* env.c (parse_schedule): Reject out of range values.
[official-gcc.git] / gcc / dwarf2out.c
blob0aaf70e7431a7a3a062f41c2d7cb3e8939558f3a
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_str_section;
160 static GTY(()) section *debug_ranges_section;
161 static GTY(()) section *debug_frame_section;
163 /* How to start an assembler comment. */
164 #ifndef ASM_COMMENT_START
165 #define ASM_COMMENT_START ";#"
166 #endif
168 typedef struct dw_cfi_struct *dw_cfi_ref;
169 typedef struct dw_fde_struct *dw_fde_ref;
170 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
172 /* Call frames are described using a sequence of Call Frame
173 Information instructions. The register number, offset
174 and address fields are provided as possible operands;
175 their use is selected by the opcode field. */
177 enum dw_cfi_oprnd_type {
178 dw_cfi_oprnd_unused,
179 dw_cfi_oprnd_reg_num,
180 dw_cfi_oprnd_offset,
181 dw_cfi_oprnd_addr,
182 dw_cfi_oprnd_loc
185 typedef union dw_cfi_oprnd_struct GTY(())
187 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
188 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
189 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
190 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
192 dw_cfi_oprnd;
194 typedef struct dw_cfi_struct GTY(())
196 dw_cfi_ref dw_cfi_next;
197 enum dwarf_call_frame_info dw_cfi_opc;
198 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
199 dw_cfi_oprnd1;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd2;
203 dw_cfi_node;
205 /* This is how we define the location of the CFA. We use to handle it
206 as REG + OFFSET all the time, but now it can be more complex.
207 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
208 Instead of passing around REG and OFFSET, we pass a copy
209 of this structure. */
210 typedef struct cfa_loc GTY(())
212 HOST_WIDE_INT offset;
213 HOST_WIDE_INT base_offset;
214 unsigned int reg;
215 int indirect; /* 1 if CFA is accessed via a dereference. */
216 } dw_cfa_location;
218 /* All call frame descriptions (FDE's) in the GCC generated DWARF
219 refer to a single Common Information Entry (CIE), defined at
220 the beginning of the .debug_frame section. This use of a single
221 CIE obviates the need to keep track of multiple CIE's
222 in the DWARF generation routines below. */
224 typedef struct dw_fde_struct GTY(())
226 tree decl;
227 const char *dw_fde_begin;
228 const char *dw_fde_current_label;
229 const char *dw_fde_end;
230 const char *dw_fde_hot_section_label;
231 const char *dw_fde_hot_section_end_label;
232 const char *dw_fde_unlikely_section_label;
233 const char *dw_fde_unlikely_section_end_label;
234 bool dw_fde_switched_sections;
235 dw_cfi_ref dw_fde_cfi;
236 unsigned funcdef_number;
237 unsigned all_throwers_are_sibcalls : 1;
238 unsigned nothrow : 1;
239 unsigned uses_eh_lsda : 1;
241 dw_fde_node;
243 /* Maximum size (in bytes) of an artificially generated label. */
244 #define MAX_ARTIFICIAL_LABEL_BYTES 30
246 /* The size of addresses as they appear in the Dwarf 2 data.
247 Some architectures use word addresses to refer to code locations,
248 but Dwarf 2 info always uses byte addresses. On such machines,
249 Dwarf 2 addresses need to be larger than the architecture's
250 pointers. */
251 #ifndef DWARF2_ADDR_SIZE
252 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
253 #endif
255 /* The size in bytes of a DWARF field indicating an offset or length
256 relative to a debug info section, specified to be 4 bytes in the
257 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
258 as PTR_SIZE. */
260 #ifndef DWARF_OFFSET_SIZE
261 #define DWARF_OFFSET_SIZE 4
262 #endif
264 /* According to the (draft) DWARF 3 specification, the initial length
265 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
266 bytes are 0xffffffff, followed by the length stored in the next 8
267 bytes.
269 However, the SGI/MIPS ABI uses an initial length which is equal to
270 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
272 #ifndef DWARF_INITIAL_LENGTH_SIZE
273 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
274 #endif
276 #define DWARF_VERSION 2
278 /* Round SIZE up to the nearest BOUNDARY. */
279 #define DWARF_ROUND(SIZE,BOUNDARY) \
280 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
282 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
283 #ifndef DWARF_CIE_DATA_ALIGNMENT
284 #ifdef STACK_GROWS_DOWNWARD
285 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
286 #else
287 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
288 #endif
289 #endif
291 /* CIE identifier. */
292 #if HOST_BITS_PER_WIDE_INT >= 64
293 #define DWARF_CIE_ID \
294 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
295 #else
296 #define DWARF_CIE_ID DW_CIE_ID
297 #endif
299 /* A pointer to the base of a table that contains frame description
300 information for each routine. */
301 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
303 /* Number of elements currently allocated for fde_table. */
304 static GTY(()) unsigned fde_table_allocated;
306 /* Number of elements in fde_table currently in use. */
307 static GTY(()) unsigned fde_table_in_use;
309 /* Size (in elements) of increments by which we may expand the
310 fde_table. */
311 #define FDE_TABLE_INCREMENT 256
313 /* A list of call frame insns for the CIE. */
314 static GTY(()) dw_cfi_ref cie_cfi_head;
316 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
317 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318 attribute that accelerates the lookup of the FDE associated
319 with the subprogram. This variable holds the table index of the FDE
320 associated with the current function (body) definition. */
321 static unsigned current_funcdef_fde;
322 #endif
324 struct indirect_string_node GTY(())
326 const char *str;
327 unsigned int refcount;
328 unsigned int form;
329 char *label;
332 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
334 static GTY(()) int dw2_string_counter;
335 static GTY(()) unsigned long dwarf2out_cfi_label_num;
337 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Forward declarations for functions defined in this file. */
341 static char *stripattributes (const char *);
342 static const char *dwarf_cfi_name (unsigned);
343 static dw_cfi_ref new_cfi (void);
344 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
345 static void add_fde_cfi (const char *, dw_cfi_ref);
346 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
347 static void lookup_cfa (dw_cfa_location *);
348 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
349 static void initial_return_save (rtx);
350 static HOST_WIDE_INT stack_adjust_offset (rtx);
351 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
352 static void output_call_frame_info (int);
353 static void dwarf2out_stack_adjust (rtx, bool);
354 static void flush_queued_reg_saves (void);
355 static bool clobbers_queued_reg_save (rtx);
356 static void dwarf2out_frame_debug_expr (rtx, const char *);
358 /* Support for complex CFA locations. */
359 static void output_cfa_loc (dw_cfi_ref);
360 static void get_cfa_from_loc_descr (dw_cfa_location *,
361 struct dw_loc_descr_struct *);
362 static struct dw_loc_descr_struct *build_cfa_loc
363 (dw_cfa_location *, HOST_WIDE_INT);
364 static void def_cfa_1 (const char *, dw_cfa_location *);
366 /* How to start an assembler comment. */
367 #ifndef ASM_COMMENT_START
368 #define ASM_COMMENT_START ";#"
369 #endif
371 /* Data and reference forms for relocatable data. */
372 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
375 #ifndef DEBUG_FRAME_SECTION
376 #define DEBUG_FRAME_SECTION ".debug_frame"
377 #endif
379 #ifndef FUNC_BEGIN_LABEL
380 #define FUNC_BEGIN_LABEL "LFB"
381 #endif
383 #ifndef FUNC_END_LABEL
384 #define FUNC_END_LABEL "LFE"
385 #endif
387 #ifndef FRAME_BEGIN_LABEL
388 #define FRAME_BEGIN_LABEL "Lframe"
389 #endif
390 #define CIE_AFTER_SIZE_LABEL "LSCIE"
391 #define CIE_END_LABEL "LECIE"
392 #define FDE_LABEL "LSFDE"
393 #define FDE_AFTER_SIZE_LABEL "LASFDE"
394 #define FDE_END_LABEL "LEFDE"
395 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
396 #define LINE_NUMBER_END_LABEL "LELT"
397 #define LN_PROLOG_AS_LABEL "LASLTP"
398 #define LN_PROLOG_END_LABEL "LELTP"
399 #define DIE_LABEL_PREFIX "DW"
401 /* The DWARF 2 CFA column which tracks the return address. Normally this
402 is the column for PC, or the first column after all of the hard
403 registers. */
404 #ifndef DWARF_FRAME_RETURN_COLUMN
405 #ifdef PC_REGNUM
406 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
407 #else
408 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
409 #endif
410 #endif
412 /* The mapping from gcc register number to DWARF 2 CFA column number. By
413 default, we just provide columns for all registers. */
414 #ifndef DWARF_FRAME_REGNUM
415 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
416 #endif
418 /* Hook used by __throw. */
421 expand_builtin_dwarf_sp_column (void)
423 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
424 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
427 /* Return a pointer to a copy of the section string name S with all
428 attributes stripped off, and an asterisk prepended (for assemble_name). */
430 static inline char *
431 stripattributes (const char *s)
433 char *stripped = XNEWVEC (char, strlen (s) + 2);
434 char *p = stripped;
436 *p++ = '*';
438 while (*s && *s != ',')
439 *p++ = *s++;
441 *p = '\0';
442 return stripped;
445 /* Generate code to initialize the register size table. */
447 void
448 expand_builtin_init_dwarf_reg_sizes (tree address)
450 unsigned int i;
451 enum machine_mode mode = TYPE_MODE (char_type_node);
452 rtx addr = expand_normal (address);
453 rtx mem = gen_rtx_MEM (BLKmode, addr);
454 bool wrote_return_column = false;
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
460 if (rnum < DWARF_FRAME_REGISTERS)
462 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
463 enum machine_mode save_mode = reg_raw_mode[i];
464 HOST_WIDE_INT size;
466 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
467 save_mode = choose_hard_reg_mode (i, 1, true);
468 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
470 if (save_mode == VOIDmode)
471 continue;
472 wrote_return_column = true;
474 size = GET_MODE_SIZE (save_mode);
475 if (offset < 0)
476 continue;
478 emit_move_insn (adjust_address (mem, mode, offset),
479 gen_int_mode (size, mode));
483 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
484 gcc_assert (wrote_return_column);
485 i = DWARF_ALT_FRAME_RETURN_COLUMN;
486 wrote_return_column = false;
487 #else
488 i = DWARF_FRAME_RETURN_COLUMN;
489 #endif
491 if (! wrote_return_column)
493 enum machine_mode save_mode = Pmode;
494 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
495 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
496 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
500 /* Convert a DWARF call frame info. operation to its string name */
502 static const char *
503 dwarf_cfi_name (unsigned int cfi_opc)
505 switch (cfi_opc)
507 case DW_CFA_advance_loc:
508 return "DW_CFA_advance_loc";
509 case DW_CFA_offset:
510 return "DW_CFA_offset";
511 case DW_CFA_restore:
512 return "DW_CFA_restore";
513 case DW_CFA_nop:
514 return "DW_CFA_nop";
515 case DW_CFA_set_loc:
516 return "DW_CFA_set_loc";
517 case DW_CFA_advance_loc1:
518 return "DW_CFA_advance_loc1";
519 case DW_CFA_advance_loc2:
520 return "DW_CFA_advance_loc2";
521 case DW_CFA_advance_loc4:
522 return "DW_CFA_advance_loc4";
523 case DW_CFA_offset_extended:
524 return "DW_CFA_offset_extended";
525 case DW_CFA_restore_extended:
526 return "DW_CFA_restore_extended";
527 case DW_CFA_undefined:
528 return "DW_CFA_undefined";
529 case DW_CFA_same_value:
530 return "DW_CFA_same_value";
531 case DW_CFA_register:
532 return "DW_CFA_register";
533 case DW_CFA_remember_state:
534 return "DW_CFA_remember_state";
535 case DW_CFA_restore_state:
536 return "DW_CFA_restore_state";
537 case DW_CFA_def_cfa:
538 return "DW_CFA_def_cfa";
539 case DW_CFA_def_cfa_register:
540 return "DW_CFA_def_cfa_register";
541 case DW_CFA_def_cfa_offset:
542 return "DW_CFA_def_cfa_offset";
544 /* DWARF 3 */
545 case DW_CFA_def_cfa_expression:
546 return "DW_CFA_def_cfa_expression";
547 case DW_CFA_expression:
548 return "DW_CFA_expression";
549 case DW_CFA_offset_extended_sf:
550 return "DW_CFA_offset_extended_sf";
551 case DW_CFA_def_cfa_sf:
552 return "DW_CFA_def_cfa_sf";
553 case DW_CFA_def_cfa_offset_sf:
554 return "DW_CFA_def_cfa_offset_sf";
556 /* SGI/MIPS specific */
557 case DW_CFA_MIPS_advance_loc8:
558 return "DW_CFA_MIPS_advance_loc8";
560 /* GNU extensions */
561 case DW_CFA_GNU_window_save:
562 return "DW_CFA_GNU_window_save";
563 case DW_CFA_GNU_args_size:
564 return "DW_CFA_GNU_args_size";
565 case DW_CFA_GNU_negative_offset_extended:
566 return "DW_CFA_GNU_negative_offset_extended";
568 default:
569 return "DW_CFA_<unknown>";
573 /* Return a pointer to a newly allocated Call Frame Instruction. */
575 static inline dw_cfi_ref
576 new_cfi (void)
578 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
580 cfi->dw_cfi_next = NULL;
581 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
582 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
584 return cfi;
587 /* Add a Call Frame Instruction to list of instructions. */
589 static inline void
590 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
592 dw_cfi_ref *p;
594 /* Find the end of the chain. */
595 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
598 *p = cfi;
601 /* Generate a new label for the CFI info to refer to. */
603 char *
604 dwarf2out_cfi_label (void)
606 static char label[20];
608 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
609 ASM_OUTPUT_LABEL (asm_out_file, label);
610 return label;
613 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614 or to the CIE if LABEL is NULL. */
616 static void
617 add_fde_cfi (const char *label, dw_cfi_ref cfi)
619 if (label)
621 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
623 if (*label == 0)
624 label = dwarf2out_cfi_label ();
626 if (fde->dw_fde_current_label == NULL
627 || strcmp (label, fde->dw_fde_current_label) != 0)
629 dw_cfi_ref xcfi;
631 label = xstrdup (label);
633 /* Set the location counter to the new label. */
634 xcfi = new_cfi ();
635 /* If we have a current label, advance from there, otherwise
636 set the location directly using set_loc. */
637 xcfi->dw_cfi_opc = fde->dw_fde_current_label
638 ? DW_CFA_advance_loc4
639 : DW_CFA_set_loc;
640 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
641 add_cfi (&fde->dw_fde_cfi, xcfi);
643 fde->dw_fde_current_label = label;
646 add_cfi (&fde->dw_fde_cfi, cfi);
649 else
650 add_cfi (&cie_cfi_head, cfi);
653 /* Subroutine of lookup_cfa. */
655 static void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
658 switch (cfi->dw_cfi_opc)
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_offset_sf:
664 loc->offset
665 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
666 break;
667 case DW_CFA_def_cfa_register:
668 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
669 break;
670 case DW_CFA_def_cfa:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_sf:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 loc->offset
677 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
678 break;
679 case DW_CFA_def_cfa_expression:
680 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
681 break;
682 default:
683 break;
687 /* Find the previous value for the CFA. */
689 static void
690 lookup_cfa (dw_cfa_location *loc)
692 dw_cfi_ref cfi;
694 loc->reg = INVALID_REGNUM;
695 loc->offset = 0;
696 loc->indirect = 0;
697 loc->base_offset = 0;
699 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
702 if (fde_table_in_use)
704 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
705 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
706 lookup_cfa_1 (cfi, loc);
710 /* The current rule for calculating the DWARF2 canonical frame address. */
711 static dw_cfa_location cfa;
713 /* The register used for saving registers to the stack, and its offset
714 from the CFA. */
715 static dw_cfa_location cfa_store;
717 /* The running total of the size of arguments pushed onto the stack. */
718 static HOST_WIDE_INT args_size;
720 /* The last args_size we actually output. */
721 static HOST_WIDE_INT old_args_size;
723 /* Entry point to update the canonical frame address (CFA).
724 LABEL is passed to add_fde_cfi. The value of CFA is now to be
725 calculated from REG+OFFSET. */
727 void
728 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
730 dw_cfa_location loc;
731 loc.indirect = 0;
732 loc.base_offset = 0;
733 loc.reg = reg;
734 loc.offset = offset;
735 def_cfa_1 (label, &loc);
738 /* Determine if two dw_cfa_location structures define the same data. */
740 static bool
741 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
743 return (loc1->reg == loc2->reg
744 && loc1->offset == loc2->offset
745 && loc1->indirect == loc2->indirect
746 && (loc1->indirect == 0
747 || loc1->base_offset == loc2->base_offset));
750 /* This routine does the actual work. The CFA is now calculated from
751 the dw_cfa_location structure. */
753 static void
754 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
756 dw_cfi_ref cfi;
757 dw_cfa_location old_cfa, loc;
759 cfa = *loc_p;
760 loc = *loc_p;
762 if (cfa_store.reg == loc.reg && loc.indirect == 0)
763 cfa_store.offset = loc.offset;
765 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
766 lookup_cfa (&old_cfa);
768 /* If nothing changed, no need to issue any call frame instructions. */
769 if (cfa_equal_p (&loc, &old_cfa))
770 return;
772 cfi = new_cfi ();
774 if (loc.reg == old_cfa.reg && !loc.indirect)
776 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
777 the CFA register did not change but the offset did. */
778 if (loc.offset < 0)
780 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
781 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
784 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
786 else
788 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
789 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
793 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
794 else if (loc.offset == old_cfa.offset
795 && old_cfa.reg != INVALID_REGNUM
796 && !loc.indirect)
798 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
799 indicating the CFA register has changed to <register> but the
800 offset has not changed. */
801 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
804 #endif
806 else if (loc.indirect == 0)
808 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
809 indicating the CFA register has changed to <register> with
810 the specified offset. */
811 if (loc.offset < 0)
813 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
814 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
816 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
818 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
820 else
822 cfi->dw_cfi_opc = DW_CFA_def_cfa;
823 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
824 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
827 else
829 /* Construct a DW_CFA_def_cfa_expression instruction to
830 calculate the CFA using a full location expression since no
831 register-offset pair is available. */
832 struct dw_loc_descr_struct *loc_list;
834 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
835 loc_list = build_cfa_loc (&loc, 0);
836 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
839 add_fde_cfi (label, cfi);
842 /* Add the CFI for saving a register. REG is the CFA column number.
843 LABEL is passed to add_fde_cfi.
844 If SREG is -1, the register is saved at OFFSET from the CFA;
845 otherwise it is saved in SREG. */
847 static void
848 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
850 dw_cfi_ref cfi = new_cfi ();
852 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
854 if (sreg == INVALID_REGNUM)
856 if (reg & ~0x3f)
857 /* The register number won't fit in 6 bits, so we have to use
858 the long form. */
859 cfi->dw_cfi_opc = DW_CFA_offset_extended;
860 else
861 cfi->dw_cfi_opc = DW_CFA_offset;
863 #ifdef ENABLE_CHECKING
865 /* If we get an offset that is not a multiple of
866 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
867 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
868 description. */
869 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
871 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
873 #endif
874 offset /= DWARF_CIE_DATA_ALIGNMENT;
875 if (offset < 0)
876 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
878 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
880 else if (sreg == reg)
881 cfi->dw_cfi_opc = DW_CFA_same_value;
882 else
884 cfi->dw_cfi_opc = DW_CFA_register;
885 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
888 add_fde_cfi (label, cfi);
891 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
892 This CFI tells the unwinder that it needs to restore the window registers
893 from the previous frame's window save area.
895 ??? Perhaps we should note in the CIE where windows are saved (instead of
896 assuming 0(cfa)) and what registers are in the window. */
898 void
899 dwarf2out_window_save (const char *label)
901 dw_cfi_ref cfi = new_cfi ();
903 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
904 add_fde_cfi (label, cfi);
907 /* Add a CFI to update the running total of the size of arguments
908 pushed onto the stack. */
910 void
911 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
913 dw_cfi_ref cfi;
915 if (size == old_args_size)
916 return;
918 old_args_size = size;
920 cfi = new_cfi ();
921 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
922 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
923 add_fde_cfi (label, cfi);
926 /* Entry point for saving a register to the stack. REG is the GCC register
927 number. LABEL and OFFSET are passed to reg_save. */
929 void
930 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
932 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
935 /* Entry point for saving the return address in the stack.
936 LABEL and OFFSET are passed to reg_save. */
938 void
939 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
941 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
944 /* Entry point for saving the return address in a register.
945 LABEL and SREG are passed to reg_save. */
947 void
948 dwarf2out_return_reg (const char *label, unsigned int sreg)
950 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
953 /* Record the initial position of the return address. RTL is
954 INCOMING_RETURN_ADDR_RTX. */
956 static void
957 initial_return_save (rtx rtl)
959 unsigned int reg = INVALID_REGNUM;
960 HOST_WIDE_INT offset = 0;
962 switch (GET_CODE (rtl))
964 case REG:
965 /* RA is in a register. */
966 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
967 break;
969 case MEM:
970 /* RA is on the stack. */
971 rtl = XEXP (rtl, 0);
972 switch (GET_CODE (rtl))
974 case REG:
975 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
976 offset = 0;
977 break;
979 case PLUS:
980 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
981 offset = INTVAL (XEXP (rtl, 1));
982 break;
984 case MINUS:
985 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
986 offset = -INTVAL (XEXP (rtl, 1));
987 break;
989 default:
990 gcc_unreachable ();
993 break;
995 case PLUS:
996 /* The return address is at some offset from any value we can
997 actually load. For instance, on the SPARC it is in %i7+8. Just
998 ignore the offset for now; it doesn't matter for unwinding frames. */
999 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1000 initial_return_save (XEXP (rtl, 0));
1001 return;
1003 default:
1004 gcc_unreachable ();
1007 if (reg != DWARF_FRAME_RETURN_COLUMN)
1008 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1011 /* Given a SET, calculate the amount of stack adjustment it
1012 contains. */
1014 static HOST_WIDE_INT
1015 stack_adjust_offset (rtx pattern)
1017 rtx src = SET_SRC (pattern);
1018 rtx dest = SET_DEST (pattern);
1019 HOST_WIDE_INT offset = 0;
1020 enum rtx_code code;
1022 if (dest == stack_pointer_rtx)
1024 /* (set (reg sp) (plus (reg sp) (const_int))) */
1025 code = GET_CODE (src);
1026 if (! (code == PLUS || code == MINUS)
1027 || XEXP (src, 0) != stack_pointer_rtx
1028 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1029 return 0;
1031 offset = INTVAL (XEXP (src, 1));
1032 if (code == PLUS)
1033 offset = -offset;
1035 else if (MEM_P (dest))
1037 /* (set (mem (pre_dec (reg sp))) (foo)) */
1038 src = XEXP (dest, 0);
1039 code = GET_CODE (src);
1041 switch (code)
1043 case PRE_MODIFY:
1044 case POST_MODIFY:
1045 if (XEXP (src, 0) == stack_pointer_rtx)
1047 rtx val = XEXP (XEXP (src, 1), 1);
1048 /* We handle only adjustments by constant amount. */
1049 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1050 && GET_CODE (val) == CONST_INT);
1051 offset = -INTVAL (val);
1052 break;
1054 return 0;
1056 case PRE_DEC:
1057 case POST_DEC:
1058 if (XEXP (src, 0) == stack_pointer_rtx)
1060 offset = GET_MODE_SIZE (GET_MODE (dest));
1061 break;
1063 return 0;
1065 case PRE_INC:
1066 case POST_INC:
1067 if (XEXP (src, 0) == stack_pointer_rtx)
1069 offset = -GET_MODE_SIZE (GET_MODE (dest));
1070 break;
1072 return 0;
1074 default:
1075 return 0;
1078 else
1079 return 0;
1081 return offset;
1084 /* Check INSN to see if it looks like a push or a stack adjustment, and
1085 make a note of it if it does. EH uses this information to find out how
1086 much extra space it needs to pop off the stack. */
1088 static void
1089 dwarf2out_stack_adjust (rtx insn, bool after_p)
1091 HOST_WIDE_INT offset;
1092 const char *label;
1093 int i;
1095 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1096 with this function. Proper support would require all frame-related
1097 insns to be marked, and to be able to handle saving state around
1098 epilogues textually in the middle of the function. */
1099 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1100 return;
1102 /* If only calls can throw, and we have a frame pointer,
1103 save up adjustments until we see the CALL_INSN. */
1104 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1106 if (CALL_P (insn) && !after_p)
1108 /* Extract the size of the args from the CALL rtx itself. */
1109 insn = PATTERN (insn);
1110 if (GET_CODE (insn) == PARALLEL)
1111 insn = XVECEXP (insn, 0, 0);
1112 if (GET_CODE (insn) == SET)
1113 insn = SET_SRC (insn);
1114 gcc_assert (GET_CODE (insn) == CALL);
1115 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1117 return;
1120 if (CALL_P (insn) && !after_p)
1122 if (!flag_asynchronous_unwind_tables)
1123 dwarf2out_args_size ("", args_size);
1124 return;
1126 else if (BARRIER_P (insn))
1128 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1129 the compiler will have already emitted a stack adjustment, but
1130 doesn't bother for calls to noreturn functions. */
1131 #ifdef STACK_GROWS_DOWNWARD
1132 offset = -args_size;
1133 #else
1134 offset = args_size;
1135 #endif
1137 else if (GET_CODE (PATTERN (insn)) == SET)
1138 offset = stack_adjust_offset (PATTERN (insn));
1139 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1140 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1142 /* There may be stack adjustments inside compound insns. Search
1143 for them. */
1144 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1145 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1146 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1148 else
1149 return;
1151 if (offset == 0)
1152 return;
1154 if (cfa.reg == STACK_POINTER_REGNUM)
1155 cfa.offset += offset;
1157 #ifndef STACK_GROWS_DOWNWARD
1158 offset = -offset;
1159 #endif
1161 args_size += offset;
1162 if (args_size < 0)
1163 args_size = 0;
1165 label = dwarf2out_cfi_label ();
1166 def_cfa_1 (label, &cfa);
1167 if (flag_asynchronous_unwind_tables)
1168 dwarf2out_args_size (label, args_size);
1171 #endif
1173 /* We delay emitting a register save until either (a) we reach the end
1174 of the prologue or (b) the register is clobbered. This clusters
1175 register saves so that there are fewer pc advances. */
1177 struct queued_reg_save GTY(())
1179 struct queued_reg_save *next;
1180 rtx reg;
1181 HOST_WIDE_INT cfa_offset;
1182 rtx saved_reg;
1185 static GTY(()) struct queued_reg_save *queued_reg_saves;
1187 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1188 struct reg_saved_in_data GTY(()) {
1189 rtx orig_reg;
1190 rtx saved_in_reg;
1193 /* A list of registers saved in other registers.
1194 The list intentionally has a small maximum capacity of 4; if your
1195 port needs more than that, you might consider implementing a
1196 more efficient data structure. */
1197 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1198 static GTY(()) size_t num_regs_saved_in_regs;
1200 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1201 static const char *last_reg_save_label;
1203 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1204 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1206 static void
1207 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1209 struct queued_reg_save *q;
1211 /* Duplicates waste space, but it's also necessary to remove them
1212 for correctness, since the queue gets output in reverse
1213 order. */
1214 for (q = queued_reg_saves; q != NULL; q = q->next)
1215 if (REGNO (q->reg) == REGNO (reg))
1216 break;
1218 if (q == NULL)
1220 q = ggc_alloc (sizeof (*q));
1221 q->next = queued_reg_saves;
1222 queued_reg_saves = q;
1225 q->reg = reg;
1226 q->cfa_offset = offset;
1227 q->saved_reg = sreg;
1229 last_reg_save_label = label;
1232 /* Output all the entries in QUEUED_REG_SAVES. */
1234 static void
1235 flush_queued_reg_saves (void)
1237 struct queued_reg_save *q;
1239 for (q = queued_reg_saves; q; q = q->next)
1241 size_t i;
1242 unsigned int reg, sreg;
1244 for (i = 0; i < num_regs_saved_in_regs; i++)
1245 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1246 break;
1247 if (q->saved_reg && i == num_regs_saved_in_regs)
1249 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1250 num_regs_saved_in_regs++;
1252 if (i != num_regs_saved_in_regs)
1254 regs_saved_in_regs[i].orig_reg = q->reg;
1255 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1258 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1259 if (q->saved_reg)
1260 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1261 else
1262 sreg = INVALID_REGNUM;
1263 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1266 queued_reg_saves = NULL;
1267 last_reg_save_label = NULL;
1270 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1271 location for? Or, does it clobber a register which we've previously
1272 said that some other register is saved in, and for which we now
1273 have a new location for? */
1275 static bool
1276 clobbers_queued_reg_save (rtx insn)
1278 struct queued_reg_save *q;
1280 for (q = queued_reg_saves; q; q = q->next)
1282 size_t i;
1283 if (modified_in_p (q->reg, insn))
1284 return true;
1285 for (i = 0; i < num_regs_saved_in_regs; i++)
1286 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1287 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1288 return true;
1291 return false;
1294 /* Entry point for saving the first register into the second. */
1296 void
1297 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1299 size_t i;
1300 unsigned int regno, sregno;
1302 for (i = 0; i < num_regs_saved_in_regs; i++)
1303 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1304 break;
1305 if (i == num_regs_saved_in_regs)
1307 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1308 num_regs_saved_in_regs++;
1310 regs_saved_in_regs[i].orig_reg = reg;
1311 regs_saved_in_regs[i].saved_in_reg = sreg;
1313 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1314 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1315 reg_save (label, regno, sregno, 0);
1318 /* What register, if any, is currently saved in REG? */
1320 static rtx
1321 reg_saved_in (rtx reg)
1323 unsigned int regn = REGNO (reg);
1324 size_t i;
1325 struct queued_reg_save *q;
1327 for (q = queued_reg_saves; q; q = q->next)
1328 if (q->saved_reg && regn == REGNO (q->saved_reg))
1329 return q->reg;
1331 for (i = 0; i < num_regs_saved_in_regs; i++)
1332 if (regs_saved_in_regs[i].saved_in_reg
1333 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1334 return regs_saved_in_regs[i].orig_reg;
1336 return NULL_RTX;
1340 /* A temporary register holding an integral value used in adjusting SP
1341 or setting up the store_reg. The "offset" field holds the integer
1342 value, not an offset. */
1343 static dw_cfa_location cfa_temp;
1345 /* Record call frame debugging information for an expression EXPR,
1346 which either sets SP or FP (adjusting how we calculate the frame
1347 address) or saves a register to the stack or another register.
1348 LABEL indicates the address of EXPR.
1350 This function encodes a state machine mapping rtxes to actions on
1351 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1352 users need not read the source code.
1354 The High-Level Picture
1356 Changes in the register we use to calculate the CFA: Currently we
1357 assume that if you copy the CFA register into another register, we
1358 should take the other one as the new CFA register; this seems to
1359 work pretty well. If it's wrong for some target, it's simple
1360 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1362 Changes in the register we use for saving registers to the stack:
1363 This is usually SP, but not always. Again, we deduce that if you
1364 copy SP into another register (and SP is not the CFA register),
1365 then the new register is the one we will be using for register
1366 saves. This also seems to work.
1368 Register saves: There's not much guesswork about this one; if
1369 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1370 register save, and the register used to calculate the destination
1371 had better be the one we think we're using for this purpose.
1372 It's also assumed that a copy from a call-saved register to another
1373 register is saving that register if RTX_FRAME_RELATED_P is set on
1374 that instruction. If the copy is from a call-saved register to
1375 the *same* register, that means that the register is now the same
1376 value as in the caller.
1378 Except: If the register being saved is the CFA register, and the
1379 offset is nonzero, we are saving the CFA, so we assume we have to
1380 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1381 the intent is to save the value of SP from the previous frame.
1383 In addition, if a register has previously been saved to a different
1384 register,
1386 Invariants / Summaries of Rules
1388 cfa current rule for calculating the CFA. It usually
1389 consists of a register and an offset.
1390 cfa_store register used by prologue code to save things to the stack
1391 cfa_store.offset is the offset from the value of
1392 cfa_store.reg to the actual CFA
1393 cfa_temp register holding an integral value. cfa_temp.offset
1394 stores the value, which will be used to adjust the
1395 stack pointer. cfa_temp is also used like cfa_store,
1396 to track stores to the stack via fp or a temp reg.
1398 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1399 with cfa.reg as the first operand changes the cfa.reg and its
1400 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1401 cfa_temp.offset.
1403 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1404 expression yielding a constant. This sets cfa_temp.reg
1405 and cfa_temp.offset.
1407 Rule 5: Create a new register cfa_store used to save items to the
1408 stack.
1410 Rules 10-14: Save a register to the stack. Define offset as the
1411 difference of the original location and cfa_store's
1412 location (or cfa_temp's location if cfa_temp is used).
1414 The Rules
1416 "{a,b}" indicates a choice of a xor b.
1417 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1419 Rule 1:
1420 (set <reg1> <reg2>:cfa.reg)
1421 effects: cfa.reg = <reg1>
1422 cfa.offset unchanged
1423 cfa_temp.reg = <reg1>
1424 cfa_temp.offset = cfa.offset
1426 Rule 2:
1427 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1428 {<const_int>,<reg>:cfa_temp.reg}))
1429 effects: cfa.reg = sp if fp used
1430 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1431 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1432 if cfa_store.reg==sp
1434 Rule 3:
1435 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1436 effects: cfa.reg = fp
1437 cfa_offset += +/- <const_int>
1439 Rule 4:
1440 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1441 constraints: <reg1> != fp
1442 <reg1> != sp
1443 effects: cfa.reg = <reg1>
1444 cfa_temp.reg = <reg1>
1445 cfa_temp.offset = cfa.offset
1447 Rule 5:
1448 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1449 constraints: <reg1> != fp
1450 <reg1> != sp
1451 effects: cfa_store.reg = <reg1>
1452 cfa_store.offset = cfa.offset - cfa_temp.offset
1454 Rule 6:
1455 (set <reg> <const_int>)
1456 effects: cfa_temp.reg = <reg>
1457 cfa_temp.offset = <const_int>
1459 Rule 7:
1460 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1461 effects: cfa_temp.reg = <reg1>
1462 cfa_temp.offset |= <const_int>
1464 Rule 8:
1465 (set <reg> (high <exp>))
1466 effects: none
1468 Rule 9:
1469 (set <reg> (lo_sum <exp> <const_int>))
1470 effects: cfa_temp.reg = <reg>
1471 cfa_temp.offset = <const_int>
1473 Rule 10:
1474 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1475 effects: cfa_store.offset -= <const_int>
1476 cfa.offset = cfa_store.offset if cfa.reg == sp
1477 cfa.reg = sp
1478 cfa.base_offset = -cfa_store.offset
1480 Rule 11:
1481 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1482 effects: cfa_store.offset += -/+ mode_size(mem)
1483 cfa.offset = cfa_store.offset if cfa.reg == sp
1484 cfa.reg = sp
1485 cfa.base_offset = -cfa_store.offset
1487 Rule 12:
1488 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1490 <reg2>)
1491 effects: cfa.reg = <reg1>
1492 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1494 Rule 13:
1495 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1496 effects: cfa.reg = <reg1>
1497 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1499 Rule 14:
1500 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -cfa_temp.offset
1503 cfa_temp.offset -= mode_size(mem)
1505 Rule 15:
1506 (set <reg> {unspec, unspec_volatile})
1507 effects: target-dependent */
1509 static void
1510 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1512 rtx src, dest;
1513 HOST_WIDE_INT offset;
1515 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1516 the PARALLEL independently. The first element is always processed if
1517 it is a SET. This is for backward compatibility. Other elements
1518 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1519 flag is set in them. */
1520 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1522 int par_index;
1523 int limit = XVECLEN (expr, 0);
1525 for (par_index = 0; par_index < limit; par_index++)
1526 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1527 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1528 || par_index == 0))
1529 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1531 return;
1534 gcc_assert (GET_CODE (expr) == SET);
1536 src = SET_SRC (expr);
1537 dest = SET_DEST (expr);
1539 if (REG_P (src))
1541 rtx rsi = reg_saved_in (src);
1542 if (rsi)
1543 src = rsi;
1546 switch (GET_CODE (dest))
1548 case REG:
1549 switch (GET_CODE (src))
1551 /* Setting FP from SP. */
1552 case REG:
1553 if (cfa.reg == (unsigned) REGNO (src))
1555 /* Rule 1 */
1556 /* Update the CFA rule wrt SP or FP. Make sure src is
1557 relative to the current CFA register.
1559 We used to require that dest be either SP or FP, but the
1560 ARM copies SP to a temporary register, and from there to
1561 FP. So we just rely on the backends to only set
1562 RTX_FRAME_RELATED_P on appropriate insns. */
1563 cfa.reg = REGNO (dest);
1564 cfa_temp.reg = cfa.reg;
1565 cfa_temp.offset = cfa.offset;
1567 else
1569 /* Saving a register in a register. */
1570 gcc_assert (!fixed_regs [REGNO (dest)]
1571 /* For the SPARC and its register window. */
1572 || (DWARF_FRAME_REGNUM (REGNO (src))
1573 == DWARF_FRAME_RETURN_COLUMN));
1574 queue_reg_save (label, src, dest, 0);
1576 break;
1578 case PLUS:
1579 case MINUS:
1580 case LO_SUM:
1581 if (dest == stack_pointer_rtx)
1583 /* Rule 2 */
1584 /* Adjusting SP. */
1585 switch (GET_CODE (XEXP (src, 1)))
1587 case CONST_INT:
1588 offset = INTVAL (XEXP (src, 1));
1589 break;
1590 case REG:
1591 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1592 == cfa_temp.reg);
1593 offset = cfa_temp.offset;
1594 break;
1595 default:
1596 gcc_unreachable ();
1599 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1601 /* Restoring SP from FP in the epilogue. */
1602 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1603 cfa.reg = STACK_POINTER_REGNUM;
1605 else if (GET_CODE (src) == LO_SUM)
1606 /* Assume we've set the source reg of the LO_SUM from sp. */
1608 else
1609 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1611 if (GET_CODE (src) != MINUS)
1612 offset = -offset;
1613 if (cfa.reg == STACK_POINTER_REGNUM)
1614 cfa.offset += offset;
1615 if (cfa_store.reg == STACK_POINTER_REGNUM)
1616 cfa_store.offset += offset;
1618 else if (dest == hard_frame_pointer_rtx)
1620 /* Rule 3 */
1621 /* Either setting the FP from an offset of the SP,
1622 or adjusting the FP */
1623 gcc_assert (frame_pointer_needed);
1625 gcc_assert (REG_P (XEXP (src, 0))
1626 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1627 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1628 offset = INTVAL (XEXP (src, 1));
1629 if (GET_CODE (src) != MINUS)
1630 offset = -offset;
1631 cfa.offset += offset;
1632 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1634 else
1636 gcc_assert (GET_CODE (src) != MINUS);
1638 /* Rule 4 */
1639 if (REG_P (XEXP (src, 0))
1640 && REGNO (XEXP (src, 0)) == cfa.reg
1641 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1643 /* Setting a temporary CFA register that will be copied
1644 into the FP later on. */
1645 offset = - INTVAL (XEXP (src, 1));
1646 cfa.offset += offset;
1647 cfa.reg = REGNO (dest);
1648 /* Or used to save regs to the stack. */
1649 cfa_temp.reg = cfa.reg;
1650 cfa_temp.offset = cfa.offset;
1653 /* Rule 5 */
1654 else if (REG_P (XEXP (src, 0))
1655 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1656 && XEXP (src, 1) == stack_pointer_rtx)
1658 /* Setting a scratch register that we will use instead
1659 of SP for saving registers to the stack. */
1660 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1661 cfa_store.reg = REGNO (dest);
1662 cfa_store.offset = cfa.offset - cfa_temp.offset;
1665 /* Rule 9 */
1666 else if (GET_CODE (src) == LO_SUM
1667 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1669 cfa_temp.reg = REGNO (dest);
1670 cfa_temp.offset = INTVAL (XEXP (src, 1));
1672 else
1673 gcc_unreachable ();
1675 break;
1677 /* Rule 6 */
1678 case CONST_INT:
1679 cfa_temp.reg = REGNO (dest);
1680 cfa_temp.offset = INTVAL (src);
1681 break;
1683 /* Rule 7 */
1684 case IOR:
1685 gcc_assert (REG_P (XEXP (src, 0))
1686 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1687 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1689 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1690 cfa_temp.reg = REGNO (dest);
1691 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1692 break;
1694 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1695 which will fill in all of the bits. */
1696 /* Rule 8 */
1697 case HIGH:
1698 break;
1700 /* Rule 15 */
1701 case UNSPEC:
1702 case UNSPEC_VOLATILE:
1703 gcc_assert (targetm.dwarf_handle_frame_unspec);
1704 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1705 return;
1707 default:
1708 gcc_unreachable ();
1711 def_cfa_1 (label, &cfa);
1712 break;
1714 case MEM:
1715 gcc_assert (REG_P (src));
1717 /* Saving a register to the stack. Make sure dest is relative to the
1718 CFA register. */
1719 switch (GET_CODE (XEXP (dest, 0)))
1721 /* Rule 10 */
1722 /* With a push. */
1723 case PRE_MODIFY:
1724 /* We can't handle variable size modifications. */
1725 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1726 == CONST_INT);
1727 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1729 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1730 && cfa_store.reg == STACK_POINTER_REGNUM);
1732 cfa_store.offset += offset;
1733 if (cfa.reg == STACK_POINTER_REGNUM)
1734 cfa.offset = cfa_store.offset;
1736 offset = -cfa_store.offset;
1737 break;
1739 /* Rule 11 */
1740 case PRE_INC:
1741 case PRE_DEC:
1742 offset = GET_MODE_SIZE (GET_MODE (dest));
1743 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1744 offset = -offset;
1746 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1747 && cfa_store.reg == STACK_POINTER_REGNUM);
1749 cfa_store.offset += offset;
1750 if (cfa.reg == STACK_POINTER_REGNUM)
1751 cfa.offset = cfa_store.offset;
1753 offset = -cfa_store.offset;
1754 break;
1756 /* Rule 12 */
1757 /* With an offset. */
1758 case PLUS:
1759 case MINUS:
1760 case LO_SUM:
1762 int regno;
1764 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1765 && REG_P (XEXP (XEXP (dest, 0), 0)));
1766 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1767 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1768 offset = -offset;
1770 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1772 if (cfa_store.reg == (unsigned) regno)
1773 offset -= cfa_store.offset;
1774 else
1776 gcc_assert (cfa_temp.reg == (unsigned) regno);
1777 offset -= cfa_temp.offset;
1780 break;
1782 /* Rule 13 */
1783 /* Without an offset. */
1784 case REG:
1786 int regno = REGNO (XEXP (dest, 0));
1788 if (cfa_store.reg == (unsigned) regno)
1789 offset = -cfa_store.offset;
1790 else
1792 gcc_assert (cfa_temp.reg == (unsigned) regno);
1793 offset = -cfa_temp.offset;
1796 break;
1798 /* Rule 14 */
1799 case POST_INC:
1800 gcc_assert (cfa_temp.reg
1801 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1802 offset = -cfa_temp.offset;
1803 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1804 break;
1806 default:
1807 gcc_unreachable ();
1810 if (REGNO (src) != STACK_POINTER_REGNUM
1811 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1812 && (unsigned) REGNO (src) == cfa.reg)
1814 /* We're storing the current CFA reg into the stack. */
1816 if (cfa.offset == 0)
1818 /* If the source register is exactly the CFA, assume
1819 we're saving SP like any other register; this happens
1820 on the ARM. */
1821 def_cfa_1 (label, &cfa);
1822 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1823 break;
1825 else
1827 /* Otherwise, we'll need to look in the stack to
1828 calculate the CFA. */
1829 rtx x = XEXP (dest, 0);
1831 if (!REG_P (x))
1832 x = XEXP (x, 0);
1833 gcc_assert (REG_P (x));
1835 cfa.reg = REGNO (x);
1836 cfa.base_offset = offset;
1837 cfa.indirect = 1;
1838 def_cfa_1 (label, &cfa);
1839 break;
1843 def_cfa_1 (label, &cfa);
1844 queue_reg_save (label, src, NULL_RTX, offset);
1845 break;
1847 default:
1848 gcc_unreachable ();
1852 /* Record call frame debugging information for INSN, which either
1853 sets SP or FP (adjusting how we calculate the frame address) or saves a
1854 register to the stack. If INSN is NULL_RTX, initialize our state.
1856 If AFTER_P is false, we're being called before the insn is emitted,
1857 otherwise after. Call instructions get invoked twice. */
1859 void
1860 dwarf2out_frame_debug (rtx insn, bool after_p)
1862 const char *label;
1863 rtx src;
1865 if (insn == NULL_RTX)
1867 size_t i;
1869 /* Flush any queued register saves. */
1870 flush_queued_reg_saves ();
1872 /* Set up state for generating call frame debug info. */
1873 lookup_cfa (&cfa);
1874 gcc_assert (cfa.reg
1875 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1877 cfa.reg = STACK_POINTER_REGNUM;
1878 cfa_store = cfa;
1879 cfa_temp.reg = -1;
1880 cfa_temp.offset = 0;
1882 for (i = 0; i < num_regs_saved_in_regs; i++)
1884 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1885 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1887 num_regs_saved_in_regs = 0;
1888 return;
1891 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1892 flush_queued_reg_saves ();
1894 if (! RTX_FRAME_RELATED_P (insn))
1896 if (!ACCUMULATE_OUTGOING_ARGS)
1897 dwarf2out_stack_adjust (insn, after_p);
1898 return;
1901 label = dwarf2out_cfi_label ();
1902 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1903 if (src)
1904 insn = XEXP (src, 0);
1905 else
1906 insn = PATTERN (insn);
1908 dwarf2out_frame_debug_expr (insn, label);
1911 #endif
1913 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1914 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1915 (enum dwarf_call_frame_info cfi);
1917 static enum dw_cfi_oprnd_type
1918 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1920 switch (cfi)
1922 case DW_CFA_nop:
1923 case DW_CFA_GNU_window_save:
1924 return dw_cfi_oprnd_unused;
1926 case DW_CFA_set_loc:
1927 case DW_CFA_advance_loc1:
1928 case DW_CFA_advance_loc2:
1929 case DW_CFA_advance_loc4:
1930 case DW_CFA_MIPS_advance_loc8:
1931 return dw_cfi_oprnd_addr;
1933 case DW_CFA_offset:
1934 case DW_CFA_offset_extended:
1935 case DW_CFA_def_cfa:
1936 case DW_CFA_offset_extended_sf:
1937 case DW_CFA_def_cfa_sf:
1938 case DW_CFA_restore_extended:
1939 case DW_CFA_undefined:
1940 case DW_CFA_same_value:
1941 case DW_CFA_def_cfa_register:
1942 case DW_CFA_register:
1943 return dw_cfi_oprnd_reg_num;
1945 case DW_CFA_def_cfa_offset:
1946 case DW_CFA_GNU_args_size:
1947 case DW_CFA_def_cfa_offset_sf:
1948 return dw_cfi_oprnd_offset;
1950 case DW_CFA_def_cfa_expression:
1951 case DW_CFA_expression:
1952 return dw_cfi_oprnd_loc;
1954 default:
1955 gcc_unreachable ();
1959 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1960 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1961 (enum dwarf_call_frame_info cfi);
1963 static enum dw_cfi_oprnd_type
1964 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1966 switch (cfi)
1968 case DW_CFA_def_cfa:
1969 case DW_CFA_def_cfa_sf:
1970 case DW_CFA_offset:
1971 case DW_CFA_offset_extended_sf:
1972 case DW_CFA_offset_extended:
1973 return dw_cfi_oprnd_offset;
1975 case DW_CFA_register:
1976 return dw_cfi_oprnd_reg_num;
1978 default:
1979 return dw_cfi_oprnd_unused;
1983 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1985 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1986 switch to the data section instead, and write out a synthetic label
1987 for collect2. */
1989 static void
1990 switch_to_eh_frame_section (void)
1992 tree label;
1994 #ifdef EH_FRAME_SECTION_NAME
1995 if (eh_frame_section == 0)
1997 int flags;
1999 if (EH_TABLES_CAN_BE_READ_ONLY)
2001 int fde_encoding;
2002 int per_encoding;
2003 int lsda_encoding;
2005 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2006 /*global=*/0);
2007 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2008 /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2010 /*global=*/0);
2011 flags = ((! flag_pic
2012 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2013 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2014 && (per_encoding & 0x70) != DW_EH_PE_absptr
2015 && (per_encoding & 0x70) != DW_EH_PE_aligned
2016 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2017 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2018 ? 0 : SECTION_WRITE);
2020 else
2021 flags = SECTION_WRITE;
2022 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2024 #endif
2026 if (eh_frame_section)
2027 switch_to_section (eh_frame_section);
2028 else
2030 /* We have no special eh_frame section. Put the information in
2031 the data section and emit special labels to guide collect2. */
2032 switch_to_section (data_section);
2033 label = get_file_function_name ("F");
2034 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2035 targetm.asm_out.globalize_label (asm_out_file,
2036 IDENTIFIER_POINTER (label));
2037 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2041 /* Output a Call Frame Information opcode and its operand(s). */
2043 static void
2044 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2046 unsigned long r;
2047 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2048 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2049 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2050 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2051 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2052 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2054 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2055 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2056 "DW_CFA_offset, column 0x%lx", r);
2057 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2059 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2061 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2062 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2063 "DW_CFA_restore, column 0x%lx", r);
2065 else
2067 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2068 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2070 switch (cfi->dw_cfi_opc)
2072 case DW_CFA_set_loc:
2073 if (for_eh)
2074 dw2_asm_output_encoded_addr_rtx (
2075 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2076 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2077 false, NULL);
2078 else
2079 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2080 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2081 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2082 break;
2084 case DW_CFA_advance_loc1:
2085 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2086 fde->dw_fde_current_label, NULL);
2087 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2088 break;
2090 case DW_CFA_advance_loc2:
2091 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2092 fde->dw_fde_current_label, NULL);
2093 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2094 break;
2096 case DW_CFA_advance_loc4:
2097 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2098 fde->dw_fde_current_label, NULL);
2099 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2100 break;
2102 case DW_CFA_MIPS_advance_loc8:
2103 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2104 fde->dw_fde_current_label, NULL);
2105 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2106 break;
2108 case DW_CFA_offset_extended:
2109 case DW_CFA_def_cfa:
2110 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2111 dw2_asm_output_data_uleb128 (r, NULL);
2112 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2113 break;
2115 case DW_CFA_offset_extended_sf:
2116 case DW_CFA_def_cfa_sf:
2117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2118 dw2_asm_output_data_uleb128 (r, NULL);
2119 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2120 break;
2122 case DW_CFA_restore_extended:
2123 case DW_CFA_undefined:
2124 case DW_CFA_same_value:
2125 case DW_CFA_def_cfa_register:
2126 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2127 dw2_asm_output_data_uleb128 (r, NULL);
2128 break;
2130 case DW_CFA_register:
2131 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 dw2_asm_output_data_uleb128 (r, NULL);
2133 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2134 dw2_asm_output_data_uleb128 (r, NULL);
2135 break;
2137 case DW_CFA_def_cfa_offset:
2138 case DW_CFA_GNU_args_size:
2139 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2140 break;
2142 case DW_CFA_def_cfa_offset_sf:
2143 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2144 break;
2146 case DW_CFA_GNU_window_save:
2147 break;
2149 case DW_CFA_def_cfa_expression:
2150 case DW_CFA_expression:
2151 output_cfa_loc (cfi);
2152 break;
2154 case DW_CFA_GNU_negative_offset_extended:
2155 /* Obsoleted by DW_CFA_offset_extended_sf. */
2156 gcc_unreachable ();
2158 default:
2159 break;
2164 /* Output the call frame information used to record information
2165 that relates to calculating the frame pointer, and records the
2166 location of saved registers. */
2168 static void
2169 output_call_frame_info (int for_eh)
2171 unsigned int i;
2172 dw_fde_ref fde;
2173 dw_cfi_ref cfi;
2174 char l1[20], l2[20], section_start_label[20];
2175 bool any_lsda_needed = false;
2176 char augmentation[6];
2177 int augmentation_size;
2178 int fde_encoding = DW_EH_PE_absptr;
2179 int per_encoding = DW_EH_PE_absptr;
2180 int lsda_encoding = DW_EH_PE_absptr;
2181 int return_reg;
2183 /* Don't emit a CIE if there won't be any FDEs. */
2184 if (fde_table_in_use == 0)
2185 return;
2187 /* If we make FDEs linkonce, we may have to emit an empty label for
2188 an FDE that wouldn't otherwise be emitted. We want to avoid
2189 having an FDE kept around when the function it refers to is
2190 discarded. Example where this matters: a primary function
2191 template in C++ requires EH information, but an explicit
2192 specialization doesn't. */
2193 if (TARGET_USES_WEAK_UNWIND_INFO
2194 && ! flag_asynchronous_unwind_tables
2195 && for_eh)
2196 for (i = 0; i < fde_table_in_use; i++)
2197 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2198 && !fde_table[i].uses_eh_lsda
2199 && ! DECL_WEAK (fde_table[i].decl))
2200 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2201 for_eh, /* empty */ 1);
2203 /* If we don't have any functions we'll want to unwind out of, don't
2204 emit any EH unwind information. Note that if exceptions aren't
2205 enabled, we won't have collected nothrow information, and if we
2206 asked for asynchronous tables, we always want this info. */
2207 if (for_eh)
2209 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2211 for (i = 0; i < fde_table_in_use; i++)
2212 if (fde_table[i].uses_eh_lsda)
2213 any_eh_needed = any_lsda_needed = true;
2214 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2215 any_eh_needed = true;
2216 else if (! fde_table[i].nothrow
2217 && ! fde_table[i].all_throwers_are_sibcalls)
2218 any_eh_needed = true;
2220 if (! any_eh_needed)
2221 return;
2224 /* We're going to be generating comments, so turn on app. */
2225 if (flag_debug_asm)
2226 app_enable ();
2228 if (for_eh)
2229 switch_to_eh_frame_section ();
2230 else
2232 if (!debug_frame_section)
2233 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2234 SECTION_DEBUG, NULL);
2235 switch_to_section (debug_frame_section);
2238 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2239 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2241 /* Output the CIE. */
2242 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2243 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2244 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2245 dw2_asm_output_data (4, 0xffffffff,
2246 "Initial length escape value indicating 64-bit DWARF extension");
2247 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2248 "Length of Common Information Entry");
2249 ASM_OUTPUT_LABEL (asm_out_file, l1);
2251 /* Now that the CIE pointer is PC-relative for EH,
2252 use 0 to identify the CIE. */
2253 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2254 (for_eh ? 0 : DWARF_CIE_ID),
2255 "CIE Identifier Tag");
2257 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2259 augmentation[0] = 0;
2260 augmentation_size = 0;
2261 if (for_eh)
2263 char *p;
2265 /* Augmentation:
2266 z Indicates that a uleb128 is present to size the
2267 augmentation section.
2268 L Indicates the encoding (and thus presence) of
2269 an LSDA pointer in the FDE augmentation.
2270 R Indicates a non-default pointer encoding for
2271 FDE code pointers.
2272 P Indicates the presence of an encoding + language
2273 personality routine in the CIE augmentation. */
2275 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2276 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2277 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2279 p = augmentation + 1;
2280 if (eh_personality_libfunc)
2282 *p++ = 'P';
2283 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2285 if (any_lsda_needed)
2287 *p++ = 'L';
2288 augmentation_size += 1;
2290 if (fde_encoding != DW_EH_PE_absptr)
2292 *p++ = 'R';
2293 augmentation_size += 1;
2295 if (p > augmentation + 1)
2297 augmentation[0] = 'z';
2298 *p = '\0';
2301 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2302 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2304 int offset = ( 4 /* Length */
2305 + 4 /* CIE Id */
2306 + 1 /* CIE version */
2307 + strlen (augmentation) + 1 /* Augmentation */
2308 + size_of_uleb128 (1) /* Code alignment */
2309 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2310 + 1 /* RA column */
2311 + 1 /* Augmentation size */
2312 + 1 /* Personality encoding */ );
2313 int pad = -offset & (PTR_SIZE - 1);
2315 augmentation_size += pad;
2317 /* Augmentations should be small, so there's scarce need to
2318 iterate for a solution. Die if we exceed one uleb128 byte. */
2319 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2323 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2324 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2325 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2326 "CIE Data Alignment Factor");
2328 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2329 if (DW_CIE_VERSION == 1)
2330 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2331 else
2332 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2334 if (augmentation[0])
2336 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2337 if (eh_personality_libfunc)
2339 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2340 eh_data_format_name (per_encoding));
2341 dw2_asm_output_encoded_addr_rtx (per_encoding,
2342 eh_personality_libfunc,
2343 true, NULL);
2346 if (any_lsda_needed)
2347 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2348 eh_data_format_name (lsda_encoding));
2350 if (fde_encoding != DW_EH_PE_absptr)
2351 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2352 eh_data_format_name (fde_encoding));
2355 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2356 output_cfi (cfi, NULL, for_eh);
2358 /* Pad the CIE out to an address sized boundary. */
2359 ASM_OUTPUT_ALIGN (asm_out_file,
2360 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2361 ASM_OUTPUT_LABEL (asm_out_file, l2);
2363 /* Loop through all of the FDE's. */
2364 for (i = 0; i < fde_table_in_use; i++)
2366 fde = &fde_table[i];
2368 /* Don't emit EH unwind info for leaf functions that don't need it. */
2369 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2370 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2371 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2372 && !fde->uses_eh_lsda)
2373 continue;
2375 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2376 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2377 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2379 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2380 dw2_asm_output_data (4, 0xffffffff,
2381 "Initial length escape value indicating 64-bit DWARF extension");
2382 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2383 "FDE Length");
2384 ASM_OUTPUT_LABEL (asm_out_file, l1);
2386 if (for_eh)
2387 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2388 else
2389 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2390 debug_frame_section, "FDE CIE offset");
2392 if (for_eh)
2394 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2395 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2396 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2397 sym_ref,
2398 false,
2399 "FDE initial location");
2400 if (fde->dw_fde_switched_sections)
2402 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2403 fde->dw_fde_unlikely_section_label);
2404 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2405 fde->dw_fde_hot_section_label);
2406 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2407 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2408 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2409 "FDE initial location");
2410 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2411 fde->dw_fde_hot_section_end_label,
2412 fde->dw_fde_hot_section_label,
2413 "FDE address range");
2414 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2415 "FDE initial location");
2416 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2417 fde->dw_fde_unlikely_section_end_label,
2418 fde->dw_fde_unlikely_section_label,
2419 "FDE address range");
2421 else
2422 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2423 fde->dw_fde_end, fde->dw_fde_begin,
2424 "FDE address range");
2426 else
2428 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2429 "FDE initial location");
2430 if (fde->dw_fde_switched_sections)
2432 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2433 fde->dw_fde_hot_section_label,
2434 "FDE initial location");
2435 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2436 fde->dw_fde_hot_section_end_label,
2437 fde->dw_fde_hot_section_label,
2438 "FDE address range");
2439 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2440 fde->dw_fde_unlikely_section_label,
2441 "FDE initial location");
2442 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2443 fde->dw_fde_unlikely_section_end_label,
2444 fde->dw_fde_unlikely_section_label,
2445 "FDE address range");
2447 else
2448 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2449 fde->dw_fde_end, fde->dw_fde_begin,
2450 "FDE address range");
2453 if (augmentation[0])
2455 if (any_lsda_needed)
2457 int size = size_of_encoded_value (lsda_encoding);
2459 if (lsda_encoding == DW_EH_PE_aligned)
2461 int offset = ( 4 /* Length */
2462 + 4 /* CIE offset */
2463 + 2 * size_of_encoded_value (fde_encoding)
2464 + 1 /* Augmentation size */ );
2465 int pad = -offset & (PTR_SIZE - 1);
2467 size += pad;
2468 gcc_assert (size_of_uleb128 (size) == 1);
2471 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2473 if (fde->uses_eh_lsda)
2475 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2476 fde->funcdef_number);
2477 dw2_asm_output_encoded_addr_rtx (
2478 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2479 false, "Language Specific Data Area");
2481 else
2483 if (lsda_encoding == DW_EH_PE_aligned)
2484 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2485 dw2_asm_output_data
2486 (size_of_encoded_value (lsda_encoding), 0,
2487 "Language Specific Data Area (none)");
2490 else
2491 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2494 /* Loop through the Call Frame Instructions associated with
2495 this FDE. */
2496 fde->dw_fde_current_label = fde->dw_fde_begin;
2497 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2498 output_cfi (cfi, fde, for_eh);
2500 /* Pad the FDE out to an address sized boundary. */
2501 ASM_OUTPUT_ALIGN (asm_out_file,
2502 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2503 ASM_OUTPUT_LABEL (asm_out_file, l2);
2506 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2507 dw2_asm_output_data (4, 0, "End of Table");
2508 #ifdef MIPS_DEBUGGING_INFO
2509 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2510 get a value of 0. Putting .align 0 after the label fixes it. */
2511 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2512 #endif
2514 /* Turn off app to make assembly quicker. */
2515 if (flag_debug_asm)
2516 app_disable ();
2519 /* Output a marker (i.e. a label) for the beginning of a function, before
2520 the prologue. */
2522 void
2523 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2524 const char *file ATTRIBUTE_UNUSED)
2526 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2527 char * dup_label;
2528 dw_fde_ref fde;
2530 current_function_func_begin_label = NULL;
2532 #ifdef TARGET_UNWIND_INFO
2533 /* ??? current_function_func_begin_label is also used by except.c
2534 for call-site information. We must emit this label if it might
2535 be used. */
2536 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2537 && ! dwarf2out_do_frame ())
2538 return;
2539 #else
2540 if (! dwarf2out_do_frame ())
2541 return;
2542 #endif
2544 switch_to_section (function_section (current_function_decl));
2545 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2546 current_function_funcdef_no);
2547 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2548 current_function_funcdef_no);
2549 dup_label = xstrdup (label);
2550 current_function_func_begin_label = dup_label;
2552 #ifdef TARGET_UNWIND_INFO
2553 /* We can elide the fde allocation if we're not emitting debug info. */
2554 if (! dwarf2out_do_frame ())
2555 return;
2556 #endif
2558 /* Expand the fde table if necessary. */
2559 if (fde_table_in_use == fde_table_allocated)
2561 fde_table_allocated += FDE_TABLE_INCREMENT;
2562 fde_table = ggc_realloc (fde_table,
2563 fde_table_allocated * sizeof (dw_fde_node));
2564 memset (fde_table + fde_table_in_use, 0,
2565 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2568 /* Record the FDE associated with this function. */
2569 current_funcdef_fde = fde_table_in_use;
2571 /* Add the new FDE at the end of the fde_table. */
2572 fde = &fde_table[fde_table_in_use++];
2573 fde->decl = current_function_decl;
2574 fde->dw_fde_begin = dup_label;
2575 fde->dw_fde_current_label = dup_label;
2576 fde->dw_fde_hot_section_label = NULL;
2577 fde->dw_fde_hot_section_end_label = NULL;
2578 fde->dw_fde_unlikely_section_label = NULL;
2579 fde->dw_fde_unlikely_section_end_label = NULL;
2580 fde->dw_fde_switched_sections = false;
2581 fde->dw_fde_end = NULL;
2582 fde->dw_fde_cfi = NULL;
2583 fde->funcdef_number = current_function_funcdef_no;
2584 fde->nothrow = TREE_NOTHROW (current_function_decl);
2585 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2586 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2588 args_size = old_args_size = 0;
2590 /* We only want to output line number information for the genuine dwarf2
2591 prologue case, not the eh frame case. */
2592 #ifdef DWARF2_DEBUGGING_INFO
2593 if (file)
2594 dwarf2out_source_line (line, file);
2595 #endif
2598 /* Output a marker (i.e. a label) for the absolute end of the generated code
2599 for a function definition. This gets called *after* the epilogue code has
2600 been generated. */
2602 void
2603 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2604 const char *file ATTRIBUTE_UNUSED)
2606 dw_fde_ref fde;
2607 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2609 /* Output a label to mark the endpoint of the code generated for this
2610 function. */
2611 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2612 current_function_funcdef_no);
2613 ASM_OUTPUT_LABEL (asm_out_file, label);
2614 fde = &fde_table[fde_table_in_use - 1];
2615 fde->dw_fde_end = xstrdup (label);
2618 void
2619 dwarf2out_frame_init (void)
2621 /* Allocate the initial hunk of the fde_table. */
2622 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2623 fde_table_allocated = FDE_TABLE_INCREMENT;
2624 fde_table_in_use = 0;
2626 /* Generate the CFA instructions common to all FDE's. Do it now for the
2627 sake of lookup_cfa. */
2629 /* On entry, the Canonical Frame Address is at SP. */
2630 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2632 #ifdef DWARF2_UNWIND_INFO
2633 if (DWARF2_UNWIND_INFO)
2634 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2635 #endif
2638 void
2639 dwarf2out_frame_finish (void)
2641 /* Output call frame information. */
2642 if (DWARF2_FRAME_INFO)
2643 output_call_frame_info (0);
2645 #ifndef TARGET_UNWIND_INFO
2646 /* Output another copy for the unwinder. */
2647 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2648 output_call_frame_info (1);
2649 #endif
2651 #endif
2653 /* And now, the subset of the debugging information support code necessary
2654 for emitting location expressions. */
2656 /* Data about a single source file. */
2657 struct dwarf_file_data GTY(())
2659 const char * filename;
2660 int emitted_number;
2663 /* We need some way to distinguish DW_OP_addr with a direct symbol
2664 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2665 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2668 typedef struct dw_val_struct *dw_val_ref;
2669 typedef struct die_struct *dw_die_ref;
2670 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2671 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2673 /* Each DIE may have a series of attribute/value pairs. Values
2674 can take on several forms. The forms that are used in this
2675 implementation are listed below. */
2677 enum dw_val_class
2679 dw_val_class_addr,
2680 dw_val_class_offset,
2681 dw_val_class_loc,
2682 dw_val_class_loc_list,
2683 dw_val_class_range_list,
2684 dw_val_class_const,
2685 dw_val_class_unsigned_const,
2686 dw_val_class_long_long,
2687 dw_val_class_vec,
2688 dw_val_class_flag,
2689 dw_val_class_die_ref,
2690 dw_val_class_fde_ref,
2691 dw_val_class_lbl_id,
2692 dw_val_class_lineptr,
2693 dw_val_class_str,
2694 dw_val_class_macptr,
2695 dw_val_class_file
2698 /* Describe a double word constant value. */
2699 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2701 typedef struct dw_long_long_struct GTY(())
2703 unsigned long hi;
2704 unsigned long low;
2706 dw_long_long_const;
2708 /* Describe a floating point constant value, or a vector constant value. */
2710 typedef struct dw_vec_struct GTY(())
2712 unsigned char * GTY((length ("%h.length"))) array;
2713 unsigned length;
2714 unsigned elt_size;
2716 dw_vec_const;
2718 /* The dw_val_node describes an attribute's value, as it is
2719 represented internally. */
2721 typedef struct dw_val_struct GTY(())
2723 enum dw_val_class val_class;
2724 union dw_val_struct_union
2726 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2727 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2728 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2729 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2730 HOST_WIDE_INT GTY ((default)) val_int;
2731 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2732 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2733 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2734 struct dw_val_die_union
2736 dw_die_ref die;
2737 int external;
2738 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2739 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2740 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2741 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2742 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2743 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2745 GTY ((desc ("%1.val_class"))) v;
2747 dw_val_node;
2749 /* Locations in memory are described using a sequence of stack machine
2750 operations. */
2752 typedef struct dw_loc_descr_struct GTY(())
2754 dw_loc_descr_ref dw_loc_next;
2755 enum dwarf_location_atom dw_loc_opc;
2756 dw_val_node dw_loc_oprnd1;
2757 dw_val_node dw_loc_oprnd2;
2758 int dw_loc_addr;
2760 dw_loc_descr_node;
2762 /* Location lists are ranges + location descriptions for that range,
2763 so you can track variables that are in different places over
2764 their entire life. */
2765 typedef struct dw_loc_list_struct GTY(())
2767 dw_loc_list_ref dw_loc_next;
2768 const char *begin; /* Label for begin address of range */
2769 const char *end; /* Label for end address of range */
2770 char *ll_symbol; /* Label for beginning of location list.
2771 Only on head of list */
2772 const char *section; /* Section this loclist is relative to */
2773 dw_loc_descr_ref expr;
2774 } dw_loc_list_node;
2776 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2778 static const char *dwarf_stack_op_name (unsigned);
2779 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2780 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2781 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2782 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2783 static unsigned long size_of_locs (dw_loc_descr_ref);
2784 static void output_loc_operands (dw_loc_descr_ref);
2785 static void output_loc_sequence (dw_loc_descr_ref);
2787 /* Convert a DWARF stack opcode into its string name. */
2789 static const char *
2790 dwarf_stack_op_name (unsigned int op)
2792 switch (op)
2794 case DW_OP_addr:
2795 case INTERNAL_DW_OP_tls_addr:
2796 return "DW_OP_addr";
2797 case DW_OP_deref:
2798 return "DW_OP_deref";
2799 case DW_OP_const1u:
2800 return "DW_OP_const1u";
2801 case DW_OP_const1s:
2802 return "DW_OP_const1s";
2803 case DW_OP_const2u:
2804 return "DW_OP_const2u";
2805 case DW_OP_const2s:
2806 return "DW_OP_const2s";
2807 case DW_OP_const4u:
2808 return "DW_OP_const4u";
2809 case DW_OP_const4s:
2810 return "DW_OP_const4s";
2811 case DW_OP_const8u:
2812 return "DW_OP_const8u";
2813 case DW_OP_const8s:
2814 return "DW_OP_const8s";
2815 case DW_OP_constu:
2816 return "DW_OP_constu";
2817 case DW_OP_consts:
2818 return "DW_OP_consts";
2819 case DW_OP_dup:
2820 return "DW_OP_dup";
2821 case DW_OP_drop:
2822 return "DW_OP_drop";
2823 case DW_OP_over:
2824 return "DW_OP_over";
2825 case DW_OP_pick:
2826 return "DW_OP_pick";
2827 case DW_OP_swap:
2828 return "DW_OP_swap";
2829 case DW_OP_rot:
2830 return "DW_OP_rot";
2831 case DW_OP_xderef:
2832 return "DW_OP_xderef";
2833 case DW_OP_abs:
2834 return "DW_OP_abs";
2835 case DW_OP_and:
2836 return "DW_OP_and";
2837 case DW_OP_div:
2838 return "DW_OP_div";
2839 case DW_OP_minus:
2840 return "DW_OP_minus";
2841 case DW_OP_mod:
2842 return "DW_OP_mod";
2843 case DW_OP_mul:
2844 return "DW_OP_mul";
2845 case DW_OP_neg:
2846 return "DW_OP_neg";
2847 case DW_OP_not:
2848 return "DW_OP_not";
2849 case DW_OP_or:
2850 return "DW_OP_or";
2851 case DW_OP_plus:
2852 return "DW_OP_plus";
2853 case DW_OP_plus_uconst:
2854 return "DW_OP_plus_uconst";
2855 case DW_OP_shl:
2856 return "DW_OP_shl";
2857 case DW_OP_shr:
2858 return "DW_OP_shr";
2859 case DW_OP_shra:
2860 return "DW_OP_shra";
2861 case DW_OP_xor:
2862 return "DW_OP_xor";
2863 case DW_OP_bra:
2864 return "DW_OP_bra";
2865 case DW_OP_eq:
2866 return "DW_OP_eq";
2867 case DW_OP_ge:
2868 return "DW_OP_ge";
2869 case DW_OP_gt:
2870 return "DW_OP_gt";
2871 case DW_OP_le:
2872 return "DW_OP_le";
2873 case DW_OP_lt:
2874 return "DW_OP_lt";
2875 case DW_OP_ne:
2876 return "DW_OP_ne";
2877 case DW_OP_skip:
2878 return "DW_OP_skip";
2879 case DW_OP_lit0:
2880 return "DW_OP_lit0";
2881 case DW_OP_lit1:
2882 return "DW_OP_lit1";
2883 case DW_OP_lit2:
2884 return "DW_OP_lit2";
2885 case DW_OP_lit3:
2886 return "DW_OP_lit3";
2887 case DW_OP_lit4:
2888 return "DW_OP_lit4";
2889 case DW_OP_lit5:
2890 return "DW_OP_lit5";
2891 case DW_OP_lit6:
2892 return "DW_OP_lit6";
2893 case DW_OP_lit7:
2894 return "DW_OP_lit7";
2895 case DW_OP_lit8:
2896 return "DW_OP_lit8";
2897 case DW_OP_lit9:
2898 return "DW_OP_lit9";
2899 case DW_OP_lit10:
2900 return "DW_OP_lit10";
2901 case DW_OP_lit11:
2902 return "DW_OP_lit11";
2903 case DW_OP_lit12:
2904 return "DW_OP_lit12";
2905 case DW_OP_lit13:
2906 return "DW_OP_lit13";
2907 case DW_OP_lit14:
2908 return "DW_OP_lit14";
2909 case DW_OP_lit15:
2910 return "DW_OP_lit15";
2911 case DW_OP_lit16:
2912 return "DW_OP_lit16";
2913 case DW_OP_lit17:
2914 return "DW_OP_lit17";
2915 case DW_OP_lit18:
2916 return "DW_OP_lit18";
2917 case DW_OP_lit19:
2918 return "DW_OP_lit19";
2919 case DW_OP_lit20:
2920 return "DW_OP_lit20";
2921 case DW_OP_lit21:
2922 return "DW_OP_lit21";
2923 case DW_OP_lit22:
2924 return "DW_OP_lit22";
2925 case DW_OP_lit23:
2926 return "DW_OP_lit23";
2927 case DW_OP_lit24:
2928 return "DW_OP_lit24";
2929 case DW_OP_lit25:
2930 return "DW_OP_lit25";
2931 case DW_OP_lit26:
2932 return "DW_OP_lit26";
2933 case DW_OP_lit27:
2934 return "DW_OP_lit27";
2935 case DW_OP_lit28:
2936 return "DW_OP_lit28";
2937 case DW_OP_lit29:
2938 return "DW_OP_lit29";
2939 case DW_OP_lit30:
2940 return "DW_OP_lit30";
2941 case DW_OP_lit31:
2942 return "DW_OP_lit31";
2943 case DW_OP_reg0:
2944 return "DW_OP_reg0";
2945 case DW_OP_reg1:
2946 return "DW_OP_reg1";
2947 case DW_OP_reg2:
2948 return "DW_OP_reg2";
2949 case DW_OP_reg3:
2950 return "DW_OP_reg3";
2951 case DW_OP_reg4:
2952 return "DW_OP_reg4";
2953 case DW_OP_reg5:
2954 return "DW_OP_reg5";
2955 case DW_OP_reg6:
2956 return "DW_OP_reg6";
2957 case DW_OP_reg7:
2958 return "DW_OP_reg7";
2959 case DW_OP_reg8:
2960 return "DW_OP_reg8";
2961 case DW_OP_reg9:
2962 return "DW_OP_reg9";
2963 case DW_OP_reg10:
2964 return "DW_OP_reg10";
2965 case DW_OP_reg11:
2966 return "DW_OP_reg11";
2967 case DW_OP_reg12:
2968 return "DW_OP_reg12";
2969 case DW_OP_reg13:
2970 return "DW_OP_reg13";
2971 case DW_OP_reg14:
2972 return "DW_OP_reg14";
2973 case DW_OP_reg15:
2974 return "DW_OP_reg15";
2975 case DW_OP_reg16:
2976 return "DW_OP_reg16";
2977 case DW_OP_reg17:
2978 return "DW_OP_reg17";
2979 case DW_OP_reg18:
2980 return "DW_OP_reg18";
2981 case DW_OP_reg19:
2982 return "DW_OP_reg19";
2983 case DW_OP_reg20:
2984 return "DW_OP_reg20";
2985 case DW_OP_reg21:
2986 return "DW_OP_reg21";
2987 case DW_OP_reg22:
2988 return "DW_OP_reg22";
2989 case DW_OP_reg23:
2990 return "DW_OP_reg23";
2991 case DW_OP_reg24:
2992 return "DW_OP_reg24";
2993 case DW_OP_reg25:
2994 return "DW_OP_reg25";
2995 case DW_OP_reg26:
2996 return "DW_OP_reg26";
2997 case DW_OP_reg27:
2998 return "DW_OP_reg27";
2999 case DW_OP_reg28:
3000 return "DW_OP_reg28";
3001 case DW_OP_reg29:
3002 return "DW_OP_reg29";
3003 case DW_OP_reg30:
3004 return "DW_OP_reg30";
3005 case DW_OP_reg31:
3006 return "DW_OP_reg31";
3007 case DW_OP_breg0:
3008 return "DW_OP_breg0";
3009 case DW_OP_breg1:
3010 return "DW_OP_breg1";
3011 case DW_OP_breg2:
3012 return "DW_OP_breg2";
3013 case DW_OP_breg3:
3014 return "DW_OP_breg3";
3015 case DW_OP_breg4:
3016 return "DW_OP_breg4";
3017 case DW_OP_breg5:
3018 return "DW_OP_breg5";
3019 case DW_OP_breg6:
3020 return "DW_OP_breg6";
3021 case DW_OP_breg7:
3022 return "DW_OP_breg7";
3023 case DW_OP_breg8:
3024 return "DW_OP_breg8";
3025 case DW_OP_breg9:
3026 return "DW_OP_breg9";
3027 case DW_OP_breg10:
3028 return "DW_OP_breg10";
3029 case DW_OP_breg11:
3030 return "DW_OP_breg11";
3031 case DW_OP_breg12:
3032 return "DW_OP_breg12";
3033 case DW_OP_breg13:
3034 return "DW_OP_breg13";
3035 case DW_OP_breg14:
3036 return "DW_OP_breg14";
3037 case DW_OP_breg15:
3038 return "DW_OP_breg15";
3039 case DW_OP_breg16:
3040 return "DW_OP_breg16";
3041 case DW_OP_breg17:
3042 return "DW_OP_breg17";
3043 case DW_OP_breg18:
3044 return "DW_OP_breg18";
3045 case DW_OP_breg19:
3046 return "DW_OP_breg19";
3047 case DW_OP_breg20:
3048 return "DW_OP_breg20";
3049 case DW_OP_breg21:
3050 return "DW_OP_breg21";
3051 case DW_OP_breg22:
3052 return "DW_OP_breg22";
3053 case DW_OP_breg23:
3054 return "DW_OP_breg23";
3055 case DW_OP_breg24:
3056 return "DW_OP_breg24";
3057 case DW_OP_breg25:
3058 return "DW_OP_breg25";
3059 case DW_OP_breg26:
3060 return "DW_OP_breg26";
3061 case DW_OP_breg27:
3062 return "DW_OP_breg27";
3063 case DW_OP_breg28:
3064 return "DW_OP_breg28";
3065 case DW_OP_breg29:
3066 return "DW_OP_breg29";
3067 case DW_OP_breg30:
3068 return "DW_OP_breg30";
3069 case DW_OP_breg31:
3070 return "DW_OP_breg31";
3071 case DW_OP_regx:
3072 return "DW_OP_regx";
3073 case DW_OP_fbreg:
3074 return "DW_OP_fbreg";
3075 case DW_OP_bregx:
3076 return "DW_OP_bregx";
3077 case DW_OP_piece:
3078 return "DW_OP_piece";
3079 case DW_OP_deref_size:
3080 return "DW_OP_deref_size";
3081 case DW_OP_xderef_size:
3082 return "DW_OP_xderef_size";
3083 case DW_OP_nop:
3084 return "DW_OP_nop";
3085 case DW_OP_push_object_address:
3086 return "DW_OP_push_object_address";
3087 case DW_OP_call2:
3088 return "DW_OP_call2";
3089 case DW_OP_call4:
3090 return "DW_OP_call4";
3091 case DW_OP_call_ref:
3092 return "DW_OP_call_ref";
3093 case DW_OP_GNU_push_tls_address:
3094 return "DW_OP_GNU_push_tls_address";
3095 default:
3096 return "OP_<unknown>";
3100 /* Return a pointer to a newly allocated location description. Location
3101 descriptions are simple expression terms that can be strung
3102 together to form more complicated location (address) descriptions. */
3104 static inline dw_loc_descr_ref
3105 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3106 unsigned HOST_WIDE_INT oprnd2)
3108 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3110 descr->dw_loc_opc = op;
3111 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3112 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3113 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3114 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3116 return descr;
3119 /* Add a location description term to a location description expression. */
3121 static inline void
3122 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3124 dw_loc_descr_ref *d;
3126 /* Find the end of the chain. */
3127 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3130 *d = descr;
3133 /* Return the size of a location descriptor. */
3135 static unsigned long
3136 size_of_loc_descr (dw_loc_descr_ref loc)
3138 unsigned long size = 1;
3140 switch (loc->dw_loc_opc)
3142 case DW_OP_addr:
3143 case INTERNAL_DW_OP_tls_addr:
3144 size += DWARF2_ADDR_SIZE;
3145 break;
3146 case DW_OP_const1u:
3147 case DW_OP_const1s:
3148 size += 1;
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 size += 2;
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 size += 4;
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 size += 8;
3161 break;
3162 case DW_OP_constu:
3163 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3164 break;
3165 case DW_OP_consts:
3166 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3167 break;
3168 case DW_OP_pick:
3169 size += 1;
3170 break;
3171 case DW_OP_plus_uconst:
3172 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3173 break;
3174 case DW_OP_skip:
3175 case DW_OP_bra:
3176 size += 2;
3177 break;
3178 case DW_OP_breg0:
3179 case DW_OP_breg1:
3180 case DW_OP_breg2:
3181 case DW_OP_breg3:
3182 case DW_OP_breg4:
3183 case DW_OP_breg5:
3184 case DW_OP_breg6:
3185 case DW_OP_breg7:
3186 case DW_OP_breg8:
3187 case DW_OP_breg9:
3188 case DW_OP_breg10:
3189 case DW_OP_breg11:
3190 case DW_OP_breg12:
3191 case DW_OP_breg13:
3192 case DW_OP_breg14:
3193 case DW_OP_breg15:
3194 case DW_OP_breg16:
3195 case DW_OP_breg17:
3196 case DW_OP_breg18:
3197 case DW_OP_breg19:
3198 case DW_OP_breg20:
3199 case DW_OP_breg21:
3200 case DW_OP_breg22:
3201 case DW_OP_breg23:
3202 case DW_OP_breg24:
3203 case DW_OP_breg25:
3204 case DW_OP_breg26:
3205 case DW_OP_breg27:
3206 case DW_OP_breg28:
3207 case DW_OP_breg29:
3208 case DW_OP_breg30:
3209 case DW_OP_breg31:
3210 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3211 break;
3212 case DW_OP_regx:
3213 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3214 break;
3215 case DW_OP_fbreg:
3216 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3217 break;
3218 case DW_OP_bregx:
3219 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3220 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3221 break;
3222 case DW_OP_piece:
3223 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3224 break;
3225 case DW_OP_deref_size:
3226 case DW_OP_xderef_size:
3227 size += 1;
3228 break;
3229 case DW_OP_call2:
3230 size += 2;
3231 break;
3232 case DW_OP_call4:
3233 size += 4;
3234 break;
3235 case DW_OP_call_ref:
3236 size += DWARF2_ADDR_SIZE;
3237 break;
3238 default:
3239 break;
3242 return size;
3245 /* Return the size of a series of location descriptors. */
3247 static unsigned long
3248 size_of_locs (dw_loc_descr_ref loc)
3250 dw_loc_descr_ref l;
3251 unsigned long size;
3253 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3254 field, to avoid writing to a PCH file. */
3255 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3257 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3258 break;
3259 size += size_of_loc_descr (l);
3261 if (! l)
3262 return size;
3264 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3266 l->dw_loc_addr = size;
3267 size += size_of_loc_descr (l);
3270 return size;
3273 /* Output location description stack opcode's operands (if any). */
3275 static void
3276 output_loc_operands (dw_loc_descr_ref loc)
3278 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3279 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3281 switch (loc->dw_loc_opc)
3283 #ifdef DWARF2_DEBUGGING_INFO
3284 case DW_OP_addr:
3285 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3286 break;
3287 case DW_OP_const2u:
3288 case DW_OP_const2s:
3289 dw2_asm_output_data (2, val1->v.val_int, NULL);
3290 break;
3291 case DW_OP_const4u:
3292 case DW_OP_const4s:
3293 dw2_asm_output_data (4, val1->v.val_int, NULL);
3294 break;
3295 case DW_OP_const8u:
3296 case DW_OP_const8s:
3297 gcc_assert (HOST_BITS_PER_LONG >= 64);
3298 dw2_asm_output_data (8, val1->v.val_int, NULL);
3299 break;
3300 case DW_OP_skip:
3301 case DW_OP_bra:
3303 int offset;
3305 gcc_assert (val1->val_class == dw_val_class_loc);
3306 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3308 dw2_asm_output_data (2, offset, NULL);
3310 break;
3311 #else
3312 case DW_OP_addr:
3313 case DW_OP_const2u:
3314 case DW_OP_const2s:
3315 case DW_OP_const4u:
3316 case DW_OP_const4s:
3317 case DW_OP_const8u:
3318 case DW_OP_const8s:
3319 case DW_OP_skip:
3320 case DW_OP_bra:
3321 /* We currently don't make any attempt to make sure these are
3322 aligned properly like we do for the main unwind info, so
3323 don't support emitting things larger than a byte if we're
3324 only doing unwinding. */
3325 gcc_unreachable ();
3326 #endif
3327 case DW_OP_const1u:
3328 case DW_OP_const1s:
3329 dw2_asm_output_data (1, val1->v.val_int, NULL);
3330 break;
3331 case DW_OP_constu:
3332 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3333 break;
3334 case DW_OP_consts:
3335 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3336 break;
3337 case DW_OP_pick:
3338 dw2_asm_output_data (1, val1->v.val_int, NULL);
3339 break;
3340 case DW_OP_plus_uconst:
3341 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3342 break;
3343 case DW_OP_breg0:
3344 case DW_OP_breg1:
3345 case DW_OP_breg2:
3346 case DW_OP_breg3:
3347 case DW_OP_breg4:
3348 case DW_OP_breg5:
3349 case DW_OP_breg6:
3350 case DW_OP_breg7:
3351 case DW_OP_breg8:
3352 case DW_OP_breg9:
3353 case DW_OP_breg10:
3354 case DW_OP_breg11:
3355 case DW_OP_breg12:
3356 case DW_OP_breg13:
3357 case DW_OP_breg14:
3358 case DW_OP_breg15:
3359 case DW_OP_breg16:
3360 case DW_OP_breg17:
3361 case DW_OP_breg18:
3362 case DW_OP_breg19:
3363 case DW_OP_breg20:
3364 case DW_OP_breg21:
3365 case DW_OP_breg22:
3366 case DW_OP_breg23:
3367 case DW_OP_breg24:
3368 case DW_OP_breg25:
3369 case DW_OP_breg26:
3370 case DW_OP_breg27:
3371 case DW_OP_breg28:
3372 case DW_OP_breg29:
3373 case DW_OP_breg30:
3374 case DW_OP_breg31:
3375 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3376 break;
3377 case DW_OP_regx:
3378 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3379 break;
3380 case DW_OP_fbreg:
3381 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3382 break;
3383 case DW_OP_bregx:
3384 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3385 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3386 break;
3387 case DW_OP_piece:
3388 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3389 break;
3390 case DW_OP_deref_size:
3391 case DW_OP_xderef_size:
3392 dw2_asm_output_data (1, val1->v.val_int, NULL);
3393 break;
3395 case INTERNAL_DW_OP_tls_addr:
3396 if (targetm.asm_out.output_dwarf_dtprel)
3398 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3399 DWARF2_ADDR_SIZE,
3400 val1->v.val_addr);
3401 fputc ('\n', asm_out_file);
3403 else
3404 gcc_unreachable ();
3405 break;
3407 default:
3408 /* Other codes have no operands. */
3409 break;
3413 /* Output a sequence of location operations. */
3415 static void
3416 output_loc_sequence (dw_loc_descr_ref loc)
3418 for (; loc != NULL; loc = loc->dw_loc_next)
3420 /* Output the opcode. */
3421 dw2_asm_output_data (1, loc->dw_loc_opc,
3422 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3424 /* Output the operand(s) (if any). */
3425 output_loc_operands (loc);
3429 /* This routine will generate the correct assembly data for a location
3430 description based on a cfi entry with a complex address. */
3432 static void
3433 output_cfa_loc (dw_cfi_ref cfi)
3435 dw_loc_descr_ref loc;
3436 unsigned long size;
3438 /* Output the size of the block. */
3439 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3440 size = size_of_locs (loc);
3441 dw2_asm_output_data_uleb128 (size, NULL);
3443 /* Now output the operations themselves. */
3444 output_loc_sequence (loc);
3447 /* This function builds a dwarf location descriptor sequence from a
3448 dw_cfa_location, adding the given OFFSET to the result of the
3449 expression. */
3451 static struct dw_loc_descr_struct *
3452 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3454 struct dw_loc_descr_struct *head, *tmp;
3456 offset += cfa->offset;
3458 if (cfa->indirect)
3460 if (cfa->base_offset)
3462 if (cfa->reg <= 31)
3463 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3464 else
3465 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3467 else if (cfa->reg <= 31)
3468 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3469 else
3470 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3472 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3473 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3474 add_loc_descr (&head, tmp);
3475 if (offset != 0)
3477 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3478 add_loc_descr (&head, tmp);
3481 else
3483 if (offset == 0)
3484 if (cfa->reg <= 31)
3485 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3486 else
3487 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3488 else if (cfa->reg <= 31)
3489 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3490 else
3491 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3494 return head;
3497 /* This function fills in aa dw_cfa_location structure from a dwarf location
3498 descriptor sequence. */
3500 static void
3501 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3503 struct dw_loc_descr_struct *ptr;
3504 cfa->offset = 0;
3505 cfa->base_offset = 0;
3506 cfa->indirect = 0;
3507 cfa->reg = -1;
3509 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3511 enum dwarf_location_atom op = ptr->dw_loc_opc;
3513 switch (op)
3515 case DW_OP_reg0:
3516 case DW_OP_reg1:
3517 case DW_OP_reg2:
3518 case DW_OP_reg3:
3519 case DW_OP_reg4:
3520 case DW_OP_reg5:
3521 case DW_OP_reg6:
3522 case DW_OP_reg7:
3523 case DW_OP_reg8:
3524 case DW_OP_reg9:
3525 case DW_OP_reg10:
3526 case DW_OP_reg11:
3527 case DW_OP_reg12:
3528 case DW_OP_reg13:
3529 case DW_OP_reg14:
3530 case DW_OP_reg15:
3531 case DW_OP_reg16:
3532 case DW_OP_reg17:
3533 case DW_OP_reg18:
3534 case DW_OP_reg19:
3535 case DW_OP_reg20:
3536 case DW_OP_reg21:
3537 case DW_OP_reg22:
3538 case DW_OP_reg23:
3539 case DW_OP_reg24:
3540 case DW_OP_reg25:
3541 case DW_OP_reg26:
3542 case DW_OP_reg27:
3543 case DW_OP_reg28:
3544 case DW_OP_reg29:
3545 case DW_OP_reg30:
3546 case DW_OP_reg31:
3547 cfa->reg = op - DW_OP_reg0;
3548 break;
3549 case DW_OP_regx:
3550 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3551 break;
3552 case DW_OP_breg0:
3553 case DW_OP_breg1:
3554 case DW_OP_breg2:
3555 case DW_OP_breg3:
3556 case DW_OP_breg4:
3557 case DW_OP_breg5:
3558 case DW_OP_breg6:
3559 case DW_OP_breg7:
3560 case DW_OP_breg8:
3561 case DW_OP_breg9:
3562 case DW_OP_breg10:
3563 case DW_OP_breg11:
3564 case DW_OP_breg12:
3565 case DW_OP_breg13:
3566 case DW_OP_breg14:
3567 case DW_OP_breg15:
3568 case DW_OP_breg16:
3569 case DW_OP_breg17:
3570 case DW_OP_breg18:
3571 case DW_OP_breg19:
3572 case DW_OP_breg20:
3573 case DW_OP_breg21:
3574 case DW_OP_breg22:
3575 case DW_OP_breg23:
3576 case DW_OP_breg24:
3577 case DW_OP_breg25:
3578 case DW_OP_breg26:
3579 case DW_OP_breg27:
3580 case DW_OP_breg28:
3581 case DW_OP_breg29:
3582 case DW_OP_breg30:
3583 case DW_OP_breg31:
3584 cfa->reg = op - DW_OP_breg0;
3585 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3586 break;
3587 case DW_OP_bregx:
3588 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3589 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3590 break;
3591 case DW_OP_deref:
3592 cfa->indirect = 1;
3593 break;
3594 case DW_OP_plus_uconst:
3595 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3596 break;
3597 default:
3598 internal_error ("DW_LOC_OP %s not implemented",
3599 dwarf_stack_op_name (ptr->dw_loc_opc));
3603 #endif /* .debug_frame support */
3605 /* And now, the support for symbolic debugging information. */
3606 #ifdef DWARF2_DEBUGGING_INFO
3608 /* .debug_str support. */
3609 static int output_indirect_string (void **, void *);
3611 static void dwarf2out_init (const char *);
3612 static void dwarf2out_finish (const char *);
3613 static void dwarf2out_define (unsigned int, const char *);
3614 static void dwarf2out_undef (unsigned int, const char *);
3615 static void dwarf2out_start_source_file (unsigned, const char *);
3616 static void dwarf2out_end_source_file (unsigned);
3617 static void dwarf2out_begin_block (unsigned, unsigned);
3618 static void dwarf2out_end_block (unsigned, unsigned);
3619 static bool dwarf2out_ignore_block (tree);
3620 static void dwarf2out_global_decl (tree);
3621 static void dwarf2out_type_decl (tree, int);
3622 static void dwarf2out_imported_module_or_decl (tree, tree);
3623 static void dwarf2out_abstract_function (tree);
3624 static void dwarf2out_var_location (rtx);
3625 static void dwarf2out_begin_function (tree);
3626 static void dwarf2out_switch_text_section (void);
3628 /* The debug hooks structure. */
3630 const struct gcc_debug_hooks dwarf2_debug_hooks =
3632 dwarf2out_init,
3633 dwarf2out_finish,
3634 dwarf2out_define,
3635 dwarf2out_undef,
3636 dwarf2out_start_source_file,
3637 dwarf2out_end_source_file,
3638 dwarf2out_begin_block,
3639 dwarf2out_end_block,
3640 dwarf2out_ignore_block,
3641 dwarf2out_source_line,
3642 dwarf2out_begin_prologue,
3643 debug_nothing_int_charstar, /* end_prologue */
3644 dwarf2out_end_epilogue,
3645 dwarf2out_begin_function,
3646 debug_nothing_int, /* end_function */
3647 dwarf2out_decl, /* function_decl */
3648 dwarf2out_global_decl,
3649 dwarf2out_type_decl, /* type_decl */
3650 dwarf2out_imported_module_or_decl,
3651 debug_nothing_tree, /* deferred_inline_function */
3652 /* The DWARF 2 backend tries to reduce debugging bloat by not
3653 emitting the abstract description of inline functions until
3654 something tries to reference them. */
3655 dwarf2out_abstract_function, /* outlining_inline_function */
3656 debug_nothing_rtx, /* label */
3657 debug_nothing_int, /* handle_pch */
3658 dwarf2out_var_location,
3659 dwarf2out_switch_text_section,
3660 1 /* start_end_main_source_file */
3662 #endif
3664 /* NOTE: In the comments in this file, many references are made to
3665 "Debugging Information Entries". This term is abbreviated as `DIE'
3666 throughout the remainder of this file. */
3668 /* An internal representation of the DWARF output is built, and then
3669 walked to generate the DWARF debugging info. The walk of the internal
3670 representation is done after the entire program has been compiled.
3671 The types below are used to describe the internal representation. */
3673 /* Various DIE's use offsets relative to the beginning of the
3674 .debug_info section to refer to each other. */
3676 typedef long int dw_offset;
3678 /* Define typedefs here to avoid circular dependencies. */
3680 typedef struct dw_attr_struct *dw_attr_ref;
3681 typedef struct dw_line_info_struct *dw_line_info_ref;
3682 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3683 typedef struct pubname_struct *pubname_ref;
3684 typedef struct dw_ranges_struct *dw_ranges_ref;
3686 /* Each entry in the line_info_table maintains the file and
3687 line number associated with the label generated for that
3688 entry. The label gives the PC value associated with
3689 the line number entry. */
3691 typedef struct dw_line_info_struct GTY(())
3693 unsigned long dw_file_num;
3694 unsigned long dw_line_num;
3696 dw_line_info_entry;
3698 /* Line information for functions in separate sections; each one gets its
3699 own sequence. */
3700 typedef struct dw_separate_line_info_struct GTY(())
3702 unsigned long dw_file_num;
3703 unsigned long dw_line_num;
3704 unsigned long function;
3706 dw_separate_line_info_entry;
3708 /* Each DIE attribute has a field specifying the attribute kind,
3709 a link to the next attribute in the chain, and an attribute value.
3710 Attributes are typically linked below the DIE they modify. */
3712 typedef struct dw_attr_struct GTY(())
3714 enum dwarf_attribute dw_attr;
3715 dw_val_node dw_attr_val;
3717 dw_attr_node;
3719 DEF_VEC_O(dw_attr_node);
3720 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3722 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3723 The children of each node form a circular list linked by
3724 die_sib. die_child points to the node *before* the "first" child node. */
3726 typedef struct die_struct GTY(())
3728 enum dwarf_tag die_tag;
3729 char *die_symbol;
3730 VEC(dw_attr_node,gc) * die_attr;
3731 dw_die_ref die_parent;
3732 dw_die_ref die_child;
3733 dw_die_ref die_sib;
3734 dw_die_ref die_definition; /* ref from a specification to its definition */
3735 dw_offset die_offset;
3736 unsigned long die_abbrev;
3737 int die_mark;
3738 /* Die is used and must not be pruned as unused. */
3739 int die_perennial_p;
3740 unsigned int decl_id;
3742 die_node;
3744 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3745 #define FOR_EACH_CHILD(die, c, expr) do { \
3746 c = die->die_child; \
3747 if (c) do { \
3748 c = c->die_sib; \
3749 expr; \
3750 } while (c != die->die_child); \
3751 } while (0)
3753 /* The pubname structure */
3755 typedef struct pubname_struct GTY(())
3757 dw_die_ref die;
3758 char *name;
3760 pubname_entry;
3762 struct dw_ranges_struct GTY(())
3764 int block_num;
3767 /* The limbo die list structure. */
3768 typedef struct limbo_die_struct GTY(())
3770 dw_die_ref die;
3771 tree created_for;
3772 struct limbo_die_struct *next;
3774 limbo_die_node;
3776 /* How to start an assembler comment. */
3777 #ifndef ASM_COMMENT_START
3778 #define ASM_COMMENT_START ";#"
3779 #endif
3781 /* Define a macro which returns nonzero for a TYPE_DECL which was
3782 implicitly generated for a tagged type.
3784 Note that unlike the gcc front end (which generates a NULL named
3785 TYPE_DECL node for each complete tagged type, each array type, and
3786 each function type node created) the g++ front end generates a
3787 _named_ TYPE_DECL node for each tagged type node created.
3788 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3789 generate a DW_TAG_typedef DIE for them. */
3791 #define TYPE_DECL_IS_STUB(decl) \
3792 (DECL_NAME (decl) == NULL_TREE \
3793 || (DECL_ARTIFICIAL (decl) \
3794 && is_tagged_type (TREE_TYPE (decl)) \
3795 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3796 /* This is necessary for stub decls that \
3797 appear in nested inline functions. */ \
3798 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3799 && (decl_ultimate_origin (decl) \
3800 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3802 /* Information concerning the compilation unit's programming
3803 language, and compiler version. */
3805 /* Fixed size portion of the DWARF compilation unit header. */
3806 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3807 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3809 /* Fixed size portion of public names info. */
3810 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3812 /* Fixed size portion of the address range info. */
3813 #define DWARF_ARANGES_HEADER_SIZE \
3814 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3815 DWARF2_ADDR_SIZE * 2) \
3816 - DWARF_INITIAL_LENGTH_SIZE)
3818 /* Size of padding portion in the address range info. It must be
3819 aligned to twice the pointer size. */
3820 #define DWARF_ARANGES_PAD_SIZE \
3821 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3822 DWARF2_ADDR_SIZE * 2) \
3823 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3825 /* Use assembler line directives if available. */
3826 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3827 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3828 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3829 #else
3830 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3831 #endif
3832 #endif
3834 /* Minimum line offset in a special line info. opcode.
3835 This value was chosen to give a reasonable range of values. */
3836 #define DWARF_LINE_BASE -10
3838 /* First special line opcode - leave room for the standard opcodes. */
3839 #define DWARF_LINE_OPCODE_BASE 10
3841 /* Range of line offsets in a special line info. opcode. */
3842 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3844 /* Flag that indicates the initial value of the is_stmt_start flag.
3845 In the present implementation, we do not mark any lines as
3846 the beginning of a source statement, because that information
3847 is not made available by the GCC front-end. */
3848 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3850 #ifdef DWARF2_DEBUGGING_INFO
3851 /* This location is used by calc_die_sizes() to keep track
3852 the offset of each DIE within the .debug_info section. */
3853 static unsigned long next_die_offset;
3854 #endif
3856 /* Record the root of the DIE's built for the current compilation unit. */
3857 static GTY(()) dw_die_ref comp_unit_die;
3859 /* A list of DIEs with a NULL parent waiting to be relocated. */
3860 static GTY(()) limbo_die_node *limbo_die_list;
3862 /* Filenames referenced by this compilation unit. */
3863 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3865 /* A hash table of references to DIE's that describe declarations.
3866 The key is a DECL_UID() which is a unique number identifying each decl. */
3867 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3869 /* Node of the variable location list. */
3870 struct var_loc_node GTY ((chain_next ("%h.next")))
3872 rtx GTY (()) var_loc_note;
3873 const char * GTY (()) label;
3874 const char * GTY (()) section_label;
3875 struct var_loc_node * GTY (()) next;
3878 /* Variable location list. */
3879 struct var_loc_list_def GTY (())
3881 struct var_loc_node * GTY (()) first;
3883 /* Do not mark the last element of the chained list because
3884 it is marked through the chain. */
3885 struct var_loc_node * GTY ((skip ("%h"))) last;
3887 /* DECL_UID of the variable decl. */
3888 unsigned int decl_id;
3890 typedef struct var_loc_list_def var_loc_list;
3893 /* Table of decl location linked lists. */
3894 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3896 /* A pointer to the base of a list of references to DIE's that
3897 are uniquely identified by their tag, presence/absence of
3898 children DIE's, and list of attribute/value pairs. */
3899 static GTY((length ("abbrev_die_table_allocated")))
3900 dw_die_ref *abbrev_die_table;
3902 /* Number of elements currently allocated for abbrev_die_table. */
3903 static GTY(()) unsigned abbrev_die_table_allocated;
3905 /* Number of elements in type_die_table currently in use. */
3906 static GTY(()) unsigned abbrev_die_table_in_use;
3908 /* Size (in elements) of increments by which we may expand the
3909 abbrev_die_table. */
3910 #define ABBREV_DIE_TABLE_INCREMENT 256
3912 /* A pointer to the base of a table that contains line information
3913 for each source code line in .text in the compilation unit. */
3914 static GTY((length ("line_info_table_allocated")))
3915 dw_line_info_ref line_info_table;
3917 /* Number of elements currently allocated for line_info_table. */
3918 static GTY(()) unsigned line_info_table_allocated;
3920 /* Number of elements in line_info_table currently in use. */
3921 static GTY(()) unsigned line_info_table_in_use;
3923 /* True if the compilation unit places functions in more than one section. */
3924 static GTY(()) bool have_multiple_function_sections = false;
3926 /* A pointer to the base of a table that contains line information
3927 for each source code line outside of .text in the compilation unit. */
3928 static GTY ((length ("separate_line_info_table_allocated")))
3929 dw_separate_line_info_ref separate_line_info_table;
3931 /* Number of elements currently allocated for separate_line_info_table. */
3932 static GTY(()) unsigned separate_line_info_table_allocated;
3934 /* Number of elements in separate_line_info_table currently in use. */
3935 static GTY(()) unsigned separate_line_info_table_in_use;
3937 /* Size (in elements) of increments by which we may expand the
3938 line_info_table. */
3939 #define LINE_INFO_TABLE_INCREMENT 1024
3941 /* A pointer to the base of a table that contains a list of publicly
3942 accessible names. */
3943 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3945 /* Number of elements currently allocated for pubname_table. */
3946 static GTY(()) unsigned pubname_table_allocated;
3948 /* Number of elements in pubname_table currently in use. */
3949 static GTY(()) unsigned pubname_table_in_use;
3951 /* Size (in elements) of increments by which we may expand the
3952 pubname_table. */
3953 #define PUBNAME_TABLE_INCREMENT 64
3955 /* Array of dies for which we should generate .debug_arange info. */
3956 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3958 /* Number of elements currently allocated for arange_table. */
3959 static GTY(()) unsigned arange_table_allocated;
3961 /* Number of elements in arange_table currently in use. */
3962 static GTY(()) unsigned arange_table_in_use;
3964 /* Size (in elements) of increments by which we may expand the
3965 arange_table. */
3966 #define ARANGE_TABLE_INCREMENT 64
3968 /* Array of dies for which we should generate .debug_ranges info. */
3969 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3971 /* Number of elements currently allocated for ranges_table. */
3972 static GTY(()) unsigned ranges_table_allocated;
3974 /* Number of elements in ranges_table currently in use. */
3975 static GTY(()) unsigned ranges_table_in_use;
3977 /* Size (in elements) of increments by which we may expand the
3978 ranges_table. */
3979 #define RANGES_TABLE_INCREMENT 64
3981 /* Whether we have location lists that need outputting */
3982 static GTY(()) bool have_location_lists;
3984 /* Unique label counter. */
3985 static GTY(()) unsigned int loclabel_num;
3987 #ifdef DWARF2_DEBUGGING_INFO
3988 /* Record whether the function being analyzed contains inlined functions. */
3989 static int current_function_has_inlines;
3990 #endif
3991 #if 0 && defined (MIPS_DEBUGGING_INFO)
3992 static int comp_unit_has_inlines;
3993 #endif
3995 /* The last file entry emitted by maybe_emit_file(). */
3996 static GTY(()) struct dwarf_file_data * last_emitted_file;
3998 /* Number of internal labels generated by gen_internal_sym(). */
3999 static GTY(()) int label_num;
4001 /* Cached result of previous call to lookup_filename. */
4002 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4004 #ifdef DWARF2_DEBUGGING_INFO
4006 /* Offset from the "steady-state frame pointer" to the frame base,
4007 within the current function. */
4008 static HOST_WIDE_INT frame_pointer_fb_offset;
4010 /* Forward declarations for functions defined in this file. */
4012 static int is_pseudo_reg (rtx);
4013 static tree type_main_variant (tree);
4014 static int is_tagged_type (tree);
4015 static const char *dwarf_tag_name (unsigned);
4016 static const char *dwarf_attr_name (unsigned);
4017 static const char *dwarf_form_name (unsigned);
4018 static tree decl_ultimate_origin (tree);
4019 static tree block_ultimate_origin (tree);
4020 static tree decl_class_context (tree);
4021 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4022 static inline enum dw_val_class AT_class (dw_attr_ref);
4023 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4024 static inline unsigned AT_flag (dw_attr_ref);
4025 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4026 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4027 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4028 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4029 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4030 unsigned long);
4031 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4032 unsigned int, unsigned char *);
4033 static hashval_t debug_str_do_hash (const void *);
4034 static int debug_str_eq (const void *, const void *);
4035 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4036 static inline const char *AT_string (dw_attr_ref);
4037 static int AT_string_form (dw_attr_ref);
4038 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4039 static void add_AT_specification (dw_die_ref, dw_die_ref);
4040 static inline dw_die_ref AT_ref (dw_attr_ref);
4041 static inline int AT_ref_external (dw_attr_ref);
4042 static inline void set_AT_ref_external (dw_attr_ref, int);
4043 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4044 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4045 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4046 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4047 dw_loc_list_ref);
4048 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4049 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4050 static inline rtx AT_addr (dw_attr_ref);
4051 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4053 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4054 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4055 unsigned HOST_WIDE_INT);
4056 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4057 unsigned long);
4058 static inline const char *AT_lbl (dw_attr_ref);
4059 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4060 static const char *get_AT_low_pc (dw_die_ref);
4061 static const char *get_AT_hi_pc (dw_die_ref);
4062 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4063 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4064 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4065 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4066 static bool is_c_family (void);
4067 static bool is_cxx (void);
4068 static bool is_java (void);
4069 static bool is_fortran (void);
4070 static bool is_ada (void);
4071 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4072 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4073 static void add_child_die (dw_die_ref, dw_die_ref);
4074 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4075 static dw_die_ref lookup_type_die (tree);
4076 static void equate_type_number_to_die (tree, dw_die_ref);
4077 static hashval_t decl_die_table_hash (const void *);
4078 static int decl_die_table_eq (const void *, const void *);
4079 static dw_die_ref lookup_decl_die (tree);
4080 static hashval_t decl_loc_table_hash (const void *);
4081 static int decl_loc_table_eq (const void *, const void *);
4082 static var_loc_list *lookup_decl_loc (tree);
4083 static void equate_decl_number_to_die (tree, dw_die_ref);
4084 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4085 static void print_spaces (FILE *);
4086 static void print_die (dw_die_ref, FILE *);
4087 static void print_dwarf_line_table (FILE *);
4088 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4089 static dw_die_ref pop_compile_unit (dw_die_ref);
4090 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4091 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4092 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4093 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4094 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4095 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4096 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4097 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4098 static void compute_section_prefix (dw_die_ref);
4099 static int is_type_die (dw_die_ref);
4100 static int is_comdat_die (dw_die_ref);
4101 static int is_symbol_die (dw_die_ref);
4102 static void assign_symbol_names (dw_die_ref);
4103 static void break_out_includes (dw_die_ref);
4104 static hashval_t htab_cu_hash (const void *);
4105 static int htab_cu_eq (const void *, const void *);
4106 static void htab_cu_del (void *);
4107 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4108 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4109 static void add_sibling_attributes (dw_die_ref);
4110 static void build_abbrev_table (dw_die_ref);
4111 static void output_location_lists (dw_die_ref);
4112 static int constant_size (long unsigned);
4113 static unsigned long size_of_die (dw_die_ref);
4114 static void calc_die_sizes (dw_die_ref);
4115 static void mark_dies (dw_die_ref);
4116 static void unmark_dies (dw_die_ref);
4117 static void unmark_all_dies (dw_die_ref);
4118 static unsigned long size_of_pubnames (void);
4119 static unsigned long size_of_aranges (void);
4120 static enum dwarf_form value_format (dw_attr_ref);
4121 static void output_value_format (dw_attr_ref);
4122 static void output_abbrev_section (void);
4123 static void output_die_symbol (dw_die_ref);
4124 static void output_die (dw_die_ref);
4125 static void output_compilation_unit_header (void);
4126 static void output_comp_unit (dw_die_ref, int);
4127 static const char *dwarf2_name (tree, int);
4128 static void add_pubname (tree, dw_die_ref);
4129 static void output_pubnames (void);
4130 static void add_arange (tree, dw_die_ref);
4131 static void output_aranges (void);
4132 static unsigned int add_ranges (tree);
4133 static void output_ranges (void);
4134 static void output_line_info (void);
4135 static void output_file_names (void);
4136 static dw_die_ref base_type_die (tree);
4137 static tree root_type (tree);
4138 static int is_base_type (tree);
4139 static bool is_subrange_type (tree);
4140 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4141 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4142 static int type_is_enum (tree);
4143 static unsigned int dbx_reg_number (rtx);
4144 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4145 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4146 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4147 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4148 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4149 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4150 static int is_based_loc (rtx);
4151 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4152 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4153 static dw_loc_descr_ref loc_descriptor (rtx);
4154 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4155 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4156 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4157 static tree field_type (tree);
4158 static unsigned int simple_type_align_in_bits (tree);
4159 static unsigned int simple_decl_align_in_bits (tree);
4160 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4161 static HOST_WIDE_INT field_byte_offset (tree);
4162 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4163 dw_loc_descr_ref);
4164 static void add_data_member_location_attribute (dw_die_ref, tree);
4165 static void add_const_value_attribute (dw_die_ref, rtx);
4166 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4167 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4168 static void insert_float (rtx, unsigned char *);
4169 static rtx rtl_for_decl_location (tree);
4170 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4171 enum dwarf_attribute);
4172 static void tree_add_const_value_attribute (dw_die_ref, tree);
4173 static void add_name_attribute (dw_die_ref, const char *);
4174 static void add_comp_dir_attribute (dw_die_ref);
4175 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4176 static void add_subscript_info (dw_die_ref, tree);
4177 static void add_byte_size_attribute (dw_die_ref, tree);
4178 static void add_bit_offset_attribute (dw_die_ref, tree);
4179 static void add_bit_size_attribute (dw_die_ref, tree);
4180 static void add_prototyped_attribute (dw_die_ref, tree);
4181 static void add_abstract_origin_attribute (dw_die_ref, tree);
4182 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4183 static void add_src_coords_attributes (dw_die_ref, tree);
4184 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4185 static void push_decl_scope (tree);
4186 static void pop_decl_scope (void);
4187 static dw_die_ref scope_die_for (tree, dw_die_ref);
4188 static inline int local_scope_p (dw_die_ref);
4189 static inline int class_or_namespace_scope_p (dw_die_ref);
4190 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4191 static void add_calling_convention_attribute (dw_die_ref, tree);
4192 static const char *type_tag (tree);
4193 static tree member_declared_type (tree);
4194 #if 0
4195 static const char *decl_start_label (tree);
4196 #endif
4197 static void gen_array_type_die (tree, dw_die_ref);
4198 #if 0
4199 static void gen_entry_point_die (tree, dw_die_ref);
4200 #endif
4201 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4202 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4203 static void gen_inlined_union_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4205 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4206 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4207 static void gen_formal_types_die (tree, dw_die_ref);
4208 static void gen_subprogram_die (tree, dw_die_ref);
4209 static void gen_variable_die (tree, dw_die_ref);
4210 static void gen_label_die (tree, dw_die_ref);
4211 static void gen_lexical_block_die (tree, dw_die_ref, int);
4212 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4213 static void gen_field_die (tree, dw_die_ref);
4214 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4215 static dw_die_ref gen_compile_unit_die (const char *);
4216 static void gen_inheritance_die (tree, tree, dw_die_ref);
4217 static void gen_member_die (tree, dw_die_ref);
4218 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4219 static void gen_subroutine_type_die (tree, dw_die_ref);
4220 static void gen_typedef_die (tree, dw_die_ref);
4221 static void gen_type_die (tree, dw_die_ref);
4222 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4223 static void gen_block_die (tree, dw_die_ref, int);
4224 static void decls_for_scope (tree, dw_die_ref, int);
4225 static int is_redundant_typedef (tree);
4226 static void gen_namespace_die (tree);
4227 static void gen_decl_die (tree, dw_die_ref);
4228 static dw_die_ref force_decl_die (tree);
4229 static dw_die_ref force_type_die (tree);
4230 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4231 static void declare_in_namespace (tree, dw_die_ref);
4232 static struct dwarf_file_data * lookup_filename (const char *);
4233 static void retry_incomplete_types (void);
4234 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4235 static void splice_child_die (dw_die_ref, dw_die_ref);
4236 static int file_info_cmp (const void *, const void *);
4237 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4238 const char *, const char *, unsigned);
4239 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4240 const char *, const char *,
4241 const char *);
4242 static void output_loc_list (dw_loc_list_ref);
4243 static char *gen_internal_sym (const char *);
4245 static void prune_unmark_dies (dw_die_ref);
4246 static void prune_unused_types_mark (dw_die_ref, int);
4247 static void prune_unused_types_walk (dw_die_ref);
4248 static void prune_unused_types_walk_attribs (dw_die_ref);
4249 static void prune_unused_types_prune (dw_die_ref);
4250 static void prune_unused_types (void);
4251 static int maybe_emit_file (struct dwarf_file_data *fd);
4253 /* Section names used to hold DWARF debugging information. */
4254 #ifndef DEBUG_INFO_SECTION
4255 #define DEBUG_INFO_SECTION ".debug_info"
4256 #endif
4257 #ifndef DEBUG_ABBREV_SECTION
4258 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4259 #endif
4260 #ifndef DEBUG_ARANGES_SECTION
4261 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4262 #endif
4263 #ifndef DEBUG_MACINFO_SECTION
4264 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4265 #endif
4266 #ifndef DEBUG_LINE_SECTION
4267 #define DEBUG_LINE_SECTION ".debug_line"
4268 #endif
4269 #ifndef DEBUG_LOC_SECTION
4270 #define DEBUG_LOC_SECTION ".debug_loc"
4271 #endif
4272 #ifndef DEBUG_PUBNAMES_SECTION
4273 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4274 #endif
4275 #ifndef DEBUG_STR_SECTION
4276 #define DEBUG_STR_SECTION ".debug_str"
4277 #endif
4278 #ifndef DEBUG_RANGES_SECTION
4279 #define DEBUG_RANGES_SECTION ".debug_ranges"
4280 #endif
4282 /* Standard ELF section names for compiled code and data. */
4283 #ifndef TEXT_SECTION_NAME
4284 #define TEXT_SECTION_NAME ".text"
4285 #endif
4287 /* Section flags for .debug_str section. */
4288 #define DEBUG_STR_SECTION_FLAGS \
4289 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4290 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4291 : SECTION_DEBUG)
4293 /* Labels we insert at beginning sections we can reference instead of
4294 the section names themselves. */
4296 #ifndef TEXT_SECTION_LABEL
4297 #define TEXT_SECTION_LABEL "Ltext"
4298 #endif
4299 #ifndef COLD_TEXT_SECTION_LABEL
4300 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4301 #endif
4302 #ifndef DEBUG_LINE_SECTION_LABEL
4303 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4304 #endif
4305 #ifndef DEBUG_INFO_SECTION_LABEL
4306 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4307 #endif
4308 #ifndef DEBUG_ABBREV_SECTION_LABEL
4309 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4310 #endif
4311 #ifndef DEBUG_LOC_SECTION_LABEL
4312 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4313 #endif
4314 #ifndef DEBUG_RANGES_SECTION_LABEL
4315 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4316 #endif
4317 #ifndef DEBUG_MACINFO_SECTION_LABEL
4318 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4319 #endif
4321 /* Definitions of defaults for formats and names of various special
4322 (artificial) labels which may be generated within this file (when the -g
4323 options is used and DWARF2_DEBUGGING_INFO is in effect.
4324 If necessary, these may be overridden from within the tm.h file, but
4325 typically, overriding these defaults is unnecessary. */
4327 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4336 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4338 #ifndef TEXT_END_LABEL
4339 #define TEXT_END_LABEL "Letext"
4340 #endif
4341 #ifndef COLD_END_LABEL
4342 #define COLD_END_LABEL "Letext_cold"
4343 #endif
4344 #ifndef BLOCK_BEGIN_LABEL
4345 #define BLOCK_BEGIN_LABEL "LBB"
4346 #endif
4347 #ifndef BLOCK_END_LABEL
4348 #define BLOCK_END_LABEL "LBE"
4349 #endif
4350 #ifndef LINE_CODE_LABEL
4351 #define LINE_CODE_LABEL "LM"
4352 #endif
4353 #ifndef SEPARATE_LINE_CODE_LABEL
4354 #define SEPARATE_LINE_CODE_LABEL "LSM"
4355 #endif
4357 /* We allow a language front-end to designate a function that is to be
4358 called to "demangle" any name before it is put into a DIE. */
4360 static const char *(*demangle_name_func) (const char *);
4362 void
4363 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4365 demangle_name_func = func;
4368 /* Test if rtl node points to a pseudo register. */
4370 static inline int
4371 is_pseudo_reg (rtx rtl)
4373 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4374 || (GET_CODE (rtl) == SUBREG
4375 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4378 /* Return a reference to a type, with its const and volatile qualifiers
4379 removed. */
4381 static inline tree
4382 type_main_variant (tree type)
4384 type = TYPE_MAIN_VARIANT (type);
4386 /* ??? There really should be only one main variant among any group of
4387 variants of a given type (and all of the MAIN_VARIANT values for all
4388 members of the group should point to that one type) but sometimes the C
4389 front-end messes this up for array types, so we work around that bug
4390 here. */
4391 if (TREE_CODE (type) == ARRAY_TYPE)
4392 while (type != TYPE_MAIN_VARIANT (type))
4393 type = TYPE_MAIN_VARIANT (type);
4395 return type;
4398 /* Return nonzero if the given type node represents a tagged type. */
4400 static inline int
4401 is_tagged_type (tree type)
4403 enum tree_code code = TREE_CODE (type);
4405 return (code == RECORD_TYPE || code == UNION_TYPE
4406 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4409 /* Convert a DIE tag into its string name. */
4411 static const char *
4412 dwarf_tag_name (unsigned int tag)
4414 switch (tag)
4416 case DW_TAG_padding:
4417 return "DW_TAG_padding";
4418 case DW_TAG_array_type:
4419 return "DW_TAG_array_type";
4420 case DW_TAG_class_type:
4421 return "DW_TAG_class_type";
4422 case DW_TAG_entry_point:
4423 return "DW_TAG_entry_point";
4424 case DW_TAG_enumeration_type:
4425 return "DW_TAG_enumeration_type";
4426 case DW_TAG_formal_parameter:
4427 return "DW_TAG_formal_parameter";
4428 case DW_TAG_imported_declaration:
4429 return "DW_TAG_imported_declaration";
4430 case DW_TAG_label:
4431 return "DW_TAG_label";
4432 case DW_TAG_lexical_block:
4433 return "DW_TAG_lexical_block";
4434 case DW_TAG_member:
4435 return "DW_TAG_member";
4436 case DW_TAG_pointer_type:
4437 return "DW_TAG_pointer_type";
4438 case DW_TAG_reference_type:
4439 return "DW_TAG_reference_type";
4440 case DW_TAG_compile_unit:
4441 return "DW_TAG_compile_unit";
4442 case DW_TAG_string_type:
4443 return "DW_TAG_string_type";
4444 case DW_TAG_structure_type:
4445 return "DW_TAG_structure_type";
4446 case DW_TAG_subroutine_type:
4447 return "DW_TAG_subroutine_type";
4448 case DW_TAG_typedef:
4449 return "DW_TAG_typedef";
4450 case DW_TAG_union_type:
4451 return "DW_TAG_union_type";
4452 case DW_TAG_unspecified_parameters:
4453 return "DW_TAG_unspecified_parameters";
4454 case DW_TAG_variant:
4455 return "DW_TAG_variant";
4456 case DW_TAG_common_block:
4457 return "DW_TAG_common_block";
4458 case DW_TAG_common_inclusion:
4459 return "DW_TAG_common_inclusion";
4460 case DW_TAG_inheritance:
4461 return "DW_TAG_inheritance";
4462 case DW_TAG_inlined_subroutine:
4463 return "DW_TAG_inlined_subroutine";
4464 case DW_TAG_module:
4465 return "DW_TAG_module";
4466 case DW_TAG_ptr_to_member_type:
4467 return "DW_TAG_ptr_to_member_type";
4468 case DW_TAG_set_type:
4469 return "DW_TAG_set_type";
4470 case DW_TAG_subrange_type:
4471 return "DW_TAG_subrange_type";
4472 case DW_TAG_with_stmt:
4473 return "DW_TAG_with_stmt";
4474 case DW_TAG_access_declaration:
4475 return "DW_TAG_access_declaration";
4476 case DW_TAG_base_type:
4477 return "DW_TAG_base_type";
4478 case DW_TAG_catch_block:
4479 return "DW_TAG_catch_block";
4480 case DW_TAG_const_type:
4481 return "DW_TAG_const_type";
4482 case DW_TAG_constant:
4483 return "DW_TAG_constant";
4484 case DW_TAG_enumerator:
4485 return "DW_TAG_enumerator";
4486 case DW_TAG_file_type:
4487 return "DW_TAG_file_type";
4488 case DW_TAG_friend:
4489 return "DW_TAG_friend";
4490 case DW_TAG_namelist:
4491 return "DW_TAG_namelist";
4492 case DW_TAG_namelist_item:
4493 return "DW_TAG_namelist_item";
4494 case DW_TAG_namespace:
4495 return "DW_TAG_namespace";
4496 case DW_TAG_packed_type:
4497 return "DW_TAG_packed_type";
4498 case DW_TAG_subprogram:
4499 return "DW_TAG_subprogram";
4500 case DW_TAG_template_type_param:
4501 return "DW_TAG_template_type_param";
4502 case DW_TAG_template_value_param:
4503 return "DW_TAG_template_value_param";
4504 case DW_TAG_thrown_type:
4505 return "DW_TAG_thrown_type";
4506 case DW_TAG_try_block:
4507 return "DW_TAG_try_block";
4508 case DW_TAG_variant_part:
4509 return "DW_TAG_variant_part";
4510 case DW_TAG_variable:
4511 return "DW_TAG_variable";
4512 case DW_TAG_volatile_type:
4513 return "DW_TAG_volatile_type";
4514 case DW_TAG_imported_module:
4515 return "DW_TAG_imported_module";
4516 case DW_TAG_MIPS_loop:
4517 return "DW_TAG_MIPS_loop";
4518 case DW_TAG_format_label:
4519 return "DW_TAG_format_label";
4520 case DW_TAG_function_template:
4521 return "DW_TAG_function_template";
4522 case DW_TAG_class_template:
4523 return "DW_TAG_class_template";
4524 case DW_TAG_GNU_BINCL:
4525 return "DW_TAG_GNU_BINCL";
4526 case DW_TAG_GNU_EINCL:
4527 return "DW_TAG_GNU_EINCL";
4528 default:
4529 return "DW_TAG_<unknown>";
4533 /* Convert a DWARF attribute code into its string name. */
4535 static const char *
4536 dwarf_attr_name (unsigned int attr)
4538 switch (attr)
4540 case DW_AT_sibling:
4541 return "DW_AT_sibling";
4542 case DW_AT_location:
4543 return "DW_AT_location";
4544 case DW_AT_name:
4545 return "DW_AT_name";
4546 case DW_AT_ordering:
4547 return "DW_AT_ordering";
4548 case DW_AT_subscr_data:
4549 return "DW_AT_subscr_data";
4550 case DW_AT_byte_size:
4551 return "DW_AT_byte_size";
4552 case DW_AT_bit_offset:
4553 return "DW_AT_bit_offset";
4554 case DW_AT_bit_size:
4555 return "DW_AT_bit_size";
4556 case DW_AT_element_list:
4557 return "DW_AT_element_list";
4558 case DW_AT_stmt_list:
4559 return "DW_AT_stmt_list";
4560 case DW_AT_low_pc:
4561 return "DW_AT_low_pc";
4562 case DW_AT_high_pc:
4563 return "DW_AT_high_pc";
4564 case DW_AT_language:
4565 return "DW_AT_language";
4566 case DW_AT_member:
4567 return "DW_AT_member";
4568 case DW_AT_discr:
4569 return "DW_AT_discr";
4570 case DW_AT_discr_value:
4571 return "DW_AT_discr_value";
4572 case DW_AT_visibility:
4573 return "DW_AT_visibility";
4574 case DW_AT_import:
4575 return "DW_AT_import";
4576 case DW_AT_string_length:
4577 return "DW_AT_string_length";
4578 case DW_AT_common_reference:
4579 return "DW_AT_common_reference";
4580 case DW_AT_comp_dir:
4581 return "DW_AT_comp_dir";
4582 case DW_AT_const_value:
4583 return "DW_AT_const_value";
4584 case DW_AT_containing_type:
4585 return "DW_AT_containing_type";
4586 case DW_AT_default_value:
4587 return "DW_AT_default_value";
4588 case DW_AT_inline:
4589 return "DW_AT_inline";
4590 case DW_AT_is_optional:
4591 return "DW_AT_is_optional";
4592 case DW_AT_lower_bound:
4593 return "DW_AT_lower_bound";
4594 case DW_AT_producer:
4595 return "DW_AT_producer";
4596 case DW_AT_prototyped:
4597 return "DW_AT_prototyped";
4598 case DW_AT_return_addr:
4599 return "DW_AT_return_addr";
4600 case DW_AT_start_scope:
4601 return "DW_AT_start_scope";
4602 case DW_AT_stride_size:
4603 return "DW_AT_stride_size";
4604 case DW_AT_upper_bound:
4605 return "DW_AT_upper_bound";
4606 case DW_AT_abstract_origin:
4607 return "DW_AT_abstract_origin";
4608 case DW_AT_accessibility:
4609 return "DW_AT_accessibility";
4610 case DW_AT_address_class:
4611 return "DW_AT_address_class";
4612 case DW_AT_artificial:
4613 return "DW_AT_artificial";
4614 case DW_AT_base_types:
4615 return "DW_AT_base_types";
4616 case DW_AT_calling_convention:
4617 return "DW_AT_calling_convention";
4618 case DW_AT_count:
4619 return "DW_AT_count";
4620 case DW_AT_data_member_location:
4621 return "DW_AT_data_member_location";
4622 case DW_AT_decl_column:
4623 return "DW_AT_decl_column";
4624 case DW_AT_decl_file:
4625 return "DW_AT_decl_file";
4626 case DW_AT_decl_line:
4627 return "DW_AT_decl_line";
4628 case DW_AT_declaration:
4629 return "DW_AT_declaration";
4630 case DW_AT_discr_list:
4631 return "DW_AT_discr_list";
4632 case DW_AT_encoding:
4633 return "DW_AT_encoding";
4634 case DW_AT_external:
4635 return "DW_AT_external";
4636 case DW_AT_frame_base:
4637 return "DW_AT_frame_base";
4638 case DW_AT_friend:
4639 return "DW_AT_friend";
4640 case DW_AT_identifier_case:
4641 return "DW_AT_identifier_case";
4642 case DW_AT_macro_info:
4643 return "DW_AT_macro_info";
4644 case DW_AT_namelist_items:
4645 return "DW_AT_namelist_items";
4646 case DW_AT_priority:
4647 return "DW_AT_priority";
4648 case DW_AT_segment:
4649 return "DW_AT_segment";
4650 case DW_AT_specification:
4651 return "DW_AT_specification";
4652 case DW_AT_static_link:
4653 return "DW_AT_static_link";
4654 case DW_AT_type:
4655 return "DW_AT_type";
4656 case DW_AT_use_location:
4657 return "DW_AT_use_location";
4658 case DW_AT_variable_parameter:
4659 return "DW_AT_variable_parameter";
4660 case DW_AT_virtuality:
4661 return "DW_AT_virtuality";
4662 case DW_AT_vtable_elem_location:
4663 return "DW_AT_vtable_elem_location";
4665 case DW_AT_allocated:
4666 return "DW_AT_allocated";
4667 case DW_AT_associated:
4668 return "DW_AT_associated";
4669 case DW_AT_data_location:
4670 return "DW_AT_data_location";
4671 case DW_AT_stride:
4672 return "DW_AT_stride";
4673 case DW_AT_entry_pc:
4674 return "DW_AT_entry_pc";
4675 case DW_AT_use_UTF8:
4676 return "DW_AT_use_UTF8";
4677 case DW_AT_extension:
4678 return "DW_AT_extension";
4679 case DW_AT_ranges:
4680 return "DW_AT_ranges";
4681 case DW_AT_trampoline:
4682 return "DW_AT_trampoline";
4683 case DW_AT_call_column:
4684 return "DW_AT_call_column";
4685 case DW_AT_call_file:
4686 return "DW_AT_call_file";
4687 case DW_AT_call_line:
4688 return "DW_AT_call_line";
4690 case DW_AT_MIPS_fde:
4691 return "DW_AT_MIPS_fde";
4692 case DW_AT_MIPS_loop_begin:
4693 return "DW_AT_MIPS_loop_begin";
4694 case DW_AT_MIPS_tail_loop_begin:
4695 return "DW_AT_MIPS_tail_loop_begin";
4696 case DW_AT_MIPS_epilog_begin:
4697 return "DW_AT_MIPS_epilog_begin";
4698 case DW_AT_MIPS_loop_unroll_factor:
4699 return "DW_AT_MIPS_loop_unroll_factor";
4700 case DW_AT_MIPS_software_pipeline_depth:
4701 return "DW_AT_MIPS_software_pipeline_depth";
4702 case DW_AT_MIPS_linkage_name:
4703 return "DW_AT_MIPS_linkage_name";
4704 case DW_AT_MIPS_stride:
4705 return "DW_AT_MIPS_stride";
4706 case DW_AT_MIPS_abstract_name:
4707 return "DW_AT_MIPS_abstract_name";
4708 case DW_AT_MIPS_clone_origin:
4709 return "DW_AT_MIPS_clone_origin";
4710 case DW_AT_MIPS_has_inlines:
4711 return "DW_AT_MIPS_has_inlines";
4713 case DW_AT_sf_names:
4714 return "DW_AT_sf_names";
4715 case DW_AT_src_info:
4716 return "DW_AT_src_info";
4717 case DW_AT_mac_info:
4718 return "DW_AT_mac_info";
4719 case DW_AT_src_coords:
4720 return "DW_AT_src_coords";
4721 case DW_AT_body_begin:
4722 return "DW_AT_body_begin";
4723 case DW_AT_body_end:
4724 return "DW_AT_body_end";
4725 case DW_AT_GNU_vector:
4726 return "DW_AT_GNU_vector";
4728 case DW_AT_VMS_rtnbeg_pd_address:
4729 return "DW_AT_VMS_rtnbeg_pd_address";
4731 default:
4732 return "DW_AT_<unknown>";
4736 /* Convert a DWARF value form code into its string name. */
4738 static const char *
4739 dwarf_form_name (unsigned int form)
4741 switch (form)
4743 case DW_FORM_addr:
4744 return "DW_FORM_addr";
4745 case DW_FORM_block2:
4746 return "DW_FORM_block2";
4747 case DW_FORM_block4:
4748 return "DW_FORM_block4";
4749 case DW_FORM_data2:
4750 return "DW_FORM_data2";
4751 case DW_FORM_data4:
4752 return "DW_FORM_data4";
4753 case DW_FORM_data8:
4754 return "DW_FORM_data8";
4755 case DW_FORM_string:
4756 return "DW_FORM_string";
4757 case DW_FORM_block:
4758 return "DW_FORM_block";
4759 case DW_FORM_block1:
4760 return "DW_FORM_block1";
4761 case DW_FORM_data1:
4762 return "DW_FORM_data1";
4763 case DW_FORM_flag:
4764 return "DW_FORM_flag";
4765 case DW_FORM_sdata:
4766 return "DW_FORM_sdata";
4767 case DW_FORM_strp:
4768 return "DW_FORM_strp";
4769 case DW_FORM_udata:
4770 return "DW_FORM_udata";
4771 case DW_FORM_ref_addr:
4772 return "DW_FORM_ref_addr";
4773 case DW_FORM_ref1:
4774 return "DW_FORM_ref1";
4775 case DW_FORM_ref2:
4776 return "DW_FORM_ref2";
4777 case DW_FORM_ref4:
4778 return "DW_FORM_ref4";
4779 case DW_FORM_ref8:
4780 return "DW_FORM_ref8";
4781 case DW_FORM_ref_udata:
4782 return "DW_FORM_ref_udata";
4783 case DW_FORM_indirect:
4784 return "DW_FORM_indirect";
4785 default:
4786 return "DW_FORM_<unknown>";
4790 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4791 instance of an inlined instance of a decl which is local to an inline
4792 function, so we have to trace all of the way back through the origin chain
4793 to find out what sort of node actually served as the original seed for the
4794 given block. */
4796 static tree
4797 decl_ultimate_origin (tree decl)
4799 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4800 return NULL_TREE;
4802 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4803 nodes in the function to point to themselves; ignore that if
4804 we're trying to output the abstract instance of this function. */
4805 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4806 return NULL_TREE;
4808 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4809 most distant ancestor, this should never happen. */
4810 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4812 return DECL_ABSTRACT_ORIGIN (decl);
4815 /* Determine the "ultimate origin" of a block. The block may be an inlined
4816 instance of an inlined instance of a block which is local to an inline
4817 function, so we have to trace all of the way back through the origin chain
4818 to find out what sort of node actually served as the original seed for the
4819 given block. */
4821 static tree
4822 block_ultimate_origin (tree block)
4824 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4826 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4827 nodes in the function to point to themselves; ignore that if
4828 we're trying to output the abstract instance of this function. */
4829 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4830 return NULL_TREE;
4832 if (immediate_origin == NULL_TREE)
4833 return NULL_TREE;
4834 else
4836 tree ret_val;
4837 tree lookahead = immediate_origin;
4841 ret_val = lookahead;
4842 lookahead = (TREE_CODE (ret_val) == BLOCK
4843 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4845 while (lookahead != NULL && lookahead != ret_val);
4847 /* The block's abstract origin chain may not be the *ultimate* origin of
4848 the block. It could lead to a DECL that has an abstract origin set.
4849 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4850 will give us if it has one). Note that DECL's abstract origins are
4851 supposed to be the most distant ancestor (or so decl_ultimate_origin
4852 claims), so we don't need to loop following the DECL origins. */
4853 if (DECL_P (ret_val))
4854 return DECL_ORIGIN (ret_val);
4856 return ret_val;
4860 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4861 of a virtual function may refer to a base class, so we check the 'this'
4862 parameter. */
4864 static tree
4865 decl_class_context (tree decl)
4867 tree context = NULL_TREE;
4869 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4870 context = DECL_CONTEXT (decl);
4871 else
4872 context = TYPE_MAIN_VARIANT
4873 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4875 if (context && !TYPE_P (context))
4876 context = NULL_TREE;
4878 return context;
4881 /* Add an attribute/value pair to a DIE. */
4883 static inline void
4884 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4886 /* Maybe this should be an assert? */
4887 if (die == NULL)
4888 return;
4890 if (die->die_attr == NULL)
4891 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4892 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4895 static inline enum dw_val_class
4896 AT_class (dw_attr_ref a)
4898 return a->dw_attr_val.val_class;
4901 /* Add a flag value attribute to a DIE. */
4903 static inline void
4904 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4906 dw_attr_node attr;
4908 attr.dw_attr = attr_kind;
4909 attr.dw_attr_val.val_class = dw_val_class_flag;
4910 attr.dw_attr_val.v.val_flag = flag;
4911 add_dwarf_attr (die, &attr);
4914 static inline unsigned
4915 AT_flag (dw_attr_ref a)
4917 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4918 return a->dw_attr_val.v.val_flag;
4921 /* Add a signed integer attribute value to a DIE. */
4923 static inline void
4924 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4926 dw_attr_node attr;
4928 attr.dw_attr = attr_kind;
4929 attr.dw_attr_val.val_class = dw_val_class_const;
4930 attr.dw_attr_val.v.val_int = int_val;
4931 add_dwarf_attr (die, &attr);
4934 static inline HOST_WIDE_INT
4935 AT_int (dw_attr_ref a)
4937 gcc_assert (a && AT_class (a) == dw_val_class_const);
4938 return a->dw_attr_val.v.val_int;
4941 /* Add an unsigned integer attribute value to a DIE. */
4943 static inline void
4944 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4945 unsigned HOST_WIDE_INT unsigned_val)
4947 dw_attr_node attr;
4949 attr.dw_attr = attr_kind;
4950 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4951 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4952 add_dwarf_attr (die, &attr);
4955 static inline unsigned HOST_WIDE_INT
4956 AT_unsigned (dw_attr_ref a)
4958 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4959 return a->dw_attr_val.v.val_unsigned;
4962 /* Add an unsigned double integer attribute value to a DIE. */
4964 static inline void
4965 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4966 long unsigned int val_hi, long unsigned int val_low)
4968 dw_attr_node attr;
4970 attr.dw_attr = attr_kind;
4971 attr.dw_attr_val.val_class = dw_val_class_long_long;
4972 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4973 attr.dw_attr_val.v.val_long_long.low = val_low;
4974 add_dwarf_attr (die, &attr);
4977 /* Add a floating point attribute value to a DIE and return it. */
4979 static inline void
4980 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4981 unsigned int length, unsigned int elt_size, unsigned char *array)
4983 dw_attr_node attr;
4985 attr.dw_attr = attr_kind;
4986 attr.dw_attr_val.val_class = dw_val_class_vec;
4987 attr.dw_attr_val.v.val_vec.length = length;
4988 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4989 attr.dw_attr_val.v.val_vec.array = array;
4990 add_dwarf_attr (die, &attr);
4993 /* Hash and equality functions for debug_str_hash. */
4995 static hashval_t
4996 debug_str_do_hash (const void *x)
4998 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5001 static int
5002 debug_str_eq (const void *x1, const void *x2)
5004 return strcmp ((((const struct indirect_string_node *)x1)->str),
5005 (const char *)x2) == 0;
5008 /* Add a string attribute value to a DIE. */
5010 static inline void
5011 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5013 dw_attr_node attr;
5014 struct indirect_string_node *node;
5015 void **slot;
5017 if (! debug_str_hash)
5018 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5019 debug_str_eq, NULL);
5021 slot = htab_find_slot_with_hash (debug_str_hash, str,
5022 htab_hash_string (str), INSERT);
5023 if (*slot == NULL)
5024 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5025 node = (struct indirect_string_node *) *slot;
5026 node->str = ggc_strdup (str);
5027 node->refcount++;
5029 attr.dw_attr = attr_kind;
5030 attr.dw_attr_val.val_class = dw_val_class_str;
5031 attr.dw_attr_val.v.val_str = node;
5032 add_dwarf_attr (die, &attr);
5035 static inline const char *
5036 AT_string (dw_attr_ref a)
5038 gcc_assert (a && AT_class (a) == dw_val_class_str);
5039 return a->dw_attr_val.v.val_str->str;
5042 /* Find out whether a string should be output inline in DIE
5043 or out-of-line in .debug_str section. */
5045 static int
5046 AT_string_form (dw_attr_ref a)
5048 struct indirect_string_node *node;
5049 unsigned int len;
5050 char label[32];
5052 gcc_assert (a && AT_class (a) == dw_val_class_str);
5054 node = a->dw_attr_val.v.val_str;
5055 if (node->form)
5056 return node->form;
5058 len = strlen (node->str) + 1;
5060 /* If the string is shorter or equal to the size of the reference, it is
5061 always better to put it inline. */
5062 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5063 return node->form = DW_FORM_string;
5065 /* If we cannot expect the linker to merge strings in .debug_str
5066 section, only put it into .debug_str if it is worth even in this
5067 single module. */
5068 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5069 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5070 return node->form = DW_FORM_string;
5072 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5073 ++dw2_string_counter;
5074 node->label = xstrdup (label);
5076 return node->form = DW_FORM_strp;
5079 /* Add a DIE reference attribute value to a DIE. */
5081 static inline void
5082 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5084 dw_attr_node attr;
5086 attr.dw_attr = attr_kind;
5087 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5088 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5089 attr.dw_attr_val.v.val_die_ref.external = 0;
5090 add_dwarf_attr (die, &attr);
5093 /* Add an AT_specification attribute to a DIE, and also make the back
5094 pointer from the specification to the definition. */
5096 static inline void
5097 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5099 add_AT_die_ref (die, DW_AT_specification, targ_die);
5100 gcc_assert (!targ_die->die_definition);
5101 targ_die->die_definition = die;
5104 static inline dw_die_ref
5105 AT_ref (dw_attr_ref a)
5107 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5108 return a->dw_attr_val.v.val_die_ref.die;
5111 static inline int
5112 AT_ref_external (dw_attr_ref a)
5114 if (a && AT_class (a) == dw_val_class_die_ref)
5115 return a->dw_attr_val.v.val_die_ref.external;
5117 return 0;
5120 static inline void
5121 set_AT_ref_external (dw_attr_ref a, int i)
5123 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5124 a->dw_attr_val.v.val_die_ref.external = i;
5127 /* Add an FDE reference attribute value to a DIE. */
5129 static inline void
5130 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5132 dw_attr_node attr;
5134 attr.dw_attr = attr_kind;
5135 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5136 attr.dw_attr_val.v.val_fde_index = targ_fde;
5137 add_dwarf_attr (die, &attr);
5140 /* Add a location description attribute value to a DIE. */
5142 static inline void
5143 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5145 dw_attr_node attr;
5147 attr.dw_attr = attr_kind;
5148 attr.dw_attr_val.val_class = dw_val_class_loc;
5149 attr.dw_attr_val.v.val_loc = loc;
5150 add_dwarf_attr (die, &attr);
5153 static inline dw_loc_descr_ref
5154 AT_loc (dw_attr_ref a)
5156 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5157 return a->dw_attr_val.v.val_loc;
5160 static inline void
5161 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5163 dw_attr_node attr;
5165 attr.dw_attr = attr_kind;
5166 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5167 attr.dw_attr_val.v.val_loc_list = loc_list;
5168 add_dwarf_attr (die, &attr);
5169 have_location_lists = true;
5172 static inline dw_loc_list_ref
5173 AT_loc_list (dw_attr_ref a)
5175 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5176 return a->dw_attr_val.v.val_loc_list;
5179 /* Add an address constant attribute value to a DIE. */
5181 static inline void
5182 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5184 dw_attr_node attr;
5186 attr.dw_attr = attr_kind;
5187 attr.dw_attr_val.val_class = dw_val_class_addr;
5188 attr.dw_attr_val.v.val_addr = addr;
5189 add_dwarf_attr (die, &attr);
5192 /* Get the RTX from to an address DIE attribute. */
5194 static inline rtx
5195 AT_addr (dw_attr_ref a)
5197 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5198 return a->dw_attr_val.v.val_addr;
5201 /* Add a file attribute value to a DIE. */
5203 static inline void
5204 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5205 struct dwarf_file_data *fd)
5207 dw_attr_node attr;
5209 attr.dw_attr = attr_kind;
5210 attr.dw_attr_val.val_class = dw_val_class_file;
5211 attr.dw_attr_val.v.val_file = fd;
5212 add_dwarf_attr (die, &attr);
5215 /* Get the dwarf_file_data from a file DIE attribute. */
5217 static inline struct dwarf_file_data *
5218 AT_file (dw_attr_ref a)
5220 gcc_assert (a && AT_class (a) == dw_val_class_file);
5221 return a->dw_attr_val.v.val_file;
5224 /* Add a label identifier attribute value to a DIE. */
5226 static inline void
5227 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5229 dw_attr_node attr;
5231 attr.dw_attr = attr_kind;
5232 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5233 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5234 add_dwarf_attr (die, &attr);
5237 /* Add a section offset attribute value to a DIE, an offset into the
5238 debug_line section. */
5240 static inline void
5241 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5242 const char *label)
5244 dw_attr_node attr;
5246 attr.dw_attr = attr_kind;
5247 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5248 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5249 add_dwarf_attr (die, &attr);
5252 /* Add a section offset attribute value to a DIE, an offset into the
5253 debug_macinfo section. */
5255 static inline void
5256 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5257 const char *label)
5259 dw_attr_node attr;
5261 attr.dw_attr = attr_kind;
5262 attr.dw_attr_val.val_class = dw_val_class_macptr;
5263 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5264 add_dwarf_attr (die, &attr);
5267 /* Add an offset attribute value to a DIE. */
5269 static inline void
5270 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5271 unsigned HOST_WIDE_INT offset)
5273 dw_attr_node attr;
5275 attr.dw_attr = attr_kind;
5276 attr.dw_attr_val.val_class = dw_val_class_offset;
5277 attr.dw_attr_val.v.val_offset = offset;
5278 add_dwarf_attr (die, &attr);
5281 /* Add an range_list attribute value to a DIE. */
5283 static void
5284 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5285 long unsigned int offset)
5287 dw_attr_node attr;
5289 attr.dw_attr = attr_kind;
5290 attr.dw_attr_val.val_class = dw_val_class_range_list;
5291 attr.dw_attr_val.v.val_offset = offset;
5292 add_dwarf_attr (die, &attr);
5295 static inline const char *
5296 AT_lbl (dw_attr_ref a)
5298 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5299 || AT_class (a) == dw_val_class_lineptr
5300 || AT_class (a) == dw_val_class_macptr));
5301 return a->dw_attr_val.v.val_lbl_id;
5304 /* Get the attribute of type attr_kind. */
5306 static dw_attr_ref
5307 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5309 dw_attr_ref a;
5310 unsigned ix;
5311 dw_die_ref spec = NULL;
5313 if (! die)
5314 return NULL;
5316 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5317 if (a->dw_attr == attr_kind)
5318 return a;
5319 else if (a->dw_attr == DW_AT_specification
5320 || a->dw_attr == DW_AT_abstract_origin)
5321 spec = AT_ref (a);
5323 if (spec)
5324 return get_AT (spec, attr_kind);
5326 return NULL;
5329 /* Return the "low pc" attribute value, typically associated with a subprogram
5330 DIE. Return null if the "low pc" attribute is either not present, or if it
5331 cannot be represented as an assembler label identifier. */
5333 static inline const char *
5334 get_AT_low_pc (dw_die_ref die)
5336 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5338 return a ? AT_lbl (a) : NULL;
5341 /* Return the "high pc" attribute value, typically associated with a subprogram
5342 DIE. Return null if the "high pc" attribute is either not present, or if it
5343 cannot be represented as an assembler label identifier. */
5345 static inline const char *
5346 get_AT_hi_pc (dw_die_ref die)
5348 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5350 return a ? AT_lbl (a) : NULL;
5353 /* Return the value of the string attribute designated by ATTR_KIND, or
5354 NULL if it is not present. */
5356 static inline const char *
5357 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5359 dw_attr_ref a = get_AT (die, attr_kind);
5361 return a ? AT_string (a) : NULL;
5364 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5365 if it is not present. */
5367 static inline int
5368 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5370 dw_attr_ref a = get_AT (die, attr_kind);
5372 return a ? AT_flag (a) : 0;
5375 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5376 if it is not present. */
5378 static inline unsigned
5379 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5381 dw_attr_ref a = get_AT (die, attr_kind);
5383 return a ? AT_unsigned (a) : 0;
5386 static inline dw_die_ref
5387 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5389 dw_attr_ref a = get_AT (die, attr_kind);
5391 return a ? AT_ref (a) : NULL;
5394 static inline struct dwarf_file_data *
5395 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5397 dw_attr_ref a = get_AT (die, attr_kind);
5399 return a ? AT_file (a) : NULL;
5402 /* Return TRUE if the language is C or C++. */
5404 static inline bool
5405 is_c_family (void)
5407 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5409 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5410 || lang == DW_LANG_C99
5411 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5414 /* Return TRUE if the language is C++. */
5416 static inline bool
5417 is_cxx (void)
5419 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5421 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5424 /* Return TRUE if the language is Fortran. */
5426 static inline bool
5427 is_fortran (void)
5429 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5431 return (lang == DW_LANG_Fortran77
5432 || lang == DW_LANG_Fortran90
5433 || lang == DW_LANG_Fortran95);
5436 /* Return TRUE if the language is Java. */
5438 static inline bool
5439 is_java (void)
5441 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5443 return lang == DW_LANG_Java;
5446 /* Return TRUE if the language is Ada. */
5448 static inline bool
5449 is_ada (void)
5451 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5453 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5456 /* Remove the specified attribute if present. */
5458 static void
5459 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5461 dw_attr_ref a;
5462 unsigned ix;
5464 if (! die)
5465 return;
5467 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5468 if (a->dw_attr == attr_kind)
5470 if (AT_class (a) == dw_val_class_str)
5471 if (a->dw_attr_val.v.val_str->refcount)
5472 a->dw_attr_val.v.val_str->refcount--;
5474 /* VEC_ordered_remove should help reduce the number of abbrevs
5475 that are needed. */
5476 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5477 return;
5481 /* Remove CHILD from its parent. PREV must have the property that
5482 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5484 static void
5485 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5487 gcc_assert (child->die_parent == prev->die_parent);
5488 gcc_assert (prev->die_sib == child);
5489 if (prev == child)
5491 gcc_assert (child->die_parent->die_child == child);
5492 prev = NULL;
5494 else
5495 prev->die_sib = child->die_sib;
5496 if (child->die_parent->die_child == child)
5497 child->die_parent->die_child = prev;
5500 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5501 matches TAG. */
5503 static void
5504 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5506 dw_die_ref c;
5508 c = die->die_child;
5509 if (c) do {
5510 dw_die_ref prev = c;
5511 c = c->die_sib;
5512 while (c->die_tag == tag)
5514 remove_child_with_prev (c, prev);
5515 /* Might have removed every child. */
5516 if (c == c->die_sib)
5517 return;
5518 c = c->die_sib;
5520 } while (c != die->die_child);
5523 /* Add a CHILD_DIE as the last child of DIE. */
5525 static void
5526 add_child_die (dw_die_ref die, dw_die_ref child_die)
5528 /* FIXME this should probably be an assert. */
5529 if (! die || ! child_die)
5530 return;
5531 gcc_assert (die != child_die);
5533 child_die->die_parent = die;
5534 if (die->die_child)
5536 child_die->die_sib = die->die_child->die_sib;
5537 die->die_child->die_sib = child_die;
5539 else
5540 child_die->die_sib = child_die;
5541 die->die_child = child_die;
5544 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5545 is the specification, to the end of PARENT's list of children.
5546 This is done by removing and re-adding it. */
5548 static void
5549 splice_child_die (dw_die_ref parent, dw_die_ref child)
5551 dw_die_ref p;
5553 /* We want the declaration DIE from inside the class, not the
5554 specification DIE at toplevel. */
5555 if (child->die_parent != parent)
5557 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5559 if (tmp)
5560 child = tmp;
5563 gcc_assert (child->die_parent == parent
5564 || (child->die_parent
5565 == get_AT_ref (parent, DW_AT_specification)));
5567 for (p = child->die_parent->die_child; ; p = p->die_sib)
5568 if (p->die_sib == child)
5570 remove_child_with_prev (child, p);
5571 break;
5574 add_child_die (parent, child);
5577 /* Return a pointer to a newly created DIE node. */
5579 static inline dw_die_ref
5580 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5582 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5584 die->die_tag = tag_value;
5586 if (parent_die != NULL)
5587 add_child_die (parent_die, die);
5588 else
5590 limbo_die_node *limbo_node;
5592 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5593 limbo_node->die = die;
5594 limbo_node->created_for = t;
5595 limbo_node->next = limbo_die_list;
5596 limbo_die_list = limbo_node;
5599 return die;
5602 /* Return the DIE associated with the given type specifier. */
5604 static inline dw_die_ref
5605 lookup_type_die (tree type)
5607 return TYPE_SYMTAB_DIE (type);
5610 /* Equate a DIE to a given type specifier. */
5612 static inline void
5613 equate_type_number_to_die (tree type, dw_die_ref type_die)
5615 TYPE_SYMTAB_DIE (type) = type_die;
5618 /* Returns a hash value for X (which really is a die_struct). */
5620 static hashval_t
5621 decl_die_table_hash (const void *x)
5623 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5626 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5628 static int
5629 decl_die_table_eq (const void *x, const void *y)
5631 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5634 /* Return the DIE associated with a given declaration. */
5636 static inline dw_die_ref
5637 lookup_decl_die (tree decl)
5639 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5642 /* Returns a hash value for X (which really is a var_loc_list). */
5644 static hashval_t
5645 decl_loc_table_hash (const void *x)
5647 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5650 /* Return nonzero if decl_id of var_loc_list X is the same as
5651 UID of decl *Y. */
5653 static int
5654 decl_loc_table_eq (const void *x, const void *y)
5656 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5659 /* Return the var_loc list associated with a given declaration. */
5661 static inline var_loc_list *
5662 lookup_decl_loc (tree decl)
5664 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5667 /* Equate a DIE to a particular declaration. */
5669 static void
5670 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5672 unsigned int decl_id = DECL_UID (decl);
5673 void **slot;
5675 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5676 *slot = decl_die;
5677 decl_die->decl_id = decl_id;
5680 /* Add a variable location node to the linked list for DECL. */
5682 static void
5683 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5685 unsigned int decl_id = DECL_UID (decl);
5686 var_loc_list *temp;
5687 void **slot;
5689 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5690 if (*slot == NULL)
5692 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5693 temp->decl_id = decl_id;
5694 *slot = temp;
5696 else
5697 temp = *slot;
5699 if (temp->last)
5701 /* If the current location is the same as the end of the list,
5702 we have nothing to do. */
5703 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5704 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5706 /* Add LOC to the end of list and update LAST. */
5707 temp->last->next = loc;
5708 temp->last = loc;
5711 /* Do not add empty location to the beginning of the list. */
5712 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5714 temp->first = loc;
5715 temp->last = loc;
5719 /* Keep track of the number of spaces used to indent the
5720 output of the debugging routines that print the structure of
5721 the DIE internal representation. */
5722 static int print_indent;
5724 /* Indent the line the number of spaces given by print_indent. */
5726 static inline void
5727 print_spaces (FILE *outfile)
5729 fprintf (outfile, "%*s", print_indent, "");
5732 /* Print the information associated with a given DIE, and its children.
5733 This routine is a debugging aid only. */
5735 static void
5736 print_die (dw_die_ref die, FILE *outfile)
5738 dw_attr_ref a;
5739 dw_die_ref c;
5740 unsigned ix;
5742 print_spaces (outfile);
5743 fprintf (outfile, "DIE %4lu: %s\n",
5744 die->die_offset, dwarf_tag_name (die->die_tag));
5745 print_spaces (outfile);
5746 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5747 fprintf (outfile, " offset: %lu\n", die->die_offset);
5749 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5751 print_spaces (outfile);
5752 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5754 switch (AT_class (a))
5756 case dw_val_class_addr:
5757 fprintf (outfile, "address");
5758 break;
5759 case dw_val_class_offset:
5760 fprintf (outfile, "offset");
5761 break;
5762 case dw_val_class_loc:
5763 fprintf (outfile, "location descriptor");
5764 break;
5765 case dw_val_class_loc_list:
5766 fprintf (outfile, "location list -> label:%s",
5767 AT_loc_list (a)->ll_symbol);
5768 break;
5769 case dw_val_class_range_list:
5770 fprintf (outfile, "range list");
5771 break;
5772 case dw_val_class_const:
5773 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5774 break;
5775 case dw_val_class_unsigned_const:
5776 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5777 break;
5778 case dw_val_class_long_long:
5779 fprintf (outfile, "constant (%lu,%lu)",
5780 a->dw_attr_val.v.val_long_long.hi,
5781 a->dw_attr_val.v.val_long_long.low);
5782 break;
5783 case dw_val_class_vec:
5784 fprintf (outfile, "floating-point or vector constant");
5785 break;
5786 case dw_val_class_flag:
5787 fprintf (outfile, "%u", AT_flag (a));
5788 break;
5789 case dw_val_class_die_ref:
5790 if (AT_ref (a) != NULL)
5792 if (AT_ref (a)->die_symbol)
5793 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5794 else
5795 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5797 else
5798 fprintf (outfile, "die -> <null>");
5799 break;
5800 case dw_val_class_lbl_id:
5801 case dw_val_class_lineptr:
5802 case dw_val_class_macptr:
5803 fprintf (outfile, "label: %s", AT_lbl (a));
5804 break;
5805 case dw_val_class_str:
5806 if (AT_string (a) != NULL)
5807 fprintf (outfile, "\"%s\"", AT_string (a));
5808 else
5809 fprintf (outfile, "<null>");
5810 break;
5811 case dw_val_class_file:
5812 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5813 AT_file (a)->emitted_number);
5814 break;
5815 default:
5816 break;
5819 fprintf (outfile, "\n");
5822 if (die->die_child != NULL)
5824 print_indent += 4;
5825 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5826 print_indent -= 4;
5828 if (print_indent == 0)
5829 fprintf (outfile, "\n");
5832 /* Print the contents of the source code line number correspondence table.
5833 This routine is a debugging aid only. */
5835 static void
5836 print_dwarf_line_table (FILE *outfile)
5838 unsigned i;
5839 dw_line_info_ref line_info;
5841 fprintf (outfile, "\n\nDWARF source line information\n");
5842 for (i = 1; i < line_info_table_in_use; i++)
5844 line_info = &line_info_table[i];
5845 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5846 line_info->dw_file_num,
5847 line_info->dw_line_num);
5850 fprintf (outfile, "\n\n");
5853 /* Print the information collected for a given DIE. */
5855 void
5856 debug_dwarf_die (dw_die_ref die)
5858 print_die (die, stderr);
5861 /* Print all DWARF information collected for the compilation unit.
5862 This routine is a debugging aid only. */
5864 void
5865 debug_dwarf (void)
5867 print_indent = 0;
5868 print_die (comp_unit_die, stderr);
5869 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5870 print_dwarf_line_table (stderr);
5873 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5874 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5875 DIE that marks the start of the DIEs for this include file. */
5877 static dw_die_ref
5878 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5880 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5881 dw_die_ref new_unit = gen_compile_unit_die (filename);
5883 new_unit->die_sib = old_unit;
5884 return new_unit;
5887 /* Close an include-file CU and reopen the enclosing one. */
5889 static dw_die_ref
5890 pop_compile_unit (dw_die_ref old_unit)
5892 dw_die_ref new_unit = old_unit->die_sib;
5894 old_unit->die_sib = NULL;
5895 return new_unit;
5898 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5899 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5901 /* Calculate the checksum of a location expression. */
5903 static inline void
5904 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5906 CHECKSUM (loc->dw_loc_opc);
5907 CHECKSUM (loc->dw_loc_oprnd1);
5908 CHECKSUM (loc->dw_loc_oprnd2);
5911 /* Calculate the checksum of an attribute. */
5913 static void
5914 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5916 dw_loc_descr_ref loc;
5917 rtx r;
5919 CHECKSUM (at->dw_attr);
5921 /* We don't care that this was compiled with a different compiler
5922 snapshot; if the output is the same, that's what matters. */
5923 if (at->dw_attr == DW_AT_producer)
5924 return;
5926 switch (AT_class (at))
5928 case dw_val_class_const:
5929 CHECKSUM (at->dw_attr_val.v.val_int);
5930 break;
5931 case dw_val_class_unsigned_const:
5932 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5933 break;
5934 case dw_val_class_long_long:
5935 CHECKSUM (at->dw_attr_val.v.val_long_long);
5936 break;
5937 case dw_val_class_vec:
5938 CHECKSUM (at->dw_attr_val.v.val_vec);
5939 break;
5940 case dw_val_class_flag:
5941 CHECKSUM (at->dw_attr_val.v.val_flag);
5942 break;
5943 case dw_val_class_str:
5944 CHECKSUM_STRING (AT_string (at));
5945 break;
5947 case dw_val_class_addr:
5948 r = AT_addr (at);
5949 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5950 CHECKSUM_STRING (XSTR (r, 0));
5951 break;
5953 case dw_val_class_offset:
5954 CHECKSUM (at->dw_attr_val.v.val_offset);
5955 break;
5957 case dw_val_class_loc:
5958 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5959 loc_checksum (loc, ctx);
5960 break;
5962 case dw_val_class_die_ref:
5963 die_checksum (AT_ref (at), ctx, mark);
5964 break;
5966 case dw_val_class_fde_ref:
5967 case dw_val_class_lbl_id:
5968 case dw_val_class_lineptr:
5969 case dw_val_class_macptr:
5970 break;
5972 case dw_val_class_file:
5973 CHECKSUM_STRING (AT_file (at)->filename);
5974 break;
5976 default:
5977 break;
5981 /* Calculate the checksum of a DIE. */
5983 static void
5984 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5986 dw_die_ref c;
5987 dw_attr_ref a;
5988 unsigned ix;
5990 /* To avoid infinite recursion. */
5991 if (die->die_mark)
5993 CHECKSUM (die->die_mark);
5994 return;
5996 die->die_mark = ++(*mark);
5998 CHECKSUM (die->die_tag);
6000 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6001 attr_checksum (a, ctx, mark);
6003 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6006 #undef CHECKSUM
6007 #undef CHECKSUM_STRING
6009 /* Do the location expressions look same? */
6010 static inline int
6011 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6013 return loc1->dw_loc_opc == loc2->dw_loc_opc
6014 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6015 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6018 /* Do the values look the same? */
6019 static int
6020 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6022 dw_loc_descr_ref loc1, loc2;
6023 rtx r1, r2;
6025 if (v1->val_class != v2->val_class)
6026 return 0;
6028 switch (v1->val_class)
6030 case dw_val_class_const:
6031 return v1->v.val_int == v2->v.val_int;
6032 case dw_val_class_unsigned_const:
6033 return v1->v.val_unsigned == v2->v.val_unsigned;
6034 case dw_val_class_long_long:
6035 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6036 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6037 case dw_val_class_vec:
6038 if (v1->v.val_vec.length != v2->v.val_vec.length
6039 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6040 return 0;
6041 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6042 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6043 return 0;
6044 return 1;
6045 case dw_val_class_flag:
6046 return v1->v.val_flag == v2->v.val_flag;
6047 case dw_val_class_str:
6048 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6050 case dw_val_class_addr:
6051 r1 = v1->v.val_addr;
6052 r2 = v2->v.val_addr;
6053 if (GET_CODE (r1) != GET_CODE (r2))
6054 return 0;
6055 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6056 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6058 case dw_val_class_offset:
6059 return v1->v.val_offset == v2->v.val_offset;
6061 case dw_val_class_loc:
6062 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6063 loc1 && loc2;
6064 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6065 if (!same_loc_p (loc1, loc2, mark))
6066 return 0;
6067 return !loc1 && !loc2;
6069 case dw_val_class_die_ref:
6070 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6072 case dw_val_class_fde_ref:
6073 case dw_val_class_lbl_id:
6074 case dw_val_class_lineptr:
6075 case dw_val_class_macptr:
6076 return 1;
6078 case dw_val_class_file:
6079 return v1->v.val_file == v2->v.val_file;
6081 default:
6082 return 1;
6086 /* Do the attributes look the same? */
6088 static int
6089 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6091 if (at1->dw_attr != at2->dw_attr)
6092 return 0;
6094 /* We don't care that this was compiled with a different compiler
6095 snapshot; if the output is the same, that's what matters. */
6096 if (at1->dw_attr == DW_AT_producer)
6097 return 1;
6099 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6102 /* Do the dies look the same? */
6104 static int
6105 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6107 dw_die_ref c1, c2;
6108 dw_attr_ref a1;
6109 unsigned ix;
6111 /* To avoid infinite recursion. */
6112 if (die1->die_mark)
6113 return die1->die_mark == die2->die_mark;
6114 die1->die_mark = die2->die_mark = ++(*mark);
6116 if (die1->die_tag != die2->die_tag)
6117 return 0;
6119 if (VEC_length (dw_attr_node, die1->die_attr)
6120 != VEC_length (dw_attr_node, die2->die_attr))
6121 return 0;
6123 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6124 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6125 return 0;
6127 c1 = die1->die_child;
6128 c2 = die2->die_child;
6129 if (! c1)
6131 if (c2)
6132 return 0;
6134 else
6135 for (;;)
6137 if (!same_die_p (c1, c2, mark))
6138 return 0;
6139 c1 = c1->die_sib;
6140 c2 = c2->die_sib;
6141 if (c1 == die1->die_child)
6143 if (c2 == die2->die_child)
6144 break;
6145 else
6146 return 0;
6150 return 1;
6153 /* Do the dies look the same? Wrapper around same_die_p. */
6155 static int
6156 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6158 int mark = 0;
6159 int ret = same_die_p (die1, die2, &mark);
6161 unmark_all_dies (die1);
6162 unmark_all_dies (die2);
6164 return ret;
6167 /* The prefix to attach to symbols on DIEs in the current comdat debug
6168 info section. */
6169 static char *comdat_symbol_id;
6171 /* The index of the current symbol within the current comdat CU. */
6172 static unsigned int comdat_symbol_number;
6174 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6175 children, and set comdat_symbol_id accordingly. */
6177 static void
6178 compute_section_prefix (dw_die_ref unit_die)
6180 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6181 const char *base = die_name ? lbasename (die_name) : "anonymous";
6182 char *name = alloca (strlen (base) + 64);
6183 char *p;
6184 int i, mark;
6185 unsigned char checksum[16];
6186 struct md5_ctx ctx;
6188 /* Compute the checksum of the DIE, then append part of it as hex digits to
6189 the name filename of the unit. */
6191 md5_init_ctx (&ctx);
6192 mark = 0;
6193 die_checksum (unit_die, &ctx, &mark);
6194 unmark_all_dies (unit_die);
6195 md5_finish_ctx (&ctx, checksum);
6197 sprintf (name, "%s.", base);
6198 clean_symbol_name (name);
6200 p = name + strlen (name);
6201 for (i = 0; i < 4; i++)
6203 sprintf (p, "%.2x", checksum[i]);
6204 p += 2;
6207 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6208 comdat_symbol_number = 0;
6211 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6213 static int
6214 is_type_die (dw_die_ref die)
6216 switch (die->die_tag)
6218 case DW_TAG_array_type:
6219 case DW_TAG_class_type:
6220 case DW_TAG_enumeration_type:
6221 case DW_TAG_pointer_type:
6222 case DW_TAG_reference_type:
6223 case DW_TAG_string_type:
6224 case DW_TAG_structure_type:
6225 case DW_TAG_subroutine_type:
6226 case DW_TAG_union_type:
6227 case DW_TAG_ptr_to_member_type:
6228 case DW_TAG_set_type:
6229 case DW_TAG_subrange_type:
6230 case DW_TAG_base_type:
6231 case DW_TAG_const_type:
6232 case DW_TAG_file_type:
6233 case DW_TAG_packed_type:
6234 case DW_TAG_volatile_type:
6235 case DW_TAG_typedef:
6236 return 1;
6237 default:
6238 return 0;
6242 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6243 Basically, we want to choose the bits that are likely to be shared between
6244 compilations (types) and leave out the bits that are specific to individual
6245 compilations (functions). */
6247 static int
6248 is_comdat_die (dw_die_ref c)
6250 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6251 we do for stabs. The advantage is a greater likelihood of sharing between
6252 objects that don't include headers in the same order (and therefore would
6253 put the base types in a different comdat). jason 8/28/00 */
6255 if (c->die_tag == DW_TAG_base_type)
6256 return 0;
6258 if (c->die_tag == DW_TAG_pointer_type
6259 || c->die_tag == DW_TAG_reference_type
6260 || c->die_tag == DW_TAG_const_type
6261 || c->die_tag == DW_TAG_volatile_type)
6263 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6265 return t ? is_comdat_die (t) : 0;
6268 return is_type_die (c);
6271 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6272 compilation unit. */
6274 static int
6275 is_symbol_die (dw_die_ref c)
6277 return (is_type_die (c)
6278 || (get_AT (c, DW_AT_declaration)
6279 && !get_AT (c, DW_AT_specification))
6280 || c->die_tag == DW_TAG_namespace);
6283 static char *
6284 gen_internal_sym (const char *prefix)
6286 char buf[256];
6288 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6289 return xstrdup (buf);
6292 /* Assign symbols to all worthy DIEs under DIE. */
6294 static void
6295 assign_symbol_names (dw_die_ref die)
6297 dw_die_ref c;
6299 if (is_symbol_die (die))
6301 if (comdat_symbol_id)
6303 char *p = alloca (strlen (comdat_symbol_id) + 64);
6305 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6306 comdat_symbol_id, comdat_symbol_number++);
6307 die->die_symbol = xstrdup (p);
6309 else
6310 die->die_symbol = gen_internal_sym ("LDIE");
6313 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6316 struct cu_hash_table_entry
6318 dw_die_ref cu;
6319 unsigned min_comdat_num, max_comdat_num;
6320 struct cu_hash_table_entry *next;
6323 /* Routines to manipulate hash table of CUs. */
6324 static hashval_t
6325 htab_cu_hash (const void *of)
6327 const struct cu_hash_table_entry *entry = of;
6329 return htab_hash_string (entry->cu->die_symbol);
6332 static int
6333 htab_cu_eq (const void *of1, const void *of2)
6335 const struct cu_hash_table_entry *entry1 = of1;
6336 const struct die_struct *entry2 = of2;
6338 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6341 static void
6342 htab_cu_del (void *what)
6344 struct cu_hash_table_entry *next, *entry = what;
6346 while (entry)
6348 next = entry->next;
6349 free (entry);
6350 entry = next;
6354 /* Check whether we have already seen this CU and set up SYM_NUM
6355 accordingly. */
6356 static int
6357 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6359 struct cu_hash_table_entry dummy;
6360 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6362 dummy.max_comdat_num = 0;
6364 slot = (struct cu_hash_table_entry **)
6365 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6366 INSERT);
6367 entry = *slot;
6369 for (; entry; last = entry, entry = entry->next)
6371 if (same_die_p_wrap (cu, entry->cu))
6372 break;
6375 if (entry)
6377 *sym_num = entry->min_comdat_num;
6378 return 1;
6381 entry = XCNEW (struct cu_hash_table_entry);
6382 entry->cu = cu;
6383 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6384 entry->next = *slot;
6385 *slot = entry;
6387 return 0;
6390 /* Record SYM_NUM to record of CU in HTABLE. */
6391 static void
6392 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6394 struct cu_hash_table_entry **slot, *entry;
6396 slot = (struct cu_hash_table_entry **)
6397 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6398 NO_INSERT);
6399 entry = *slot;
6401 entry->max_comdat_num = sym_num;
6404 /* Traverse the DIE (which is always comp_unit_die), and set up
6405 additional compilation units for each of the include files we see
6406 bracketed by BINCL/EINCL. */
6408 static void
6409 break_out_includes (dw_die_ref die)
6411 dw_die_ref c;
6412 dw_die_ref unit = NULL;
6413 limbo_die_node *node, **pnode;
6414 htab_t cu_hash_table;
6416 c = die->die_child;
6417 if (c) do {
6418 dw_die_ref prev = c;
6419 c = c->die_sib;
6420 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6421 || (unit && is_comdat_die (c)))
6423 dw_die_ref next = c->die_sib;
6425 /* This DIE is for a secondary CU; remove it from the main one. */
6426 remove_child_with_prev (c, prev);
6428 if (c->die_tag == DW_TAG_GNU_BINCL)
6429 unit = push_new_compile_unit (unit, c);
6430 else if (c->die_tag == DW_TAG_GNU_EINCL)
6431 unit = pop_compile_unit (unit);
6432 else
6433 add_child_die (unit, c);
6434 c = next;
6435 if (c == die->die_child)
6436 break;
6438 } while (c != die->die_child);
6440 #if 0
6441 /* We can only use this in debugging, since the frontend doesn't check
6442 to make sure that we leave every include file we enter. */
6443 gcc_assert (!unit);
6444 #endif
6446 assign_symbol_names (die);
6447 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6448 for (node = limbo_die_list, pnode = &limbo_die_list;
6449 node;
6450 node = node->next)
6452 int is_dupl;
6454 compute_section_prefix (node->die);
6455 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6456 &comdat_symbol_number);
6457 assign_symbol_names (node->die);
6458 if (is_dupl)
6459 *pnode = node->next;
6460 else
6462 pnode = &node->next;
6463 record_comdat_symbol_number (node->die, cu_hash_table,
6464 comdat_symbol_number);
6467 htab_delete (cu_hash_table);
6470 /* Traverse the DIE and add a sibling attribute if it may have the
6471 effect of speeding up access to siblings. To save some space,
6472 avoid generating sibling attributes for DIE's without children. */
6474 static void
6475 add_sibling_attributes (dw_die_ref die)
6477 dw_die_ref c;
6479 if (! die->die_child)
6480 return;
6482 if (die->die_parent && die != die->die_parent->die_child)
6483 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6485 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6488 /* Output all location lists for the DIE and its children. */
6490 static void
6491 output_location_lists (dw_die_ref die)
6493 dw_die_ref c;
6494 dw_attr_ref a;
6495 unsigned ix;
6497 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6498 if (AT_class (a) == dw_val_class_loc_list)
6499 output_loc_list (AT_loc_list (a));
6501 FOR_EACH_CHILD (die, c, output_location_lists (c));
6504 /* The format of each DIE (and its attribute value pairs) is encoded in an
6505 abbreviation table. This routine builds the abbreviation table and assigns
6506 a unique abbreviation id for each abbreviation entry. The children of each
6507 die are visited recursively. */
6509 static void
6510 build_abbrev_table (dw_die_ref die)
6512 unsigned long abbrev_id;
6513 unsigned int n_alloc;
6514 dw_die_ref c;
6515 dw_attr_ref a;
6516 unsigned ix;
6518 /* Scan the DIE references, and mark as external any that refer to
6519 DIEs from other CUs (i.e. those which are not marked). */
6520 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6521 if (AT_class (a) == dw_val_class_die_ref
6522 && AT_ref (a)->die_mark == 0)
6524 gcc_assert (AT_ref (a)->die_symbol);
6526 set_AT_ref_external (a, 1);
6529 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6531 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6532 dw_attr_ref die_a, abbrev_a;
6533 unsigned ix;
6534 bool ok = true;
6536 if (abbrev->die_tag != die->die_tag)
6537 continue;
6538 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6539 continue;
6541 if (VEC_length (dw_attr_node, abbrev->die_attr)
6542 != VEC_length (dw_attr_node, die->die_attr))
6543 continue;
6545 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6547 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6548 if ((abbrev_a->dw_attr != die_a->dw_attr)
6549 || (value_format (abbrev_a) != value_format (die_a)))
6551 ok = false;
6552 break;
6555 if (ok)
6556 break;
6559 if (abbrev_id >= abbrev_die_table_in_use)
6561 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6563 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6564 abbrev_die_table = ggc_realloc (abbrev_die_table,
6565 sizeof (dw_die_ref) * n_alloc);
6567 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6568 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6569 abbrev_die_table_allocated = n_alloc;
6572 ++abbrev_die_table_in_use;
6573 abbrev_die_table[abbrev_id] = die;
6576 die->die_abbrev = abbrev_id;
6577 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6580 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6582 static int
6583 constant_size (long unsigned int value)
6585 int log;
6587 if (value == 0)
6588 log = 0;
6589 else
6590 log = floor_log2 (value);
6592 log = log / 8;
6593 log = 1 << (floor_log2 (log) + 1);
6595 return log;
6598 /* Return the size of a DIE as it is represented in the
6599 .debug_info section. */
6601 static unsigned long
6602 size_of_die (dw_die_ref die)
6604 unsigned long size = 0;
6605 dw_attr_ref a;
6606 unsigned ix;
6608 size += size_of_uleb128 (die->die_abbrev);
6609 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6611 switch (AT_class (a))
6613 case dw_val_class_addr:
6614 size += DWARF2_ADDR_SIZE;
6615 break;
6616 case dw_val_class_offset:
6617 size += DWARF_OFFSET_SIZE;
6618 break;
6619 case dw_val_class_loc:
6621 unsigned long lsize = size_of_locs (AT_loc (a));
6623 /* Block length. */
6624 size += constant_size (lsize);
6625 size += lsize;
6627 break;
6628 case dw_val_class_loc_list:
6629 size += DWARF_OFFSET_SIZE;
6630 break;
6631 case dw_val_class_range_list:
6632 size += DWARF_OFFSET_SIZE;
6633 break;
6634 case dw_val_class_const:
6635 size += size_of_sleb128 (AT_int (a));
6636 break;
6637 case dw_val_class_unsigned_const:
6638 size += constant_size (AT_unsigned (a));
6639 break;
6640 case dw_val_class_long_long:
6641 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6642 break;
6643 case dw_val_class_vec:
6644 size += 1 + (a->dw_attr_val.v.val_vec.length
6645 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6646 break;
6647 case dw_val_class_flag:
6648 size += 1;
6649 break;
6650 case dw_val_class_die_ref:
6651 if (AT_ref_external (a))
6652 size += DWARF2_ADDR_SIZE;
6653 else
6654 size += DWARF_OFFSET_SIZE;
6655 break;
6656 case dw_val_class_fde_ref:
6657 size += DWARF_OFFSET_SIZE;
6658 break;
6659 case dw_val_class_lbl_id:
6660 size += DWARF2_ADDR_SIZE;
6661 break;
6662 case dw_val_class_lineptr:
6663 case dw_val_class_macptr:
6664 size += DWARF_OFFSET_SIZE;
6665 break;
6666 case dw_val_class_str:
6667 if (AT_string_form (a) == DW_FORM_strp)
6668 size += DWARF_OFFSET_SIZE;
6669 else
6670 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6671 break;
6672 case dw_val_class_file:
6673 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6674 break;
6675 default:
6676 gcc_unreachable ();
6680 return size;
6683 /* Size the debugging information associated with a given DIE. Visits the
6684 DIE's children recursively. Updates the global variable next_die_offset, on
6685 each time through. Uses the current value of next_die_offset to update the
6686 die_offset field in each DIE. */
6688 static void
6689 calc_die_sizes (dw_die_ref die)
6691 dw_die_ref c;
6693 die->die_offset = next_die_offset;
6694 next_die_offset += size_of_die (die);
6696 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6698 if (die->die_child != NULL)
6699 /* Count the null byte used to terminate sibling lists. */
6700 next_die_offset += 1;
6703 /* Set the marks for a die and its children. We do this so
6704 that we know whether or not a reference needs to use FORM_ref_addr; only
6705 DIEs in the same CU will be marked. We used to clear out the offset
6706 and use that as the flag, but ran into ordering problems. */
6708 static void
6709 mark_dies (dw_die_ref die)
6711 dw_die_ref c;
6713 gcc_assert (!die->die_mark);
6715 die->die_mark = 1;
6716 FOR_EACH_CHILD (die, c, mark_dies (c));
6719 /* Clear the marks for a die and its children. */
6721 static void
6722 unmark_dies (dw_die_ref die)
6724 dw_die_ref c;
6726 gcc_assert (die->die_mark);
6728 die->die_mark = 0;
6729 FOR_EACH_CHILD (die, c, unmark_dies (c));
6732 /* Clear the marks for a die, its children and referred dies. */
6734 static void
6735 unmark_all_dies (dw_die_ref die)
6737 dw_die_ref c;
6738 dw_attr_ref a;
6739 unsigned ix;
6741 if (!die->die_mark)
6742 return;
6743 die->die_mark = 0;
6745 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6747 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6748 if (AT_class (a) == dw_val_class_die_ref)
6749 unmark_all_dies (AT_ref (a));
6752 /* Return the size of the .debug_pubnames table generated for the
6753 compilation unit. */
6755 static unsigned long
6756 size_of_pubnames (void)
6758 unsigned long size;
6759 unsigned i;
6761 size = DWARF_PUBNAMES_HEADER_SIZE;
6762 for (i = 0; i < pubname_table_in_use; i++)
6764 pubname_ref p = &pubname_table[i];
6765 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6772 /* Return the size of the information in the .debug_aranges section. */
6774 static unsigned long
6775 size_of_aranges (void)
6777 unsigned long size;
6779 size = DWARF_ARANGES_HEADER_SIZE;
6781 /* Count the address/length pair for this compilation unit. */
6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6785 /* Count the two zero words used to terminated the address range table. */
6786 size += 2 * DWARF2_ADDR_SIZE;
6787 return size;
6790 /* Select the encoding of an attribute value. */
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a)
6795 switch (a->dw_attr_val.val_class)
6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
6799 case dw_val_class_range_list:
6800 case dw_val_class_offset:
6801 case dw_val_class_loc_list:
6802 switch (DWARF_OFFSET_SIZE)
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6811 case dw_val_class_loc:
6812 switch (constant_size (size_of_locs (AT_loc (a))))
6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
6818 default:
6819 gcc_unreachable ();
6821 case dw_val_class_const:
6822 return DW_FORM_sdata;
6823 case dw_val_class_unsigned_const:
6824 switch (constant_size (AT_unsigned (a)))
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
6835 gcc_unreachable ();
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
6839 case dw_val_class_vec:
6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
6854 return DW_FORM_data;
6855 case dw_val_class_str:
6856 return AT_string_form (a);
6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6870 default:
6871 gcc_unreachable ();
6875 /* Output the encoding of an attribute value. */
6877 static void
6878 output_value_format (dw_attr_ref a)
6880 enum dwarf_form form = value_format (a);
6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
6888 static void
6889 output_abbrev_section (void)
6891 unsigned long abbrev_id;
6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896 unsigned ix;
6897 dw_attr_ref a_attr;
6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
6913 output_value_format (a_attr);
6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL);
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6926 static inline void
6927 output_die_symbol (dw_die_ref die)
6929 char *sym = die->die_symbol;
6931 if (sym == 0)
6932 return;
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
6938 targetm.asm_out.globalize_label (asm_out_file, sym);
6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
6957 if (gensym)
6958 retlist->ll_symbol = gen_internal_sym ("LLST");
6960 return retlist;
6963 /* Add a location description expression to a location list. */
6965 static inline void
6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
6970 dw_loc_list_ref *d;
6972 /* Find the end of the chain. */
6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6976 /* Add a new location list node to the list. */
6977 *d = new_loc_list (descr, begin, end, section, 0);
6980 static void
6981 dwarf2out_switch_text_section (void)
6983 dw_fde_ref fde;
6985 gcc_assert (cfun);
6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993 have_multiple_function_sections = true;
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
7000 /* Output the location list given to us. */
7002 static void
7003 output_loc_list (dw_loc_list_ref list_head)
7005 dw_loc_list_ref curr = list_head;
7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7012 unsigned long size;
7013 if (!have_multiple_function_sections)
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7022 else
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7031 size = size_of_locs (curr->expr);
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size <= 0xffff);
7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7037 output_loc_sequence (curr->expr);
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7051 static void
7052 output_die (dw_die_ref die)
7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
7057 unsigned ix;
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7069 const char *name = dwarf_attr_name (a->dw_attr);
7071 switch (AT_class (a))
7073 case dw_val_class_addr:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 break;
7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7082 case dw_val_class_range_list:
7084 char *p = strchr (ranges_section_label, '\0');
7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 debug_ranges_section, "%s", name);
7090 *p = '\0';
7092 break;
7094 case dw_val_class_loc:
7095 size = size_of_locs (AT_loc (a));
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
7100 output_loc_sequence (AT_loc (a));
7101 break;
7103 case dw_val_class_const:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 break;
7110 case dw_val_class_unsigned_const:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
7113 break;
7115 case dw_val_class_long_long:
7117 unsigned HOST_WIDE_INT first, second;
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 "%s", name);
7123 if (WORDS_BIG_ENDIAN)
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7128 else
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 first, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 second, NULL);
7139 break;
7141 case dw_val_class_vec:
7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 unsigned int i;
7146 unsigned char *p;
7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7151 elt_size /= 2;
7152 len *= 2;
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
7159 break;
7162 case dw_val_class_flag:
7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 break;
7166 case dw_val_class_loc_list:
7168 char *sym = AT_loc_list (a)->ll_symbol;
7170 gcc_assert (sym);
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
7174 break;
7176 case dw_val_class_die_ref:
7177 if (AT_ref_external (a))
7179 char *sym = AT_ref (a)->die_symbol;
7181 gcc_assert (sym);
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
7185 else
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7191 break;
7193 case dw_val_class_fde_ref:
7195 char l1[20];
7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
7202 break;
7204 case dw_val_class_lbl_id:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 break;
7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
7216 break;
7218 case dw_val_class_str:
7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
7222 debug_str_section,
7223 "%s: \"%s\"", name, AT_string (a));
7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 break;
7228 case dw_val_class_file:
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7237 default:
7238 gcc_unreachable ();
7242 FOR_EACH_CHILD (die, c, output_die (c));
7244 /* Add null byte to terminate sibling list. */
7245 if (die->die_child != NULL)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7253 static void
7254 output_compilation_unit_header (void)
7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 debug_abbrev_section,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7269 /* Output the compilation unit DIE and its children. */
7271 static void
7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7274 const char *secname;
7275 char *oldsym, *tmp;
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7286 mark_dies (die);
7288 build_abbrev_table (die);
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7294 oldsym = die->die_symbol;
7295 if (oldsym)
7297 tmp = alloca (strlen (oldsym) + 24);
7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300 secname = tmp;
7301 die->die_symbol = NULL;
7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7304 else
7305 switch_to_section (debug_info_section);
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7309 output_die (die);
7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
7313 if (oldsym)
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7322 static const char *
7323 dwarf2_name (tree decl, int scope)
7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7330 static void
7331 add_pubname (tree decl, dw_die_ref die)
7333 pubname_ref p;
7335 if (! TREE_PUBLIC (decl))
7336 return;
7338 if (pubname_table_in_use == pubname_table_allocated)
7340 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7341 pubname_table
7342 = ggc_realloc (pubname_table,
7343 (pubname_table_allocated * sizeof (pubname_entry)));
7344 memset (pubname_table + pubname_table_in_use, 0,
7345 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7348 p = &pubname_table[pubname_table_in_use++];
7349 p->die = die;
7350 p->name = xstrdup (dwarf2_name (decl, 1));
7353 /* Output the public names table used to speed up access to externally
7354 visible names. For now, only generate entries for externally
7355 visible procedures. */
7357 static void
7358 output_pubnames (void)
7360 unsigned i;
7361 unsigned long pubnames_length = size_of_pubnames ();
7363 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7364 dw2_asm_output_data (4, 0xffffffff,
7365 "Initial length escape value indicating 64-bit DWARF extension");
7366 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7367 "Length of Public Names Info");
7368 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7369 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7370 debug_info_section,
7371 "Offset of Compilation Unit Info");
7372 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7373 "Compilation Unit Length");
7375 for (i = 0; i < pubname_table_in_use; i++)
7377 pubname_ref pub = &pubname_table[i];
7379 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7380 gcc_assert (pub->die->die_mark);
7382 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7383 "DIE offset");
7385 dw2_asm_output_nstring (pub->name, -1, "external name");
7388 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7391 /* Add a new entry to .debug_aranges if appropriate. */
7393 static void
7394 add_arange (tree decl, dw_die_ref die)
7396 if (! DECL_SECTION_NAME (decl))
7397 return;
7399 if (arange_table_in_use == arange_table_allocated)
7401 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7402 arange_table = ggc_realloc (arange_table,
7403 (arange_table_allocated
7404 * sizeof (dw_die_ref)));
7405 memset (arange_table + arange_table_in_use, 0,
7406 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7409 arange_table[arange_table_in_use++] = die;
7412 /* Output the information that goes into the .debug_aranges table.
7413 Namely, define the beginning and ending address range of the
7414 text section generated for this compilation unit. */
7416 static void
7417 output_aranges (void)
7419 unsigned i;
7420 unsigned long aranges_length = size_of_aranges ();
7422 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7423 dw2_asm_output_data (4, 0xffffffff,
7424 "Initial length escape value indicating 64-bit DWARF extension");
7425 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7426 "Length of Address Ranges Info");
7427 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7428 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7429 debug_info_section,
7430 "Offset of Compilation Unit Info");
7431 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7432 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7434 /* We need to align to twice the pointer size here. */
7435 if (DWARF_ARANGES_PAD_SIZE)
7437 /* Pad using a 2 byte words so that padding is correct for any
7438 pointer size. */
7439 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7440 2 * DWARF2_ADDR_SIZE);
7441 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7442 dw2_asm_output_data (2, 0, NULL);
7445 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7446 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7447 text_section_label, "Length");
7448 if (flag_reorder_blocks_and_partition)
7450 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7451 "Address");
7452 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7453 cold_text_section_label, "Length");
7456 for (i = 0; i < arange_table_in_use; i++)
7458 dw_die_ref die = arange_table[i];
7460 /* We shouldn't see aranges for DIEs outside of the main CU. */
7461 gcc_assert (die->die_mark);
7463 if (die->die_tag == DW_TAG_subprogram)
7465 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7466 "Address");
7467 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7468 get_AT_low_pc (die), "Length");
7470 else
7472 /* A static variable; extract the symbol from DW_AT_location.
7473 Note that this code isn't currently hit, as we only emit
7474 aranges for functions (jason 9/23/99). */
7475 dw_attr_ref a = get_AT (die, DW_AT_location);
7476 dw_loc_descr_ref loc;
7478 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7480 loc = AT_loc (a);
7481 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7483 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7484 loc->dw_loc_oprnd1.v.val_addr, "Address");
7485 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7486 get_AT_unsigned (die, DW_AT_byte_size),
7487 "Length");
7491 /* Output the terminator words. */
7492 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7493 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7496 /* Add a new entry to .debug_ranges. Return the offset at which it
7497 was placed. */
7499 static unsigned int
7500 add_ranges (tree block)
7502 unsigned int in_use = ranges_table_in_use;
7504 if (in_use == ranges_table_allocated)
7506 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7507 ranges_table
7508 = ggc_realloc (ranges_table, (ranges_table_allocated
7509 * sizeof (struct dw_ranges_struct)));
7510 memset (ranges_table + ranges_table_in_use, 0,
7511 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7514 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7515 ranges_table_in_use = in_use + 1;
7517 return in_use * 2 * DWARF2_ADDR_SIZE;
7520 static void
7521 output_ranges (void)
7523 unsigned i;
7524 static const char *const start_fmt = "Offset 0x%x";
7525 const char *fmt = start_fmt;
7527 for (i = 0; i < ranges_table_in_use; i++)
7529 int block_num = ranges_table[i].block_num;
7531 if (block_num)
7533 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7534 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7536 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7537 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7539 /* If all code is in the text section, then the compilation
7540 unit base address defaults to DW_AT_low_pc, which is the
7541 base of the text section. */
7542 if (!have_multiple_function_sections)
7544 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7545 text_section_label,
7546 fmt, i * 2 * DWARF2_ADDR_SIZE);
7547 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7548 text_section_label, NULL);
7551 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7552 compilation unit base address to zero, which allows us to
7553 use absolute addresses, and not worry about whether the
7554 target supports cross-section arithmetic. */
7555 else
7557 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7558 fmt, i * 2 * DWARF2_ADDR_SIZE);
7559 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7562 fmt = NULL;
7564 else
7566 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7567 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7568 fmt = start_fmt;
7573 /* Data structure containing information about input files. */
7574 struct file_info
7576 const char *path; /* Complete file name. */
7577 const char *fname; /* File name part. */
7578 int length; /* Length of entire string. */
7579 struct dwarf_file_data * file_idx; /* Index in input file table. */
7580 int dir_idx; /* Index in directory table. */
7583 /* Data structure containing information about directories with source
7584 files. */
7585 struct dir_info
7587 const char *path; /* Path including directory name. */
7588 int length; /* Path length. */
7589 int prefix; /* Index of directory entry which is a prefix. */
7590 int count; /* Number of files in this directory. */
7591 int dir_idx; /* Index of directory used as base. */
7594 /* Callback function for file_info comparison. We sort by looking at
7595 the directories in the path. */
7597 static int
7598 file_info_cmp (const void *p1, const void *p2)
7600 const struct file_info *s1 = p1;
7601 const struct file_info *s2 = p2;
7602 unsigned char *cp1;
7603 unsigned char *cp2;
7605 /* Take care of file names without directories. We need to make sure that
7606 we return consistent values to qsort since some will get confused if
7607 we return the same value when identical operands are passed in opposite
7608 orders. So if neither has a directory, return 0 and otherwise return
7609 1 or -1 depending on which one has the directory. */
7610 if ((s1->path == s1->fname || s2->path == s2->fname))
7611 return (s2->path == s2->fname) - (s1->path == s1->fname);
7613 cp1 = (unsigned char *) s1->path;
7614 cp2 = (unsigned char *) s2->path;
7616 while (1)
7618 ++cp1;
7619 ++cp2;
7620 /* Reached the end of the first path? If so, handle like above. */
7621 if ((cp1 == (unsigned char *) s1->fname)
7622 || (cp2 == (unsigned char *) s2->fname))
7623 return ((cp2 == (unsigned char *) s2->fname)
7624 - (cp1 == (unsigned char *) s1->fname));
7626 /* Character of current path component the same? */
7627 else if (*cp1 != *cp2)
7628 return *cp1 - *cp2;
7632 struct file_name_acquire_data
7634 struct file_info *files;
7635 int used_files;
7636 int max_files;
7639 /* Traversal function for the hash table. */
7641 static int
7642 file_name_acquire (void ** slot, void *data)
7644 struct file_name_acquire_data *fnad = data;
7645 struct dwarf_file_data *d = *slot;
7646 struct file_info *fi;
7647 const char *f;
7649 gcc_assert (fnad->max_files >= d->emitted_number);
7651 if (! d->emitted_number)
7652 return 1;
7654 gcc_assert (fnad->max_files != fnad->used_files);
7656 fi = fnad->files + fnad->used_files++;
7658 /* Skip all leading "./". */
7659 f = d->filename;
7660 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7661 f += 2;
7663 /* Create a new array entry. */
7664 fi->path = f;
7665 fi->length = strlen (f);
7666 fi->file_idx = d;
7668 /* Search for the file name part. */
7669 f = strrchr (f, DIR_SEPARATOR);
7670 #if defined (DIR_SEPARATOR_2)
7672 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7674 if (g != NULL)
7676 if (f == NULL || f < g)
7677 f = g;
7680 #endif
7682 fi->fname = f == NULL ? fi->path : f + 1;
7683 return 1;
7686 /* Output the directory table and the file name table. We try to minimize
7687 the total amount of memory needed. A heuristic is used to avoid large
7688 slowdowns with many input files. */
7690 static void
7691 output_file_names (void)
7693 struct file_name_acquire_data fnad;
7694 int numfiles;
7695 struct file_info *files;
7696 struct dir_info *dirs;
7697 int *saved;
7698 int *savehere;
7699 int *backmap;
7700 int ndirs;
7701 int idx_offset;
7702 int i;
7703 int idx;
7705 if (!last_emitted_file)
7707 dw2_asm_output_data (1, 0, "End directory table");
7708 dw2_asm_output_data (1, 0, "End file name table");
7709 return;
7712 numfiles = last_emitted_file->emitted_number;
7714 /* Allocate the various arrays we need. */
7715 files = alloca (numfiles * sizeof (struct file_info));
7716 dirs = alloca (numfiles * sizeof (struct dir_info));
7718 fnad.files = files;
7719 fnad.used_files = 0;
7720 fnad.max_files = numfiles;
7721 htab_traverse (file_table, file_name_acquire, &fnad);
7722 gcc_assert (fnad.used_files == fnad.max_files);
7724 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7726 /* Find all the different directories used. */
7727 dirs[0].path = files[0].path;
7728 dirs[0].length = files[0].fname - files[0].path;
7729 dirs[0].prefix = -1;
7730 dirs[0].count = 1;
7731 dirs[0].dir_idx = 0;
7732 files[0].dir_idx = 0;
7733 ndirs = 1;
7735 for (i = 1; i < numfiles; i++)
7736 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7737 && memcmp (dirs[ndirs - 1].path, files[i].path,
7738 dirs[ndirs - 1].length) == 0)
7740 /* Same directory as last entry. */
7741 files[i].dir_idx = ndirs - 1;
7742 ++dirs[ndirs - 1].count;
7744 else
7746 int j;
7748 /* This is a new directory. */
7749 dirs[ndirs].path = files[i].path;
7750 dirs[ndirs].length = files[i].fname - files[i].path;
7751 dirs[ndirs].count = 1;
7752 dirs[ndirs].dir_idx = ndirs;
7753 files[i].dir_idx = ndirs;
7755 /* Search for a prefix. */
7756 dirs[ndirs].prefix = -1;
7757 for (j = 0; j < ndirs; j++)
7758 if (dirs[j].length < dirs[ndirs].length
7759 && dirs[j].length > 1
7760 && (dirs[ndirs].prefix == -1
7761 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7762 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7763 dirs[ndirs].prefix = j;
7765 ++ndirs;
7768 /* Now to the actual work. We have to find a subset of the directories which
7769 allow expressing the file name using references to the directory table
7770 with the least amount of characters. We do not do an exhaustive search
7771 where we would have to check out every combination of every single
7772 possible prefix. Instead we use a heuristic which provides nearly optimal
7773 results in most cases and never is much off. */
7774 saved = alloca (ndirs * sizeof (int));
7775 savehere = alloca (ndirs * sizeof (int));
7777 memset (saved, '\0', ndirs * sizeof (saved[0]));
7778 for (i = 0; i < ndirs; i++)
7780 int j;
7781 int total;
7783 /* We can always save some space for the current directory. But this
7784 does not mean it will be enough to justify adding the directory. */
7785 savehere[i] = dirs[i].length;
7786 total = (savehere[i] - saved[i]) * dirs[i].count;
7788 for (j = i + 1; j < ndirs; j++)
7790 savehere[j] = 0;
7791 if (saved[j] < dirs[i].length)
7793 /* Determine whether the dirs[i] path is a prefix of the
7794 dirs[j] path. */
7795 int k;
7797 k = dirs[j].prefix;
7798 while (k != -1 && k != (int) i)
7799 k = dirs[k].prefix;
7801 if (k == (int) i)
7803 /* Yes it is. We can possibly save some memory by
7804 writing the filenames in dirs[j] relative to
7805 dirs[i]. */
7806 savehere[j] = dirs[i].length;
7807 total += (savehere[j] - saved[j]) * dirs[j].count;
7812 /* Check whether we can save enough to justify adding the dirs[i]
7813 directory. */
7814 if (total > dirs[i].length + 1)
7816 /* It's worthwhile adding. */
7817 for (j = i; j < ndirs; j++)
7818 if (savehere[j] > 0)
7820 /* Remember how much we saved for this directory so far. */
7821 saved[j] = savehere[j];
7823 /* Remember the prefix directory. */
7824 dirs[j].dir_idx = i;
7829 /* Emit the directory name table. */
7830 idx = 1;
7831 idx_offset = dirs[0].length > 0 ? 1 : 0;
7832 for (i = 1 - idx_offset; i < ndirs; i++)
7833 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7834 "Directory Entry: 0x%x", i + idx_offset);
7836 dw2_asm_output_data (1, 0, "End directory table");
7838 /* We have to emit them in the order of emitted_number since that's
7839 used in the debug info generation. To do this efficiently we
7840 generate a back-mapping of the indices first. */
7841 backmap = alloca (numfiles * sizeof (int));
7842 for (i = 0; i < numfiles; i++)
7843 backmap[files[i].file_idx->emitted_number - 1] = i;
7845 /* Now write all the file names. */
7846 for (i = 0; i < numfiles; i++)
7848 int file_idx = backmap[i];
7849 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7851 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7852 "File Entry: 0x%x", (unsigned) i + 1);
7854 /* Include directory index. */
7855 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7857 /* Modification time. */
7858 dw2_asm_output_data_uleb128 (0, NULL);
7860 /* File length in bytes. */
7861 dw2_asm_output_data_uleb128 (0, NULL);
7864 dw2_asm_output_data (1, 0, "End file name table");
7868 /* Output the source line number correspondence information. This
7869 information goes into the .debug_line section. */
7871 static void
7872 output_line_info (void)
7874 char l1[20], l2[20], p1[20], p2[20];
7875 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7876 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7877 unsigned opc;
7878 unsigned n_op_args;
7879 unsigned long lt_index;
7880 unsigned long current_line;
7881 long line_offset;
7882 long line_delta;
7883 unsigned long current_file;
7884 unsigned long function;
7886 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7887 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7888 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7889 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7891 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7892 dw2_asm_output_data (4, 0xffffffff,
7893 "Initial length escape value indicating 64-bit DWARF extension");
7894 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7895 "Length of Source Line Info");
7896 ASM_OUTPUT_LABEL (asm_out_file, l1);
7898 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7899 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7900 ASM_OUTPUT_LABEL (asm_out_file, p1);
7902 /* Define the architecture-dependent minimum instruction length (in
7903 bytes). In this implementation of DWARF, this field is used for
7904 information purposes only. Since GCC generates assembly language,
7905 we have no a priori knowledge of how many instruction bytes are
7906 generated for each source line, and therefore can use only the
7907 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7908 commands. Accordingly, we fix this as `1', which is "correct
7909 enough" for all architectures, and don't let the target override. */
7910 dw2_asm_output_data (1, 1,
7911 "Minimum Instruction Length");
7913 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7914 "Default is_stmt_start flag");
7915 dw2_asm_output_data (1, DWARF_LINE_BASE,
7916 "Line Base Value (Special Opcodes)");
7917 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7918 "Line Range Value (Special Opcodes)");
7919 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7920 "Special Opcode Base");
7922 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7924 switch (opc)
7926 case DW_LNS_advance_pc:
7927 case DW_LNS_advance_line:
7928 case DW_LNS_set_file:
7929 case DW_LNS_set_column:
7930 case DW_LNS_fixed_advance_pc:
7931 n_op_args = 1;
7932 break;
7933 default:
7934 n_op_args = 0;
7935 break;
7938 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7939 opc, n_op_args);
7942 /* Write out the information about the files we use. */
7943 output_file_names ();
7944 ASM_OUTPUT_LABEL (asm_out_file, p2);
7946 /* We used to set the address register to the first location in the text
7947 section here, but that didn't accomplish anything since we already
7948 have a line note for the opening brace of the first function. */
7950 /* Generate the line number to PC correspondence table, encoded as
7951 a series of state machine operations. */
7952 current_file = 1;
7953 current_line = 1;
7955 if (cfun && in_cold_section_p)
7956 strcpy (prev_line_label, cfun->cold_section_label);
7957 else
7958 strcpy (prev_line_label, text_section_label);
7959 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7961 dw_line_info_ref line_info = &line_info_table[lt_index];
7963 #if 0
7964 /* Disable this optimization for now; GDB wants to see two line notes
7965 at the beginning of a function so it can find the end of the
7966 prologue. */
7968 /* Don't emit anything for redundant notes. Just updating the
7969 address doesn't accomplish anything, because we already assume
7970 that anything after the last address is this line. */
7971 if (line_info->dw_line_num == current_line
7972 && line_info->dw_file_num == current_file)
7973 continue;
7974 #endif
7976 /* Emit debug info for the address of the current line.
7978 Unfortunately, we have little choice here currently, and must always
7979 use the most general form. GCC does not know the address delta
7980 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7981 attributes which will give an upper bound on the address range. We
7982 could perhaps use length attributes to determine when it is safe to
7983 use DW_LNS_fixed_advance_pc. */
7985 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7986 if (0)
7988 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7989 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7990 "DW_LNS_fixed_advance_pc");
7991 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7993 else
7995 /* This can handle any delta. This takes
7996 4+DWARF2_ADDR_SIZE bytes. */
7997 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7998 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7999 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8000 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8003 strcpy (prev_line_label, line_label);
8005 /* Emit debug info for the source file of the current line, if
8006 different from the previous line. */
8007 if (line_info->dw_file_num != current_file)
8009 current_file = line_info->dw_file_num;
8010 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8011 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8014 /* Emit debug info for the current line number, choosing the encoding
8015 that uses the least amount of space. */
8016 if (line_info->dw_line_num != current_line)
8018 line_offset = line_info->dw_line_num - current_line;
8019 line_delta = line_offset - DWARF_LINE_BASE;
8020 current_line = line_info->dw_line_num;
8021 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8022 /* This can handle deltas from -10 to 234, using the current
8023 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8024 takes 1 byte. */
8025 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8026 "line %lu", current_line);
8027 else
8029 /* This can handle any delta. This takes at least 4 bytes,
8030 depending on the value being encoded. */
8031 dw2_asm_output_data (1, DW_LNS_advance_line,
8032 "advance to line %lu", current_line);
8033 dw2_asm_output_data_sleb128 (line_offset, NULL);
8034 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8037 else
8038 /* We still need to start a new row, so output a copy insn. */
8039 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8042 /* Emit debug info for the address of the end of the function. */
8043 if (0)
8045 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8046 "DW_LNS_fixed_advance_pc");
8047 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8049 else
8051 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8052 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8053 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8054 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8057 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8058 dw2_asm_output_data_uleb128 (1, NULL);
8059 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8061 function = 0;
8062 current_file = 1;
8063 current_line = 1;
8064 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8066 dw_separate_line_info_ref line_info
8067 = &separate_line_info_table[lt_index];
8069 #if 0
8070 /* Don't emit anything for redundant notes. */
8071 if (line_info->dw_line_num == current_line
8072 && line_info->dw_file_num == current_file
8073 && line_info->function == function)
8074 goto cont;
8075 #endif
8077 /* Emit debug info for the address of the current line. If this is
8078 a new function, or the first line of a function, then we need
8079 to handle it differently. */
8080 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8081 lt_index);
8082 if (function != line_info->function)
8084 function = line_info->function;
8086 /* Set the address register to the first line in the function. */
8087 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8088 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8089 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8090 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8092 else
8094 /* ??? See the DW_LNS_advance_pc comment above. */
8095 if (0)
8097 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8098 "DW_LNS_fixed_advance_pc");
8099 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8101 else
8103 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8104 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8105 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8106 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8110 strcpy (prev_line_label, line_label);
8112 /* Emit debug info for the source file of the current line, if
8113 different from the previous line. */
8114 if (line_info->dw_file_num != current_file)
8116 current_file = line_info->dw_file_num;
8117 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8118 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8121 /* Emit debug info for the current line number, choosing the encoding
8122 that uses the least amount of space. */
8123 if (line_info->dw_line_num != current_line)
8125 line_offset = line_info->dw_line_num - current_line;
8126 line_delta = line_offset - DWARF_LINE_BASE;
8127 current_line = line_info->dw_line_num;
8128 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8129 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8130 "line %lu", current_line);
8131 else
8133 dw2_asm_output_data (1, DW_LNS_advance_line,
8134 "advance to line %lu", current_line);
8135 dw2_asm_output_data_sleb128 (line_offset, NULL);
8136 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8139 else
8140 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8142 #if 0
8143 cont:
8144 #endif
8146 lt_index++;
8148 /* If we're done with a function, end its sequence. */
8149 if (lt_index == separate_line_info_table_in_use
8150 || separate_line_info_table[lt_index].function != function)
8152 current_file = 1;
8153 current_line = 1;
8155 /* Emit debug info for the address of the end of the function. */
8156 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8157 if (0)
8159 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8160 "DW_LNS_fixed_advance_pc");
8161 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8163 else
8165 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8166 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8167 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8168 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8171 /* Output the marker for the end of this sequence. */
8172 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8173 dw2_asm_output_data_uleb128 (1, NULL);
8174 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8178 /* Output the marker for the end of the line number info. */
8179 ASM_OUTPUT_LABEL (asm_out_file, l2);
8182 /* Given a pointer to a tree node for some base type, return a pointer to
8183 a DIE that describes the given type.
8185 This routine must only be called for GCC type nodes that correspond to
8186 Dwarf base (fundamental) types. */
8188 static dw_die_ref
8189 base_type_die (tree type)
8191 dw_die_ref base_type_result;
8192 enum dwarf_type encoding;
8194 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8195 return 0;
8197 switch (TREE_CODE (type))
8199 case INTEGER_TYPE:
8200 if (TYPE_STRING_FLAG (type))
8202 if (TYPE_UNSIGNED (type))
8203 encoding = DW_ATE_unsigned_char;
8204 else
8205 encoding = DW_ATE_signed_char;
8207 else if (TYPE_UNSIGNED (type))
8208 encoding = DW_ATE_unsigned;
8209 else
8210 encoding = DW_ATE_signed;
8211 break;
8213 case REAL_TYPE:
8214 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8215 encoding = DW_ATE_decimal_float;
8216 else
8217 encoding = DW_ATE_float;
8218 break;
8220 /* Dwarf2 doesn't know anything about complex ints, so use
8221 a user defined type for it. */
8222 case COMPLEX_TYPE:
8223 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8224 encoding = DW_ATE_complex_float;
8225 else
8226 encoding = DW_ATE_lo_user;
8227 break;
8229 case BOOLEAN_TYPE:
8230 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8231 encoding = DW_ATE_boolean;
8232 break;
8234 default:
8235 /* No other TREE_CODEs are Dwarf fundamental types. */
8236 gcc_unreachable ();
8239 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8241 /* This probably indicates a bug. */
8242 if (! TYPE_NAME (type))
8243 add_name_attribute (base_type_result, "__unknown__");
8245 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8246 int_size_in_bytes (type));
8247 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8249 return base_type_result;
8252 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8253 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8254 a given type is generally the same as the given type, except that if the
8255 given type is a pointer or reference type, then the root type of the given
8256 type is the root type of the "basis" type for the pointer or reference
8257 type. (This definition of the "root" type is recursive.) Also, the root
8258 type of a `const' qualified type or a `volatile' qualified type is the
8259 root type of the given type without the qualifiers. */
8261 static tree
8262 root_type (tree type)
8264 if (TREE_CODE (type) == ERROR_MARK)
8265 return error_mark_node;
8267 switch (TREE_CODE (type))
8269 case ERROR_MARK:
8270 return error_mark_node;
8272 case POINTER_TYPE:
8273 case REFERENCE_TYPE:
8274 return type_main_variant (root_type (TREE_TYPE (type)));
8276 default:
8277 return type_main_variant (type);
8281 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8282 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8284 static inline int
8285 is_base_type (tree type)
8287 switch (TREE_CODE (type))
8289 case ERROR_MARK:
8290 case VOID_TYPE:
8291 case INTEGER_TYPE:
8292 case REAL_TYPE:
8293 case COMPLEX_TYPE:
8294 case BOOLEAN_TYPE:
8295 return 1;
8297 case ARRAY_TYPE:
8298 case RECORD_TYPE:
8299 case UNION_TYPE:
8300 case QUAL_UNION_TYPE:
8301 case ENUMERAL_TYPE:
8302 case FUNCTION_TYPE:
8303 case METHOD_TYPE:
8304 case POINTER_TYPE:
8305 case REFERENCE_TYPE:
8306 case OFFSET_TYPE:
8307 case LANG_TYPE:
8308 case VECTOR_TYPE:
8309 return 0;
8311 default:
8312 gcc_unreachable ();
8315 return 0;
8318 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8319 node, return the size in bits for the type if it is a constant, or else
8320 return the alignment for the type if the type's size is not constant, or
8321 else return BITS_PER_WORD if the type actually turns out to be an
8322 ERROR_MARK node. */
8324 static inline unsigned HOST_WIDE_INT
8325 simple_type_size_in_bits (tree type)
8327 if (TREE_CODE (type) == ERROR_MARK)
8328 return BITS_PER_WORD;
8329 else if (TYPE_SIZE (type) == NULL_TREE)
8330 return 0;
8331 else if (host_integerp (TYPE_SIZE (type), 1))
8332 return tree_low_cst (TYPE_SIZE (type), 1);
8333 else
8334 return TYPE_ALIGN (type);
8337 /* Return true if the debug information for the given type should be
8338 emitted as a subrange type. */
8340 static inline bool
8341 is_subrange_type (tree type)
8343 tree subtype = TREE_TYPE (type);
8345 /* Subrange types are identified by the fact that they are integer
8346 types, and that they have a subtype which is either an integer type
8347 or an enumeral type. */
8349 if (TREE_CODE (type) != INTEGER_TYPE
8350 || subtype == NULL_TREE)
8351 return false;
8353 if (TREE_CODE (subtype) != INTEGER_TYPE
8354 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8355 return false;
8357 if (TREE_CODE (type) == TREE_CODE (subtype)
8358 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8359 && TYPE_MIN_VALUE (type) != NULL
8360 && TYPE_MIN_VALUE (subtype) != NULL
8361 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8362 && TYPE_MAX_VALUE (type) != NULL
8363 && TYPE_MAX_VALUE (subtype) != NULL
8364 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8366 /* The type and its subtype have the same representation. If in
8367 addition the two types also have the same name, then the given
8368 type is not a subrange type, but rather a plain base type. */
8369 /* FIXME: brobecker/2004-03-22:
8370 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8371 therefore be sufficient to check the TYPE_SIZE node pointers
8372 rather than checking the actual size. Unfortunately, we have
8373 found some cases, such as in the Ada "integer" type, where
8374 this is not the case. Until this problem is solved, we need to
8375 keep checking the actual size. */
8376 tree type_name = TYPE_NAME (type);
8377 tree subtype_name = TYPE_NAME (subtype);
8379 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8380 type_name = DECL_NAME (type_name);
8382 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8383 subtype_name = DECL_NAME (subtype_name);
8385 if (type_name == subtype_name)
8386 return false;
8389 return true;
8392 /* Given a pointer to a tree node for a subrange type, return a pointer
8393 to a DIE that describes the given type. */
8395 static dw_die_ref
8396 subrange_type_die (tree type, dw_die_ref context_die)
8398 dw_die_ref subrange_die;
8399 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8401 if (context_die == NULL)
8402 context_die = comp_unit_die;
8404 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8406 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8408 /* The size of the subrange type and its base type do not match,
8409 so we need to generate a size attribute for the subrange type. */
8410 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8413 if (TYPE_MIN_VALUE (type) != NULL)
8414 add_bound_info (subrange_die, DW_AT_lower_bound,
8415 TYPE_MIN_VALUE (type));
8416 if (TYPE_MAX_VALUE (type) != NULL)
8417 add_bound_info (subrange_die, DW_AT_upper_bound,
8418 TYPE_MAX_VALUE (type));
8420 return subrange_die;
8423 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8424 entry that chains various modifiers in front of the given type. */
8426 static dw_die_ref
8427 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8428 dw_die_ref context_die)
8430 enum tree_code code = TREE_CODE (type);
8431 dw_die_ref mod_type_die;
8432 dw_die_ref sub_die = NULL;
8433 tree item_type = NULL;
8434 tree qualified_type;
8435 tree name;
8437 if (code == ERROR_MARK)
8438 return NULL;
8440 /* See if we already have the appropriately qualified variant of
8441 this type. */
8442 qualified_type
8443 = get_qualified_type (type,
8444 ((is_const_type ? TYPE_QUAL_CONST : 0)
8445 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8447 /* If we do, then we can just use its DIE, if it exists. */
8448 if (qualified_type)
8450 mod_type_die = lookup_type_die (qualified_type);
8451 if (mod_type_die)
8452 return mod_type_die;
8455 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8457 /* Handle C typedef types. */
8458 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8460 tree dtype = TREE_TYPE (name);
8462 if (qualified_type == dtype)
8464 /* For a named type, use the typedef. */
8465 gen_type_die (qualified_type, context_die);
8466 return lookup_type_die (qualified_type);
8468 else if (DECL_ORIGINAL_TYPE (name)
8469 && (is_const_type < TYPE_READONLY (dtype)
8470 || is_volatile_type < TYPE_VOLATILE (dtype)))
8471 /* cv-unqualified version of named type. Just use the unnamed
8472 type to which it refers. */
8473 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8474 is_const_type, is_volatile_type,
8475 context_die);
8476 /* Else cv-qualified version of named type; fall through. */
8479 if (is_const_type)
8481 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8482 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8484 else if (is_volatile_type)
8486 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8487 sub_die = modified_type_die (type, 0, 0, context_die);
8489 else if (code == POINTER_TYPE)
8491 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8492 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8493 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8494 item_type = TREE_TYPE (type);
8496 else if (code == REFERENCE_TYPE)
8498 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8499 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8500 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8501 item_type = TREE_TYPE (type);
8503 else if (is_subrange_type (type))
8505 mod_type_die = subrange_type_die (type, context_die);
8506 item_type = TREE_TYPE (type);
8508 else if (is_base_type (type))
8509 mod_type_die = base_type_die (type);
8510 else
8512 gen_type_die (type, context_die);
8514 /* We have to get the type_main_variant here (and pass that to the
8515 `lookup_type_die' routine) because the ..._TYPE node we have
8516 might simply be a *copy* of some original type node (where the
8517 copy was created to help us keep track of typedef names) and
8518 that copy might have a different TYPE_UID from the original
8519 ..._TYPE node. */
8520 if (TREE_CODE (type) != VECTOR_TYPE)
8521 return lookup_type_die (type_main_variant (type));
8522 else
8523 /* Vectors have the debugging information in the type,
8524 not the main variant. */
8525 return lookup_type_die (type);
8528 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8529 don't output a DW_TAG_typedef, since there isn't one in the
8530 user's program; just attach a DW_AT_name to the type. */
8531 if (name
8532 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8534 if (TREE_CODE (name) == TYPE_DECL)
8535 /* Could just call add_name_and_src_coords_attributes here,
8536 but since this is a builtin type it doesn't have any
8537 useful source coordinates anyway. */
8538 name = DECL_NAME (name);
8539 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8542 if (qualified_type)
8543 equate_type_number_to_die (qualified_type, mod_type_die);
8545 if (item_type)
8546 /* We must do this after the equate_type_number_to_die call, in case
8547 this is a recursive type. This ensures that the modified_type_die
8548 recursion will terminate even if the type is recursive. Recursive
8549 types are possible in Ada. */
8550 sub_die = modified_type_die (item_type,
8551 TYPE_READONLY (item_type),
8552 TYPE_VOLATILE (item_type),
8553 context_die);
8555 if (sub_die != NULL)
8556 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8558 return mod_type_die;
8561 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8562 an enumerated type. */
8564 static inline int
8565 type_is_enum (tree type)
8567 return TREE_CODE (type) == ENUMERAL_TYPE;
8570 /* Return the DBX register number described by a given RTL node. */
8572 static unsigned int
8573 dbx_reg_number (rtx rtl)
8575 unsigned regno = REGNO (rtl);
8577 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8579 #ifdef LEAF_REG_REMAP
8581 int leaf_reg;
8583 leaf_reg = LEAF_REG_REMAP (regno);
8584 if (leaf_reg != -1)
8585 regno = (unsigned) leaf_reg;
8587 #endif
8589 return DBX_REGISTER_NUMBER (regno);
8592 /* Optionally add a DW_OP_piece term to a location description expression.
8593 DW_OP_piece is only added if the location description expression already
8594 doesn't end with DW_OP_piece. */
8596 static void
8597 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8599 dw_loc_descr_ref loc;
8601 if (*list_head != NULL)
8603 /* Find the end of the chain. */
8604 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8607 if (loc->dw_loc_opc != DW_OP_piece)
8608 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8612 /* Return a location descriptor that designates a machine register or
8613 zero if there is none. */
8615 static dw_loc_descr_ref
8616 reg_loc_descriptor (rtx rtl)
8618 rtx regs;
8620 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8621 return 0;
8623 regs = targetm.dwarf_register_span (rtl);
8625 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8626 return multiple_reg_loc_descriptor (rtl, regs);
8627 else
8628 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8631 /* Return a location descriptor that designates a machine register for
8632 a given hard register number. */
8634 static dw_loc_descr_ref
8635 one_reg_loc_descriptor (unsigned int regno)
8637 if (regno <= 31)
8638 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8639 else
8640 return new_loc_descr (DW_OP_regx, regno, 0);
8643 /* Given an RTL of a register, return a location descriptor that
8644 designates a value that spans more than one register. */
8646 static dw_loc_descr_ref
8647 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8649 int nregs, size, i;
8650 unsigned reg;
8651 dw_loc_descr_ref loc_result = NULL;
8653 reg = REGNO (rtl);
8654 #ifdef LEAF_REG_REMAP
8656 int leaf_reg;
8658 leaf_reg = LEAF_REG_REMAP (reg);
8659 if (leaf_reg != -1)
8660 reg = (unsigned) leaf_reg;
8662 #endif
8663 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8664 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8666 /* Simple, contiguous registers. */
8667 if (regs == NULL_RTX)
8669 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8671 loc_result = NULL;
8672 while (nregs--)
8674 dw_loc_descr_ref t;
8676 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8677 add_loc_descr (&loc_result, t);
8678 add_loc_descr_op_piece (&loc_result, size);
8679 ++reg;
8681 return loc_result;
8684 /* Now onto stupid register sets in non contiguous locations. */
8686 gcc_assert (GET_CODE (regs) == PARALLEL);
8688 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8689 loc_result = NULL;
8691 for (i = 0; i < XVECLEN (regs, 0); ++i)
8693 dw_loc_descr_ref t;
8695 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8696 add_loc_descr (&loc_result, t);
8697 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8698 add_loc_descr_op_piece (&loc_result, size);
8700 return loc_result;
8703 /* Return a location descriptor that designates a constant. */
8705 static dw_loc_descr_ref
8706 int_loc_descriptor (HOST_WIDE_INT i)
8708 enum dwarf_location_atom op;
8710 /* Pick the smallest representation of a constant, rather than just
8711 defaulting to the LEB encoding. */
8712 if (i >= 0)
8714 if (i <= 31)
8715 op = DW_OP_lit0 + i;
8716 else if (i <= 0xff)
8717 op = DW_OP_const1u;
8718 else if (i <= 0xffff)
8719 op = DW_OP_const2u;
8720 else if (HOST_BITS_PER_WIDE_INT == 32
8721 || i <= 0xffffffff)
8722 op = DW_OP_const4u;
8723 else
8724 op = DW_OP_constu;
8726 else
8728 if (i >= -0x80)
8729 op = DW_OP_const1s;
8730 else if (i >= -0x8000)
8731 op = DW_OP_const2s;
8732 else if (HOST_BITS_PER_WIDE_INT == 32
8733 || i >= -0x80000000)
8734 op = DW_OP_const4s;
8735 else
8736 op = DW_OP_consts;
8739 return new_loc_descr (op, i, 0);
8742 /* Return a location descriptor that designates a base+offset location. */
8744 static dw_loc_descr_ref
8745 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8747 unsigned int regno;
8749 /* We only use "frame base" when we're sure we're talking about the
8750 post-prologue local stack frame. We do this by *not* running
8751 register elimination until this point, and recognizing the special
8752 argument pointer and soft frame pointer rtx's. */
8753 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8755 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8757 if (elim != reg)
8759 if (GET_CODE (elim) == PLUS)
8761 offset += INTVAL (XEXP (elim, 1));
8762 elim = XEXP (elim, 0);
8764 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8765 : stack_pointer_rtx));
8766 offset += frame_pointer_fb_offset;
8768 return new_loc_descr (DW_OP_fbreg, offset, 0);
8772 regno = dbx_reg_number (reg);
8773 if (regno <= 31)
8774 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8775 else
8776 return new_loc_descr (DW_OP_bregx, regno, offset);
8779 /* Return true if this RTL expression describes a base+offset calculation. */
8781 static inline int
8782 is_based_loc (rtx rtl)
8784 return (GET_CODE (rtl) == PLUS
8785 && ((REG_P (XEXP (rtl, 0))
8786 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8787 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8790 /* The following routine converts the RTL for a variable or parameter
8791 (resident in memory) into an equivalent Dwarf representation of a
8792 mechanism for getting the address of that same variable onto the top of a
8793 hypothetical "address evaluation" stack.
8795 When creating memory location descriptors, we are effectively transforming
8796 the RTL for a memory-resident object into its Dwarf postfix expression
8797 equivalent. This routine recursively descends an RTL tree, turning
8798 it into Dwarf postfix code as it goes.
8800 MODE is the mode of the memory reference, needed to handle some
8801 autoincrement addressing modes.
8803 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8804 location list for RTL.
8806 Return 0 if we can't represent the location. */
8808 static dw_loc_descr_ref
8809 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8811 dw_loc_descr_ref mem_loc_result = NULL;
8812 enum dwarf_location_atom op;
8814 /* Note that for a dynamically sized array, the location we will generate a
8815 description of here will be the lowest numbered location which is
8816 actually within the array. That's *not* necessarily the same as the
8817 zeroth element of the array. */
8819 rtl = targetm.delegitimize_address (rtl);
8821 switch (GET_CODE (rtl))
8823 case POST_INC:
8824 case POST_DEC:
8825 case POST_MODIFY:
8826 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8827 just fall into the SUBREG code. */
8829 /* ... fall through ... */
8831 case SUBREG:
8832 /* The case of a subreg may arise when we have a local (register)
8833 variable or a formal (register) parameter which doesn't quite fill
8834 up an entire register. For now, just assume that it is
8835 legitimate to make the Dwarf info refer to the whole register which
8836 contains the given subreg. */
8837 rtl = XEXP (rtl, 0);
8839 /* ... fall through ... */
8841 case REG:
8842 /* Whenever a register number forms a part of the description of the
8843 method for calculating the (dynamic) address of a memory resident
8844 object, DWARF rules require the register number be referred to as
8845 a "base register". This distinction is not based in any way upon
8846 what category of register the hardware believes the given register
8847 belongs to. This is strictly DWARF terminology we're dealing with
8848 here. Note that in cases where the location of a memory-resident
8849 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8850 OP_CONST (0)) the actual DWARF location descriptor that we generate
8851 may just be OP_BASEREG (basereg). This may look deceptively like
8852 the object in question was allocated to a register (rather than in
8853 memory) so DWARF consumers need to be aware of the subtle
8854 distinction between OP_REG and OP_BASEREG. */
8855 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8856 mem_loc_result = based_loc_descr (rtl, 0);
8857 break;
8859 case MEM:
8860 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8861 if (mem_loc_result != 0)
8862 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8863 break;
8865 case LO_SUM:
8866 rtl = XEXP (rtl, 1);
8868 /* ... fall through ... */
8870 case LABEL_REF:
8871 /* Some ports can transform a symbol ref into a label ref, because
8872 the symbol ref is too far away and has to be dumped into a constant
8873 pool. */
8874 case CONST:
8875 case SYMBOL_REF:
8876 /* Alternatively, the symbol in the constant pool might be referenced
8877 by a different symbol. */
8878 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8880 bool marked;
8881 rtx tmp = get_pool_constant_mark (rtl, &marked);
8883 if (GET_CODE (tmp) == SYMBOL_REF)
8885 rtl = tmp;
8886 if (CONSTANT_POOL_ADDRESS_P (tmp))
8887 get_pool_constant_mark (tmp, &marked);
8888 else
8889 marked = true;
8892 /* If all references to this pool constant were optimized away,
8893 it was not output and thus we can't represent it.
8894 FIXME: might try to use DW_OP_const_value here, though
8895 DW_OP_piece complicates it. */
8896 if (!marked)
8897 return 0;
8900 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8901 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8902 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8903 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8904 break;
8906 case PRE_MODIFY:
8907 /* Extract the PLUS expression nested inside and fall into
8908 PLUS code below. */
8909 rtl = XEXP (rtl, 1);
8910 goto plus;
8912 case PRE_INC:
8913 case PRE_DEC:
8914 /* Turn these into a PLUS expression and fall into the PLUS code
8915 below. */
8916 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8917 GEN_INT (GET_CODE (rtl) == PRE_INC
8918 ? GET_MODE_UNIT_SIZE (mode)
8919 : -GET_MODE_UNIT_SIZE (mode)));
8921 /* ... fall through ... */
8923 case PLUS:
8924 plus:
8925 if (is_based_loc (rtl))
8926 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8927 INTVAL (XEXP (rtl, 1)));
8928 else
8930 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8931 if (mem_loc_result == 0)
8932 break;
8934 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8935 && INTVAL (XEXP (rtl, 1)) >= 0)
8936 add_loc_descr (&mem_loc_result,
8937 new_loc_descr (DW_OP_plus_uconst,
8938 INTVAL (XEXP (rtl, 1)), 0));
8939 else
8941 add_loc_descr (&mem_loc_result,
8942 mem_loc_descriptor (XEXP (rtl, 1), mode));
8943 add_loc_descr (&mem_loc_result,
8944 new_loc_descr (DW_OP_plus, 0, 0));
8947 break;
8949 /* If a pseudo-reg is optimized away, it is possible for it to
8950 be replaced with a MEM containing a multiply or shift. */
8951 case MULT:
8952 op = DW_OP_mul;
8953 goto do_binop;
8955 case ASHIFT:
8956 op = DW_OP_shl;
8957 goto do_binop;
8959 case ASHIFTRT:
8960 op = DW_OP_shra;
8961 goto do_binop;
8963 case LSHIFTRT:
8964 op = DW_OP_shr;
8965 goto do_binop;
8967 do_binop:
8969 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8970 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8972 if (op0 == 0 || op1 == 0)
8973 break;
8975 mem_loc_result = op0;
8976 add_loc_descr (&mem_loc_result, op1);
8977 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8978 break;
8981 case CONST_INT:
8982 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8983 break;
8985 default:
8986 gcc_unreachable ();
8989 return mem_loc_result;
8992 /* Return a descriptor that describes the concatenation of two locations.
8993 This is typically a complex variable. */
8995 static dw_loc_descr_ref
8996 concat_loc_descriptor (rtx x0, rtx x1)
8998 dw_loc_descr_ref cc_loc_result = NULL;
8999 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9000 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9002 if (x0_ref == 0 || x1_ref == 0)
9003 return 0;
9005 cc_loc_result = x0_ref;
9006 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9008 add_loc_descr (&cc_loc_result, x1_ref);
9009 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9011 return cc_loc_result;
9014 /* Output a proper Dwarf location descriptor for a variable or parameter
9015 which is either allocated in a register or in a memory location. For a
9016 register, we just generate an OP_REG and the register number. For a
9017 memory location we provide a Dwarf postfix expression describing how to
9018 generate the (dynamic) address of the object onto the address stack.
9020 If we don't know how to describe it, return 0. */
9022 static dw_loc_descr_ref
9023 loc_descriptor (rtx rtl)
9025 dw_loc_descr_ref loc_result = NULL;
9027 switch (GET_CODE (rtl))
9029 case SUBREG:
9030 /* The case of a subreg may arise when we have a local (register)
9031 variable or a formal (register) parameter which doesn't quite fill
9032 up an entire register. For now, just assume that it is
9033 legitimate to make the Dwarf info refer to the whole register which
9034 contains the given subreg. */
9035 rtl = SUBREG_REG (rtl);
9037 /* ... fall through ... */
9039 case REG:
9040 loc_result = reg_loc_descriptor (rtl);
9041 break;
9043 case MEM:
9044 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9045 break;
9047 case CONCAT:
9048 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9049 break;
9051 case VAR_LOCATION:
9052 /* Single part. */
9053 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9055 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9056 break;
9059 rtl = XEXP (rtl, 1);
9060 /* FALLTHRU */
9062 case PARALLEL:
9064 rtvec par_elems = XVEC (rtl, 0);
9065 int num_elem = GET_NUM_ELEM (par_elems);
9066 enum machine_mode mode;
9067 int i;
9069 /* Create the first one, so we have something to add to. */
9070 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9071 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9072 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9073 for (i = 1; i < num_elem; i++)
9075 dw_loc_descr_ref temp;
9077 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9078 add_loc_descr (&loc_result, temp);
9079 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9080 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9083 break;
9085 default:
9086 gcc_unreachable ();
9089 return loc_result;
9092 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9093 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9094 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9095 top-level invocation, and we require the address of LOC; is 0 if we require
9096 the value of LOC. */
9098 static dw_loc_descr_ref
9099 loc_descriptor_from_tree_1 (tree loc, int want_address)
9101 dw_loc_descr_ref ret, ret1;
9102 int have_address = 0;
9103 enum dwarf_location_atom op;
9105 /* ??? Most of the time we do not take proper care for sign/zero
9106 extending the values properly. Hopefully this won't be a real
9107 problem... */
9109 switch (TREE_CODE (loc))
9111 case ERROR_MARK:
9112 return 0;
9114 case PLACEHOLDER_EXPR:
9115 /* This case involves extracting fields from an object to determine the
9116 position of other fields. We don't try to encode this here. The
9117 only user of this is Ada, which encodes the needed information using
9118 the names of types. */
9119 return 0;
9121 case CALL_EXPR:
9122 return 0;
9124 case PREINCREMENT_EXPR:
9125 case PREDECREMENT_EXPR:
9126 case POSTINCREMENT_EXPR:
9127 case POSTDECREMENT_EXPR:
9128 /* There are no opcodes for these operations. */
9129 return 0;
9131 case ADDR_EXPR:
9132 /* If we already want an address, there's nothing we can do. */
9133 if (want_address)
9134 return 0;
9136 /* Otherwise, process the argument and look for the address. */
9137 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9139 case VAR_DECL:
9140 if (DECL_THREAD_LOCAL_P (loc))
9142 rtx rtl;
9144 /* If this is not defined, we have no way to emit the data. */
9145 if (!targetm.asm_out.output_dwarf_dtprel)
9146 return 0;
9148 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9149 look up addresses of objects in the current module. */
9150 if (DECL_EXTERNAL (loc))
9151 return 0;
9153 rtl = rtl_for_decl_location (loc);
9154 if (rtl == NULL_RTX)
9155 return 0;
9157 if (!MEM_P (rtl))
9158 return 0;
9159 rtl = XEXP (rtl, 0);
9160 if (! CONSTANT_P (rtl))
9161 return 0;
9163 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9164 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9165 ret->dw_loc_oprnd1.v.val_addr = rtl;
9167 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9168 add_loc_descr (&ret, ret1);
9170 have_address = 1;
9171 break;
9173 /* FALLTHRU */
9175 case PARM_DECL:
9176 if (DECL_HAS_VALUE_EXPR_P (loc))
9177 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9178 want_address);
9179 /* FALLTHRU */
9181 case RESULT_DECL:
9182 case FUNCTION_DECL:
9184 rtx rtl = rtl_for_decl_location (loc);
9186 if (rtl == NULL_RTX)
9187 return 0;
9188 else if (GET_CODE (rtl) == CONST_INT)
9190 HOST_WIDE_INT val = INTVAL (rtl);
9191 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9192 val &= GET_MODE_MASK (DECL_MODE (loc));
9193 ret = int_loc_descriptor (val);
9195 else if (GET_CODE (rtl) == CONST_STRING)
9196 return 0;
9197 else if (CONSTANT_P (rtl))
9199 ret = new_loc_descr (DW_OP_addr, 0, 0);
9200 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9201 ret->dw_loc_oprnd1.v.val_addr = rtl;
9203 else
9205 enum machine_mode mode;
9207 /* Certain constructs can only be represented at top-level. */
9208 if (want_address == 2)
9209 return loc_descriptor (rtl);
9211 mode = GET_MODE (rtl);
9212 if (MEM_P (rtl))
9214 rtl = XEXP (rtl, 0);
9215 have_address = 1;
9217 ret = mem_loc_descriptor (rtl, mode);
9220 break;
9222 case INDIRECT_REF:
9223 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9224 have_address = 1;
9225 break;
9227 case COMPOUND_EXPR:
9228 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9230 case NOP_EXPR:
9231 case CONVERT_EXPR:
9232 case NON_LVALUE_EXPR:
9233 case VIEW_CONVERT_EXPR:
9234 case SAVE_EXPR:
9235 case MODIFY_EXPR:
9236 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9238 case COMPONENT_REF:
9239 case BIT_FIELD_REF:
9240 case ARRAY_REF:
9241 case ARRAY_RANGE_REF:
9243 tree obj, offset;
9244 HOST_WIDE_INT bitsize, bitpos, bytepos;
9245 enum machine_mode mode;
9246 int volatilep;
9247 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9249 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9250 &unsignedp, &volatilep, false);
9252 if (obj == loc)
9253 return 0;
9255 ret = loc_descriptor_from_tree_1 (obj, 1);
9256 if (ret == 0
9257 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9258 return 0;
9260 if (offset != NULL_TREE)
9262 /* Variable offset. */
9263 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9264 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9267 bytepos = bitpos / BITS_PER_UNIT;
9268 if (bytepos > 0)
9269 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9270 else if (bytepos < 0)
9272 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9273 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9276 have_address = 1;
9277 break;
9280 case INTEGER_CST:
9281 if (host_integerp (loc, 0))
9282 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9283 else
9284 return 0;
9285 break;
9287 case CONSTRUCTOR:
9289 /* Get an RTL for this, if something has been emitted. */
9290 rtx rtl = lookup_constant_def (loc);
9291 enum machine_mode mode;
9293 if (!rtl || !MEM_P (rtl))
9294 return 0;
9295 mode = GET_MODE (rtl);
9296 rtl = XEXP (rtl, 0);
9297 ret = mem_loc_descriptor (rtl, mode);
9298 have_address = 1;
9299 break;
9302 case TRUTH_AND_EXPR:
9303 case TRUTH_ANDIF_EXPR:
9304 case BIT_AND_EXPR:
9305 op = DW_OP_and;
9306 goto do_binop;
9308 case TRUTH_XOR_EXPR:
9309 case BIT_XOR_EXPR:
9310 op = DW_OP_xor;
9311 goto do_binop;
9313 case TRUTH_OR_EXPR:
9314 case TRUTH_ORIF_EXPR:
9315 case BIT_IOR_EXPR:
9316 op = DW_OP_or;
9317 goto do_binop;
9319 case FLOOR_DIV_EXPR:
9320 case CEIL_DIV_EXPR:
9321 case ROUND_DIV_EXPR:
9322 case TRUNC_DIV_EXPR:
9323 op = DW_OP_div;
9324 goto do_binop;
9326 case MINUS_EXPR:
9327 op = DW_OP_minus;
9328 goto do_binop;
9330 case FLOOR_MOD_EXPR:
9331 case CEIL_MOD_EXPR:
9332 case ROUND_MOD_EXPR:
9333 case TRUNC_MOD_EXPR:
9334 op = DW_OP_mod;
9335 goto do_binop;
9337 case MULT_EXPR:
9338 op = DW_OP_mul;
9339 goto do_binop;
9341 case LSHIFT_EXPR:
9342 op = DW_OP_shl;
9343 goto do_binop;
9345 case RSHIFT_EXPR:
9346 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9347 goto do_binop;
9349 case PLUS_EXPR:
9350 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9351 && host_integerp (TREE_OPERAND (loc, 1), 0))
9353 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9354 if (ret == 0)
9355 return 0;
9357 add_loc_descr (&ret,
9358 new_loc_descr (DW_OP_plus_uconst,
9359 tree_low_cst (TREE_OPERAND (loc, 1),
9361 0));
9362 break;
9365 op = DW_OP_plus;
9366 goto do_binop;
9368 case LE_EXPR:
9369 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9370 return 0;
9372 op = DW_OP_le;
9373 goto do_binop;
9375 case GE_EXPR:
9376 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9377 return 0;
9379 op = DW_OP_ge;
9380 goto do_binop;
9382 case LT_EXPR:
9383 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9384 return 0;
9386 op = DW_OP_lt;
9387 goto do_binop;
9389 case GT_EXPR:
9390 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9391 return 0;
9393 op = DW_OP_gt;
9394 goto do_binop;
9396 case EQ_EXPR:
9397 op = DW_OP_eq;
9398 goto do_binop;
9400 case NE_EXPR:
9401 op = DW_OP_ne;
9402 goto do_binop;
9404 do_binop:
9405 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9406 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9407 if (ret == 0 || ret1 == 0)
9408 return 0;
9410 add_loc_descr (&ret, ret1);
9411 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9412 break;
9414 case TRUTH_NOT_EXPR:
9415 case BIT_NOT_EXPR:
9416 op = DW_OP_not;
9417 goto do_unop;
9419 case ABS_EXPR:
9420 op = DW_OP_abs;
9421 goto do_unop;
9423 case NEGATE_EXPR:
9424 op = DW_OP_neg;
9425 goto do_unop;
9427 do_unop:
9428 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9429 if (ret == 0)
9430 return 0;
9432 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9433 break;
9435 case MIN_EXPR:
9436 case MAX_EXPR:
9438 const enum tree_code code =
9439 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9441 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9442 build2 (code, integer_type_node,
9443 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9444 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9447 /* ... fall through ... */
9449 case COND_EXPR:
9451 dw_loc_descr_ref lhs
9452 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9453 dw_loc_descr_ref rhs
9454 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9455 dw_loc_descr_ref bra_node, jump_node, tmp;
9457 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9458 if (ret == 0 || lhs == 0 || rhs == 0)
9459 return 0;
9461 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9462 add_loc_descr (&ret, bra_node);
9464 add_loc_descr (&ret, rhs);
9465 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9466 add_loc_descr (&ret, jump_node);
9468 add_loc_descr (&ret, lhs);
9469 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9470 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9472 /* ??? Need a node to point the skip at. Use a nop. */
9473 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9474 add_loc_descr (&ret, tmp);
9475 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9476 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9478 break;
9480 case FIX_TRUNC_EXPR:
9481 case FIX_CEIL_EXPR:
9482 case FIX_FLOOR_EXPR:
9483 case FIX_ROUND_EXPR:
9484 return 0;
9486 default:
9487 /* Leave front-end specific codes as simply unknown. This comes
9488 up, for instance, with the C STMT_EXPR. */
9489 if ((unsigned int) TREE_CODE (loc)
9490 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9491 return 0;
9493 #ifdef ENABLE_CHECKING
9494 /* Otherwise this is a generic code; we should just lists all of
9495 these explicitly. We forgot one. */
9496 gcc_unreachable ();
9497 #else
9498 /* In a release build, we want to degrade gracefully: better to
9499 generate incomplete debugging information than to crash. */
9500 return NULL;
9501 #endif
9504 /* Show if we can't fill the request for an address. */
9505 if (want_address && !have_address)
9506 return 0;
9508 /* If we've got an address and don't want one, dereference. */
9509 if (!want_address && have_address && ret)
9511 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9513 if (size > DWARF2_ADDR_SIZE || size == -1)
9514 return 0;
9515 else if (size == DWARF2_ADDR_SIZE)
9516 op = DW_OP_deref;
9517 else
9518 op = DW_OP_deref_size;
9520 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9523 return ret;
9526 static inline dw_loc_descr_ref
9527 loc_descriptor_from_tree (tree loc)
9529 return loc_descriptor_from_tree_1 (loc, 2);
9532 /* Given a value, round it up to the lowest multiple of `boundary'
9533 which is not less than the value itself. */
9535 static inline HOST_WIDE_INT
9536 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9538 return (((value + boundary - 1) / boundary) * boundary);
9541 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9542 pointer to the declared type for the relevant field variable, or return
9543 `integer_type_node' if the given node turns out to be an
9544 ERROR_MARK node. */
9546 static inline tree
9547 field_type (tree decl)
9549 tree type;
9551 if (TREE_CODE (decl) == ERROR_MARK)
9552 return integer_type_node;
9554 type = DECL_BIT_FIELD_TYPE (decl);
9555 if (type == NULL_TREE)
9556 type = TREE_TYPE (decl);
9558 return type;
9561 /* Given a pointer to a tree node, return the alignment in bits for
9562 it, or else return BITS_PER_WORD if the node actually turns out to
9563 be an ERROR_MARK node. */
9565 static inline unsigned
9566 simple_type_align_in_bits (tree type)
9568 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9571 static inline unsigned
9572 simple_decl_align_in_bits (tree decl)
9574 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9577 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9578 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9579 or return 0 if we are unable to determine what that offset is, either
9580 because the argument turns out to be a pointer to an ERROR_MARK node, or
9581 because the offset is actually variable. (We can't handle the latter case
9582 just yet). */
9584 static HOST_WIDE_INT
9585 field_byte_offset (tree decl)
9587 unsigned int type_align_in_bits;
9588 unsigned int decl_align_in_bits;
9589 unsigned HOST_WIDE_INT type_size_in_bits;
9590 HOST_WIDE_INT object_offset_in_bits;
9591 tree type;
9592 tree field_size_tree;
9593 HOST_WIDE_INT bitpos_int;
9594 HOST_WIDE_INT deepest_bitpos;
9595 unsigned HOST_WIDE_INT field_size_in_bits;
9597 if (TREE_CODE (decl) == ERROR_MARK)
9598 return 0;
9600 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9602 type = field_type (decl);
9603 field_size_tree = DECL_SIZE (decl);
9605 /* The size could be unspecified if there was an error, or for
9606 a flexible array member. */
9607 if (! field_size_tree)
9608 field_size_tree = bitsize_zero_node;
9610 /* We cannot yet cope with fields whose positions are variable, so
9611 for now, when we see such things, we simply return 0. Someday, we may
9612 be able to handle such cases, but it will be damn difficult. */
9613 if (! host_integerp (bit_position (decl), 0))
9614 return 0;
9616 bitpos_int = int_bit_position (decl);
9618 /* If we don't know the size of the field, pretend it's a full word. */
9619 if (host_integerp (field_size_tree, 1))
9620 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9621 else
9622 field_size_in_bits = BITS_PER_WORD;
9624 type_size_in_bits = simple_type_size_in_bits (type);
9625 type_align_in_bits = simple_type_align_in_bits (type);
9626 decl_align_in_bits = simple_decl_align_in_bits (decl);
9628 /* The GCC front-end doesn't make any attempt to keep track of the starting
9629 bit offset (relative to the start of the containing structure type) of the
9630 hypothetical "containing object" for a bit-field. Thus, when computing
9631 the byte offset value for the start of the "containing object" of a
9632 bit-field, we must deduce this information on our own. This can be rather
9633 tricky to do in some cases. For example, handling the following structure
9634 type definition when compiling for an i386/i486 target (which only aligns
9635 long long's to 32-bit boundaries) can be very tricky:
9637 struct S { int field1; long long field2:31; };
9639 Fortunately, there is a simple rule-of-thumb which can be used in such
9640 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9641 structure shown above. It decides to do this based upon one simple rule
9642 for bit-field allocation. GCC allocates each "containing object" for each
9643 bit-field at the first (i.e. lowest addressed) legitimate alignment
9644 boundary (based upon the required minimum alignment for the declared type
9645 of the field) which it can possibly use, subject to the condition that
9646 there is still enough available space remaining in the containing object
9647 (when allocated at the selected point) to fully accommodate all of the
9648 bits of the bit-field itself.
9650 This simple rule makes it obvious why GCC allocates 8 bytes for each
9651 object of the structure type shown above. When looking for a place to
9652 allocate the "containing object" for `field2', the compiler simply tries
9653 to allocate a 64-bit "containing object" at each successive 32-bit
9654 boundary (starting at zero) until it finds a place to allocate that 64-
9655 bit field such that at least 31 contiguous (and previously unallocated)
9656 bits remain within that selected 64 bit field. (As it turns out, for the
9657 example above, the compiler finds it is OK to allocate the "containing
9658 object" 64-bit field at bit-offset zero within the structure type.)
9660 Here we attempt to work backwards from the limited set of facts we're
9661 given, and we try to deduce from those facts, where GCC must have believed
9662 that the containing object started (within the structure type). The value
9663 we deduce is then used (by the callers of this routine) to generate
9664 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9665 and, in the case of DW_AT_location, regular fields as well). */
9667 /* Figure out the bit-distance from the start of the structure to the
9668 "deepest" bit of the bit-field. */
9669 deepest_bitpos = bitpos_int + field_size_in_bits;
9671 /* This is the tricky part. Use some fancy footwork to deduce where the
9672 lowest addressed bit of the containing object must be. */
9673 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9675 /* Round up to type_align by default. This works best for bitfields. */
9676 object_offset_in_bits += type_align_in_bits - 1;
9677 object_offset_in_bits /= type_align_in_bits;
9678 object_offset_in_bits *= type_align_in_bits;
9680 if (object_offset_in_bits > bitpos_int)
9682 /* Sigh, the decl must be packed. */
9683 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9685 /* Round up to decl_align instead. */
9686 object_offset_in_bits += decl_align_in_bits - 1;
9687 object_offset_in_bits /= decl_align_in_bits;
9688 object_offset_in_bits *= decl_align_in_bits;
9691 return object_offset_in_bits / BITS_PER_UNIT;
9694 /* The following routines define various Dwarf attributes and any data
9695 associated with them. */
9697 /* Add a location description attribute value to a DIE.
9699 This emits location attributes suitable for whole variables and
9700 whole parameters. Note that the location attributes for struct fields are
9701 generated by the routine `data_member_location_attribute' below. */
9703 static inline void
9704 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9705 dw_loc_descr_ref descr)
9707 if (descr != 0)
9708 add_AT_loc (die, attr_kind, descr);
9711 /* Attach the specialized form of location attribute used for data members of
9712 struct and union types. In the special case of a FIELD_DECL node which
9713 represents a bit-field, the "offset" part of this special location
9714 descriptor must indicate the distance in bytes from the lowest-addressed
9715 byte of the containing struct or union type to the lowest-addressed byte of
9716 the "containing object" for the bit-field. (See the `field_byte_offset'
9717 function above).
9719 For any given bit-field, the "containing object" is a hypothetical object
9720 (of some integral or enum type) within which the given bit-field lives. The
9721 type of this hypothetical "containing object" is always the same as the
9722 declared type of the individual bit-field itself (for GCC anyway... the
9723 DWARF spec doesn't actually mandate this). Note that it is the size (in
9724 bytes) of the hypothetical "containing object" which will be given in the
9725 DW_AT_byte_size attribute for this bit-field. (See the
9726 `byte_size_attribute' function below.) It is also used when calculating the
9727 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9728 function below.) */
9730 static void
9731 add_data_member_location_attribute (dw_die_ref die, tree decl)
9733 HOST_WIDE_INT offset;
9734 dw_loc_descr_ref loc_descr = 0;
9736 if (TREE_CODE (decl) == TREE_BINFO)
9738 /* We're working on the TAG_inheritance for a base class. */
9739 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9741 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9742 aren't at a fixed offset from all (sub)objects of the same
9743 type. We need to extract the appropriate offset from our
9744 vtable. The following dwarf expression means
9746 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9748 This is specific to the V3 ABI, of course. */
9750 dw_loc_descr_ref tmp;
9752 /* Make a copy of the object address. */
9753 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9754 add_loc_descr (&loc_descr, tmp);
9756 /* Extract the vtable address. */
9757 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9758 add_loc_descr (&loc_descr, tmp);
9760 /* Calculate the address of the offset. */
9761 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9762 gcc_assert (offset < 0);
9764 tmp = int_loc_descriptor (-offset);
9765 add_loc_descr (&loc_descr, tmp);
9766 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9767 add_loc_descr (&loc_descr, tmp);
9769 /* Extract the offset. */
9770 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9771 add_loc_descr (&loc_descr, tmp);
9773 /* Add it to the object address. */
9774 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9775 add_loc_descr (&loc_descr, tmp);
9777 else
9778 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9780 else
9781 offset = field_byte_offset (decl);
9783 if (! loc_descr)
9785 enum dwarf_location_atom op;
9787 /* The DWARF2 standard says that we should assume that the structure
9788 address is already on the stack, so we can specify a structure field
9789 address by using DW_OP_plus_uconst. */
9791 #ifdef MIPS_DEBUGGING_INFO
9792 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9793 operator correctly. It works only if we leave the offset on the
9794 stack. */
9795 op = DW_OP_constu;
9796 #else
9797 op = DW_OP_plus_uconst;
9798 #endif
9800 loc_descr = new_loc_descr (op, offset, 0);
9803 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9806 /* Writes integer values to dw_vec_const array. */
9808 static void
9809 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9811 while (size != 0)
9813 *dest++ = val & 0xff;
9814 val >>= 8;
9815 --size;
9819 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9821 static HOST_WIDE_INT
9822 extract_int (const unsigned char *src, unsigned int size)
9824 HOST_WIDE_INT val = 0;
9826 src += size;
9827 while (size != 0)
9829 val <<= 8;
9830 val |= *--src & 0xff;
9831 --size;
9833 return val;
9836 /* Writes floating point values to dw_vec_const array. */
9838 static void
9839 insert_float (rtx rtl, unsigned char *array)
9841 REAL_VALUE_TYPE rv;
9842 long val[4];
9843 int i;
9845 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9846 real_to_target (val, &rv, GET_MODE (rtl));
9848 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9849 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9851 insert_int (val[i], 4, array);
9852 array += 4;
9856 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9857 does not have a "location" either in memory or in a register. These
9858 things can arise in GNU C when a constant is passed as an actual parameter
9859 to an inlined function. They can also arise in C++ where declared
9860 constants do not necessarily get memory "homes". */
9862 static void
9863 add_const_value_attribute (dw_die_ref die, rtx rtl)
9865 switch (GET_CODE (rtl))
9867 case CONST_INT:
9869 HOST_WIDE_INT val = INTVAL (rtl);
9871 if (val < 0)
9872 add_AT_int (die, DW_AT_const_value, val);
9873 else
9874 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9876 break;
9878 case CONST_DOUBLE:
9879 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9880 floating-point constant. A CONST_DOUBLE is used whenever the
9881 constant requires more than one word in order to be adequately
9882 represented. We output CONST_DOUBLEs as blocks. */
9884 enum machine_mode mode = GET_MODE (rtl);
9886 if (SCALAR_FLOAT_MODE_P (mode))
9888 unsigned int length = GET_MODE_SIZE (mode);
9889 unsigned char *array = ggc_alloc (length);
9891 insert_float (rtl, array);
9892 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9894 else
9896 /* ??? We really should be using HOST_WIDE_INT throughout. */
9897 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9899 add_AT_long_long (die, DW_AT_const_value,
9900 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9903 break;
9905 case CONST_VECTOR:
9907 enum machine_mode mode = GET_MODE (rtl);
9908 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9909 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9910 unsigned char *array = ggc_alloc (length * elt_size);
9911 unsigned int i;
9912 unsigned char *p;
9914 switch (GET_MODE_CLASS (mode))
9916 case MODE_VECTOR_INT:
9917 for (i = 0, p = array; i < length; i++, p += elt_size)
9919 rtx elt = CONST_VECTOR_ELT (rtl, i);
9920 HOST_WIDE_INT lo, hi;
9922 switch (GET_CODE (elt))
9924 case CONST_INT:
9925 lo = INTVAL (elt);
9926 hi = -(lo < 0);
9927 break;
9929 case CONST_DOUBLE:
9930 lo = CONST_DOUBLE_LOW (elt);
9931 hi = CONST_DOUBLE_HIGH (elt);
9932 break;
9934 default:
9935 gcc_unreachable ();
9938 if (elt_size <= sizeof (HOST_WIDE_INT))
9939 insert_int (lo, elt_size, p);
9940 else
9942 unsigned char *p0 = p;
9943 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9945 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9946 if (WORDS_BIG_ENDIAN)
9948 p0 = p1;
9949 p1 = p;
9951 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9952 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9955 break;
9957 case MODE_VECTOR_FLOAT:
9958 for (i = 0, p = array; i < length; i++, p += elt_size)
9960 rtx elt = CONST_VECTOR_ELT (rtl, i);
9961 insert_float (elt, p);
9963 break;
9965 default:
9966 gcc_unreachable ();
9969 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9971 break;
9973 case CONST_STRING:
9974 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9975 break;
9977 case SYMBOL_REF:
9978 case LABEL_REF:
9979 case CONST:
9980 add_AT_addr (die, DW_AT_const_value, rtl);
9981 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9982 break;
9984 case PLUS:
9985 /* In cases where an inlined instance of an inline function is passed
9986 the address of an `auto' variable (which is local to the caller) we
9987 can get a situation where the DECL_RTL of the artificial local
9988 variable (for the inlining) which acts as a stand-in for the
9989 corresponding formal parameter (of the inline function) will look
9990 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9991 exactly a compile-time constant expression, but it isn't the address
9992 of the (artificial) local variable either. Rather, it represents the
9993 *value* which the artificial local variable always has during its
9994 lifetime. We currently have no way to represent such quasi-constant
9995 values in Dwarf, so for now we just punt and generate nothing. */
9996 break;
9998 default:
9999 /* No other kinds of rtx should be possible here. */
10000 gcc_unreachable ();
10005 /* Determine whether the evaluation of EXPR references any variables
10006 or functions which aren't otherwise used (and therefore may not be
10007 output). */
10008 static tree
10009 reference_to_unused (tree * tp, int * walk_subtrees,
10010 void * data ATTRIBUTE_UNUSED)
10012 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10013 *walk_subtrees = 0;
10015 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10016 && ! TREE_ASM_WRITTEN (*tp))
10017 return *tp;
10018 else
10019 return NULL_TREE;
10022 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10023 for use in a later add_const_value_attribute call. */
10025 static rtx
10026 rtl_for_decl_init (tree init, tree type)
10028 rtx rtl = NULL_RTX;
10030 /* If a variable is initialized with a string constant without embedded
10031 zeros, build CONST_STRING. */
10032 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10034 tree enttype = TREE_TYPE (type);
10035 tree domain = TYPE_DOMAIN (type);
10036 enum machine_mode mode = TYPE_MODE (enttype);
10038 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10039 && domain
10040 && integer_zerop (TYPE_MIN_VALUE (domain))
10041 && compare_tree_int (TYPE_MAX_VALUE (domain),
10042 TREE_STRING_LENGTH (init) - 1) == 0
10043 && ((size_t) TREE_STRING_LENGTH (init)
10044 == strlen (TREE_STRING_POINTER (init)) + 1))
10045 rtl = gen_rtx_CONST_STRING (VOIDmode,
10046 ggc_strdup (TREE_STRING_POINTER (init)));
10048 /* Other aggregates, and complex values, could be represented using
10049 CONCAT: FIXME! */
10050 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10052 /* Vectors only work if their mode is supported by the target.
10053 FIXME: generic vectors ought to work too. */
10054 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10056 /* If the initializer is something that we know will expand into an
10057 immediate RTL constant, expand it now. We must be careful not to
10058 reference variables which won't be output. */
10059 else if (initializer_constant_valid_p (init, type)
10060 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10062 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10064 /* If expand_expr returns a MEM, it wasn't immediate. */
10065 gcc_assert (!rtl || !MEM_P (rtl));
10068 return rtl;
10071 /* Generate RTL for the variable DECL to represent its location. */
10073 static rtx
10074 rtl_for_decl_location (tree decl)
10076 rtx rtl;
10078 /* Here we have to decide where we are going to say the parameter "lives"
10079 (as far as the debugger is concerned). We only have a couple of
10080 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10082 DECL_RTL normally indicates where the parameter lives during most of the
10083 activation of the function. If optimization is enabled however, this
10084 could be either NULL or else a pseudo-reg. Both of those cases indicate
10085 that the parameter doesn't really live anywhere (as far as the code
10086 generation parts of GCC are concerned) during most of the function's
10087 activation. That will happen (for example) if the parameter is never
10088 referenced within the function.
10090 We could just generate a location descriptor here for all non-NULL
10091 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10092 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10093 where DECL_RTL is NULL or is a pseudo-reg.
10095 Note however that we can only get away with using DECL_INCOMING_RTL as
10096 a backup substitute for DECL_RTL in certain limited cases. In cases
10097 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10098 we can be sure that the parameter was passed using the same type as it is
10099 declared to have within the function, and that its DECL_INCOMING_RTL
10100 points us to a place where a value of that type is passed.
10102 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10103 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10104 because in these cases DECL_INCOMING_RTL points us to a value of some
10105 type which is *different* from the type of the parameter itself. Thus,
10106 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10107 such cases, the debugger would end up (for example) trying to fetch a
10108 `float' from a place which actually contains the first part of a
10109 `double'. That would lead to really incorrect and confusing
10110 output at debug-time.
10112 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10113 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10114 are a couple of exceptions however. On little-endian machines we can
10115 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10116 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10117 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10118 when (on a little-endian machine) a non-prototyped function has a
10119 parameter declared to be of type `short' or `char'. In such cases,
10120 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10121 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10122 passed `int' value. If the debugger then uses that address to fetch
10123 a `short' or a `char' (on a little-endian machine) the result will be
10124 the correct data, so we allow for such exceptional cases below.
10126 Note that our goal here is to describe the place where the given formal
10127 parameter lives during most of the function's activation (i.e. between the
10128 end of the prologue and the start of the epilogue). We'll do that as best
10129 as we can. Note however that if the given formal parameter is modified
10130 sometime during the execution of the function, then a stack backtrace (at
10131 debug-time) will show the function as having been called with the *new*
10132 value rather than the value which was originally passed in. This happens
10133 rarely enough that it is not a major problem, but it *is* a problem, and
10134 I'd like to fix it.
10136 A future version of dwarf2out.c may generate two additional attributes for
10137 any given DW_TAG_formal_parameter DIE which will describe the "passed
10138 type" and the "passed location" for the given formal parameter in addition
10139 to the attributes we now generate to indicate the "declared type" and the
10140 "active location" for each parameter. This additional set of attributes
10141 could be used by debuggers for stack backtraces. Separately, note that
10142 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10143 This happens (for example) for inlined-instances of inline function formal
10144 parameters which are never referenced. This really shouldn't be
10145 happening. All PARM_DECL nodes should get valid non-NULL
10146 DECL_INCOMING_RTL values. FIXME. */
10148 /* Use DECL_RTL as the "location" unless we find something better. */
10149 rtl = DECL_RTL_IF_SET (decl);
10151 /* When generating abstract instances, ignore everything except
10152 constants, symbols living in memory, and symbols living in
10153 fixed registers. */
10154 if (! reload_completed)
10156 if (rtl
10157 && (CONSTANT_P (rtl)
10158 || (MEM_P (rtl)
10159 && CONSTANT_P (XEXP (rtl, 0)))
10160 || (REG_P (rtl)
10161 && TREE_CODE (decl) == VAR_DECL
10162 && TREE_STATIC (decl))))
10164 rtl = targetm.delegitimize_address (rtl);
10165 return rtl;
10167 rtl = NULL_RTX;
10169 else if (TREE_CODE (decl) == PARM_DECL)
10171 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10173 tree declared_type = TREE_TYPE (decl);
10174 tree passed_type = DECL_ARG_TYPE (decl);
10175 enum machine_mode dmode = TYPE_MODE (declared_type);
10176 enum machine_mode pmode = TYPE_MODE (passed_type);
10178 /* This decl represents a formal parameter which was optimized out.
10179 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10180 all cases where (rtl == NULL_RTX) just below. */
10181 if (dmode == pmode)
10182 rtl = DECL_INCOMING_RTL (decl);
10183 else if (SCALAR_INT_MODE_P (dmode)
10184 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10185 && DECL_INCOMING_RTL (decl))
10187 rtx inc = DECL_INCOMING_RTL (decl);
10188 if (REG_P (inc))
10189 rtl = inc;
10190 else if (MEM_P (inc))
10192 if (BYTES_BIG_ENDIAN)
10193 rtl = adjust_address_nv (inc, dmode,
10194 GET_MODE_SIZE (pmode)
10195 - GET_MODE_SIZE (dmode));
10196 else
10197 rtl = inc;
10202 /* If the parm was passed in registers, but lives on the stack, then
10203 make a big endian correction if the mode of the type of the
10204 parameter is not the same as the mode of the rtl. */
10205 /* ??? This is the same series of checks that are made in dbxout.c before
10206 we reach the big endian correction code there. It isn't clear if all
10207 of these checks are necessary here, but keeping them all is the safe
10208 thing to do. */
10209 else if (MEM_P (rtl)
10210 && XEXP (rtl, 0) != const0_rtx
10211 && ! CONSTANT_P (XEXP (rtl, 0))
10212 /* Not passed in memory. */
10213 && !MEM_P (DECL_INCOMING_RTL (decl))
10214 /* Not passed by invisible reference. */
10215 && (!REG_P (XEXP (rtl, 0))
10216 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10217 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10218 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10219 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10220 #endif
10222 /* Big endian correction check. */
10223 && BYTES_BIG_ENDIAN
10224 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10225 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10226 < UNITS_PER_WORD))
10228 int offset = (UNITS_PER_WORD
10229 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10231 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10232 plus_constant (XEXP (rtl, 0), offset));
10235 else if (TREE_CODE (decl) == VAR_DECL
10236 && rtl
10237 && MEM_P (rtl)
10238 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10239 && BYTES_BIG_ENDIAN)
10241 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10242 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10244 /* If a variable is declared "register" yet is smaller than
10245 a register, then if we store the variable to memory, it
10246 looks like we're storing a register-sized value, when in
10247 fact we are not. We need to adjust the offset of the
10248 storage location to reflect the actual value's bytes,
10249 else gdb will not be able to display it. */
10250 if (rsize > dsize)
10251 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10252 plus_constant (XEXP (rtl, 0), rsize-dsize));
10255 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10256 and will have been substituted directly into all expressions that use it.
10257 C does not have such a concept, but C++ and other languages do. */
10258 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10259 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10261 if (rtl)
10262 rtl = targetm.delegitimize_address (rtl);
10264 /* If we don't look past the constant pool, we risk emitting a
10265 reference to a constant pool entry that isn't referenced from
10266 code, and thus is not emitted. */
10267 if (rtl)
10268 rtl = avoid_constant_pool_reference (rtl);
10270 return rtl;
10273 /* We need to figure out what section we should use as the base for the
10274 address ranges where a given location is valid.
10275 1. If this particular DECL has a section associated with it, use that.
10276 2. If this function has a section associated with it, use that.
10277 3. Otherwise, use the text section.
10278 XXX: If you split a variable across multiple sections, we won't notice. */
10280 static const char *
10281 secname_for_decl (tree decl)
10283 const char *secname;
10285 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10287 tree sectree = DECL_SECTION_NAME (decl);
10288 secname = TREE_STRING_POINTER (sectree);
10290 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10292 tree sectree = DECL_SECTION_NAME (current_function_decl);
10293 secname = TREE_STRING_POINTER (sectree);
10295 else if (cfun && in_cold_section_p)
10296 secname = cfun->cold_section_label;
10297 else
10298 secname = text_section_label;
10300 return secname;
10303 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10304 data attribute for a variable or a parameter. We generate the
10305 DW_AT_const_value attribute only in those cases where the given variable
10306 or parameter does not have a true "location" either in memory or in a
10307 register. This can happen (for example) when a constant is passed as an
10308 actual argument in a call to an inline function. (It's possible that
10309 these things can crop up in other ways also.) Note that one type of
10310 constant value which can be passed into an inlined function is a constant
10311 pointer. This can happen for example if an actual argument in an inlined
10312 function call evaluates to a compile-time constant address. */
10314 static void
10315 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10316 enum dwarf_attribute attr)
10318 rtx rtl;
10319 dw_loc_descr_ref descr;
10320 var_loc_list *loc_list;
10321 struct var_loc_node *node;
10322 if (TREE_CODE (decl) == ERROR_MARK)
10323 return;
10325 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10326 || TREE_CODE (decl) == RESULT_DECL);
10328 /* See if we possibly have multiple locations for this variable. */
10329 loc_list = lookup_decl_loc (decl);
10331 /* If it truly has multiple locations, the first and last node will
10332 differ. */
10333 if (loc_list && loc_list->first != loc_list->last)
10335 const char *endname, *secname;
10336 dw_loc_list_ref list;
10337 rtx varloc;
10339 /* Now that we know what section we are using for a base,
10340 actually construct the list of locations.
10341 The first location information is what is passed to the
10342 function that creates the location list, and the remaining
10343 locations just get added on to that list.
10344 Note that we only know the start address for a location
10345 (IE location changes), so to build the range, we use
10346 the range [current location start, next location start].
10347 This means we have to special case the last node, and generate
10348 a range of [last location start, end of function label]. */
10350 node = loc_list->first;
10351 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10352 secname = secname_for_decl (decl);
10354 list = new_loc_list (loc_descriptor (varloc),
10355 node->label, node->next->label, secname, 1);
10356 node = node->next;
10358 for (; node->next; node = node->next)
10359 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10361 /* The variable has a location between NODE->LABEL and
10362 NODE->NEXT->LABEL. */
10363 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10364 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10365 node->label, node->next->label, secname);
10368 /* If the variable has a location at the last label
10369 it keeps its location until the end of function. */
10370 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10372 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10374 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10375 if (!current_function_decl)
10376 endname = text_end_label;
10377 else
10379 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10380 current_function_funcdef_no);
10381 endname = ggc_strdup (label_id);
10383 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10384 node->label, endname, secname);
10387 /* Finally, add the location list to the DIE, and we are done. */
10388 add_AT_loc_list (die, attr, list);
10389 return;
10392 /* Try to get some constant RTL for this decl, and use that as the value of
10393 the location. */
10395 rtl = rtl_for_decl_location (decl);
10396 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10398 add_const_value_attribute (die, rtl);
10399 return;
10402 /* If we have tried to generate the location otherwise, and it
10403 didn't work out (we wouldn't be here if we did), and we have a one entry
10404 location list, try generating a location from that. */
10405 if (loc_list && loc_list->first)
10407 node = loc_list->first;
10408 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10409 if (descr)
10411 add_AT_location_description (die, attr, descr);
10412 return;
10416 /* We couldn't get any rtl, so try directly generating the location
10417 description from the tree. */
10418 descr = loc_descriptor_from_tree (decl);
10419 if (descr)
10421 add_AT_location_description (die, attr, descr);
10422 return;
10424 /* None of that worked, so it must not really have a location;
10425 try adding a constant value attribute from the DECL_INITIAL. */
10426 tree_add_const_value_attribute (die, decl);
10429 /* If we don't have a copy of this variable in memory for some reason (such
10430 as a C++ member constant that doesn't have an out-of-line definition),
10431 we should tell the debugger about the constant value. */
10433 static void
10434 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10436 tree init = DECL_INITIAL (decl);
10437 tree type = TREE_TYPE (decl);
10438 rtx rtl;
10440 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10441 /* OK */;
10442 else
10443 return;
10445 rtl = rtl_for_decl_init (init, type);
10446 if (rtl)
10447 add_const_value_attribute (var_die, rtl);
10450 /* Convert the CFI instructions for the current function into a
10451 location list. This is used for DW_AT_frame_base when we targeting
10452 a dwarf2 consumer that does not support the dwarf3
10453 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10454 expressions. */
10456 static dw_loc_list_ref
10457 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10459 dw_fde_ref fde;
10460 dw_loc_list_ref list, *list_tail;
10461 dw_cfi_ref cfi;
10462 dw_cfa_location last_cfa, next_cfa;
10463 const char *start_label, *last_label, *section;
10465 fde = &fde_table[fde_table_in_use - 1];
10467 section = secname_for_decl (current_function_decl);
10468 list_tail = &list;
10469 list = NULL;
10471 next_cfa.reg = INVALID_REGNUM;
10472 next_cfa.offset = 0;
10473 next_cfa.indirect = 0;
10474 next_cfa.base_offset = 0;
10476 start_label = fde->dw_fde_begin;
10478 /* ??? Bald assumption that the CIE opcode list does not contain
10479 advance opcodes. */
10480 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10481 lookup_cfa_1 (cfi, &next_cfa);
10483 last_cfa = next_cfa;
10484 last_label = start_label;
10486 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10487 switch (cfi->dw_cfi_opc)
10489 case DW_CFA_set_loc:
10490 case DW_CFA_advance_loc1:
10491 case DW_CFA_advance_loc2:
10492 case DW_CFA_advance_loc4:
10493 if (!cfa_equal_p (&last_cfa, &next_cfa))
10495 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10496 start_label, last_label, section,
10497 list == NULL);
10499 list_tail = &(*list_tail)->dw_loc_next;
10500 last_cfa = next_cfa;
10501 start_label = last_label;
10503 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10504 break;
10506 case DW_CFA_advance_loc:
10507 /* The encoding is complex enough that we should never emit this. */
10508 case DW_CFA_remember_state:
10509 case DW_CFA_restore_state:
10510 /* We don't handle these two in this function. It would be possible
10511 if it were to be required. */
10512 gcc_unreachable ();
10514 default:
10515 lookup_cfa_1 (cfi, &next_cfa);
10516 break;
10519 if (!cfa_equal_p (&last_cfa, &next_cfa))
10521 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10522 start_label, last_label, section,
10523 list == NULL);
10524 list_tail = &(*list_tail)->dw_loc_next;
10525 start_label = last_label;
10527 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10528 start_label, fde->dw_fde_end, section,
10529 list == NULL);
10531 return list;
10534 /* Compute a displacement from the "steady-state frame pointer" to the
10535 frame base (often the same as the CFA), and store it in
10536 frame_pointer_fb_offset. OFFSET is added to the displacement
10537 before the latter is negated. */
10539 static void
10540 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10542 rtx reg, elim;
10544 #ifdef FRAME_POINTER_CFA_OFFSET
10545 reg = frame_pointer_rtx;
10546 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10547 #else
10548 reg = arg_pointer_rtx;
10549 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10550 #endif
10552 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10553 if (GET_CODE (elim) == PLUS)
10555 offset += INTVAL (XEXP (elim, 1));
10556 elim = XEXP (elim, 0);
10558 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10559 : stack_pointer_rtx));
10561 frame_pointer_fb_offset = -offset;
10564 /* Generate a DW_AT_name attribute given some string value to be included as
10565 the value of the attribute. */
10567 static void
10568 add_name_attribute (dw_die_ref die, const char *name_string)
10570 if (name_string != NULL && *name_string != 0)
10572 if (demangle_name_func)
10573 name_string = (*demangle_name_func) (name_string);
10575 add_AT_string (die, DW_AT_name, name_string);
10579 /* Generate a DW_AT_comp_dir attribute for DIE. */
10581 static void
10582 add_comp_dir_attribute (dw_die_ref die)
10584 const char *wd = get_src_pwd ();
10585 if (wd != NULL)
10586 add_AT_string (die, DW_AT_comp_dir, wd);
10589 /* Given a tree node describing an array bound (either lower or upper) output
10590 a representation for that bound. */
10592 static void
10593 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10595 switch (TREE_CODE (bound))
10597 case ERROR_MARK:
10598 return;
10600 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10601 case INTEGER_CST:
10602 if (! host_integerp (bound, 0)
10603 || (bound_attr == DW_AT_lower_bound
10604 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10605 || (is_fortran () && integer_onep (bound)))))
10606 /* Use the default. */
10608 else
10609 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10610 break;
10612 case CONVERT_EXPR:
10613 case NOP_EXPR:
10614 case NON_LVALUE_EXPR:
10615 case VIEW_CONVERT_EXPR:
10616 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10617 break;
10619 case SAVE_EXPR:
10620 break;
10622 case VAR_DECL:
10623 case PARM_DECL:
10624 case RESULT_DECL:
10626 dw_die_ref decl_die = lookup_decl_die (bound);
10628 /* ??? Can this happen, or should the variable have been bound
10629 first? Probably it can, since I imagine that we try to create
10630 the types of parameters in the order in which they exist in
10631 the list, and won't have created a forward reference to a
10632 later parameter. */
10633 if (decl_die != NULL)
10634 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10635 break;
10638 default:
10640 /* Otherwise try to create a stack operation procedure to
10641 evaluate the value of the array bound. */
10643 dw_die_ref ctx, decl_die;
10644 dw_loc_descr_ref loc;
10646 loc = loc_descriptor_from_tree (bound);
10647 if (loc == NULL)
10648 break;
10650 if (current_function_decl == 0)
10651 ctx = comp_unit_die;
10652 else
10653 ctx = lookup_decl_die (current_function_decl);
10655 decl_die = new_die (DW_TAG_variable, ctx, bound);
10656 add_AT_flag (decl_die, DW_AT_artificial, 1);
10657 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10658 add_AT_loc (decl_die, DW_AT_location, loc);
10660 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10661 break;
10666 /* Note that the block of subscript information for an array type also
10667 includes information about the element type of type given array type. */
10669 static void
10670 add_subscript_info (dw_die_ref type_die, tree type)
10672 #ifndef MIPS_DEBUGGING_INFO
10673 unsigned dimension_number;
10674 #endif
10675 tree lower, upper;
10676 dw_die_ref subrange_die;
10678 /* The GNU compilers represent multidimensional array types as sequences of
10679 one dimensional array types whose element types are themselves array
10680 types. Here we squish that down, so that each multidimensional array
10681 type gets only one array_type DIE in the Dwarf debugging info. The draft
10682 Dwarf specification say that we are allowed to do this kind of
10683 compression in C (because there is no difference between an array or
10684 arrays and a multidimensional array in C) but for other source languages
10685 (e.g. Ada) we probably shouldn't do this. */
10687 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10688 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10689 We work around this by disabling this feature. See also
10690 gen_array_type_die. */
10691 #ifndef MIPS_DEBUGGING_INFO
10692 for (dimension_number = 0;
10693 TREE_CODE (type) == ARRAY_TYPE;
10694 type = TREE_TYPE (type), dimension_number++)
10695 #endif
10697 tree domain = TYPE_DOMAIN (type);
10699 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10700 and (in GNU C only) variable bounds. Handle all three forms
10701 here. */
10702 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10703 if (domain)
10705 /* We have an array type with specified bounds. */
10706 lower = TYPE_MIN_VALUE (domain);
10707 upper = TYPE_MAX_VALUE (domain);
10709 /* Define the index type. */
10710 if (TREE_TYPE (domain))
10712 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10713 TREE_TYPE field. We can't emit debug info for this
10714 because it is an unnamed integral type. */
10715 if (TREE_CODE (domain) == INTEGER_TYPE
10716 && TYPE_NAME (domain) == NULL_TREE
10717 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10718 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10720 else
10721 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10722 type_die);
10725 /* ??? If upper is NULL, the array has unspecified length,
10726 but it does have a lower bound. This happens with Fortran
10727 dimension arr(N:*)
10728 Since the debugger is definitely going to need to know N
10729 to produce useful results, go ahead and output the lower
10730 bound solo, and hope the debugger can cope. */
10732 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10733 if (upper)
10734 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10737 /* Otherwise we have an array type with an unspecified length. The
10738 DWARF-2 spec does not say how to handle this; let's just leave out the
10739 bounds. */
10743 static void
10744 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10746 unsigned size;
10748 switch (TREE_CODE (tree_node))
10750 case ERROR_MARK:
10751 size = 0;
10752 break;
10753 case ENUMERAL_TYPE:
10754 case RECORD_TYPE:
10755 case UNION_TYPE:
10756 case QUAL_UNION_TYPE:
10757 size = int_size_in_bytes (tree_node);
10758 break;
10759 case FIELD_DECL:
10760 /* For a data member of a struct or union, the DW_AT_byte_size is
10761 generally given as the number of bytes normally allocated for an
10762 object of the *declared* type of the member itself. This is true
10763 even for bit-fields. */
10764 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10765 break;
10766 default:
10767 gcc_unreachable ();
10770 /* Note that `size' might be -1 when we get to this point. If it is, that
10771 indicates that the byte size of the entity in question is variable. We
10772 have no good way of expressing this fact in Dwarf at the present time,
10773 so just let the -1 pass on through. */
10774 add_AT_unsigned (die, DW_AT_byte_size, size);
10777 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10778 which specifies the distance in bits from the highest order bit of the
10779 "containing object" for the bit-field to the highest order bit of the
10780 bit-field itself.
10782 For any given bit-field, the "containing object" is a hypothetical object
10783 (of some integral or enum type) within which the given bit-field lives. The
10784 type of this hypothetical "containing object" is always the same as the
10785 declared type of the individual bit-field itself. The determination of the
10786 exact location of the "containing object" for a bit-field is rather
10787 complicated. It's handled by the `field_byte_offset' function (above).
10789 Note that it is the size (in bytes) of the hypothetical "containing object"
10790 which will be given in the DW_AT_byte_size attribute for this bit-field.
10791 (See `byte_size_attribute' above). */
10793 static inline void
10794 add_bit_offset_attribute (dw_die_ref die, tree decl)
10796 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10797 tree type = DECL_BIT_FIELD_TYPE (decl);
10798 HOST_WIDE_INT bitpos_int;
10799 HOST_WIDE_INT highest_order_object_bit_offset;
10800 HOST_WIDE_INT highest_order_field_bit_offset;
10801 HOST_WIDE_INT unsigned bit_offset;
10803 /* Must be a field and a bit field. */
10804 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10806 /* We can't yet handle bit-fields whose offsets are variable, so if we
10807 encounter such things, just return without generating any attribute
10808 whatsoever. Likewise for variable or too large size. */
10809 if (! host_integerp (bit_position (decl), 0)
10810 || ! host_integerp (DECL_SIZE (decl), 1))
10811 return;
10813 bitpos_int = int_bit_position (decl);
10815 /* Note that the bit offset is always the distance (in bits) from the
10816 highest-order bit of the "containing object" to the highest-order bit of
10817 the bit-field itself. Since the "high-order end" of any object or field
10818 is different on big-endian and little-endian machines, the computation
10819 below must take account of these differences. */
10820 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10821 highest_order_field_bit_offset = bitpos_int;
10823 if (! BYTES_BIG_ENDIAN)
10825 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10826 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10829 bit_offset
10830 = (! BYTES_BIG_ENDIAN
10831 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10832 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10834 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10837 /* For a FIELD_DECL node which represents a bit field, output an attribute
10838 which specifies the length in bits of the given field. */
10840 static inline void
10841 add_bit_size_attribute (dw_die_ref die, tree decl)
10843 /* Must be a field and a bit field. */
10844 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10845 && DECL_BIT_FIELD_TYPE (decl));
10847 if (host_integerp (DECL_SIZE (decl), 1))
10848 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10851 /* If the compiled language is ANSI C, then add a 'prototyped'
10852 attribute, if arg types are given for the parameters of a function. */
10854 static inline void
10855 add_prototyped_attribute (dw_die_ref die, tree func_type)
10857 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10858 && TYPE_ARG_TYPES (func_type) != NULL)
10859 add_AT_flag (die, DW_AT_prototyped, 1);
10862 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10863 by looking in either the type declaration or object declaration
10864 equate table. */
10866 static inline void
10867 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10869 dw_die_ref origin_die = NULL;
10871 if (TREE_CODE (origin) != FUNCTION_DECL)
10873 /* We may have gotten separated from the block for the inlined
10874 function, if we're in an exception handler or some such; make
10875 sure that the abstract function has been written out.
10877 Doing this for nested functions is wrong, however; functions are
10878 distinct units, and our context might not even be inline. */
10879 tree fn = origin;
10881 if (TYPE_P (fn))
10882 fn = TYPE_STUB_DECL (fn);
10884 fn = decl_function_context (fn);
10885 if (fn)
10886 dwarf2out_abstract_function (fn);
10889 if (DECL_P (origin))
10890 origin_die = lookup_decl_die (origin);
10891 else if (TYPE_P (origin))
10892 origin_die = lookup_type_die (origin);
10894 /* XXX: Functions that are never lowered don't always have correct block
10895 trees (in the case of java, they simply have no block tree, in some other
10896 languages). For these functions, there is nothing we can really do to
10897 output correct debug info for inlined functions in all cases. Rather
10898 than die, we'll just produce deficient debug info now, in that we will
10899 have variables without a proper abstract origin. In the future, when all
10900 functions are lowered, we should re-add a gcc_assert (origin_die)
10901 here. */
10903 if (origin_die)
10904 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10907 /* We do not currently support the pure_virtual attribute. */
10909 static inline void
10910 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10912 if (DECL_VINDEX (func_decl))
10914 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10916 if (host_integerp (DECL_VINDEX (func_decl), 0))
10917 add_AT_loc (die, DW_AT_vtable_elem_location,
10918 new_loc_descr (DW_OP_constu,
10919 tree_low_cst (DECL_VINDEX (func_decl), 0),
10920 0));
10922 /* GNU extension: Record what type this method came from originally. */
10923 if (debug_info_level > DINFO_LEVEL_TERSE)
10924 add_AT_die_ref (die, DW_AT_containing_type,
10925 lookup_type_die (DECL_CONTEXT (func_decl)));
10929 /* Add source coordinate attributes for the given decl. */
10931 static void
10932 add_src_coords_attributes (dw_die_ref die, tree decl)
10934 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10936 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10937 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10940 /* Add a DW_AT_name attribute and source coordinate attribute for the
10941 given decl, but only if it actually has a name. */
10943 static void
10944 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10946 tree decl_name;
10948 decl_name = DECL_NAME (decl);
10949 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10951 add_name_attribute (die, dwarf2_name (decl, 0));
10952 if (! DECL_ARTIFICIAL (decl))
10953 add_src_coords_attributes (die, decl);
10955 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10956 && TREE_PUBLIC (decl)
10957 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10958 && !DECL_ABSTRACT (decl)
10959 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10960 add_AT_string (die, DW_AT_MIPS_linkage_name,
10961 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10964 #ifdef VMS_DEBUGGING_INFO
10965 /* Get the function's name, as described by its RTL. This may be different
10966 from the DECL_NAME name used in the source file. */
10967 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10969 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10970 XEXP (DECL_RTL (decl), 0));
10971 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10973 #endif
10976 /* Push a new declaration scope. */
10978 static void
10979 push_decl_scope (tree scope)
10981 VEC_safe_push (tree, gc, decl_scope_table, scope);
10984 /* Pop a declaration scope. */
10986 static inline void
10987 pop_decl_scope (void)
10989 VEC_pop (tree, decl_scope_table);
10992 /* Return the DIE for the scope that immediately contains this type.
10993 Non-named types get global scope. Named types nested in other
10994 types get their containing scope if it's open, or global scope
10995 otherwise. All other types (i.e. function-local named types) get
10996 the current active scope. */
10998 static dw_die_ref
10999 scope_die_for (tree t, dw_die_ref context_die)
11001 dw_die_ref scope_die = NULL;
11002 tree containing_scope;
11003 int i;
11005 /* Non-types always go in the current scope. */
11006 gcc_assert (TYPE_P (t));
11008 containing_scope = TYPE_CONTEXT (t);
11010 /* Use the containing namespace if it was passed in (for a declaration). */
11011 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11013 if (context_die == lookup_decl_die (containing_scope))
11014 /* OK */;
11015 else
11016 containing_scope = NULL_TREE;
11019 /* Ignore function type "scopes" from the C frontend. They mean that
11020 a tagged type is local to a parmlist of a function declarator, but
11021 that isn't useful to DWARF. */
11022 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11023 containing_scope = NULL_TREE;
11025 if (containing_scope == NULL_TREE)
11026 scope_die = comp_unit_die;
11027 else if (TYPE_P (containing_scope))
11029 /* For types, we can just look up the appropriate DIE. But
11030 first we check to see if we're in the middle of emitting it
11031 so we know where the new DIE should go. */
11032 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11033 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11034 break;
11036 if (i < 0)
11038 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11039 || TREE_ASM_WRITTEN (containing_scope));
11041 /* If none of the current dies are suitable, we get file scope. */
11042 scope_die = comp_unit_die;
11044 else
11045 scope_die = lookup_type_die (containing_scope);
11047 else
11048 scope_die = context_die;
11050 return scope_die;
11053 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11055 static inline int
11056 local_scope_p (dw_die_ref context_die)
11058 for (; context_die; context_die = context_die->die_parent)
11059 if (context_die->die_tag == DW_TAG_inlined_subroutine
11060 || context_die->die_tag == DW_TAG_subprogram)
11061 return 1;
11063 return 0;
11066 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11067 whether or not to treat a DIE in this context as a declaration. */
11069 static inline int
11070 class_or_namespace_scope_p (dw_die_ref context_die)
11072 return (context_die
11073 && (context_die->die_tag == DW_TAG_structure_type
11074 || context_die->die_tag == DW_TAG_union_type
11075 || context_die->die_tag == DW_TAG_namespace));
11078 /* Many forms of DIEs require a "type description" attribute. This
11079 routine locates the proper "type descriptor" die for the type given
11080 by 'type', and adds a DW_AT_type attribute below the given die. */
11082 static void
11083 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11084 int decl_volatile, dw_die_ref context_die)
11086 enum tree_code code = TREE_CODE (type);
11087 dw_die_ref type_die = NULL;
11089 /* ??? If this type is an unnamed subrange type of an integral or
11090 floating-point type, use the inner type. This is because we have no
11091 support for unnamed types in base_type_die. This can happen if this is
11092 an Ada subrange type. Correct solution is emit a subrange type die. */
11093 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11094 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11095 type = TREE_TYPE (type), code = TREE_CODE (type);
11097 if (code == ERROR_MARK
11098 /* Handle a special case. For functions whose return type is void, we
11099 generate *no* type attribute. (Note that no object may have type
11100 `void', so this only applies to function return types). */
11101 || code == VOID_TYPE)
11102 return;
11104 type_die = modified_type_die (type,
11105 decl_const || TYPE_READONLY (type),
11106 decl_volatile || TYPE_VOLATILE (type),
11107 context_die);
11109 if (type_die != NULL)
11110 add_AT_die_ref (object_die, DW_AT_type, type_die);
11113 /* Given an object die, add the calling convention attribute for the
11114 function call type. */
11115 static void
11116 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11118 enum dwarf_calling_convention value = DW_CC_normal;
11120 value = targetm.dwarf_calling_convention (type);
11122 /* Only add the attribute if the backend requests it, and
11123 is not DW_CC_normal. */
11124 if (value && (value != DW_CC_normal))
11125 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11128 /* Given a tree pointer to a struct, class, union, or enum type node, return
11129 a pointer to the (string) tag name for the given type, or zero if the type
11130 was declared without a tag. */
11132 static const char *
11133 type_tag (tree type)
11135 const char *name = 0;
11137 if (TYPE_NAME (type) != 0)
11139 tree t = 0;
11141 /* Find the IDENTIFIER_NODE for the type name. */
11142 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11143 t = TYPE_NAME (type);
11145 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11146 a TYPE_DECL node, regardless of whether or not a `typedef' was
11147 involved. */
11148 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11149 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11150 t = DECL_NAME (TYPE_NAME (type));
11152 /* Now get the name as a string, or invent one. */
11153 if (t != 0)
11154 name = IDENTIFIER_POINTER (t);
11157 return (name == 0 || *name == '\0') ? 0 : name;
11160 /* Return the type associated with a data member, make a special check
11161 for bit field types. */
11163 static inline tree
11164 member_declared_type (tree member)
11166 return (DECL_BIT_FIELD_TYPE (member)
11167 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11170 /* Get the decl's label, as described by its RTL. This may be different
11171 from the DECL_NAME name used in the source file. */
11173 #if 0
11174 static const char *
11175 decl_start_label (tree decl)
11177 rtx x;
11178 const char *fnname;
11180 x = DECL_RTL (decl);
11181 gcc_assert (MEM_P (x));
11183 x = XEXP (x, 0);
11184 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11186 fnname = XSTR (x, 0);
11187 return fnname;
11189 #endif
11191 /* These routines generate the internal representation of the DIE's for
11192 the compilation unit. Debugging information is collected by walking
11193 the declaration trees passed in from dwarf2out_decl(). */
11195 static void
11196 gen_array_type_die (tree type, dw_die_ref context_die)
11198 dw_die_ref scope_die = scope_die_for (type, context_die);
11199 dw_die_ref array_die;
11200 tree element_type;
11202 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11203 the inner array type comes before the outer array type. Thus we must
11204 call gen_type_die before we call new_die. See below also. */
11205 #ifdef MIPS_DEBUGGING_INFO
11206 gen_type_die (TREE_TYPE (type), context_die);
11207 #endif
11209 array_die = new_die (DW_TAG_array_type, scope_die, type);
11210 add_name_attribute (array_die, type_tag (type));
11211 equate_type_number_to_die (type, array_die);
11213 if (TREE_CODE (type) == VECTOR_TYPE)
11215 /* The frontend feeds us a representation for the vector as a struct
11216 containing an array. Pull out the array type. */
11217 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11218 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11221 #if 0
11222 /* We default the array ordering. SDB will probably do
11223 the right things even if DW_AT_ordering is not present. It's not even
11224 an issue until we start to get into multidimensional arrays anyway. If
11225 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11226 then we'll have to put the DW_AT_ordering attribute back in. (But if
11227 and when we find out that we need to put these in, we will only do so
11228 for multidimensional arrays. */
11229 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11230 #endif
11232 #ifdef MIPS_DEBUGGING_INFO
11233 /* The SGI compilers handle arrays of unknown bound by setting
11234 AT_declaration and not emitting any subrange DIEs. */
11235 if (! TYPE_DOMAIN (type))
11236 add_AT_flag (array_die, DW_AT_declaration, 1);
11237 else
11238 #endif
11239 add_subscript_info (array_die, type);
11241 /* Add representation of the type of the elements of this array type. */
11242 element_type = TREE_TYPE (type);
11244 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11245 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11246 We work around this by disabling this feature. See also
11247 add_subscript_info. */
11248 #ifndef MIPS_DEBUGGING_INFO
11249 while (TREE_CODE (element_type) == ARRAY_TYPE)
11250 element_type = TREE_TYPE (element_type);
11252 gen_type_die (element_type, context_die);
11253 #endif
11255 add_type_attribute (array_die, element_type, 0, 0, context_die);
11258 #if 0
11259 static void
11260 gen_entry_point_die (tree decl, dw_die_ref context_die)
11262 tree origin = decl_ultimate_origin (decl);
11263 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11265 if (origin != NULL)
11266 add_abstract_origin_attribute (decl_die, origin);
11267 else
11269 add_name_and_src_coords_attributes (decl_die, decl);
11270 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11271 0, 0, context_die);
11274 if (DECL_ABSTRACT (decl))
11275 equate_decl_number_to_die (decl, decl_die);
11276 else
11277 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11279 #endif
11281 /* Walk through the list of incomplete types again, trying once more to
11282 emit full debugging info for them. */
11284 static void
11285 retry_incomplete_types (void)
11287 int i;
11289 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11290 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11293 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11295 static void
11296 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11298 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11300 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11301 be incomplete and such types are not marked. */
11302 add_abstract_origin_attribute (type_die, type);
11305 /* Generate a DIE to represent an inlined instance of a structure type. */
11307 static void
11308 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11310 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11312 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11313 be incomplete and such types are not marked. */
11314 add_abstract_origin_attribute (type_die, type);
11317 /* Generate a DIE to represent an inlined instance of a union type. */
11319 static void
11320 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11322 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11324 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11325 be incomplete and such types are not marked. */
11326 add_abstract_origin_attribute (type_die, type);
11329 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11330 include all of the information about the enumeration values also. Each
11331 enumerated type name/value is listed as a child of the enumerated type
11332 DIE. */
11334 static dw_die_ref
11335 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11337 dw_die_ref type_die = lookup_type_die (type);
11339 if (type_die == NULL)
11341 type_die = new_die (DW_TAG_enumeration_type,
11342 scope_die_for (type, context_die), type);
11343 equate_type_number_to_die (type, type_die);
11344 add_name_attribute (type_die, type_tag (type));
11346 else if (! TYPE_SIZE (type))
11347 return type_die;
11348 else
11349 remove_AT (type_die, DW_AT_declaration);
11351 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11352 given enum type is incomplete, do not generate the DW_AT_byte_size
11353 attribute or the DW_AT_element_list attribute. */
11354 if (TYPE_SIZE (type))
11356 tree link;
11358 TREE_ASM_WRITTEN (type) = 1;
11359 add_byte_size_attribute (type_die, type);
11360 if (TYPE_STUB_DECL (type) != NULL_TREE)
11361 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11363 /* If the first reference to this type was as the return type of an
11364 inline function, then it may not have a parent. Fix this now. */
11365 if (type_die->die_parent == NULL)
11366 add_child_die (scope_die_for (type, context_die), type_die);
11368 for (link = TYPE_VALUES (type);
11369 link != NULL; link = TREE_CHAIN (link))
11371 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11372 tree value = TREE_VALUE (link);
11374 add_name_attribute (enum_die,
11375 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11377 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11378 /* DWARF2 does not provide a way of indicating whether or
11379 not enumeration constants are signed or unsigned. GDB
11380 always assumes the values are signed, so we output all
11381 values as if they were signed. That means that
11382 enumeration constants with very large unsigned values
11383 will appear to have negative values in the debugger. */
11384 add_AT_int (enum_die, DW_AT_const_value,
11385 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11388 else
11389 add_AT_flag (type_die, DW_AT_declaration, 1);
11391 return type_die;
11394 /* Generate a DIE to represent either a real live formal parameter decl or to
11395 represent just the type of some formal parameter position in some function
11396 type.
11398 Note that this routine is a bit unusual because its argument may be a
11399 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11400 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11401 node. If it's the former then this function is being called to output a
11402 DIE to represent a formal parameter object (or some inlining thereof). If
11403 it's the latter, then this function is only being called to output a
11404 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11405 argument type of some subprogram type. */
11407 static dw_die_ref
11408 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11410 dw_die_ref parm_die
11411 = new_die (DW_TAG_formal_parameter, context_die, node);
11412 tree origin;
11414 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11416 case tcc_declaration:
11417 origin = decl_ultimate_origin (node);
11418 if (origin != NULL)
11419 add_abstract_origin_attribute (parm_die, origin);
11420 else
11422 add_name_and_src_coords_attributes (parm_die, node);
11423 add_type_attribute (parm_die, TREE_TYPE (node),
11424 TREE_READONLY (node),
11425 TREE_THIS_VOLATILE (node),
11426 context_die);
11427 if (DECL_ARTIFICIAL (node))
11428 add_AT_flag (parm_die, DW_AT_artificial, 1);
11431 equate_decl_number_to_die (node, parm_die);
11432 if (! DECL_ABSTRACT (node))
11433 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11435 break;
11437 case tcc_type:
11438 /* We were called with some kind of a ..._TYPE node. */
11439 add_type_attribute (parm_die, node, 0, 0, context_die);
11440 break;
11442 default:
11443 gcc_unreachable ();
11446 return parm_die;
11449 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11450 at the end of an (ANSI prototyped) formal parameters list. */
11452 static void
11453 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11455 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11458 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11459 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11460 parameters as specified in some function type specification (except for
11461 those which appear as part of a function *definition*). */
11463 static void
11464 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11466 tree link;
11467 tree formal_type = NULL;
11468 tree first_parm_type;
11469 tree arg;
11471 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11473 arg = DECL_ARGUMENTS (function_or_method_type);
11474 function_or_method_type = TREE_TYPE (function_or_method_type);
11476 else
11477 arg = NULL_TREE;
11479 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11481 /* Make our first pass over the list of formal parameter types and output a
11482 DW_TAG_formal_parameter DIE for each one. */
11483 for (link = first_parm_type; link; )
11485 dw_die_ref parm_die;
11487 formal_type = TREE_VALUE (link);
11488 if (formal_type == void_type_node)
11489 break;
11491 /* Output a (nameless) DIE to represent the formal parameter itself. */
11492 parm_die = gen_formal_parameter_die (formal_type, context_die);
11493 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11494 && link == first_parm_type)
11495 || (arg && DECL_ARTIFICIAL (arg)))
11496 add_AT_flag (parm_die, DW_AT_artificial, 1);
11498 link = TREE_CHAIN (link);
11499 if (arg)
11500 arg = TREE_CHAIN (arg);
11503 /* If this function type has an ellipsis, add a
11504 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11505 if (formal_type != void_type_node)
11506 gen_unspecified_parameters_die (function_or_method_type, context_die);
11508 /* Make our second (and final) pass over the list of formal parameter types
11509 and output DIEs to represent those types (as necessary). */
11510 for (link = TYPE_ARG_TYPES (function_or_method_type);
11511 link && TREE_VALUE (link);
11512 link = TREE_CHAIN (link))
11513 gen_type_die (TREE_VALUE (link), context_die);
11516 /* We want to generate the DIE for TYPE so that we can generate the
11517 die for MEMBER, which has been defined; we will need to refer back
11518 to the member declaration nested within TYPE. If we're trying to
11519 generate minimal debug info for TYPE, processing TYPE won't do the
11520 trick; we need to attach the member declaration by hand. */
11522 static void
11523 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11525 gen_type_die (type, context_die);
11527 /* If we're trying to avoid duplicate debug info, we may not have
11528 emitted the member decl for this function. Emit it now. */
11529 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11530 && ! lookup_decl_die (member))
11532 dw_die_ref type_die;
11533 gcc_assert (!decl_ultimate_origin (member));
11535 push_decl_scope (type);
11536 type_die = lookup_type_die (type);
11537 if (TREE_CODE (member) == FUNCTION_DECL)
11538 gen_subprogram_die (member, type_die);
11539 else if (TREE_CODE (member) == FIELD_DECL)
11541 /* Ignore the nameless fields that are used to skip bits but handle
11542 C++ anonymous unions and structs. */
11543 if (DECL_NAME (member) != NULL_TREE
11544 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11545 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11547 gen_type_die (member_declared_type (member), type_die);
11548 gen_field_die (member, type_die);
11551 else
11552 gen_variable_die (member, type_die);
11554 pop_decl_scope ();
11558 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11559 may later generate inlined and/or out-of-line instances of. */
11561 static void
11562 dwarf2out_abstract_function (tree decl)
11564 dw_die_ref old_die;
11565 tree save_fn;
11566 struct function *save_cfun;
11567 tree context;
11568 int was_abstract = DECL_ABSTRACT (decl);
11570 /* Make sure we have the actual abstract inline, not a clone. */
11571 decl = DECL_ORIGIN (decl);
11573 old_die = lookup_decl_die (decl);
11574 if (old_die && get_AT (old_die, DW_AT_inline))
11575 /* We've already generated the abstract instance. */
11576 return;
11578 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11579 we don't get confused by DECL_ABSTRACT. */
11580 if (debug_info_level > DINFO_LEVEL_TERSE)
11582 context = decl_class_context (decl);
11583 if (context)
11584 gen_type_die_for_member
11585 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11588 /* Pretend we've just finished compiling this function. */
11589 save_fn = current_function_decl;
11590 save_cfun = cfun;
11591 current_function_decl = decl;
11592 cfun = DECL_STRUCT_FUNCTION (decl);
11594 set_decl_abstract_flags (decl, 1);
11595 dwarf2out_decl (decl);
11596 if (! was_abstract)
11597 set_decl_abstract_flags (decl, 0);
11599 current_function_decl = save_fn;
11600 cfun = save_cfun;
11603 /* Helper function of premark_used_types() which gets called through
11604 htab_traverse_resize().
11606 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11607 marked as unused by prune_unused_types. */
11608 static int
11609 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11611 tree type;
11612 dw_die_ref die;
11614 type = *slot;
11615 die = lookup_type_die (type);
11616 if (die != NULL)
11617 die->die_perennial_p = 1;
11618 return 1;
11621 /* Mark all members of used_types_hash as perennial. */
11622 static void
11623 premark_used_types (void)
11625 if (cfun && cfun->used_types_hash)
11626 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11629 /* Generate a DIE to represent a declared function (either file-scope or
11630 block-local). */
11632 static void
11633 gen_subprogram_die (tree decl, dw_die_ref context_die)
11635 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11636 tree origin = decl_ultimate_origin (decl);
11637 dw_die_ref subr_die;
11638 tree fn_arg_types;
11639 tree outer_scope;
11640 dw_die_ref old_die = lookup_decl_die (decl);
11641 int declaration = (current_function_decl != decl
11642 || class_or_namespace_scope_p (context_die));
11644 premark_used_types ();
11646 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11647 started to generate the abstract instance of an inline, decided to output
11648 its containing class, and proceeded to emit the declaration of the inline
11649 from the member list for the class. If so, DECLARATION takes priority;
11650 we'll get back to the abstract instance when done with the class. */
11652 /* The class-scope declaration DIE must be the primary DIE. */
11653 if (origin && declaration && class_or_namespace_scope_p (context_die))
11655 origin = NULL;
11656 gcc_assert (!old_die);
11659 /* Now that the C++ front end lazily declares artificial member fns, we
11660 might need to retrofit the declaration into its class. */
11661 if (!declaration && !origin && !old_die
11662 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11663 && !class_or_namespace_scope_p (context_die)
11664 && debug_info_level > DINFO_LEVEL_TERSE)
11665 old_die = force_decl_die (decl);
11667 if (origin != NULL)
11669 gcc_assert (!declaration || local_scope_p (context_die));
11671 /* Fixup die_parent for the abstract instance of a nested
11672 inline function. */
11673 if (old_die && old_die->die_parent == NULL)
11674 add_child_die (context_die, old_die);
11676 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11677 add_abstract_origin_attribute (subr_die, origin);
11679 else if (old_die)
11681 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11682 struct dwarf_file_data * file_index = lookup_filename (s.file);
11684 if (!get_AT_flag (old_die, DW_AT_declaration)
11685 /* We can have a normal definition following an inline one in the
11686 case of redefinition of GNU C extern inlines.
11687 It seems reasonable to use AT_specification in this case. */
11688 && !get_AT (old_die, DW_AT_inline))
11690 /* Detect and ignore this case, where we are trying to output
11691 something we have already output. */
11692 return;
11695 /* If the definition comes from the same place as the declaration,
11696 maybe use the old DIE. We always want the DIE for this function
11697 that has the *_pc attributes to be under comp_unit_die so the
11698 debugger can find it. We also need to do this for abstract
11699 instances of inlines, since the spec requires the out-of-line copy
11700 to have the same parent. For local class methods, this doesn't
11701 apply; we just use the old DIE. */
11702 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11703 && (DECL_ARTIFICIAL (decl)
11704 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11705 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11706 == (unsigned) s.line))))
11708 subr_die = old_die;
11710 /* Clear out the declaration attribute and the formal parameters.
11711 Do not remove all children, because it is possible that this
11712 declaration die was forced using force_decl_die(). In such
11713 cases die that forced declaration die (e.g. TAG_imported_module)
11714 is one of the children that we do not want to remove. */
11715 remove_AT (subr_die, DW_AT_declaration);
11716 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11718 else
11720 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11721 add_AT_specification (subr_die, old_die);
11722 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11723 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11724 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11725 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11728 else
11730 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11732 if (TREE_PUBLIC (decl))
11733 add_AT_flag (subr_die, DW_AT_external, 1);
11735 add_name_and_src_coords_attributes (subr_die, decl);
11736 if (debug_info_level > DINFO_LEVEL_TERSE)
11738 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11739 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11740 0, 0, context_die);
11743 add_pure_or_virtual_attribute (subr_die, decl);
11744 if (DECL_ARTIFICIAL (decl))
11745 add_AT_flag (subr_die, DW_AT_artificial, 1);
11747 if (TREE_PROTECTED (decl))
11748 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11749 else if (TREE_PRIVATE (decl))
11750 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11753 if (declaration)
11755 if (!old_die || !get_AT (old_die, DW_AT_inline))
11757 add_AT_flag (subr_die, DW_AT_declaration, 1);
11759 /* The first time we see a member function, it is in the context of
11760 the class to which it belongs. We make sure of this by emitting
11761 the class first. The next time is the definition, which is
11762 handled above. The two may come from the same source text.
11764 Note that force_decl_die() forces function declaration die. It is
11765 later reused to represent definition. */
11766 equate_decl_number_to_die (decl, subr_die);
11769 else if (DECL_ABSTRACT (decl))
11771 if (DECL_DECLARED_INLINE_P (decl))
11773 if (cgraph_function_possibly_inlined_p (decl))
11774 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11775 else
11776 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11778 else
11780 if (cgraph_function_possibly_inlined_p (decl))
11781 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11782 else
11783 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11786 equate_decl_number_to_die (decl, subr_die);
11788 else if (!DECL_EXTERNAL (decl))
11790 HOST_WIDE_INT cfa_fb_offset;
11792 if (!old_die || !get_AT (old_die, DW_AT_inline))
11793 equate_decl_number_to_die (decl, subr_die);
11795 if (!flag_reorder_blocks_and_partition)
11797 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11798 current_function_funcdef_no);
11799 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11800 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11801 current_function_funcdef_no);
11802 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11804 add_pubname (decl, subr_die);
11805 add_arange (decl, subr_die);
11807 else
11808 { /* Do nothing for now; maybe need to duplicate die, one for
11809 hot section and ond for cold section, then use the hot/cold
11810 section begin/end labels to generate the aranges... */
11812 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11813 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11814 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11815 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11817 add_pubname (decl, subr_die);
11818 add_arange (decl, subr_die);
11819 add_arange (decl, subr_die);
11823 #ifdef MIPS_DEBUGGING_INFO
11824 /* Add a reference to the FDE for this routine. */
11825 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11826 #endif
11828 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11830 /* We define the "frame base" as the function's CFA. This is more
11831 convenient for several reasons: (1) It's stable across the prologue
11832 and epilogue, which makes it better than just a frame pointer,
11833 (2) With dwarf3, there exists a one-byte encoding that allows us
11834 to reference the .debug_frame data by proxy, but failing that,
11835 (3) We can at least reuse the code inspection and interpretation
11836 code that determines the CFA position at various points in the
11837 function. */
11838 /* ??? Use some command-line or configury switch to enable the use
11839 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11840 consumers that understand it; fall back to "pure" dwarf2 and
11841 convert the CFA data into a location list. */
11843 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11844 if (list->dw_loc_next)
11845 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11846 else
11847 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11850 /* Compute a displacement from the "steady-state frame pointer" to
11851 the CFA. The former is what all stack slots and argument slots
11852 will reference in the rtl; the later is what we've told the
11853 debugger about. We'll need to adjust all frame_base references
11854 by this displacement. */
11855 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11857 if (cfun->static_chain_decl)
11858 add_AT_location_description (subr_die, DW_AT_static_link,
11859 loc_descriptor_from_tree (cfun->static_chain_decl));
11862 /* Now output descriptions of the arguments for this function. This gets
11863 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11864 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11865 `...' at the end of the formal parameter list. In order to find out if
11866 there was a trailing ellipsis or not, we must instead look at the type
11867 associated with the FUNCTION_DECL. This will be a node of type
11868 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11869 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11870 an ellipsis at the end. */
11872 /* In the case where we are describing a mere function declaration, all we
11873 need to do here (and all we *can* do here) is to describe the *types* of
11874 its formal parameters. */
11875 if (debug_info_level <= DINFO_LEVEL_TERSE)
11877 else if (declaration)
11878 gen_formal_types_die (decl, subr_die);
11879 else
11881 /* Generate DIEs to represent all known formal parameters. */
11882 tree arg_decls = DECL_ARGUMENTS (decl);
11883 tree parm;
11885 /* When generating DIEs, generate the unspecified_parameters DIE
11886 instead if we come across the arg "__builtin_va_alist" */
11887 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11888 if (TREE_CODE (parm) == PARM_DECL)
11890 if (DECL_NAME (parm)
11891 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11892 "__builtin_va_alist"))
11893 gen_unspecified_parameters_die (parm, subr_die);
11894 else
11895 gen_decl_die (parm, subr_die);
11898 /* Decide whether we need an unspecified_parameters DIE at the end.
11899 There are 2 more cases to do this for: 1) the ansi ... declaration -
11900 this is detectable when the end of the arg list is not a
11901 void_type_node 2) an unprototyped function declaration (not a
11902 definition). This just means that we have no info about the
11903 parameters at all. */
11904 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11905 if (fn_arg_types != NULL)
11907 /* This is the prototyped case, check for.... */
11908 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11909 gen_unspecified_parameters_die (decl, subr_die);
11911 else if (DECL_INITIAL (decl) == NULL_TREE)
11912 gen_unspecified_parameters_die (decl, subr_die);
11915 /* Output Dwarf info for all of the stuff within the body of the function
11916 (if it has one - it may be just a declaration). */
11917 outer_scope = DECL_INITIAL (decl);
11919 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11920 a function. This BLOCK actually represents the outermost binding contour
11921 for the function, i.e. the contour in which the function's formal
11922 parameters and labels get declared. Curiously, it appears that the front
11923 end doesn't actually put the PARM_DECL nodes for the current function onto
11924 the BLOCK_VARS list for this outer scope, but are strung off of the
11925 DECL_ARGUMENTS list for the function instead.
11927 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11928 the LABEL_DECL nodes for the function however, and we output DWARF info
11929 for those in decls_for_scope. Just within the `outer_scope' there will be
11930 a BLOCK node representing the function's outermost pair of curly braces,
11931 and any blocks used for the base and member initializers of a C++
11932 constructor function. */
11933 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11935 /* Emit a DW_TAG_variable DIE for a named return value. */
11936 if (DECL_NAME (DECL_RESULT (decl)))
11937 gen_decl_die (DECL_RESULT (decl), subr_die);
11939 current_function_has_inlines = 0;
11940 decls_for_scope (outer_scope, subr_die, 0);
11942 #if 0 && defined (MIPS_DEBUGGING_INFO)
11943 if (current_function_has_inlines)
11945 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11946 if (! comp_unit_has_inlines)
11948 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11949 comp_unit_has_inlines = 1;
11952 #endif
11954 /* Add the calling convention attribute if requested. */
11955 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11959 /* Generate a DIE to represent a declared data object. */
11961 static void
11962 gen_variable_die (tree decl, dw_die_ref context_die)
11964 tree origin = decl_ultimate_origin (decl);
11965 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11967 dw_die_ref old_die = lookup_decl_die (decl);
11968 int declaration = (DECL_EXTERNAL (decl)
11969 /* If DECL is COMDAT and has not actually been
11970 emitted, we cannot take its address; there
11971 might end up being no definition anywhere in
11972 the program. For example, consider the C++
11973 test case:
11975 template <class T>
11976 struct S { static const int i = 7; };
11978 template <class T>
11979 const int S<T>::i;
11981 int f() { return S<int>::i; }
11983 Here, S<int>::i is not DECL_EXTERNAL, but no
11984 definition is required, so the compiler will
11985 not emit a definition. */
11986 || (TREE_CODE (decl) == VAR_DECL
11987 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11988 || class_or_namespace_scope_p (context_die));
11990 if (origin != NULL)
11991 add_abstract_origin_attribute (var_die, origin);
11993 /* Loop unrolling can create multiple blocks that refer to the same
11994 static variable, so we must test for the DW_AT_declaration flag.
11996 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11997 copy decls and set the DECL_ABSTRACT flag on them instead of
11998 sharing them.
12000 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12002 ??? The declare_in_namespace support causes us to get two DIEs for one
12003 variable, both of which are declarations. We want to avoid considering
12004 one to be a specification, so we must test that this DIE is not a
12005 declaration. */
12006 else if (old_die && TREE_STATIC (decl) && ! declaration
12007 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12009 /* This is a definition of a C++ class level static. */
12010 add_AT_specification (var_die, old_die);
12011 if (DECL_NAME (decl))
12013 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12014 struct dwarf_file_data * file_index = lookup_filename (s.file);
12016 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12017 add_AT_file (var_die, DW_AT_decl_file, file_index);
12019 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12020 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12023 else
12025 add_name_and_src_coords_attributes (var_die, decl);
12026 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12027 TREE_THIS_VOLATILE (decl), context_die);
12029 if (TREE_PUBLIC (decl))
12030 add_AT_flag (var_die, DW_AT_external, 1);
12032 if (DECL_ARTIFICIAL (decl))
12033 add_AT_flag (var_die, DW_AT_artificial, 1);
12035 if (TREE_PROTECTED (decl))
12036 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12037 else if (TREE_PRIVATE (decl))
12038 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12041 if (declaration)
12042 add_AT_flag (var_die, DW_AT_declaration, 1);
12044 if (DECL_ABSTRACT (decl) || declaration)
12045 equate_decl_number_to_die (decl, var_die);
12047 if (! declaration && ! DECL_ABSTRACT (decl))
12049 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12050 add_pubname (decl, var_die);
12052 else
12053 tree_add_const_value_attribute (var_die, decl);
12056 /* Generate a DIE to represent a label identifier. */
12058 static void
12059 gen_label_die (tree decl, dw_die_ref context_die)
12061 tree origin = decl_ultimate_origin (decl);
12062 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12063 rtx insn;
12064 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12066 if (origin != NULL)
12067 add_abstract_origin_attribute (lbl_die, origin);
12068 else
12069 add_name_and_src_coords_attributes (lbl_die, decl);
12071 if (DECL_ABSTRACT (decl))
12072 equate_decl_number_to_die (decl, lbl_die);
12073 else
12075 insn = DECL_RTL_IF_SET (decl);
12077 /* Deleted labels are programmer specified labels which have been
12078 eliminated because of various optimizations. We still emit them
12079 here so that it is possible to put breakpoints on them. */
12080 if (insn
12081 && (LABEL_P (insn)
12082 || ((NOTE_P (insn)
12083 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12085 /* When optimization is enabled (via -O) some parts of the compiler
12086 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12087 represent source-level labels which were explicitly declared by
12088 the user. This really shouldn't be happening though, so catch
12089 it if it ever does happen. */
12090 gcc_assert (!INSN_DELETED_P (insn));
12092 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12093 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12098 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12099 attributes to the DIE for a block STMT, to describe where the inlined
12100 function was called from. This is similar to add_src_coords_attributes. */
12102 static inline void
12103 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12105 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12107 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12108 add_AT_unsigned (die, DW_AT_call_line, s.line);
12111 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12112 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12114 static inline void
12115 add_high_low_attributes (tree stmt, dw_die_ref die)
12117 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12119 if (BLOCK_FRAGMENT_CHAIN (stmt))
12121 tree chain;
12123 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12125 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12128 add_ranges (chain);
12129 chain = BLOCK_FRAGMENT_CHAIN (chain);
12131 while (chain);
12132 add_ranges (NULL);
12134 else
12136 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12137 BLOCK_NUMBER (stmt));
12138 add_AT_lbl_id (die, DW_AT_low_pc, label);
12139 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12140 BLOCK_NUMBER (stmt));
12141 add_AT_lbl_id (die, DW_AT_high_pc, label);
12145 /* Generate a DIE for a lexical block. */
12147 static void
12148 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12150 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12152 if (! BLOCK_ABSTRACT (stmt))
12153 add_high_low_attributes (stmt, stmt_die);
12155 decls_for_scope (stmt, stmt_die, depth);
12158 /* Generate a DIE for an inlined subprogram. */
12160 static void
12161 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12163 tree decl = block_ultimate_origin (stmt);
12165 /* Emit info for the abstract instance first, if we haven't yet. We
12166 must emit this even if the block is abstract, otherwise when we
12167 emit the block below (or elsewhere), we may end up trying to emit
12168 a die whose origin die hasn't been emitted, and crashing. */
12169 dwarf2out_abstract_function (decl);
12171 if (! BLOCK_ABSTRACT (stmt))
12173 dw_die_ref subr_die
12174 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12176 add_abstract_origin_attribute (subr_die, decl);
12177 add_high_low_attributes (stmt, subr_die);
12178 add_call_src_coords_attributes (stmt, subr_die);
12180 decls_for_scope (stmt, subr_die, depth);
12181 current_function_has_inlines = 1;
12183 else
12184 /* We may get here if we're the outer block of function A that was
12185 inlined into function B that was inlined into function C. When
12186 generating debugging info for C, dwarf2out_abstract_function(B)
12187 would mark all inlined blocks as abstract, including this one.
12188 So, we wouldn't (and shouldn't) expect labels to be generated
12189 for this one. Instead, just emit debugging info for
12190 declarations within the block. This is particularly important
12191 in the case of initializers of arguments passed from B to us:
12192 if they're statement expressions containing declarations, we
12193 wouldn't generate dies for their abstract variables, and then,
12194 when generating dies for the real variables, we'd die (pun
12195 intended :-) */
12196 gen_lexical_block_die (stmt, context_die, depth);
12199 /* Generate a DIE for a field in a record, or structure. */
12201 static void
12202 gen_field_die (tree decl, dw_die_ref context_die)
12204 dw_die_ref decl_die;
12206 if (TREE_TYPE (decl) == error_mark_node)
12207 return;
12209 decl_die = new_die (DW_TAG_member, context_die, decl);
12210 add_name_and_src_coords_attributes (decl_die, decl);
12211 add_type_attribute (decl_die, member_declared_type (decl),
12212 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12213 context_die);
12215 if (DECL_BIT_FIELD_TYPE (decl))
12217 add_byte_size_attribute (decl_die, decl);
12218 add_bit_size_attribute (decl_die, decl);
12219 add_bit_offset_attribute (decl_die, decl);
12222 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12223 add_data_member_location_attribute (decl_die, decl);
12225 if (DECL_ARTIFICIAL (decl))
12226 add_AT_flag (decl_die, DW_AT_artificial, 1);
12228 if (TREE_PROTECTED (decl))
12229 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12230 else if (TREE_PRIVATE (decl))
12231 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12233 /* Equate decl number to die, so that we can look up this decl later on. */
12234 equate_decl_number_to_die (decl, decl_die);
12237 #if 0
12238 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12239 Use modified_type_die instead.
12240 We keep this code here just in case these types of DIEs may be needed to
12241 represent certain things in other languages (e.g. Pascal) someday. */
12243 static void
12244 gen_pointer_type_die (tree type, dw_die_ref context_die)
12246 dw_die_ref ptr_die
12247 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12249 equate_type_number_to_die (type, ptr_die);
12250 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12251 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12254 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12255 Use modified_type_die instead.
12256 We keep this code here just in case these types of DIEs may be needed to
12257 represent certain things in other languages (e.g. Pascal) someday. */
12259 static void
12260 gen_reference_type_die (tree type, dw_die_ref context_die)
12262 dw_die_ref ref_die
12263 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12265 equate_type_number_to_die (type, ref_die);
12266 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12267 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12269 #endif
12271 /* Generate a DIE for a pointer to a member type. */
12273 static void
12274 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12276 dw_die_ref ptr_die
12277 = new_die (DW_TAG_ptr_to_member_type,
12278 scope_die_for (type, context_die), type);
12280 equate_type_number_to_die (type, ptr_die);
12281 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12282 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12283 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12286 /* Generate the DIE for the compilation unit. */
12288 static dw_die_ref
12289 gen_compile_unit_die (const char *filename)
12291 dw_die_ref die;
12292 char producer[250];
12293 const char *language_string = lang_hooks.name;
12294 int language;
12296 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12298 if (filename)
12300 add_name_attribute (die, filename);
12301 /* Don't add cwd for <built-in>. */
12302 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12303 add_comp_dir_attribute (die);
12306 sprintf (producer, "%s %s", language_string, version_string);
12308 #ifdef MIPS_DEBUGGING_INFO
12309 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12310 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12311 not appear in the producer string, the debugger reaches the conclusion
12312 that the object file is stripped and has no debugging information.
12313 To get the MIPS/SGI debugger to believe that there is debugging
12314 information in the object file, we add a -g to the producer string. */
12315 if (debug_info_level > DINFO_LEVEL_TERSE)
12316 strcat (producer, " -g");
12317 #endif
12319 add_AT_string (die, DW_AT_producer, producer);
12321 if (strcmp (language_string, "GNU C++") == 0)
12322 language = DW_LANG_C_plus_plus;
12323 else if (strcmp (language_string, "GNU Ada") == 0)
12324 language = DW_LANG_Ada95;
12325 else if (strcmp (language_string, "GNU F77") == 0)
12326 language = DW_LANG_Fortran77;
12327 else if (strcmp (language_string, "GNU F95") == 0)
12328 language = DW_LANG_Fortran95;
12329 else if (strcmp (language_string, "GNU Pascal") == 0)
12330 language = DW_LANG_Pascal83;
12331 else if (strcmp (language_string, "GNU Java") == 0)
12332 language = DW_LANG_Java;
12333 else if (strcmp (language_string, "GNU Objective-C") == 0)
12334 language = DW_LANG_ObjC;
12335 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12336 language = DW_LANG_ObjC_plus_plus;
12337 else
12338 language = DW_LANG_C89;
12340 add_AT_unsigned (die, DW_AT_language, language);
12341 return die;
12344 /* Generate the DIE for a base class. */
12346 static void
12347 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12349 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12351 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12352 add_data_member_location_attribute (die, binfo);
12354 if (BINFO_VIRTUAL_P (binfo))
12355 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12357 if (access == access_public_node)
12358 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12359 else if (access == access_protected_node)
12360 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12363 /* Generate a DIE for a class member. */
12365 static void
12366 gen_member_die (tree type, dw_die_ref context_die)
12368 tree member;
12369 tree binfo = TYPE_BINFO (type);
12370 dw_die_ref child;
12372 /* If this is not an incomplete type, output descriptions of each of its
12373 members. Note that as we output the DIEs necessary to represent the
12374 members of this record or union type, we will also be trying to output
12375 DIEs to represent the *types* of those members. However the `type'
12376 function (above) will specifically avoid generating type DIEs for member
12377 types *within* the list of member DIEs for this (containing) type except
12378 for those types (of members) which are explicitly marked as also being
12379 members of this (containing) type themselves. The g++ front- end can
12380 force any given type to be treated as a member of some other (containing)
12381 type by setting the TYPE_CONTEXT of the given (member) type to point to
12382 the TREE node representing the appropriate (containing) type. */
12384 /* First output info about the base classes. */
12385 if (binfo)
12387 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12388 int i;
12389 tree base;
12391 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12392 gen_inheritance_die (base,
12393 (accesses ? VEC_index (tree, accesses, i)
12394 : access_public_node), context_die);
12397 /* Now output info about the data members and type members. */
12398 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12400 /* If we thought we were generating minimal debug info for TYPE
12401 and then changed our minds, some of the member declarations
12402 may have already been defined. Don't define them again, but
12403 do put them in the right order. */
12405 child = lookup_decl_die (member);
12406 if (child)
12407 splice_child_die (context_die, child);
12408 else
12409 gen_decl_die (member, context_die);
12412 /* Now output info about the function members (if any). */
12413 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12415 /* Don't include clones in the member list. */
12416 if (DECL_ABSTRACT_ORIGIN (member))
12417 continue;
12419 child = lookup_decl_die (member);
12420 if (child)
12421 splice_child_die (context_die, child);
12422 else
12423 gen_decl_die (member, context_die);
12427 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12428 is set, we pretend that the type was never defined, so we only get the
12429 member DIEs needed by later specification DIEs. */
12431 static void
12432 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12434 dw_die_ref type_die = lookup_type_die (type);
12435 dw_die_ref scope_die = 0;
12436 int nested = 0;
12437 int complete = (TYPE_SIZE (type)
12438 && (! TYPE_STUB_DECL (type)
12439 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12440 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12442 if (type_die && ! complete)
12443 return;
12445 if (TYPE_CONTEXT (type) != NULL_TREE
12446 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12447 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12448 nested = 1;
12450 scope_die = scope_die_for (type, context_die);
12452 if (! type_die || (nested && scope_die == comp_unit_die))
12453 /* First occurrence of type or toplevel definition of nested class. */
12455 dw_die_ref old_die = type_die;
12457 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12458 ? DW_TAG_structure_type : DW_TAG_union_type,
12459 scope_die, type);
12460 equate_type_number_to_die (type, type_die);
12461 if (old_die)
12462 add_AT_specification (type_die, old_die);
12463 else
12464 add_name_attribute (type_die, type_tag (type));
12466 else
12467 remove_AT (type_die, DW_AT_declaration);
12469 /* If this type has been completed, then give it a byte_size attribute and
12470 then give a list of members. */
12471 if (complete && !ns_decl)
12473 /* Prevent infinite recursion in cases where the type of some member of
12474 this type is expressed in terms of this type itself. */
12475 TREE_ASM_WRITTEN (type) = 1;
12476 add_byte_size_attribute (type_die, type);
12477 if (TYPE_STUB_DECL (type) != NULL_TREE)
12478 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12480 /* If the first reference to this type was as the return type of an
12481 inline function, then it may not have a parent. Fix this now. */
12482 if (type_die->die_parent == NULL)
12483 add_child_die (scope_die, type_die);
12485 push_decl_scope (type);
12486 gen_member_die (type, type_die);
12487 pop_decl_scope ();
12489 /* GNU extension: Record what type our vtable lives in. */
12490 if (TYPE_VFIELD (type))
12492 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12494 gen_type_die (vtype, context_die);
12495 add_AT_die_ref (type_die, DW_AT_containing_type,
12496 lookup_type_die (vtype));
12499 else
12501 add_AT_flag (type_die, DW_AT_declaration, 1);
12503 /* We don't need to do this for function-local types. */
12504 if (TYPE_STUB_DECL (type)
12505 && ! decl_function_context (TYPE_STUB_DECL (type)))
12506 VEC_safe_push (tree, gc, incomplete_types, type);
12510 /* Generate a DIE for a subroutine _type_. */
12512 static void
12513 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12515 tree return_type = TREE_TYPE (type);
12516 dw_die_ref subr_die
12517 = new_die (DW_TAG_subroutine_type,
12518 scope_die_for (type, context_die), type);
12520 equate_type_number_to_die (type, subr_die);
12521 add_prototyped_attribute (subr_die, type);
12522 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12523 gen_formal_types_die (type, subr_die);
12526 /* Generate a DIE for a type definition. */
12528 static void
12529 gen_typedef_die (tree decl, dw_die_ref context_die)
12531 dw_die_ref type_die;
12532 tree origin;
12534 if (TREE_ASM_WRITTEN (decl))
12535 return;
12537 TREE_ASM_WRITTEN (decl) = 1;
12538 type_die = new_die (DW_TAG_typedef, context_die, decl);
12539 origin = decl_ultimate_origin (decl);
12540 if (origin != NULL)
12541 add_abstract_origin_attribute (type_die, origin);
12542 else
12544 tree type;
12546 add_name_and_src_coords_attributes (type_die, decl);
12547 if (DECL_ORIGINAL_TYPE (decl))
12549 type = DECL_ORIGINAL_TYPE (decl);
12551 gcc_assert (type != TREE_TYPE (decl));
12552 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12554 else
12555 type = TREE_TYPE (decl);
12557 add_type_attribute (type_die, type, TREE_READONLY (decl),
12558 TREE_THIS_VOLATILE (decl), context_die);
12561 if (DECL_ABSTRACT (decl))
12562 equate_decl_number_to_die (decl, type_die);
12565 /* Generate a type description DIE. */
12567 static void
12568 gen_type_die (tree type, dw_die_ref context_die)
12570 int need_pop;
12572 if (type == NULL_TREE || type == error_mark_node)
12573 return;
12575 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12576 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12578 if (TREE_ASM_WRITTEN (type))
12579 return;
12581 /* Prevent broken recursion; we can't hand off to the same type. */
12582 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12584 TREE_ASM_WRITTEN (type) = 1;
12585 gen_decl_die (TYPE_NAME (type), context_die);
12586 return;
12589 /* We are going to output a DIE to represent the unqualified version
12590 of this type (i.e. without any const or volatile qualifiers) so
12591 get the main variant (i.e. the unqualified version) of this type
12592 now. (Vectors are special because the debugging info is in the
12593 cloned type itself). */
12594 if (TREE_CODE (type) != VECTOR_TYPE)
12595 type = type_main_variant (type);
12597 if (TREE_ASM_WRITTEN (type))
12598 return;
12600 switch (TREE_CODE (type))
12602 case ERROR_MARK:
12603 break;
12605 case POINTER_TYPE:
12606 case REFERENCE_TYPE:
12607 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12608 ensures that the gen_type_die recursion will terminate even if the
12609 type is recursive. Recursive types are possible in Ada. */
12610 /* ??? We could perhaps do this for all types before the switch
12611 statement. */
12612 TREE_ASM_WRITTEN (type) = 1;
12614 /* For these types, all that is required is that we output a DIE (or a
12615 set of DIEs) to represent the "basis" type. */
12616 gen_type_die (TREE_TYPE (type), context_die);
12617 break;
12619 case OFFSET_TYPE:
12620 /* This code is used for C++ pointer-to-data-member types.
12621 Output a description of the relevant class type. */
12622 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12624 /* Output a description of the type of the object pointed to. */
12625 gen_type_die (TREE_TYPE (type), context_die);
12627 /* Now output a DIE to represent this pointer-to-data-member type
12628 itself. */
12629 gen_ptr_to_mbr_type_die (type, context_die);
12630 break;
12632 case FUNCTION_TYPE:
12633 /* Force out return type (in case it wasn't forced out already). */
12634 gen_type_die (TREE_TYPE (type), context_die);
12635 gen_subroutine_type_die (type, context_die);
12636 break;
12638 case METHOD_TYPE:
12639 /* Force out return type (in case it wasn't forced out already). */
12640 gen_type_die (TREE_TYPE (type), context_die);
12641 gen_subroutine_type_die (type, context_die);
12642 break;
12644 case ARRAY_TYPE:
12645 gen_array_type_die (type, context_die);
12646 break;
12648 case VECTOR_TYPE:
12649 gen_array_type_die (type, context_die);
12650 break;
12652 case ENUMERAL_TYPE:
12653 case RECORD_TYPE:
12654 case UNION_TYPE:
12655 case QUAL_UNION_TYPE:
12656 /* If this is a nested type whose containing class hasn't been written
12657 out yet, writing it out will cover this one, too. This does not apply
12658 to instantiations of member class templates; they need to be added to
12659 the containing class as they are generated. FIXME: This hurts the
12660 idea of combining type decls from multiple TUs, since we can't predict
12661 what set of template instantiations we'll get. */
12662 if (TYPE_CONTEXT (type)
12663 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12664 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12666 gen_type_die (TYPE_CONTEXT (type), context_die);
12668 if (TREE_ASM_WRITTEN (type))
12669 return;
12671 /* If that failed, attach ourselves to the stub. */
12672 push_decl_scope (TYPE_CONTEXT (type));
12673 context_die = lookup_type_die (TYPE_CONTEXT (type));
12674 need_pop = 1;
12676 else
12678 declare_in_namespace (type, context_die);
12679 need_pop = 0;
12682 if (TREE_CODE (type) == ENUMERAL_TYPE)
12683 gen_enumeration_type_die (type, context_die);
12684 else
12685 gen_struct_or_union_type_die (type, context_die);
12687 if (need_pop)
12688 pop_decl_scope ();
12690 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12691 it up if it is ever completed. gen_*_type_die will set it for us
12692 when appropriate. */
12693 return;
12695 case VOID_TYPE:
12696 case INTEGER_TYPE:
12697 case REAL_TYPE:
12698 case COMPLEX_TYPE:
12699 case BOOLEAN_TYPE:
12700 /* No DIEs needed for fundamental types. */
12701 break;
12703 case LANG_TYPE:
12704 /* No Dwarf representation currently defined. */
12705 break;
12707 default:
12708 gcc_unreachable ();
12711 TREE_ASM_WRITTEN (type) = 1;
12714 /* Generate a DIE for a tagged type instantiation. */
12716 static void
12717 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12719 if (type == NULL_TREE || type == error_mark_node)
12720 return;
12722 /* We are going to output a DIE to represent the unqualified version of
12723 this type (i.e. without any const or volatile qualifiers) so make sure
12724 that we have the main variant (i.e. the unqualified version) of this
12725 type now. */
12726 gcc_assert (type == type_main_variant (type));
12728 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12729 an instance of an unresolved type. */
12731 switch (TREE_CODE (type))
12733 case ERROR_MARK:
12734 break;
12736 case ENUMERAL_TYPE:
12737 gen_inlined_enumeration_type_die (type, context_die);
12738 break;
12740 case RECORD_TYPE:
12741 gen_inlined_structure_type_die (type, context_die);
12742 break;
12744 case UNION_TYPE:
12745 case QUAL_UNION_TYPE:
12746 gen_inlined_union_type_die (type, context_die);
12747 break;
12749 default:
12750 gcc_unreachable ();
12754 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12755 things which are local to the given block. */
12757 static void
12758 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12760 int must_output_die = 0;
12761 tree origin;
12762 tree decl;
12763 enum tree_code origin_code;
12765 /* Ignore blocks that are NULL. */
12766 if (stmt == NULL_TREE)
12767 return;
12769 /* If the block is one fragment of a non-contiguous block, do not
12770 process the variables, since they will have been done by the
12771 origin block. Do process subblocks. */
12772 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12774 tree sub;
12776 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12777 gen_block_die (sub, context_die, depth + 1);
12779 return;
12782 /* Determine the "ultimate origin" of this block. This block may be an
12783 inlined instance of an inlined instance of inline function, so we have
12784 to trace all of the way back through the origin chain to find out what
12785 sort of node actually served as the original seed for the creation of
12786 the current block. */
12787 origin = block_ultimate_origin (stmt);
12788 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12790 /* Determine if we need to output any Dwarf DIEs at all to represent this
12791 block. */
12792 if (origin_code == FUNCTION_DECL)
12793 /* The outer scopes for inlinings *must* always be represented. We
12794 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12795 must_output_die = 1;
12796 else
12798 /* In the case where the current block represents an inlining of the
12799 "body block" of an inline function, we must *NOT* output any DIE for
12800 this block because we have already output a DIE to represent the whole
12801 inlined function scope and the "body block" of any function doesn't
12802 really represent a different scope according to ANSI C rules. So we
12803 check here to make sure that this block does not represent a "body
12804 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12805 if (! is_body_block (origin ? origin : stmt))
12807 /* Determine if this block directly contains any "significant"
12808 local declarations which we will need to output DIEs for. */
12809 if (debug_info_level > DINFO_LEVEL_TERSE)
12810 /* We are not in terse mode so *any* local declaration counts
12811 as being a "significant" one. */
12812 must_output_die = (BLOCK_VARS (stmt) != NULL
12813 && (TREE_USED (stmt)
12814 || TREE_ASM_WRITTEN (stmt)
12815 || BLOCK_ABSTRACT (stmt)));
12816 else
12817 /* We are in terse mode, so only local (nested) function
12818 definitions count as "significant" local declarations. */
12819 for (decl = BLOCK_VARS (stmt);
12820 decl != NULL; decl = TREE_CHAIN (decl))
12821 if (TREE_CODE (decl) == FUNCTION_DECL
12822 && DECL_INITIAL (decl))
12824 must_output_die = 1;
12825 break;
12830 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12831 DIE for any block which contains no significant local declarations at
12832 all. Rather, in such cases we just call `decls_for_scope' so that any
12833 needed Dwarf info for any sub-blocks will get properly generated. Note
12834 that in terse mode, our definition of what constitutes a "significant"
12835 local declaration gets restricted to include only inlined function
12836 instances and local (nested) function definitions. */
12837 if (must_output_die)
12839 if (origin_code == FUNCTION_DECL)
12840 gen_inlined_subroutine_die (stmt, context_die, depth);
12841 else
12842 gen_lexical_block_die (stmt, context_die, depth);
12844 else
12845 decls_for_scope (stmt, context_die, depth);
12848 /* Generate all of the decls declared within a given scope and (recursively)
12849 all of its sub-blocks. */
12851 static void
12852 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12854 tree decl;
12855 tree subblocks;
12857 /* Ignore NULL blocks. */
12858 if (stmt == NULL_TREE)
12859 return;
12861 if (TREE_USED (stmt))
12863 /* Output the DIEs to represent all of the data objects and typedefs
12864 declared directly within this block but not within any nested
12865 sub-blocks. Also, nested function and tag DIEs have been
12866 generated with a parent of NULL; fix that up now. */
12867 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12869 dw_die_ref die;
12871 if (TREE_CODE (decl) == FUNCTION_DECL)
12872 die = lookup_decl_die (decl);
12873 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12874 die = lookup_type_die (TREE_TYPE (decl));
12875 else
12876 die = NULL;
12878 if (die != NULL && die->die_parent == NULL)
12879 add_child_die (context_die, die);
12880 /* Do not produce debug information for static variables since
12881 these might be optimized out. We are called for these later
12882 in cgraph_varpool_analyze_pending_decls. */
12883 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12885 else
12886 gen_decl_die (decl, context_die);
12890 /* If we're at -g1, we're not interested in subblocks. */
12891 if (debug_info_level <= DINFO_LEVEL_TERSE)
12892 return;
12894 /* Output the DIEs to represent all sub-blocks (and the items declared
12895 therein) of this block. */
12896 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12897 subblocks != NULL;
12898 subblocks = BLOCK_CHAIN (subblocks))
12899 gen_block_die (subblocks, context_die, depth + 1);
12902 /* Is this a typedef we can avoid emitting? */
12904 static inline int
12905 is_redundant_typedef (tree decl)
12907 if (TYPE_DECL_IS_STUB (decl))
12908 return 1;
12910 if (DECL_ARTIFICIAL (decl)
12911 && DECL_CONTEXT (decl)
12912 && is_tagged_type (DECL_CONTEXT (decl))
12913 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12914 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12915 /* Also ignore the artificial member typedef for the class name. */
12916 return 1;
12918 return 0;
12921 /* Returns the DIE for decl. A DIE will always be returned. */
12923 static dw_die_ref
12924 force_decl_die (tree decl)
12926 dw_die_ref decl_die;
12927 unsigned saved_external_flag;
12928 tree save_fn = NULL_TREE;
12929 decl_die = lookup_decl_die (decl);
12930 if (!decl_die)
12932 dw_die_ref context_die;
12933 tree decl_context = DECL_CONTEXT (decl);
12934 if (decl_context)
12936 /* Find die that represents this context. */
12937 if (TYPE_P (decl_context))
12938 context_die = force_type_die (decl_context);
12939 else
12940 context_die = force_decl_die (decl_context);
12942 else
12943 context_die = comp_unit_die;
12945 decl_die = lookup_decl_die (decl);
12946 if (decl_die)
12947 return decl_die;
12949 switch (TREE_CODE (decl))
12951 case FUNCTION_DECL:
12952 /* Clear current_function_decl, so that gen_subprogram_die thinks
12953 that this is a declaration. At this point, we just want to force
12954 declaration die. */
12955 save_fn = current_function_decl;
12956 current_function_decl = NULL_TREE;
12957 gen_subprogram_die (decl, context_die);
12958 current_function_decl = save_fn;
12959 break;
12961 case VAR_DECL:
12962 /* Set external flag to force declaration die. Restore it after
12963 gen_decl_die() call. */
12964 saved_external_flag = DECL_EXTERNAL (decl);
12965 DECL_EXTERNAL (decl) = 1;
12966 gen_decl_die (decl, context_die);
12967 DECL_EXTERNAL (decl) = saved_external_flag;
12968 break;
12970 case NAMESPACE_DECL:
12971 dwarf2out_decl (decl);
12972 break;
12974 default:
12975 gcc_unreachable ();
12978 /* We should be able to find the DIE now. */
12979 if (!decl_die)
12980 decl_die = lookup_decl_die (decl);
12981 gcc_assert (decl_die);
12984 return decl_die;
12987 /* Returns the DIE for TYPE. A DIE is always returned. */
12989 static dw_die_ref
12990 force_type_die (tree type)
12992 dw_die_ref type_die;
12994 type_die = lookup_type_die (type);
12995 if (!type_die)
12997 dw_die_ref context_die;
12998 if (TYPE_CONTEXT (type))
13000 if (TYPE_P (TYPE_CONTEXT (type)))
13001 context_die = force_type_die (TYPE_CONTEXT (type));
13002 else
13003 context_die = force_decl_die (TYPE_CONTEXT (type));
13005 else
13006 context_die = comp_unit_die;
13008 type_die = lookup_type_die (type);
13009 if (type_die)
13010 return type_die;
13011 gen_type_die (type, context_die);
13012 type_die = lookup_type_die (type);
13013 gcc_assert (type_die);
13015 return type_die;
13018 /* Force out any required namespaces to be able to output DECL,
13019 and return the new context_die for it, if it's changed. */
13021 static dw_die_ref
13022 setup_namespace_context (tree thing, dw_die_ref context_die)
13024 tree context = (DECL_P (thing)
13025 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13026 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13027 /* Force out the namespace. */
13028 context_die = force_decl_die (context);
13030 return context_die;
13033 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13034 type) within its namespace, if appropriate.
13036 For compatibility with older debuggers, namespace DIEs only contain
13037 declarations; all definitions are emitted at CU scope. */
13039 static void
13040 declare_in_namespace (tree thing, dw_die_ref context_die)
13042 dw_die_ref ns_context;
13044 if (debug_info_level <= DINFO_LEVEL_TERSE)
13045 return;
13047 /* If this decl is from an inlined function, then don't try to emit it in its
13048 namespace, as we will get confused. It would have already been emitted
13049 when the abstract instance of the inline function was emitted anyways. */
13050 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13051 return;
13053 ns_context = setup_namespace_context (thing, context_die);
13055 if (ns_context != context_die)
13057 if (DECL_P (thing))
13058 gen_decl_die (thing, ns_context);
13059 else
13060 gen_type_die (thing, ns_context);
13064 /* Generate a DIE for a namespace or namespace alias. */
13066 static void
13067 gen_namespace_die (tree decl)
13069 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13071 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13072 they are an alias of. */
13073 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13075 /* Output a real namespace. */
13076 dw_die_ref namespace_die
13077 = new_die (DW_TAG_namespace, context_die, decl);
13078 add_name_and_src_coords_attributes (namespace_die, decl);
13079 equate_decl_number_to_die (decl, namespace_die);
13081 else
13083 /* Output a namespace alias. */
13085 /* Force out the namespace we are an alias of, if necessary. */
13086 dw_die_ref origin_die
13087 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13089 /* Now create the namespace alias DIE. */
13090 dw_die_ref namespace_die
13091 = new_die (DW_TAG_imported_declaration, context_die, decl);
13092 add_name_and_src_coords_attributes (namespace_die, decl);
13093 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13094 equate_decl_number_to_die (decl, namespace_die);
13098 /* Generate Dwarf debug information for a decl described by DECL. */
13100 static void
13101 gen_decl_die (tree decl, dw_die_ref context_die)
13103 tree origin;
13105 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13106 return;
13108 switch (TREE_CODE (decl))
13110 case ERROR_MARK:
13111 break;
13113 case CONST_DECL:
13114 /* The individual enumerators of an enum type get output when we output
13115 the Dwarf representation of the relevant enum type itself. */
13116 break;
13118 case FUNCTION_DECL:
13119 /* Don't output any DIEs to represent mere function declarations,
13120 unless they are class members or explicit block externs. */
13121 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13122 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13123 break;
13125 #if 0
13126 /* FIXME */
13127 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13128 on local redeclarations of global functions. That seems broken. */
13129 if (current_function_decl != decl)
13130 /* This is only a declaration. */;
13131 #endif
13133 /* If we're emitting a clone, emit info for the abstract instance. */
13134 if (DECL_ORIGIN (decl) != decl)
13135 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13137 /* If we're emitting an out-of-line copy of an inline function,
13138 emit info for the abstract instance and set up to refer to it. */
13139 else if (cgraph_function_possibly_inlined_p (decl)
13140 && ! DECL_ABSTRACT (decl)
13141 && ! class_or_namespace_scope_p (context_die)
13142 /* dwarf2out_abstract_function won't emit a die if this is just
13143 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13144 that case, because that works only if we have a die. */
13145 && DECL_INITIAL (decl) != NULL_TREE)
13147 dwarf2out_abstract_function (decl);
13148 set_decl_origin_self (decl);
13151 /* Otherwise we're emitting the primary DIE for this decl. */
13152 else if (debug_info_level > DINFO_LEVEL_TERSE)
13154 /* Before we describe the FUNCTION_DECL itself, make sure that we
13155 have described its return type. */
13156 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13158 /* And its virtual context. */
13159 if (DECL_VINDEX (decl) != NULL_TREE)
13160 gen_type_die (DECL_CONTEXT (decl), context_die);
13162 /* And its containing type. */
13163 origin = decl_class_context (decl);
13164 if (origin != NULL_TREE)
13165 gen_type_die_for_member (origin, decl, context_die);
13167 /* And its containing namespace. */
13168 declare_in_namespace (decl, context_die);
13171 /* Now output a DIE to represent the function itself. */
13172 gen_subprogram_die (decl, context_die);
13173 break;
13175 case TYPE_DECL:
13176 /* If we are in terse mode, don't generate any DIEs to represent any
13177 actual typedefs. */
13178 if (debug_info_level <= DINFO_LEVEL_TERSE)
13179 break;
13181 /* In the special case of a TYPE_DECL node representing the declaration
13182 of some type tag, if the given TYPE_DECL is marked as having been
13183 instantiated from some other (original) TYPE_DECL node (e.g. one which
13184 was generated within the original definition of an inline function) we
13185 have to generate a special (abbreviated) DW_TAG_structure_type,
13186 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13187 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13189 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13190 break;
13193 if (is_redundant_typedef (decl))
13194 gen_type_die (TREE_TYPE (decl), context_die);
13195 else
13196 /* Output a DIE to represent the typedef itself. */
13197 gen_typedef_die (decl, context_die);
13198 break;
13200 case LABEL_DECL:
13201 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13202 gen_label_die (decl, context_die);
13203 break;
13205 case VAR_DECL:
13206 case RESULT_DECL:
13207 /* If we are in terse mode, don't generate any DIEs to represent any
13208 variable declarations or definitions. */
13209 if (debug_info_level <= DINFO_LEVEL_TERSE)
13210 break;
13212 /* Output any DIEs that are needed to specify the type of this data
13213 object. */
13214 gen_type_die (TREE_TYPE (decl), context_die);
13216 /* And its containing type. */
13217 origin = decl_class_context (decl);
13218 if (origin != NULL_TREE)
13219 gen_type_die_for_member (origin, decl, context_die);
13221 /* And its containing namespace. */
13222 declare_in_namespace (decl, context_die);
13224 /* Now output the DIE to represent the data object itself. This gets
13225 complicated because of the possibility that the VAR_DECL really
13226 represents an inlined instance of a formal parameter for an inline
13227 function. */
13228 origin = decl_ultimate_origin (decl);
13229 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13230 gen_formal_parameter_die (decl, context_die);
13231 else
13232 gen_variable_die (decl, context_die);
13233 break;
13235 case FIELD_DECL:
13236 /* Ignore the nameless fields that are used to skip bits but handle C++
13237 anonymous unions and structs. */
13238 if (DECL_NAME (decl) != NULL_TREE
13239 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13240 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13242 gen_type_die (member_declared_type (decl), context_die);
13243 gen_field_die (decl, context_die);
13245 break;
13247 case PARM_DECL:
13248 gen_type_die (TREE_TYPE (decl), context_die);
13249 gen_formal_parameter_die (decl, context_die);
13250 break;
13252 case NAMESPACE_DECL:
13253 gen_namespace_die (decl);
13254 break;
13256 default:
13257 /* Probably some frontend-internal decl. Assume we don't care. */
13258 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13259 break;
13263 /* Output debug information for global decl DECL. Called from toplev.c after
13264 compilation proper has finished. */
13266 static void
13267 dwarf2out_global_decl (tree decl)
13269 /* Output DWARF2 information for file-scope tentative data object
13270 declarations, file-scope (extern) function declarations (which had no
13271 corresponding body) and file-scope tagged type declarations and
13272 definitions which have not yet been forced out. */
13273 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13274 dwarf2out_decl (decl);
13277 /* Output debug information for type decl DECL. Called from toplev.c
13278 and from language front ends (to record built-in types). */
13279 static void
13280 dwarf2out_type_decl (tree decl, int local)
13282 if (!local)
13283 dwarf2out_decl (decl);
13286 /* Output debug information for imported module or decl. */
13288 static void
13289 dwarf2out_imported_module_or_decl (tree decl, tree context)
13291 dw_die_ref imported_die, at_import_die;
13292 dw_die_ref scope_die;
13293 expanded_location xloc;
13295 if (debug_info_level <= DINFO_LEVEL_TERSE)
13296 return;
13298 gcc_assert (decl);
13300 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13301 We need decl DIE for reference and scope die. First, get DIE for the decl
13302 itself. */
13304 /* Get the scope die for decl context. Use comp_unit_die for global module
13305 or decl. If die is not found for non globals, force new die. */
13306 if (!context)
13307 scope_die = comp_unit_die;
13308 else if (TYPE_P (context))
13309 scope_die = force_type_die (context);
13310 else
13311 scope_die = force_decl_die (context);
13313 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13314 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13315 at_import_die = force_type_die (TREE_TYPE (decl));
13316 else
13318 at_import_die = lookup_decl_die (decl);
13319 if (!at_import_die)
13321 /* If we're trying to avoid duplicate debug info, we may not have
13322 emitted the member decl for this field. Emit it now. */
13323 if (TREE_CODE (decl) == FIELD_DECL)
13325 tree type = DECL_CONTEXT (decl);
13326 dw_die_ref type_context_die;
13328 if (TYPE_CONTEXT (type))
13329 if (TYPE_P (TYPE_CONTEXT (type)))
13330 type_context_die = force_type_die (TYPE_CONTEXT (type));
13331 else
13332 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13333 else
13334 type_context_die = comp_unit_die;
13335 gen_type_die_for_member (type, decl, type_context_die);
13337 at_import_die = force_decl_die (decl);
13341 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13342 if (TREE_CODE (decl) == NAMESPACE_DECL)
13343 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13344 else
13345 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13347 xloc = expand_location (input_location);
13348 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13349 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13350 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13353 /* Write the debugging output for DECL. */
13355 void
13356 dwarf2out_decl (tree decl)
13358 dw_die_ref context_die = comp_unit_die;
13360 switch (TREE_CODE (decl))
13362 case ERROR_MARK:
13363 return;
13365 case FUNCTION_DECL:
13366 /* What we would really like to do here is to filter out all mere
13367 file-scope declarations of file-scope functions which are never
13368 referenced later within this translation unit (and keep all of ones
13369 that *are* referenced later on) but we aren't clairvoyant, so we have
13370 no idea which functions will be referenced in the future (i.e. later
13371 on within the current translation unit). So here we just ignore all
13372 file-scope function declarations which are not also definitions. If
13373 and when the debugger needs to know something about these functions,
13374 it will have to hunt around and find the DWARF information associated
13375 with the definition of the function.
13377 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13378 nodes represent definitions and which ones represent mere
13379 declarations. We have to check DECL_INITIAL instead. That's because
13380 the C front-end supports some weird semantics for "extern inline"
13381 function definitions. These can get inlined within the current
13382 translation unit (and thus, we need to generate Dwarf info for their
13383 abstract instances so that the Dwarf info for the concrete inlined
13384 instances can have something to refer to) but the compiler never
13385 generates any out-of-lines instances of such things (despite the fact
13386 that they *are* definitions).
13388 The important point is that the C front-end marks these "extern
13389 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13390 them anyway. Note that the C++ front-end also plays some similar games
13391 for inline function definitions appearing within include files which
13392 also contain `#pragma interface' pragmas. */
13393 if (DECL_INITIAL (decl) == NULL_TREE)
13394 return;
13396 /* If we're a nested function, initially use a parent of NULL; if we're
13397 a plain function, this will be fixed up in decls_for_scope. If
13398 we're a method, it will be ignored, since we already have a DIE. */
13399 if (decl_function_context (decl)
13400 /* But if we're in terse mode, we don't care about scope. */
13401 && debug_info_level > DINFO_LEVEL_TERSE)
13402 context_die = NULL;
13403 break;
13405 case VAR_DECL:
13406 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13407 declaration and if the declaration was never even referenced from
13408 within this entire compilation unit. We suppress these DIEs in
13409 order to save space in the .debug section (by eliminating entries
13410 which are probably useless). Note that we must not suppress
13411 block-local extern declarations (whether used or not) because that
13412 would screw-up the debugger's name lookup mechanism and cause it to
13413 miss things which really ought to be in scope at a given point. */
13414 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13415 return;
13417 /* For local statics lookup proper context die. */
13418 if (TREE_STATIC (decl) && decl_function_context (decl))
13419 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13421 /* If we are in terse mode, don't generate any DIEs to represent any
13422 variable declarations or definitions. */
13423 if (debug_info_level <= DINFO_LEVEL_TERSE)
13424 return;
13425 break;
13427 case NAMESPACE_DECL:
13428 if (debug_info_level <= DINFO_LEVEL_TERSE)
13429 return;
13430 if (lookup_decl_die (decl) != NULL)
13431 return;
13432 break;
13434 case TYPE_DECL:
13435 /* Don't emit stubs for types unless they are needed by other DIEs. */
13436 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13437 return;
13439 /* Don't bother trying to generate any DIEs to represent any of the
13440 normal built-in types for the language we are compiling. */
13441 if (DECL_IS_BUILTIN (decl))
13443 /* OK, we need to generate one for `bool' so GDB knows what type
13444 comparisons have. */
13445 if (is_cxx ()
13446 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13447 && ! DECL_IGNORED_P (decl))
13448 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13450 return;
13453 /* If we are in terse mode, don't generate any DIEs for types. */
13454 if (debug_info_level <= DINFO_LEVEL_TERSE)
13455 return;
13457 /* If we're a function-scope tag, initially use a parent of NULL;
13458 this will be fixed up in decls_for_scope. */
13459 if (decl_function_context (decl))
13460 context_die = NULL;
13462 break;
13464 default:
13465 return;
13468 gen_decl_die (decl, context_die);
13471 /* Output a marker (i.e. a label) for the beginning of the generated code for
13472 a lexical block. */
13474 static void
13475 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13476 unsigned int blocknum)
13478 switch_to_section (current_function_section ());
13479 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13482 /* Output a marker (i.e. a label) for the end of the generated code for a
13483 lexical block. */
13485 static void
13486 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13488 switch_to_section (current_function_section ());
13489 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13492 /* Returns nonzero if it is appropriate not to emit any debugging
13493 information for BLOCK, because it doesn't contain any instructions.
13495 Don't allow this for blocks with nested functions or local classes
13496 as we would end up with orphans, and in the presence of scheduling
13497 we may end up calling them anyway. */
13499 static bool
13500 dwarf2out_ignore_block (tree block)
13502 tree decl;
13504 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13505 if (TREE_CODE (decl) == FUNCTION_DECL
13506 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13507 return 0;
13509 return 1;
13512 /* Hash table routines for file_hash. */
13514 static int
13515 file_table_eq (const void *p1_p, const void *p2_p)
13517 const struct dwarf_file_data * p1 = p1_p;
13518 const char * p2 = p2_p;
13519 return strcmp (p1->filename, p2) == 0;
13522 static hashval_t
13523 file_table_hash (const void *p_p)
13525 const struct dwarf_file_data * p = p_p;
13526 return htab_hash_string (p->filename);
13529 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13530 dwarf2out.c) and return its "index". The index of each (known) filename is
13531 just a unique number which is associated with only that one filename. We
13532 need such numbers for the sake of generating labels (in the .debug_sfnames
13533 section) and references to those files numbers (in the .debug_srcinfo
13534 and.debug_macinfo sections). If the filename given as an argument is not
13535 found in our current list, add it to the list and assign it the next
13536 available unique index number. In order to speed up searches, we remember
13537 the index of the filename was looked up last. This handles the majority of
13538 all searches. */
13540 static struct dwarf_file_data *
13541 lookup_filename (const char *file_name)
13543 void ** slot;
13544 struct dwarf_file_data * created;
13546 /* Check to see if the file name that was searched on the previous
13547 call matches this file name. If so, return the index. */
13548 if (file_table_last_lookup
13549 && (file_name == file_table_last_lookup->filename
13550 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13551 return file_table_last_lookup;
13553 /* Didn't match the previous lookup, search the table. */
13554 slot = htab_find_slot_with_hash (file_table, file_name,
13555 htab_hash_string (file_name), INSERT);
13556 if (*slot)
13557 return *slot;
13559 created = ggc_alloc (sizeof (struct dwarf_file_data));
13560 created->filename = file_name;
13561 created->emitted_number = 0;
13562 *slot = created;
13563 return created;
13566 /* If the assembler will construct the file table, then translate the compiler
13567 internal file table number into the assembler file table number, and emit
13568 a .file directive if we haven't already emitted one yet. The file table
13569 numbers are different because we prune debug info for unused variables and
13570 types, which may include filenames. */
13572 static int
13573 maybe_emit_file (struct dwarf_file_data * fd)
13575 if (! fd->emitted_number)
13577 if (last_emitted_file)
13578 fd->emitted_number = last_emitted_file->emitted_number + 1;
13579 else
13580 fd->emitted_number = 1;
13581 last_emitted_file = fd;
13583 if (DWARF2_ASM_LINE_DEBUG_INFO)
13585 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13586 output_quoted_string (asm_out_file, fd->filename);
13587 fputc ('\n', asm_out_file);
13591 return fd->emitted_number;
13594 /* Called by the final INSN scan whenever we see a var location. We
13595 use it to drop labels in the right places, and throw the location in
13596 our lookup table. */
13598 static void
13599 dwarf2out_var_location (rtx loc_note)
13601 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13602 struct var_loc_node *newloc;
13603 rtx prev_insn;
13604 static rtx last_insn;
13605 static const char *last_label;
13606 tree decl;
13608 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13609 return;
13610 prev_insn = PREV_INSN (loc_note);
13612 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13613 /* If the insn we processed last time is the previous insn
13614 and it is also a var location note, use the label we emitted
13615 last time. */
13616 if (last_insn != NULL_RTX
13617 && last_insn == prev_insn
13618 && NOTE_P (prev_insn)
13619 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13621 newloc->label = last_label;
13623 else
13625 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13626 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13627 loclabel_num++;
13628 newloc->label = ggc_strdup (loclabel);
13630 newloc->var_loc_note = loc_note;
13631 newloc->next = NULL;
13633 if (cfun && in_cold_section_p)
13634 newloc->section_label = cfun->cold_section_label;
13635 else
13636 newloc->section_label = text_section_label;
13638 last_insn = loc_note;
13639 last_label = newloc->label;
13640 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13641 add_var_loc_to_decl (decl, newloc);
13644 /* We need to reset the locations at the beginning of each
13645 function. We can't do this in the end_function hook, because the
13646 declarations that use the locations won't have been output when
13647 that hook is called. Also compute have_multiple_function_sections here. */
13649 static void
13650 dwarf2out_begin_function (tree fun)
13652 htab_empty (decl_loc_table);
13654 if (function_section (fun) != text_section)
13655 have_multiple_function_sections = true;
13658 /* Output a label to mark the beginning of a source code line entry
13659 and record information relating to this source line, in
13660 'line_info_table' for later output of the .debug_line section. */
13662 static void
13663 dwarf2out_source_line (unsigned int line, const char *filename)
13665 if (debug_info_level >= DINFO_LEVEL_NORMAL
13666 && line != 0)
13668 int file_num = maybe_emit_file (lookup_filename (filename));
13670 switch_to_section (current_function_section ());
13672 /* If requested, emit something human-readable. */
13673 if (flag_debug_asm)
13674 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13675 filename, line);
13677 if (DWARF2_ASM_LINE_DEBUG_INFO)
13679 /* Emit the .loc directive understood by GNU as. */
13680 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13682 /* Indicate that line number info exists. */
13683 line_info_table_in_use++;
13685 else if (function_section (current_function_decl) != text_section)
13687 dw_separate_line_info_ref line_info;
13688 targetm.asm_out.internal_label (asm_out_file,
13689 SEPARATE_LINE_CODE_LABEL,
13690 separate_line_info_table_in_use);
13692 /* Expand the line info table if necessary. */
13693 if (separate_line_info_table_in_use
13694 == separate_line_info_table_allocated)
13696 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13697 separate_line_info_table
13698 = ggc_realloc (separate_line_info_table,
13699 separate_line_info_table_allocated
13700 * sizeof (dw_separate_line_info_entry));
13701 memset (separate_line_info_table
13702 + separate_line_info_table_in_use,
13704 (LINE_INFO_TABLE_INCREMENT
13705 * sizeof (dw_separate_line_info_entry)));
13708 /* Add the new entry at the end of the line_info_table. */
13709 line_info
13710 = &separate_line_info_table[separate_line_info_table_in_use++];
13711 line_info->dw_file_num = file_num;
13712 line_info->dw_line_num = line;
13713 line_info->function = current_function_funcdef_no;
13715 else
13717 dw_line_info_ref line_info;
13719 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13720 line_info_table_in_use);
13722 /* Expand the line info table if necessary. */
13723 if (line_info_table_in_use == line_info_table_allocated)
13725 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13726 line_info_table
13727 = ggc_realloc (line_info_table,
13728 (line_info_table_allocated
13729 * sizeof (dw_line_info_entry)));
13730 memset (line_info_table + line_info_table_in_use, 0,
13731 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13734 /* Add the new entry at the end of the line_info_table. */
13735 line_info = &line_info_table[line_info_table_in_use++];
13736 line_info->dw_file_num = file_num;
13737 line_info->dw_line_num = line;
13742 /* Record the beginning of a new source file. */
13744 static void
13745 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13747 if (flag_eliminate_dwarf2_dups)
13749 /* Record the beginning of the file for break_out_includes. */
13750 dw_die_ref bincl_die;
13752 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13753 add_AT_string (bincl_die, DW_AT_name, filename);
13756 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13758 int file_num = maybe_emit_file (lookup_filename (filename));
13760 switch_to_section (debug_macinfo_section);
13761 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13762 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13763 lineno);
13765 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13769 /* Record the end of a source file. */
13771 static void
13772 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13774 if (flag_eliminate_dwarf2_dups)
13775 /* Record the end of the file for break_out_includes. */
13776 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13778 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13780 switch_to_section (debug_macinfo_section);
13781 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13785 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13786 the tail part of the directive line, i.e. the part which is past the
13787 initial whitespace, #, whitespace, directive-name, whitespace part. */
13789 static void
13790 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13791 const char *buffer ATTRIBUTE_UNUSED)
13793 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13795 switch_to_section (debug_macinfo_section);
13796 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13797 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13798 dw2_asm_output_nstring (buffer, -1, "The macro");
13802 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13803 the tail part of the directive line, i.e. the part which is past the
13804 initial whitespace, #, whitespace, directive-name, whitespace part. */
13806 static void
13807 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13808 const char *buffer ATTRIBUTE_UNUSED)
13810 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13812 switch_to_section (debug_macinfo_section);
13813 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13814 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13815 dw2_asm_output_nstring (buffer, -1, "The macro");
13819 /* Set up for Dwarf output at the start of compilation. */
13821 static void
13822 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13824 /* Allocate the file_table. */
13825 file_table = htab_create_ggc (50, file_table_hash,
13826 file_table_eq, NULL);
13828 /* Allocate the decl_die_table. */
13829 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13830 decl_die_table_eq, NULL);
13832 /* Allocate the decl_loc_table. */
13833 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13834 decl_loc_table_eq, NULL);
13836 /* Allocate the initial hunk of the decl_scope_table. */
13837 decl_scope_table = VEC_alloc (tree, gc, 256);
13839 /* Allocate the initial hunk of the abbrev_die_table. */
13840 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13841 * sizeof (dw_die_ref));
13842 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13843 /* Zero-th entry is allocated, but unused. */
13844 abbrev_die_table_in_use = 1;
13846 /* Allocate the initial hunk of the line_info_table. */
13847 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13848 * sizeof (dw_line_info_entry));
13849 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13851 /* Zero-th entry is allocated, but unused. */
13852 line_info_table_in_use = 1;
13854 /* Generate the initial DIE for the .debug section. Note that the (string)
13855 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13856 will (typically) be a relative pathname and that this pathname should be
13857 taken as being relative to the directory from which the compiler was
13858 invoked when the given (base) source file was compiled. We will fill
13859 in this value in dwarf2out_finish. */
13860 comp_unit_die = gen_compile_unit_die (NULL);
13862 incomplete_types = VEC_alloc (tree, gc, 64);
13864 used_rtx_array = VEC_alloc (rtx, gc, 32);
13866 debug_info_section = get_section (DEBUG_INFO_SECTION,
13867 SECTION_DEBUG, NULL);
13868 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13869 SECTION_DEBUG, NULL);
13870 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13871 SECTION_DEBUG, NULL);
13872 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13873 SECTION_DEBUG, NULL);
13874 debug_line_section = get_section (DEBUG_LINE_SECTION,
13875 SECTION_DEBUG, NULL);
13876 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13877 SECTION_DEBUG, NULL);
13878 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13879 SECTION_DEBUG, NULL);
13880 debug_str_section = get_section (DEBUG_STR_SECTION,
13881 DEBUG_STR_SECTION_FLAGS, NULL);
13882 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13883 SECTION_DEBUG, NULL);
13884 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13885 SECTION_DEBUG, NULL);
13887 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13888 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13889 DEBUG_ABBREV_SECTION_LABEL, 0);
13890 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13891 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13892 COLD_TEXT_SECTION_LABEL, 0);
13893 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13895 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13896 DEBUG_INFO_SECTION_LABEL, 0);
13897 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13898 DEBUG_LINE_SECTION_LABEL, 0);
13899 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13900 DEBUG_RANGES_SECTION_LABEL, 0);
13901 switch_to_section (debug_abbrev_section);
13902 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13903 switch_to_section (debug_info_section);
13904 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13905 switch_to_section (debug_line_section);
13906 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13908 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13910 switch_to_section (debug_macinfo_section);
13911 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13912 DEBUG_MACINFO_SECTION_LABEL, 0);
13913 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13916 switch_to_section (text_section);
13917 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13918 if (flag_reorder_blocks_and_partition)
13920 switch_to_section (unlikely_text_section ());
13921 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13925 /* A helper function for dwarf2out_finish called through
13926 ht_forall. Emit one queued .debug_str string. */
13928 static int
13929 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13931 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13933 if (node->form == DW_FORM_strp)
13935 switch_to_section (debug_str_section);
13936 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13937 assemble_string (node->str, strlen (node->str) + 1);
13940 return 1;
13943 #if ENABLE_ASSERT_CHECKING
13944 /* Verify that all marks are clear. */
13946 static void
13947 verify_marks_clear (dw_die_ref die)
13949 dw_die_ref c;
13951 gcc_assert (! die->die_mark);
13952 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
13954 #endif /* ENABLE_ASSERT_CHECKING */
13956 /* Clear the marks for a die and its children.
13957 Be cool if the mark isn't set. */
13959 static void
13960 prune_unmark_dies (dw_die_ref die)
13962 dw_die_ref c;
13964 if (die->die_mark)
13965 die->die_mark = 0;
13966 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
13969 /* Given DIE that we're marking as used, find any other dies
13970 it references as attributes and mark them as used. */
13972 static void
13973 prune_unused_types_walk_attribs (dw_die_ref die)
13975 dw_attr_ref a;
13976 unsigned ix;
13978 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
13980 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13982 /* A reference to another DIE.
13983 Make sure that it will get emitted. */
13984 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13986 /* Set the string's refcount to 0 so that prune_unused_types_mark
13987 accounts properly for it. */
13988 if (AT_class (a) == dw_val_class_str)
13989 a->dw_attr_val.v.val_str->refcount = 0;
13994 /* Mark DIE as being used. If DOKIDS is true, then walk down
13995 to DIE's children. */
13997 static void
13998 prune_unused_types_mark (dw_die_ref die, int dokids)
14000 dw_die_ref c;
14002 if (die->die_mark == 0)
14004 /* We haven't done this node yet. Mark it as used. */
14005 die->die_mark = 1;
14007 /* We also have to mark its parents as used.
14008 (But we don't want to mark our parents' kids due to this.) */
14009 if (die->die_parent)
14010 prune_unused_types_mark (die->die_parent, 0);
14012 /* Mark any referenced nodes. */
14013 prune_unused_types_walk_attribs (die);
14015 /* If this node is a specification,
14016 also mark the definition, if it exists. */
14017 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14018 prune_unused_types_mark (die->die_definition, 1);
14021 if (dokids && die->die_mark != 2)
14023 /* We need to walk the children, but haven't done so yet.
14024 Remember that we've walked the kids. */
14025 die->die_mark = 2;
14027 /* If this is an array type, we need to make sure our
14028 kids get marked, even if they're types. */
14029 if (die->die_tag == DW_TAG_array_type)
14030 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14031 else
14032 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14037 /* Walk the tree DIE and mark types that we actually use. */
14039 static void
14040 prune_unused_types_walk (dw_die_ref die)
14042 dw_die_ref c;
14044 /* Don't do anything if this node is already marked. */
14045 if (die->die_mark)
14046 return;
14048 switch (die->die_tag)
14050 case DW_TAG_const_type:
14051 case DW_TAG_packed_type:
14052 case DW_TAG_pointer_type:
14053 case DW_TAG_reference_type:
14054 case DW_TAG_volatile_type:
14055 case DW_TAG_typedef:
14056 case DW_TAG_array_type:
14057 case DW_TAG_structure_type:
14058 case DW_TAG_union_type:
14059 case DW_TAG_class_type:
14060 case DW_TAG_friend:
14061 case DW_TAG_variant_part:
14062 case DW_TAG_enumeration_type:
14063 case DW_TAG_subroutine_type:
14064 case DW_TAG_string_type:
14065 case DW_TAG_set_type:
14066 case DW_TAG_subrange_type:
14067 case DW_TAG_ptr_to_member_type:
14068 case DW_TAG_file_type:
14069 if (die->die_perennial_p)
14070 break;
14072 /* It's a type node --- don't mark it. */
14073 return;
14075 default:
14076 /* Mark everything else. */
14077 break;
14080 die->die_mark = 1;
14082 /* Now, mark any dies referenced from here. */
14083 prune_unused_types_walk_attribs (die);
14085 /* Mark children. */
14086 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14089 /* Increment the string counts on strings referred to from DIE's
14090 attributes. */
14092 static void
14093 prune_unused_types_update_strings (dw_die_ref die)
14095 dw_attr_ref a;
14096 unsigned ix;
14098 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14099 if (AT_class (a) == dw_val_class_str)
14101 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14102 s->refcount++;
14103 /* Avoid unnecessarily putting strings that are used less than
14104 twice in the hash table. */
14105 if (s->refcount
14106 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14108 void ** slot;
14109 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14110 htab_hash_string (s->str),
14111 INSERT);
14112 gcc_assert (*slot == NULL);
14113 *slot = s;
14118 /* Remove from the tree DIE any dies that aren't marked. */
14120 static void
14121 prune_unused_types_prune (dw_die_ref die)
14123 dw_die_ref c;
14125 gcc_assert (die->die_mark);
14126 prune_unused_types_update_strings (die);
14128 if (! die->die_child)
14129 return;
14131 c = die->die_child;
14132 do {
14133 dw_die_ref prev = c;
14134 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14135 if (c == die->die_child)
14137 /* No marked children between 'prev' and the end of the list. */
14138 if (prev == c)
14139 /* No marked children at all. */
14140 die->die_child = NULL;
14141 else
14143 prev->die_sib = c->die_sib;
14144 die->die_child = prev;
14146 return;
14149 if (c != prev->die_sib)
14150 prev->die_sib = c;
14151 prune_unused_types_prune (c);
14152 } while (c != die->die_child);
14156 /* Remove dies representing declarations that we never use. */
14158 static void
14159 prune_unused_types (void)
14161 unsigned int i;
14162 limbo_die_node *node;
14164 #if ENABLE_ASSERT_CHECKING
14165 /* All the marks should already be clear. */
14166 verify_marks_clear (comp_unit_die);
14167 for (node = limbo_die_list; node; node = node->next)
14168 verify_marks_clear (node->die);
14169 #endif /* ENABLE_ASSERT_CHECKING */
14171 /* Set the mark on nodes that are actually used. */
14172 prune_unused_types_walk (comp_unit_die);
14173 for (node = limbo_die_list; node; node = node->next)
14174 prune_unused_types_walk (node->die);
14176 /* Also set the mark on nodes referenced from the
14177 pubname_table or arange_table. */
14178 for (i = 0; i < pubname_table_in_use; i++)
14179 prune_unused_types_mark (pubname_table[i].die, 1);
14180 for (i = 0; i < arange_table_in_use; i++)
14181 prune_unused_types_mark (arange_table[i], 1);
14183 /* Get rid of nodes that aren't marked; and update the string counts. */
14184 if (debug_str_hash)
14185 htab_empty (debug_str_hash);
14186 prune_unused_types_prune (comp_unit_die);
14187 for (node = limbo_die_list; node; node = node->next)
14188 prune_unused_types_prune (node->die);
14190 /* Leave the marks clear. */
14191 prune_unmark_dies (comp_unit_die);
14192 for (node = limbo_die_list; node; node = node->next)
14193 prune_unmark_dies (node->die);
14196 /* Set the parameter to true if there are any relative pathnames in
14197 the file table. */
14198 static int
14199 file_table_relative_p (void ** slot, void *param)
14201 bool *p = param;
14202 struct dwarf_file_data *d = *slot;
14203 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14205 *p = true;
14206 return 0;
14208 return 1;
14211 /* Output stuff that dwarf requires at the end of every file,
14212 and generate the DWARF-2 debugging info. */
14214 static void
14215 dwarf2out_finish (const char *filename)
14217 limbo_die_node *node, *next_node;
14218 dw_die_ref die = 0;
14220 /* Add the name for the main input file now. We delayed this from
14221 dwarf2out_init to avoid complications with PCH. */
14222 add_name_attribute (comp_unit_die, filename);
14223 if (!IS_ABSOLUTE_PATH (filename))
14224 add_comp_dir_attribute (comp_unit_die);
14225 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14227 bool p = false;
14228 htab_traverse (file_table, file_table_relative_p, &p);
14229 if (p)
14230 add_comp_dir_attribute (comp_unit_die);
14233 /* Traverse the limbo die list, and add parent/child links. The only
14234 dies without parents that should be here are concrete instances of
14235 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14236 For concrete instances, we can get the parent die from the abstract
14237 instance. */
14238 for (node = limbo_die_list; node; node = next_node)
14240 next_node = node->next;
14241 die = node->die;
14243 if (die->die_parent == NULL)
14245 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14247 if (origin)
14248 add_child_die (origin->die_parent, die);
14249 else if (die == comp_unit_die)
14251 else if (errorcount > 0 || sorrycount > 0)
14252 /* It's OK to be confused by errors in the input. */
14253 add_child_die (comp_unit_die, die);
14254 else
14256 /* In certain situations, the lexical block containing a
14257 nested function can be optimized away, which results
14258 in the nested function die being orphaned. Likewise
14259 with the return type of that nested function. Force
14260 this to be a child of the containing function.
14262 It may happen that even the containing function got fully
14263 inlined and optimized out. In that case we are lost and
14264 assign the empty child. This should not be big issue as
14265 the function is likely unreachable too. */
14266 tree context = NULL_TREE;
14268 gcc_assert (node->created_for);
14270 if (DECL_P (node->created_for))
14271 context = DECL_CONTEXT (node->created_for);
14272 else if (TYPE_P (node->created_for))
14273 context = TYPE_CONTEXT (node->created_for);
14275 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14277 origin = lookup_decl_die (context);
14278 if (origin)
14279 add_child_die (origin, die);
14280 else
14281 add_child_die (comp_unit_die, die);
14286 limbo_die_list = NULL;
14288 /* Walk through the list of incomplete types again, trying once more to
14289 emit full debugging info for them. */
14290 retry_incomplete_types ();
14292 if (flag_eliminate_unused_debug_types)
14293 prune_unused_types ();
14295 /* Generate separate CUs for each of the include files we've seen.
14296 They will go into limbo_die_list. */
14297 if (flag_eliminate_dwarf2_dups)
14298 break_out_includes (comp_unit_die);
14300 /* Traverse the DIE's and add add sibling attributes to those DIE's
14301 that have children. */
14302 add_sibling_attributes (comp_unit_die);
14303 for (node = limbo_die_list; node; node = node->next)
14304 add_sibling_attributes (node->die);
14306 /* Output a terminator label for the .text section. */
14307 switch_to_section (text_section);
14308 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14309 if (flag_reorder_blocks_and_partition)
14311 switch_to_section (unlikely_text_section ());
14312 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14315 /* We can only use the low/high_pc attributes if all of the code was
14316 in .text. */
14317 if (!have_multiple_function_sections)
14319 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14320 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14323 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14324 "base address". Use zero so that these addresses become absolute. */
14325 else if (have_location_lists || ranges_table_in_use)
14326 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14328 /* Output location list section if necessary. */
14329 if (have_location_lists)
14331 /* Output the location lists info. */
14332 switch_to_section (debug_loc_section);
14333 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14334 DEBUG_LOC_SECTION_LABEL, 0);
14335 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14336 output_location_lists (die);
14339 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14340 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14341 debug_line_section_label);
14343 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14344 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14346 /* Output all of the compilation units. We put the main one last so that
14347 the offsets are available to output_pubnames. */
14348 for (node = limbo_die_list; node; node = node->next)
14349 output_comp_unit (node->die, 0);
14351 output_comp_unit (comp_unit_die, 0);
14353 /* Output the abbreviation table. */
14354 switch_to_section (debug_abbrev_section);
14355 output_abbrev_section ();
14357 /* Output public names table if necessary. */
14358 if (pubname_table_in_use)
14360 switch_to_section (debug_pubnames_section);
14361 output_pubnames ();
14364 /* Output the address range information. We only put functions in the arange
14365 table, so don't write it out if we don't have any. */
14366 if (fde_table_in_use)
14368 switch_to_section (debug_aranges_section);
14369 output_aranges ();
14372 /* Output ranges section if necessary. */
14373 if (ranges_table_in_use)
14375 switch_to_section (debug_ranges_section);
14376 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14377 output_ranges ();
14380 /* Output the source line correspondence table. We must do this
14381 even if there is no line information. Otherwise, on an empty
14382 translation unit, we will generate a present, but empty,
14383 .debug_info section. IRIX 6.5 `nm' will then complain when
14384 examining the file. This is done late so that any filenames
14385 used by the debug_info section are marked as 'used'. */
14386 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14388 switch_to_section (debug_line_section);
14389 output_line_info ();
14392 /* Have to end the macro section. */
14393 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14395 switch_to_section (debug_macinfo_section);
14396 dw2_asm_output_data (1, 0, "End compilation unit");
14399 /* If we emitted any DW_FORM_strp form attribute, output the string
14400 table too. */
14401 if (debug_str_hash)
14402 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14404 #else
14406 /* This should never be used, but its address is needed for comparisons. */
14407 const struct gcc_debug_hooks dwarf2_debug_hooks;
14409 #endif /* DWARF2_DEBUGGING_INFO */
14411 #include "gt-dwarf2out.h"