Consistently use "rG" constraint for copy instruction in move patterns
[official-gcc.git] / libsanitizer / tsan / tsan_mman.cpp
blobf1b6768c5921be7e9b352877870ff945e19e6c0c
1 //===-- tsan_mman.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //===----------------------------------------------------------------------===//
12 #include "sanitizer_common/sanitizer_allocator_checks.h"
13 #include "sanitizer_common/sanitizer_allocator_interface.h"
14 #include "sanitizer_common/sanitizer_allocator_report.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_placement_new.h"
18 #include "tsan_mman.h"
19 #include "tsan_rtl.h"
20 #include "tsan_report.h"
21 #include "tsan_flags.h"
23 // May be overriden by front-end.
24 SANITIZER_WEAK_DEFAULT_IMPL
25 void __sanitizer_malloc_hook(void *ptr, uptr size) {
26 (void)ptr;
27 (void)size;
30 SANITIZER_WEAK_DEFAULT_IMPL
31 void __sanitizer_free_hook(void *ptr) {
32 (void)ptr;
35 namespace __tsan {
37 struct MapUnmapCallback {
38 void OnMap(uptr p, uptr size) const { }
39 void OnUnmap(uptr p, uptr size) const {
40 // We are about to unmap a chunk of user memory.
41 // Mark the corresponding shadow memory as not needed.
42 DontNeedShadowFor(p, size);
43 // Mark the corresponding meta shadow memory as not needed.
44 // Note the block does not contain any meta info at this point
45 // (this happens after free).
46 const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
47 const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
48 // Block came from LargeMmapAllocator, so must be large.
49 // We rely on this in the calculations below.
50 CHECK_GE(size, 2 * kPageSize);
51 uptr diff = RoundUp(p, kPageSize) - p;
52 if (diff != 0) {
53 p += diff;
54 size -= diff;
56 diff = p + size - RoundDown(p + size, kPageSize);
57 if (diff != 0)
58 size -= diff;
59 uptr p_meta = (uptr)MemToMeta(p);
60 ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
64 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
65 Allocator *allocator() {
66 return reinterpret_cast<Allocator*>(&allocator_placeholder);
69 struct GlobalProc {
70 Mutex mtx;
71 Processor *proc;
73 GlobalProc() : mtx(MutexTypeGlobalProc), proc(ProcCreate()) {}
76 static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
77 GlobalProc *global_proc() {
78 return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
81 ScopedGlobalProcessor::ScopedGlobalProcessor() {
82 GlobalProc *gp = global_proc();
83 ThreadState *thr = cur_thread();
84 if (thr->proc())
85 return;
86 // If we don't have a proc, use the global one.
87 // There are currently only two known case where this path is triggered:
88 // __interceptor_free
89 // __nptl_deallocate_tsd
90 // start_thread
91 // clone
92 // and:
93 // ResetRange
94 // __interceptor_munmap
95 // __deallocate_stack
96 // start_thread
97 // clone
98 // Ideally, we destroy thread state (and unwire proc) when a thread actually
99 // exits (i.e. when we join/wait it). Then we would not need the global proc
100 gp->mtx.Lock();
101 ProcWire(gp->proc, thr);
104 ScopedGlobalProcessor::~ScopedGlobalProcessor() {
105 GlobalProc *gp = global_proc();
106 ThreadState *thr = cur_thread();
107 if (thr->proc() != gp->proc)
108 return;
109 ProcUnwire(gp->proc, thr);
110 gp->mtx.Unlock();
113 static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
114 static uptr max_user_defined_malloc_size;
116 void InitializeAllocator() {
117 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
118 allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
119 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
120 ? common_flags()->max_allocation_size_mb
121 << 20
122 : kMaxAllowedMallocSize;
125 void InitializeAllocatorLate() {
126 new(global_proc()) GlobalProc();
129 void AllocatorProcStart(Processor *proc) {
130 allocator()->InitCache(&proc->alloc_cache);
131 internal_allocator()->InitCache(&proc->internal_alloc_cache);
134 void AllocatorProcFinish(Processor *proc) {
135 allocator()->DestroyCache(&proc->alloc_cache);
136 internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
139 void AllocatorPrintStats() {
140 allocator()->PrintStats();
143 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
144 if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
145 !ShouldReport(thr, ReportTypeSignalUnsafe))
146 return;
147 VarSizeStackTrace stack;
148 ObtainCurrentStack(thr, pc, &stack);
149 if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
150 return;
151 ThreadRegistryLock l(&ctx->thread_registry);
152 ScopedReport rep(ReportTypeSignalUnsafe);
153 rep.AddStack(stack, true);
154 OutputReport(thr, rep);
158 void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
159 bool signal) {
160 if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize ||
161 sz > max_user_defined_malloc_size) {
162 if (AllocatorMayReturnNull())
163 return nullptr;
164 uptr malloc_limit =
165 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
166 GET_STACK_TRACE_FATAL(thr, pc);
167 ReportAllocationSizeTooBig(sz, malloc_limit, &stack);
169 void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
170 if (UNLIKELY(!p)) {
171 SetAllocatorOutOfMemory();
172 if (AllocatorMayReturnNull())
173 return nullptr;
174 GET_STACK_TRACE_FATAL(thr, pc);
175 ReportOutOfMemory(sz, &stack);
177 if (ctx && ctx->initialized)
178 OnUserAlloc(thr, pc, (uptr)p, sz, true);
179 if (signal)
180 SignalUnsafeCall(thr, pc);
181 return p;
184 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
185 ScopedGlobalProcessor sgp;
186 if (ctx && ctx->initialized)
187 OnUserFree(thr, pc, (uptr)p, true);
188 allocator()->Deallocate(&thr->proc()->alloc_cache, p);
189 if (signal)
190 SignalUnsafeCall(thr, pc);
193 void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
194 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
197 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
198 if (UNLIKELY(CheckForCallocOverflow(size, n))) {
199 if (AllocatorMayReturnNull())
200 return SetErrnoOnNull(nullptr);
201 GET_STACK_TRACE_FATAL(thr, pc);
202 ReportCallocOverflow(n, size, &stack);
204 void *p = user_alloc_internal(thr, pc, n * size);
205 if (p)
206 internal_memset(p, 0, n * size);
207 return SetErrnoOnNull(p);
210 void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
211 if (UNLIKELY(CheckForCallocOverflow(size, n))) {
212 if (AllocatorMayReturnNull())
213 return SetErrnoOnNull(nullptr);
214 GET_STACK_TRACE_FATAL(thr, pc);
215 ReportReallocArrayOverflow(size, n, &stack);
217 return user_realloc(thr, pc, p, size * n);
220 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
221 DPrintf("#%d: alloc(%zu) = 0x%zx\n", thr->tid, sz, p);
222 ctx->metamap.AllocBlock(thr, pc, p, sz);
223 if (write && thr->ignore_reads_and_writes == 0)
224 MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
225 else
226 MemoryResetRange(thr, pc, (uptr)p, sz);
229 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
230 CHECK_NE(p, (void*)0);
231 uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
232 DPrintf("#%d: free(0x%zx, %zu)\n", thr->tid, p, sz);
233 if (write && thr->ignore_reads_and_writes == 0)
234 MemoryRangeFreed(thr, pc, (uptr)p, sz);
237 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
238 // FIXME: Handle "shrinking" more efficiently,
239 // it seems that some software actually does this.
240 if (!p)
241 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
242 if (!sz) {
243 user_free(thr, pc, p);
244 return nullptr;
246 void *new_p = user_alloc_internal(thr, pc, sz);
247 if (new_p) {
248 uptr old_sz = user_alloc_usable_size(p);
249 internal_memcpy(new_p, p, min(old_sz, sz));
250 user_free(thr, pc, p);
252 return SetErrnoOnNull(new_p);
255 void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
256 if (UNLIKELY(!IsPowerOfTwo(align))) {
257 errno = errno_EINVAL;
258 if (AllocatorMayReturnNull())
259 return nullptr;
260 GET_STACK_TRACE_FATAL(thr, pc);
261 ReportInvalidAllocationAlignment(align, &stack);
263 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
266 int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
267 uptr sz) {
268 if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
269 if (AllocatorMayReturnNull())
270 return errno_EINVAL;
271 GET_STACK_TRACE_FATAL(thr, pc);
272 ReportInvalidPosixMemalignAlignment(align, &stack);
274 void *ptr = user_alloc_internal(thr, pc, sz, align);
275 if (UNLIKELY(!ptr))
276 // OOM error is already taken care of by user_alloc_internal.
277 return errno_ENOMEM;
278 CHECK(IsAligned((uptr)ptr, align));
279 *memptr = ptr;
280 return 0;
283 void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
284 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
285 errno = errno_EINVAL;
286 if (AllocatorMayReturnNull())
287 return nullptr;
288 GET_STACK_TRACE_FATAL(thr, pc);
289 ReportInvalidAlignedAllocAlignment(sz, align, &stack);
291 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
294 void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
295 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
298 void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
299 uptr PageSize = GetPageSizeCached();
300 if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
301 errno = errno_ENOMEM;
302 if (AllocatorMayReturnNull())
303 return nullptr;
304 GET_STACK_TRACE_FATAL(thr, pc);
305 ReportPvallocOverflow(sz, &stack);
307 // pvalloc(0) should allocate one page.
308 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
309 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
312 uptr user_alloc_usable_size(const void *p) {
313 if (p == 0)
314 return 0;
315 MBlock *b = ctx->metamap.GetBlock((uptr)p);
316 if (!b)
317 return 0; // Not a valid pointer.
318 if (b->siz == 0)
319 return 1; // Zero-sized allocations are actually 1 byte.
320 return b->siz;
323 void invoke_malloc_hook(void *ptr, uptr size) {
324 ThreadState *thr = cur_thread();
325 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
326 return;
327 __sanitizer_malloc_hook(ptr, size);
328 RunMallocHooks(ptr, size);
331 void invoke_free_hook(void *ptr) {
332 ThreadState *thr = cur_thread();
333 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
334 return;
335 __sanitizer_free_hook(ptr);
336 RunFreeHooks(ptr);
339 void *Alloc(uptr sz) {
340 ThreadState *thr = cur_thread();
341 if (thr->nomalloc) {
342 thr->nomalloc = 0; // CHECK calls internal_malloc().
343 CHECK(0);
345 return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
348 void FreeImpl(void *p) {
349 ThreadState *thr = cur_thread();
350 if (thr->nomalloc) {
351 thr->nomalloc = 0; // CHECK calls internal_malloc().
352 CHECK(0);
354 InternalFree(p, &thr->proc()->internal_alloc_cache);
357 } // namespace __tsan
359 using namespace __tsan;
361 extern "C" {
362 uptr __sanitizer_get_current_allocated_bytes() {
363 uptr stats[AllocatorStatCount];
364 allocator()->GetStats(stats);
365 return stats[AllocatorStatAllocated];
368 uptr __sanitizer_get_heap_size() {
369 uptr stats[AllocatorStatCount];
370 allocator()->GetStats(stats);
371 return stats[AllocatorStatMapped];
374 uptr __sanitizer_get_free_bytes() {
375 return 1;
378 uptr __sanitizer_get_unmapped_bytes() {
379 return 1;
382 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
383 return size;
386 int __sanitizer_get_ownership(const void *p) {
387 return allocator()->GetBlockBegin(p) != 0;
390 uptr __sanitizer_get_allocated_size(const void *p) {
391 return user_alloc_usable_size(p);
394 void __tsan_on_thread_idle() {
395 ThreadState *thr = cur_thread();
396 thr->clock.ResetCached(&thr->proc()->clock_cache);
397 thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
398 allocator()->SwallowCache(&thr->proc()->alloc_cache);
399 internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
400 ctx->metamap.OnProcIdle(thr->proc());
402 } // extern "C"