2004-09-15 Steven G. Kargl <kargls@comcast.net>
[official-gcc.git] / gcc / cfgcleanup.c
blob08714f6d652063df6284a89f4154cab7e76b144c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "regs.h"
52 #include "cfglayout.h"
53 #include "emit-rtl.h"
55 /* cleanup_cfg maintains following flags for each basic block. */
57 enum bb_flags
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK = 1,
62 BB_NONTHREADABLE_BLOCK = 2
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass;
75 static bool try_crossjump_to_edge (int, edge, edge);
76 static bool try_crossjump_bb (int, basic_block);
77 static bool outgoing_edges_match (int, basic_block, basic_block);
78 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
79 static bool insns_match_p (int, rtx, rtx);
81 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
82 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block);
85 static bool try_forward_edges (int, basic_block);
86 static edge thread_jump (int, edge, basic_block);
87 static bool mark_effect (rtx, bitmap);
88 static void notice_new_block (basic_block);
89 static void update_forwarder_flag (basic_block);
90 static int mentions_nonequal_regs (rtx *, void *);
91 static void merge_memattrs (rtx, rtx);
93 /* Set flags for newly created block. */
95 static void
96 notice_new_block (basic_block bb)
98 if (!bb)
99 return;
101 if (forwarder_block_p (bb))
102 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
105 /* Recompute forwarder flag after block has been modified. */
107 static void
108 update_forwarder_flag (basic_block bb)
110 if (forwarder_block_p (bb))
111 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
112 else
113 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
119 static bool
120 try_simplify_condjump (basic_block cbranch_block)
122 basic_block jump_block, jump_dest_block, cbranch_dest_block;
123 edge cbranch_jump_edge, cbranch_fallthru_edge;
124 rtx cbranch_insn;
126 /* Verify that there are exactly two successors. */
127 if (!cbranch_block->succ
128 || !cbranch_block->succ->succ_next
129 || cbranch_block->succ->succ_next->succ_next)
130 return false;
132 /* Verify that we've got a normal conditional branch at the end
133 of the block. */
134 cbranch_insn = BB_END (cbranch_block);
135 if (!any_condjump_p (cbranch_insn))
136 return false;
138 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
139 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
141 /* The next block must not have multiple predecessors, must not
142 be the last block in the function, and must contain just the
143 unconditional jump. */
144 jump_block = cbranch_fallthru_edge->dest;
145 if (jump_block->pred->pred_next
146 || jump_block->next_bb == EXIT_BLOCK_PTR
147 || !FORWARDER_BLOCK_P (jump_block))
148 return false;
149 jump_dest_block = jump_block->succ->dest;
151 /* If we are partitioning hot/cold basic blocks, we don't want to
152 mess up unconditional or indirect jumps that cross between hot
153 and cold sections.
155 Basic block partitioning may result in some jumps that appear to
156 be optimizable (or blocks that appear to be mergeable), but which really
157 must be left untouched (they are required to make it safely across
158 partition boundaries). See the comments at the top of
159 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
161 if (flag_reorder_blocks_and_partition
162 && (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
163 || (cbranch_jump_edge->flags & EDGE_CROSSING)))
164 return false;
166 /* The conditional branch must target the block after the
167 unconditional branch. */
168 cbranch_dest_block = cbranch_jump_edge->dest;
170 if (cbranch_dest_block == EXIT_BLOCK_PTR
171 || !can_fallthru (jump_block, cbranch_dest_block))
172 return false;
174 /* Invert the conditional branch. */
175 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
176 return false;
178 if (dump_file)
179 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
180 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
182 /* Success. Update the CFG to match. Note that after this point
183 the edge variable names appear backwards; the redirection is done
184 this way to preserve edge profile data. */
185 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
186 cbranch_dest_block);
187 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
188 jump_dest_block);
189 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
190 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
191 update_br_prob_note (cbranch_block);
193 /* Delete the block with the unconditional jump, and clean up the mess. */
194 delete_basic_block (jump_block);
195 tidy_fallthru_edge (cbranch_jump_edge);
196 update_forwarder_flag (cbranch_block);
198 return true;
201 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
202 on register. Used by jump threading. */
204 static bool
205 mark_effect (rtx exp, regset nonequal)
207 int regno;
208 rtx dest;
209 switch (GET_CODE (exp))
211 /* In case we do clobber the register, mark it as equal, as we know the
212 value is dead so it don't have to match. */
213 case CLOBBER:
214 if (REG_P (XEXP (exp, 0)))
216 dest = XEXP (exp, 0);
217 regno = REGNO (dest);
218 CLEAR_REGNO_REG_SET (nonequal, regno);
219 if (regno < FIRST_PSEUDO_REGISTER)
221 int n = hard_regno_nregs[regno][GET_MODE (dest)];
222 while (--n > 0)
223 CLEAR_REGNO_REG_SET (nonequal, regno + n);
226 return false;
228 case SET:
229 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
230 return false;
231 dest = SET_DEST (exp);
232 if (dest == pc_rtx)
233 return false;
234 if (!REG_P (dest))
235 return true;
236 regno = REGNO (dest);
237 SET_REGNO_REG_SET (nonequal, regno);
238 if (regno < FIRST_PSEUDO_REGISTER)
240 int n = hard_regno_nregs[regno][GET_MODE (dest)];
241 while (--n > 0)
242 SET_REGNO_REG_SET (nonequal, regno + n);
244 return false;
246 default:
247 return false;
251 /* Return nonzero if X is a register set in regset DATA.
252 Called via for_each_rtx. */
253 static int
254 mentions_nonequal_regs (rtx *x, void *data)
256 regset nonequal = (regset) data;
257 if (REG_P (*x))
259 int regno;
261 regno = REGNO (*x);
262 if (REGNO_REG_SET_P (nonequal, regno))
263 return 1;
264 if (regno < FIRST_PSEUDO_REGISTER)
266 int n = hard_regno_nregs[regno][GET_MODE (*x)];
267 while (--n > 0)
268 if (REGNO_REG_SET_P (nonequal, regno + n))
269 return 1;
272 return 0;
274 /* Attempt to prove that the basic block B will have no side effects and
275 always continues in the same edge if reached via E. Return the edge
276 if exist, NULL otherwise. */
278 static edge
279 thread_jump (int mode, edge e, basic_block b)
281 rtx set1, set2, cond1, cond2, insn;
282 enum rtx_code code1, code2, reversed_code2;
283 bool reverse1 = false;
284 int i;
285 regset nonequal;
286 bool failed = false;
288 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
289 return NULL;
291 /* At the moment, we do handle only conditional jumps, but later we may
292 want to extend this code to tablejumps and others. */
293 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
294 return NULL;
295 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
297 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
298 return NULL;
301 /* Second branch must end with onlyjump, as we will eliminate the jump. */
302 if (!any_condjump_p (BB_END (e->src)))
303 return NULL;
305 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
307 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
308 return NULL;
311 set1 = pc_set (BB_END (e->src));
312 set2 = pc_set (BB_END (b));
313 if (((e->flags & EDGE_FALLTHRU) != 0)
314 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
315 reverse1 = true;
317 cond1 = XEXP (SET_SRC (set1), 0);
318 cond2 = XEXP (SET_SRC (set2), 0);
319 if (reverse1)
320 code1 = reversed_comparison_code (cond1, BB_END (e->src));
321 else
322 code1 = GET_CODE (cond1);
324 code2 = GET_CODE (cond2);
325 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
327 if (!comparison_dominates_p (code1, code2)
328 && !comparison_dominates_p (code1, reversed_code2))
329 return NULL;
331 /* Ensure that the comparison operators are equivalent.
332 ??? This is far too pessimistic. We should allow swapped operands,
333 different CCmodes, or for example comparisons for interval, that
334 dominate even when operands are not equivalent. */
335 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
336 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
337 return NULL;
339 /* Short circuit cases where block B contains some side effects, as we can't
340 safely bypass it. */
341 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
342 insn = NEXT_INSN (insn))
343 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
345 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
346 return NULL;
349 cselib_init (false);
351 /* First process all values computed in the source basic block. */
352 for (insn = NEXT_INSN (BB_HEAD (e->src)); insn != NEXT_INSN (BB_END (e->src));
353 insn = NEXT_INSN (insn))
354 if (INSN_P (insn))
355 cselib_process_insn (insn);
357 nonequal = BITMAP_XMALLOC();
358 CLEAR_REG_SET (nonequal);
360 /* Now assume that we've continued by the edge E to B and continue
361 processing as if it were same basic block.
362 Our goal is to prove that whole block is an NOOP. */
364 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b)) && !failed;
365 insn = NEXT_INSN (insn))
367 if (INSN_P (insn))
369 rtx pat = PATTERN (insn);
371 if (GET_CODE (pat) == PARALLEL)
373 for (i = 0; i < XVECLEN (pat, 0); i++)
374 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
376 else
377 failed |= mark_effect (pat, nonequal);
380 cselib_process_insn (insn);
383 /* Later we should clear nonequal of dead registers. So far we don't
384 have life information in cfg_cleanup. */
385 if (failed)
387 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
388 goto failed_exit;
391 /* cond2 must not mention any register that is not equal to the
392 former block. */
393 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
394 goto failed_exit;
396 /* In case liveness information is available, we need to prove equivalence
397 only of the live values. */
398 if (mode & CLEANUP_UPDATE_LIFE)
399 AND_REG_SET (nonequal, b->global_live_at_end);
401 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
403 BITMAP_XFREE (nonequal);
404 cselib_finish ();
405 if ((comparison_dominates_p (code1, code2) != 0)
406 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
407 return BRANCH_EDGE (b);
408 else
409 return FALLTHRU_EDGE (b);
411 failed_exit:
412 BITMAP_XFREE (nonequal);
413 cselib_finish ();
414 return NULL;
417 /* Attempt to forward edges leaving basic block B.
418 Return true if successful. */
420 static bool
421 try_forward_edges (int mode, basic_block b)
423 bool changed = false;
424 edge e, next, *threaded_edges = NULL;
426 /* If we are partitioning hot/cold basic blocks, we don't want to
427 mess up unconditional or indirect jumps that cross between hot
428 and cold sections.
430 Basic block partitioning may result in some jumps that appear to
431 be optimizable (or blocks that appear to be mergeable), but which really m
432 ust be left untouched (they are required to make it safely across
433 partition boundaries). See the comments at the top of
434 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
436 if (flag_reorder_blocks_and_partition
437 && find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
438 return false;
440 for (e = b->succ; e; e = next)
442 basic_block target, first;
443 int counter;
444 bool threaded = false;
445 int nthreaded_edges = 0;
446 bool may_thread = first_pass | (b->flags & BB_DIRTY);
448 next = e->succ_next;
450 /* Skip complex edges because we don't know how to update them.
452 Still handle fallthru edges, as we can succeed to forward fallthru
453 edge to the same place as the branch edge of conditional branch
454 and turn conditional branch to an unconditional branch. */
455 if (e->flags & EDGE_COMPLEX)
456 continue;
458 target = first = e->dest;
459 counter = 0;
461 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
462 up jumps that cross between hot/cold sections.
464 Basic block partitioning may result in some jumps that appear
465 to be optimizable (or blocks that appear to be mergeable), but which
466 really must be left untouched (they are required to make it safely
467 across partition boundaries). See the comments at the top of
468 bb-reorder.c:partition_hot_cold_basic_blocks for complete
469 details. */
471 if (flag_reorder_blocks_and_partition
472 && first != EXIT_BLOCK_PTR
473 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
474 return false;
476 while (counter < n_basic_blocks)
478 basic_block new_target = NULL;
479 bool new_target_threaded = false;
480 may_thread |= target->flags & BB_DIRTY;
482 if (FORWARDER_BLOCK_P (target)
483 && !(target->succ->flags & EDGE_CROSSING)
484 && target->succ->dest != EXIT_BLOCK_PTR)
486 /* Bypass trivial infinite loops. */
487 if (target == target->succ->dest)
488 counter = n_basic_blocks;
489 new_target = target->succ->dest;
492 /* Allow to thread only over one edge at time to simplify updating
493 of probabilities. */
494 else if ((mode & CLEANUP_THREADING) && may_thread)
496 edge t = thread_jump (mode, e, target);
497 if (t)
499 if (!threaded_edges)
500 threaded_edges = xmalloc (sizeof (*threaded_edges)
501 * n_basic_blocks);
502 else
504 int i;
506 /* Detect an infinite loop across blocks not
507 including the start block. */
508 for (i = 0; i < nthreaded_edges; ++i)
509 if (threaded_edges[i] == t)
510 break;
511 if (i < nthreaded_edges)
513 counter = n_basic_blocks;
514 break;
518 /* Detect an infinite loop across the start block. */
519 if (t->dest == b)
520 break;
522 gcc_assert (nthreaded_edges < n_basic_blocks);
523 threaded_edges[nthreaded_edges++] = t;
525 new_target = t->dest;
526 new_target_threaded = true;
530 if (!new_target)
531 break;
533 /* Avoid killing of loop pre-headers, as it is the place loop
534 optimizer wants to hoist code to.
536 For fallthru forwarders, the LOOP_BEG note must appear between
537 the header of block and CODE_LABEL of the loop, for non forwarders
538 it must appear before the JUMP_INSN. */
539 if ((mode & CLEANUP_PRE_LOOP) && optimize)
541 rtx insn = (target->succ->flags & EDGE_FALLTHRU
542 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
544 if (!NOTE_P (insn))
545 insn = NEXT_INSN (insn);
547 for (; insn && !LABEL_P (insn) && !INSN_P (insn);
548 insn = NEXT_INSN (insn))
549 if (NOTE_P (insn)
550 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
551 break;
553 if (NOTE_P (insn))
554 break;
556 /* Do not clean up branches to just past the end of a loop
557 at this time; it can mess up the loop optimizer's
558 recognition of some patterns. */
560 insn = PREV_INSN (BB_HEAD (target));
561 if (insn && NOTE_P (insn)
562 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
563 break;
566 counter++;
567 target = new_target;
568 threaded |= new_target_threaded;
571 if (counter >= n_basic_blocks)
573 if (dump_file)
574 fprintf (dump_file, "Infinite loop in BB %i.\n",
575 target->index);
577 else if (target == first)
578 ; /* We didn't do anything. */
579 else
581 /* Save the values now, as the edge may get removed. */
582 gcov_type edge_count = e->count;
583 int edge_probability = e->probability;
584 int edge_frequency;
585 int n = 0;
587 /* Don't force if target is exit block. */
588 if (threaded && target != EXIT_BLOCK_PTR)
590 notice_new_block (redirect_edge_and_branch_force (e, target));
591 if (dump_file)
592 fprintf (dump_file, "Conditionals threaded.\n");
594 else if (!redirect_edge_and_branch (e, target))
596 if (dump_file)
597 fprintf (dump_file,
598 "Forwarding edge %i->%i to %i failed.\n",
599 b->index, e->dest->index, target->index);
600 continue;
603 /* We successfully forwarded the edge. Now update profile
604 data: for each edge we traversed in the chain, remove
605 the original edge's execution count. */
606 edge_frequency = ((edge_probability * b->frequency
607 + REG_BR_PROB_BASE / 2)
608 / REG_BR_PROB_BASE);
610 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
611 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
615 edge t;
617 first->count -= edge_count;
618 if (first->count < 0)
619 first->count = 0;
620 first->frequency -= edge_frequency;
621 if (first->frequency < 0)
622 first->frequency = 0;
623 if (first->succ->succ_next)
625 edge e;
626 int prob;
628 gcc_assert (n < nthreaded_edges);
629 t = threaded_edges [n++];
630 gcc_assert (t->src == first);
631 if (first->frequency)
632 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
633 else
634 prob = 0;
635 if (prob > t->probability)
636 prob = t->probability;
637 t->probability -= prob;
638 prob = REG_BR_PROB_BASE - prob;
639 if (prob <= 0)
641 first->succ->probability = REG_BR_PROB_BASE;
642 first->succ->succ_next->probability = 0;
644 else
645 for (e = first->succ; e; e = e->succ_next)
646 e->probability = ((e->probability * REG_BR_PROB_BASE)
647 / (double) prob);
648 update_br_prob_note (first);
650 else
652 /* It is possible that as the result of
653 threading we've removed edge as it is
654 threaded to the fallthru edge. Avoid
655 getting out of sync. */
656 if (n < nthreaded_edges
657 && first == threaded_edges [n]->src)
658 n++;
659 t = first->succ;
662 t->count -= edge_count;
663 if (t->count < 0)
664 t->count = 0;
665 first = t->dest;
667 while (first != target);
669 changed = true;
673 if (threaded_edges)
674 free (threaded_edges);
675 return changed;
679 /* Blocks A and B are to be merged into a single block. A has no incoming
680 fallthru edge, so it can be moved before B without adding or modifying
681 any jumps (aside from the jump from A to B). */
683 static void
684 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
686 rtx barrier;
687 bool only_notes;
689 /* If we are partitioning hot/cold basic blocks, we don't want to
690 mess up unconditional or indirect jumps that cross between hot
691 and cold sections.
693 Basic block partitioning may result in some jumps that appear to
694 be optimizable (or blocks that appear to be mergeable), but which really
695 must be left untouched (they are required to make it safely across
696 partition boundaries). See the comments at the top of
697 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
699 if (flag_reorder_blocks_and_partition
700 && (BB_PARTITION (a) != BB_PARTITION (b)
701 || find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)))
702 return;
704 barrier = next_nonnote_insn (BB_END (a));
705 gcc_assert (BARRIER_P (barrier));
706 delete_insn (barrier);
708 /* Move block and loop notes out of the chain so that we do not
709 disturb their order.
711 ??? A better solution would be to squeeze out all the non-nested notes
712 and adjust the block trees appropriately. Even better would be to have
713 a tighter connection between block trees and rtl so that this is not
714 necessary. */
715 only_notes = squeeze_notes (&BB_HEAD (a), &BB_END (a));
716 gcc_assert (!only_notes);
718 /* Scramble the insn chain. */
719 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
720 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
721 a->flags |= BB_DIRTY;
723 if (dump_file)
724 fprintf (dump_file, "Moved block %d before %d and merged.\n",
725 a->index, b->index);
727 /* Swap the records for the two blocks around. */
729 unlink_block (a);
730 link_block (a, b->prev_bb);
732 /* Now blocks A and B are contiguous. Merge them. */
733 merge_blocks (a, b);
736 /* Blocks A and B are to be merged into a single block. B has no outgoing
737 fallthru edge, so it can be moved after A without adding or modifying
738 any jumps (aside from the jump from A to B). */
740 static void
741 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
743 rtx barrier, real_b_end;
744 rtx label, table;
745 bool only_notes;
747 /* If we are partitioning hot/cold basic blocks, we don't want to
748 mess up unconditional or indirect jumps that cross between hot
749 and cold sections.
751 Basic block partitioning may result in some jumps that appear to
752 be optimizable (or blocks that appear to be mergeable), but which really
753 must be left untouched (they are required to make it safely across
754 partition boundaries). See the comments at the top of
755 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
757 if (flag_reorder_blocks_and_partition
758 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
759 || BB_PARTITION (a) != BB_PARTITION (b)))
760 return;
762 real_b_end = BB_END (b);
764 /* If there is a jump table following block B temporarily add the jump table
765 to block B so that it will also be moved to the correct location. */
766 if (tablejump_p (BB_END (b), &label, &table)
767 && prev_active_insn (label) == BB_END (b))
769 BB_END (b) = table;
772 /* There had better have been a barrier there. Delete it. */
773 barrier = NEXT_INSN (BB_END (b));
774 if (barrier && BARRIER_P (barrier))
775 delete_insn (barrier);
777 /* Move block and loop notes out of the chain so that we do not
778 disturb their order.
780 ??? A better solution would be to squeeze out all the non-nested notes
781 and adjust the block trees appropriately. Even better would be to have
782 a tighter connection between block trees and rtl so that this is not
783 necessary. */
784 only_notes = squeeze_notes (&BB_HEAD (b), &BB_END (b));
785 gcc_assert (!only_notes);
788 /* Scramble the insn chain. */
789 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
791 /* Restore the real end of b. */
792 BB_END (b) = real_b_end;
794 if (dump_file)
795 fprintf (dump_file, "Moved block %d after %d and merged.\n",
796 b->index, a->index);
798 /* Now blocks A and B are contiguous. Merge them. */
799 merge_blocks (a, b);
802 /* Attempt to merge basic blocks that are potentially non-adjacent.
803 Return NULL iff the attempt failed, otherwise return basic block
804 where cleanup_cfg should continue. Because the merging commonly
805 moves basic block away or introduces another optimization
806 possibility, return basic block just before B so cleanup_cfg don't
807 need to iterate.
809 It may be good idea to return basic block before C in the case
810 C has been moved after B and originally appeared earlier in the
811 insn sequence, but we have no information available about the
812 relative ordering of these two. Hopefully it is not too common. */
814 static basic_block
815 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
817 basic_block next;
819 /* If we are partitioning hot/cold basic blocks, we don't want to
820 mess up unconditional or indirect jumps that cross between hot
821 and cold sections.
823 Basic block partitioning may result in some jumps that appear to
824 be optimizable (or blocks that appear to be mergeable), but which really
825 must be left untouched (they are required to make it safely across
826 partition boundaries). See the comments at the top of
827 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
829 if (flag_reorder_blocks_and_partition
830 && (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
831 || find_reg_note (BB_END (c), REG_CROSSING_JUMP, NULL_RTX)
832 || BB_PARTITION (b) != BB_PARTITION (c)))
833 return NULL;
837 /* If B has a fallthru edge to C, no need to move anything. */
838 if (e->flags & EDGE_FALLTHRU)
840 int b_index = b->index, c_index = c->index;
841 merge_blocks (b, c);
842 update_forwarder_flag (b);
844 if (dump_file)
845 fprintf (dump_file, "Merged %d and %d without moving.\n",
846 b_index, c_index);
848 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
851 /* Otherwise we will need to move code around. Do that only if expensive
852 transformations are allowed. */
853 else if (mode & CLEANUP_EXPENSIVE)
855 edge tmp_edge, b_fallthru_edge;
856 bool c_has_outgoing_fallthru;
857 bool b_has_incoming_fallthru;
859 /* Avoid overactive code motion, as the forwarder blocks should be
860 eliminated by edge redirection instead. One exception might have
861 been if B is a forwarder block and C has no fallthru edge, but
862 that should be cleaned up by bb-reorder instead. */
863 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
864 return NULL;
866 /* We must make sure to not munge nesting of lexical blocks,
867 and loop notes. This is done by squeezing out all the notes
868 and leaving them there to lie. Not ideal, but functional. */
870 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
871 if (tmp_edge->flags & EDGE_FALLTHRU)
872 break;
874 c_has_outgoing_fallthru = (tmp_edge != NULL);
876 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
877 if (tmp_edge->flags & EDGE_FALLTHRU)
878 break;
880 b_has_incoming_fallthru = (tmp_edge != NULL);
881 b_fallthru_edge = tmp_edge;
882 next = b->prev_bb;
883 if (next == c)
884 next = next->prev_bb;
886 /* Otherwise, we're going to try to move C after B. If C does
887 not have an outgoing fallthru, then it can be moved
888 immediately after B without introducing or modifying jumps. */
889 if (! c_has_outgoing_fallthru)
891 merge_blocks_move_successor_nojumps (b, c);
892 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
895 /* If B does not have an incoming fallthru, then it can be moved
896 immediately before C without introducing or modifying jumps.
897 C cannot be the first block, so we do not have to worry about
898 accessing a non-existent block. */
900 if (b_has_incoming_fallthru)
902 basic_block bb;
904 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
905 return NULL;
906 bb = force_nonfallthru (b_fallthru_edge);
907 if (bb)
908 notice_new_block (bb);
911 merge_blocks_move_predecessor_nojumps (b, c);
912 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
915 return NULL;
919 /* Removes the memory attributes of MEM expression
920 if they are not equal. */
922 void
923 merge_memattrs (rtx x, rtx y)
925 int i;
926 int j;
927 enum rtx_code code;
928 const char *fmt;
930 if (x == y)
931 return;
932 if (x == 0 || y == 0)
933 return;
935 code = GET_CODE (x);
937 if (code != GET_CODE (y))
938 return;
940 if (GET_MODE (x) != GET_MODE (y))
941 return;
943 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
945 if (! MEM_ATTRS (x))
946 MEM_ATTRS (y) = 0;
947 else if (! MEM_ATTRS (y))
948 MEM_ATTRS (x) = 0;
949 else
951 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
953 set_mem_alias_set (x, 0);
954 set_mem_alias_set (y, 0);
957 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
959 set_mem_expr (x, 0);
960 set_mem_expr (y, 0);
961 set_mem_offset (x, 0);
962 set_mem_offset (y, 0);
964 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
966 set_mem_offset (x, 0);
967 set_mem_offset (y, 0);
970 set_mem_size (x, GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
971 INTVAL (MEM_SIZE (y)))));
972 set_mem_size (y, MEM_SIZE (x));
974 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
975 set_mem_align (y, MEM_ALIGN (x));
979 fmt = GET_RTX_FORMAT (code);
980 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
982 switch (fmt[i])
984 case 'E':
985 /* Two vectors must have the same length. */
986 if (XVECLEN (x, i) != XVECLEN (y, i))
987 return;
989 for (j = 0; j < XVECLEN (x, i); j++)
990 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
992 break;
994 case 'e':
995 merge_memattrs (XEXP (x, i), XEXP (y, i));
998 return;
1002 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
1004 static bool
1005 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1007 rtx p1, p2;
1009 /* Verify that I1 and I2 are equivalent. */
1010 if (GET_CODE (i1) != GET_CODE (i2))
1011 return false;
1013 p1 = PATTERN (i1);
1014 p2 = PATTERN (i2);
1016 if (GET_CODE (p1) != GET_CODE (p2))
1017 return false;
1019 /* If this is a CALL_INSN, compare register usage information.
1020 If we don't check this on stack register machines, the two
1021 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1022 numbers of stack registers in the same basic block.
1023 If we don't check this on machines with delay slots, a delay slot may
1024 be filled that clobbers a parameter expected by the subroutine.
1026 ??? We take the simple route for now and assume that if they're
1027 equal, they were constructed identically. */
1029 if (CALL_P (i1)
1030 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1031 CALL_INSN_FUNCTION_USAGE (i2))
1032 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
1033 return false;
1035 #ifdef STACK_REGS
1036 /* If cross_jump_death_matters is not 0, the insn's mode
1037 indicates whether or not the insn contains any stack-like
1038 regs. */
1040 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1042 /* If register stack conversion has already been done, then
1043 death notes must also be compared before it is certain that
1044 the two instruction streams match. */
1046 rtx note;
1047 HARD_REG_SET i1_regset, i2_regset;
1049 CLEAR_HARD_REG_SET (i1_regset);
1050 CLEAR_HARD_REG_SET (i2_regset);
1052 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1053 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1054 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1056 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1057 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1058 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1060 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1062 return false;
1064 done:
1067 #endif
1069 if (reload_completed
1070 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1071 return true;
1073 /* Do not do EQUIV substitution after reload. First, we're undoing the
1074 work of reload_cse. Second, we may be undoing the work of the post-
1075 reload splitting pass. */
1076 /* ??? Possibly add a new phase switch variable that can be used by
1077 targets to disallow the troublesome insns after splitting. */
1078 if (!reload_completed)
1080 /* The following code helps take care of G++ cleanups. */
1081 rtx equiv1 = find_reg_equal_equiv_note (i1);
1082 rtx equiv2 = find_reg_equal_equiv_note (i2);
1084 if (equiv1 && equiv2
1085 /* If the equivalences are not to a constant, they may
1086 reference pseudos that no longer exist, so we can't
1087 use them. */
1088 && (! reload_completed
1089 || (CONSTANT_P (XEXP (equiv1, 0))
1090 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1092 rtx s1 = single_set (i1);
1093 rtx s2 = single_set (i2);
1094 if (s1 != 0 && s2 != 0
1095 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1097 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1098 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1099 if (! rtx_renumbered_equal_p (p1, p2))
1100 cancel_changes (0);
1101 else if (apply_change_group ())
1102 return true;
1107 return false;
1110 /* Look through the insns at the end of BB1 and BB2 and find the longest
1111 sequence that are equivalent. Store the first insns for that sequence
1112 in *F1 and *F2 and return the sequence length.
1114 To simplify callers of this function, if the blocks match exactly,
1115 store the head of the blocks in *F1 and *F2. */
1117 static int
1118 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1119 basic_block bb2, rtx *f1, rtx *f2)
1121 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1122 int ninsns = 0;
1124 /* Skip simple jumps at the end of the blocks. Complex jumps still
1125 need to be compared for equivalence, which we'll do below. */
1127 i1 = BB_END (bb1);
1128 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1129 if (onlyjump_p (i1)
1130 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1132 last1 = i1;
1133 i1 = PREV_INSN (i1);
1136 i2 = BB_END (bb2);
1137 if (onlyjump_p (i2)
1138 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1140 last2 = i2;
1141 /* Count everything except for unconditional jump as insn. */
1142 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1143 ninsns++;
1144 i2 = PREV_INSN (i2);
1147 while (true)
1149 /* Ignore notes. */
1150 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1151 i1 = PREV_INSN (i1);
1153 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1154 i2 = PREV_INSN (i2);
1156 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1157 break;
1159 if (!insns_match_p (mode, i1, i2))
1160 break;
1162 merge_memattrs (i1, i2);
1164 /* Don't begin a cross-jump with a NOTE insn. */
1165 if (INSN_P (i1))
1167 /* If the merged insns have different REG_EQUAL notes, then
1168 remove them. */
1169 rtx equiv1 = find_reg_equal_equiv_note (i1);
1170 rtx equiv2 = find_reg_equal_equiv_note (i2);
1172 if (equiv1 && !equiv2)
1173 remove_note (i1, equiv1);
1174 else if (!equiv1 && equiv2)
1175 remove_note (i2, equiv2);
1176 else if (equiv1 && equiv2
1177 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1179 remove_note (i1, equiv1);
1180 remove_note (i2, equiv2);
1183 afterlast1 = last1, afterlast2 = last2;
1184 last1 = i1, last2 = i2;
1185 ninsns++;
1188 i1 = PREV_INSN (i1);
1189 i2 = PREV_INSN (i2);
1192 #ifdef HAVE_cc0
1193 /* Don't allow the insn after a compare to be shared by
1194 cross-jumping unless the compare is also shared. */
1195 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1196 last1 = afterlast1, last2 = afterlast2, ninsns--;
1197 #endif
1199 /* Include preceding notes and labels in the cross-jump. One,
1200 this may bring us to the head of the blocks as requested above.
1201 Two, it keeps line number notes as matched as may be. */
1202 if (ninsns)
1204 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1205 last1 = PREV_INSN (last1);
1207 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1208 last1 = PREV_INSN (last1);
1210 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1211 last2 = PREV_INSN (last2);
1213 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1214 last2 = PREV_INSN (last2);
1216 *f1 = last1;
1217 *f2 = last2;
1220 return ninsns;
1223 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1224 the branch instruction. This means that if we commonize the control
1225 flow before end of the basic block, the semantic remains unchanged.
1227 We may assume that there exists one edge with a common destination. */
1229 static bool
1230 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1232 int nehedges1 = 0, nehedges2 = 0;
1233 edge fallthru1 = 0, fallthru2 = 0;
1234 edge e1, e2;
1236 /* If BB1 has only one successor, we may be looking at either an
1237 unconditional jump, or a fake edge to exit. */
1238 if (bb1->succ && !bb1->succ->succ_next
1239 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1240 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1241 return (bb2->succ && !bb2->succ->succ_next
1242 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1243 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1245 /* Match conditional jumps - this may get tricky when fallthru and branch
1246 edges are crossed. */
1247 if (bb1->succ
1248 && bb1->succ->succ_next
1249 && !bb1->succ->succ_next->succ_next
1250 && any_condjump_p (BB_END (bb1))
1251 && onlyjump_p (BB_END (bb1)))
1253 edge b1, f1, b2, f2;
1254 bool reverse, match;
1255 rtx set1, set2, cond1, cond2;
1256 enum rtx_code code1, code2;
1258 if (!bb2->succ
1259 || !bb2->succ->succ_next
1260 || bb2->succ->succ_next->succ_next
1261 || !any_condjump_p (BB_END (bb2))
1262 || !onlyjump_p (BB_END (bb2)))
1263 return false;
1265 b1 = BRANCH_EDGE (bb1);
1266 b2 = BRANCH_EDGE (bb2);
1267 f1 = FALLTHRU_EDGE (bb1);
1268 f2 = FALLTHRU_EDGE (bb2);
1270 /* Get around possible forwarders on fallthru edges. Other cases
1271 should be optimized out already. */
1272 if (FORWARDER_BLOCK_P (f1->dest))
1273 f1 = f1->dest->succ;
1275 if (FORWARDER_BLOCK_P (f2->dest))
1276 f2 = f2->dest->succ;
1278 /* To simplify use of this function, return false if there are
1279 unneeded forwarder blocks. These will get eliminated later
1280 during cleanup_cfg. */
1281 if (FORWARDER_BLOCK_P (f1->dest)
1282 || FORWARDER_BLOCK_P (f2->dest)
1283 || FORWARDER_BLOCK_P (b1->dest)
1284 || FORWARDER_BLOCK_P (b2->dest))
1285 return false;
1287 if (f1->dest == f2->dest && b1->dest == b2->dest)
1288 reverse = false;
1289 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1290 reverse = true;
1291 else
1292 return false;
1294 set1 = pc_set (BB_END (bb1));
1295 set2 = pc_set (BB_END (bb2));
1296 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1297 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1298 reverse = !reverse;
1300 cond1 = XEXP (SET_SRC (set1), 0);
1301 cond2 = XEXP (SET_SRC (set2), 0);
1302 code1 = GET_CODE (cond1);
1303 if (reverse)
1304 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1305 else
1306 code2 = GET_CODE (cond2);
1308 if (code2 == UNKNOWN)
1309 return false;
1311 /* Verify codes and operands match. */
1312 match = ((code1 == code2
1313 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1314 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1315 || (code1 == swap_condition (code2)
1316 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1317 XEXP (cond2, 0))
1318 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1319 XEXP (cond2, 1))));
1321 /* If we return true, we will join the blocks. Which means that
1322 we will only have one branch prediction bit to work with. Thus
1323 we require the existing branches to have probabilities that are
1324 roughly similar. */
1325 if (match
1326 && !optimize_size
1327 && maybe_hot_bb_p (bb1)
1328 && maybe_hot_bb_p (bb2))
1330 int prob2;
1332 if (b1->dest == b2->dest)
1333 prob2 = b2->probability;
1334 else
1335 /* Do not use f2 probability as f2 may be forwarded. */
1336 prob2 = REG_BR_PROB_BASE - b2->probability;
1338 /* Fail if the difference in probabilities is greater than 50%.
1339 This rules out two well-predicted branches with opposite
1340 outcomes. */
1341 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1343 if (dump_file)
1344 fprintf (dump_file,
1345 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1346 bb1->index, bb2->index, b1->probability, prob2);
1348 return false;
1352 if (dump_file && match)
1353 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1354 bb1->index, bb2->index);
1356 return match;
1359 /* Generic case - we are seeing a computed jump, table jump or trapping
1360 instruction. */
1362 #ifndef CASE_DROPS_THROUGH
1363 /* Check whether there are tablejumps in the end of BB1 and BB2.
1364 Return true if they are identical. */
1366 rtx label1, label2;
1367 rtx table1, table2;
1369 if (tablejump_p (BB_END (bb1), &label1, &table1)
1370 && tablejump_p (BB_END (bb2), &label2, &table2)
1371 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1373 /* The labels should never be the same rtx. If they really are same
1374 the jump tables are same too. So disable crossjumping of blocks BB1
1375 and BB2 because when deleting the common insns in the end of BB1
1376 by delete_basic_block () the jump table would be deleted too. */
1377 /* If LABEL2 is referenced in BB1->END do not do anything
1378 because we would loose information when replacing
1379 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1380 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1382 /* Set IDENTICAL to true when the tables are identical. */
1383 bool identical = false;
1384 rtx p1, p2;
1386 p1 = PATTERN (table1);
1387 p2 = PATTERN (table2);
1388 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1390 identical = true;
1392 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1393 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1394 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1395 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1397 int i;
1399 identical = true;
1400 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1401 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1402 identical = false;
1405 if (identical)
1407 replace_label_data rr;
1408 bool match;
1410 /* Temporarily replace references to LABEL1 with LABEL2
1411 in BB1->END so that we could compare the instructions. */
1412 rr.r1 = label1;
1413 rr.r2 = label2;
1414 rr.update_label_nuses = false;
1415 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1417 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1418 if (dump_file && match)
1419 fprintf (dump_file,
1420 "Tablejumps in bb %i and %i match.\n",
1421 bb1->index, bb2->index);
1423 /* Set the original label in BB1->END because when deleting
1424 a block whose end is a tablejump, the tablejump referenced
1425 from the instruction is deleted too. */
1426 rr.r1 = label2;
1427 rr.r2 = label1;
1428 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1430 return match;
1433 return false;
1436 #endif
1438 /* First ensure that the instructions match. There may be many outgoing
1439 edges so this test is generally cheaper. */
1440 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1441 return false;
1443 /* Search the outgoing edges, ensure that the counts do match, find possible
1444 fallthru and exception handling edges since these needs more
1445 validation. */
1446 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1447 e1 = e1->succ_next, e2 = e2->succ_next)
1449 if (e1->flags & EDGE_EH)
1450 nehedges1++;
1452 if (e2->flags & EDGE_EH)
1453 nehedges2++;
1455 if (e1->flags & EDGE_FALLTHRU)
1456 fallthru1 = e1;
1457 if (e2->flags & EDGE_FALLTHRU)
1458 fallthru2 = e2;
1461 /* If number of edges of various types does not match, fail. */
1462 if (e1 || e2
1463 || nehedges1 != nehedges2
1464 || (fallthru1 != 0) != (fallthru2 != 0))
1465 return false;
1467 /* fallthru edges must be forwarded to the same destination. */
1468 if (fallthru1)
1470 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1471 ? fallthru1->dest->succ->dest: fallthru1->dest);
1472 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1473 ? fallthru2->dest->succ->dest: fallthru2->dest);
1475 if (d1 != d2)
1476 return false;
1479 /* Ensure the same EH region. */
1481 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1482 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1484 if (!n1 && n2)
1485 return false;
1487 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1488 return false;
1491 /* We don't need to match the rest of edges as above checks should be enough
1492 to ensure that they are equivalent. */
1493 return true;
1496 /* E1 and E2 are edges with the same destination block. Search their
1497 predecessors for common code. If found, redirect control flow from
1498 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1500 static bool
1501 try_crossjump_to_edge (int mode, edge e1, edge e2)
1503 int nmatch;
1504 basic_block src1 = e1->src, src2 = e2->src;
1505 basic_block redirect_to, redirect_from, to_remove;
1506 rtx newpos1, newpos2;
1507 edge s;
1509 newpos1 = newpos2 = NULL_RTX;
1511 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1512 to try this optimization.
1514 Basic block partitioning may result in some jumps that appear to
1515 be optimizable (or blocks that appear to be mergeable), but which really
1516 must be left untouched (they are required to make it safely across
1517 partition boundaries). See the comments at the top of
1518 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1520 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1521 return false;
1523 /* Search backward through forwarder blocks. We don't need to worry
1524 about multiple entry or chained forwarders, as they will be optimized
1525 away. We do this to look past the unconditional jump following a
1526 conditional jump that is required due to the current CFG shape. */
1527 if (src1->pred
1528 && !src1->pred->pred_next
1529 && FORWARDER_BLOCK_P (src1))
1530 e1 = src1->pred, src1 = e1->src;
1532 if (src2->pred
1533 && !src2->pred->pred_next
1534 && FORWARDER_BLOCK_P (src2))
1535 e2 = src2->pred, src2 = e2->src;
1537 /* Nothing to do if we reach ENTRY, or a common source block. */
1538 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1539 return false;
1540 if (src1 == src2)
1541 return false;
1543 /* Seeing more than 1 forwarder blocks would confuse us later... */
1544 if (FORWARDER_BLOCK_P (e1->dest)
1545 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1546 return false;
1548 if (FORWARDER_BLOCK_P (e2->dest)
1549 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1550 return false;
1552 /* Likewise with dead code (possibly newly created by the other optimizations
1553 of cfg_cleanup). */
1554 if (!src1->pred || !src2->pred)
1555 return false;
1557 /* Look for the common insn sequence, part the first ... */
1558 if (!outgoing_edges_match (mode, src1, src2))
1559 return false;
1561 /* ... and part the second. */
1562 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1564 /* Don't proceed with the crossjump unless we found a sufficient number
1565 of matching instructions or the 'from' block was totally matched
1566 (such that its predecessors will hopefully be redirected and the
1567 block removed). */
1568 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1569 && (newpos1 != BB_HEAD (src1)))
1570 return false;
1572 #ifndef CASE_DROPS_THROUGH
1573 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1574 will be deleted.
1575 If we have tablejumps in the end of SRC1 and SRC2
1576 they have been already compared for equivalence in outgoing_edges_match ()
1577 so replace the references to TABLE1 by references to TABLE2. */
1579 rtx label1, label2;
1580 rtx table1, table2;
1582 if (tablejump_p (BB_END (src1), &label1, &table1)
1583 && tablejump_p (BB_END (src2), &label2, &table2)
1584 && label1 != label2)
1586 replace_label_data rr;
1587 rtx insn;
1589 /* Replace references to LABEL1 with LABEL2. */
1590 rr.r1 = label1;
1591 rr.r2 = label2;
1592 rr.update_label_nuses = true;
1593 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1595 /* Do not replace the label in SRC1->END because when deleting
1596 a block whose end is a tablejump, the tablejump referenced
1597 from the instruction is deleted too. */
1598 if (insn != BB_END (src1))
1599 for_each_rtx (&insn, replace_label, &rr);
1603 #endif
1605 /* Avoid splitting if possible. */
1606 if (newpos2 == BB_HEAD (src2))
1607 redirect_to = src2;
1608 else
1610 if (dump_file)
1611 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1612 src2->index, nmatch);
1613 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1616 if (dump_file)
1617 fprintf (dump_file,
1618 "Cross jumping from bb %i to bb %i; %i common insns\n",
1619 src1->index, src2->index, nmatch);
1621 redirect_to->count += src1->count;
1622 redirect_to->frequency += src1->frequency;
1623 /* We may have some registers visible trought the block. */
1624 redirect_to->flags |= BB_DIRTY;
1626 /* Recompute the frequencies and counts of outgoing edges. */
1627 for (s = redirect_to->succ; s; s = s->succ_next)
1629 edge s2;
1630 basic_block d = s->dest;
1632 if (FORWARDER_BLOCK_P (d))
1633 d = d->succ->dest;
1635 for (s2 = src1->succ; ; s2 = s2->succ_next)
1637 basic_block d2 = s2->dest;
1638 if (FORWARDER_BLOCK_P (d2))
1639 d2 = d2->succ->dest;
1640 if (d == d2)
1641 break;
1644 s->count += s2->count;
1646 /* Take care to update possible forwarder blocks. We verified
1647 that there is no more than one in the chain, so we can't run
1648 into infinite loop. */
1649 if (FORWARDER_BLOCK_P (s->dest))
1651 s->dest->succ->count += s2->count;
1652 s->dest->count += s2->count;
1653 s->dest->frequency += EDGE_FREQUENCY (s);
1656 if (FORWARDER_BLOCK_P (s2->dest))
1658 s2->dest->succ->count -= s2->count;
1659 if (s2->dest->succ->count < 0)
1660 s2->dest->succ->count = 0;
1661 s2->dest->count -= s2->count;
1662 s2->dest->frequency -= EDGE_FREQUENCY (s);
1663 if (s2->dest->frequency < 0)
1664 s2->dest->frequency = 0;
1665 if (s2->dest->count < 0)
1666 s2->dest->count = 0;
1669 if (!redirect_to->frequency && !src1->frequency)
1670 s->probability = (s->probability + s2->probability) / 2;
1671 else
1672 s->probability
1673 = ((s->probability * redirect_to->frequency +
1674 s2->probability * src1->frequency)
1675 / (redirect_to->frequency + src1->frequency));
1678 update_br_prob_note (redirect_to);
1680 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1682 /* Skip possible basic block header. */
1683 if (LABEL_P (newpos1))
1684 newpos1 = NEXT_INSN (newpos1);
1686 if (NOTE_P (newpos1))
1687 newpos1 = NEXT_INSN (newpos1);
1689 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1690 to_remove = redirect_from->succ->dest;
1692 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1693 delete_basic_block (to_remove);
1695 update_forwarder_flag (redirect_from);
1697 return true;
1700 /* Search the predecessors of BB for common insn sequences. When found,
1701 share code between them by redirecting control flow. Return true if
1702 any changes made. */
1704 static bool
1705 try_crossjump_bb (int mode, basic_block bb)
1707 edge e, e2, nexte2, nexte, fallthru;
1708 bool changed;
1709 int n = 0, max;
1711 /* Nothing to do if there is not at least two incoming edges. */
1712 if (!bb->pred || !bb->pred->pred_next)
1713 return false;
1715 /* If we are partitioning hot/cold basic blocks, we don't want to
1716 mess up unconditional or indirect jumps that cross between hot
1717 and cold sections.
1719 Basic block partitioning may result in some jumps that appear to
1720 be optimizable (or blocks that appear to be mergeable), but which really
1721 must be left untouched (they are required to make it safely across
1722 partition boundaries). See the comments at the top of
1723 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1725 if (flag_reorder_blocks_and_partition
1726 && (BB_PARTITION (bb->pred->src) != BB_PARTITION (bb->pred->pred_next->src)
1727 || (bb->pred->flags & EDGE_CROSSING)))
1728 return false;
1730 /* It is always cheapest to redirect a block that ends in a branch to
1731 a block that falls through into BB, as that adds no branches to the
1732 program. We'll try that combination first. */
1733 fallthru = NULL;
1734 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1735 for (e = bb->pred; e ; e = e->pred_next, n++)
1737 if (e->flags & EDGE_FALLTHRU)
1738 fallthru = e;
1739 if (n > max)
1740 return false;
1743 changed = false;
1744 for (e = bb->pred; e; e = nexte)
1746 nexte = e->pred_next;
1748 /* As noted above, first try with the fallthru predecessor. */
1749 if (fallthru)
1751 /* Don't combine the fallthru edge into anything else.
1752 If there is a match, we'll do it the other way around. */
1753 if (e == fallthru)
1754 continue;
1755 /* If nothing changed since the last attempt, there is nothing
1756 we can do. */
1757 if (!first_pass
1758 && (!(e->src->flags & BB_DIRTY)
1759 && !(fallthru->src->flags & BB_DIRTY)))
1760 continue;
1762 if (try_crossjump_to_edge (mode, e, fallthru))
1764 changed = true;
1765 nexte = bb->pred;
1766 continue;
1770 /* Non-obvious work limiting check: Recognize that we're going
1771 to call try_crossjump_bb on every basic block. So if we have
1772 two blocks with lots of outgoing edges (a switch) and they
1773 share lots of common destinations, then we would do the
1774 cross-jump check once for each common destination.
1776 Now, if the blocks actually are cross-jump candidates, then
1777 all of their destinations will be shared. Which means that
1778 we only need check them for cross-jump candidacy once. We
1779 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1780 choosing to do the check from the block for which the edge
1781 in question is the first successor of A. */
1782 if (e->src->succ != e)
1783 continue;
1785 for (e2 = bb->pred; e2; e2 = nexte2)
1787 nexte2 = e2->pred_next;
1789 if (e2 == e)
1790 continue;
1792 /* We've already checked the fallthru edge above. */
1793 if (e2 == fallthru)
1794 continue;
1796 /* The "first successor" check above only prevents multiple
1797 checks of crossjump(A,B). In order to prevent redundant
1798 checks of crossjump(B,A), require that A be the block
1799 with the lowest index. */
1800 if (e->src->index > e2->src->index)
1801 continue;
1803 /* If nothing changed since the last attempt, there is nothing
1804 we can do. */
1805 if (!first_pass
1806 && (!(e->src->flags & BB_DIRTY)
1807 && !(e2->src->flags & BB_DIRTY)))
1808 continue;
1810 if (try_crossjump_to_edge (mode, e, e2))
1812 changed = true;
1813 nexte = bb->pred;
1814 break;
1819 return changed;
1822 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1823 instructions etc. Return nonzero if changes were made. */
1825 static bool
1826 try_optimize_cfg (int mode)
1828 bool changed_overall = false;
1829 bool changed;
1830 int iterations = 0;
1831 basic_block bb, b, next;
1833 if (mode & CLEANUP_CROSSJUMP)
1834 add_noreturn_fake_exit_edges ();
1836 FOR_EACH_BB (bb)
1837 update_forwarder_flag (bb);
1839 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1840 clear_bb_flags ();
1842 if (! targetm.cannot_modify_jumps_p ())
1844 first_pass = true;
1845 /* Attempt to merge blocks as made possible by edge removal. If
1846 a block has only one successor, and the successor has only
1847 one predecessor, they may be combined. */
1850 changed = false;
1851 iterations++;
1853 if (dump_file)
1854 fprintf (dump_file,
1855 "\n\ntry_optimize_cfg iteration %i\n\n",
1856 iterations);
1858 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1860 basic_block c;
1861 edge s;
1862 bool changed_here = false;
1864 /* Delete trivially dead basic blocks. */
1865 while (b->pred == NULL)
1867 c = b->prev_bb;
1868 if (dump_file)
1869 fprintf (dump_file, "Deleting block %i.\n",
1870 b->index);
1872 delete_basic_block (b);
1873 if (!(mode & CLEANUP_CFGLAYOUT))
1874 changed = true;
1875 b = c;
1878 /* Remove code labels no longer used. */
1879 if (b->pred->pred_next == NULL
1880 && (b->pred->flags & EDGE_FALLTHRU)
1881 && !(b->pred->flags & EDGE_COMPLEX)
1882 && LABEL_P (BB_HEAD (b))
1883 /* If the previous block ends with a branch to this
1884 block, we can't delete the label. Normally this
1885 is a condjump that is yet to be simplified, but
1886 if CASE_DROPS_THRU, this can be a tablejump with
1887 some element going to the same place as the
1888 default (fallthru). */
1889 && (b->pred->src == ENTRY_BLOCK_PTR
1890 || !JUMP_P (BB_END (b->pred->src))
1891 || ! label_is_jump_target_p (BB_HEAD (b),
1892 BB_END (b->pred->src))))
1894 rtx label = BB_HEAD (b);
1896 delete_insn_chain (label, label);
1897 /* In the case label is undeletable, move it after the
1898 BASIC_BLOCK note. */
1899 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1901 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1903 reorder_insns_nobb (label, label, bb_note);
1904 BB_HEAD (b) = bb_note;
1906 if (dump_file)
1907 fprintf (dump_file, "Deleted label in block %i.\n",
1908 b->index);
1911 /* If we fall through an empty block, we can remove it. */
1912 if (!(mode & CLEANUP_CFGLAYOUT)
1913 && b->pred->pred_next == NULL
1914 && (b->pred->flags & EDGE_FALLTHRU)
1915 && !LABEL_P (BB_HEAD (b))
1916 && FORWARDER_BLOCK_P (b)
1917 /* Note that forwarder_block_p true ensures that
1918 there is a successor for this block. */
1919 && (b->succ->flags & EDGE_FALLTHRU)
1920 && n_basic_blocks > 1)
1922 if (dump_file)
1923 fprintf (dump_file,
1924 "Deleting fallthru block %i.\n",
1925 b->index);
1927 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1928 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1929 delete_basic_block (b);
1930 changed = true;
1931 b = c;
1934 if ((s = b->succ) != NULL
1935 && s->succ_next == NULL
1936 && !(s->flags & EDGE_COMPLEX)
1937 && (c = s->dest) != EXIT_BLOCK_PTR
1938 && c->pred->pred_next == NULL
1939 && b != c)
1941 /* When not in cfg_layout mode use code aware of reordering
1942 INSN. This code possibly creates new basic blocks so it
1943 does not fit merge_blocks interface and is kept here in
1944 hope that it will become useless once more of compiler
1945 is transformed to use cfg_layout mode. */
1947 if ((mode & CLEANUP_CFGLAYOUT)
1948 && can_merge_blocks_p (b, c))
1950 merge_blocks (b, c);
1951 update_forwarder_flag (b);
1952 changed_here = true;
1954 else if (!(mode & CLEANUP_CFGLAYOUT)
1955 /* If the jump insn has side effects,
1956 we can't kill the edge. */
1957 && (!JUMP_P (BB_END (b))
1958 || (reload_completed
1959 ? simplejump_p (BB_END (b))
1960 : (onlyjump_p (BB_END (b))
1961 && !tablejump_p (BB_END (b),
1962 NULL, NULL))))
1963 && (next = merge_blocks_move (s, b, c, mode)))
1965 b = next;
1966 changed_here = true;
1970 /* Simplify branch over branch. */
1971 if ((mode & CLEANUP_EXPENSIVE)
1972 && !(mode & CLEANUP_CFGLAYOUT)
1973 && try_simplify_condjump (b))
1974 changed_here = true;
1976 /* If B has a single outgoing edge, but uses a
1977 non-trivial jump instruction without side-effects, we
1978 can either delete the jump entirely, or replace it
1979 with a simple unconditional jump. */
1980 if (b->succ
1981 && ! b->succ->succ_next
1982 && b->succ->dest != EXIT_BLOCK_PTR
1983 && onlyjump_p (BB_END (b))
1984 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1985 && try_redirect_by_replacing_jump (b->succ, b->succ->dest,
1986 (mode & CLEANUP_CFGLAYOUT) != 0))
1988 update_forwarder_flag (b);
1989 changed_here = true;
1992 /* Simplify branch to branch. */
1993 if (try_forward_edges (mode, b))
1994 changed_here = true;
1996 /* Look for shared code between blocks. */
1997 if ((mode & CLEANUP_CROSSJUMP)
1998 && try_crossjump_bb (mode, b))
1999 changed_here = true;
2001 /* Don't get confused by the index shift caused by
2002 deleting blocks. */
2003 if (!changed_here)
2004 b = b->next_bb;
2005 else
2006 changed = true;
2009 if ((mode & CLEANUP_CROSSJUMP)
2010 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2011 changed = true;
2013 #ifdef ENABLE_CHECKING
2014 if (changed)
2015 verify_flow_info ();
2016 #endif
2018 changed_overall |= changed;
2019 first_pass = false;
2021 while (changed);
2024 if (mode & CLEANUP_CROSSJUMP)
2025 remove_fake_exit_edges ();
2027 clear_aux_for_blocks ();
2029 return changed_overall;
2032 /* Delete all unreachable basic blocks. */
2034 bool
2035 delete_unreachable_blocks (void)
2037 bool changed = false;
2038 basic_block b, next_bb;
2040 find_unreachable_blocks ();
2042 /* Delete all unreachable basic blocks. */
2044 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2046 next_bb = b->next_bb;
2048 if (!(b->flags & BB_REACHABLE))
2050 delete_basic_block (b);
2051 changed = true;
2055 if (changed)
2056 tidy_fallthru_edges ();
2057 return changed;
2060 /* Merges sequential blocks if possible. */
2062 bool
2063 merge_seq_blocks (void)
2065 basic_block bb;
2066 bool changed = false;
2068 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; )
2070 if (bb->succ
2071 && !bb->succ->succ_next
2072 && can_merge_blocks_p (bb, bb->succ->dest))
2074 /* Merge the blocks and retry. */
2075 merge_blocks (bb, bb->succ->dest);
2076 changed = true;
2077 continue;
2080 bb = bb->next_bb;
2083 return changed;
2086 /* Tidy the CFG by deleting unreachable code and whatnot. */
2088 bool
2089 cleanup_cfg (int mode)
2091 bool changed = false;
2093 timevar_push (TV_CLEANUP_CFG);
2094 if (delete_unreachable_blocks ())
2096 changed = true;
2097 /* We've possibly created trivially dead code. Cleanup it right
2098 now to introduce more opportunities for try_optimize_cfg. */
2099 if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
2100 && !reload_completed)
2101 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2104 compact_blocks ();
2106 while (try_optimize_cfg (mode))
2108 delete_unreachable_blocks (), changed = true;
2109 if (mode & CLEANUP_UPDATE_LIFE)
2111 /* Cleaning up CFG introduces more opportunities for dead code
2112 removal that in turn may introduce more opportunities for
2113 cleaning up the CFG. */
2114 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2115 PROP_DEATH_NOTES
2116 | PROP_SCAN_DEAD_CODE
2117 | PROP_KILL_DEAD_CODE
2118 | ((mode & CLEANUP_LOG_LINKS)
2119 ? PROP_LOG_LINKS : 0)))
2120 break;
2122 else if (!(mode & CLEANUP_NO_INSN_DEL)
2123 && (mode & CLEANUP_EXPENSIVE)
2124 && !reload_completed)
2126 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2127 break;
2129 else
2130 break;
2131 delete_dead_jumptables ();
2134 /* Kill the data we won't maintain. */
2135 free_EXPR_LIST_list (&label_value_list);
2136 timevar_pop (TV_CLEANUP_CFG);
2138 return changed;