Consistently use "rG" constraint for copy instruction in move patterns
[official-gcc.git] / libsanitizer / tsan / tsan_fd.cpp
blob255ffa8daf7604a6225d387471b393ac403d3074
1 //===-- tsan_fd.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //===----------------------------------------------------------------------===//
13 #include "tsan_fd.h"
14 #include "tsan_rtl.h"
15 #include <sanitizer_common/sanitizer_atomic.h>
17 namespace __tsan {
19 const int kTableSizeL1 = 1024;
20 const int kTableSizeL2 = 1024;
21 const int kTableSize = kTableSizeL1 * kTableSizeL2;
23 struct FdSync {
24 atomic_uint64_t rc;
27 struct FdDesc {
28 FdSync *sync;
29 Tid creation_tid;
30 StackID creation_stack;
33 struct FdContext {
34 atomic_uintptr_t tab[kTableSizeL1];
35 // Addresses used for synchronization.
36 FdSync globsync;
37 FdSync filesync;
38 FdSync socksync;
39 u64 connectsync;
42 static FdContext fdctx;
44 static bool bogusfd(int fd) {
45 // Apparently a bogus fd value.
46 return fd < 0 || fd >= kTableSize;
49 static FdSync *allocsync(ThreadState *thr, uptr pc) {
50 FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
51 kDefaultAlignment, false);
52 atomic_store(&s->rc, 1, memory_order_relaxed);
53 return s;
56 static FdSync *ref(FdSync *s) {
57 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
58 atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
59 return s;
62 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
63 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
64 if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
65 CHECK_NE(s, &fdctx.globsync);
66 CHECK_NE(s, &fdctx.filesync);
67 CHECK_NE(s, &fdctx.socksync);
68 user_free(thr, pc, s, false);
73 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
74 CHECK_GE(fd, 0);
75 CHECK_LT(fd, kTableSize);
76 atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
77 uptr l1 = atomic_load(pl1, memory_order_consume);
78 if (l1 == 0) {
79 uptr size = kTableSizeL2 * sizeof(FdDesc);
80 // We need this to reside in user memory to properly catch races on it.
81 void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
82 internal_memset(p, 0, size);
83 MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
84 if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
85 l1 = (uptr)p;
86 else
87 user_free(thr, pc, p, false);
89 FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
90 return &fds[fd % kTableSizeL2];
93 // pd must be already ref'ed.
94 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
95 bool write = true) {
96 FdDesc *d = fddesc(thr, pc, fd);
97 // As a matter of fact, we don't intercept all close calls.
98 // See e.g. libc __res_iclose().
99 if (d->sync) {
100 unref(thr, pc, d->sync);
101 d->sync = 0;
103 if (flags()->io_sync == 0) {
104 unref(thr, pc, s);
105 } else if (flags()->io_sync == 1) {
106 d->sync = s;
107 } else if (flags()->io_sync == 2) {
108 unref(thr, pc, s);
109 d->sync = &fdctx.globsync;
111 d->creation_tid = thr->tid;
112 d->creation_stack = CurrentStackId(thr, pc);
113 if (write) {
114 // To catch races between fd usage and open.
115 MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
116 } else {
117 // See the dup-related comment in FdClose.
118 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
122 void FdInit() {
123 atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
124 atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
125 atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
128 void FdOnFork(ThreadState *thr, uptr pc) {
129 // On fork() we need to reset all fd's, because the child is going
130 // close all them, and that will cause races between previous read/write
131 // and the close.
132 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
133 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
134 if (tab == 0)
135 break;
136 for (int l2 = 0; l2 < kTableSizeL2; l2++) {
137 FdDesc *d = &tab[l2];
138 MemoryResetRange(thr, pc, (uptr)d, 8);
143 bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack) {
144 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
145 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
146 if (tab == 0)
147 break;
148 if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
149 int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
150 FdDesc *d = &tab[l2];
151 *fd = l1 * kTableSizeL1 + l2;
152 *tid = d->creation_tid;
153 *stack = d->creation_stack;
154 return true;
157 return false;
160 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
161 if (bogusfd(fd))
162 return;
163 FdDesc *d = fddesc(thr, pc, fd);
164 FdSync *s = d->sync;
165 DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
166 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
167 if (s)
168 Acquire(thr, pc, (uptr)s);
171 void FdRelease(ThreadState *thr, uptr pc, int fd) {
172 if (bogusfd(fd))
173 return;
174 FdDesc *d = fddesc(thr, pc, fd);
175 FdSync *s = d->sync;
176 DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
177 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
178 if (s)
179 Release(thr, pc, (uptr)s);
182 void FdAccess(ThreadState *thr, uptr pc, int fd) {
183 DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
184 if (bogusfd(fd))
185 return;
186 FdDesc *d = fddesc(thr, pc, fd);
187 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
190 void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
191 DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
192 if (bogusfd(fd))
193 return;
194 FdDesc *d = fddesc(thr, pc, fd);
195 if (write) {
196 // To catch races between fd usage and close.
197 MemoryAccess(thr, pc, (uptr)d, 8, kAccessWrite);
198 } else {
199 // This path is used only by dup2/dup3 calls.
200 // We do read instead of write because there is a number of legitimate
201 // cases where write would lead to false positives:
202 // 1. Some software dups a closed pipe in place of a socket before closing
203 // the socket (to prevent races actually).
204 // 2. Some daemons dup /dev/null in place of stdin/stdout.
205 // On the other hand we have not seen cases when write here catches real
206 // bugs.
207 MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
209 // We need to clear it, because if we do not intercept any call out there
210 // that creates fd, we will hit false postives.
211 MemoryResetRange(thr, pc, (uptr)d, 8);
212 unref(thr, pc, d->sync);
213 d->sync = 0;
214 d->creation_tid = kInvalidTid;
215 d->creation_stack = kInvalidStackID;
218 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
219 DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
220 if (bogusfd(fd))
221 return;
222 init(thr, pc, fd, &fdctx.filesync);
225 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
226 DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
227 if (bogusfd(oldfd) || bogusfd(newfd))
228 return;
229 // Ignore the case when user dups not yet connected socket.
230 FdDesc *od = fddesc(thr, pc, oldfd);
231 MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
232 FdClose(thr, pc, newfd, write);
233 init(thr, pc, newfd, ref(od->sync), write);
236 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
237 DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
238 FdSync *s = allocsync(thr, pc);
239 init(thr, pc, rfd, ref(s));
240 init(thr, pc, wfd, ref(s));
241 unref(thr, pc, s);
244 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
245 DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
246 if (bogusfd(fd))
247 return;
248 init(thr, pc, fd, allocsync(thr, pc));
251 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
252 DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
253 if (bogusfd(fd))
254 return;
255 init(thr, pc, fd, 0);
258 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
259 DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
260 if (bogusfd(fd))
261 return;
262 init(thr, pc, fd, 0);
265 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
266 DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
267 if (bogusfd(fd))
268 return;
269 init(thr, pc, fd, allocsync(thr, pc));
272 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
273 DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
274 if (bogusfd(fd))
275 return;
276 // It can be a UDP socket.
277 init(thr, pc, fd, &fdctx.socksync);
280 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
281 DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
282 if (bogusfd(fd))
283 return;
284 // Synchronize connect->accept.
285 Acquire(thr, pc, (uptr)&fdctx.connectsync);
286 init(thr, pc, newfd, &fdctx.socksync);
289 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
290 DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
291 if (bogusfd(fd))
292 return;
293 // Synchronize connect->accept.
294 Release(thr, pc, (uptr)&fdctx.connectsync);
297 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
298 DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
299 if (bogusfd(fd))
300 return;
301 init(thr, pc, fd, &fdctx.socksync);
304 uptr File2addr(const char *path) {
305 (void)path;
306 static u64 addr;
307 return (uptr)&addr;
310 uptr Dir2addr(const char *path) {
311 (void)path;
312 static u64 addr;
313 return (uptr)&addr;
316 } // namespace __tsan