal_mode != BLKmode
2532 && data->passed_mode != BLKmode)
2534 size_t i, len = XVECLEN (entry_parm, 0);
2536 for (i = 0; i < len; i++)
2537 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2538 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2539 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2540 == data->passed_mode)
2541 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2543 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2544 break;
2548 data->entry_parm = entry_parm;
2551 /* A subroutine of assign_parms. Reconstitute any values which were
2552 passed in multiple registers and would fit in a single register. */
2554 static void
2555 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2557 rtx entry_parm = data->entry_parm;
2559 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2560 This can be done with register operations rather than on the
2561 stack, even if we will store the reconstituted parameter on the
2562 stack later. */
2563 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2565 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2566 emit_group_store (parmreg, entry_parm, data->passed_type,
2567 GET_MODE_SIZE (GET_MODE (entry_parm)));
2568 entry_parm = parmreg;
2571 data->entry_parm = entry_parm;
2574 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2575 always valid and properly aligned. */
2577 static void
2578 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2580 rtx stack_parm = data->stack_parm;
2582 /* If we can't trust the parm stack slot to be aligned enough for its
2583 ultimate type, don't use that slot after entry. We'll make another
2584 stack slot, if we need one. */
2585 if (stack_parm
2586 && ((STRICT_ALIGNMENT
2587 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2588 || (data->nominal_type
2589 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2590 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2591 stack_parm = NULL;
2593 /* If parm was passed in memory, and we need to convert it on entry,
2594 don't store it back in that same slot. */
2595 else if (data->entry_parm == stack_parm
2596 && data->nominal_mode != BLKmode
2597 && data->nominal_mode != data->passed_mode)
2598 stack_parm = NULL;
2600 /* If stack protection is in effect for this function, don't leave any
2601 pointers in their passed stack slots. */
2602 else if (crtl->stack_protect_guard
2603 && (flag_stack_protect == 2
2604 || data->passed_pointer
2605 || POINTER_TYPE_P (data->nominal_type)))
2606 stack_parm = NULL;
2608 data->stack_parm = stack_parm;
2611 /* A subroutine of assign_parms. Return true if the current parameter
2612 should be stored as a BLKmode in the current frame. */
2614 static bool
2615 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2617 if (data->nominal_mode == BLKmode)
2618 return true;
2619 if (GET_MODE (data->entry_parm) == BLKmode)
2620 return true;
2622 #ifdef BLOCK_REG_PADDING
2623 /* Only assign_parm_setup_block knows how to deal with register arguments
2624 that are padded at the least significant end. */
2625 if (REG_P (data->entry_parm)
2626 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2627 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2628 == (BYTES_BIG_ENDIAN ? upward : downward)))
2629 return true;
2630 #endif
2632 return false;
2635 /* A subroutine of assign_parms. Arrange for the parameter to be
2636 present and valid in DATA->STACK_RTL. */
2638 static void
2639 assign_parm_setup_block (struct assign_parm_data_all *all,
2640 tree parm, struct assign_parm_data_one *data)
2642 rtx entry_parm = data->entry_parm;
2643 rtx stack_parm = data->stack_parm;
2644 HOST_WIDE_INT size;
2645 HOST_WIDE_INT size_stored;
2647 if (GET_CODE (entry_parm) == PARALLEL)
2648 entry_parm = emit_group_move_into_temps (entry_parm);
2650 size = int_size_in_bytes (data->passed_type);
2651 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2652 if (stack_parm == 0)
2654 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2655 stack_parm = assign_stack_local (BLKmode, size_stored,
2656 DECL_ALIGN (parm));
2657 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2658 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2659 set_mem_attributes (stack_parm, parm, 1);
2662 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2663 calls that pass values in multiple non-contiguous locations. */
2664 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2666 rtx mem;
2668 /* Note that we will be storing an integral number of words.
2669 So we have to be careful to ensure that we allocate an
2670 integral number of words. We do this above when we call
2671 assign_stack_local if space was not allocated in the argument
2672 list. If it was, this will not work if PARM_BOUNDARY is not
2673 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2674 if it becomes a problem. Exception is when BLKmode arrives
2675 with arguments not conforming to word_mode. */
2677 if (data->stack_parm == 0)
2679 else if (GET_CODE (entry_parm) == PARALLEL)
2681 else
2682 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2684 mem = validize_mem (stack_parm);
2686 /* Handle values in multiple non-contiguous locations. */
2687 if (GET_CODE (entry_parm) == PARALLEL)
2689 push_to_sequence2 (all->first_conversion_insn,
2690 all->last_conversion_insn);
2691 emit_group_store (mem, entry_parm, data->passed_type, size);
2692 all->first_conversion_insn = get_insns ();
2693 all->last_conversion_insn = get_last_insn ();
2694 end_sequence ();
2697 else if (size == 0)
2700 /* If SIZE is that of a mode no bigger than a word, just use
2701 that mode's store operation. */
2702 else if (size <= UNITS_PER_WORD)
2704 enum machine_mode mode
2705 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2707 if (mode != BLKmode
2708 #ifdef BLOCK_REG_PADDING
2709 && (size == UNITS_PER_WORD
2710 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2711 != (BYTES_BIG_ENDIAN ? upward : downward)))
2712 #endif
2715 rtx reg;
2717 /* We are really truncating a word_mode value containing
2718 SIZE bytes into a value of mode MODE. If such an
2719 operation requires no actual instructions, we can refer
2720 to the value directly in mode MODE, otherwise we must
2721 start with the register in word_mode and explicitly
2722 convert it. */
2723 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2724 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2725 else
2727 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2728 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2730 emit_move_insn (change_address (mem, mode, 0), reg);
2733 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2734 machine must be aligned to the left before storing
2735 to memory. Note that the previous test doesn't
2736 handle all cases (e.g. SIZE == 3). */
2737 else if (size != UNITS_PER_WORD
2738 #ifdef BLOCK_REG_PADDING
2739 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2740 == downward)
2741 #else
2742 && BYTES_BIG_ENDIAN
2743 #endif
2746 rtx tem, x;
2747 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2748 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2750 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2751 build_int_cst (NULL_TREE, by),
2752 NULL_RTX, 1);
2753 tem = change_address (mem, word_mode, 0);
2754 emit_move_insn (tem, x);
2756 else
2757 move_block_from_reg (REGNO (entry_parm), mem,
2758 size_stored / UNITS_PER_WORD);
2760 else
2761 move_block_from_reg (REGNO (entry_parm), mem,
2762 size_stored / UNITS_PER_WORD);
2764 else if (data->stack_parm == 0)
2766 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2767 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2768 BLOCK_OP_NORMAL);
2769 all->first_conversion_insn = get_insns ();
2770 all->last_conversion_insn = get_last_insn ();
2771 end_sequence ();
2774 data->stack_parm = stack_parm;
2775 SET_DECL_RTL (parm, stack_parm);
2778 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2779 parameter. Get it there. Perform all ABI specified conversions. */
2781 static void
2782 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2783 struct assign_parm_data_one *data)
2785 rtx parmreg;
2786 enum machine_mode promoted_nominal_mode;
2787 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2788 bool did_conversion = false;
2790 /* Store the parm in a pseudoregister during the function, but we may
2791 need to do it in a wider mode. Using 2 here makes the result
2792 consistent with promote_decl_mode and thus expand_expr_real_1. */
2793 promoted_nominal_mode
2794 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2795 TREE_TYPE (current_function_decl), 2);
2797 parmreg = gen_reg_rtx (promoted_nominal_mode);
2799 if (!DECL_ARTIFICIAL (parm))
2800 mark_user_reg (parmreg);
2802 /* If this was an item that we received a pointer to,
2803 set DECL_RTL appropriately. */
2804 if (data->passed_pointer)
2806 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2807 set_mem_attributes (x, parm, 1);
2808 SET_DECL_RTL (parm, x);
2810 else
2811 SET_DECL_RTL (parm, parmreg);
2813 assign_parm_remove_parallels (data);
2815 /* Copy the value into the register, thus bridging between
2816 assign_parm_find_data_types and expand_expr_real_1. */
2817 if (data->nominal_mode != data->passed_mode
2818 || promoted_nominal_mode != data->promoted_mode)
2820 int save_tree_used;
2822 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2823 mode, by the caller. We now have to convert it to
2824 NOMINAL_MODE, if different. However, PARMREG may be in
2825 a different mode than NOMINAL_MODE if it is being stored
2826 promoted.
2828 If ENTRY_PARM is a hard register, it might be in a register
2829 not valid for operating in its mode (e.g., an odd-numbered
2830 register for a DFmode). In that case, moves are the only
2831 thing valid, so we can't do a convert from there. This
2832 occurs when the calling sequence allow such misaligned
2833 usages.
2835 In addition, the conversion may involve a call, which could
2836 clobber parameters which haven't been copied to pseudo
2837 registers yet. Therefore, we must first copy the parm to
2838 a pseudo reg here, and save the conversion until after all
2839 parameters have been moved. */
2841 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2843 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2845 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2846 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2848 if (GET_CODE (tempreg) == SUBREG
2849 && GET_MODE (tempreg) == data->nominal_mode
2850 && REG_P (SUBREG_REG (tempreg))
2851 && data->nominal_mode == data->passed_mode
2852 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2853 && GET_MODE_SIZE (GET_MODE (tempreg))
2854 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2856 /* The argument is already sign/zero extended, so note it
2857 into the subreg. */
2858 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2859 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2862 /* TREE_USED gets set erroneously during expand_assignment. */
2863 save_tree_used = TREE_USED (parm);
2864 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2865 TREE_USED (parm) = save_tree_used;
2866 all->first_conversion_insn = get_insns ();
2867 all->last_conversion_insn = get_last_insn ();
2868 end_sequence ();
2870 did_conversion = true;
2872 else
2873 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2875 /* If we were passed a pointer but the actual value can safely live
2876 in a register, put it in one. */
2877 if (data->passed_pointer
2878 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2879 /* If by-reference argument was promoted, demote it. */
2880 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2881 || use_register_for_decl (parm)))
2883 /* We can't use nominal_mode, because it will have been set to
2884 Pmode above. We must use the actual mode of the parm. */
2885 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2886 mark_user_reg (parmreg);
2888 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2890 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2891 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2893 push_to_sequence2 (all->first_conversion_insn,
2894 all->last_conversion_insn);
2895 emit_move_insn (tempreg, DECL_RTL (parm));
2896 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2897 emit_move_insn (parmreg, tempreg);
2898 all->first_conversion_insn = get_insns ();
2899 all->last_conversion_insn = get_last_insn ();
2900 end_sequence ();
2902 did_conversion = true;
2904 else
2905 emit_move_insn (parmreg, DECL_RTL (parm));
2907 SET_DECL_RTL (parm, parmreg);
2909 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2910 now the parm. */
2911 data->stack_parm = NULL;
2914 /* Mark the register as eliminable if we did no conversion and it was
2915 copied from memory at a fixed offset, and the arg pointer was not
2916 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2917 offset formed an invalid address, such memory-equivalences as we
2918 make here would screw up life analysis for it. */
2919 if (data->nominal_mode == data->passed_mode
2920 && !did_conversion
2921 && data->stack_parm != 0
2922 && MEM_P (data->stack_parm)
2923 && data->locate.offset.var == 0
2924 && reg_mentioned_p (virtual_incoming_args_rtx,
2925 XEXP (data->stack_parm, 0)))
2927 rtx linsn = get_last_insn ();
2928 rtx sinsn, set;
2930 /* Mark complex types separately. */
2931 if (GET_CODE (parmreg) == CONCAT)
2933 enum machine_mode submode
2934 = GET_MODE_INNER (GET_MODE (parmreg));
2935 int regnor = REGNO (XEXP (parmreg, 0));
2936 int regnoi = REGNO (XEXP (parmreg, 1));
2937 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2938 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2939 GET_MODE_SIZE (submode));
2941 /* Scan backwards for the set of the real and
2942 imaginary parts. */
2943 for (sinsn = linsn; sinsn != 0;
2944 sinsn = prev_nonnote_insn (sinsn))
2946 set = single_set (sinsn);
2947 if (set == 0)
2948 continue;
2950 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2951 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2952 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2953 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2956 else if ((set = single_set (linsn)) != 0
2957 && SET_DEST (set) == parmreg)
2958 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2961 /* For pointer data type, suggest pointer register. */
2962 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2963 mark_reg_pointer (parmreg,
2964 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2967 /* A subroutine of assign_parms. Allocate stack space to hold the current
2968 parameter. Get it there. Perform all ABI specified conversions. */
2970 static void
2971 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2972 struct assign_parm_data_one *data)
2974 /* Value must be stored in the stack slot STACK_PARM during function
2975 execution. */
2976 bool to_conversion = false;
2978 assign_parm_remove_parallels (data);
2980 if (data->promoted_mode != data->nominal_mode)
2982 /* Conversion is required. */
2983 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2985 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2987 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2988 to_conversion = true;
2990 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2991 TYPE_UNSIGNED (TREE_TYPE (parm)));
2993 if (data->stack_parm)
2995 int offset = subreg_lowpart_offset (data->nominal_mode,
2996 GET_MODE (data->stack_parm));
2997 /* ??? This may need a big-endian conversion on sparc64. */
2998 data->stack_parm
2999 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3000 if (offset && MEM_OFFSET (data->stack_parm))
3001 set_mem_offset (data->stack_parm,
3002 plus_constant (MEM_OFFSET (data->stack_parm),
3003 offset));
3007 if (data->entry_parm != data->stack_parm)
3009 rtx src, dest;
3011 if (data->stack_parm == 0)
3013 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3014 GET_MODE (data->entry_parm),
3015 TYPE_ALIGN (data->passed_type));
3016 data->stack_parm
3017 = assign_stack_local (GET_MODE (data->entry_parm),
3018 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3019 align);
3020 set_mem_attributes (data->stack_parm, parm, 1);
3023 dest = validize_mem (data->stack_parm);
3024 src = validize_mem (data->entry_parm);
3026 if (MEM_P (src))
3028 /* Use a block move to handle potentially misaligned entry_parm. */
3029 if (!to_conversion)
3030 push_to_sequence2 (all->first_conversion_insn,
3031 all->last_conversion_insn);
3032 to_conversion = true;
3034 emit_block_move (dest, src,
3035 GEN_INT (int_size_in_bytes (data->passed_type)),
3036 BLOCK_OP_NORMAL);
3038 else
3039 emit_move_insn (dest, src);
3042 if (to_conversion)
3044 all->first_conversion_insn = get_insns ();
3045 all->last_conversion_insn = get_last_insn ();
3046 end_sequence ();
3049 SET_DECL_RTL (parm, data->stack_parm);
3052 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3053 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3055 static void
3056 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3058 tree parm;
3059 tree orig_fnargs = all->orig_fnargs;
3061 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3063 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3064 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3066 rtx tmp, real, imag;
3067 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3069 real = DECL_RTL (fnargs);
3070 imag = DECL_RTL (TREE_CHAIN (fnargs));
3071 if (inner != GET_MODE (real))
3073 real = gen_lowpart_SUBREG (inner, real);
3074 imag = gen_lowpart_SUBREG (inner, imag);
3077 if (TREE_ADDRESSABLE (parm))
3079 rtx rmem, imem;
3080 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3081 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3082 DECL_MODE (parm),
3083 TYPE_ALIGN (TREE_TYPE (parm)));
3085 /* split_complex_arg put the real and imag parts in
3086 pseudos. Move them to memory. */
3087 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3088 set_mem_attributes (tmp, parm, 1);
3089 rmem = adjust_address_nv (tmp, inner, 0);
3090 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3091 push_to_sequence2 (all->first_conversion_insn,
3092 all->last_conversion_insn);
3093 emit_move_insn (rmem, real);
3094 emit_move_insn (imem, imag);
3095 all->first_conversion_insn = get_insns ();
3096 all->last_conversion_insn = get_last_insn ();
3097 end_sequence ();
3099 else
3100 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3101 SET_DECL_RTL (parm, tmp);
3103 real = DECL_INCOMING_RTL (fnargs);
3104 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3105 if (inner != GET_MODE (real))
3107 real = gen_lowpart_SUBREG (inner, real);
3108 imag = gen_lowpart_SUBREG (inner, imag);
3110 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3111 set_decl_incoming_rtl (parm, tmp, false);
3112 fnargs = TREE_CHAIN (fnargs);
3114 else
3116 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3117 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3119 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3120 instead of the copy of decl, i.e. FNARGS. */
3121 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3122 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3125 fnargs = TREE_CHAIN (fnargs);
3129 /* Assign RTL expressions to the function's parameters. This may involve
3130 copying them into registers and using those registers as the DECL_RTL. */
3132 static void
3133 assign_parms (tree fndecl)
3135 struct assign_parm_data_all all;
3136 tree fnargs, parm;
3138 crtl->args.internal_arg_pointer
3139 = targetm.calls.internal_arg_pointer ();
3141 assign_parms_initialize_all (&all);
3142 fnargs = assign_parms_augmented_arg_list (&all);
3144 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3146 struct assign_parm_data_one data;
3148 /* Extract the type of PARM; adjust it according to ABI. */
3149 assign_parm_find_data_types (&all, parm, &data);
3151 /* Early out for errors and void parameters. */
3152 if (data.passed_mode == VOIDmode)
3154 SET_DECL_RTL (parm, const0_rtx);
3155 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3156 continue;
3159 /* Estimate stack alignment from parameter alignment. */
3160 if (SUPPORTS_STACK_ALIGNMENT)
3162 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3163 data.passed_type);
3164 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3165 align);
3166 if (TYPE_ALIGN (data.nominal_type) > align)
3167 align = MINIMUM_ALIGNMENT (data.nominal_type,
3168 TYPE_MODE (data.nominal_type),
3169 TYPE_ALIGN (data.nominal_type));
3170 if (crtl->stack_alignment_estimated < align)
3172 gcc_assert (!crtl->stack_realign_processed);
3173 crtl->stack_alignment_estimated = align;
3177 if (cfun->stdarg && !TREE_CHAIN (parm))
3178 assign_parms_setup_varargs (&all, &data, false);
3180 /* Find out where the parameter arrives in this function. */
3181 assign_parm_find_entry_rtl (&all, &data);
3183 /* Find out where stack space for this parameter might be. */
3184 if (assign_parm_is_stack_parm (&all, &data))
3186 assign_parm_find_stack_rtl (parm, &data);
3187 assign_parm_adjust_entry_rtl (&data);
3190 /* Record permanently how this parm was passed. */
3191 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3193 /* Update info on where next arg arrives in registers. */
3194 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3195 data.passed_type, data.named_arg);
3197 assign_parm_adjust_stack_rtl (&data);
3199 if (assign_parm_setup_block_p (&data))
3200 assign_parm_setup_block (&all, parm, &data);
3201 else if (data.passed_pointer || use_register_for_decl (parm))
3202 assign_parm_setup_reg (&all, parm, &data);
3203 else
3204 assign_parm_setup_stack (&all, parm, &data);
3207 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3208 assign_parms_unsplit_complex (&all, fnargs);
3210 /* Output all parameter conversion instructions (possibly including calls)
3211 now that all parameters have been copied out of hard registers. */
3212 emit_insn (all.first_conversion_insn);
3214 /* Estimate reload stack alignment from scalar return mode. */
3215 if (SUPPORTS_STACK_ALIGNMENT)
3217 if (DECL_RESULT (fndecl))
3219 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3220 enum machine_mode mode = TYPE_MODE (type);
3222 if (mode != BLKmode
3223 && mode != VOIDmode
3224 && !AGGREGATE_TYPE_P (type))
3226 unsigned int align = GET_MODE_ALIGNMENT (mode);
3227 if (crtl->stack_alignment_estimated < align)
3229 gcc_assert (!crtl->stack_realign_processed);
3230 crtl->stack_alignment_estimated = align;
3236 /* If we are receiving a struct value address as the first argument, set up
3237 the RTL for the function result. As this might require code to convert
3238 the transmitted address to Pmode, we do this here to ensure that possible
3239 preliminary conversions of the address have been emitted already. */
3240 if (all.function_result_decl)
3242 tree result = DECL_RESULT (current_function_decl);
3243 rtx addr = DECL_RTL (all.function_result_decl);
3244 rtx x;
3246 if (DECL_BY_REFERENCE (result))
3247 x = addr;
3248 else
3250 addr = convert_memory_address (Pmode, addr);
3251 x = gen_rtx_MEM (DECL_MODE (result), addr);
3252 set_mem_attributes (x, result, 1);
3254 SET_DECL_RTL (result, x);
3257 /* We have aligned all the args, so add space for the pretend args. */
3258 crtl->args.pretend_args_size = all.pretend_args_size;
3259 all.stack_args_size.constant += all.extra_pretend_bytes;
3260 crtl->args.size = all.stack_args_size.constant;
3262 /* Adjust function incoming argument size for alignment and
3263 minimum length. */
3265 #ifdef REG_PARM_STACK_SPACE
3266 crtl->args.size = MAX (crtl->args.size,
3267 REG_PARM_STACK_SPACE (fndecl));
3268 #endif
3270 crtl->args.size = CEIL_ROUND (crtl->args.size,
3271 PARM_BOUNDARY / BITS_PER_UNIT);
3273 #ifdef ARGS_GROW_DOWNWARD
3274 crtl->args.arg_offset_rtx
3275 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3276 : expand_expr (size_diffop (all.stack_args_size.var,
3277 size_int (-all.stack_args_size.constant)),
3278 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3279 #else
3280 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3281 #endif
3283 /* See how many bytes, if any, of its args a function should try to pop
3284 on return. */
3286 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3287 crtl->args.size);
3289 /* For stdarg.h function, save info about
3290 regs and stack space used by the named args. */
3292 crtl->args.info = all.args_so_far;
3294 /* Set the rtx used for the function return value. Put this in its
3295 own variable so any optimizers that need this information don't have
3296 to include tree.h. Do this here so it gets done when an inlined
3297 function gets output. */
3299 crtl->return_rtx
3300 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3301 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3303 /* If scalar return value was computed in a pseudo-reg, or was a named
3304 return value that got dumped to the stack, copy that to the hard
3305 return register. */
3306 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3308 tree decl_result = DECL_RESULT (fndecl);
3309 rtx decl_rtl = DECL_RTL (decl_result);
3311 if (REG_P (decl_rtl)
3312 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3313 : DECL_REGISTER (decl_result))
3315 rtx real_decl_rtl;
3317 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3318 fndecl, true);
3319 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3320 /* The delay slot scheduler assumes that crtl->return_rtx
3321 holds the hard register containing the return value, not a
3322 temporary pseudo. */
3323 crtl->return_rtx = real_decl_rtl;
3328 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3329 For all seen types, gimplify their sizes. */
3331 static tree
3332 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3334 tree t = *tp;
3336 *walk_subtrees = 0;
3337 if (TYPE_P (t))
3339 if (POINTER_TYPE_P (t))
3340 *walk_subtrees = 1;
3341 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3342 && !TYPE_SIZES_GIMPLIFIED (t))
3344 gimplify_type_sizes (t, (gimple_seq *) data);
3345 *walk_subtrees = 1;
3349 return NULL;
3352 /* Gimplify the parameter list for current_function_decl. This involves
3353 evaluating SAVE_EXPRs of variable sized parameters and generating code
3354 to implement callee-copies reference parameters. Returns a sequence of
3355 statements to add to the beginning of the function. */
3357 gimple_seq
3358 gimplify_parameters (void)
3360 struct assign_parm_data_all all;
3361 tree fnargs, parm;
3362 gimple_seq stmts = NULL;
3364 assign_parms_initialize_all (&all);
3365 fnargs = assign_parms_augmented_arg_list (&all);
3367 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3369 struct assign_parm_data_one data;
3371 /* Extract the type of PARM; adjust it according to ABI. */
3372 assign_parm_find_data_types (&all, parm, &data);
3374 /* Early out for errors and void parameters. */
3375 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3376 continue;
3378 /* Update info on where next arg arrives in registers. */
3379 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3380 data.passed_type, data.named_arg);
3382 /* ??? Once upon a time variable_size stuffed parameter list
3383 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3384 turned out to be less than manageable in the gimple world.
3385 Now we have to hunt them down ourselves. */
3386 walk_tree_without_duplicates (&data.passed_type,
3387 gimplify_parm_type, &stmts);
3389 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3391 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3392 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3395 if (data.passed_pointer)
3397 tree type = TREE_TYPE (data.passed_type);
3398 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3399 type, data.named_arg))
3401 tree local, t;
3403 /* For constant-sized objects, this is trivial; for
3404 variable-sized objects, we have to play games. */
3405 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3406 && !(flag_stack_check == GENERIC_STACK_CHECK
3407 && compare_tree_int (DECL_SIZE_UNIT (parm),
3408 STACK_CHECK_MAX_VAR_SIZE) > 0))
3410 local = create_tmp_var (type, get_name (parm));
3411 DECL_IGNORED_P (local) = 0;
3412 /* If PARM was addressable, move that flag over
3413 to the local copy, as its address will be taken,
3414 not the PARMs. */
3415 if (TREE_ADDRESSABLE (parm))
3417 TREE_ADDRESSABLE (parm) = 0;
3418 TREE_ADDRESSABLE (local) = 1;
3421 else
3423 tree ptr_type, addr;
3425 ptr_type = build_pointer_type (type);
3426 addr = create_tmp_var (ptr_type, get_name (parm));
3427 DECL_IGNORED_P (addr) = 0;
3428 local = build_fold_indirect_ref (addr);
3430 t = built_in_decls[BUILT_IN_ALLOCA];
3431 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3432 t = fold_convert (ptr_type, t);
3433 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3434 gimplify_and_add (t, &stmts);
3437 gimplify_assign (local, parm, &stmts);
3439 SET_DECL_VALUE_EXPR (parm, local);
3440 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3445 return stmts;
3448 /* Compute the size and offset from the start of the stacked arguments for a
3449 parm passed in mode PASSED_MODE and with type TYPE.
3451 INITIAL_OFFSET_PTR points to the current offset into the stacked
3452 arguments.
3454 The starting offset and size for this parm are returned in
3455 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3456 nonzero, the offset is that of stack slot, which is returned in
3457 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3458 padding required from the initial offset ptr to the stack slot.
3460 IN_REGS is nonzero if the argument will be passed in registers. It will
3461 never be set if REG_PARM_STACK_SPACE is not defined.
3463 FNDECL is the function in which the argument was defined.
3465 There are two types of rounding that are done. The first, controlled by
3466 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3467 list to be aligned to the specific boundary (in bits). This rounding
3468 affects the initial and starting offsets, but not the argument size.
3470 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3471 optionally rounds the size of the parm to PARM_BOUNDARY. The
3472 initial offset is not affected by this rounding, while the size always
3473 is and the starting offset may be. */
3475 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3476 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3477 callers pass in the total size of args so far as
3478 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3480 void
3481 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3482 int partial, tree fndecl ATTRIBUTE_UNUSED,
3483 struct args_size *initial_offset_ptr,
3484 struct locate_and_pad_arg_data *locate)
3486 tree sizetree;
3487 enum direction where_pad;
3488 unsigned int boundary;
3489 int reg_parm_stack_space = 0;
3490 int part_size_in_regs;
3492 #ifdef REG_PARM_STACK_SPACE
3493 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3495 /* If we have found a stack parm before we reach the end of the
3496 area reserved for registers, skip that area. */
3497 if (! in_regs)
3499 if (reg_parm_stack_space > 0)
3501 if (initial_offset_ptr->var)
3503 initial_offset_ptr->var
3504 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3505 ssize_int (reg_parm_stack_space));
3506 initial_offset_ptr->constant = 0;
3508 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3509 initial_offset_ptr->constant = reg_parm_stack_space;
3512 #endif /* REG_PARM_STACK_SPACE */
3514 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3516 sizetree
3517 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3518 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3519 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3520 locate->where_pad = where_pad;
3522 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3523 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3524 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3526 locate->boundary = boundary;
3528 if (SUPPORTS_STACK_ALIGNMENT)
3530 /* stack_alignment_estimated can't change after stack has been
3531 realigned. */
3532 if (crtl->stack_alignment_estimated < boundary)
3534 if (!crtl->stack_realign_processed)
3535 crtl->stack_alignment_estimated = boundary;
3536 else
3538 /* If stack is realigned and stack alignment value
3539 hasn't been finalized, it is OK not to increase
3540 stack_alignment_estimated. The bigger alignment
3541 requirement is recorded in stack_alignment_needed
3542 below. */
3543 gcc_assert (!crtl->stack_realign_finalized
3544 && crtl->stack_realign_needed);
3549 /* Remember if the outgoing parameter requires extra alignment on the
3550 calling function side. */
3551 if (crtl->stack_alignment_needed < boundary)
3552 crtl->stack_alignment_needed = boundary;
3553 if (crtl->preferred_stack_boundary < boundary)
3554 crtl->preferred_stack_boundary = boundary;
3556 #ifdef ARGS_GROW_DOWNWARD
3557 locate->slot_offset.constant = -initial_offset_ptr->constant;
3558 if (initial_offset_ptr->var)
3559 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3560 initial_offset_ptr->var);
3563 tree s2 = sizetree;
3564 if (where_pad != none
3565 && (!host_integerp (sizetree, 1)
3566 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3567 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3568 SUB_PARM_SIZE (locate->slot_offset, s2);
3571 locate->slot_offset.constant += part_size_in_regs;
3573 if (!in_regs
3574 #ifdef REG_PARM_STACK_SPACE
3575 || REG_PARM_STACK_SPACE (fndecl) > 0
3576 #endif
3578 pad_to_arg_alignment (&locate->slot_offset, boundary,
3579 &locate->alignment_pad);
3581 locate->size.constant = (-initial_offset_ptr->constant
3582 - locate->slot_offset.constant);
3583 if (initial_offset_ptr->var)
3584 locate->size.var = size_binop (MINUS_EXPR,
3585 size_binop (MINUS_EXPR,
3586 ssize_int (0),
3587 initial_offset_ptr->var),
3588 locate->slot_offset.var);
3590 /* Pad_below needs the pre-rounded size to know how much to pad
3591 below. */
3592 locate->offset = locate->slot_offset;
3593 if (where_pad == downward)
3594 pad_below (&locate->offset, passed_mode, sizetree);
3596 #else /* !ARGS_GROW_DOWNWARD */
3597 if (!in_regs
3598 #ifdef REG_PARM_STACK_SPACE
3599 || REG_PARM_STACK_SPACE (fndecl) > 0
3600 #endif
3602 pad_to_arg_alignment (initial_offset_ptr, boundary,
3603 &locate->alignment_pad);
3604 locate->slot_offset = *initial_offset_ptr;
3606 #ifdef PUSH_ROUNDING
3607 if (passed_mode != BLKmode)
3608 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3609 #endif
3611 /* Pad_below needs the pre-rounded size to know how much to pad below
3612 so this must be done before rounding up. */
3613 locate->offset = locate->slot_offset;
3614 if (where_pad == downward)
3615 pad_below (&locate->offset, passed_mode, sizetree);
3617 if (where_pad != none
3618 && (!host_integerp (sizetree, 1)
3619 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3620 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3622 ADD_PARM_SIZE (locate->size, sizetree);
3624 locate->size.constant -= part_size_in_regs;
3625 #endif /* ARGS_GROW_DOWNWARD */
3627 #ifdef FUNCTION_ARG_OFFSET
3628 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3629 #endif
3632 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3633 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3635 static void
3636 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3637 struct args_size *alignment_pad)
3639 tree save_var = NULL_TREE;
3640 HOST_WIDE_INT save_constant = 0;
3641 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3642 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3644 #ifdef SPARC_STACK_BOUNDARY_HACK
3645 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3646 the real alignment of %sp. However, when it does this, the
3647 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3648 if (SPARC_STACK_BOUNDARY_HACK)
3649 sp_offset = 0;
3650 #endif
3652 if (boundary > PARM_BOUNDARY)
3654 save_var = offset_ptr->var;
3655 save_constant = offset_ptr->constant;
3658 alignment_pad->var = NULL_TREE;
3659 alignment_pad->constant = 0;
3661 if (boundary > BITS_PER_UNIT)
3663 if (offset_ptr->var)
3665 tree sp_offset_tree = ssize_int (sp_offset);
3666 tree offset = size_binop (PLUS_EXPR,
3667 ARGS_SIZE_TREE (*offset_ptr),
3668 sp_offset_tree);
3669 #ifdef ARGS_GROW_DOWNWARD
3670 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3671 #else
3672 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3673 #endif
3675 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3676 /* ARGS_SIZE_TREE includes constant term. */
3677 offset_ptr->constant = 0;
3678 if (boundary > PARM_BOUNDARY)
3679 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3680 save_var);
3682 else
3684 offset_ptr->constant = -sp_offset +
3685 #ifdef ARGS_GROW_DOWNWARD
3686 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3687 #else
3688 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3689 #endif
3690 if (boundary > PARM_BOUNDARY)
3691 alignment_pad->constant = offset_ptr->constant - save_constant;
3696 static void
3697 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3699 if (passed_mode != BLKmode)
3701 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3702 offset_ptr->constant
3703 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3704 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3705 - GET_MODE_SIZE (passed_mode));
3707 else
3709 if (TREE_CODE (sizetree) != INTEGER_CST
3710 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3712 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3713 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3714 /* Add it in. */
3715 ADD_PARM_SIZE (*offset_ptr, s2);
3716 SUB_PARM_SIZE (*offset_ptr, sizetree);
3722 /* True if register REGNO was alive at a place where `setjmp' was
3723 called and was set more than once or is an argument. Such regs may
3724 be clobbered by `longjmp'. */
3726 static bool
3727 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3729 /* There appear to be cases where some local vars never reach the
3730 backend but have bogus regnos. */
3731 if (regno >= max_reg_num ())
3732 return false;
3734 return ((REG_N_SETS (regno) > 1
3735 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3736 && REGNO_REG_SET_P (setjmp_crosses, regno));
3739 /* Walk the tree of blocks describing the binding levels within a
3740 function and warn about variables the might be killed by setjmp or
3741 vfork. This is done after calling flow_analysis before register
3742 allocation since that will clobber the pseudo-regs to hard
3743 regs. */
3745 static void
3746 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3748 tree decl, sub;
3750 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3752 if (TREE_CODE (decl) == VAR_DECL
3753 && DECL_RTL_SET_P (decl)
3754 && REG_P (DECL_RTL (decl))
3755 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3756 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3757 " %<longjmp%> or %<vfork%>", decl);
3760 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3761 setjmp_vars_warning (setjmp_crosses, sub);
3764 /* Do the appropriate part of setjmp_vars_warning
3765 but for arguments instead of local variables. */
3767 static void
3768 setjmp_args_warning (bitmap setjmp_crosses)
3770 tree decl;
3771 for (decl = DECL_ARGUMENTS (current_function_decl);
3772 decl; decl = TREE_CHAIN (decl))
3773 if (DECL_RTL (decl) != 0
3774 && REG_P (DECL_RTL (decl))
3775 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3776 warning (OPT_Wclobbered,
3777 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3778 decl);
3781 /* Generate warning messages for variables live across setjmp. */
3783 void
3784 generate_setjmp_warnings (void)
3786 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3788 if (n_basic_blocks == NUM_FIXED_BLOCKS
3789 || bitmap_empty_p (setjmp_crosses))
3790 return;
3792 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3793 setjmp_args_warning (setjmp_crosses);
3797 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3798 and create duplicate blocks. */
3799 /* ??? Need an option to either create block fragments or to create
3800 abstract origin duplicates of a source block. It really depends
3801 on what optimization has been performed. */
3803 void
3804 reorder_blocks (void)
3806 tree block = DECL_INITIAL (current_function_decl);
3807 VEC(tree,heap) *block_stack;
3809 if (block == NULL_TREE)
3810 return;
3812 block_stack = VEC_alloc (tree, heap, 10);
3814 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3815 clear_block_marks (block);
3817 /* Prune the old trees away, so that they don't get in the way. */
3818 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3819 BLOCK_CHAIN (block) = NULL_TREE;
3821 /* Recreate the block tree from the note nesting. */
3822 reorder_blocks_1 (get_insns (), block, &block_stack);
3823 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3825 VEC_free (tree, heap, block_stack);
3828 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3830 void
3831 clear_block_marks (tree block)
3833 while (block)
3835 TREE_ASM_WRITTEN (block) = 0;
3836 clear_block_marks (BLOCK_SUBBLOCKS (block));
3837 block = BLOCK_CHAIN (block);
3841 static void
3842 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3844 rtx insn;
3846 for (insn = insns; insn; insn = NEXT_INSN (insn))
3848 if (NOTE_P (insn))
3850 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3852 tree block = NOTE_BLOCK (insn);
3853 tree origin;
3855 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3856 ? BLOCK_FRAGMENT_ORIGIN (block)
3857 : block);
3859 /* If we have seen this block before, that means it now
3860 spans multiple address regions. Create a new fragment. */
3861 if (TREE_ASM_WRITTEN (block))
3863 tree new_block = copy_node (block);
3865 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3866 BLOCK_FRAGMENT_CHAIN (new_block)
3867 = BLOCK_FRAGMENT_CHAIN (origin);
3868 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3870 NOTE_BLOCK (insn) = new_block;
3871 block = new_block;
3874 BLOCK_SUBBLOCKS (block) = 0;
3875 TREE_ASM_WRITTEN (block) = 1;
3876 /* When there's only one block for the entire function,
3877 current_block == block and we mustn't do this, it
3878 will cause infinite recursion. */
3879 if (block != current_block)
3881 if (block != origin)
3882 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3884 BLOCK_SUPERCONTEXT (block) = current_block;
3885 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3886 BLOCK_SUBBLOCKS (current_block) = block;
3887 current_block = origin;
3889 VEC_safe_push (tree, heap, *p_block_stack, block);
3891 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3893 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3894 BLOCK_SUBBLOCKS (current_block)
3895 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3896 current_block = BLOCK_SUPERCONTEXT (current_block);
3902 /* Reverse the order of elements in the chain T of blocks,
3903 and return the new head of the chain (old last element). */
3905 tree
3906 blocks_nreverse (tree t)
3908 tree prev = 0, decl, next;
3909 for (decl = t; decl; decl = next)
3911 next = BLOCK_CHAIN (decl);
3912 BLOCK_CHAIN (decl) = prev;
3913 prev = decl;
3915 return prev;
3918 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3919 non-NULL, list them all into VECTOR, in a depth-first preorder
3920 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3921 blocks. */
3923 static int
3924 all_blocks (tree block, tree *vector)
3926 int n_blocks = 0;
3928 while (block)
3930 TREE_ASM_WRITTEN (block) = 0;
3932 /* Record this block. */
3933 if (vector)
3934 vector[n_blocks] = block;
3936 ++n_blocks;
3938 /* Record the subblocks, and their subblocks... */
3939 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3940 vector ? vector + n_blocks : 0);
3941 block = BLOCK_CHAIN (block);
3944 return n_blocks;
3947 /* Return a vector containing all the blocks rooted at BLOCK. The
3948 number of elements in the vector is stored in N_BLOCKS_P. The
3949 vector is dynamically allocated; it is the caller's responsibility
3950 to call `free' on the pointer returned. */
3952 static tree *
3953 get_block_vector (tree block, int *n_blocks_p)
3955 tree *block_vector;
3957 *n_blocks_p = all_blocks (block, NULL);
3958 block_vector = XNEWVEC (tree, *n_blocks_p);
3959 all_blocks (block, block_vector);
3961 return block_vector;
3964 static GTY(()) int next_block_index = 2;
3966 /* Set BLOCK_NUMBER for all the blocks in FN. */
3968 void
3969 number_blocks (tree fn)
3971 int i;
3972 int n_blocks;
3973 tree *block_vector;
3975 /* For SDB and XCOFF debugging output, we start numbering the blocks
3976 from 1 within each function, rather than keeping a running
3977 count. */
3978 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3979 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3980 next_block_index = 1;
3981 #endif
3983 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3985 /* The top-level BLOCK isn't numbered at all. */
3986 for (i = 1; i < n_blocks; ++i)
3987 /* We number the blocks from two. */
3988 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3990 free (block_vector);
3992 return;
3995 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3997 tree
3998 debug_find_var_in_block_tree (tree var, tree block)
4000 tree t;
4002 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4003 if (t == var)
4004 return block;
4006 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4008 tree ret = debug_find_var_in_block_tree (var, t);
4009 if (ret)
4010 return ret;
4013 return NULL_TREE;
4016 /* Keep track of whether we're in a dummy function context. If we are,
4017 we don't want to invoke the set_current_function hook, because we'll
4018 get into trouble if the hook calls target_reinit () recursively or
4019 when the initial initialization is not yet complete. */
4021 static bool in_dummy_function;
4023 /* Invoke the target hook when setting cfun. Update the optimization options
4024 if the function uses different options than the default. */
4026 static void
4027 invoke_set_current_function_hook (tree fndecl)
4029 if (!in_dummy_function)
4031 tree opts = ((fndecl)
4032 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4033 : optimization_default_node);
4035 if (!opts)
4036 opts = optimization_default_node;
4038 /* Change optimization options if needed. */
4039 if (optimization_current_node != opts)
4041 optimization_current_node = opts;
4042 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4045 targetm.set_current_function (fndecl);
4049 /* cfun should never be set directly; use this function. */
4051 void
4052 set_cfun (struct function *new_cfun)
4054 if (cfun != new_cfun)
4056 cfun = new_cfun;
4057 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4061 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4063 static VEC(function_p,heap) *cfun_stack;
4065 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4067 void
4068 push_cfun (struct function *new_cfun)
4070 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4071 set_cfun (new_cfun);
4074 /* Pop cfun from the stack. */
4076 void
4077 pop_cfun (void)
4079 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4080 set_cfun (new_cfun);
4083 /* Return value of funcdef and increase it. */
4085 get_next_funcdef_no (void)
4087 return funcdef_no++;
4090 /* Allocate a function structure for FNDECL and set its contents
4091 to the defaults. Set cfun to the newly-allocated object.
4092 Some of the helper functions invoked during initialization assume
4093 that cfun has already been set. Therefore, assign the new object
4094 directly into cfun and invoke the back end hook explicitly at the
4095 very end, rather than initializing a temporary and calling set_cfun
4096 on it.
4098 ABSTRACT_P is true if this is a function that will never be seen by
4099 the middle-end. Such functions are front-end concepts (like C++
4100 function templates) that do not correspond directly to functions
4101 placed in object files. */
4103 void
4104 allocate_struct_function (tree fndecl, bool abstract_p)
4106 tree result;
4107 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4109 cfun = GGC_CNEW (struct function);
4111 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4113 init_eh_for_function ();
4115 if (init_machine_status)
4116 cfun->machine = (*init_machine_status) ();
4118 #ifdef OVERRIDE_ABI_FORMAT
4119 OVERRIDE_ABI_FORMAT (fndecl);
4120 #endif
4122 invoke_set_current_function_hook (fndecl);
4124 if (fndecl != NULL_TREE)
4126 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4127 cfun->decl = fndecl;
4128 current_function_funcdef_no = get_next_funcdef_no ();
4130 result = DECL_RESULT (fndecl);
4131 if (!abstract_p && aggregate_value_p (result, fndecl))
4133 #ifdef PCC_STATIC_STRUCT_RETURN
4134 cfun->returns_pcc_struct = 1;
4135 #endif
4136 cfun->returns_struct = 1;
4139 cfun->stdarg
4140 = (fntype
4141 && TYPE_ARG_TYPES (fntype) != 0
4142 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4143 != void_type_node));
4145 /* Assume all registers in stdarg functions need to be saved. */
4146 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4147 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4151 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4152 instead of just setting it. */
4154 void
4155 push_struct_function (tree fndecl)
4157 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4158 allocate_struct_function (fndecl, false);
4161 /* Reset cfun, and other non-struct-function variables to defaults as
4162 appropriate for emitting rtl at the start of a function. */
4164 static void
4165 prepare_function_start (void)
4167 gcc_assert (!crtl->emit.x_last_insn);
4168 init_temp_slots ();
4169 init_emit ();
4170 init_varasm_status ();
4171 init_expr ();
4172 default_rtl_profile ();
4174 cse_not_expected = ! optimize;
4176 /* Caller save not needed yet. */
4177 caller_save_needed = 0;
4179 /* We haven't done register allocation yet. */
4180 reg_renumber = 0;
4182 /* Indicate that we have not instantiated virtual registers yet. */
4183 virtuals_instantiated = 0;
4185 /* Indicate that we want CONCATs now. */
4186 generating_concat_p = 1;
4188 /* Indicate we have no need of a frame pointer yet. */
4189 frame_pointer_needed = 0;
4192 /* Initialize the rtl expansion mechanism so that we can do simple things
4193 like generate sequences. This is used to provide a context during global
4194 initialization of some passes. You must call expand_dummy_function_end
4195 to exit this context. */
4197 void
4198 init_dummy_function_start (void)
4200 gcc_assert (!in_dummy_function);
4201 in_dummy_function = true;
4202 push_struct_function (NULL_TREE);
4203 prepare_function_start ();
4206 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4207 and initialize static variables for generating RTL for the statements
4208 of the function. */
4210 void
4211 init_function_start (tree subr)
4213 if (subr && DECL_STRUCT_FUNCTION (subr))
4214 set_cfun (DECL_STRUCT_FUNCTION (subr));
4215 else
4216 allocate_struct_function (subr, false);
4217 prepare_function_start ();
4219 /* Warn if this value is an aggregate type,
4220 regardless of which calling convention we are using for it. */
4221 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4222 warning (OPT_Waggregate_return, "function returns an aggregate");
4225 /* Make sure all values used by the optimization passes have sane defaults. */
4226 unsigned int
4227 init_function_for_compilation (void)
4229 reg_renumber = 0;
4230 return 0;
4233 struct rtl_opt_pass pass_init_function =
4236 RTL_PASS,
4237 "*init_function", /* name */
4238 NULL, /* gate */
4239 init_function_for_compilation, /* execute */
4240 NULL, /* sub */
4241 NULL, /* next */
4242 0, /* static_pass_number */
4243 TV_NONE, /* tv_id */
4244 0, /* properties_required */
4245 0, /* properties_provided */
4246 0, /* properties_destroyed */
4247 0, /* todo_flags_start */
4248 0 /* todo_flags_finish */
4253 void
4254 expand_main_function (void)
4256 #if (defined(INVOKE__main) \
4257 || (!defined(HAS_INIT_SECTION) \
4258 && !defined(INIT_SECTION_ASM_OP) \
4259 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4260 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4261 #endif
4264 /* Expand code to initialize the stack_protect_guard. This is invoked at
4265 the beginning of a function to be protected. */
4267 #ifndef HAVE_stack_protect_set
4268 # define HAVE_stack_protect_set 0
4269 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4270 #endif
4272 void
4273 stack_protect_prologue (void)
4275 tree guard_decl = targetm.stack_protect_guard ();
4276 rtx x, y;
4278 x = expand_normal (crtl->stack_protect_guard);
4279 y = expand_normal (guard_decl);
4281 /* Allow the target to copy from Y to X without leaking Y into a
4282 register. */
4283 if (HAVE_stack_protect_set)
4285 rtx insn = gen_stack_protect_set (x, y);
4286 if (insn)
4288 emit_insn (insn);
4289 return;
4293 /* Otherwise do a straight move. */
4294 emit_move_insn (x, y);
4297 /* Expand code to verify the stack_protect_guard. This is invoked at
4298 the end of a function to be protected. */
4300 #ifndef HAVE_stack_protect_test
4301 # define HAVE_stack_protect_test 0
4302 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4303 #endif
4305 void
4306 stack_protect_epilogue (void)
4308 tree guard_decl = targetm.stack_protect_guard ();
4309 rtx label = gen_label_rtx ();
4310 rtx x, y, tmp;
4312 x = expand_normal (crtl->stack_protect_guard);
4313 y = expand_normal (guard_decl);
4315 /* Allow the target to compare Y with X without leaking either into
4316 a register. */
4317 switch (HAVE_stack_protect_test != 0)
4319 case 1:
4320 tmp = gen_stack_protect_test (x, y, label);
4321 if (tmp)
4323 emit_insn (tmp);
4324 break;
4326 /* FALLTHRU */
4328 default:
4329 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4330 break;
4333 /* The noreturn predictor has been moved to the tree level. The rtl-level
4334 predictors estimate this branch about 20%, which isn't enough to get
4335 things moved out of line. Since this is the only extant case of adding
4336 a noreturn function at the rtl level, it doesn't seem worth doing ought
4337 except adding the prediction by hand. */
4338 tmp = get_last_insn ();
4339 if (JUMP_P (tmp))
4340 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4342 expand_expr_stmt (targetm.stack_protect_fail ());
4343 emit_label (label);
4346 /* Start the RTL for a new function, and set variables used for
4347 emitting RTL.
4348 SUBR is the FUNCTION_DECL node.
4349 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4350 the function's parameters, which must be run at any return statement. */
4352 void
4353 expand_function_start (tree subr)
4355 /* Make sure volatile mem refs aren't considered
4356 valid operands of arithmetic insns. */
4357 init_recog_no_volatile ();
4359 crtl->profile
4360 = (profile_flag
4361 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4363 crtl->limit_stack
4364 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4366 /* Make the label for return statements to jump to. Do not special
4367 case machines with special return instructions -- they will be
4368 handled later during jump, ifcvt, or epilogue creation. */
4369 return_label = gen_label_rtx ();
4371 /* Initialize rtx used to return the value. */
4372 /* Do this before assign_parms so that we copy the struct value address
4373 before any library calls that assign parms might generate. */
4375 /* Decide whether to return the value in memory or in a register. */
4376 if (aggregate_value_p (DECL_RESULT (subr), subr))
4378 /* Returning something that won't go in a register. */
4379 rtx value_address = 0;
4381 #ifdef PCC_STATIC_STRUCT_RETURN
4382 if (cfun->returns_pcc_struct)
4384 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4385 value_address = assemble_static_space (size);
4387 else
4388 #endif
4390 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4391 /* Expect to be passed the address of a place to store the value.
4392 If it is passed as an argument, assign_parms will take care of
4393 it. */
4394 if (sv)
4396 value_address = gen_reg_rtx (Pmode);
4397 emit_move_insn (value_address, sv);
4400 if (value_address)
4402 rtx x = value_address;
4403 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4405 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4406 set_mem_attributes (x, DECL_RESULT (subr), 1);
4408 SET_DECL_RTL (DECL_RESULT (subr), x);
4411 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4412 /* If return mode is void, this decl rtl should not be used. */
4413 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4414 else
4416 /* Compute the return values into a pseudo reg, which we will copy
4417 into the true return register after the cleanups are done. */
4418 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4419 if (TYPE_MODE (return_type) != BLKmode
4420 && targetm.calls.return_in_msb (return_type))
4421 /* expand_function_end will insert the appropriate padding in
4422 this case. Use the return value's natural (unpadded) mode
4423 within the function proper. */
4424 SET_DECL_RTL (DECL_RESULT (subr),
4425 gen_reg_rtx (TYPE_MODE (return_type)));
4426 else
4428 /* In order to figure out what mode to use for the pseudo, we
4429 figure out what the mode of the eventual return register will
4430 actually be, and use that. */
4431 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4433 /* Structures that are returned in registers are not
4434 aggregate_value_p, so we may see a PARALLEL or a REG. */
4435 if (REG_P (hard_reg))
4436 SET_DECL_RTL (DECL_RESULT (subr),
4437 gen_reg_rtx (GET_MODE (hard_reg)));
4438 else
4440 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4441 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4445 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4446 result to the real return register(s). */
4447 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4450 /* Initialize rtx for parameters and local variables.
4451 In some cases this requires emitting insns. */
4452 assign_parms (subr);
4454 /* If function gets a static chain arg, store it. */
4455 if (cfun->static_chain_decl)
4457 tree parm = cfun->static_chain_decl;
4458 rtx local, chain, insn;
4460 local = gen_reg_rtx (Pmode);
4461 chain = targetm.calls.static_chain (current_function_decl, true);
4463 set_decl_incoming_rtl (parm, chain, false);
4464 SET_DECL_RTL (parm, local);
4465 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4467 insn = emit_move_insn (local, chain);
4469 /* Mark the register as eliminable, similar to parameters. */
4470 if (MEM_P (chain)
4471 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4472 set_unique_reg_note (insn, REG_EQUIV, chain);
4475 /* If the function receives a non-local goto, then store the
4476 bits we need to restore the frame pointer. */
4477 if (cfun->nonlocal_goto_save_area)
4479 tree t_save;
4480 rtx r_save;
4482 /* ??? We need to do this save early. Unfortunately here is
4483 before the frame variable gets declared. Help out... */
4484 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4485 if (!DECL_RTL_SET_P (var))
4486 expand_decl (var);
4488 t_save = build4 (ARRAY_REF, ptr_type_node,
4489 cfun->nonlocal_goto_save_area,
4490 integer_zero_node, NULL_TREE, NULL_TREE);
4491 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4492 r_save = convert_memory_address (Pmode, r_save);
4494 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4495 update_nonlocal_goto_save_area ();
4498 /* The following was moved from init_function_start.
4499 The move is supposed to make sdb output more accurate. */
4500 /* Indicate the beginning of the function body,
4501 as opposed to parm setup. */
4502 emit_note (NOTE_INSN_FUNCTION_BEG);
4504 gcc_assert (NOTE_P (get_last_insn ()));
4506 parm_birth_insn = get_last_insn ();
4508 if (crtl->profile)
4510 #ifdef PROFILE_HOOK
4511 PROFILE_HOOK (current_function_funcdef_no);
4512 #endif
4515 /* After the display initializations is where the stack checking
4516 probe should go. */
4517 if(flag_stack_check)
4518 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4520 /* Make sure there is a line number after the function entry setup code. */
4521 force_next_line_note ();
4524 /* Undo the effects of init_dummy_function_start. */
4525 void
4526 expand_dummy_function_end (void)
4528 gcc_assert (in_dummy_function);
4530 /* End any sequences that failed to be closed due to syntax errors. */
4531 while (in_sequence_p ())
4532 end_sequence ();
4534 /* Outside function body, can't compute type's actual size
4535 until next function's body starts. */
4537 free_after_parsing (cfun);
4538 free_after_compilation (cfun);
4539 pop_cfun ();
4540 in_dummy_function = false;
4543 /* Call DOIT for each hard register used as a return value from
4544 the current function. */
4546 void
4547 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4549 rtx outgoing = crtl->return_rtx;
4551 if (! outgoing)
4552 return;
4554 if (REG_P (outgoing))
4555 (*doit) (outgoing, arg);
4556 else if (GET_CODE (outgoing) == PARALLEL)
4558 int i;
4560 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4562 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4564 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4565 (*doit) (x, arg);
4570 static void
4571 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4573 emit_clobber (reg);
4576 void
4577 clobber_return_register (void)
4579 diddle_return_value (do_clobber_return_reg, NULL);
4581 /* In case we do use pseudo to return value, clobber it too. */
4582 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4584 tree decl_result = DECL_RESULT (current_function_decl);
4585 rtx decl_rtl = DECL_RTL (decl_result);
4586 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4588 do_clobber_return_reg (decl_rtl, NULL);
4593 static void
4594 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4596 emit_use (reg);
4599 static void
4600 use_return_register (void)
4602 diddle_return_value (do_use_return_reg, NULL);
4605 /* Possibly warn about unused parameters. */
4606 void
4607 do_warn_unused_parameter (tree fn)
4609 tree decl;
4611 for (decl = DECL_ARGUMENTS (fn);
4612 decl; decl = TREE_CHAIN (decl))
4613 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4614 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4615 && !TREE_NO_WARNING (decl))
4616 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4619 static GTY(()) rtx initial_trampoline;
4621 /* Generate RTL for the end of the current function. */
4623 void
4624 expand_function_end (void)
4626 rtx clobber_after;
4628 /* If arg_pointer_save_area was referenced only from a nested
4629 function, we will not have initialized it yet. Do that now. */
4630 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4631 get_arg_pointer_save_area ();
4633 /* If we are doing generic stack checking and this function makes calls,
4634 do a stack probe at the start of the function to ensure we have enough
4635 space for another stack frame. */
4636 if (flag_stack_check == GENERIC_STACK_CHECK)
4638 rtx insn, seq;
4640 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4641 if (CALL_P (insn))
4643 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4644 start_sequence ();
4645 if (STACK_CHECK_MOVING_SP)
4646 anti_adjust_stack_and_probe (max_frame_size, true);
4647 else
4648 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4649 seq = get_insns ();
4650 end_sequence ();
4651 emit_insn_before (seq, stack_check_probe_note);
4652 break;
4656 /* End any sequences that failed to be closed due to syntax errors. */
4657 while (in_sequence_p ())
4658 end_sequence ();
4660 clear_pending_stack_adjust ();
4661 do_pending_stack_adjust ();
4663 /* Output a linenumber for the end of the function.
4664 SDB depends on this. */
4665 force_next_line_note ();
4666 set_curr_insn_source_location (input_location);
4668 /* Before the return label (if any), clobber the return
4669 registers so that they are not propagated live to the rest of
4670 the function. This can only happen with functions that drop
4671 through; if there had been a return statement, there would
4672 have either been a return rtx, or a jump to the return label.
4674 We delay actual code generation after the current_function_value_rtx
4675 is computed. */
4676 clobber_after = get_last_insn ();
4678 /* Output the label for the actual return from the function. */
4679 emit_label (return_label);
4681 if (USING_SJLJ_EXCEPTIONS)
4683 /* Let except.c know where it should emit the call to unregister
4684 the function context for sjlj exceptions. */
4685 if (flag_exceptions)
4686 sjlj_emit_function_exit_after (get_last_insn ());
4688 else
4690 /* We want to ensure that instructions that may trap are not
4691 moved into the epilogue by scheduling, because we don't
4692 always emit unwind information for the epilogue. */
4693 if (flag_non_call_exceptions)
4694 emit_insn (gen_blockage ());
4697 /* If this is an implementation of throw, do what's necessary to
4698 communicate between __builtin_eh_return and the epilogue. */
4699 expand_eh_return ();
4701 /* If scalar return value was computed in a pseudo-reg, or was a named
4702 return value that got dumped to the stack, copy that to the hard
4703 return register. */
4704 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4706 tree decl_result = DECL_RESULT (current_function_decl);
4707 rtx decl_rtl = DECL_RTL (decl_result);
4709 if (REG_P (decl_rtl)
4710 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4711 : DECL_REGISTER (decl_result))
4713 rtx real_decl_rtl = crtl->return_rtx;
4715 /* This should be set in assign_parms. */
4716 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4718 /* If this is a BLKmode structure being returned in registers,
4719 then use the mode computed in expand_return. Note that if
4720 decl_rtl is memory, then its mode may have been changed,
4721 but that crtl->return_rtx has not. */
4722 if (GET_MODE (real_decl_rtl) == BLKmode)
4723 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4725 /* If a non-BLKmode return value should be padded at the least
4726 significant end of the register, shift it left by the appropriate
4727 amount. BLKmode results are handled using the group load/store
4728 machinery. */
4729 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4730 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4732 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4733 REGNO (real_decl_rtl)),
4734 decl_rtl);
4735 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4737 /* If a named return value dumped decl_return to memory, then
4738 we may need to re-do the PROMOTE_MODE signed/unsigned
4739 extension. */
4740 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4742 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4743 promote_function_mode (TREE_TYPE (decl_result),
4744 GET_MODE (decl_rtl), &unsignedp,
4745 TREE_TYPE (current_function_decl), 1);
4747 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4749 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4751 /* If expand_function_start has created a PARALLEL for decl_rtl,
4752 move the result to the real return registers. Otherwise, do
4753 a group load from decl_rtl for a named return. */
4754 if (GET_CODE (decl_rtl) == PARALLEL)
4755 emit_group_move (real_decl_rtl, decl_rtl);
4756 else
4757 emit_group_load (real_decl_rtl, decl_rtl,
4758 TREE_TYPE (decl_result),
4759 int_size_in_bytes (TREE_TYPE (decl_result)));
4761 /* In the case of complex integer modes smaller than a word, we'll
4762 need to generate some non-trivial bitfield insertions. Do that
4763 on a pseudo and not the hard register. */
4764 else if (GET_CODE (decl_rtl) == CONCAT
4765 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4766 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4768 int old_generating_concat_p;
4769 rtx tmp;
4771 old_generating_concat_p = generating_concat_p;
4772 generating_concat_p = 0;
4773 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4774 generating_concat_p = old_generating_concat_p;
4776 emit_move_insn (tmp, decl_rtl);
4777 emit_move_insn (real_decl_rtl, tmp);
4779 else
4780 emit_move_insn (real_decl_rtl, decl_rtl);
4784 /* If returning a structure, arrange to return the address of the value
4785 in a place where debuggers expect to find it.
4787 If returning a structure PCC style,
4788 the caller also depends on this value.
4789 And cfun->returns_pcc_struct is not necessarily set. */
4790 if (cfun->returns_struct
4791 || cfun->returns_pcc_struct)
4793 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4794 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4795 rtx outgoing;
4797 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4798 type = TREE_TYPE (type);
4799 else
4800 value_address = XEXP (value_address, 0);
4802 outgoing = targetm.calls.function_value (build_pointer_type (type),
4803 current_function_decl, true);
4805 /* Mark this as a function return value so integrate will delete the
4806 assignment and USE below when inlining this function. */
4807 REG_FUNCTION_VALUE_P (outgoing) = 1;
4809 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4810 value_address = convert_memory_address (GET_MODE (outgoing),
4811 value_address);
4813 emit_move_insn (outgoing, value_address);
4815 /* Show return register used to hold result (in this case the address
4816 of the result. */
4817 crtl->return_rtx = outgoing;
4820 /* Emit the actual code to clobber return register. */
4822 rtx seq;
4824 start_sequence ();
4825 clobber_return_register ();
4826 seq = get_insns ();
4827 end_sequence ();
4829 emit_insn_after (seq, clobber_after);
4832 /* Output the label for the naked return from the function. */
4833 if (naked_return_label)
4834 emit_label (naked_return_label);
4836 /* @@@ This is a kludge. We want to ensure that instructions that
4837 may trap are not moved into the epilogue by scheduling, because
4838 we don't always emit unwind information for the epilogue. */
4839 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4840 emit_insn (gen_blockage ());
4842 /* If stack protection is enabled for this function, check the guard. */
4843 if (crtl->stack_protect_guard)
4844 stack_protect_epilogue ();
4846 /* If we had calls to alloca, and this machine needs
4847 an accurate stack pointer to exit the function,
4848 insert some code to save and restore the stack pointer. */
4849 if (! EXIT_IGNORE_STACK
4850 && cfun->calls_alloca)
4852 rtx tem = 0;
4854 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4855 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4858 /* ??? This should no longer be necessary since stupid is no longer with
4859 us, but there are some parts of the compiler (eg reload_combine, and
4860 sh mach_dep_reorg) that still try and compute their own lifetime info
4861 instead of using the general framework. */
4862 use_return_register ();
4866 get_arg_pointer_save_area (void)
4868 rtx ret = arg_pointer_save_area;
4870 if (! ret)
4872 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4873 arg_pointer_save_area = ret;
4876 if (! crtl->arg_pointer_save_area_init)
4878 rtx seq;
4880 /* Save the arg pointer at the beginning of the function. The
4881 generated stack slot may not be a valid memory address, so we
4882 have to check it and fix it if necessary. */
4883 start_sequence ();
4884 emit_move_insn (validize_mem (ret),
4885 crtl->args.internal_arg_pointer);
4886 seq = get_insns ();
4887 end_sequence ();
4889 push_topmost_sequence ();
4890 emit_insn_after (seq, entry_of_function ());
4891 pop_topmost_sequence ();
4894 return ret;
4897 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4898 for the first time. */
4900 static void
4901 record_insns (rtx insns, rtx end, htab_t *hashp)
4903 rtx tmp;
4904 htab_t hash = *hashp;
4906 if (hash == NULL)
4907 *hashp = hash
4908 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4910 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4912 void **slot = htab_find_slot (hash, tmp, INSERT);
4913 gcc_assert (*slot == NULL);
4914 *slot = tmp;
4918 /* INSN has been duplicated as COPY, as part of duping a basic block.
4919 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4921 void
4922 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4924 void **slot;
4926 if (epilogue_insn_hash == NULL
4927 || htab_find (epilogue_insn_hash, insn) == NULL)
4928 return;
4930 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4931 gcc_assert (*slot == NULL);
4932 *slot = copy;
4935 /* Set the locator of the insn chain starting at INSN to LOC. */
4936 static void
4937 set_insn_locators (rtx insn, int loc)
4939 while (insn != NULL_RTX)
4941 if (INSN_P (insn))
4942 INSN_LOCATOR (insn) = loc;
4943 insn = NEXT_INSN (insn);
4947 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4948 we can be running after reorg, SEQUENCE rtl is possible. */
4950 static bool
4951 contains (const_rtx insn, htab_t hash)
4953 if (hash == NULL)
4954 return false;
4956 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4958 int i;
4959 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4960 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4961 return true;
4962 return false;
4965 return htab_find (hash, insn) != NULL;
4969 prologue_epilogue_contains (const_rtx insn)
4971 if (contains (insn, prologue_insn_hash))
4972 return 1;
4973 if (contains (insn, epilogue_insn_hash))
4974 return 1;
4975 return 0;
4978 #ifdef HAVE_return
4979 /* Insert gen_return at the end of block BB. This also means updating
4980 block_for_insn appropriately. */
4982 static void
4983 emit_return_into_block (basic_block bb)
4985 emit_jump_insn_after (gen_return (), BB_END (bb));
4987 #endif /* HAVE_return */
4989 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4990 this into place with notes indicating where the prologue ends and where
4991 the epilogue begins. Update the basic block information when possible. */
4993 static void
4994 thread_prologue_and_epilogue_insns (void)
4996 int inserted = 0;
4997 edge e;
4998 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4999 rtx seq;
5000 #endif
5001 #if defined (HAVE_epilogue) || defined(HAVE_return)
5002 rtx epilogue_end = NULL_RTX;
5003 #endif
5004 edge_iterator ei;
5006 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5007 #ifdef HAVE_prologue
5008 if (HAVE_prologue)
5010 start_sequence ();
5011 seq = gen_prologue ();
5012 emit_insn (seq);
5014 /* Insert an explicit USE for the frame pointer
5015 if the profiling is on and the frame pointer is required. */
5016 if (crtl->profile && frame_pointer_needed)
5017 emit_use (hard_frame_pointer_rtx);
5019 /* Retain a map of the prologue insns. */
5020 record_insns (seq, NULL, &prologue_insn_hash);
5021 emit_note (NOTE_INSN_PROLOGUE_END);
5023 #ifndef PROFILE_BEFORE_PROLOGUE
5024 /* Ensure that instructions are not moved into the prologue when
5025 profiling is on. The call to the profiling routine can be
5026 emitted within the live range of a call-clobbered register. */
5027 if (crtl->profile)
5028 emit_insn (gen_blockage ());
5029 #endif
5031 seq = get_insns ();
5032 end_sequence ();
5033 set_insn_locators (seq, prologue_locator);
5035 /* Can't deal with multiple successors of the entry block
5036 at the moment. Function should always have at least one
5037 entry point. */
5038 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5040 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5041 inserted = 1;
5043 #endif
5045 /* If the exit block has no non-fake predecessors, we don't need
5046 an epilogue. */
5047 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5048 if ((e->flags & EDGE_FAKE) == 0)
5049 break;
5050 if (e == NULL)
5051 goto epilogue_done;
5053 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5054 #ifdef HAVE_return
5055 if (optimize && HAVE_return)
5057 /* If we're allowed to generate a simple return instruction,
5058 then by definition we don't need a full epilogue. Examine
5059 the block that falls through to EXIT. If it does not
5060 contain any code, examine its predecessors and try to
5061 emit (conditional) return instructions. */
5063 basic_block last;
5064 rtx label;
5066 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5067 if (e->flags & EDGE_FALLTHRU)
5068 break;
5069 if (e == NULL)
5070 goto epilogue_done;
5071 last = e->src;
5073 /* Verify that there are no active instructions in the last block. */
5074 label = BB_END (last);
5075 while (label && !LABEL_P (label))
5077 if (active_insn_p (label))
5078 break;
5079 label = PREV_INSN (label);
5082 if (BB_HEAD (last) == label && LABEL_P (label))
5084 edge_iterator ei2;
5086 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5088 basic_block bb = e->src;
5089 rtx jump;
5091 if (bb == ENTRY_BLOCK_PTR)
5093 ei_next (&ei2);
5094 continue;
5097 jump = BB_END (bb);
5098 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5100 ei_next (&ei2);
5101 continue;
5104 /* If we have an unconditional jump, we can replace that
5105 with a simple return instruction. */
5106 if (simplejump_p (jump))
5108 emit_return_into_block (bb);
5109 delete_insn (jump);
5112 /* If we have a conditional jump, we can try to replace
5113 that with a conditional return instruction. */
5114 else if (condjump_p (jump))
5116 if (! redirect_jump (jump, 0, 0))
5118 ei_next (&ei2);
5119 continue;
5122 /* If this block has only one successor, it both jumps
5123 and falls through to the fallthru block, so we can't
5124 delete the edge. */
5125 if (single_succ_p (bb))
5127 ei_next (&ei2);
5128 continue;
5131 else
5133 ei_next (&ei2);
5134 continue;
5137 /* Fix up the CFG for the successful change we just made. */
5138 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5141 /* Emit a return insn for the exit fallthru block. Whether
5142 this is still reachable will be determined later. */
5144 emit_barrier_after (BB_END (last));
5145 emit_return_into_block (last);
5146 epilogue_end = BB_END (last);
5147 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5148 goto epilogue_done;
5151 #endif
5153 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5154 this marker for the splits of EH_RETURN patterns, and nothing else
5155 uses the flag in the meantime. */
5156 epilogue_completed = 1;
5158 #ifdef HAVE_eh_return
5159 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5160 some targets, these get split to a special version of the epilogue
5161 code. In order to be able to properly annotate these with unwind
5162 info, try to split them now. If we get a valid split, drop an
5163 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5164 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5166 rtx prev, last, trial;
5168 if (e->flags & EDGE_FALLTHRU)
5169 continue;
5170 last = BB_END (e->src);
5171 if (!eh_returnjump_p (last))
5172 continue;
5174 prev = PREV_INSN (last);
5175 trial = try_split (PATTERN (last), last, 1);
5176 if (trial == last)
5177 continue;
5179 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5180 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5182 #endif
5184 /* Find the edge that falls through to EXIT. Other edges may exist
5185 due to RETURN instructions, but those don't need epilogues.
5186 There really shouldn't be a mixture -- either all should have
5187 been converted or none, however... */
5189 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5190 if (e->flags & EDGE_FALLTHRU)
5191 break;
5192 if (e == NULL)
5193 goto epilogue_done;
5195 #ifdef HAVE_epilogue
5196 if (HAVE_epilogue)
5198 start_sequence ();
5199 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5200 seq = gen_epilogue ();
5201 emit_jump_insn (seq);
5203 /* Retain a map of the epilogue insns. */
5204 record_insns (seq, NULL, &epilogue_insn_hash);
5205 set_insn_locators (seq, epilogue_locator);
5207 seq = get_insns ();
5208 end_sequence ();
5210 insert_insn_on_edge (seq, e);
5211 inserted = 1;
5213 else
5214 #endif
5216 basic_block cur_bb;
5218 if (! next_active_insn (BB_END (e->src)))
5219 goto epilogue_done;
5220 /* We have a fall-through edge to the exit block, the source is not
5221 at the end of the function, and there will be an assembler epilogue
5222 at the end of the function.
5223 We can't use force_nonfallthru here, because that would try to
5224 use return. Inserting a jump 'by hand' is extremely messy, so
5225 we take advantage of cfg_layout_finalize using
5226 fixup_fallthru_exit_predecessor. */
5227 cfg_layout_initialize (0);
5228 FOR_EACH_BB (cur_bb)
5229 if (cur_bb->index >= NUM_FIXED_BLOCKS
5230 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5231 cur_bb->aux = cur_bb->next_bb;
5232 cfg_layout_finalize ();
5234 epilogue_done:
5235 default_rtl_profile ();
5237 if (inserted)
5239 commit_edge_insertions ();
5241 /* The epilogue insns we inserted may cause the exit edge to no longer
5242 be fallthru. */
5243 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5245 if (((e->flags & EDGE_FALLTHRU) != 0)
5246 && returnjump_p (BB_END (e->src)))
5247 e->flags &= ~EDGE_FALLTHRU;
5251 #ifdef HAVE_sibcall_epilogue
5252 /* Emit sibling epilogues before any sibling call sites. */
5253 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5255 basic_block bb = e->src;
5256 rtx insn = BB_END (bb);
5258 if (!CALL_P (insn)
5259 || ! SIBLING_CALL_P (insn))
5261 ei_next (&ei);
5262 continue;
5265 start_sequence ();
5266 emit_note (NOTE_INSN_EPILOGUE_BEG);
5267 emit_insn (gen_sibcall_epilogue ());
5268 seq = get_insns ();
5269 end_sequence ();
5271 /* Retain a map of the epilogue insns. Used in life analysis to
5272 avoid getting rid of sibcall epilogue insns. Do this before we
5273 actually emit the sequence. */
5274 record_insns (seq, NULL, &epilogue_insn_hash);
5275 set_insn_locators (seq, epilogue_locator);
5277 emit_insn_before (seq, insn);
5278 ei_next (&ei);
5280 #endif
5282 #ifdef HAVE_epilogue
5283 if (epilogue_end)
5285 rtx insn, next;
5287 /* Similarly, move any line notes that appear after the epilogue.
5288 There is no need, however, to be quite so anal about the existence
5289 of such a note. Also possibly move
5290 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5291 info generation. */
5292 for (insn = epilogue_end; insn; insn = next)
5294 next = NEXT_INSN (insn);
5295 if (NOTE_P (insn)
5296 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5297 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5300 #endif
5302 /* Threading the prologue and epilogue changes the artificial refs
5303 in the entry and exit blocks. */
5304 epilogue_completed = 1;
5305 df_update_entry_exit_and_calls ();
5308 /* Reposition the prologue-end and epilogue-begin notes after
5309 instruction scheduling. */
5311 void
5312 reposition_prologue_and_epilogue_notes (void)
5314 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5315 || defined (HAVE_sibcall_epilogue)
5316 /* Since the hash table is created on demand, the fact that it is
5317 non-null is a signal that it is non-empty. */
5318 if (prologue_insn_hash != NULL)
5320 size_t len = htab_elements (prologue_insn_hash);
5321 rtx insn, last = NULL, note = NULL;
5323 /* Scan from the beginning until we reach the last prologue insn. */
5324 /* ??? While we do have the CFG intact, there are two problems:
5325 (1) The prologue can contain loops (typically probing the stack),
5326 which means that the end of the prologue isn't in the first bb.
5327 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5328 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5330 if (NOTE_P (insn))
5332 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5333 note = insn;
5335 else if (contains (insn, prologue_insn_hash))
5337 last = insn;
5338 if (--len == 0)
5339 break;
5343 if (last)
5345 if (note == NULL)
5347 /* Scan forward looking for the PROLOGUE_END note. It should
5348 be right at the beginning of the block, possibly with other
5349 insn notes that got moved there. */
5350 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5352 if (NOTE_P (note)
5353 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5354 break;
5358 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5359 if (LABEL_P (last))
5360 last = NEXT_INSN (last);
5361 reorder_insns (note, note, last);
5365 if (epilogue_insn_hash != NULL)
5367 edge_iterator ei;
5368 edge e;
5370 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5372 rtx insn, first = NULL, note = NULL;
5373 basic_block bb = e->src;
5375 /* Scan from the beginning until we reach the first epilogue insn. */
5376 FOR_BB_INSNS (bb, insn)
5378 if (NOTE_P (insn))
5380 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5382 note = insn;
5383 if (first != NULL)
5384 break;
5387 else if (first == NULL && contains (insn, epilogue_insn_hash))
5389 first = insn;
5390 if (note != NULL)
5391 break;
5395 if (note)
5397 /* If the function has a single basic block, and no real
5398 epilogue insns (e.g. sibcall with no cleanup), the
5399 epilogue note can get scheduled before the prologue
5400 note. If we have frame related prologue insns, having
5401 them scanned during the epilogue will result in a crash.
5402 In this case re-order the epilogue note to just before
5403 the last insn in the block. */
5404 if (first == NULL)
5405 first = BB_END (bb);
5407 if (PREV_INSN (first) != note)
5408 reorder_insns (note, note, PREV_INSN (first));
5412 #endif /* HAVE_prologue or HAVE_epilogue */
5415 /* Returns the name of the current function. */
5416 const char *
5417 current_function_name (void)
5419 if (cfun == NULL)
5420 return "<none>";
5421 return lang_hooks.decl_printable_name (cfun->decl, 2);
5425 static unsigned int
5426 rest_of_handle_check_leaf_regs (void)
5428 #ifdef LEAF_REGISTERS
5429 current_function_uses_only_leaf_regs
5430 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5431 #endif
5432 return 0;
5435 /* Insert a TYPE into the used types hash table of CFUN. */
5437 static void
5438 used_types_insert_helper (tree type, struct function *func)
5440 if (type != NULL && func != NULL)
5442 void **slot;
5444 if (func->used_types_hash == NULL)
5445 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5446 htab_eq_pointer, NULL);
5447 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5448 if (*slot == NULL)
5449 *slot = type;
5453 /* Given a type, insert it into the used hash table in cfun. */
5454 void
5455 used_types_insert (tree t)
5457 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5458 t = TREE_TYPE (t);
5459 t = TYPE_MAIN_VARIANT (t);
5460 if (debug_info_level > DINFO_LEVEL_NONE)
5462 if (cfun)
5463 used_types_insert_helper (t, cfun);
5464 else
5465 /* So this might be a type referenced by a global variable.
5466 Record that type so that we can later decide to emit its debug
5467 information. */
5468 types_used_by_cur_var_decl =
5469 tree_cons (t, NULL, types_used_by_cur_var_decl);
5474 /* Helper to Hash a struct types_used_by_vars_entry. */
5476 static hashval_t
5477 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5479 gcc_assert (entry && entry->var_decl && entry->type);
5481 return iterative_hash_object (entry->type,
5482 iterative_hash_object (entry->var_decl, 0));
5485 /* Hash function of the types_used_by_vars_entry hash table. */
5487 hashval_t
5488 types_used_by_vars_do_hash (const void *x)
5490 const struct types_used_by_vars_entry *entry =
5491 (const struct types_used_by_vars_entry *) x;
5493 return hash_types_used_by_vars_entry (entry);
5496 /*Equality function of the types_used_by_vars_entry hash table. */
5499 types_used_by_vars_eq (const void *x1, const void *x2)
5501 const struct types_used_by_vars_entry *e1 =
5502 (const struct types_used_by_vars_entry *) x1;
5503 const struct types_used_by_vars_entry *e2 =
5504 (const struct types_used_by_vars_entry *)x2;
5506 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5509 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5511 void
5512 types_used_by_var_decl_insert (tree type, tree var_decl)
5514 if (type != NULL && var_decl != NULL)
5516 void **slot;
5517 struct types_used_by_vars_entry e;
5518 e.var_decl = var_decl;
5519 e.type = type;
5520 if (types_used_by_vars_hash == NULL)
5521 types_used_by_vars_hash =
5522 htab_create_ggc (37, types_used_by_vars_do_hash,
5523 types_used_by_vars_eq, NULL);
5524 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5525 hash_types_used_by_vars_entry (&e), INSERT);
5526 if (*slot == NULL)
5528 struct types_used_by_vars_entry *entry;
5529 entry = (struct types_used_by_vars_entry*) ggc_alloc
5530 (sizeof (struct types_used_by_vars_entry));
5531 entry->type = type;
5532 entry->var_decl = var_decl;
5533 *slot = entry;
5538 struct rtl_opt_pass pass_leaf_regs =
5541 RTL_PASS,
5542 "*leaf_regs", /* name */
5543 NULL, /* gate */
5544 rest_of_handle_check_leaf_regs, /* execute */
5545 NULL, /* sub */
5546 NULL, /* next */
5547 0, /* static_pass_number */
5548 TV_NONE, /* tv_id */
5549 0, /* properties_required */
5550 0, /* properties_provided */
5551 0, /* properties_destroyed */
5552 0, /* todo_flags_start */
5553 0 /* todo_flags_finish */
5557 static unsigned int
5558 rest_of_handle_thread_prologue_and_epilogue (void)
5560 if (optimize)
5561 cleanup_cfg (CLEANUP_EXPENSIVE);
5562 /* On some machines, the prologue and epilogue code, or parts thereof,
5563 can be represented as RTL. Doing so lets us schedule insns between
5564 it and the rest of the code and also allows delayed branch
5565 scheduling to operate in the epilogue. */
5567 thread_prologue_and_epilogue_insns ();
5568 return 0;
5571 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5574 RTL_PASS,
5575 "pro_and_epilogue", /* name */
5576 NULL, /* gate */
5577 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5578 NULL, /* sub */
5579 NULL, /* next */
5580 0, /* static_pass_number */
5581 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5582 0, /* properties_required */
5583 0, /* properties_provided */
5584 0, /* properties_destroyed */
5585 TODO_verify_flow, /* todo_flags_start */
5586 TODO_dump_func |
5587 TODO_df_verify |
5588 TODO_df_finish | TODO_verify_rtl_sharing |
5589 TODO_ggc_collect /* todo_flags_finish */
5594 /* This mini-pass fixes fall-out from SSA in asm statements that have
5595 in-out constraints. Say you start with
5597 orig = inout;
5598 asm ("": "+mr" (inout));
5599 use (orig);
5601 which is transformed very early to use explicit output and match operands:
5603 orig = inout;
5604 asm ("": "=mr" (inout) : "0" (inout));
5605 use (orig);
5607 Or, after SSA and copyprop,
5609 asm ("": "=mr" (inout_2) : "0" (inout_1));
5610 use (inout_1);
5612 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5613 they represent two separate values, so they will get different pseudo
5614 registers during expansion. Then, since the two operands need to match
5615 per the constraints, but use different pseudo registers, reload can
5616 only register a reload for these operands. But reloads can only be
5617 satisfied by hardregs, not by memory, so we need a register for this
5618 reload, just because we are presented with non-matching operands.
5619 So, even though we allow memory for this operand, no memory can be
5620 used for it, just because the two operands don't match. This can
5621 cause reload failures on register-starved targets.
5623 So it's a symptom of reload not being able to use memory for reloads
5624 or, alternatively it's also a symptom of both operands not coming into
5625 reload as matching (in which case the pseudo could go to memory just
5626 fine, as the alternative allows it, and no reload would be necessary).
5627 We fix the latter problem here, by transforming
5629 asm ("": "=mr" (inout_2) : "0" (inout_1));
5631 back to
5633 inout_2 = inout_1;
5634 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5636 static void
5637 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5639 int i;
5640 bool changed = false;
5641 rtx op = SET_SRC (p_sets[0]);
5642 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5643 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5644 bool *output_matched = XALLOCAVEC (bool, noutputs);
5646 memset (output_matched, 0, noutputs * sizeof (bool));
5647 for (i = 0; i < ninputs; i++)
5649 rtx input, output, insns;
5650 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5651 char *end;
5652 int match, j;
5654 if (*constraint == '%')
5655 constraint++;
5657 match = strtoul (constraint, &end, 10);
5658 if (end == constraint)
5659 continue;
5661 gcc_assert (match < noutputs);
5662 output = SET_DEST (p_sets[match]);
5663 input = RTVEC_ELT (inputs, i);
5664 /* Only do the transformation for pseudos. */
5665 if (! REG_P (output)
5666 || rtx_equal_p (output, input)
5667 || (GET_MODE (input) != VOIDmode
5668 && GET_MODE (input) != GET_MODE (output)))
5669 continue;
5671 /* We can't do anything if the output is also used as input,
5672 as we're going to overwrite it. */
5673 for (j = 0; j < ninputs; j++)
5674 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5675 break;
5676 if (j != ninputs)
5677 continue;
5679 /* Avoid changing the same input several times. For
5680 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5681 only change in once (to out1), rather than changing it
5682 first to out1 and afterwards to out2. */
5683 if (i > 0)
5685 for (j = 0; j < noutputs; j++)
5686 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5687 break;
5688 if (j != noutputs)
5689 continue;
5691 output_matched[match] = true;
5693 start_sequence ();
5694 emit_move_insn (output, input);
5695 insns = get_insns ();
5696 end_sequence ();
5697 emit_insn_before (insns, insn);
5699 /* Now replace all mentions of the input with output. We can't
5700 just replace the occurrence in inputs[i], as the register might
5701 also be used in some other input (or even in an address of an
5702 output), which would mean possibly increasing the number of
5703 inputs by one (namely 'output' in addition), which might pose
5704 a too complicated problem for reload to solve. E.g. this situation:
5706 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5708 Here 'input' is used in two occurrences as input (once for the
5709 input operand, once for the address in the second output operand).
5710 If we would replace only the occurrence of the input operand (to
5711 make the matching) we would be left with this:
5713 output = input
5714 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5716 Now we suddenly have two different input values (containing the same
5717 value, but different pseudos) where we formerly had only one.
5718 With more complicated asms this might lead to reload failures
5719 which wouldn't have happen without this pass. So, iterate over
5720 all operands and replace all occurrences of the register used. */
5721 for (j = 0; j < noutputs; j++)
5722 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5723 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5724 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5725 input, output);
5726 for (j = 0; j < ninputs; j++)
5727 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5728 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5729 input, output);
5731 changed = true;
5734 if (changed)
5735 df_insn_rescan (insn);
5738 static unsigned
5739 rest_of_match_asm_constraints (void)
5741 basic_block bb;
5742 rtx insn, pat, *p_sets;
5743 int noutputs;
5745 if (!crtl->has_asm_statement)
5746 return 0;
5748 df_set_flags (DF_DEFER_INSN_RESCAN);
5749 FOR_EACH_BB (bb)
5751 FOR_BB_INSNS (bb, insn)
5753 if (!INSN_P (insn))
5754 continue;
5756 pat = PATTERN (insn);
5757 if (GET_CODE (pat) == PARALLEL)
5758 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5759 else if (GET_CODE (pat) == SET)
5760 p_sets = &PATTERN (insn), noutputs = 1;
5761 else
5762 continue;
5764 if (GET_CODE (*p_sets) == SET
5765 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5766 match_asm_constraints_1 (insn, p_sets, noutputs);
5770 return TODO_df_finish;
5773 struct rtl_opt_pass pass_match_asm_constraints =
5776 RTL_PASS,
5777 "asmcons", /* name */
5778 NULL, /* gate */
5779 rest_of_match_asm_constraints, /* execute */
5780 NULL, /* sub */
5781 NULL, /* next */
5782 0, /* static_pass_number */
5783 TV_NONE, /* tv_id */
5784 0, /* properties_required */
5785 0, /* properties_provided */
5786 0, /* properties_destroyed */
5787 0, /* todo_flags_start */
5788 TODO_dump_func /* todo_flags_finish */
5793 #include "gt-function.h"