Consistently use "rG" constraint for copy instruction in move patterns
[official-gcc.git] / libsanitizer / tsan / tsan_interceptors_mac.cpp
blobed064150d005cd6e0228b21d8841ab0f889ca292
1 //===-- tsan_interceptors_mac.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // Mac-specific interceptors.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_common/sanitizer_platform.h"
15 #if SANITIZER_MAC
17 #include "interception/interception.h"
18 #include "tsan_interceptors.h"
19 #include "tsan_interface.h"
20 #include "tsan_interface_ann.h"
21 #include "sanitizer_common/sanitizer_addrhashmap.h"
23 #include <errno.h>
24 #include <libkern/OSAtomic.h>
25 #include <objc/objc-sync.h>
26 #include <os/lock.h>
27 #include <sys/ucontext.h>
29 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
30 #include <xpc/xpc.h>
31 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
33 typedef long long_t;
35 extern "C" {
36 int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
37 int setcontext(const ucontext_t *ucp);
40 namespace __tsan {
42 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
43 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
44 // actually aliases of each other, and we cannot have different interceptors for
45 // them, because they're actually the same function. Thus, we have to stay
46 // conservative and treat the non-barrier versions as mo_acq_rel.
47 static constexpr morder kMacOrderBarrier = mo_acq_rel;
48 static constexpr morder kMacOrderNonBarrier = mo_acq_rel;
49 static constexpr morder kMacFailureOrder = mo_relaxed;
51 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
52 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
53 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
54 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo); \
57 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
58 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
59 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
60 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x; \
63 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
64 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
65 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
66 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1; \
69 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
70 mo) \
71 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
72 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
73 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1; \
76 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m) \
77 m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
78 kMacOrderNonBarrier) \
79 m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
80 kMacOrderBarrier) \
81 m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \
82 kMacOrderNonBarrier) \
83 m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f, \
84 kMacOrderBarrier)
86 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig) \
87 m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
88 kMacOrderNonBarrier) \
89 m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
90 kMacOrderBarrier) \
91 m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
92 kMacOrderNonBarrier) \
93 m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier, \
94 __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
96 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
97 OSATOMIC_INTERCEPTOR_PLUS_X)
98 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
99 OSATOMIC_INTERCEPTOR_PLUS_1)
100 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
101 OSATOMIC_INTERCEPTOR_MINUS_1)
102 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
103 OSATOMIC_INTERCEPTOR)
104 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
105 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
106 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
107 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
109 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t) \
110 TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \
111 SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr); \
112 return tsan_atomic_f##_compare_exchange_strong( \
113 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
114 kMacOrderNonBarrier, kMacFailureOrder); \
117 TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value, \
118 t volatile *ptr) { \
119 SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr); \
120 return tsan_atomic_f##_compare_exchange_strong( \
121 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
122 kMacOrderBarrier, kMacFailureOrder); \
125 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
126 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
127 long_t)
128 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
129 void *)
130 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
131 int32_t)
132 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
133 int64_t)
135 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo) \
136 TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
137 SCOPED_TSAN_INTERCEPTOR(f, n, ptr); \
138 volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
139 char bit = 0x80u >> (n & 7); \
140 char mask = clear ? ~bit : bit; \
141 char orig_byte = op((volatile a8 *)byte_ptr, mask, mo); \
142 return orig_byte & bit; \
145 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear) \
146 OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
147 OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
149 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
150 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
151 true)
153 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
154 size_t offset) {
155 SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
156 __tsan_release(item);
157 REAL(OSAtomicEnqueue)(list, item, offset);
160 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
161 SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
162 void *item = REAL(OSAtomicDequeue)(list, offset);
163 if (item) __tsan_acquire(item);
164 return item;
167 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
168 #if !SANITIZER_IOS
170 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
171 size_t offset) {
172 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
173 __tsan_release(item);
174 REAL(OSAtomicFifoEnqueue)(list, item, offset);
177 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
178 size_t offset) {
179 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
180 void *item = REAL(OSAtomicFifoDequeue)(list, offset);
181 if (item) __tsan_acquire(item);
182 return item;
185 #endif
187 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
188 CHECK(!cur_thread()->is_dead);
189 if (!cur_thread()->is_inited) {
190 return REAL(OSSpinLockLock)(lock);
192 SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
193 REAL(OSSpinLockLock)(lock);
194 Acquire(thr, pc, (uptr)lock);
197 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
198 CHECK(!cur_thread()->is_dead);
199 if (!cur_thread()->is_inited) {
200 return REAL(OSSpinLockTry)(lock);
202 SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
203 bool result = REAL(OSSpinLockTry)(lock);
204 if (result)
205 Acquire(thr, pc, (uptr)lock);
206 return result;
209 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
210 CHECK(!cur_thread()->is_dead);
211 if (!cur_thread()->is_inited) {
212 return REAL(OSSpinLockUnlock)(lock);
214 SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
215 Release(thr, pc, (uptr)lock);
216 REAL(OSSpinLockUnlock)(lock);
219 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
220 CHECK(!cur_thread()->is_dead);
221 if (!cur_thread()->is_inited) {
222 return REAL(os_lock_lock)(lock);
224 SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
225 REAL(os_lock_lock)(lock);
226 Acquire(thr, pc, (uptr)lock);
229 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
230 CHECK(!cur_thread()->is_dead);
231 if (!cur_thread()->is_inited) {
232 return REAL(os_lock_trylock)(lock);
234 SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
235 bool result = REAL(os_lock_trylock)(lock);
236 if (result)
237 Acquire(thr, pc, (uptr)lock);
238 return result;
241 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
242 CHECK(!cur_thread()->is_dead);
243 if (!cur_thread()->is_inited) {
244 return REAL(os_lock_unlock)(lock);
246 SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
247 Release(thr, pc, (uptr)lock);
248 REAL(os_lock_unlock)(lock);
251 TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
252 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
253 return REAL(os_unfair_lock_lock)(lock);
255 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
256 REAL(os_unfair_lock_lock)(lock);
257 Acquire(thr, pc, (uptr)lock);
260 TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
261 u32 options) {
262 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
263 return REAL(os_unfair_lock_lock_with_options)(lock, options);
265 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
266 REAL(os_unfair_lock_lock_with_options)(lock, options);
267 Acquire(thr, pc, (uptr)lock);
270 TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
271 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
272 return REAL(os_unfair_lock_trylock)(lock);
274 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
275 bool result = REAL(os_unfair_lock_trylock)(lock);
276 if (result)
277 Acquire(thr, pc, (uptr)lock);
278 return result;
281 TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
282 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
283 return REAL(os_unfair_lock_unlock)(lock);
285 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
286 Release(thr, pc, (uptr)lock);
287 REAL(os_unfair_lock_unlock)(lock);
290 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
292 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
293 xpc_connection_t connection, xpc_handler_t handler) {
294 SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
295 handler);
296 Release(thr, pc, (uptr)connection);
297 xpc_handler_t new_handler = ^(xpc_object_t object) {
299 SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
300 Acquire(thr, pc, (uptr)connection);
302 handler(object);
304 REAL(xpc_connection_set_event_handler)(connection, new_handler);
307 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
308 dispatch_block_t barrier) {
309 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
310 Release(thr, pc, (uptr)connection);
311 dispatch_block_t new_barrier = ^() {
313 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
314 Acquire(thr, pc, (uptr)connection);
316 barrier();
318 REAL(xpc_connection_send_barrier)(connection, new_barrier);
321 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
322 xpc_connection_t connection, xpc_object_t message,
323 dispatch_queue_t replyq, xpc_handler_t handler) {
324 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
325 message, replyq, handler);
326 Release(thr, pc, (uptr)connection);
327 xpc_handler_t new_handler = ^(xpc_object_t object) {
329 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
330 Acquire(thr, pc, (uptr)connection);
332 handler(object);
334 REAL(xpc_connection_send_message_with_reply)
335 (connection, message, replyq, new_handler);
338 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
339 SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
340 Release(thr, pc, (uptr)connection);
341 REAL(xpc_connection_cancel)(connection);
344 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
346 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
347 // pointers encode the object data directly in their pointer bits and do not
348 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
349 // to transparently optimize small objects.
350 static bool IsTaggedObjCPointer(id obj) {
351 const uptr kPossibleTaggedBits = 0x8000000000000001ull;
352 return ((uptr)obj & kPossibleTaggedBits) != 0;
355 // Returns an address which can be used to inform TSan about synchronization
356 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
357 // address in the process space. We do a small allocation here to obtain a
358 // stable address (the array backing the hash map can change). The memory is
359 // never free'd (leaked) and allocation and locking are slow, but this code only
360 // runs for @synchronized with tagged pointers, which is very rare.
361 static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
362 typedef AddrHashMap<uptr, 5> Map;
363 static Map Addresses;
364 Map::Handle h(&Addresses, addr);
365 if (h.created()) {
366 ThreadIgnoreBegin(thr, pc);
367 *h = (uptr) user_alloc(thr, pc, /*size=*/1);
368 ThreadIgnoreEnd(thr);
370 return *h;
373 // Returns an address on which we can synchronize given an Obj-C object pointer.
374 // For normal object pointers, this is just the address of the object in memory.
375 // Tagged pointers are not backed by an actual memory allocation, so we need to
376 // synthesize a valid address.
377 static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
378 if (IsTaggedObjCPointer(obj))
379 return GetOrCreateSyncAddress((uptr)obj, thr, pc);
380 return (uptr)obj;
383 TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
384 SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
385 if (!obj) return REAL(objc_sync_enter)(obj);
386 uptr addr = SyncAddressForObjCObject(obj, thr, pc);
387 MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
388 int result = REAL(objc_sync_enter)(obj);
389 CHECK_EQ(result, OBJC_SYNC_SUCCESS);
390 MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
391 return result;
394 TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
395 SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
396 if (!obj) return REAL(objc_sync_exit)(obj);
397 uptr addr = SyncAddressForObjCObject(obj, thr, pc);
398 MutexUnlock(thr, pc, addr);
399 int result = REAL(objc_sync_exit)(obj);
400 if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
401 return result;
404 TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
406 SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
408 // Because of swapcontext() semantics we have no option but to copy its
409 // implementation here
410 if (!oucp || !ucp) {
411 errno = EINVAL;
412 return -1;
414 ThreadState *thr = cur_thread();
415 const int UCF_SWAPPED = 0x80000000;
416 oucp->uc_onstack &= ~UCF_SWAPPED;
417 thr->ignore_interceptors++;
418 int ret = getcontext(oucp);
419 if (!(oucp->uc_onstack & UCF_SWAPPED)) {
420 thr->ignore_interceptors--;
421 if (!ret) {
422 oucp->uc_onstack |= UCF_SWAPPED;
423 ret = setcontext(ucp);
426 return ret;
429 // On macOS, libc++ is always linked dynamically, so intercepting works the
430 // usual way.
431 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
433 namespace {
434 struct fake_shared_weak_count {
435 volatile a64 shared_owners;
436 volatile a64 shared_weak_owners;
437 virtual void _unused_0x0() = 0;
438 virtual void _unused_0x8() = 0;
439 virtual void on_zero_shared() = 0;
440 virtual void _unused_0x18() = 0;
441 virtual void on_zero_shared_weak() = 0;
442 virtual ~fake_shared_weak_count() = 0; // suppress -Wnon-virtual-dtor
444 } // namespace
446 // The following code adds libc++ interceptors for:
447 // void __shared_weak_count::__release_shared() _NOEXCEPT;
448 // bool __shared_count::__release_shared() _NOEXCEPT;
449 // Shared and weak pointers in C++ maintain reference counts via atomics in
450 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
451 // destructor code. These interceptors re-implements the whole functions so that
452 // the mo_acq_rel semantics of the atomic decrement are visible.
454 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
455 // object and call the original function, because it would have a race between
456 // the sync and the destruction of the object. Calling both under a lock will
457 // not work because the destructor can invoke this interceptor again (and even
458 // in a different thread, so recursive locks don't help).
460 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
461 fake_shared_weak_count *o) {
462 if (!flags()->shared_ptr_interceptor)
463 return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
465 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
467 if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
468 Acquire(thr, pc, (uptr)&o->shared_owners);
469 o->on_zero_shared();
470 if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
471 0) {
472 Acquire(thr, pc, (uptr)&o->shared_weak_owners);
473 o->on_zero_shared_weak();
478 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
479 fake_shared_weak_count *o) {
480 if (!flags()->shared_ptr_interceptor)
481 return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
483 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
484 if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
485 Acquire(thr, pc, (uptr)&o->shared_owners);
486 o->on_zero_shared();
487 return true;
489 return false;
492 namespace {
493 struct call_once_callback_args {
494 void (*orig_func)(void *arg);
495 void *orig_arg;
496 void *flag;
499 void call_once_callback_wrapper(void *arg) {
500 call_once_callback_args *new_args = (call_once_callback_args *)arg;
501 new_args->orig_func(new_args->orig_arg);
502 __tsan_release(new_args->flag);
504 } // namespace
506 // This adds a libc++ interceptor for:
507 // void __call_once(volatile unsigned long&, void*, void(*)(void*));
508 // C++11 call_once is implemented via an internal function __call_once which is
509 // inside libc++.dylib, and the atomic release store inside it is thus
510 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
511 // function and performs an explicit Release after the user code has run.
512 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
513 void *arg, void (*func)(void *arg)) {
514 call_once_callback_args new_args = {func, arg, flag};
515 REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
516 call_once_callback_wrapper);
519 } // namespace __tsan
521 #endif // SANITIZER_MAC