1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Tss
; use Exp_Tss
;
35 with Exp_Util
; use Exp_Util
;
36 with Freeze
; use Freeze
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Nlists
; use Nlists
;
41 with Nmake
; use Nmake
;
43 with Restrict
; use Restrict
;
44 with Rident
; use Rident
;
45 with Rtsfind
; use Rtsfind
;
47 with Sem_Aux
; use Sem_Aux
;
48 with Sem_Case
; use Sem_Case
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Dim
; use Sem_Dim
;
53 with Sem_Disp
; use Sem_Disp
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Prag
; use Sem_Prag
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Type
; use Sem_Type
;
58 with Sem_Util
; use Sem_Util
;
59 with Sem_Warn
; use Sem_Warn
;
60 with Sinput
; use Sinput
;
61 with Snames
; use Snames
;
62 with Stand
; use Stand
;
63 with Sinfo
; use Sinfo
;
64 with Stringt
; use Stringt
;
65 with Targparm
; use Targparm
;
66 with Ttypes
; use Ttypes
;
67 with Tbuild
; use Tbuild
;
68 with Urealp
; use Urealp
;
69 with Warnsw
; use Warnsw
;
71 with GNAT
.Heap_Sort_G
;
73 package body Sem_Ch13
is
75 SSU
: constant Pos
:= System_Storage_Unit
;
76 -- Convenient short hand for commonly used constant
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
88 procedure Build_Discrete_Static_Predicate
92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
96 -- predicate expression have been replaced by identifier references to this
97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
103 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
115 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119 procedure Freeze_Entity_Checks
(N
: Node_Id
);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
126 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
131 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
137 function Is_Predicate_Static
139 Nam
: Name_Id
) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
160 -- subtype S is String with Static_Predicate => S < "DEF"
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
165 procedure New_Stream_Subprogram
169 Nam
: TSS_Name_Type
);
170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
172 -- primitive operation, or in the untagged case make an appropriate TSS
173 -- entry. This is more properly an expansion activity than just semantics,
174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
185 procedure Resolve_Iterable_Operation
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
197 Biased
: Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
207 -- The following table collects unchecked conversions for validation.
208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
218 type UC_Entry
is record
219 Eloc
: Source_Ptr
; -- node used for posting warnings
220 Source
: Entity_Id
; -- source type for unchecked conversion
221 Target
: Entity_Id
; -- target type for unchecked conversion
222 Act_Unit
: Entity_Id
; -- actual function instantiated
225 package Unchecked_Conversions
is new Table
.Table
(
226 Table_Component_Type
=> UC_Entry
,
227 Table_Index_Type
=> Int
,
228 Table_Low_Bound
=> 1,
230 Table_Increment
=> 200,
231 Table_Name
=> "Unchecked_Conversions");
233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
237 -- If an address clause has the form
239 -- for X'Address use Expr
241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
249 type Address_Clause_Check_Record
is record
251 -- The address clause
254 -- The entity of the object overlaying Y
257 -- The entity of the object being overlaid
260 -- Whether the address is offset within Y
263 package Address_Clause_Checks
is new Table
.Table
(
264 Table_Component_Type
=> Address_Clause_Check_Record
,
265 Table_Index_Type
=> Int
,
266 Table_Low_Bound
=> 1,
268 Table_Increment
=> 200,
269 Table_Name
=> "Address_Clause_Checks");
271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
275 procedure Adjust_Record_For_Reverse_Bit_Order
(R
: Entity_Id
) is
280 -- Processing depends on version of Ada
282 -- For Ada 95, we just renumber bits within a storage unit. We do the
283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
284 -- Ada 83, and are free to add this extension.
286 if Ada_Version
< Ada_2005
then
287 Comp
:= First_Component_Or_Discriminant
(R
);
288 while Present
(Comp
) loop
289 CC
:= Component_Clause
(Comp
);
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
298 if Present
(CC
) and then Ekind
(R
) = E_Record_Type
then
300 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
301 CSZ
: constant Uint
:= Esize
(Comp
);
302 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
303 Pos
: constant Node_Id
:= Position
(CLC
);
304 FB
: constant Node_Id
:= First_Bit
(CLC
);
306 Storage_Unit_Offset
: constant Uint
:=
307 CFB
/ System_Storage_Unit
;
309 Start_Bit
: constant Uint
:=
310 CFB
mod System_Storage_Unit
;
313 -- Cases where field goes over storage unit boundary
315 if Start_Bit
+ CSZ
> System_Storage_Unit
then
317 -- Allow multi-byte field but generate warning
319 if Start_Bit
mod System_Storage_Unit
= 0
320 and then CSZ
mod System_Storage_Unit
= 0
323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC
);
326 if Bytes_Big_Endian
then
328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC
);
332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC
);
336 -- Do not allow non-contiguous field
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC
);
343 ("\caused by non-standard Bit_Order "
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC
);
350 -- Case where field fits in one storage unit
353 -- Give warning if suspicious component clause
355 if Intval
(FB
) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
359 ("info: Bit_Order clause does not affect " &
360 "byte ordering?V?", Pos
);
362 Intval
(Pos
) + Intval
(FB
) /
365 ("info: position normalized to ^ before bit " &
366 "order interpreted?V?", Pos
);
369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
373 -- First_Bit .. Last_Bit Component_Bit_Offset
385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
388 Set_Component_Bit_Offset
390 (Storage_Unit_Offset
* System_Storage_Unit
) +
391 (System_Storage_Unit
- 1) -
392 (Start_Bit
+ CSZ
- 1));
394 Set_Normalized_First_Bit
396 Component_Bit_Offset
(Comp
) mod
397 System_Storage_Unit
);
402 Next_Component_Or_Discriminant
(Comp
);
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
412 Max_Machine_Scalar_Size
: constant Uint
:=
414 (Standard_Long_Long_Integer_Size
);
415 -- We use this as the maximum machine scalar size
418 SSU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
429 Comp
:= First_Component_Or_Discriminant
(R
);
430 while Present
(Comp
) loop
431 CC
:= Component_Clause
(Comp
);
435 Fbit
: constant Uint
:= Static_Integer
(First_Bit
(CC
));
436 Lbit
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
439 -- Case of component with last bit >= max machine scalar
441 if Lbit
>= Max_Machine_Scalar_Size
then
443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
446 if Fbit
= 0 and then (Lbit
+ 1) mod SSU
= 0 then
448 -- This is the case to give a warning if enabled
450 if Warn_On_Reverse_Bit_Order
then
452 ("info: multi-byte field specified with "
453 & " non-standard Bit_Order?V?", CC
);
455 if Bytes_Big_Endian
then
457 ("\bytes are not reversed "
458 & "(component is big-endian)?V?", CC
);
461 ("\bytes are not reversed "
462 & "(component is little-endian)?V?", CC
);
466 -- Give error message for RM 13.5.1(10) violation
470 ("machine scalar rules not followed for&",
471 First_Bit
(CC
), Comp
);
473 Error_Msg_Uint_1
:= Lbit
;
474 Error_Msg_Uint_2
:= Max_Machine_Scalar_Size
;
476 ("\last bit (^) exceeds maximum machine "
480 if (Lbit
+ 1) mod SSU
/= 0 then
481 Error_Msg_Uint_1
:= SSU
;
483 ("\and is not a multiple of Storage_Unit (^) "
488 Error_Msg_Uint_1
:= Fbit
;
490 ("\and first bit (^) is non-zero "
496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
500 Num_CC
:= Num_CC
+ 1;
505 Next_Component_Or_Discriminant
(Comp
);
508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
510 -- the same Position together to determine the relevant machine
514 Comps
: array (0 .. Num_CC
) of Entity_Id
;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
519 function CP_Lt
(Op1
, Op2
: Natural) return Boolean;
520 -- Compare routine for Sort
522 procedure CP_Move
(From
: Natural; To
: Natural);
523 -- Move routine for Sort
525 package Sorting
is new GNAT
.Heap_Sort_G
(CP_Move
, CP_Lt
);
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
534 -- Maximum last bit value of any component in this set
537 -- Corresponding machine scalar size
543 function CP_Lt
(Op1
, Op2
: Natural) return Boolean is
545 return Position
(Component_Clause
(Comps
(Op1
))) <
546 Position
(Component_Clause
(Comps
(Op2
)));
553 procedure CP_Move
(From
: Natural; To
: Natural) is
555 Comps
(To
) := Comps
(From
);
558 -- Start of processing for Sort_CC
561 -- Collect the machine scalar relevant component clauses
564 Comp
:= First_Component_Or_Discriminant
(R
);
565 while Present
(Comp
) loop
567 CC
: constant Node_Id
:= Component_Clause
(Comp
);
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
578 and then not Error_Posted
(Last_Bit
(CC
))
579 and then Static_Integer
(Last_Bit
(CC
)) <
580 Max_Machine_Scalar_Size
582 Num_CC
:= Num_CC
+ 1;
583 Comps
(Num_CC
) := Comp
;
587 Next_Component_Or_Discriminant
(Comp
);
590 -- Sort by ascending position number
592 Sorting
.Sort
(Num_CC
);
594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
600 while Stop
< Num_CC
loop
605 (Last_Bit
(Component_Clause
(Comps
(Start
))));
606 while Stop
< Num_CC
loop
608 (Position
(Component_Clause
(Comps
(Stop
+ 1)))) =
610 (Position
(Component_Clause
(Comps
(Stop
))))
618 (Component_Clause
(Comps
(Stop
)))));
624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
633 MSS
:= Max_Machine_Scalar_Size
;
635 and then (MSS
/ 2) >= SSU
636 and then (MSS
/ 2) > MaxL
641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
646 -- First_Bit .. Last_Bit Component_Bit_Offset
658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
661 for C
in Start
.. Stop
loop
663 Comp
: constant Entity_Id
:= Comps
(C
);
664 CC
: constant Node_Id
:= Component_Clause
(Comp
);
666 LB
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
667 NFB
: constant Uint
:= MSS
- Uint_1
- LB
;
668 NLB
: constant Uint
:= NFB
+ Esize
(Comp
) - 1;
669 Pos
: constant Uint
:= Static_Integer
(Position
(CC
));
672 if Warn_On_Reverse_Bit_Order
then
673 Error_Msg_Uint_1
:= MSS
;
675 ("info: reverse bit order in machine " &
676 "scalar of length^?V?", First_Bit
(CC
));
677 Error_Msg_Uint_1
:= NFB
;
678 Error_Msg_Uint_2
:= NLB
;
680 if Bytes_Big_Endian
then
682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit
(CC
), Comp
);
686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit
(CC
), Comp
);
691 Set_Component_Bit_Offset
(Comp
, Pos
* SSU
+ NFB
);
692 Set_Normalized_First_Bit
(Comp
, NFB
mod SSU
);
699 end Adjust_Record_For_Reverse_Bit_Order
;
701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
705 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
) is
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
712 if Known_Alignment
(Typ
)
713 and then not Has_Alignment_Clause
(Typ
)
714 and then Size
mod (Alignment
(Typ
) * SSU
) /= 0
716 Init_Alignment
(Typ
);
718 end Alignment_Check_For_Size_Change
;
720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
724 procedure Analyze_Aspects_At_Freeze_Point
(E
: Entity_Id
) is
729 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
733 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
743 -- Not_Defined_Yet : constant := 64;
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
752 -- of all delayed aspects from the parent type. The derived type is E,
753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
756 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
765 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
) is
766 Ent
: constant Entity_Id
:= Entity
(ASN
);
767 Expr
: constant Node_Id
:= Expression
(ASN
);
768 Id
: constant Node_Id
:= Identifier
(ASN
);
771 Error_Msg_Name_1
:= Chars
(Id
);
773 if not Is_Type
(Ent
) then
774 Error_Msg_N
("aspect% can only apply to a type", Id
);
777 elsif not Is_First_Subtype
(Ent
) then
778 Error_Msg_N
("aspect% cannot apply to subtype", Id
);
781 elsif A_Id
= Aspect_Default_Value
782 and then not Is_Scalar_Type
(Ent
)
784 Error_Msg_N
("aspect% can only be applied to scalar type", Id
);
787 elsif A_Id
= Aspect_Default_Component_Value
then
788 if not Is_Array_Type
(Ent
) then
789 Error_Msg_N
("aspect% can only be applied to array type", Id
);
792 elsif not Is_Scalar_Type
(Component_Type
(Ent
)) then
793 Error_Msg_N
("aspect% requires scalar components", Id
);
798 Set_Has_Default_Aspect
(Base_Type
(Ent
));
800 if Is_Scalar_Type
(Ent
) then
801 Set_Default_Aspect_Value
(Base_Type
(Ent
), Expr
);
803 Set_Default_Aspect_Component_Value
(Base_Type
(Ent
), Expr
);
805 end Analyze_Aspect_Default_Value
;
807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
811 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
) is
812 P
: constant Entity_Id
:= Entity
(ASN
);
813 -- Entithy for parent type
816 -- Item from Rep_Item chain
821 -- Loop through delayed aspects for the parent type
824 while Present
(N
) loop
825 if Nkind
(N
) = N_Aspect_Specification
then
826 exit when Entity
(N
) /= P
;
828 if Is_Delayed_Aspect
(N
) then
829 A
:= Get_Aspect_Id
(Chars
(Identifier
(N
)));
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
842 when Aspect_Alignment
=>
843 if not Has_Alignment_Clause
(E
) then
844 Set_Alignment
(E
, Alignment
(P
));
849 when Aspect_Atomic
=>
850 if Is_Atomic
(P
) then
856 when Aspect_Atomic_Components
=>
857 if Has_Atomic_Components
(P
) then
858 Set_Has_Atomic_Components
(Base_Type
(E
));
863 when Aspect_Bit_Order
=>
864 if Is_Record_Type
(E
)
865 and then No
(Get_Attribute_Definition_Clause
866 (E
, Attribute_Bit_Order
))
867 and then Reverse_Bit_Order
(P
)
869 Set_Reverse_Bit_Order
(Base_Type
(E
));
874 when Aspect_Component_Size
=>
876 and then not Has_Component_Size_Clause
(E
)
879 (Base_Type
(E
), Component_Size
(P
));
884 when Aspect_Machine_Radix
=>
885 if Is_Decimal_Fixed_Point_Type
(E
)
886 and then not Has_Machine_Radix_Clause
(E
)
888 Set_Machine_Radix_10
(E
, Machine_Radix_10
(P
));
891 -- Object_Size (also Size which also sets Object_Size)
893 when Aspect_Object_Size | Aspect_Size
=>
894 if not Has_Size_Clause
(E
)
896 No
(Get_Attribute_Definition_Clause
897 (E
, Attribute_Object_Size
))
899 Set_Esize
(E
, Esize
(P
));
905 if not Is_Packed
(E
) then
906 Set_Is_Packed
(Base_Type
(E
));
908 if Is_Bit_Packed_Array
(P
) then
909 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
910 Set_Packed_Array_Impl_Type
911 (E
, Packed_Array_Impl_Type
(P
));
915 -- Scalar_Storage_Order
917 when Aspect_Scalar_Storage_Order
=>
918 if (Is_Record_Type
(E
) or else Is_Array_Type
(E
))
919 and then No
(Get_Attribute_Definition_Clause
920 (E
, Attribute_Scalar_Storage_Order
))
921 and then Reverse_Storage_Order
(P
)
923 Set_Reverse_Storage_Order
(Base_Type
(E
));
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
928 Set_SSO_Set_Low_By_Default
(Base_Type
(E
), False);
929 Set_SSO_Set_High_By_Default
(Base_Type
(E
), False);
935 if Is_Fixed_Point_Type
(E
)
936 and then not Has_Small_Clause
(E
)
938 Set_Small_Value
(E
, Small_Value
(P
));
943 when Aspect_Storage_Size
=>
944 if (Is_Access_Type
(E
) or else Is_Task_Type
(E
))
945 and then not Has_Storage_Size_Clause
(E
)
947 Set_Storage_Size_Variable
948 (Base_Type
(E
), Storage_Size_Variable
(P
));
953 when Aspect_Value_Size
=>
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
963 when Aspect_Volatile
=>
964 if Is_Volatile
(P
) then
968 -- Volatile_Components
970 when Aspect_Volatile_Components
=>
971 if Has_Volatile_Components
(P
) then
972 Set_Has_Volatile_Components
(Base_Type
(E
));
975 -- That should be all the Rep Aspects
978 pragma Assert
(Aspect_Delay
(A_Id
) /= Rep_Aspect
);
985 N
:= Next_Rep_Item
(N
);
987 end Inherit_Delayed_Rep_Aspects
;
989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
993 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
) is
994 Ident
: constant Node_Id
:= Identifier
(ASN
);
995 A_Name
: constant Name_Id
:= Chars
(Ident
);
996 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(A_Name
);
997 Ent
: constant Entity_Id
:= Entity
(ASN
);
998 Expr
: constant Node_Id
:= Expression
(ASN
);
999 Loc
: constant Source_Ptr
:= Sloc
(ASN
);
1003 procedure Check_False_Aspect_For_Derived_Type
;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1012 procedure Check_False_Aspect_For_Derived_Type
is
1016 -- We are only checking derived types
1018 if not Is_Derived_Type
(E
) then
1022 Par
:= Nearest_Ancestor
(E
);
1025 when Aspect_Atomic | Aspect_Shared
=>
1026 if not Is_Atomic
(Par
) then
1030 when Aspect_Atomic_Components
=>
1031 if not Has_Atomic_Components
(Par
) then
1035 when Aspect_Discard_Names
=>
1036 if not Discard_Names
(Par
) then
1041 if not Is_Packed
(Par
) then
1045 when Aspect_Unchecked_Union
=>
1046 if not Is_Unchecked_Union
(Par
) then
1050 when Aspect_Volatile
=>
1051 if not Is_Volatile
(Par
) then
1055 when Aspect_Volatile_Components
=>
1056 if not Has_Volatile_Components
(Par
) then
1064 -- Fall through means we are canceling an inherited aspect
1066 Error_Msg_Name_1
:= A_Name
;
1068 ("derived type& inherits aspect%, cannot cancel", Expr
, E
);
1070 end Check_False_Aspect_For_Derived_Type
;
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1079 if Is_False
(Static_Boolean
(Expr
)) then
1080 Check_False_Aspect_For_Derived_Type
;
1085 Pragma_Argument_Associations
=> New_List
(
1086 Make_Pragma_Argument_Association
(Sloc
(Ident
),
1087 Expression
=> New_Occurrence_Of
(Ent
, Sloc
(Ident
)))),
1089 Pragma_Identifier
=>
1090 Make_Identifier
(Sloc
(Ident
), Chars
(Ident
)));
1092 Set_From_Aspect_Specification
(Prag
, True);
1093 Set_Corresponding_Aspect
(Prag
, ASN
);
1094 Set_Aspect_Rep_Item
(ASN
, Prag
);
1095 Set_Is_Delayed_Aspect
(Prag
);
1096 Set_Parent
(Prag
, ASN
);
1098 end Make_Pragma_From_Boolean_Aspect
;
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1103 -- Must be visible in current scope
1105 if not Scope_Within_Or_Same
(Current_Scope
, Scope
(E
)) then
1109 -- Look for aspect specification entries for this entity
1111 ASN
:= First_Rep_Item
(E
);
1112 while Present
(ASN
) loop
1113 if Nkind
(ASN
) = N_Aspect_Specification
then
1114 exit when Entity
(ASN
) /= E
;
1116 if Is_Delayed_Aspect
(ASN
) then
1117 A_Id
:= Get_Aspect_Id
(ASN
);
1121 -- For aspects whose expression is an optional Boolean, make
1122 -- the corresponding pragma at the freeze point.
1124 when Boolean_Aspects |
1125 Library_Unit_Aspects
=>
1126 Make_Pragma_From_Boolean_Aspect
(ASN
);
1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value
=>
1133 Analyze_Aspect_Default_Value
(ASN
);
1135 -- Ditto for iterator aspects, because the corresponding
1136 -- attributes may not have been analyzed yet.
1138 when Aspect_Constant_Indexing |
1139 Aspect_Variable_Indexing |
1140 Aspect_Default_Iterator |
1141 Aspect_Iterator_Element
=>
1142 Analyze
(Expression
(ASN
));
1144 if Etype
(Expression
(ASN
)) = Any_Type
then
1146 ("\aspect must be fully defined before & is frozen",
1150 when Aspect_Iterable
=>
1151 Validate_Iterable_Aspect
(E
, ASN
);
1157 Ritem
:= Aspect_Rep_Item
(ASN
);
1159 if Present
(Ritem
) then
1165 Next_Rep_Item
(ASN
);
1168 -- This is where we inherit delayed rep aspects from our parent. Note
1169 -- that if we fell out of the above loop with ASN non-empty, it means
1170 -- we hit an aspect for an entity other than E, and it must be the
1171 -- type from which we were derived.
1173 if May_Inherit_Delayed_Rep_Aspects
(E
) then
1174 Inherit_Delayed_Rep_Aspects
(ASN
);
1176 end Analyze_Aspects_At_Freeze_Point
;
1178 -----------------------------------
1179 -- Analyze_Aspect_Specifications --
1180 -----------------------------------
1182 procedure Analyze_Aspect_Specifications
(N
: Node_Id
; E
: Entity_Id
) is
1183 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
);
1184 -- Establish linkages between an aspect and its corresponding
1187 procedure Insert_After_SPARK_Mode
1191 -- Subsidiary to the analysis of aspects Abstract_State, Ghost,
1192 -- Initializes, Initial_Condition and Refined_State. Insert node Prag
1193 -- before node Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip
1194 -- SPARK_Mode. Decls is the associated declarative list where Prag is to
1197 procedure Insert_Pragma
(Prag
: Node_Id
);
1198 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1199 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1200 -- Insert pragma Prag such that it mimics the placement of a source
1201 -- pragma of the same kind.
1203 -- procedure Proc (Formal : ...) with Global => ...;
1205 -- procedure Proc (Formal : ...);
1206 -- pragma Global (...);
1212 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
) is
1214 Set_Aspect_Rep_Item
(Asp
, Prag
);
1215 Set_Corresponding_Aspect
(Prag
, Asp
);
1216 Set_From_Aspect_Specification
(Prag
);
1217 Set_Parent
(Prag
, Asp
);
1220 -----------------------------
1221 -- Insert_After_SPARK_Mode --
1222 -----------------------------
1224 procedure Insert_After_SPARK_Mode
1229 Decl
: Node_Id
:= Ins_Nod
;
1235 and then Nkind
(Decl
) = N_Pragma
1236 and then Pragma_Name
(Decl
) = Name_SPARK_Mode
1238 Decl
:= Next
(Decl
);
1241 if Present
(Decl
) then
1242 Insert_Before
(Decl
, Prag
);
1244 -- Aitem acts as the last declaration
1247 Append_To
(Decls
, Prag
);
1249 end Insert_After_SPARK_Mode
;
1255 procedure Insert_Pragma
(Prag
: Node_Id
) is
1260 -- When the context is a library unit, the pragma is added to the
1261 -- Pragmas_After list.
1263 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1264 Aux
:= Aux_Decls_Node
(Parent
(N
));
1266 if No
(Pragmas_After
(Aux
)) then
1267 Set_Pragmas_After
(Aux
, New_List
);
1270 Prepend
(Prag
, Pragmas_After
(Aux
));
1272 -- Pragmas associated with subprogram bodies are inserted in the
1273 -- declarative part.
1275 elsif Nkind
(N
) = N_Subprogram_Body
then
1276 if Present
(Declarations
(N
)) then
1278 -- Skip other internally generated pragmas from aspects to find
1279 -- the proper insertion point. As a result the order of pragmas
1280 -- is the same as the order of aspects.
1282 -- As precondition pragmas generated from conjuncts in the
1283 -- precondition aspect are presented in reverse order to
1284 -- Insert_Pragma, insert them in the correct order here by not
1285 -- skipping previously inserted precondition pragmas when the
1286 -- current pragma is a precondition.
1288 Decl
:= First
(Declarations
(N
));
1289 while Present
(Decl
) loop
1290 if Nkind
(Decl
) = N_Pragma
1291 and then From_Aspect_Specification
(Decl
)
1292 and then not (Get_Pragma_Id
(Decl
) = Pragma_Precondition
1294 Get_Pragma_Id
(Prag
) = Pragma_Precondition
)
1302 if Present
(Decl
) then
1303 Insert_Before
(Decl
, Prag
);
1305 Append
(Prag
, Declarations
(N
));
1308 Set_Declarations
(N
, New_List
(Prag
));
1314 Insert_After
(N
, Prag
);
1324 L
: constant List_Id
:= Aspect_Specifications
(N
);
1326 Ins_Node
: Node_Id
:= N
;
1327 -- Insert pragmas/attribute definition clause after this node when no
1328 -- delayed analysis is required.
1330 -- Start of processing for Analyze_Aspect_Specifications
1332 -- The general processing involves building an attribute definition
1333 -- clause or a pragma node that corresponds to the aspect. Then in order
1334 -- to delay the evaluation of this aspect to the freeze point, we attach
1335 -- the corresponding pragma/attribute definition clause to the aspect
1336 -- specification node, which is then placed in the Rep Item chain. In
1337 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1338 -- and we evaluate the rep item at the freeze point. When the aspect
1339 -- doesn't have a corresponding pragma/attribute definition clause, then
1340 -- its analysis is simply delayed at the freeze point.
1342 -- Some special cases don't require delay analysis, thus the aspect is
1343 -- analyzed right now.
1345 -- Note that there is a special handling for Pre, Post, Test_Case,
1346 -- Contract_Cases aspects. In these cases, we do not have to worry
1347 -- about delay issues, since the pragmas themselves deal with delay
1348 -- of visibility for the expression analysis. Thus, we just insert
1349 -- the pragma after the node N.
1352 pragma Assert
(Present
(L
));
1354 -- Loop through aspects
1356 Aspect
:= First
(L
);
1357 Aspect_Loop
: while Present
(Aspect
) loop
1358 Analyze_One_Aspect
: declare
1359 Expr
: constant Node_Id
:= Expression
(Aspect
);
1360 Id
: constant Node_Id
:= Identifier
(Aspect
);
1361 Loc
: constant Source_Ptr
:= Sloc
(Aspect
);
1362 Nam
: constant Name_Id
:= Chars
(Id
);
1363 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Nam
);
1366 Delay_Required
: Boolean;
1367 -- Set False if delay is not required
1369 Eloc
: Source_Ptr
:= No_Location
;
1370 -- Source location of expression, modified when we split PPC's. It
1371 -- is set below when Expr is present.
1373 procedure Analyze_Aspect_External_Or_Link_Name
;
1374 -- Perform analysis of the External_Name or Link_Name aspects
1376 procedure Analyze_Aspect_Implicit_Dereference
;
1377 -- Perform analysis of the Implicit_Dereference aspects
1379 procedure Make_Aitem_Pragma
1380 (Pragma_Argument_Associations
: List_Id
;
1381 Pragma_Name
: Name_Id
);
1382 -- This is a wrapper for Make_Pragma used for converting aspects
1383 -- to pragmas. It takes care of Sloc (set from Loc) and building
1384 -- the pragma identifier from the given name. In addition the
1385 -- flags Class_Present and Split_PPC are set from the aspect
1386 -- node, as well as Is_Ignored. This routine also sets the
1387 -- From_Aspect_Specification in the resulting pragma node to
1388 -- True, and sets Corresponding_Aspect to point to the aspect.
1389 -- The resulting pragma is assigned to Aitem.
1391 ------------------------------------------
1392 -- Analyze_Aspect_External_Or_Link_Name --
1393 ------------------------------------------
1395 procedure Analyze_Aspect_External_Or_Link_Name
is
1397 -- Verify that there is an Import/Export aspect defined for the
1398 -- entity. The processing of that aspect in turn checks that
1399 -- there is a Convention aspect declared. The pragma is
1400 -- constructed when processing the Convention aspect.
1407 while Present
(A
) loop
1408 exit when Nam_In
(Chars
(Identifier
(A
)), Name_Export
,
1415 ("missing Import/Export for Link/External name",
1419 end Analyze_Aspect_External_Or_Link_Name
;
1421 -----------------------------------------
1422 -- Analyze_Aspect_Implicit_Dereference --
1423 -----------------------------------------
1425 procedure Analyze_Aspect_Implicit_Dereference
is
1427 if not Is_Type
(E
) or else not Has_Discriminants
(E
) then
1429 ("aspect must apply to a type with discriminants", N
);
1436 Disc
:= First_Discriminant
(E
);
1437 while Present
(Disc
) loop
1438 if Chars
(Expr
) = Chars
(Disc
)
1439 and then Ekind
(Etype
(Disc
)) =
1440 E_Anonymous_Access_Type
1442 Set_Has_Implicit_Dereference
(E
);
1443 Set_Has_Implicit_Dereference
(Disc
);
1447 Next_Discriminant
(Disc
);
1450 -- Error if no proper access discriminant.
1453 ("not an access discriminant of&", Expr
, E
);
1456 end Analyze_Aspect_Implicit_Dereference
;
1458 -----------------------
1459 -- Make_Aitem_Pragma --
1460 -----------------------
1462 procedure Make_Aitem_Pragma
1463 (Pragma_Argument_Associations
: List_Id
;
1464 Pragma_Name
: Name_Id
)
1466 Args
: List_Id
:= Pragma_Argument_Associations
;
1469 -- We should never get here if aspect was disabled
1471 pragma Assert
(not Is_Disabled
(Aspect
));
1473 -- Certain aspects allow for an optional name or expression. Do
1474 -- not generate a pragma with empty argument association list.
1476 if No
(Args
) or else No
(Expression
(First
(Args
))) then
1484 Pragma_Argument_Associations
=> Args
,
1485 Pragma_Identifier
=>
1486 Make_Identifier
(Sloc
(Id
), Pragma_Name
),
1487 Class_Present
=> Class_Present
(Aspect
),
1488 Split_PPC
=> Split_PPC
(Aspect
));
1490 -- Set additional semantic fields
1492 if Is_Ignored
(Aspect
) then
1493 Set_Is_Ignored
(Aitem
);
1494 elsif Is_Checked
(Aspect
) then
1495 Set_Is_Checked
(Aitem
);
1498 Set_Corresponding_Aspect
(Aitem
, Aspect
);
1499 Set_From_Aspect_Specification
(Aitem
, True);
1500 end Make_Aitem_Pragma
;
1502 -- Start of processing for Analyze_One_Aspect
1505 -- Skip aspect if already analyzed, to avoid looping in some cases
1507 if Analyzed
(Aspect
) then
1511 -- Skip looking at aspect if it is totally disabled. Just mark it
1512 -- as such for later reference in the tree. This also sets the
1513 -- Is_Ignored and Is_Checked flags appropriately.
1515 Check_Applicable_Policy
(Aspect
);
1517 if Is_Disabled
(Aspect
) then
1521 -- Set the source location of expression, used in the case of
1522 -- a failed precondition/postcondition or invariant. Note that
1523 -- the source location of the expression is not usually the best
1524 -- choice here. For example, it gets located on the last AND
1525 -- keyword in a chain of boolean expressiond AND'ed together.
1526 -- It is best to put the message on the first character of the
1527 -- assertion, which is the effect of the First_Node call here.
1529 if Present
(Expr
) then
1530 Eloc
:= Sloc
(First_Node
(Expr
));
1533 -- Check restriction No_Implementation_Aspect_Specifications
1535 if Implementation_Defined_Aspect
(A_Id
) then
1537 (No_Implementation_Aspect_Specifications
, Aspect
);
1540 -- Check restriction No_Specification_Of_Aspect
1542 Check_Restriction_No_Specification_Of_Aspect
(Aspect
);
1544 -- Mark aspect analyzed (actual analysis is delayed till later)
1546 Set_Analyzed
(Aspect
);
1547 Set_Entity
(Aspect
, E
);
1548 Ent
:= New_Occurrence_Of
(E
, Sloc
(Id
));
1550 -- Check for duplicate aspect. Note that the Comes_From_Source
1551 -- test allows duplicate Pre/Post's that we generate internally
1552 -- to escape being flagged here.
1554 if No_Duplicates_Allowed
(A_Id
) then
1556 while Anod
/= Aspect
loop
1557 if Comes_From_Source
(Aspect
)
1558 and then Same_Aspect
(A_Id
, Get_Aspect_Id
(Anod
))
1560 Error_Msg_Name_1
:= Nam
;
1561 Error_Msg_Sloc
:= Sloc
(Anod
);
1563 -- Case of same aspect specified twice
1565 if Class_Present
(Anod
) = Class_Present
(Aspect
) then
1566 if not Class_Present
(Anod
) then
1568 ("aspect% for & previously given#",
1572 ("aspect `%''Class` for & previously given#",
1582 -- Check some general restrictions on language defined aspects
1584 if not Implementation_Defined_Aspect
(A_Id
) then
1585 Error_Msg_Name_1
:= Nam
;
1587 -- Not allowed for renaming declarations
1589 if Nkind
(N
) in N_Renaming_Declaration
then
1591 ("aspect % not allowed for renaming declaration",
1595 -- Not allowed for formal type declarations
1597 if Nkind
(N
) = N_Formal_Type_Declaration
then
1599 ("aspect % not allowed for formal type declaration",
1604 -- Copy expression for later processing by the procedures
1605 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1607 Set_Entity
(Id
, New_Copy_Tree
(Expr
));
1609 -- Set Delay_Required as appropriate to aspect
1611 case Aspect_Delay
(A_Id
) is
1612 when Always_Delay
=>
1613 Delay_Required
:= True;
1616 Delay_Required
:= False;
1620 -- If expression has the form of an integer literal, then
1621 -- do not delay, since we know the value cannot change.
1622 -- This optimization catches most rep clause cases.
1624 if (Present
(Expr
) and then Nkind
(Expr
) = N_Integer_Literal
)
1625 or else (A_Id
in Boolean_Aspects
and then No
(Expr
))
1627 Delay_Required
:= False;
1629 Delay_Required
:= True;
1630 Set_Has_Delayed_Rep_Aspects
(E
);
1634 -- Processing based on specific aspect
1638 -- No_Aspect should be impossible
1641 raise Program_Error
;
1643 -- Case 1: Aspects corresponding to attribute definition
1646 when Aspect_Address |
1649 Aspect_Component_Size |
1650 Aspect_Constant_Indexing |
1651 Aspect_Default_Iterator |
1652 Aspect_Dispatching_Domain |
1653 Aspect_External_Tag |
1656 Aspect_Iterator_Element |
1657 Aspect_Machine_Radix |
1658 Aspect_Object_Size |
1661 Aspect_Scalar_Storage_Order |
1664 Aspect_Simple_Storage_Pool |
1665 Aspect_Storage_Pool |
1666 Aspect_Stream_Size |
1668 Aspect_Variable_Indexing |
1671 -- Indexing aspects apply only to tagged type
1673 if (A_Id
= Aspect_Constant_Indexing
1675 A_Id
= Aspect_Variable_Indexing
)
1676 and then not (Is_Type
(E
)
1677 and then Is_Tagged_Type
(E
))
1680 ("indexing aspect can only apply to a tagged type",
1685 -- For the case of aspect Address, we don't consider that we
1686 -- know the entity is never set in the source, since it is
1687 -- is likely aliasing is occurring.
1689 -- Note: one might think that the analysis of the resulting
1690 -- attribute definition clause would take care of that, but
1691 -- that's not the case since it won't be from source.
1693 if A_Id
= Aspect_Address
then
1694 Set_Never_Set_In_Source
(E
, False);
1697 -- Correctness of the profile of a stream operation is
1698 -- verified at the freeze point, but we must detect the
1699 -- illegal specification of this aspect for a subtype now,
1700 -- to prevent malformed rep_item chains.
1702 if A_Id
= Aspect_Input
or else
1703 A_Id
= Aspect_Output
or else
1704 A_Id
= Aspect_Read
or else
1707 if not Is_First_Subtype
(E
) then
1709 ("local name must be a first subtype", Aspect
);
1712 -- If stream aspect applies to the class-wide type,
1713 -- the generated attribute definition applies to the
1714 -- class-wide type as well.
1716 elsif Class_Present
(Aspect
) then
1718 Make_Attribute_Reference
(Loc
,
1720 Attribute_Name
=> Name_Class
);
1724 -- Construct the attribute definition clause
1727 Make_Attribute_Definition_Clause
(Loc
,
1729 Chars
=> Chars
(Id
),
1730 Expression
=> Relocate_Node
(Expr
));
1732 -- If the address is specified, then we treat the entity as
1733 -- referenced, to avoid spurious warnings. This is analogous
1734 -- to what is done with an attribute definition clause, but
1735 -- here we don't want to generate a reference because this
1736 -- is the point of definition of the entity.
1738 if A_Id
= Aspect_Address
then
1742 -- Case 2: Aspects corresponding to pragmas
1744 -- Case 2a: Aspects corresponding to pragmas with two
1745 -- arguments, where the first argument is a local name
1746 -- referring to the entity, and the second argument is the
1747 -- aspect definition expression.
1749 -- Linker_Section/Suppress/Unsuppress
1751 when Aspect_Linker_Section |
1753 Aspect_Unsuppress
=>
1756 (Pragma_Argument_Associations
=> New_List
(
1757 Make_Pragma_Argument_Association
(Loc
,
1758 Expression
=> New_Occurrence_Of
(E
, Loc
)),
1759 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1760 Expression
=> Relocate_Node
(Expr
))),
1761 Pragma_Name
=> Chars
(Id
));
1765 -- Corresponds to pragma Implemented, construct the pragma
1767 when Aspect_Synchronization
=>
1769 (Pragma_Argument_Associations
=> New_List
(
1770 Make_Pragma_Argument_Association
(Loc
,
1771 Expression
=> New_Occurrence_Of
(E
, Loc
)),
1772 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1773 Expression
=> Relocate_Node
(Expr
))),
1774 Pragma_Name
=> Name_Implemented
);
1778 when Aspect_Attach_Handler
=>
1780 (Pragma_Argument_Associations
=> New_List
(
1781 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1783 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1784 Expression
=> Relocate_Node
(Expr
))),
1785 Pragma_Name
=> Name_Attach_Handler
);
1787 -- We need to insert this pragma into the tree to get proper
1788 -- processing and to look valid from a placement viewpoint.
1790 Insert_Pragma
(Aitem
);
1793 -- Dynamic_Predicate, Predicate, Static_Predicate
1795 when Aspect_Dynamic_Predicate |
1797 Aspect_Static_Predicate
=>
1799 -- These aspects apply only to subtypes
1801 if not Is_Type
(E
) then
1803 ("predicate can only be specified for a subtype",
1807 elsif Is_Incomplete_Type
(E
) then
1809 ("predicate cannot apply to incomplete view", Aspect
);
1813 -- Construct the pragma (always a pragma Predicate, with
1814 -- flags recording whether it is static/dynamic). We also
1815 -- set flags recording this in the type itself.
1818 (Pragma_Argument_Associations
=> New_List
(
1819 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1821 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1822 Expression
=> Relocate_Node
(Expr
))),
1823 Pragma_Name
=> Name_Predicate
);
1825 -- Mark type has predicates, and remember what kind of
1826 -- aspect lead to this predicate (we need this to access
1827 -- the right set of check policies later on).
1829 Set_Has_Predicates
(E
);
1831 if A_Id
= Aspect_Dynamic_Predicate
then
1832 Set_Has_Dynamic_Predicate_Aspect
(E
);
1833 elsif A_Id
= Aspect_Static_Predicate
then
1834 Set_Has_Static_Predicate_Aspect
(E
);
1837 -- If the type is private, indicate that its completion
1838 -- has a freeze node, because that is the one that will
1839 -- be visible at freeze time.
1841 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
1842 Set_Has_Predicates
(Full_View
(E
));
1844 if A_Id
= Aspect_Dynamic_Predicate
then
1845 Set_Has_Dynamic_Predicate_Aspect
(Full_View
(E
));
1846 elsif A_Id
= Aspect_Static_Predicate
then
1847 Set_Has_Static_Predicate_Aspect
(Full_View
(E
));
1850 Set_Has_Delayed_Aspects
(Full_View
(E
));
1851 Ensure_Freeze_Node
(Full_View
(E
));
1854 -- Case 2b: Aspects corresponding to pragmas with two
1855 -- arguments, where the second argument is a local name
1856 -- referring to the entity, and the first argument is the
1857 -- aspect definition expression.
1861 when Aspect_Convention
=>
1863 -- The aspect may be part of the specification of an import
1864 -- or export pragma. Scan the aspect list to gather the
1865 -- other components, if any. The name of the generated
1866 -- pragma is one of Convention/Import/Export.
1869 Args
: constant List_Id
:= New_List
(
1870 Make_Pragma_Argument_Association
(Sloc
(Expr
),
1871 Expression
=> Relocate_Node
(Expr
)),
1872 Make_Pragma_Argument_Association
(Sloc
(Ent
),
1873 Expression
=> Ent
));
1875 Imp_Exp_Seen
: Boolean := False;
1876 -- Flag set when aspect Import or Export has been seen
1878 Imp_Seen
: Boolean := False;
1879 -- Flag set when aspect Import has been seen
1883 Extern_Arg
: Node_Id
;
1888 Extern_Arg
:= Empty
;
1890 Prag_Nam
:= Chars
(Id
);
1893 while Present
(Asp
) loop
1894 Asp_Nam
:= Chars
(Identifier
(Asp
));
1896 -- Aspects Import and Export take precedence over
1897 -- aspect Convention. As a result the generated pragma
1898 -- must carry the proper interfacing aspect's name.
1900 if Nam_In
(Asp_Nam
, Name_Import
, Name_Export
) then
1901 if Imp_Exp_Seen
then
1902 Error_Msg_N
("conflicting", Asp
);
1904 Imp_Exp_Seen
:= True;
1906 if Asp_Nam
= Name_Import
then
1911 Prag_Nam
:= Asp_Nam
;
1913 -- Aspect External_Name adds an extra argument to the
1914 -- generated pragma.
1916 elsif Asp_Nam
= Name_External_Name
then
1918 Make_Pragma_Argument_Association
(Loc
,
1920 Expression
=> Relocate_Node
(Expression
(Asp
)));
1922 -- Aspect Link_Name adds an extra argument to the
1923 -- generated pragma.
1925 elsif Asp_Nam
= Name_Link_Name
then
1927 Make_Pragma_Argument_Association
(Loc
,
1929 Expression
=> Relocate_Node
(Expression
(Asp
)));
1935 -- Assemble the full argument list
1937 if Present
(Extern_Arg
) then
1938 Append_To
(Args
, Extern_Arg
);
1941 if Present
(Link_Arg
) then
1942 Append_To
(Args
, Link_Arg
);
1946 (Pragma_Argument_Associations
=> Args
,
1947 Pragma_Name
=> Prag_Nam
);
1949 -- Store the generated pragma Import in the related
1952 if Imp_Seen
and then Is_Subprogram
(E
) then
1953 Set_Import_Pragma
(E
, Aitem
);
1957 -- CPU, Interrupt_Priority, Priority
1959 -- These three aspects can be specified for a subprogram spec
1960 -- or body, in which case we analyze the expression and export
1961 -- the value of the aspect.
1963 -- Previously, we generated an equivalent pragma for bodies
1964 -- (note that the specs cannot contain these pragmas). The
1965 -- pragma was inserted ahead of local declarations, rather than
1966 -- after the body. This leads to a certain duplication between
1967 -- the processing performed for the aspect and the pragma, but
1968 -- given the straightforward handling required it is simpler
1969 -- to duplicate than to translate the aspect in the spec into
1970 -- a pragma in the declarative part of the body.
1973 Aspect_Interrupt_Priority |
1976 if Nkind_In
(N
, N_Subprogram_Body
,
1977 N_Subprogram_Declaration
)
1979 -- Analyze the aspect expression
1981 Analyze_And_Resolve
(Expr
, Standard_Integer
);
1983 -- Interrupt_Priority aspect not allowed for main
1984 -- subprograms. ARM D.1 does not forbid this explicitly,
1985 -- but ARM J.15.11 (6/3) does not permit pragma
1986 -- Interrupt_Priority for subprograms.
1988 if A_Id
= Aspect_Interrupt_Priority
then
1990 ("Interrupt_Priority aspect cannot apply to "
1991 & "subprogram", Expr
);
1993 -- The expression must be static
1995 elsif not Is_OK_Static_Expression
(Expr
) then
1996 Flag_Non_Static_Expr
1997 ("aspect requires static expression!", Expr
);
1999 -- Check whether this is the main subprogram. Issue a
2000 -- warning only if it is obviously not a main program
2001 -- (when it has parameters or when the subprogram is
2002 -- within a package).
2004 elsif Present
(Parameter_Specifications
2005 (Specification
(N
)))
2006 or else not Is_Compilation_Unit
(Defining_Entity
(N
))
2008 -- See ARM D.1 (14/3) and D.16 (12/3)
2011 ("aspect applied to subprogram other than the "
2012 & "main subprogram has no effect??", Expr
);
2014 -- Otherwise check in range and export the value
2016 -- For the CPU aspect
2018 elsif A_Id
= Aspect_CPU
then
2019 if Is_In_Range
(Expr
, RTE
(RE_CPU_Range
)) then
2021 -- Value is correct so we export the value to make
2022 -- it available at execution time.
2025 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2029 ("main subprogram CPU is out of range", Expr
);
2032 -- For the Priority aspect
2034 elsif A_Id
= Aspect_Priority
then
2035 if Is_In_Range
(Expr
, RTE
(RE_Priority
)) then
2037 -- Value is correct so we export the value to make
2038 -- it available at execution time.
2041 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2043 -- Ignore pragma if Relaxed_RM_Semantics to support
2044 -- other targets/non GNAT compilers.
2046 elsif not Relaxed_RM_Semantics
then
2048 ("main subprogram priority is out of range",
2053 -- Load an arbitrary entity from System.Tasking.Stages
2054 -- or System.Tasking.Restricted.Stages (depending on
2055 -- the supported profile) to make sure that one of these
2056 -- packages is implicitly with'ed, since we need to have
2057 -- the tasking run time active for the pragma Priority to
2058 -- have any effect. Previously we with'ed the package
2059 -- System.Tasking, but this package does not trigger the
2060 -- required initialization of the run-time library.
2063 Discard
: Entity_Id
;
2065 if Restricted_Profile
then
2066 Discard
:= RTE
(RE_Activate_Restricted_Tasks
);
2068 Discard
:= RTE
(RE_Activate_Tasks
);
2072 -- Handling for these Aspects in subprograms is complete
2079 -- Pass the aspect as an attribute
2082 Make_Attribute_Definition_Clause
(Loc
,
2084 Chars
=> Chars
(Id
),
2085 Expression
=> Relocate_Node
(Expr
));
2090 when Aspect_Warnings
=>
2092 (Pragma_Argument_Associations
=> New_List
(
2093 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2094 Expression
=> Relocate_Node
(Expr
)),
2095 Make_Pragma_Argument_Association
(Loc
,
2096 Expression
=> New_Occurrence_Of
(E
, Loc
))),
2097 Pragma_Name
=> Chars
(Id
));
2099 -- Case 2c: Aspects corresponding to pragmas with three
2102 -- Invariant aspects have a first argument that references the
2103 -- entity, a second argument that is the expression and a third
2104 -- argument that is an appropriate message.
2106 -- Invariant, Type_Invariant
2108 when Aspect_Invariant |
2109 Aspect_Type_Invariant
=>
2111 -- Analysis of the pragma will verify placement legality:
2112 -- an invariant must apply to a private type, or appear in
2113 -- the private part of a spec and apply to a completion.
2116 (Pragma_Argument_Associations
=> New_List
(
2117 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2119 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2120 Expression
=> Relocate_Node
(Expr
))),
2121 Pragma_Name
=> Name_Invariant
);
2123 -- Add message unless exception messages are suppressed
2125 if not Opt
.Exception_Locations_Suppressed
then
2126 Append_To
(Pragma_Argument_Associations
(Aitem
),
2127 Make_Pragma_Argument_Association
(Eloc
,
2128 Chars
=> Name_Message
,
2130 Make_String_Literal
(Eloc
,
2131 Strval
=> "failed invariant from "
2132 & Build_Location_String
(Eloc
))));
2135 -- For Invariant case, insert immediately after the entity
2136 -- declaration. We do not have to worry about delay issues
2137 -- since the pragma processing takes care of this.
2139 Delay_Required
:= False;
2141 -- Case 2d : Aspects that correspond to a pragma with one
2146 -- Aspect Abstract_State introduces implicit declarations for
2147 -- all state abstraction entities it defines. To emulate this
2148 -- behavior, insert the pragma at the beginning of the visible
2149 -- declarations of the related package so that it is analyzed
2152 when Aspect_Abstract_State
=> Abstract_State
: declare
2153 Context
: Node_Id
:= N
;
2158 -- When aspect Abstract_State appears on a generic package,
2159 -- it is propageted to the package instance. The context in
2160 -- this case is the instance spec.
2162 if Nkind
(Context
) = N_Package_Instantiation
then
2163 Context
:= Instance_Spec
(Context
);
2166 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2167 N_Package_Declaration
)
2170 (Pragma_Argument_Associations
=> New_List
(
2171 Make_Pragma_Argument_Association
(Loc
,
2172 Expression
=> Relocate_Node
(Expr
))),
2173 Pragma_Name
=> Name_Abstract_State
);
2174 Decorate
(Aspect
, Aitem
);
2176 Decls
:= Visible_Declarations
(Specification
(Context
));
2178 -- In general pragma Abstract_State must be at the top
2179 -- of the existing visible declarations to emulate its
2180 -- source counterpart. The only exception to this is a
2181 -- generic instance in which case the pragma must be
2182 -- inserted after the association renamings.
2184 if Present
(Decls
) then
2185 Decl
:= First
(Decls
);
2187 -- The visible declarations of a generic instance have
2188 -- the following structure:
2190 -- <renamings of generic formals>
2191 -- <renamings of internally-generated spec and body>
2192 -- <first source declaration>
2194 -- The pragma must be inserted before the first source
2195 -- declaration, skip the instance "header".
2197 if Is_Generic_Instance
(Defining_Entity
(Context
)) then
2198 while Present
(Decl
)
2199 and then not Comes_From_Source
(Decl
)
2201 Decl
:= Next
(Decl
);
2205 -- When aspects Abstract_State, Ghost,
2206 -- Initial_Condition and Initializes are out of order,
2207 -- ensure that pragma SPARK_Mode is always at the top
2208 -- of the declarations to properly enabled/suppress
2211 Insert_After_SPARK_Mode
2216 -- Otherwise the pragma forms a new declarative list
2219 Set_Visible_Declarations
2220 (Specification
(Context
), New_List
(Aitem
));
2225 ("aspect & must apply to a package declaration",
2232 -- Aspect Default_Internal_Condition is never delayed because
2233 -- it is equivalent to a source pragma which appears after the
2234 -- related private type. To deal with forward references, the
2235 -- generated pragma is stored in the rep chain of the related
2236 -- private type as types do not carry contracts. The pragma is
2237 -- wrapped inside of a procedure at the freeze point of the
2238 -- private type's full view.
2240 when Aspect_Default_Initial_Condition
=>
2242 (Pragma_Argument_Associations
=> New_List
(
2243 Make_Pragma_Argument_Association
(Loc
,
2244 Expression
=> Relocate_Node
(Expr
))),
2246 Name_Default_Initial_Condition
);
2248 Decorate
(Aspect
, Aitem
);
2249 Insert_Pragma
(Aitem
);
2252 -- Default_Storage_Pool
2254 when Aspect_Default_Storage_Pool
=>
2256 (Pragma_Argument_Associations
=> New_List
(
2257 Make_Pragma_Argument_Association
(Loc
,
2258 Expression
=> Relocate_Node
(Expr
))),
2260 Name_Default_Storage_Pool
);
2262 Decorate
(Aspect
, Aitem
);
2263 Insert_Pragma
(Aitem
);
2268 -- Aspect Depends is never delayed because it is equivalent to
2269 -- a source pragma which appears after the related subprogram.
2270 -- To deal with forward references, the generated pragma is
2271 -- stored in the contract of the related subprogram and later
2272 -- analyzed at the end of the declarative region. See routine
2273 -- Analyze_Depends_In_Decl_Part for details.
2275 when Aspect_Depends
=>
2277 (Pragma_Argument_Associations
=> New_List
(
2278 Make_Pragma_Argument_Association
(Loc
,
2279 Expression
=> Relocate_Node
(Expr
))),
2280 Pragma_Name
=> Name_Depends
);
2282 Decorate
(Aspect
, Aitem
);
2283 Insert_Pragma
(Aitem
);
2286 -- Aspect Extensions_Visible is never delayed because it is
2287 -- equivalent to a source pragma which appears after the
2288 -- related subprogram.
2290 when Aspect_Extensions_Visible
=>
2292 (Pragma_Argument_Associations
=> New_List
(
2293 Make_Pragma_Argument_Association
(Loc
,
2294 Expression
=> Relocate_Node
(Expr
))),
2295 Pragma_Name
=> Name_Extensions_Visible
);
2297 Decorate
(Aspect
, Aitem
);
2298 Insert_Pragma
(Aitem
);
2301 -- Aspect Ghost is never delayed because it is equivalent to a
2302 -- source pragma which appears at the top of [generic] package
2303 -- declarations or after an object, a [generic] subprogram, or
2304 -- a type declaration.
2306 when Aspect_Ghost
=> Ghost
: declare
2311 (Pragma_Argument_Associations
=> New_List
(
2312 Make_Pragma_Argument_Association
(Loc
,
2313 Expression
=> Relocate_Node
(Expr
))),
2314 Pragma_Name
=> Name_Ghost
);
2316 Decorate
(Aspect
, Aitem
);
2318 -- When the aspect applies to a [generic] package, insert
2319 -- the pragma at the top of the visible declarations. This
2320 -- emulates the placement of a source pragma.
2322 if Nkind_In
(N
, N_Generic_Package_Declaration
,
2323 N_Package_Declaration
)
2325 Decls
:= Visible_Declarations
(Specification
(N
));
2329 Set_Visible_Declarations
(N
, Decls
);
2332 -- When aspects Abstract_State, Ghost, Initial_Condition
2333 -- and Initializes are out of order, ensure that pragma
2334 -- SPARK_Mode is always at the top of the declarations to
2335 -- properly enabled/suppress errors.
2337 Insert_After_SPARK_Mode
2339 Ins_Nod
=> First
(Decls
),
2342 -- Otherwise the context is an object, [generic] subprogram
2343 -- or type declaration.
2346 Insert_Pragma
(Aitem
);
2354 -- Aspect Global is never delayed because it is equivalent to
2355 -- a source pragma which appears after the related subprogram.
2356 -- To deal with forward references, the generated pragma is
2357 -- stored in the contract of the related subprogram and later
2358 -- analyzed at the end of the declarative region. See routine
2359 -- Analyze_Global_In_Decl_Part for details.
2361 when Aspect_Global
=>
2363 (Pragma_Argument_Associations
=> New_List
(
2364 Make_Pragma_Argument_Association
(Loc
,
2365 Expression
=> Relocate_Node
(Expr
))),
2366 Pragma_Name
=> Name_Global
);
2368 Decorate
(Aspect
, Aitem
);
2369 Insert_Pragma
(Aitem
);
2372 -- Initial_Condition
2374 -- Aspect Initial_Condition is never delayed because it is
2375 -- equivalent to a source pragma which appears after the
2376 -- related package. To deal with forward references, the
2377 -- generated pragma is stored in the contract of the related
2378 -- package and later analyzed at the end of the declarative
2379 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2382 when Aspect_Initial_Condition
=> Initial_Condition
: declare
2383 Context
: Node_Id
:= N
;
2387 -- When aspect Initial_Condition appears on a generic
2388 -- package, it is propageted to the package instance. The
2389 -- context in this case is the instance spec.
2391 if Nkind
(Context
) = N_Package_Instantiation
then
2392 Context
:= Instance_Spec
(Context
);
2395 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2396 N_Package_Declaration
)
2398 Decls
:= Visible_Declarations
(Specification
(Context
));
2401 (Pragma_Argument_Associations
=> New_List
(
2402 Make_Pragma_Argument_Association
(Loc
,
2403 Expression
=> Relocate_Node
(Expr
))),
2405 Name_Initial_Condition
);
2406 Decorate
(Aspect
, Aitem
);
2410 Set_Visible_Declarations
(Context
, Decls
);
2413 -- When aspects Abstract_State, Ghost, Initial_Condition
2414 -- and Initializes are out of order, ensure that pragma
2415 -- SPARK_Mode is always at the top of the declarations to
2416 -- properly enabled/suppress errors.
2418 Insert_After_SPARK_Mode
2420 Ins_Nod
=> First
(Decls
),
2425 ("aspect & must apply to a package declaration",
2430 end Initial_Condition
;
2434 -- Aspect Initializes is never delayed because it is equivalent
2435 -- to a source pragma appearing after the related package. To
2436 -- deal with forward references, the generated pragma is stored
2437 -- in the contract of the related package and later analyzed at
2438 -- the end of the declarative region. For details, see routine
2439 -- Analyze_Initializes_In_Decl_Part.
2441 when Aspect_Initializes
=> Initializes
: declare
2442 Context
: Node_Id
:= N
;
2446 -- When aspect Initializes appears on a generic package,
2447 -- it is propageted to the package instance. The context
2448 -- in this case is the instance spec.
2450 if Nkind
(Context
) = N_Package_Instantiation
then
2451 Context
:= Instance_Spec
(Context
);
2454 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2455 N_Package_Declaration
)
2457 Decls
:= Visible_Declarations
(Specification
(Context
));
2460 (Pragma_Argument_Associations
=> New_List
(
2461 Make_Pragma_Argument_Association
(Loc
,
2462 Expression
=> Relocate_Node
(Expr
))),
2463 Pragma_Name
=> Name_Initializes
);
2464 Decorate
(Aspect
, Aitem
);
2468 Set_Visible_Declarations
(Context
, Decls
);
2471 -- When aspects Abstract_State, Ghost, Initial_Condition
2472 -- and Initializes are out of order, ensure that pragma
2473 -- SPARK_Mode is always at the top of the declarations to
2474 -- properly enabled/suppress errors.
2476 Insert_After_SPARK_Mode
2478 Ins_Nod
=> First
(Decls
),
2483 ("aspect & must apply to a package declaration",
2492 when Aspect_Obsolescent
=> declare
2500 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2501 Expression
=> Relocate_Node
(Expr
)));
2505 (Pragma_Argument_Associations
=> Args
,
2506 Pragma_Name
=> Chars
(Id
));
2511 when Aspect_Part_Of
=>
2512 if Nkind_In
(N
, N_Object_Declaration
,
2513 N_Package_Instantiation
)
2516 (Pragma_Argument_Associations
=> New_List
(
2517 Make_Pragma_Argument_Association
(Loc
,
2518 Expression
=> Relocate_Node
(Expr
))),
2519 Pragma_Name
=> Name_Part_Of
);
2523 ("aspect & must apply to a variable or package "
2524 & "instantiation", Aspect
, Id
);
2529 when Aspect_SPARK_Mode
=> SPARK_Mode
: declare
2534 (Pragma_Argument_Associations
=> New_List
(
2535 Make_Pragma_Argument_Association
(Loc
,
2536 Expression
=> Relocate_Node
(Expr
))),
2537 Pragma_Name
=> Name_SPARK_Mode
);
2539 -- When the aspect appears on a package or a subprogram
2540 -- body, insert the generated pragma at the top of the body
2541 -- declarations to emulate the behavior of a source pragma.
2543 if Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
2544 Decorate
(Aspect
, Aitem
);
2546 Decls
:= Declarations
(N
);
2550 Set_Declarations
(N
, Decls
);
2553 Prepend_To
(Decls
, Aitem
);
2556 -- When the aspect is associated with a [generic] package
2557 -- declaration, insert the generated pragma at the top of
2558 -- the visible declarations to emulate the behavior of a
2561 elsif Nkind_In
(N
, N_Generic_Package_Declaration
,
2562 N_Package_Declaration
)
2564 Decorate
(Aspect
, Aitem
);
2566 Decls
:= Visible_Declarations
(Specification
(N
));
2570 Set_Visible_Declarations
(Specification
(N
), Decls
);
2573 Prepend_To
(Decls
, Aitem
);
2580 -- Aspect Refined_Depends is never delayed because it is
2581 -- equivalent to a source pragma which appears in the
2582 -- declarations of the related subprogram body. To deal with
2583 -- forward references, the generated pragma is stored in the
2584 -- contract of the related subprogram body and later analyzed
2585 -- at the end of the declarative region. For details, see
2586 -- routine Analyze_Refined_Depends_In_Decl_Part.
2588 when Aspect_Refined_Depends
=>
2590 (Pragma_Argument_Associations
=> New_List
(
2591 Make_Pragma_Argument_Association
(Loc
,
2592 Expression
=> Relocate_Node
(Expr
))),
2593 Pragma_Name
=> Name_Refined_Depends
);
2595 Decorate
(Aspect
, Aitem
);
2596 Insert_Pragma
(Aitem
);
2601 -- Aspect Refined_Global is never delayed because it is
2602 -- equivalent to a source pragma which appears in the
2603 -- declarations of the related subprogram body. To deal with
2604 -- forward references, the generated pragma is stored in the
2605 -- contract of the related subprogram body and later analyzed
2606 -- at the end of the declarative region. For details, see
2607 -- routine Analyze_Refined_Global_In_Decl_Part.
2609 when Aspect_Refined_Global
=>
2611 (Pragma_Argument_Associations
=> New_List
(
2612 Make_Pragma_Argument_Association
(Loc
,
2613 Expression
=> Relocate_Node
(Expr
))),
2614 Pragma_Name
=> Name_Refined_Global
);
2616 Decorate
(Aspect
, Aitem
);
2617 Insert_Pragma
(Aitem
);
2622 when Aspect_Refined_Post
=>
2624 (Pragma_Argument_Associations
=> New_List
(
2625 Make_Pragma_Argument_Association
(Loc
,
2626 Expression
=> Relocate_Node
(Expr
))),
2627 Pragma_Name
=> Name_Refined_Post
);
2631 when Aspect_Refined_State
=> Refined_State
: declare
2635 -- The corresponding pragma for Refined_State is inserted in
2636 -- the declarations of the related package body. This action
2637 -- synchronizes both the source and from-aspect versions of
2640 if Nkind
(N
) = N_Package_Body
then
2641 Decls
:= Declarations
(N
);
2644 (Pragma_Argument_Associations
=> New_List
(
2645 Make_Pragma_Argument_Association
(Loc
,
2646 Expression
=> Relocate_Node
(Expr
))),
2647 Pragma_Name
=> Name_Refined_State
);
2648 Decorate
(Aspect
, Aitem
);
2652 Set_Declarations
(N
, Decls
);
2655 -- Pragma Refined_State must be inserted after pragma
2656 -- SPARK_Mode in the tree. This ensures that any error
2657 -- messages dependent on SPARK_Mode will be properly
2658 -- enabled/suppressed.
2660 Insert_After_SPARK_Mode
2662 Ins_Nod
=> First
(Decls
),
2667 ("aspect & must apply to a package body", Aspect
, Id
);
2673 -- Relative_Deadline
2675 when Aspect_Relative_Deadline
=>
2677 (Pragma_Argument_Associations
=> New_List
(
2678 Make_Pragma_Argument_Association
(Loc
,
2679 Expression
=> Relocate_Node
(Expr
))),
2680 Pragma_Name
=> Name_Relative_Deadline
);
2682 -- If the aspect applies to a task, the corresponding pragma
2683 -- must appear within its declarations, not after.
2685 if Nkind
(N
) = N_Task_Type_Declaration
then
2691 if No
(Task_Definition
(N
)) then
2692 Set_Task_Definition
(N
,
2693 Make_Task_Definition
(Loc
,
2694 Visible_Declarations
=> New_List
,
2695 End_Label
=> Empty
));
2698 Def
:= Task_Definition
(N
);
2699 V
:= Visible_Declarations
(Def
);
2700 if not Is_Empty_List
(V
) then
2701 Insert_Before
(First
(V
), Aitem
);
2704 Set_Visible_Declarations
(Def
, New_List
(Aitem
));
2711 -- Case 2e: Annotate aspect
2713 when Aspect_Annotate
=>
2720 -- The argument can be a single identifier
2722 if Nkind
(Expr
) = N_Identifier
then
2724 -- One level of parens is allowed
2726 if Paren_Count
(Expr
) > 1 then
2727 Error_Msg_F
("extra parentheses ignored", Expr
);
2730 Set_Paren_Count
(Expr
, 0);
2732 -- Add the single item to the list
2734 Args
:= New_List
(Expr
);
2736 -- Otherwise we must have an aggregate
2738 elsif Nkind
(Expr
) = N_Aggregate
then
2740 -- Must be positional
2742 if Present
(Component_Associations
(Expr
)) then
2744 ("purely positional aggregate required", Expr
);
2748 -- Must not be parenthesized
2750 if Paren_Count
(Expr
) /= 0 then
2751 Error_Msg_F
("extra parentheses ignored", Expr
);
2754 -- List of arguments is list of aggregate expressions
2756 Args
:= Expressions
(Expr
);
2758 -- Anything else is illegal
2761 Error_Msg_F
("wrong form for Annotate aspect", Expr
);
2765 -- Prepare pragma arguments
2768 Arg
:= First
(Args
);
2769 while Present
(Arg
) loop
2771 Make_Pragma_Argument_Association
(Sloc
(Arg
),
2772 Expression
=> Relocate_Node
(Arg
)));
2777 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2778 Chars
=> Name_Entity
,
2779 Expression
=> Ent
));
2782 (Pragma_Argument_Associations
=> Pargs
,
2783 Pragma_Name
=> Name_Annotate
);
2786 -- Case 3 : Aspects that don't correspond to pragma/attribute
2787 -- definition clause.
2789 -- Case 3a: The aspects listed below don't correspond to
2790 -- pragmas/attributes but do require delayed analysis.
2792 -- Default_Value can only apply to a scalar type
2794 when Aspect_Default_Value
=>
2795 if not Is_Scalar_Type
(E
) then
2797 ("aspect Default_Value must apply to a scalar type", N
);
2802 -- Default_Component_Value can only apply to an array type
2803 -- with scalar components.
2805 when Aspect_Default_Component_Value
=>
2806 if not (Is_Array_Type
(E
)
2807 and then Is_Scalar_Type
(Component_Type
(E
)))
2809 Error_Msg_N
("aspect Default_Component_Value can only "
2810 & "apply to an array of scalar components", N
);
2815 -- Case 3b: The aspects listed below don't correspond to
2816 -- pragmas/attributes and don't need delayed analysis.
2818 -- Implicit_Dereference
2820 -- For Implicit_Dereference, External_Name and Link_Name, only
2821 -- the legality checks are done during the analysis, thus no
2822 -- delay is required.
2824 when Aspect_Implicit_Dereference
=>
2825 Analyze_Aspect_Implicit_Dereference
;
2828 -- External_Name, Link_Name
2830 when Aspect_External_Name |
2832 Analyze_Aspect_External_Or_Link_Name
;
2837 when Aspect_Dimension
=>
2838 Analyze_Aspect_Dimension
(N
, Id
, Expr
);
2843 when Aspect_Dimension_System
=>
2844 Analyze_Aspect_Dimension_System
(N
, Id
, Expr
);
2847 -- Case 4: Aspects requiring special handling
2849 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2850 -- pragmas take care of the delay.
2854 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2855 -- with a first argument that is the expression, and a second
2856 -- argument that is an informative message if the test fails.
2857 -- This is inserted right after the declaration, to get the
2858 -- required pragma placement. The processing for the pragmas
2859 -- takes care of the required delay.
2861 when Pre_Post_Aspects
=> Pre_Post
: declare
2865 if A_Id
= Aspect_Pre
or else A_Id
= Aspect_Precondition
then
2866 Pname
:= Name_Precondition
;
2868 Pname
:= Name_Postcondition
;
2871 -- If the expressions is of the form A and then B, then
2872 -- we generate separate Pre/Post aspects for the separate
2873 -- clauses. Since we allow multiple pragmas, there is no
2874 -- problem in allowing multiple Pre/Post aspects internally.
2875 -- These should be treated in reverse order (B first and
2876 -- A second) since they are later inserted just after N in
2877 -- the order they are treated. This way, the pragma for A
2878 -- ends up preceding the pragma for B, which may have an
2879 -- importance for the error raised (either constraint error
2880 -- or precondition error).
2882 -- We do not do this for Pre'Class, since we have to put
2883 -- these conditions together in a complex OR expression.
2885 -- We do not do this in ASIS mode, as ASIS relies on the
2886 -- original node representing the complete expression, when
2887 -- retrieving it through the source aspect table.
2890 and then (Pname
= Name_Postcondition
2891 or else not Class_Present
(Aspect
))
2893 while Nkind
(Expr
) = N_And_Then
loop
2894 Insert_After
(Aspect
,
2895 Make_Aspect_Specification
(Sloc
(Left_Opnd
(Expr
)),
2896 Identifier
=> Identifier
(Aspect
),
2897 Expression
=> Relocate_Node
(Left_Opnd
(Expr
)),
2898 Class_Present
=> Class_Present
(Aspect
),
2899 Split_PPC
=> True));
2900 Rewrite
(Expr
, Relocate_Node
(Right_Opnd
(Expr
)));
2901 Eloc
:= Sloc
(Expr
);
2905 -- Build the precondition/postcondition pragma
2907 -- Add note about why we do NOT need Copy_Tree here???
2910 (Pragma_Argument_Associations
=> New_List
(
2911 Make_Pragma_Argument_Association
(Eloc
,
2912 Chars
=> Name_Check
,
2913 Expression
=> Relocate_Node
(Expr
))),
2914 Pragma_Name
=> Pname
);
2916 -- Add message unless exception messages are suppressed
2918 if not Opt
.Exception_Locations_Suppressed
then
2919 Append_To
(Pragma_Argument_Associations
(Aitem
),
2920 Make_Pragma_Argument_Association
(Eloc
,
2921 Chars
=> Name_Message
,
2923 Make_String_Literal
(Eloc
,
2925 & Get_Name_String
(Pname
)
2927 & Build_Location_String
(Eloc
))));
2930 Set_Is_Delayed_Aspect
(Aspect
);
2932 -- For Pre/Post cases, insert immediately after the entity
2933 -- declaration, since that is the required pragma placement.
2934 -- Note that for these aspects, we do not have to worry
2935 -- about delay issues, since the pragmas themselves deal
2936 -- with delay of visibility for the expression analysis.
2938 Insert_Pragma
(Aitem
);
2945 when Aspect_Test_Case
=> Test_Case
: declare
2947 Comp_Expr
: Node_Id
;
2948 Comp_Assn
: Node_Id
;
2954 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
2955 Error_Msg_Name_1
:= Nam
;
2956 Error_Msg_N
("incorrect placement of aspect `%`", E
);
2960 if Nkind
(Expr
) /= N_Aggregate
then
2961 Error_Msg_Name_1
:= Nam
;
2963 ("wrong syntax for aspect `%` for &", Id
, E
);
2967 -- Make pragma expressions refer to the original aspect
2968 -- expressions through the Original_Node link. This is used
2969 -- in semantic analysis for ASIS mode, so that the original
2970 -- expression also gets analyzed.
2972 Comp_Expr
:= First
(Expressions
(Expr
));
2973 while Present
(Comp_Expr
) loop
2974 New_Expr
:= Relocate_Node
(Comp_Expr
);
2975 Set_Original_Node
(New_Expr
, Comp_Expr
);
2977 Make_Pragma_Argument_Association
(Sloc
(Comp_Expr
),
2978 Expression
=> New_Expr
));
2982 Comp_Assn
:= First
(Component_Associations
(Expr
));
2983 while Present
(Comp_Assn
) loop
2984 if List_Length
(Choices
(Comp_Assn
)) /= 1
2986 Nkind
(First
(Choices
(Comp_Assn
))) /= N_Identifier
2988 Error_Msg_Name_1
:= Nam
;
2990 ("wrong syntax for aspect `%` for &", Id
, E
);
2994 New_Expr
:= Relocate_Node
(Expression
(Comp_Assn
));
2995 Set_Original_Node
(New_Expr
, Expression
(Comp_Assn
));
2997 Make_Pragma_Argument_Association
(Sloc
(Comp_Assn
),
2998 Chars
=> Chars
(First
(Choices
(Comp_Assn
))),
2999 Expression
=> New_Expr
));
3003 -- Build the test-case pragma
3006 (Pragma_Argument_Associations
=> Args
,
3007 Pragma_Name
=> Nam
);
3012 when Aspect_Contract_Cases
=>
3014 (Pragma_Argument_Associations
=> New_List
(
3015 Make_Pragma_Argument_Association
(Loc
,
3016 Expression
=> Relocate_Node
(Expr
))),
3017 Pragma_Name
=> Nam
);
3019 Decorate
(Aspect
, Aitem
);
3020 Insert_Pragma
(Aitem
);
3023 -- Case 5: Special handling for aspects with an optional
3024 -- boolean argument.
3026 -- In the general case, the corresponding pragma cannot be
3027 -- generated yet because the evaluation of the boolean needs
3028 -- to be delayed till the freeze point.
3030 when Boolean_Aspects |
3031 Library_Unit_Aspects
=>
3033 Set_Is_Boolean_Aspect
(Aspect
);
3035 -- Lock_Free aspect only apply to protected objects
3037 if A_Id
= Aspect_Lock_Free
then
3038 if Ekind
(E
) /= E_Protected_Type
then
3039 Error_Msg_Name_1
:= Nam
;
3041 ("aspect % only applies to a protected object",
3045 -- Set the Uses_Lock_Free flag to True if there is no
3046 -- expression or if the expression is True. The
3047 -- evaluation of this aspect should be delayed to the
3048 -- freeze point (why???)
3051 or else Is_True
(Static_Boolean
(Expr
))
3053 Set_Uses_Lock_Free
(E
);
3056 Record_Rep_Item
(E
, Aspect
);
3061 elsif A_Id
= Aspect_Import
or else A_Id
= Aspect_Export
then
3063 -- For the case of aspects Import and Export, we don't
3064 -- consider that we know the entity is never set in the
3065 -- source, since it is is likely modified outside the
3068 -- Note: one might think that the analysis of the
3069 -- resulting pragma would take care of that, but
3070 -- that's not the case since it won't be from source.
3072 if Ekind
(E
) = E_Variable
then
3073 Set_Never_Set_In_Source
(E
, False);
3076 -- In older versions of Ada the corresponding pragmas
3077 -- specified a Convention. In Ada 2012 the convention is
3078 -- specified as a separate aspect, and it is optional,
3079 -- given that it defaults to Convention_Ada. The code
3080 -- that verifed that there was a matching convention
3083 -- Resolve the expression of an Import or Export here,
3084 -- and require it to be of type Boolean and static. This
3085 -- is not quite right, because in general this should be
3086 -- delayed, but that seems tricky for these, because
3087 -- normally Boolean aspects are replaced with pragmas at
3088 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3089 -- but in the case of these aspects we can't generate
3090 -- a simple pragma with just the entity name. ???
3092 if not Present
(Expr
)
3093 or else Is_True
(Static_Boolean
(Expr
))
3095 if A_Id
= Aspect_Import
then
3096 Set_Is_Imported
(E
);
3098 -- An imported entity cannot have an explicit
3101 if Nkind
(N
) = N_Object_Declaration
3102 and then Present
(Expression
(N
))
3105 ("imported entities cannot be initialized "
3106 & "(RM B.1(24))", Expression
(N
));
3109 elsif A_Id
= Aspect_Export
then
3110 Set_Is_Exported
(E
);
3117 -- Library unit aspects require special handling in the case
3118 -- of a package declaration, the pragma needs to be inserted
3119 -- in the list of declarations for the associated package.
3120 -- There is no issue of visibility delay for these aspects.
3122 if A_Id
in Library_Unit_Aspects
3124 Nkind_In
(N
, N_Package_Declaration
,
3125 N_Generic_Package_Declaration
)
3126 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3128 -- Aspect is legal on a local instantiation of a library-
3129 -- level generic unit.
3131 and then not Is_Generic_Instance
(Defining_Entity
(N
))
3134 ("incorrect context for library unit aspect&", Id
);
3138 -- External property aspects are Boolean by nature, but
3139 -- their pragmas must contain two arguments, the second
3140 -- being the optional Boolean expression.
3142 if A_Id
= Aspect_Async_Readers
or else
3143 A_Id
= Aspect_Async_Writers
or else
3144 A_Id
= Aspect_Effective_Reads
or else
3145 A_Id
= Aspect_Effective_Writes
3151 -- The first argument of the external property pragma
3152 -- is the related object.
3156 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3157 Expression
=> Ent
));
3159 -- The second argument is the optional Boolean
3160 -- expression which must be propagated even if it
3161 -- evaluates to False as this has special semantic
3164 if Present
(Expr
) then
3166 Make_Pragma_Argument_Association
(Loc
,
3167 Expression
=> Relocate_Node
(Expr
)));
3171 (Pragma_Argument_Associations
=> Args
,
3172 Pragma_Name
=> Nam
);
3175 -- Cases where we do not delay, includes all cases where the
3176 -- expression is missing other than the above cases.
3178 elsif not Delay_Required
or else No
(Expr
) then
3180 (Pragma_Argument_Associations
=> New_List
(
3181 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3182 Expression
=> Ent
)),
3183 Pragma_Name
=> Chars
(Id
));
3184 Delay_Required
:= False;
3186 -- In general cases, the corresponding pragma/attribute
3187 -- definition clause will be inserted later at the freezing
3188 -- point, and we do not need to build it now.
3196 -- This is special because for access types we need to generate
3197 -- an attribute definition clause. This also works for single
3198 -- task declarations, but it does not work for task type
3199 -- declarations, because we have the case where the expression
3200 -- references a discriminant of the task type. That can't use
3201 -- an attribute definition clause because we would not have
3202 -- visibility on the discriminant. For that case we must
3203 -- generate a pragma in the task definition.
3205 when Aspect_Storage_Size
=>
3209 if Ekind
(E
) = E_Task_Type
then
3211 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3214 pragma Assert
(Nkind
(Decl
) = N_Task_Type_Declaration
);
3216 -- If no task definition, create one
3218 if No
(Task_Definition
(Decl
)) then
3219 Set_Task_Definition
(Decl
,
3220 Make_Task_Definition
(Loc
,
3221 Visible_Declarations
=> Empty_List
,
3222 End_Label
=> Empty
));
3225 -- Create a pragma and put it at the start of the task
3226 -- definition for the task type declaration.
3229 (Pragma_Argument_Associations
=> New_List
(
3230 Make_Pragma_Argument_Association
(Loc
,
3231 Expression
=> Relocate_Node
(Expr
))),
3232 Pragma_Name
=> Name_Storage_Size
);
3236 Visible_Declarations
(Task_Definition
(Decl
)));
3240 -- All other cases, generate attribute definition
3244 Make_Attribute_Definition_Clause
(Loc
,
3246 Chars
=> Chars
(Id
),
3247 Expression
=> Relocate_Node
(Expr
));
3251 -- Attach the corresponding pragma/attribute definition clause to
3252 -- the aspect specification node.
3254 if Present
(Aitem
) then
3255 Set_From_Aspect_Specification
(Aitem
);
3258 -- In the context of a compilation unit, we directly put the
3259 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3260 -- node (no delay is required here) except for aspects on a
3261 -- subprogram body (see below) and a generic package, for which we
3262 -- need to introduce the pragma before building the generic copy
3263 -- (see sem_ch12), and for package instantiations, where the
3264 -- library unit pragmas are better handled early.
3266 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3267 and then (Present
(Aitem
) or else Is_Boolean_Aspect
(Aspect
))
3270 Aux
: constant Node_Id
:= Aux_Decls_Node
(Parent
(N
));
3273 pragma Assert
(Nkind
(Aux
) = N_Compilation_Unit_Aux
);
3275 -- For a Boolean aspect, create the corresponding pragma if
3276 -- no expression or if the value is True.
3278 if Is_Boolean_Aspect
(Aspect
) and then No
(Aitem
) then
3279 if Is_True
(Static_Boolean
(Expr
)) then
3281 (Pragma_Argument_Associations
=> New_List
(
3282 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3283 Expression
=> Ent
)),
3284 Pragma_Name
=> Chars
(Id
));
3286 Set_From_Aspect_Specification
(Aitem
, True);
3287 Set_Corresponding_Aspect
(Aitem
, Aspect
);
3294 -- If the aspect is on a subprogram body (relevant aspect
3295 -- is Inline), add the pragma in front of the declarations.
3297 if Nkind
(N
) = N_Subprogram_Body
then
3298 if No
(Declarations
(N
)) then
3299 Set_Declarations
(N
, New_List
);
3302 Prepend
(Aitem
, Declarations
(N
));
3304 elsif Nkind
(N
) = N_Generic_Package_Declaration
then
3305 if No
(Visible_Declarations
(Specification
(N
))) then
3306 Set_Visible_Declarations
(Specification
(N
), New_List
);
3310 Visible_Declarations
(Specification
(N
)));
3312 elsif Nkind
(N
) = N_Package_Instantiation
then
3314 Spec
: constant Node_Id
:=
3315 Specification
(Instance_Spec
(N
));
3317 if No
(Visible_Declarations
(Spec
)) then
3318 Set_Visible_Declarations
(Spec
, New_List
);
3321 Prepend
(Aitem
, Visible_Declarations
(Spec
));
3325 if No
(Pragmas_After
(Aux
)) then
3326 Set_Pragmas_After
(Aux
, New_List
);
3329 Append
(Aitem
, Pragmas_After
(Aux
));
3336 -- The evaluation of the aspect is delayed to the freezing point.
3337 -- The pragma or attribute clause if there is one is then attached
3338 -- to the aspect specification which is put in the rep item list.
3340 if Delay_Required
then
3341 if Present
(Aitem
) then
3342 Set_Is_Delayed_Aspect
(Aitem
);
3343 Set_Aspect_Rep_Item
(Aspect
, Aitem
);
3344 Set_Parent
(Aitem
, Aspect
);
3347 Set_Is_Delayed_Aspect
(Aspect
);
3349 -- In the case of Default_Value, link the aspect to base type
3350 -- as well, even though it appears on a first subtype. This is
3351 -- mandated by the semantics of the aspect. Do not establish
3352 -- the link when processing the base type itself as this leads
3353 -- to a rep item circularity. Verify that we are dealing with
3354 -- a scalar type to prevent cascaded errors.
3356 if A_Id
= Aspect_Default_Value
3357 and then Is_Scalar_Type
(E
)
3358 and then Base_Type
(E
) /= E
3360 Set_Has_Delayed_Aspects
(Base_Type
(E
));
3361 Record_Rep_Item
(Base_Type
(E
), Aspect
);
3364 Set_Has_Delayed_Aspects
(E
);
3365 Record_Rep_Item
(E
, Aspect
);
3367 -- When delay is not required and the context is a package or a
3368 -- subprogram body, insert the pragma in the body declarations.
3370 elsif Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
3371 if No
(Declarations
(N
)) then
3372 Set_Declarations
(N
, New_List
);
3375 -- The pragma is added before source declarations
3377 Prepend_To
(Declarations
(N
), Aitem
);
3379 -- When delay is not required and the context is not a compilation
3380 -- unit, we simply insert the pragma/attribute definition clause
3384 Insert_After
(Ins_Node
, Aitem
);
3387 end Analyze_One_Aspect
;
3391 end loop Aspect_Loop
;
3393 if Has_Delayed_Aspects
(E
) then
3394 Ensure_Freeze_Node
(E
);
3396 end Analyze_Aspect_Specifications
;
3398 -----------------------
3399 -- Analyze_At_Clause --
3400 -----------------------
3402 -- An at clause is replaced by the corresponding Address attribute
3403 -- definition clause that is the preferred approach in Ada 95.
3405 procedure Analyze_At_Clause
(N
: Node_Id
) is
3406 CS
: constant Boolean := Comes_From_Source
(N
);
3409 -- This is an obsolescent feature
3411 Check_Restriction
(No_Obsolescent_Features
, N
);
3413 if Warn_On_Obsolescent_Feature
then
3415 ("?j?at clause is an obsolescent feature (RM J.7(2))", N
);
3417 ("\?j?use address attribute definition clause instead", N
);
3420 -- Rewrite as address clause
3423 Make_Attribute_Definition_Clause
(Sloc
(N
),
3424 Name
=> Identifier
(N
),
3425 Chars
=> Name_Address
,
3426 Expression
=> Expression
(N
)));
3428 -- We preserve Comes_From_Source, since logically the clause still comes
3429 -- from the source program even though it is changed in form.
3431 Set_Comes_From_Source
(N
, CS
);
3433 -- Analyze rewritten clause
3435 Analyze_Attribute_Definition_Clause
(N
);
3436 end Analyze_At_Clause
;
3438 -----------------------------------------
3439 -- Analyze_Attribute_Definition_Clause --
3440 -----------------------------------------
3442 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
3443 Loc
: constant Source_Ptr
:= Sloc
(N
);
3444 Nam
: constant Node_Id
:= Name
(N
);
3445 Attr
: constant Name_Id
:= Chars
(N
);
3446 Expr
: constant Node_Id
:= Expression
(N
);
3447 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
3450 -- The entity of Nam after it is analyzed. In the case of an incomplete
3451 -- type, this is the underlying type.
3454 -- The underlying entity to which the attribute applies. Generally this
3455 -- is the Underlying_Type of Ent, except in the case where the clause
3456 -- applies to full view of incomplete type or private type in which case
3457 -- U_Ent is just a copy of Ent.
3459 FOnly
: Boolean := False;
3460 -- Reset to True for subtype specific attribute (Alignment, Size)
3461 -- and for stream attributes, i.e. those cases where in the call to
3462 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3463 -- are checked. Note that the case of stream attributes is not clear
3464 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3465 -- Storage_Size for derived task types, but that is also clearly
3468 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
);
3469 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3470 -- definition clauses.
3472 function Duplicate_Clause
return Boolean;
3473 -- This routine checks if the aspect for U_Ent being given by attribute
3474 -- definition clause N is for an aspect that has already been specified,
3475 -- and if so gives an error message. If there is a duplicate, True is
3476 -- returned, otherwise if there is no error, False is returned.
3478 procedure Check_Indexing_Functions
;
3479 -- Check that the function in Constant_Indexing or Variable_Indexing
3480 -- attribute has the proper type structure. If the name is overloaded,
3481 -- check that some interpretation is legal.
3483 procedure Check_Iterator_Functions
;
3484 -- Check that there is a single function in Default_Iterator attribute
3485 -- has the proper type structure.
3487 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean;
3488 -- Common legality check for the previous two
3490 -----------------------------------
3491 -- Analyze_Stream_TSS_Definition --
3492 -----------------------------------
3494 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
) is
3495 Subp
: Entity_Id
:= Empty
;
3500 Is_Read
: constant Boolean := (TSS_Nam
= TSS_Stream_Read
);
3501 -- True for Read attribute, false for other attributes
3503 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean;
3504 -- Return true if the entity is a subprogram with an appropriate
3505 -- profile for the attribute being defined.
3507 ----------------------
3508 -- Has_Good_Profile --
3509 ----------------------
3511 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean is
3513 Is_Function
: constant Boolean := (TSS_Nam
= TSS_Stream_Input
);
3514 Expected_Ekind
: constant array (Boolean) of Entity_Kind
:=
3515 (False => E_Procedure
, True => E_Function
);
3519 if Ekind
(Subp
) /= Expected_Ekind
(Is_Function
) then
3523 F
:= First_Formal
(Subp
);
3526 or else Ekind
(Etype
(F
)) /= E_Anonymous_Access_Type
3527 or else Designated_Type
(Etype
(F
)) /=
3528 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
3533 if not Is_Function
then
3537 Expected_Mode
: constant array (Boolean) of Entity_Kind
:=
3538 (False => E_In_Parameter
,
3539 True => E_Out_Parameter
);
3541 if Parameter_Mode
(F
) /= Expected_Mode
(Is_Read
) then
3548 -- If the attribute specification comes from an aspect
3549 -- specification for a class-wide stream, the parameter must be
3550 -- a class-wide type of the entity to which the aspect applies.
3552 if From_Aspect_Specification
(N
)
3553 and then Class_Present
(Parent
(N
))
3554 and then Is_Class_Wide_Type
(Typ
)
3560 Typ
:= Etype
(Subp
);
3563 -- Verify that the prefix of the attribute and the local name for
3564 -- the type of the formal match, or one is the class-wide of the
3565 -- other, in the case of a class-wide stream operation.
3567 if Base_Type
(Typ
) = Base_Type
(Ent
)
3568 or else (Is_Class_Wide_Type
(Typ
)
3569 and then Typ
= Class_Wide_Type
(Base_Type
(Ent
)))
3570 or else (Is_Class_Wide_Type
(Ent
)
3571 and then Ent
= Class_Wide_Type
(Base_Type
(Typ
)))
3578 if Present
((Next_Formal
(F
)))
3582 elsif not Is_Scalar_Type
(Typ
)
3583 and then not Is_First_Subtype
(Typ
)
3584 and then not Is_Class_Wide_Type
(Typ
)
3591 end Has_Good_Profile
;
3593 -- Start of processing for Analyze_Stream_TSS_Definition
3598 if not Is_Type
(U_Ent
) then
3599 Error_Msg_N
("local name must be a subtype", Nam
);
3602 elsif not Is_First_Subtype
(U_Ent
) then
3603 Error_Msg_N
("local name must be a first subtype", Nam
);
3607 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Nam
);
3609 -- If Pnam is present, it can be either inherited from an ancestor
3610 -- type (in which case it is legal to redefine it for this type), or
3611 -- be a previous definition of the attribute for the same type (in
3612 -- which case it is illegal).
3614 -- In the first case, it will have been analyzed already, and we
3615 -- can check that its profile does not match the expected profile
3616 -- for a stream attribute of U_Ent. In the second case, either Pnam
3617 -- has been analyzed (and has the expected profile), or it has not
3618 -- been analyzed yet (case of a type that has not been frozen yet
3619 -- and for which the stream attribute has been set using Set_TSS).
3622 and then (No
(First_Entity
(Pnam
)) or else Has_Good_Profile
(Pnam
))
3624 Error_Msg_Sloc
:= Sloc
(Pnam
);
3625 Error_Msg_Name_1
:= Attr
;
3626 Error_Msg_N
("% attribute already defined #", Nam
);
3632 if Is_Entity_Name
(Expr
) then
3633 if not Is_Overloaded
(Expr
) then
3634 if Has_Good_Profile
(Entity
(Expr
)) then
3635 Subp
:= Entity
(Expr
);
3639 Get_First_Interp
(Expr
, I
, It
);
3640 while Present
(It
.Nam
) loop
3641 if Has_Good_Profile
(It
.Nam
) then
3646 Get_Next_Interp
(I
, It
);
3651 if Present
(Subp
) then
3652 if Is_Abstract_Subprogram
(Subp
) then
3653 Error_Msg_N
("stream subprogram must not be abstract", Expr
);
3656 -- A stream subprogram for an interface type must be a null
3657 -- procedure (RM 13.13.2 (38/3)).
3659 elsif Is_Interface
(U_Ent
)
3660 and then not Is_Class_Wide_Type
(U_Ent
)
3661 and then not Inside_A_Generic
3663 (Ekind
(Subp
) = E_Function
3667 (Unit_Declaration_Node
(Ultimate_Alias
(Subp
)))))
3670 ("stream subprogram for interface type "
3671 & "must be null procedure", Expr
);
3674 Set_Entity
(Expr
, Subp
);
3675 Set_Etype
(Expr
, Etype
(Subp
));
3677 New_Stream_Subprogram
(N
, U_Ent
, Subp
, TSS_Nam
);
3680 Error_Msg_Name_1
:= Attr
;
3681 Error_Msg_N
("incorrect expression for% attribute", Expr
);
3683 end Analyze_Stream_TSS_Definition
;
3685 ------------------------------
3686 -- Check_Indexing_Functions --
3687 ------------------------------
3689 procedure Check_Indexing_Functions
is
3690 Indexing_Found
: Boolean := False;
3692 procedure Check_One_Function
(Subp
: Entity_Id
);
3693 -- Check one possible interpretation. Sets Indexing_Found True if a
3694 -- legal indexing function is found.
3696 procedure Illegal_Indexing
(Msg
: String);
3697 -- Diagnose illegal indexing function if not overloaded. In the
3698 -- overloaded case indicate that no legal interpretation exists.
3700 ------------------------
3701 -- Check_One_Function --
3702 ------------------------
3704 procedure Check_One_Function
(Subp
: Entity_Id
) is
3705 Default_Element
: Node_Id
;
3706 Ret_Type
: constant Entity_Id
:= Etype
(Subp
);
3709 if not Is_Overloadable
(Subp
) then
3710 Illegal_Indexing
("illegal indexing function for type&");
3713 elsif Scope
(Subp
) /= Scope
(Ent
) then
3714 if Nkind
(Expr
) = N_Expanded_Name
then
3716 -- Indexing function can't be declared elsewhere
3719 ("indexing function must be declared in scope of type&");
3724 elsif No
(First_Formal
(Subp
)) then
3726 ("Indexing requires a function that applies to type&");
3729 elsif No
(Next_Formal
(First_Formal
(Subp
))) then
3731 ("indexing function must have at least two parameters");
3734 elsif Is_Derived_Type
(Ent
) then
3735 if (Attr
= Name_Constant_Indexing
3737 (Find_Aspect
(Etype
(Ent
), Aspect_Constant_Indexing
)))
3739 (Attr
= Name_Variable_Indexing
3741 (Find_Aspect
(Etype
(Ent
), Aspect_Variable_Indexing
)))
3743 if Debug_Flag_Dot_XX
then
3748 ("indexing function already inherited "
3749 & "from parent type");
3755 if not Check_Primitive_Function
(Subp
) then
3757 ("Indexing aspect requires a function that applies to type&");
3761 -- If partial declaration exists, verify that it is not tagged.
3763 if Ekind
(Current_Scope
) = E_Package
3764 and then Has_Private_Declaration
(Ent
)
3765 and then From_Aspect_Specification
(N
)
3767 List_Containing
(Parent
(Ent
)) =
3768 Private_Declarations
3769 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
3770 and then Nkind
(N
) = N_Attribute_Definition_Clause
3777 First
(Visible_Declarations
3779 (Unit_Declaration_Node
(Current_Scope
))));
3781 while Present
(Decl
) loop
3782 if Nkind
(Decl
) = N_Private_Type_Declaration
3783 and then Ent
= Full_View
(Defining_Identifier
(Decl
))
3784 and then Tagged_Present
(Decl
)
3785 and then No
(Aspect_Specifications
(Decl
))
3788 ("Indexing aspect cannot be specified on full view "
3789 & "if partial view is tagged");
3798 -- An indexing function must return either the default element of
3799 -- the container, or a reference type. For variable indexing it
3800 -- must be the latter.
3803 Find_Value_Of_Aspect
3804 (Etype
(First_Formal
(Subp
)), Aspect_Iterator_Element
);
3806 if Present
(Default_Element
) then
3807 Analyze
(Default_Element
);
3809 if Is_Entity_Name
(Default_Element
)
3810 and then not Covers
(Entity
(Default_Element
), Ret_Type
)
3814 ("wrong return type for indexing function");
3819 -- For variable_indexing the return type must be a reference type
3821 if Attr
= Name_Variable_Indexing
then
3822 if not Has_Implicit_Dereference
(Ret_Type
) then
3824 ("variable indexing must return a reference type");
3827 elsif Is_Access_Constant
3828 (Etype
(First_Discriminant
(Ret_Type
)))
3831 ("variable indexing must return an access to variable");
3836 if Has_Implicit_Dereference
(Ret_Type
)
3838 Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
3841 ("constant indexing must return an access to constant");
3844 elsif Is_Access_Type
(Etype
(First_Formal
(Subp
)))
3845 and then not Is_Access_Constant
(Etype
(First_Formal
(Subp
)))
3848 ("constant indexing must apply to an access to constant");
3853 -- All checks succeeded.
3855 Indexing_Found
:= True;
3856 end Check_One_Function
;
3858 -----------------------
3859 -- Illegal_Indexing --
3860 -----------------------
3862 procedure Illegal_Indexing
(Msg
: String) is
3864 Error_Msg_NE
(Msg
, N
, Ent
);
3865 end Illegal_Indexing
;
3867 -- Start of processing for Check_Indexing_Functions
3876 if not Is_Overloaded
(Expr
) then
3877 Check_One_Function
(Entity
(Expr
));
3885 Indexing_Found
:= False;
3886 Get_First_Interp
(Expr
, I
, It
);
3887 while Present
(It
.Nam
) loop
3889 -- Note that analysis will have added the interpretation
3890 -- that corresponds to the dereference. We only check the
3891 -- subprogram itself.
3893 if Is_Overloadable
(It
.Nam
) then
3894 Check_One_Function
(It
.Nam
);
3897 Get_Next_Interp
(I
, It
);
3902 if not Indexing_Found
and then not Error_Posted
(N
) then
3904 ("aspect Indexing requires a local function that "
3905 & "applies to type&", Expr
, Ent
);
3907 end Check_Indexing_Functions
;
3909 ------------------------------
3910 -- Check_Iterator_Functions --
3911 ------------------------------
3913 procedure Check_Iterator_Functions
is
3914 Default
: Entity_Id
;
3916 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean;
3917 -- Check one possible interpretation for validity
3919 ----------------------------
3920 -- Valid_Default_Iterator --
3921 ----------------------------
3923 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean is
3927 if not Check_Primitive_Function
(Subp
) then
3930 Formal
:= First_Formal
(Subp
);
3933 -- False if any subsequent formal has no default expression
3935 Formal
:= Next_Formal
(Formal
);
3936 while Present
(Formal
) loop
3937 if No
(Expression
(Parent
(Formal
))) then
3941 Next_Formal
(Formal
);
3944 -- True if all subsequent formals have default expressions
3947 end Valid_Default_Iterator
;
3949 -- Start of processing for Check_Iterator_Functions
3954 if not Is_Entity_Name
(Expr
) then
3955 Error_Msg_N
("aspect Iterator must be a function name", Expr
);
3958 if not Is_Overloaded
(Expr
) then
3959 if not Check_Primitive_Function
(Entity
(Expr
)) then
3961 ("aspect Indexing requires a function that applies to type&",
3962 Entity
(Expr
), Ent
);
3965 if not Valid_Default_Iterator
(Entity
(Expr
)) then
3966 Error_Msg_N
("improper function for default iterator", Expr
);
3976 Get_First_Interp
(Expr
, I
, It
);
3977 while Present
(It
.Nam
) loop
3978 if not Check_Primitive_Function
(It
.Nam
)
3979 or else not Valid_Default_Iterator
(It
.Nam
)
3983 elsif Present
(Default
) then
3984 Error_Msg_N
("default iterator must be unique", Expr
);
3990 Get_Next_Interp
(I
, It
);
3994 if Present
(Default
) then
3995 Set_Entity
(Expr
, Default
);
3996 Set_Is_Overloaded
(Expr
, False);
3999 end Check_Iterator_Functions
;
4001 -------------------------------
4002 -- Check_Primitive_Function --
4003 -------------------------------
4005 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean is
4009 if Ekind
(Subp
) /= E_Function
then
4013 if No
(First_Formal
(Subp
)) then
4016 Ctrl
:= Etype
(First_Formal
(Subp
));
4019 -- Type of formal may be the class-wide type, an access to such,
4020 -- or an incomplete view.
4023 or else Ctrl
= Class_Wide_Type
(Ent
)
4025 (Ekind
(Ctrl
) = E_Anonymous_Access_Type
4026 and then (Designated_Type
(Ctrl
) = Ent
4028 Designated_Type
(Ctrl
) = Class_Wide_Type
(Ent
)))
4030 (Ekind
(Ctrl
) = E_Incomplete_Type
4031 and then Full_View
(Ctrl
) = Ent
)
4039 end Check_Primitive_Function
;
4041 ----------------------
4042 -- Duplicate_Clause --
4043 ----------------------
4045 function Duplicate_Clause
return Boolean is
4049 -- Nothing to do if this attribute definition clause comes from
4050 -- an aspect specification, since we could not be duplicating an
4051 -- explicit clause, and we dealt with the case of duplicated aspects
4052 -- in Analyze_Aspect_Specifications.
4054 if From_Aspect_Specification
(N
) then
4058 -- Otherwise current clause may duplicate previous clause, or a
4059 -- previously given pragma or aspect specification for the same
4062 A
:= Get_Rep_Item
(U_Ent
, Chars
(N
), Check_Parents
=> False);
4065 Error_Msg_Name_1
:= Chars
(N
);
4066 Error_Msg_Sloc
:= Sloc
(A
);
4068 Error_Msg_NE
("aspect% for & previously given#", N
, U_Ent
);
4073 end Duplicate_Clause
;
4075 -- Start of processing for Analyze_Attribute_Definition_Clause
4078 -- The following code is a defense against recursion. Not clear that
4079 -- this can happen legitimately, but perhaps some error situations can
4080 -- cause it, and we did see this recursion during testing.
4082 if Analyzed
(N
) then
4085 Set_Analyzed
(N
, True);
4088 -- Ignore some selected attributes in CodePeer mode since they are not
4089 -- relevant in this context.
4091 if CodePeer_Mode
then
4094 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4095 -- internal representation of types by implicitly packing them.
4097 when Attribute_Component_Size
=>
4098 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
4106 -- Process Ignore_Rep_Clauses option
4108 if Ignore_Rep_Clauses
then
4111 -- The following should be ignored. They do not affect legality
4112 -- and may be target dependent. The basic idea of -gnatI is to
4113 -- ignore any rep clauses that may be target dependent but do not
4114 -- affect legality (except possibly to be rejected because they
4115 -- are incompatible with the compilation target).
4117 when Attribute_Alignment |
4118 Attribute_Bit_Order |
4119 Attribute_Component_Size |
4120 Attribute_Machine_Radix |
4121 Attribute_Object_Size |
4124 Attribute_Stream_Size |
4125 Attribute_Value_Size
=>
4126 Kill_Rep_Clause
(N
);
4129 -- The following should not be ignored, because in the first place
4130 -- they are reasonably portable, and should not cause problems
4131 -- in compiling code from another target, and also they do affect
4132 -- legality, e.g. failing to provide a stream attribute for a type
4133 -- may make a program illegal.
4135 when Attribute_External_Tag |
4139 Attribute_Simple_Storage_Pool |
4140 Attribute_Storage_Pool |
4141 Attribute_Storage_Size |
4145 -- We do not do anything here with address clauses, they will be
4146 -- removed by Freeze later on, but for now, it works better to
4147 -- keep then in the tree.
4149 when Attribute_Address
=>
4152 -- Other cases are errors ("attribute& cannot be set with
4153 -- definition clause"), which will be caught below.
4161 Ent
:= Entity
(Nam
);
4163 if Rep_Item_Too_Early
(Ent
, N
) then
4167 -- Rep clause applies to full view of incomplete type or private type if
4168 -- we have one (if not, this is a premature use of the type). However,
4169 -- certain semantic checks need to be done on the specified entity (i.e.
4170 -- the private view), so we save it in Ent.
4172 if Is_Private_Type
(Ent
)
4173 and then Is_Derived_Type
(Ent
)
4174 and then not Is_Tagged_Type
(Ent
)
4175 and then No
(Full_View
(Ent
))
4177 -- If this is a private type whose completion is a derivation from
4178 -- another private type, there is no full view, and the attribute
4179 -- belongs to the type itself, not its underlying parent.
4183 elsif Ekind
(Ent
) = E_Incomplete_Type
then
4185 -- The attribute applies to the full view, set the entity of the
4186 -- attribute definition accordingly.
4188 Ent
:= Underlying_Type
(Ent
);
4190 Set_Entity
(Nam
, Ent
);
4193 U_Ent
:= Underlying_Type
(Ent
);
4196 -- Avoid cascaded error
4198 if Etype
(Nam
) = Any_Type
then
4201 -- Must be declared in current scope or in case of an aspect
4202 -- specification, must be visible in current scope.
4204 elsif Scope
(Ent
) /= Current_Scope
4206 not (From_Aspect_Specification
(N
)
4207 and then Scope_Within_Or_Same
(Current_Scope
, Scope
(Ent
)))
4209 Error_Msg_N
("entity must be declared in this scope", Nam
);
4212 -- Must not be a source renaming (we do have some cases where the
4213 -- expander generates a renaming, and those cases are OK, in such
4214 -- cases any attribute applies to the renamed object as well).
4216 elsif Is_Object
(Ent
)
4217 and then Present
(Renamed_Object
(Ent
))
4219 -- Case of renamed object from source, this is an error
4221 if Comes_From_Source
(Renamed_Object
(Ent
)) then
4222 Get_Name_String
(Chars
(N
));
4223 Error_Msg_Strlen
:= Name_Len
;
4224 Error_Msg_String
(1 .. Name_Len
) := Name_Buffer
(1 .. Name_Len
);
4226 ("~ clause not allowed for a renaming declaration "
4227 & "(RM 13.1(6))", Nam
);
4230 -- For the case of a compiler generated renaming, the attribute
4231 -- definition clause applies to the renamed object created by the
4232 -- expander. The easiest general way to handle this is to create a
4233 -- copy of the attribute definition clause for this object.
4235 elsif Is_Entity_Name
(Renamed_Object
(Ent
)) then
4237 Make_Attribute_Definition_Clause
(Loc
,
4239 New_Occurrence_Of
(Entity
(Renamed_Object
(Ent
)), Loc
),
4241 Expression
=> Duplicate_Subexpr
(Expression
(N
))));
4243 -- If the renamed object is not an entity, it must be a dereference
4244 -- of an unconstrained function call, and we must introduce a new
4245 -- declaration to capture the expression. This is needed in the case
4246 -- of 'Alignment, where the original declaration must be rewritten.
4250 (Nkind
(Renamed_Object
(Ent
)) = N_Explicit_Dereference
);
4254 -- If no underlying entity, use entity itself, applies to some
4255 -- previously detected error cases ???
4257 elsif No
(U_Ent
) then
4260 -- Cannot specify for a subtype (exception Object/Value_Size)
4262 elsif Is_Type
(U_Ent
)
4263 and then not Is_First_Subtype
(U_Ent
)
4264 and then Id
/= Attribute_Object_Size
4265 and then Id
/= Attribute_Value_Size
4266 and then not From_At_Mod
(N
)
4268 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
4272 Set_Entity
(N
, U_Ent
);
4273 Check_Restriction_No_Use_Of_Attribute
(N
);
4275 -- Switch on particular attribute
4283 -- Address attribute definition clause
4285 when Attribute_Address
=> Address
: begin
4287 -- A little error check, catch for X'Address use X'Address;
4289 if Nkind
(Nam
) = N_Identifier
4290 and then Nkind
(Expr
) = N_Attribute_Reference
4291 and then Attribute_Name
(Expr
) = Name_Address
4292 and then Nkind
(Prefix
(Expr
)) = N_Identifier
4293 and then Chars
(Nam
) = Chars
(Prefix
(Expr
))
4296 ("address for & is self-referencing", Prefix
(Expr
), Ent
);
4300 -- Not that special case, carry on with analysis of expression
4302 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
4304 -- Even when ignoring rep clauses we need to indicate that the
4305 -- entity has an address clause and thus it is legal to declare
4306 -- it imported. Freeze will get rid of the address clause later.
4308 if Ignore_Rep_Clauses
then
4309 if Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4310 Record_Rep_Item
(U_Ent
, N
);
4316 if Duplicate_Clause
then
4319 -- Case of address clause for subprogram
4321 elsif Is_Subprogram
(U_Ent
) then
4322 if Has_Homonym
(U_Ent
) then
4324 ("address clause cannot be given " &
4325 "for overloaded subprogram",
4330 -- For subprograms, all address clauses are permitted, and we
4331 -- mark the subprogram as having a deferred freeze so that Gigi
4332 -- will not elaborate it too soon.
4334 -- Above needs more comments, what is too soon about???
4336 Set_Has_Delayed_Freeze
(U_Ent
);
4338 -- Case of address clause for entry
4340 elsif Ekind
(U_Ent
) = E_Entry
then
4341 if Nkind
(Parent
(N
)) = N_Task_Body
then
4343 ("entry address must be specified in task spec", Nam
);
4347 -- For entries, we require a constant address
4349 Check_Constant_Address_Clause
(Expr
, U_Ent
);
4351 -- Special checks for task types
4353 if Is_Task_Type
(Scope
(U_Ent
))
4354 and then Comes_From_Source
(Scope
(U_Ent
))
4357 ("??entry address declared for entry in task type", N
);
4359 ("\??only one task can be declared of this type", N
);
4362 -- Entry address clauses are obsolescent
4364 Check_Restriction
(No_Obsolescent_Features
, N
);
4366 if Warn_On_Obsolescent_Feature
then
4368 ("?j?attaching interrupt to task entry is an " &
4369 "obsolescent feature (RM J.7.1)", N
);
4371 ("\?j?use interrupt procedure instead", N
);
4374 -- Case of an address clause for a controlled object which we
4375 -- consider to be erroneous.
4377 elsif Is_Controlled
(Etype
(U_Ent
))
4378 or else Has_Controlled_Component
(Etype
(U_Ent
))
4381 ("??controlled object& must not be overlaid", Nam
, U_Ent
);
4383 ("\??Program_Error will be raised at run time", Nam
);
4384 Insert_Action
(Declaration_Node
(U_Ent
),
4385 Make_Raise_Program_Error
(Loc
,
4386 Reason
=> PE_Overlaid_Controlled_Object
));
4389 -- Case of address clause for a (non-controlled) object
4391 elsif Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4393 Expr
: constant Node_Id
:= Expression
(N
);
4398 -- Exported variables cannot have an address clause, because
4399 -- this cancels the effect of the pragma Export.
4401 if Is_Exported
(U_Ent
) then
4403 ("cannot export object with address clause", Nam
);
4407 Find_Overlaid_Entity
(N
, O_Ent
, Off
);
4409 -- Overlaying controlled objects is erroneous
4412 and then (Has_Controlled_Component
(Etype
(O_Ent
))
4413 or else Is_Controlled
(Etype
(O_Ent
)))
4416 ("??cannot overlay with controlled object", Expr
);
4418 ("\??Program_Error will be raised at run time", Expr
);
4419 Insert_Action
(Declaration_Node
(U_Ent
),
4420 Make_Raise_Program_Error
(Loc
,
4421 Reason
=> PE_Overlaid_Controlled_Object
));
4424 elsif Present
(O_Ent
)
4425 and then Ekind
(U_Ent
) = E_Constant
4426 and then not Is_Constant_Object
(O_Ent
)
4428 Error_Msg_N
("??constant overlays a variable", Expr
);
4430 -- Imported variables can have an address clause, but then
4431 -- the import is pretty meaningless except to suppress
4432 -- initializations, so we do not need such variables to
4433 -- be statically allocated (and in fact it causes trouble
4434 -- if the address clause is a local value).
4436 elsif Is_Imported
(U_Ent
) then
4437 Set_Is_Statically_Allocated
(U_Ent
, False);
4440 -- We mark a possible modification of a variable with an
4441 -- address clause, since it is likely aliasing is occurring.
4443 Note_Possible_Modification
(Nam
, Sure
=> False);
4445 -- Here we are checking for explicit overlap of one variable
4446 -- by another, and if we find this then mark the overlapped
4447 -- variable as also being volatile to prevent unwanted
4448 -- optimizations. This is a significant pessimization so
4449 -- avoid it when there is an offset, i.e. when the object
4450 -- is composite; they cannot be optimized easily anyway.
4453 and then Is_Object
(O_Ent
)
4456 -- The following test is an expedient solution to what
4457 -- is really a problem in CodePeer. Suppressing the
4458 -- Set_Treat_As_Volatile call here prevents later
4459 -- generation (in some cases) of trees that CodePeer
4460 -- should, but currently does not, handle correctly.
4461 -- This test should probably be removed when CodePeer
4462 -- is improved, just because we want the tree CodePeer
4463 -- analyzes to match the tree for which we generate code
4464 -- as closely as is practical. ???
4466 and then not CodePeer_Mode
4468 -- ??? O_Ent might not be in current unit
4470 Set_Treat_As_Volatile
(O_Ent
);
4473 -- Legality checks on the address clause for initialized
4474 -- objects is deferred until the freeze point, because
4475 -- a subsequent pragma might indicate that the object
4476 -- is imported and thus not initialized. Also, the address
4477 -- clause might involve entities that have yet to be
4480 Set_Has_Delayed_Freeze
(U_Ent
);
4482 -- If an initialization call has been generated for this
4483 -- object, it needs to be deferred to after the freeze node
4484 -- we have just now added, otherwise GIGI will see a
4485 -- reference to the variable (as actual to the IP call)
4486 -- before its definition.
4489 Init_Call
: constant Node_Id
:=
4490 Remove_Init_Call
(U_Ent
, N
);
4493 if Present
(Init_Call
) then
4494 Append_Freeze_Action
(U_Ent
, Init_Call
);
4496 -- Reset Initialization_Statements pointer so that
4497 -- if there is a pragma Import further down, it can
4498 -- clear any default initialization.
4500 Set_Initialization_Statements
(U_Ent
, Init_Call
);
4504 if Is_Exported
(U_Ent
) then
4506 ("& cannot be exported if an address clause is given",
4509 ("\define and export a variable "
4510 & "that holds its address instead", Nam
);
4513 -- Entity has delayed freeze, so we will generate an
4514 -- alignment check at the freeze point unless suppressed.
4516 if not Range_Checks_Suppressed
(U_Ent
)
4517 and then not Alignment_Checks_Suppressed
(U_Ent
)
4519 Set_Check_Address_Alignment
(N
);
4522 -- Kill the size check code, since we are not allocating
4523 -- the variable, it is somewhere else.
4525 Kill_Size_Check_Code
(U_Ent
);
4527 -- If the address clause is of the form:
4529 -- for Y'Address use X'Address
4533 -- Const : constant Address := X'Address;
4535 -- for Y'Address use Const;
4537 -- then we make an entry in the table for checking the size
4538 -- and alignment of the overlaying variable. We defer this
4539 -- check till after code generation to take full advantage
4540 -- of the annotation done by the back end.
4542 -- If the entity has a generic type, the check will be
4543 -- performed in the instance if the actual type justifies
4544 -- it, and we do not insert the clause in the table to
4545 -- prevent spurious warnings.
4547 -- Note: we used to test Comes_From_Source and only give
4548 -- this warning for source entities, but we have removed
4549 -- this test. It really seems bogus to generate overlays
4550 -- that would trigger this warning in generated code.
4551 -- Furthermore, by removing the test, we handle the
4552 -- aspect case properly.
4554 if Address_Clause_Overlay_Warnings
4555 and then Present
(O_Ent
)
4556 and then Is_Object
(O_Ent
)
4558 if not Is_Generic_Type
(Etype
(U_Ent
)) then
4559 Address_Clause_Checks
.Append
((N
, U_Ent
, O_Ent
, Off
));
4562 -- If variable overlays a constant view, and we are
4563 -- warning on overlays, then mark the variable as
4564 -- overlaying a constant (we will give warnings later
4565 -- if this variable is assigned).
4567 if Is_Constant_Object
(O_Ent
)
4568 and then Ekind
(U_Ent
) = E_Variable
4570 Set_Overlays_Constant
(U_Ent
);
4575 -- Not a valid entity for an address clause
4578 Error_Msg_N
("address cannot be given for &", Nam
);
4586 -- Alignment attribute definition clause
4588 when Attribute_Alignment
=> Alignment
: declare
4589 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
4590 Max_Align
: constant Uint
:= UI_From_Int
(Maximum_Alignment
);
4595 if not Is_Type
(U_Ent
)
4596 and then Ekind
(U_Ent
) /= E_Variable
4597 and then Ekind
(U_Ent
) /= E_Constant
4599 Error_Msg_N
("alignment cannot be given for &", Nam
);
4601 elsif Duplicate_Clause
then
4604 elsif Align
/= No_Uint
then
4605 Set_Has_Alignment_Clause
(U_Ent
);
4607 -- Tagged type case, check for attempt to set alignment to a
4608 -- value greater than Max_Align, and reset if so.
4610 if Is_Tagged_Type
(U_Ent
) and then Align
> Max_Align
then
4612 ("alignment for & set to Maximum_Aligment??", Nam
);
4613 Set_Alignment
(U_Ent
, Max_Align
);
4618 Set_Alignment
(U_Ent
, Align
);
4621 -- For an array type, U_Ent is the first subtype. In that case,
4622 -- also set the alignment of the anonymous base type so that
4623 -- other subtypes (such as the itypes for aggregates of the
4624 -- type) also receive the expected alignment.
4626 if Is_Array_Type
(U_Ent
) then
4627 Set_Alignment
(Base_Type
(U_Ent
), Align
);
4636 -- Bit_Order attribute definition clause
4638 when Attribute_Bit_Order
=> Bit_Order
: declare
4640 if not Is_Record_Type
(U_Ent
) then
4642 ("Bit_Order can only be defined for record type", Nam
);
4644 elsif Duplicate_Clause
then
4648 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
4650 if Etype
(Expr
) = Any_Type
then
4653 elsif not Is_OK_Static_Expression
(Expr
) then
4654 Flag_Non_Static_Expr
4655 ("Bit_Order requires static expression!", Expr
);
4658 if (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
4659 Set_Reverse_Bit_Order
(Base_Type
(U_Ent
), True);
4665 --------------------
4666 -- Component_Size --
4667 --------------------
4669 -- Component_Size attribute definition clause
4671 when Attribute_Component_Size
=> Component_Size_Case
: declare
4672 Csize
: constant Uint
:= Static_Integer
(Expr
);
4676 New_Ctyp
: Entity_Id
;
4680 if not Is_Array_Type
(U_Ent
) then
4681 Error_Msg_N
("component size requires array type", Nam
);
4685 Btype
:= Base_Type
(U_Ent
);
4686 Ctyp
:= Component_Type
(Btype
);
4688 if Duplicate_Clause
then
4691 elsif Rep_Item_Too_Early
(Btype
, N
) then
4694 elsif Csize
/= No_Uint
then
4695 Check_Size
(Expr
, Ctyp
, Csize
, Biased
);
4697 -- For the biased case, build a declaration for a subtype that
4698 -- will be used to represent the biased subtype that reflects
4699 -- the biased representation of components. We need the subtype
4700 -- to get proper conversions on referencing elements of the
4701 -- array. Note: component size clauses are ignored in VM mode.
4703 if VM_Target
= No_VM
then
4706 Make_Defining_Identifier
(Loc
,
4708 New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
4711 Make_Subtype_Declaration
(Loc
,
4712 Defining_Identifier
=> New_Ctyp
,
4713 Subtype_Indication
=>
4714 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
4716 Set_Parent
(Decl
, N
);
4717 Analyze
(Decl
, Suppress
=> All_Checks
);
4719 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
4720 Set_Esize
(New_Ctyp
, Csize
);
4721 Set_RM_Size
(New_Ctyp
, Csize
);
4722 Init_Alignment
(New_Ctyp
);
4723 Set_Is_Itype
(New_Ctyp
, True);
4724 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
4726 Set_Component_Type
(Btype
, New_Ctyp
);
4727 Set_Biased
(New_Ctyp
, N
, "component size clause");
4730 Set_Component_Size
(Btype
, Csize
);
4732 -- For VM case, we ignore component size clauses
4735 -- Give a warning unless we are in GNAT mode, in which case
4736 -- the warning is suppressed since it is not useful.
4738 if not GNAT_Mode
then
4740 ("component size ignored in this configuration??", N
);
4744 -- Deal with warning on overridden size
4746 if Warn_On_Overridden_Size
4747 and then Has_Size_Clause
(Ctyp
)
4748 and then RM_Size
(Ctyp
) /= Csize
4751 ("component size overrides size clause for&?S?", N
, Ctyp
);
4754 Set_Has_Component_Size_Clause
(Btype
, True);
4755 Set_Has_Non_Standard_Rep
(Btype
, True);
4757 end Component_Size_Case
;
4759 -----------------------
4760 -- Constant_Indexing --
4761 -----------------------
4763 when Attribute_Constant_Indexing
=>
4764 Check_Indexing_Functions
;
4770 when Attribute_CPU
=> CPU
:
4772 -- CPU attribute definition clause not allowed except from aspect
4775 if From_Aspect_Specification
(N
) then
4776 if not Is_Task_Type
(U_Ent
) then
4777 Error_Msg_N
("CPU can only be defined for task", Nam
);
4779 elsif Duplicate_Clause
then
4783 -- The expression must be analyzed in the special manner
4784 -- described in "Handling of Default and Per-Object
4785 -- Expressions" in sem.ads.
4787 -- The visibility to the discriminants must be restored
4789 Push_Scope_And_Install_Discriminants
(U_Ent
);
4790 Preanalyze_Spec_Expression
(Expr
, RTE
(RE_CPU_Range
));
4791 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4793 if not Is_OK_Static_Expression
(Expr
) then
4794 Check_Restriction
(Static_Priorities
, Expr
);
4800 ("attribute& cannot be set with definition clause", N
);
4804 ----------------------
4805 -- Default_Iterator --
4806 ----------------------
4808 when Attribute_Default_Iterator
=> Default_Iterator
: declare
4813 if not Is_Tagged_Type
(U_Ent
) then
4815 ("aspect Default_Iterator applies to tagged type", Nam
);
4818 Check_Iterator_Functions
;
4822 if not Is_Entity_Name
(Expr
)
4823 or else Ekind
(Entity
(Expr
)) /= E_Function
4825 Error_Msg_N
("aspect Iterator must be a function", Expr
);
4827 Func
:= Entity
(Expr
);
4830 -- The type of the first parameter must be T, T'class, or a
4831 -- corresponding access type (5.5.1 (8/3)
4833 if No
(First_Formal
(Func
)) then
4836 Typ
:= Etype
(First_Formal
(Func
));
4840 or else Typ
= Class_Wide_Type
(U_Ent
)
4841 or else (Is_Access_Type
(Typ
)
4842 and then Designated_Type
(Typ
) = U_Ent
)
4843 or else (Is_Access_Type
(Typ
)
4844 and then Designated_Type
(Typ
) =
4845 Class_Wide_Type
(U_Ent
))
4851 ("Default Iterator must be a primitive of&", Func
, U_Ent
);
4853 end Default_Iterator
;
4855 ------------------------
4856 -- Dispatching_Domain --
4857 ------------------------
4859 when Attribute_Dispatching_Domain
=> Dispatching_Domain
:
4861 -- Dispatching_Domain attribute definition clause not allowed
4862 -- except from aspect specification.
4864 if From_Aspect_Specification
(N
) then
4865 if not Is_Task_Type
(U_Ent
) then
4867 ("Dispatching_Domain can only be defined for task", Nam
);
4869 elsif Duplicate_Clause
then
4873 -- The expression must be analyzed in the special manner
4874 -- described in "Handling of Default and Per-Object
4875 -- Expressions" in sem.ads.
4877 -- The visibility to the discriminants must be restored
4879 Push_Scope_And_Install_Discriminants
(U_Ent
);
4881 Preanalyze_Spec_Expression
4882 (Expr
, RTE
(RE_Dispatching_Domain
));
4884 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4889 ("attribute& cannot be set with definition clause", N
);
4891 end Dispatching_Domain
;
4897 when Attribute_External_Tag
=> External_Tag
:
4899 if not Is_Tagged_Type
(U_Ent
) then
4900 Error_Msg_N
("should be a tagged type", Nam
);
4903 if Duplicate_Clause
then
4907 Analyze_And_Resolve
(Expr
, Standard_String
);
4909 if not Is_OK_Static_Expression
(Expr
) then
4910 Flag_Non_Static_Expr
4911 ("static string required for tag name!", Nam
);
4914 if VM_Target
/= No_VM
then
4915 Error_Msg_Name_1
:= Attr
;
4917 ("% attribute unsupported in this configuration", Nam
);
4920 if not Is_Library_Level_Entity
(U_Ent
) then
4922 ("??non-unique external tag supplied for &", N
, U_Ent
);
4924 ("\??same external tag applies to all "
4925 & "subprogram calls", N
);
4927 ("\??corresponding internal tag cannot be obtained", N
);
4932 --------------------------
4933 -- Implicit_Dereference --
4934 --------------------------
4936 when Attribute_Implicit_Dereference
=>
4938 -- Legality checks already performed at the point of the type
4939 -- declaration, aspect is not delayed.
4947 when Attribute_Input
=>
4948 Analyze_Stream_TSS_Definition
(TSS_Stream_Input
);
4949 Set_Has_Specified_Stream_Input
(Ent
);
4951 ------------------------
4952 -- Interrupt_Priority --
4953 ------------------------
4955 when Attribute_Interrupt_Priority
=> Interrupt_Priority
:
4957 -- Interrupt_Priority attribute definition clause not allowed
4958 -- except from aspect specification.
4960 if From_Aspect_Specification
(N
) then
4961 if not Is_Concurrent_Type
(U_Ent
) then
4963 ("Interrupt_Priority can only be defined for task "
4964 & "and protected object", Nam
);
4966 elsif Duplicate_Clause
then
4970 -- The expression must be analyzed in the special manner
4971 -- described in "Handling of Default and Per-Object
4972 -- Expressions" in sem.ads.
4974 -- The visibility to the discriminants must be restored
4976 Push_Scope_And_Install_Discriminants
(U_Ent
);
4978 Preanalyze_Spec_Expression
4979 (Expr
, RTE
(RE_Interrupt_Priority
));
4981 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
4986 ("attribute& cannot be set with definition clause", N
);
4988 end Interrupt_Priority
;
4994 when Attribute_Iterable
=>
4997 if Nkind
(Expr
) /= N_Aggregate
then
4998 Error_Msg_N
("aspect Iterable must be an aggregate", Expr
);
5005 Assoc
:= First
(Component_Associations
(Expr
));
5006 while Present
(Assoc
) loop
5007 if not Is_Entity_Name
(Expression
(Assoc
)) then
5008 Error_Msg_N
("value must be a function", Assoc
);
5015 ----------------------
5016 -- Iterator_Element --
5017 ----------------------
5019 when Attribute_Iterator_Element
=>
5022 if not Is_Entity_Name
(Expr
)
5023 or else not Is_Type
(Entity
(Expr
))
5025 Error_Msg_N
("aspect Iterator_Element must be a type", Expr
);
5032 -- Machine radix attribute definition clause
5034 when Attribute_Machine_Radix
=> Machine_Radix
: declare
5035 Radix
: constant Uint
:= Static_Integer
(Expr
);
5038 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
5039 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
5041 elsif Duplicate_Clause
then
5044 elsif Radix
/= No_Uint
then
5045 Set_Has_Machine_Radix_Clause
(U_Ent
);
5046 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
5050 elsif Radix
= 10 then
5051 Set_Machine_Radix_10
(U_Ent
);
5053 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
5062 -- Object_Size attribute definition clause
5064 when Attribute_Object_Size
=> Object_Size
: declare
5065 Size
: constant Uint
:= Static_Integer
(Expr
);
5068 pragma Warnings
(Off
, Biased
);
5071 if not Is_Type
(U_Ent
) then
5072 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
5074 elsif Duplicate_Clause
then
5078 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5080 if Is_Scalar_Type
(U_Ent
) then
5081 if Size
/= 8 and then Size
/= 16 and then Size
/= 32
5082 and then UI_Mod
(Size
, 64) /= 0
5085 ("Object_Size must be 8, 16, 32, or multiple of 64",
5089 elsif Size
mod 8 /= 0 then
5090 Error_Msg_N
("Object_Size must be a multiple of 8", Expr
);
5093 Set_Esize
(U_Ent
, Size
);
5094 Set_Has_Object_Size_Clause
(U_Ent
);
5095 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5103 when Attribute_Output
=>
5104 Analyze_Stream_TSS_Definition
(TSS_Stream_Output
);
5105 Set_Has_Specified_Stream_Output
(Ent
);
5111 when Attribute_Priority
=> Priority
:
5113 -- Priority attribute definition clause not allowed except from
5114 -- aspect specification.
5116 if From_Aspect_Specification
(N
) then
5117 if not (Is_Concurrent_Type
(U_Ent
)
5118 or else Ekind
(U_Ent
) = E_Procedure
)
5121 ("Priority can only be defined for task and protected "
5124 elsif Duplicate_Clause
then
5128 -- The expression must be analyzed in the special manner
5129 -- described in "Handling of Default and Per-Object
5130 -- Expressions" in sem.ads.
5132 -- The visibility to the discriminants must be restored
5134 Push_Scope_And_Install_Discriminants
(U_Ent
);
5135 Preanalyze_Spec_Expression
(Expr
, Standard_Integer
);
5136 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5138 if not Is_OK_Static_Expression
(Expr
) then
5139 Check_Restriction
(Static_Priorities
, Expr
);
5145 ("attribute& cannot be set with definition clause", N
);
5153 when Attribute_Read
=>
5154 Analyze_Stream_TSS_Definition
(TSS_Stream_Read
);
5155 Set_Has_Specified_Stream_Read
(Ent
);
5157 --------------------------
5158 -- Scalar_Storage_Order --
5159 --------------------------
5161 -- Scalar_Storage_Order attribute definition clause
5163 when Attribute_Scalar_Storage_Order
=> Scalar_Storage_Order
: declare
5165 if not (Is_Record_Type
(U_Ent
) or else Is_Array_Type
(U_Ent
)) then
5167 ("Scalar_Storage_Order can only be defined for "
5168 & "record or array type", Nam
);
5170 elsif Duplicate_Clause
then
5174 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5176 if Etype
(Expr
) = Any_Type
then
5179 elsif not Is_OK_Static_Expression
(Expr
) then
5180 Flag_Non_Static_Expr
5181 ("Scalar_Storage_Order requires static expression!", Expr
);
5183 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5185 -- Here for the case of a non-default (i.e. non-confirming)
5186 -- Scalar_Storage_Order attribute definition.
5188 if Support_Nondefault_SSO_On_Target
then
5189 Set_Reverse_Storage_Order
(Base_Type
(U_Ent
), True);
5192 ("non-default Scalar_Storage_Order "
5193 & "not supported on target", Expr
);
5197 -- Clear SSO default indications since explicit setting of the
5198 -- order overrides the defaults.
5200 Set_SSO_Set_Low_By_Default
(Base_Type
(U_Ent
), False);
5201 Set_SSO_Set_High_By_Default
(Base_Type
(U_Ent
), False);
5203 end Scalar_Storage_Order
;
5209 -- Size attribute definition clause
5211 when Attribute_Size
=> Size
: declare
5212 Size
: constant Uint
:= Static_Integer
(Expr
);
5219 if Duplicate_Clause
then
5222 elsif not Is_Type
(U_Ent
)
5223 and then Ekind
(U_Ent
) /= E_Variable
5224 and then Ekind
(U_Ent
) /= E_Constant
5226 Error_Msg_N
("size cannot be given for &", Nam
);
5228 elsif Is_Array_Type
(U_Ent
)
5229 and then not Is_Constrained
(U_Ent
)
5232 ("size cannot be given for unconstrained array", Nam
);
5234 elsif Size
/= No_Uint
then
5235 if VM_Target
/= No_VM
and then not GNAT_Mode
then
5237 -- Size clause is not handled properly on VM targets.
5238 -- Display a warning unless we are in GNAT mode, in which
5239 -- case this is useless.
5242 ("size clauses are ignored in this configuration??", N
);
5245 if Is_Type
(U_Ent
) then
5248 Etyp
:= Etype
(U_Ent
);
5251 -- Check size, note that Gigi is in charge of checking that the
5252 -- size of an array or record type is OK. Also we do not check
5253 -- the size in the ordinary fixed-point case, since it is too
5254 -- early to do so (there may be subsequent small clause that
5255 -- affects the size). We can check the size if a small clause
5256 -- has already been given.
5258 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
5259 or else Has_Small_Clause
(U_Ent
)
5261 Check_Size
(Expr
, Etyp
, Size
, Biased
);
5262 Set_Biased
(U_Ent
, N
, "size clause", Biased
);
5265 -- For types set RM_Size and Esize if possible
5267 if Is_Type
(U_Ent
) then
5268 Set_RM_Size
(U_Ent
, Size
);
5270 -- For elementary types, increase Object_Size to power of 2,
5271 -- but not less than a storage unit in any case (normally
5272 -- this means it will be byte addressable).
5274 -- For all other types, nothing else to do, we leave Esize
5275 -- (object size) unset, the back end will set it from the
5276 -- size and alignment in an appropriate manner.
5278 -- In both cases, we check whether the alignment must be
5279 -- reset in the wake of the size change.
5281 if Is_Elementary_Type
(U_Ent
) then
5282 if Size
<= System_Storage_Unit
then
5283 Init_Esize
(U_Ent
, System_Storage_Unit
);
5284 elsif Size
<= 16 then
5285 Init_Esize
(U_Ent
, 16);
5286 elsif Size
<= 32 then
5287 Init_Esize
(U_Ent
, 32);
5289 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
5292 Alignment_Check_For_Size_Change
(U_Ent
, Esize
(U_Ent
));
5294 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5297 -- For objects, set Esize only
5300 if Is_Elementary_Type
(Etyp
) then
5301 if Size
/= System_Storage_Unit
5303 Size
/= System_Storage_Unit
* 2
5305 Size
/= System_Storage_Unit
* 4
5307 Size
/= System_Storage_Unit
* 8
5309 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5310 Error_Msg_Uint_2
:= Error_Msg_Uint_1
* 8;
5312 ("size for primitive object must be a power of 2"
5313 & " in the range ^-^", N
);
5317 Set_Esize
(U_Ent
, Size
);
5320 Set_Has_Size_Clause
(U_Ent
);
5328 -- Small attribute definition clause
5330 when Attribute_Small
=> Small
: declare
5331 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
5335 Analyze_And_Resolve
(Expr
, Any_Real
);
5337 if Etype
(Expr
) = Any_Type
then
5340 elsif not Is_OK_Static_Expression
(Expr
) then
5341 Flag_Non_Static_Expr
5342 ("small requires static expression!", Expr
);
5346 Small
:= Expr_Value_R
(Expr
);
5348 if Small
<= Ureal_0
then
5349 Error_Msg_N
("small value must be greater than zero", Expr
);
5355 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
5357 ("small requires an ordinary fixed point type", Nam
);
5359 elsif Has_Small_Clause
(U_Ent
) then
5360 Error_Msg_N
("small already given for &", Nam
);
5362 elsif Small
> Delta_Value
(U_Ent
) then
5364 ("small value must not be greater than delta value", Nam
);
5367 Set_Small_Value
(U_Ent
, Small
);
5368 Set_Small_Value
(Implicit_Base
, Small
);
5369 Set_Has_Small_Clause
(U_Ent
);
5370 Set_Has_Small_Clause
(Implicit_Base
);
5371 Set_Has_Non_Standard_Rep
(Implicit_Base
);
5379 -- Storage_Pool attribute definition clause
5381 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool
=> declare
5386 if Ekind
(U_Ent
) = E_Access_Subprogram_Type
then
5388 ("storage pool cannot be given for access-to-subprogram type",
5393 Ekind_In
(U_Ent
, E_Access_Type
, E_General_Access_Type
)
5396 ("storage pool can only be given for access types", Nam
);
5399 elsif Is_Derived_Type
(U_Ent
) then
5401 ("storage pool cannot be given for a derived access type",
5404 elsif Duplicate_Clause
then
5407 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
5408 Error_Msg_N
("storage pool already given for &", Nam
);
5412 -- Check for Storage_Size previously given
5415 SS
: constant Node_Id
:=
5416 Get_Attribute_Definition_Clause
5417 (U_Ent
, Attribute_Storage_Size
);
5419 if Present
(SS
) then
5420 Check_Pool_Size_Clash
(U_Ent
, N
, SS
);
5424 -- Storage_Pool case
5426 if Id
= Attribute_Storage_Pool
then
5428 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
5430 -- In the Simple_Storage_Pool case, we allow a variable of any
5431 -- simple storage pool type, so we Resolve without imposing an
5435 Analyze_And_Resolve
(Expr
);
5437 if not Present
(Get_Rep_Pragma
5438 (Etype
(Expr
), Name_Simple_Storage_Pool_Type
))
5441 ("expression must be of a simple storage pool type", Expr
);
5445 if not Denotes_Variable
(Expr
) then
5446 Error_Msg_N
("storage pool must be a variable", Expr
);
5450 if Nkind
(Expr
) = N_Type_Conversion
then
5451 T
:= Etype
(Expression
(Expr
));
5456 -- The Stack_Bounded_Pool is used internally for implementing
5457 -- access types with a Storage_Size. Since it only work properly
5458 -- when used on one specific type, we need to check that it is not
5459 -- hijacked improperly:
5461 -- type T is access Integer;
5462 -- for T'Storage_Size use n;
5463 -- type Q is access Float;
5464 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5466 if RTE_Available
(RE_Stack_Bounded_Pool
)
5467 and then Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
)
5469 Error_Msg_N
("non-shareable internal Pool", Expr
);
5473 -- If the argument is a name that is not an entity name, then
5474 -- we construct a renaming operation to define an entity of
5475 -- type storage pool.
5477 if not Is_Entity_Name
(Expr
)
5478 and then Is_Object_Reference
(Expr
)
5480 Pool
:= Make_Temporary
(Loc
, 'P', Expr
);
5483 Rnode
: constant Node_Id
:=
5484 Make_Object_Renaming_Declaration
(Loc
,
5485 Defining_Identifier
=> Pool
,
5487 New_Occurrence_Of
(Etype
(Expr
), Loc
),
5491 -- If the attribute definition clause comes from an aspect
5492 -- clause, then insert the renaming before the associated
5493 -- entity's declaration, since the attribute clause has
5494 -- not yet been appended to the declaration list.
5496 if From_Aspect_Specification
(N
) then
5497 Insert_Before
(Parent
(Entity
(N
)), Rnode
);
5499 Insert_Before
(N
, Rnode
);
5503 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5506 elsif Is_Entity_Name
(Expr
) then
5507 Pool
:= Entity
(Expr
);
5509 -- If pool is a renamed object, get original one. This can
5510 -- happen with an explicit renaming, and within instances.
5512 while Present
(Renamed_Object
(Pool
))
5513 and then Is_Entity_Name
(Renamed_Object
(Pool
))
5515 Pool
:= Entity
(Renamed_Object
(Pool
));
5518 if Present
(Renamed_Object
(Pool
))
5519 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
5520 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
5522 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
5525 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5527 elsif Nkind
(Expr
) = N_Type_Conversion
5528 and then Is_Entity_Name
(Expression
(Expr
))
5529 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
5531 Pool
:= Entity
(Expression
(Expr
));
5532 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
5535 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
5544 -- Storage_Size attribute definition clause
5546 when Attribute_Storage_Size
=> Storage_Size
: declare
5547 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
5550 if Is_Task_Type
(U_Ent
) then
5552 -- Check obsolescent (but never obsolescent if from aspect)
5554 if not From_Aspect_Specification
(N
) then
5555 Check_Restriction
(No_Obsolescent_Features
, N
);
5557 if Warn_On_Obsolescent_Feature
then
5559 ("?j?storage size clause for task is an " &
5560 "obsolescent feature (RM J.9)", N
);
5561 Error_Msg_N
("\?j?use Storage_Size pragma instead", N
);
5568 if not Is_Access_Type
(U_Ent
)
5569 and then Ekind
(U_Ent
) /= E_Task_Type
5571 Error_Msg_N
("storage size cannot be given for &", Nam
);
5573 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
5575 ("storage size cannot be given for a derived access type",
5578 elsif Duplicate_Clause
then
5582 Analyze_And_Resolve
(Expr
, Any_Integer
);
5584 if Is_Access_Type
(U_Ent
) then
5586 -- Check for Storage_Pool previously given
5589 SP
: constant Node_Id
:=
5590 Get_Attribute_Definition_Clause
5591 (U_Ent
, Attribute_Storage_Pool
);
5594 if Present
(SP
) then
5595 Check_Pool_Size_Clash
(U_Ent
, SP
, N
);
5599 -- Special case of for x'Storage_Size use 0
5601 if Is_OK_Static_Expression
(Expr
)
5602 and then Expr_Value
(Expr
) = 0
5604 Set_No_Pool_Assigned
(Btype
);
5608 Set_Has_Storage_Size_Clause
(Btype
);
5616 when Attribute_Stream_Size
=> Stream_Size
: declare
5617 Size
: constant Uint
:= Static_Integer
(Expr
);
5620 if Ada_Version
<= Ada_95
then
5621 Check_Restriction
(No_Implementation_Attributes
, N
);
5624 if Duplicate_Clause
then
5627 elsif Is_Elementary_Type
(U_Ent
) then
5628 if Size
/= System_Storage_Unit
5630 Size
/= System_Storage_Unit
* 2
5632 Size
/= System_Storage_Unit
* 4
5634 Size
/= System_Storage_Unit
* 8
5636 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5638 ("stream size for elementary type must be a"
5639 & " power of 2 and at least ^", N
);
5641 elsif RM_Size
(U_Ent
) > Size
then
5642 Error_Msg_Uint_1
:= RM_Size
(U_Ent
);
5644 ("stream size for elementary type must be a"
5645 & " power of 2 and at least ^", N
);
5648 Set_Has_Stream_Size_Clause
(U_Ent
);
5651 Error_Msg_N
("Stream_Size cannot be given for &", Nam
);
5659 -- Value_Size attribute definition clause
5661 when Attribute_Value_Size
=> Value_Size
: declare
5662 Size
: constant Uint
:= Static_Integer
(Expr
);
5666 if not Is_Type
(U_Ent
) then
5667 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
5669 elsif Duplicate_Clause
then
5672 elsif Is_Array_Type
(U_Ent
)
5673 and then not Is_Constrained
(U_Ent
)
5676 ("Value_Size cannot be given for unconstrained array", Nam
);
5679 if Is_Elementary_Type
(U_Ent
) then
5680 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5681 Set_Biased
(U_Ent
, N
, "value size clause", Biased
);
5684 Set_RM_Size
(U_Ent
, Size
);
5688 -----------------------
5689 -- Variable_Indexing --
5690 -----------------------
5692 when Attribute_Variable_Indexing
=>
5693 Check_Indexing_Functions
;
5699 when Attribute_Write
=>
5700 Analyze_Stream_TSS_Definition
(TSS_Stream_Write
);
5701 Set_Has_Specified_Stream_Write
(Ent
);
5703 -- All other attributes cannot be set
5707 ("attribute& cannot be set with definition clause", N
);
5710 -- The test for the type being frozen must be performed after any
5711 -- expression the clause has been analyzed since the expression itself
5712 -- might cause freezing that makes the clause illegal.
5714 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
5717 end Analyze_Attribute_Definition_Clause
;
5719 ----------------------------
5720 -- Analyze_Code_Statement --
5721 ----------------------------
5723 procedure Analyze_Code_Statement
(N
: Node_Id
) is
5724 HSS
: constant Node_Id
:= Parent
(N
);
5725 SBody
: constant Node_Id
:= Parent
(HSS
);
5726 Subp
: constant Entity_Id
:= Current_Scope
;
5733 -- Analyze and check we get right type, note that this implements the
5734 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5735 -- is the only way that Asm_Insn could possibly be visible.
5737 Analyze_And_Resolve
(Expression
(N
));
5739 if Etype
(Expression
(N
)) = Any_Type
then
5741 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
5742 Error_Msg_N
("incorrect type for code statement", N
);
5746 Check_Code_Statement
(N
);
5748 -- Make sure we appear in the handled statement sequence of a
5749 -- subprogram (RM 13.8(3)).
5751 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
5752 or else Nkind
(SBody
) /= N_Subprogram_Body
5755 ("code statement can only appear in body of subprogram", N
);
5759 -- Do remaining checks (RM 13.8(3)) if not already done
5761 if not Is_Machine_Code_Subprogram
(Subp
) then
5762 Set_Is_Machine_Code_Subprogram
(Subp
);
5764 -- No exception handlers allowed
5766 if Present
(Exception_Handlers
(HSS
)) then
5768 ("exception handlers not permitted in machine code subprogram",
5769 First
(Exception_Handlers
(HSS
)));
5772 -- No declarations other than use clauses and pragmas (we allow
5773 -- certain internally generated declarations as well).
5775 Decl
:= First
(Declarations
(SBody
));
5776 while Present
(Decl
) loop
5777 DeclO
:= Original_Node
(Decl
);
5778 if Comes_From_Source
(DeclO
)
5779 and not Nkind_In
(DeclO
, N_Pragma
,
5780 N_Use_Package_Clause
,
5782 N_Implicit_Label_Declaration
)
5785 ("this declaration not allowed in machine code subprogram",
5792 -- No statements other than code statements, pragmas, and labels.
5793 -- Again we allow certain internally generated statements.
5795 -- In Ada 2012, qualified expressions are names, and the code
5796 -- statement is initially parsed as a procedure call.
5798 Stmt
:= First
(Statements
(HSS
));
5799 while Present
(Stmt
) loop
5800 StmtO
:= Original_Node
(Stmt
);
5802 -- A procedure call transformed into a code statement is OK.
5804 if Ada_Version
>= Ada_2012
5805 and then Nkind
(StmtO
) = N_Procedure_Call_Statement
5806 and then Nkind
(Name
(StmtO
)) = N_Qualified_Expression
5810 elsif Comes_From_Source
(StmtO
)
5811 and then not Nkind_In
(StmtO
, N_Pragma
,
5816 ("this statement is not allowed in machine code subprogram",
5823 end Analyze_Code_Statement
;
5825 -----------------------------------------------
5826 -- Analyze_Enumeration_Representation_Clause --
5827 -----------------------------------------------
5829 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
5830 Ident
: constant Node_Id
:= Identifier
(N
);
5831 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
5832 Enumtype
: Entity_Id
;
5839 Err
: Boolean := False;
5840 -- Set True to avoid cascade errors and crashes on incorrect source code
5842 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
5843 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
5844 -- Allowed range of universal integer (= allowed range of enum lit vals)
5848 -- Minimum and maximum values of entries
5851 -- Pointer to node for literal providing max value
5854 if Ignore_Rep_Clauses
then
5855 Kill_Rep_Clause
(N
);
5859 -- Ignore enumeration rep clauses by default in CodePeer mode,
5860 -- unless -gnatd.I is specified, as a work around for potential false
5861 -- positive messages.
5863 if CodePeer_Mode
and not Debug_Flag_Dot_II
then
5867 -- First some basic error checks
5870 Enumtype
:= Entity
(Ident
);
5872 if Enumtype
= Any_Type
5873 or else Rep_Item_Too_Early
(Enumtype
, N
)
5877 Enumtype
:= Underlying_Type
(Enumtype
);
5880 if not Is_Enumeration_Type
(Enumtype
) then
5882 ("enumeration type required, found}",
5883 Ident
, First_Subtype
(Enumtype
));
5887 -- Ignore rep clause on generic actual type. This will already have
5888 -- been flagged on the template as an error, and this is the safest
5889 -- way to ensure we don't get a junk cascaded message in the instance.
5891 if Is_Generic_Actual_Type
(Enumtype
) then
5894 -- Type must be in current scope
5896 elsif Scope
(Enumtype
) /= Current_Scope
then
5897 Error_Msg_N
("type must be declared in this scope", Ident
);
5900 -- Type must be a first subtype
5902 elsif not Is_First_Subtype
(Enumtype
) then
5903 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
5906 -- Ignore duplicate rep clause
5908 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
5909 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
5912 -- Don't allow rep clause for standard [wide_[wide_]]character
5914 elsif Is_Standard_Character_Type
(Enumtype
) then
5915 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
5918 -- Check that the expression is a proper aggregate (no parentheses)
5920 elsif Paren_Count
(Aggr
) /= 0 then
5922 ("extra parentheses surrounding aggregate not allowed",
5926 -- All tests passed, so set rep clause in place
5929 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
5930 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
5933 -- Now we process the aggregate. Note that we don't use the normal
5934 -- aggregate code for this purpose, because we don't want any of the
5935 -- normal expansion activities, and a number of special semantic
5936 -- rules apply (including the component type being any integer type)
5938 Elit
:= First_Literal
(Enumtype
);
5940 -- First the positional entries if any
5942 if Present
(Expressions
(Aggr
)) then
5943 Expr
:= First
(Expressions
(Aggr
));
5944 while Present
(Expr
) loop
5946 Error_Msg_N
("too many entries in aggregate", Expr
);
5950 Val
:= Static_Integer
(Expr
);
5952 -- Err signals that we found some incorrect entries processing
5953 -- the list. The final checks for completeness and ordering are
5954 -- skipped in this case.
5956 if Val
= No_Uint
then
5959 elsif Val
< Lo
or else Hi
< Val
then
5960 Error_Msg_N
("value outside permitted range", Expr
);
5964 Set_Enumeration_Rep
(Elit
, Val
);
5965 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
5971 -- Now process the named entries if present
5973 if Present
(Component_Associations
(Aggr
)) then
5974 Assoc
:= First
(Component_Associations
(Aggr
));
5975 while Present
(Assoc
) loop
5976 Choice
:= First
(Choices
(Assoc
));
5978 if Present
(Next
(Choice
)) then
5980 ("multiple choice not allowed here", Next
(Choice
));
5984 if Nkind
(Choice
) = N_Others_Choice
then
5985 Error_Msg_N
("others choice not allowed here", Choice
);
5988 elsif Nkind
(Choice
) = N_Range
then
5990 -- ??? should allow zero/one element range here
5992 Error_Msg_N
("range not allowed here", Choice
);
5996 Analyze_And_Resolve
(Choice
, Enumtype
);
5998 if Error_Posted
(Choice
) then
6003 if Is_Entity_Name
(Choice
)
6004 and then Is_Type
(Entity
(Choice
))
6006 Error_Msg_N
("subtype name not allowed here", Choice
);
6009 -- ??? should allow static subtype with zero/one entry
6011 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
6012 if not Is_OK_Static_Expression
(Choice
) then
6013 Flag_Non_Static_Expr
6014 ("non-static expression used for choice!", Choice
);
6018 Elit
:= Expr_Value_E
(Choice
);
6020 if Present
(Enumeration_Rep_Expr
(Elit
)) then
6022 Sloc
(Enumeration_Rep_Expr
(Elit
));
6024 ("representation for& previously given#",
6029 Set_Enumeration_Rep_Expr
(Elit
, Expression
(Assoc
));
6031 Expr
:= Expression
(Assoc
);
6032 Val
:= Static_Integer
(Expr
);
6034 if Val
= No_Uint
then
6037 elsif Val
< Lo
or else Hi
< Val
then
6038 Error_Msg_N
("value outside permitted range", Expr
);
6042 Set_Enumeration_Rep
(Elit
, Val
);
6052 -- Aggregate is fully processed. Now we check that a full set of
6053 -- representations was given, and that they are in range and in order.
6054 -- These checks are only done if no other errors occurred.
6060 Elit
:= First_Literal
(Enumtype
);
6061 while Present
(Elit
) loop
6062 if No
(Enumeration_Rep_Expr
(Elit
)) then
6063 Error_Msg_NE
("missing representation for&!", N
, Elit
);
6066 Val
:= Enumeration_Rep
(Elit
);
6068 if Min
= No_Uint
then
6072 if Val
/= No_Uint
then
6073 if Max
/= No_Uint
and then Val
<= Max
then
6075 ("enumeration value for& not ordered!",
6076 Enumeration_Rep_Expr
(Elit
), Elit
);
6079 Max_Node
:= Enumeration_Rep_Expr
(Elit
);
6083 -- If there is at least one literal whose representation is not
6084 -- equal to the Pos value, then note that this enumeration type
6085 -- has a non-standard representation.
6087 if Val
/= Enumeration_Pos
(Elit
) then
6088 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
6095 -- Now set proper size information
6098 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
6101 if Has_Size_Clause
(Enumtype
) then
6103 -- All OK, if size is OK now
6105 if RM_Size
(Enumtype
) >= Minsize
then
6109 -- Try if we can get by with biasing
6112 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
6114 -- Error message if even biasing does not work
6116 if RM_Size
(Enumtype
) < Minsize
then
6117 Error_Msg_Uint_1
:= RM_Size
(Enumtype
);
6118 Error_Msg_Uint_2
:= Max
;
6120 ("previously given size (^) is too small "
6121 & "for this value (^)", Max_Node
);
6123 -- If biasing worked, indicate that we now have biased rep
6127 (Enumtype
, Size_Clause
(Enumtype
), "size clause");
6132 Set_RM_Size
(Enumtype
, Minsize
);
6133 Set_Enum_Esize
(Enumtype
);
6136 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
6137 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
6138 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
6142 -- We repeat the too late test in case it froze itself
6144 if Rep_Item_Too_Late
(Enumtype
, N
) then
6147 end Analyze_Enumeration_Representation_Clause
;
6149 ----------------------------
6150 -- Analyze_Free_Statement --
6151 ----------------------------
6153 procedure Analyze_Free_Statement
(N
: Node_Id
) is
6155 Analyze
(Expression
(N
));
6156 end Analyze_Free_Statement
;
6158 ---------------------------
6159 -- Analyze_Freeze_Entity --
6160 ---------------------------
6162 procedure Analyze_Freeze_Entity
(N
: Node_Id
) is
6164 Freeze_Entity_Checks
(N
);
6165 end Analyze_Freeze_Entity
;
6167 -----------------------------------
6168 -- Analyze_Freeze_Generic_Entity --
6169 -----------------------------------
6171 procedure Analyze_Freeze_Generic_Entity
(N
: Node_Id
) is
6173 Freeze_Entity_Checks
(N
);
6174 end Analyze_Freeze_Generic_Entity
;
6176 ------------------------------------------
6177 -- Analyze_Record_Representation_Clause --
6178 ------------------------------------------
6180 -- Note: we check as much as we can here, but we can't do any checks
6181 -- based on the position values (e.g. overlap checks) until freeze time
6182 -- because especially in Ada 2005 (machine scalar mode), the processing
6183 -- for non-standard bit order can substantially change the positions.
6184 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6185 -- for the remainder of this processing.
6187 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
6188 Ident
: constant Node_Id
:= Identifier
(N
);
6193 Hbit
: Uint
:= Uint_0
;
6197 Rectype
: Entity_Id
;
6200 function Is_Inherited
(Comp
: Entity_Id
) return Boolean;
6201 -- True if Comp is an inherited component in a record extension
6207 function Is_Inherited
(Comp
: Entity_Id
) return Boolean is
6208 Comp_Base
: Entity_Id
;
6211 if Ekind
(Rectype
) = E_Record_Subtype
then
6212 Comp_Base
:= Original_Record_Component
(Comp
);
6217 return Comp_Base
/= Original_Record_Component
(Comp_Base
);
6222 Is_Record_Extension
: Boolean;
6223 -- True if Rectype is a record extension
6225 CR_Pragma
: Node_Id
:= Empty
;
6226 -- Points to N_Pragma node if Complete_Representation pragma present
6228 -- Start of processing for Analyze_Record_Representation_Clause
6231 if Ignore_Rep_Clauses
then
6232 Kill_Rep_Clause
(N
);
6237 Rectype
:= Entity
(Ident
);
6239 if Rectype
= Any_Type
or else Rep_Item_Too_Early
(Rectype
, N
) then
6242 Rectype
:= Underlying_Type
(Rectype
);
6245 -- First some basic error checks
6247 if not Is_Record_Type
(Rectype
) then
6249 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
6252 elsif Scope
(Rectype
) /= Current_Scope
then
6253 Error_Msg_N
("type must be declared in this scope", N
);
6256 elsif not Is_First_Subtype
(Rectype
) then
6257 Error_Msg_N
("cannot give record rep clause for subtype", N
);
6260 elsif Has_Record_Rep_Clause
(Rectype
) then
6261 Error_Msg_N
("duplicate record rep clause ignored", N
);
6264 elsif Rep_Item_Too_Late
(Rectype
, N
) then
6268 -- We know we have a first subtype, now possibly go the the anonymous
6269 -- base type to determine whether Rectype is a record extension.
6271 Recdef
:= Type_Definition
(Declaration_Node
(Base_Type
(Rectype
)));
6272 Is_Record_Extension
:=
6273 Nkind
(Recdef
) = N_Derived_Type_Definition
6274 and then Present
(Record_Extension_Part
(Recdef
));
6276 if Present
(Mod_Clause
(N
)) then
6278 Loc
: constant Source_Ptr
:= Sloc
(N
);
6279 M
: constant Node_Id
:= Mod_Clause
(N
);
6280 P
: constant List_Id
:= Pragmas_Before
(M
);
6284 pragma Warnings
(Off
, Mod_Val
);
6287 Check_Restriction
(No_Obsolescent_Features
, Mod_Clause
(N
));
6289 if Warn_On_Obsolescent_Feature
then
6291 ("?j?mod clause is an obsolescent feature (RM J.8)", N
);
6293 ("\?j?use alignment attribute definition clause instead", N
);
6300 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6301 -- the Mod clause into an alignment clause anyway, so that the
6302 -- back-end can compute and back-annotate properly the size and
6303 -- alignment of types that may include this record.
6305 -- This seems dubious, this destroys the source tree in a manner
6306 -- not detectable by ASIS ???
6308 if Operating_Mode
= Check_Semantics
and then ASIS_Mode
then
6310 Make_Attribute_Definition_Clause
(Loc
,
6311 Name
=> New_Occurrence_Of
(Base_Type
(Rectype
), Loc
),
6312 Chars
=> Name_Alignment
,
6313 Expression
=> Relocate_Node
(Expression
(M
)));
6315 Set_From_At_Mod
(AtM_Nod
);
6316 Insert_After
(N
, AtM_Nod
);
6317 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
6318 Set_Mod_Clause
(N
, Empty
);
6321 -- Get the alignment value to perform error checking
6323 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
6328 -- For untagged types, clear any existing component clauses for the
6329 -- type. If the type is derived, this is what allows us to override
6330 -- a rep clause for the parent. For type extensions, the representation
6331 -- of the inherited components is inherited, so we want to keep previous
6332 -- component clauses for completeness.
6334 if not Is_Tagged_Type
(Rectype
) then
6335 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6336 while Present
(Comp
) loop
6337 Set_Component_Clause
(Comp
, Empty
);
6338 Next_Component_Or_Discriminant
(Comp
);
6342 -- All done if no component clauses
6344 CC
:= First
(Component_Clauses
(N
));
6350 -- A representation like this applies to the base type
6352 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
6353 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
6354 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
6356 -- Process the component clauses
6358 while Present
(CC
) loop
6362 if Nkind
(CC
) = N_Pragma
then
6365 -- The only pragma of interest is Complete_Representation
6367 if Pragma_Name
(CC
) = Name_Complete_Representation
then
6371 -- Processing for real component clause
6374 Posit
:= Static_Integer
(Position
(CC
));
6375 Fbit
:= Static_Integer
(First_Bit
(CC
));
6376 Lbit
:= Static_Integer
(Last_Bit
(CC
));
6379 and then Fbit
/= No_Uint
6380 and then Lbit
/= No_Uint
6384 ("position cannot be negative", Position
(CC
));
6388 ("first bit cannot be negative", First_Bit
(CC
));
6390 -- The Last_Bit specified in a component clause must not be
6391 -- less than the First_Bit minus one (RM-13.5.1(10)).
6393 elsif Lbit
< Fbit
- 1 then
6395 ("last bit cannot be less than first bit minus one",
6398 -- Values look OK, so find the corresponding record component
6399 -- Even though the syntax allows an attribute reference for
6400 -- implementation-defined components, GNAT does not allow the
6401 -- tag to get an explicit position.
6403 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
6404 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
6405 Error_Msg_N
("position of tag cannot be specified", CC
);
6407 Error_Msg_N
("illegal component name", CC
);
6411 Comp
:= First_Entity
(Rectype
);
6412 while Present
(Comp
) loop
6413 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
6419 -- Maybe component of base type that is absent from
6420 -- statically constrained first subtype.
6422 Comp
:= First_Entity
(Base_Type
(Rectype
));
6423 while Present
(Comp
) loop
6424 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
6431 ("component clause is for non-existent field", CC
);
6433 -- Ada 2012 (AI05-0026): Any name that denotes a
6434 -- discriminant of an object of an unchecked union type
6435 -- shall not occur within a record_representation_clause.
6437 -- The general restriction of using record rep clauses on
6438 -- Unchecked_Union types has now been lifted. Since it is
6439 -- possible to introduce a record rep clause which mentions
6440 -- the discriminant of an Unchecked_Union in non-Ada 2012
6441 -- code, this check is applied to all versions of the
6444 elsif Ekind
(Comp
) = E_Discriminant
6445 and then Is_Unchecked_Union
(Rectype
)
6448 ("cannot reference discriminant of unchecked union",
6449 Component_Name
(CC
));
6451 elsif Is_Record_Extension
and then Is_Inherited
(Comp
) then
6453 ("component clause not allowed for inherited "
6454 & "component&", CC
, Comp
);
6456 elsif Present
(Component_Clause
(Comp
)) then
6458 -- Diagnose duplicate rep clause, or check consistency
6459 -- if this is an inherited component. In a double fault,
6460 -- there may be a duplicate inconsistent clause for an
6461 -- inherited component.
6463 if Scope
(Original_Record_Component
(Comp
)) = Rectype
6464 or else Parent
(Component_Clause
(Comp
)) = N
6466 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
6467 Error_Msg_N
("component clause previously given#", CC
);
6471 Rep1
: constant Node_Id
:= Component_Clause
(Comp
);
6473 if Intval
(Position
(Rep1
)) /=
6474 Intval
(Position
(CC
))
6475 or else Intval
(First_Bit
(Rep1
)) /=
6476 Intval
(First_Bit
(CC
))
6477 or else Intval
(Last_Bit
(Rep1
)) /=
6478 Intval
(Last_Bit
(CC
))
6481 ("component clause inconsistent "
6482 & "with representation of ancestor", CC
);
6484 elsif Warn_On_Redundant_Constructs
then
6486 ("?r?redundant confirming component clause "
6487 & "for component!", CC
);
6492 -- Normal case where this is the first component clause we
6493 -- have seen for this entity, so set it up properly.
6496 -- Make reference for field in record rep clause and set
6497 -- appropriate entity field in the field identifier.
6500 (Comp
, Component_Name
(CC
), Set_Ref
=> False);
6501 Set_Entity
(Component_Name
(CC
), Comp
);
6503 -- Update Fbit and Lbit to the actual bit number
6505 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
6506 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
6508 if Has_Size_Clause
(Rectype
)
6509 and then RM_Size
(Rectype
) <= Lbit
6512 ("bit number out of range of specified size",
6515 Set_Component_Clause
(Comp
, CC
);
6516 Set_Component_Bit_Offset
(Comp
, Fbit
);
6517 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
6518 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
6519 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
6521 if Warn_On_Overridden_Size
6522 and then Has_Size_Clause
(Etype
(Comp
))
6523 and then RM_Size
(Etype
(Comp
)) /= Esize
(Comp
)
6526 ("?S?component size overrides size clause for&",
6527 Component_Name
(CC
), Etype
(Comp
));
6530 -- This information is also set in the corresponding
6531 -- component of the base type, found by accessing the
6532 -- Original_Record_Component link if it is present.
6534 Ocomp
:= Original_Record_Component
(Comp
);
6541 (Component_Name
(CC
),
6547 (Comp
, First_Node
(CC
), "component clause", Biased
);
6549 if Present
(Ocomp
) then
6550 Set_Component_Clause
(Ocomp
, CC
);
6551 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
6552 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
6553 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
6554 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
6556 Set_Normalized_Position_Max
6557 (Ocomp
, Normalized_Position
(Ocomp
));
6559 -- Note: we don't use Set_Biased here, because we
6560 -- already gave a warning above if needed, and we
6561 -- would get a duplicate for the same name here.
6563 Set_Has_Biased_Representation
6564 (Ocomp
, Has_Biased_Representation
(Comp
));
6567 if Esize
(Comp
) < 0 then
6568 Error_Msg_N
("component size is negative", CC
);
6579 -- Check missing components if Complete_Representation pragma appeared
6581 if Present
(CR_Pragma
) then
6582 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6583 while Present
(Comp
) loop
6584 if No
(Component_Clause
(Comp
)) then
6586 ("missing component clause for &", CR_Pragma
, Comp
);
6589 Next_Component_Or_Discriminant
(Comp
);
6592 -- Give missing components warning if required
6594 elsif Warn_On_Unrepped_Components
then
6596 Num_Repped_Components
: Nat
:= 0;
6597 Num_Unrepped_Components
: Nat
:= 0;
6600 -- First count number of repped and unrepped components
6602 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6603 while Present
(Comp
) loop
6604 if Present
(Component_Clause
(Comp
)) then
6605 Num_Repped_Components
:= Num_Repped_Components
+ 1;
6607 Num_Unrepped_Components
:= Num_Unrepped_Components
+ 1;
6610 Next_Component_Or_Discriminant
(Comp
);
6613 -- We are only interested in the case where there is at least one
6614 -- unrepped component, and at least half the components have rep
6615 -- clauses. We figure that if less than half have them, then the
6616 -- partial rep clause is really intentional. If the component
6617 -- type has no underlying type set at this point (as for a generic
6618 -- formal type), we don't know enough to give a warning on the
6621 if Num_Unrepped_Components
> 0
6622 and then Num_Unrepped_Components
< Num_Repped_Components
6624 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6625 while Present
(Comp
) loop
6626 if No
(Component_Clause
(Comp
))
6627 and then Comes_From_Source
(Comp
)
6628 and then Present
(Underlying_Type
(Etype
(Comp
)))
6629 and then (Is_Scalar_Type
(Underlying_Type
(Etype
(Comp
)))
6630 or else Size_Known_At_Compile_Time
6631 (Underlying_Type
(Etype
(Comp
))))
6632 and then not Has_Warnings_Off
(Rectype
)
6634 -- Ignore discriminant in unchecked union, since it is
6635 -- not there, and cannot have a component clause.
6637 and then (not Is_Unchecked_Union
(Rectype
)
6638 or else Ekind
(Comp
) /= E_Discriminant
)
6640 Error_Msg_Sloc
:= Sloc
(Comp
);
6642 ("?C?no component clause given for & declared #",
6646 Next_Component_Or_Discriminant
(Comp
);
6651 end Analyze_Record_Representation_Clause
;
6653 -------------------------------------
6654 -- Build_Discrete_Static_Predicate --
6655 -------------------------------------
6657 procedure Build_Discrete_Static_Predicate
6662 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
6664 Non_Static
: exception;
6665 -- Raised if something non-static is found
6667 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
6669 BLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Btyp
));
6670 BHi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Btyp
));
6671 -- Low bound and high bound value of base type of Typ
6673 TLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Typ
));
6674 THi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Typ
));
6675 -- Low bound and high bound values of static subtype Typ
6680 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6681 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6684 type RList
is array (Nat
range <>) of REnt
;
6685 -- A list of ranges. The ranges are sorted in increasing order, and are
6686 -- disjoint (there is a gap of at least one value between each range in
6687 -- the table). A value is in the set of ranges in Rlist if it lies
6688 -- within one of these ranges.
6690 False_Range
: constant RList
:=
6691 RList
'(1 .. 0 => REnt'(No_Uint
, No_Uint
));
6692 -- An empty set of ranges represents a range list that can never be
6693 -- satisfied, since there are no ranges in which the value could lie,
6694 -- so it does not lie in any of them. False_Range is a canonical value
6695 -- for this empty set, but general processing should test for an Rlist
6696 -- with length zero (see Is_False predicate), since other null ranges
6697 -- may appear which must be treated as False.
6699 True_Range
: constant RList
:= RList
'(1 => REnt'(BLo
, BHi
));
6700 -- Range representing True, value must be in the base range
6702 function "and" (Left
: RList
; Right
: RList
) return RList
;
6703 -- And's together two range lists, returning a range list. This is a set
6704 -- intersection operation.
6706 function "or" (Left
: RList
; Right
: RList
) return RList
;
6707 -- Or's together two range lists, returning a range list. This is a set
6710 function "not" (Right
: RList
) return RList
;
6711 -- Returns complement of a given range list, i.e. a range list
6712 -- representing all the values in TLo .. THi that are not in the input
6715 function Build_Val
(V
: Uint
) return Node_Id
;
6716 -- Return an analyzed N_Identifier node referencing this value, suitable
6717 -- for use as an entry in the Static_Discrte_Predicate list. This node
6718 -- is typed with the base type.
6720 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
;
6721 -- Return an analyzed N_Range node referencing this range, suitable for
6722 -- use as an entry in the Static_Discrete_Predicate list. This node is
6723 -- typed with the base type.
6725 function Get_RList
(Exp
: Node_Id
) return RList
;
6726 -- This is a recursive routine that converts the given expression into a
6727 -- list of ranges, suitable for use in building the static predicate.
6729 function Is_False
(R
: RList
) return Boolean;
6730 pragma Inline
(Is_False
);
6731 -- Returns True if the given range list is empty, and thus represents a
6732 -- False list of ranges that can never be satisfied.
6734 function Is_True
(R
: RList
) return Boolean;
6735 -- Returns True if R trivially represents the True predicate by having a
6736 -- single range from BLo to BHi.
6738 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
6739 pragma Inline
(Is_Type_Ref
);
6740 -- Returns if True if N is a reference to the type for the predicate in
6741 -- the expression (i.e. if it is an identifier whose Chars field matches
6742 -- the Nam given in the call). N must not be parenthesized, if the type
6743 -- name appears in parens, this routine will return False.
6745 function Lo_Val
(N
: Node_Id
) return Uint
;
6746 -- Given an entry from a Static_Discrete_Predicate list that is either
6747 -- a static expression or static range, gets either the expression value
6748 -- or the low bound of the range.
6750 function Hi_Val
(N
: Node_Id
) return Uint
;
6751 -- Given an entry from a Static_Discrete_Predicate list that is either
6752 -- a static expression or static range, gets either the expression value
6753 -- or the high bound of the range.
6755 function Membership_Entry
(N
: Node_Id
) return RList
;
6756 -- Given a single membership entry (range, value, or subtype), returns
6757 -- the corresponding range list. Raises Static_Error if not static.
6759 function Membership_Entries
(N
: Node_Id
) return RList
;
6760 -- Given an element on an alternatives list of a membership operation,
6761 -- returns the range list corresponding to this entry and all following
6762 -- entries (i.e. returns the "or" of this list of values).
6764 function Stat_Pred
(Typ
: Entity_Id
) return RList
;
6765 -- Given a type, if it has a static predicate, then return the predicate
6766 -- as a range list, otherwise raise Non_Static.
6772 function "and" (Left
: RList
; Right
: RList
) return RList
is
6774 -- First range of result
6776 SLeft
: Nat
:= Left
'First;
6777 -- Start of rest of left entries
6779 SRight
: Nat
:= Right
'First;
6780 -- Start of rest of right entries
6783 -- If either range is True, return the other
6785 if Is_True
(Left
) then
6787 elsif Is_True
(Right
) then
6791 -- If either range is False, return False
6793 if Is_False
(Left
) or else Is_False
(Right
) then
6797 -- Loop to remove entries at start that are disjoint, and thus just
6798 -- get discarded from the result entirely.
6801 -- If no operands left in either operand, result is false
6803 if SLeft
> Left
'Last or else SRight
> Right
'Last then
6806 -- Discard first left operand entry if disjoint with right
6808 elsif Left
(SLeft
).Hi
< Right
(SRight
).Lo
then
6811 -- Discard first right operand entry if disjoint with left
6813 elsif Right
(SRight
).Hi
< Left
(SLeft
).Lo
then
6814 SRight
:= SRight
+ 1;
6816 -- Otherwise we have an overlapping entry
6823 -- Now we have two non-null operands, and first entries overlap. The
6824 -- first entry in the result will be the overlapping part of these
6827 FEnt
:= REnt
'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
6828 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
6830 -- Now we can remove the entry that ended at a lower value, since its
6831 -- contribution is entirely contained in Fent.
6833 if Left (SLeft).Hi <= Right (SRight).Hi then
6836 SRight := SRight + 1;
6839 -- Compute result by concatenating this first entry with the "and" of
6840 -- the remaining parts of the left and right operands. Note that if
6841 -- either of these is empty, "and" will yield empty, so that we will
6842 -- end up with just Fent, which is what we want in that case.
6845 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
6852 function "not" (Right : RList) return RList is
6854 -- Return True if False range
6856 if Is_False (Right) then
6860 -- Return False if True range
6862 if Is_True (Right) then
6866 -- Here if not trivial case
6869 Result : RList (1 .. Right'Length + 1);
6870 -- May need one more entry for gap at beginning and end
6873 -- Number of entries stored in Result
6878 if Right (Right'First).Lo > TLo then
6880 Result (Count) := REnt'(TLo
, Right
(Right
'First).Lo
- 1);
6883 -- Gaps between ranges
6885 for J
in Right
'First .. Right
'Last - 1 loop
6887 Result
(Count
) := REnt
'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6892 if Right (Right'Last).Hi < THi then
6894 Result (Count) := REnt'(Right
(Right
'Last).Hi
+ 1, THi
);
6897 return Result
(1 .. Count
);
6905 function "or" (Left
: RList
; Right
: RList
) return RList
is
6907 -- First range of result
6909 SLeft
: Nat
:= Left
'First;
6910 -- Start of rest of left entries
6912 SRight
: Nat
:= Right
'First;
6913 -- Start of rest of right entries
6916 -- If either range is True, return True
6918 if Is_True
(Left
) or else Is_True
(Right
) then
6922 -- If either range is False (empty), return the other
6924 if Is_False
(Left
) then
6926 elsif Is_False
(Right
) then
6930 -- Initialize result first entry from left or right operand depending
6931 -- on which starts with the lower range.
6933 if Left
(SLeft
).Lo
< Right
(SRight
).Lo
then
6934 FEnt
:= Left
(SLeft
);
6937 FEnt
:= Right
(SRight
);
6938 SRight
:= SRight
+ 1;
6941 -- This loop eats ranges from left and right operands that are
6942 -- contiguous with the first range we are gathering.
6945 -- Eat first entry in left operand if contiguous or overlapped by
6946 -- gathered first operand of result.
6948 if SLeft
<= Left
'Last
6949 and then Left
(SLeft
).Lo
<= FEnt
.Hi
+ 1
6951 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Left
(SLeft
).Hi
);
6954 -- Eat first entry in right operand if contiguous or overlapped by
6955 -- gathered right operand of result.
6957 elsif SRight
<= Right
'Last
6958 and then Right
(SRight
).Lo
<= FEnt
.Hi
+ 1
6960 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Right
(SRight
).Hi
);
6961 SRight
:= SRight
+ 1;
6963 -- All done if no more entries to eat
6970 -- Obtain result as the first entry we just computed, concatenated
6971 -- to the "or" of the remaining results (if one operand is empty,
6972 -- this will just concatenate with the other
6975 FEnt
& (Left
(SLeft
.. Left
'Last) or Right
(SRight
.. Right
'Last));
6982 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
is
6987 Low_Bound
=> Build_Val
(Lo
),
6988 High_Bound
=> Build_Val
(Hi
));
6989 Set_Etype
(Result
, Btyp
);
6990 Set_Analyzed
(Result
);
6998 function Build_Val
(V
: Uint
) return Node_Id
is
7002 if Is_Enumeration_Type
(Typ
) then
7003 Result
:= Get_Enum_Lit_From_Pos
(Typ
, V
, Loc
);
7005 Result
:= Make_Integer_Literal
(Loc
, V
);
7008 Set_Etype
(Result
, Btyp
);
7009 Set_Is_Static_Expression
(Result
);
7010 Set_Analyzed
(Result
);
7018 function Get_RList
(Exp
: Node_Id
) return RList
is
7023 -- Static expression can only be true or false
7025 if Is_OK_Static_Expression
(Exp
) then
7026 if Expr_Value
(Exp
) = 0 then
7033 -- Otherwise test node type
7041 when N_Op_And | N_And_Then
=>
7042 return Get_RList
(Left_Opnd
(Exp
))
7044 Get_RList
(Right_Opnd
(Exp
));
7048 when N_Op_Or | N_Or_Else
=>
7049 return Get_RList
(Left_Opnd
(Exp
))
7051 Get_RList
(Right_Opnd
(Exp
));
7056 return not Get_RList
(Right_Opnd
(Exp
));
7058 -- Comparisons of type with static value
7060 when N_Op_Compare
=>
7062 -- Type is left operand
7064 if Is_Type_Ref
(Left_Opnd
(Exp
))
7065 and then Is_OK_Static_Expression
(Right_Opnd
(Exp
))
7067 Val
:= Expr_Value
(Right_Opnd
(Exp
));
7069 -- Typ is right operand
7071 elsif Is_Type_Ref
(Right_Opnd
(Exp
))
7072 and then Is_OK_Static_Expression
(Left_Opnd
(Exp
))
7074 Val
:= Expr_Value
(Left_Opnd
(Exp
));
7076 -- Invert sense of comparison
7079 when N_Op_Gt
=> Op
:= N_Op_Lt
;
7080 when N_Op_Lt
=> Op
:= N_Op_Gt
;
7081 when N_Op_Ge
=> Op
:= N_Op_Le
;
7082 when N_Op_Le
=> Op
:= N_Op_Ge
;
7083 when others => null;
7086 -- Other cases are non-static
7092 -- Construct range according to comparison operation
7096 return RList
'(1 => REnt'(Val
, Val
));
7099 return RList
'(1 => REnt'(Val
, BHi
));
7102 return RList
'(1 => REnt'(Val
+ 1, BHi
));
7105 return RList
'(1 => REnt'(BLo
, Val
));
7108 return RList
'(1 => REnt'(BLo
, Val
- 1));
7111 return RList
'(REnt'(BLo
, Val
- 1), REnt
'(Val + 1, BHi));
7114 raise Program_Error;
7120 if not Is_Type_Ref (Left_Opnd (Exp)) then
7124 if Present (Right_Opnd (Exp)) then
7125 return Membership_Entry (Right_Opnd (Exp));
7127 return Membership_Entries (First (Alternatives (Exp)));
7130 -- Negative membership (NOT IN)
7133 if not Is_Type_Ref (Left_Opnd (Exp)) then
7137 if Present (Right_Opnd (Exp)) then
7138 return not Membership_Entry (Right_Opnd (Exp));
7140 return not Membership_Entries (First (Alternatives (Exp)));
7143 -- Function call, may be call to static predicate
7145 when N_Function_Call =>
7146 if Is_Entity_Name (Name (Exp)) then
7148 Ent : constant Entity_Id := Entity (Name (Exp));
7150 if Is_Predicate_Function (Ent)
7152 Is_Predicate_Function_M (Ent)
7154 return Stat_Pred (Etype (First_Formal (Ent)));
7159 -- Other function call cases are non-static
7163 -- Qualified expression, dig out the expression
7165 when N_Qualified_Expression =>
7166 return Get_RList (Expression (Exp));
7168 when N_Case_Expression =>
7175 if not Is_Entity_Name (Expression (Expr))
7176 or else Etype (Expression (Expr)) /= Typ
7179 ("expression must denaote subtype", Expression (Expr));
7183 -- Collect discrete choices in all True alternatives
7185 Choices := New_List;
7186 Alt := First (Alternatives (Exp));
7187 while Present (Alt) loop
7188 Dep := Expression (Alt);
7190 if not Is_OK_Static_Expression (Dep) then
7193 elsif Is_True (Expr_Value (Dep)) then
7194 Append_List_To (Choices,
7195 New_Copy_List (Discrete_Choices (Alt)));
7201 return Membership_Entries (First (Choices));
7204 -- Expression with actions: if no actions, dig out expression
7206 when N_Expression_With_Actions =>
7207 if Is_Empty_List (Actions (Exp)) then
7208 return Get_RList (Expression (Exp));
7216 return (Get_RList (Left_Opnd (Exp))
7217 and not Get_RList (Right_Opnd (Exp)))
7218 or (Get_RList (Right_Opnd (Exp))
7219 and not Get_RList (Left_Opnd (Exp)));
7221 -- Any other node type is non-static
7232 function Hi_Val (N : Node_Id) return Uint is
7234 if Is_OK_Static_Expression (N) then
7235 return Expr_Value (N);
7237 pragma Assert (Nkind (N) = N_Range);
7238 return Expr_Value (High_Bound (N));
7246 function Is_False (R : RList) return Boolean is
7248 return R'Length = 0;
7255 function Is_True (R : RList) return Boolean is
7258 and then R (R'First).Lo = BLo
7259 and then R (R'First).Hi = BHi;
7266 function Is_Type_Ref (N : Node_Id) return Boolean is
7268 return Nkind (N) = N_Identifier
7269 and then Chars (N) = Nam
7270 and then Paren_Count (N) = 0;
7277 function Lo_Val (N : Node_Id) return Uint is
7279 if Is_OK_Static_Expression (N) then
7280 return Expr_Value (N);
7282 pragma Assert (Nkind (N) = N_Range);
7283 return Expr_Value (Low_Bound (N));
7287 ------------------------
7288 -- Membership_Entries --
7289 ------------------------
7291 function Membership_Entries (N : Node_Id) return RList is
7293 if No (Next (N)) then
7294 return Membership_Entry (N);
7296 return Membership_Entry (N) or Membership_Entries (Next (N));
7298 end Membership_Entries;
7300 ----------------------
7301 -- Membership_Entry --
7302 ----------------------
7304 function Membership_Entry (N : Node_Id) return RList is
7312 if Nkind (N) = N_Range then
7313 if not Is_OK_Static_Expression (Low_Bound (N))
7315 not Is_OK_Static_Expression (High_Bound (N))
7319 SLo := Expr_Value (Low_Bound (N));
7320 SHi := Expr_Value (High_Bound (N));
7321 return RList'(1 => REnt
'(SLo, SHi));
7324 -- Static expression case
7326 elsif Is_OK_Static_Expression (N) then
7327 Val := Expr_Value (N);
7328 return RList'(1 => REnt
'(Val, Val));
7330 -- Identifier (other than static expression) case
7332 else pragma Assert (Nkind (N) = N_Identifier);
7336 if Is_Type (Entity (N)) then
7338 -- If type has predicates, process them
7340 if Has_Predicates (Entity (N)) then
7341 return Stat_Pred (Entity (N));
7343 -- For static subtype without predicates, get range
7345 elsif Is_OK_Static_Subtype (Entity (N)) then
7346 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7347 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7348 return RList'(1 => REnt
'(SLo, SHi));
7350 -- Any other type makes us non-static
7356 -- Any other kind of identifier in predicate (e.g. a non-static
7357 -- expression value) means this is not a static predicate.
7363 end Membership_Entry;
7369 function Stat_Pred (Typ : Entity_Id) return RList is
7371 -- Not static if type does not have static predicates
7373 if not Has_Static_Predicate (Typ) then
7377 -- Otherwise we convert the predicate list to a range list
7380 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7381 Result : RList (1 .. List_Length (Spred));
7385 P := First (Static_Discrete_Predicate (Typ));
7386 for J in Result'Range loop
7387 Result (J) := REnt'(Lo_Val
(P
), Hi_Val
(P
));
7395 -- Start of processing for Build_Discrete_Static_Predicate
7398 -- Analyze the expression to see if it is a static predicate
7401 Ranges
: constant RList
:= Get_RList
(Expr
);
7402 -- Range list from expression if it is static
7407 -- Convert range list into a form for the static predicate. In the
7408 -- Ranges array, we just have raw ranges, these must be converted
7409 -- to properly typed and analyzed static expressions or range nodes.
7411 -- Note: here we limit ranges to the ranges of the subtype, so that
7412 -- a predicate is always false for values outside the subtype. That
7413 -- seems fine, such values are invalid anyway, and considering them
7414 -- to fail the predicate seems allowed and friendly, and furthermore
7415 -- simplifies processing for case statements and loops.
7419 for J
in Ranges
'Range loop
7421 Lo
: Uint
:= Ranges
(J
).Lo
;
7422 Hi
: Uint
:= Ranges
(J
).Hi
;
7425 -- Ignore completely out of range entry
7427 if Hi
< TLo
or else Lo
> THi
then
7430 -- Otherwise process entry
7433 -- Adjust out of range value to subtype range
7443 -- Convert range into required form
7445 Append_To
(Plist
, Build_Range
(Lo
, Hi
));
7450 -- Processing was successful and all entries were static, so now we
7451 -- can store the result as the predicate list.
7453 Set_Static_Discrete_Predicate
(Typ
, Plist
);
7455 -- The processing for static predicates put the expression into
7456 -- canonical form as a series of ranges. It also eliminated
7457 -- duplicates and collapsed and combined ranges. We might as well
7458 -- replace the alternatives list of the right operand of the
7459 -- membership test with the static predicate list, which will
7460 -- usually be more efficient.
7463 New_Alts
: constant List_Id
:= New_List
;
7468 Old_Node
:= First
(Plist
);
7469 while Present
(Old_Node
) loop
7470 New_Node
:= New_Copy
(Old_Node
);
7472 if Nkind
(New_Node
) = N_Range
then
7473 Set_Low_Bound
(New_Node
, New_Copy
(Low_Bound
(Old_Node
)));
7474 Set_High_Bound
(New_Node
, New_Copy
(High_Bound
(Old_Node
)));
7477 Append_To
(New_Alts
, New_Node
);
7481 -- If empty list, replace by False
7483 if Is_Empty_List
(New_Alts
) then
7484 Rewrite
(Expr
, New_Occurrence_Of
(Standard_False
, Loc
));
7486 -- Else replace by set membership test
7491 Left_Opnd
=> Make_Identifier
(Loc
, Nam
),
7492 Right_Opnd
=> Empty
,
7493 Alternatives
=> New_Alts
));
7495 -- Resolve new expression in function context
7497 Install_Formals
(Predicate_Function
(Typ
));
7498 Push_Scope
(Predicate_Function
(Typ
));
7499 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
7505 -- If non-static, return doing nothing
7510 end Build_Discrete_Static_Predicate
;
7512 -------------------------------------------
7513 -- Build_Invariant_Procedure_Declaration --
7514 -------------------------------------------
7516 function Build_Invariant_Procedure_Declaration
7517 (Typ
: Entity_Id
) return Node_Id
7519 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7520 Object_Entity
: constant Entity_Id
:=
7521 Make_Defining_Identifier
(Loc
, New_Internal_Name
('I'));
7526 Set_Etype
(Object_Entity
, Typ
);
7528 -- Check for duplicate definiations.
7530 if Has_Invariants
(Typ
) and then Present
(Invariant_Procedure
(Typ
)) then
7535 Make_Defining_Identifier
(Loc
,
7536 Chars
=> New_External_Name
(Chars
(Typ
), "Invariant"));
7537 Set_Has_Invariants
(Typ
);
7538 Set_Ekind
(SId
, E_Procedure
);
7539 Set_Etype
(SId
, Standard_Void_Type
);
7540 Set_Is_Invariant_Procedure
(SId
);
7541 Set_Invariant_Procedure
(Typ
, SId
);
7544 Make_Procedure_Specification
(Loc
,
7545 Defining_Unit_Name
=> SId
,
7546 Parameter_Specifications
=> New_List
(
7547 Make_Parameter_Specification
(Loc
,
7548 Defining_Identifier
=> Object_Entity
,
7549 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))));
7551 return Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
7552 end Build_Invariant_Procedure_Declaration
;
7554 -------------------------------
7555 -- Build_Invariant_Procedure --
7556 -------------------------------
7558 -- The procedure that is constructed here has the form
7560 -- procedure typInvariant (Ixxx : typ) is
7562 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7563 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7565 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7567 -- end typInvariant;
7569 procedure Build_Invariant_Procedure
(Typ
: Entity_Id
; N
: Node_Id
) is
7570 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
7578 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7579 -- if we come from a Type_Invariant aspect, we make sure to build the
7580 -- Check pragma with the right name, so that Check_Policy works right.
7582 Visible_Decls
: constant List_Id
:= Visible_Declarations
(N
);
7583 Private_Decls
: constant List_Id
:= Private_Declarations
(N
);
7585 procedure Add_Invariants
(T
: Entity_Id
; Inherit
: Boolean);
7586 -- Appends statements to Stmts for any invariants in the rep item chain
7587 -- of the given type. If Inherit is False, then we only process entries
7588 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7589 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7590 -- "inherited" to the exception message and generating an informational
7591 -- message about the inheritance of an invariant.
7593 Object_Name
: Name_Id
;
7594 -- Name for argument of invariant procedure
7596 Object_Entity
: Node_Id
;
7597 -- The entity of the formal for the procedure
7599 --------------------
7600 -- Add_Invariants --
7601 --------------------
7603 procedure Add_Invariants
(T
: Entity_Id
; Inherit
: Boolean) is
7613 procedure Replace_Type_Reference
(N
: Node_Id
);
7614 -- Replace a single occurrence N of the subtype name with a reference
7615 -- to the formal of the predicate function. N can be an identifier
7616 -- referencing the subtype, or a selected component, representing an
7617 -- appropriately qualified occurrence of the subtype name.
7619 procedure Replace_Type_References
is
7620 new Replace_Type_References_Generic
(Replace_Type_Reference
);
7621 -- Traverse an expression replacing all occurrences of the subtype
7622 -- name with appropriate references to the object that is the formal
7623 -- parameter of the predicate function. Note that we must ensure
7624 -- that the type and entity information is properly set in the
7625 -- replacement node, since we will do a Preanalyze call of this
7626 -- expression without proper visibility of the procedure argument.
7628 ----------------------------
7629 -- Replace_Type_Reference --
7630 ----------------------------
7632 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7633 -- regarding handling of Sloc and Comes_From_Source.
7635 procedure Replace_Type_Reference
(N
: Node_Id
) is
7638 -- Add semantic information to node to be rewritten, for ASIS
7639 -- navigation needs.
7641 if Nkind
(N
) = N_Identifier
then
7645 elsif Nkind
(N
) = N_Selected_Component
then
7646 Analyze
(Prefix
(N
));
7647 Set_Entity
(Selector_Name
(N
), T
);
7648 Set_Etype
(Selector_Name
(N
), T
);
7651 -- Invariant'Class, replace with T'Class (obj)
7652 -- In ASIS mode, an inherited item is analyzed already, and the
7653 -- replacement has been done, so do not repeat transformation
7654 -- to prevent ill-formed tree.
7656 if Class_Present
(Ritem
) then
7658 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
7659 and then Attribute_Name
(Parent
(N
)) = Name_Class
7665 Make_Type_Conversion
(Sloc
(N
),
7667 Make_Attribute_Reference
(Sloc
(N
),
7668 Prefix
=> New_Occurrence_Of
(T
, Sloc
(N
)),
7669 Attribute_Name
=> Name_Class
),
7671 Make_Identifier
(Sloc
(N
), Object_Name
)));
7673 Set_Entity
(Expression
(N
), Object_Entity
);
7674 Set_Etype
(Expression
(N
), Typ
);
7677 -- Invariant, replace with obj
7680 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
7681 Set_Entity
(N
, Object_Entity
);
7685 Set_Comes_From_Source
(N
, True);
7686 end Replace_Type_Reference
;
7688 -- Start of processing for Add_Invariants
7691 Ritem
:= First_Rep_Item
(T
);
7692 while Present
(Ritem
) loop
7693 if Nkind
(Ritem
) = N_Pragma
7694 and then Pragma_Name
(Ritem
) = Name_Invariant
7696 Arg1
:= First
(Pragma_Argument_Associations
(Ritem
));
7697 Arg2
:= Next
(Arg1
);
7698 Arg3
:= Next
(Arg2
);
7700 Arg1
:= Get_Pragma_Arg
(Arg1
);
7701 Arg2
:= Get_Pragma_Arg
(Arg2
);
7703 -- For Inherit case, ignore Invariant, process only Class case
7706 if not Class_Present
(Ritem
) then
7710 -- For Inherit false, process only item for right type
7713 if Entity
(Arg1
) /= Typ
then
7719 Stmts
:= Empty_List
;
7722 Exp
:= New_Copy_Tree
(Arg2
);
7724 -- Preserve sloc of original pragma Invariant
7726 Loc
:= Sloc
(Ritem
);
7728 -- We need to replace any occurrences of the name of the type
7729 -- with references to the object, converted to type'Class in
7730 -- the case of Invariant'Class aspects.
7732 Replace_Type_References
(Exp
, T
);
7734 -- If this invariant comes from an aspect, find the aspect
7735 -- specification, and replace the saved expression because
7736 -- we need the subtype references replaced for the calls to
7737 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7738 -- and Check_Aspect_At_End_Of_Declarations.
7740 if From_Aspect_Specification
(Ritem
) then
7745 -- Loop to find corresponding aspect, note that this
7746 -- must be present given the pragma is marked delayed.
7748 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7749 -- this loop does nothing. Furthermore, why isn't this
7750 -- simply Corresponding_Aspect ???
7752 Aitem
:= Next_Rep_Item
(Ritem
);
7753 while Present
(Aitem
) loop
7754 if Nkind
(Aitem
) = N_Aspect_Specification
7755 and then Aspect_Rep_Item
(Aitem
) = Ritem
7758 (Identifier
(Aitem
), New_Copy_Tree
(Exp
));
7762 Aitem
:= Next_Rep_Item
(Aitem
);
7767 -- Now we need to preanalyze the expression to properly capture
7768 -- the visibility in the visible part. The expression will not
7769 -- be analyzed for real until the body is analyzed, but that is
7770 -- at the end of the private part and has the wrong visibility.
7772 Set_Parent
(Exp
, N
);
7773 Preanalyze_Assert_Expression
(Exp
, Standard_Boolean
);
7775 -- A class-wide invariant may be inherited in a separate unit,
7776 -- where the corresponding expression cannot be resolved by
7777 -- visibility, because it refers to a local function. Propagate
7778 -- semantic information to the original representation item, to
7779 -- be used when an invariant procedure for a derived type is
7782 -- Unclear how to handle class-wide invariants that are not
7783 -- function calls ???
7786 and then Class_Present
(Ritem
)
7787 and then Nkind
(Exp
) = N_Function_Call
7788 and then Nkind
(Arg2
) = N_Indexed_Component
7791 Make_Function_Call
(Loc
,
7793 New_Occurrence_Of
(Entity
(Name
(Exp
)), Loc
),
7794 Parameter_Associations
=>
7795 New_Copy_List
(Expressions
(Arg2
))));
7798 -- In ASIS mode, even if assertions are not enabled, we must
7799 -- analyze the original expression in the aspect specification
7800 -- because it is part of the original tree.
7802 if ASIS_Mode
and then From_Aspect_Specification
(Ritem
) then
7804 Inv
: constant Node_Id
:=
7805 Expression
(Corresponding_Aspect
(Ritem
));
7807 Replace_Type_References
(Inv
, T
);
7808 Preanalyze_Assert_Expression
(Inv
, Standard_Boolean
);
7812 -- Get name to be used for Check pragma
7814 if not From_Aspect_Specification
(Ritem
) then
7815 Nam
:= Name_Invariant
;
7817 Nam
:= Chars
(Identifier
(Corresponding_Aspect
(Ritem
)));
7820 -- Build first two arguments for Check pragma
7824 Make_Pragma_Argument_Association
(Loc
,
7825 Expression
=> Make_Identifier
(Loc
, Chars
=> Nam
)),
7826 Make_Pragma_Argument_Association
(Loc
,
7827 Expression
=> Exp
));
7829 -- Add message if present in Invariant pragma
7831 if Present
(Arg3
) then
7832 Str
:= Strval
(Get_Pragma_Arg
(Arg3
));
7834 -- If inherited case, and message starts "failed invariant",
7835 -- change it to be "failed inherited invariant".
7838 String_To_Name_Buffer
(Str
);
7840 if Name_Buffer
(1 .. 16) = "failed invariant" then
7841 Insert_Str_In_Name_Buffer
("inherited ", 8);
7842 Str
:= String_From_Name_Buffer
;
7847 Make_Pragma_Argument_Association
(Loc
,
7848 Expression
=> Make_String_Literal
(Loc
, Str
)));
7851 -- Add Check pragma to list of statements
7855 Pragma_Identifier
=>
7856 Make_Identifier
(Loc
, Name_Check
),
7857 Pragma_Argument_Associations
=> Assoc
));
7859 -- If Inherited case and option enabled, output info msg. Note
7860 -- that we know this is a case of Invariant'Class.
7862 if Inherit
and Opt
.List_Inherited_Aspects
then
7863 Error_Msg_Sloc
:= Sloc
(Ritem
);
7865 ("info: & inherits `Invariant''Class` aspect from #?L?",
7871 Next_Rep_Item
(Ritem
);
7875 -- Start of processing for Build_Invariant_Procedure
7883 -- If the aspect specification exists for some view of the type, the
7884 -- declaration for the procedure has been created.
7886 if Has_Invariants
(Typ
) then
7887 SId
:= Invariant_Procedure
(Typ
);
7890 -- If the body is already present, nothing to do. This will occur when
7891 -- the type is already frozen, which is the case when the invariant
7892 -- appears in a private part, and the freezing takes place before the
7893 -- final pass over full declarations.
7895 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
7897 if Present
(SId
) then
7898 PDecl
:= Unit_Declaration_Node
(SId
);
7901 and then Nkind
(PDecl
) = N_Subprogram_Declaration
7902 and then Present
(Corresponding_Body
(PDecl
))
7908 PDecl
:= Build_Invariant_Procedure_Declaration
(Typ
);
7911 -- Recover formal of procedure, for use in the calls to invariant
7912 -- functions (including inherited ones).
7916 (First
(Parameter_Specifications
(Specification
(PDecl
))));
7917 Object_Name
:= Chars
(Object_Entity
);
7919 -- Add invariants for the current type
7921 Add_Invariants
(Typ
, Inherit
=> False);
7923 -- Add invariants for parent types
7926 Current_Typ
: Entity_Id
;
7927 Parent_Typ
: Entity_Id
;
7932 Parent_Typ
:= Etype
(Current_Typ
);
7934 if Is_Private_Type
(Parent_Typ
)
7935 and then Present
(Full_View
(Base_Type
(Parent_Typ
)))
7937 Parent_Typ
:= Full_View
(Base_Type
(Parent_Typ
));
7940 exit when Parent_Typ
= Current_Typ
;
7942 Current_Typ
:= Parent_Typ
;
7943 Add_Invariants
(Current_Typ
, Inherit
=> True);
7947 -- Build the procedure if we generated at least one Check pragma
7949 if Stmts
/= No_List
then
7950 Spec
:= Copy_Separate_Tree
(Specification
(PDecl
));
7953 Make_Subprogram_Body
(Loc
,
7954 Specification
=> Spec
,
7955 Declarations
=> Empty_List
,
7956 Handled_Statement_Sequence
=>
7957 Make_Handled_Sequence_Of_Statements
(Loc
,
7958 Statements
=> Stmts
));
7960 -- Insert procedure declaration and spec at the appropriate points.
7961 -- If declaration is already analyzed, it was processed by the
7962 -- generated pragma.
7964 if Present
(Private_Decls
) then
7966 -- The spec goes at the end of visible declarations, but they have
7967 -- already been analyzed, so we need to explicitly do the analyze.
7969 if not Analyzed
(PDecl
) then
7970 Append_To
(Visible_Decls
, PDecl
);
7974 -- The body goes at the end of the private declarations, which we
7975 -- have not analyzed yet, so we do not need to perform an explicit
7976 -- analyze call. We skip this if there are no private declarations
7977 -- (this is an error that will be caught elsewhere);
7979 Append_To
(Private_Decls
, PBody
);
7981 -- If the invariant appears on the full view of a type, the
7982 -- analysis of the private part is complete, and we must
7983 -- analyze the new body explicitly.
7985 if In_Private_Part
(Current_Scope
) then
7989 -- If there are no private declarations this may be an error that
7990 -- will be diagnosed elsewhere. However, if this is a non-private
7991 -- type that inherits invariants, it needs no completion and there
7992 -- may be no private part. In this case insert invariant procedure
7993 -- at end of current declarative list, and analyze at once, given
7994 -- that the type is about to be frozen.
7996 elsif not Is_Private_Type
(Typ
) then
7997 Append_To
(Visible_Decls
, PDecl
);
7998 Append_To
(Visible_Decls
, PBody
);
8003 end Build_Invariant_Procedure
;
8005 -------------------------------
8006 -- Build_Predicate_Functions --
8007 -------------------------------
8009 -- The procedures that are constructed here have the form:
8011 -- function typPredicate (Ixxx : typ) return Boolean is
8014 -- exp1 and then exp2 and then ...
8015 -- and then typ1Predicate (typ1 (Ixxx))
8016 -- and then typ2Predicate (typ2 (Ixxx))
8018 -- end typPredicate;
8020 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8021 -- this is the point at which these expressions get analyzed, providing the
8022 -- required delay, and typ1, typ2, are entities from which predicates are
8023 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8024 -- use this function even if checks are off, e.g. for membership tests.
8026 -- If the expression has at least one Raise_Expression, then we also build
8027 -- the typPredicateM version of the function, in which any occurrence of a
8028 -- Raise_Expression is converted to "return False".
8030 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
) is
8031 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8034 -- This is the expression for the result of the function. It is
8035 -- is build by connecting the component predicates with AND THEN.
8038 -- This is the corresponding return expression for the Predicate_M
8039 -- function. It differs in that raise expressions are marked for
8040 -- special expansion (see Process_REs).
8042 Object_Name
: constant Name_Id
:= New_Internal_Name
('I');
8043 -- Name for argument of Predicate procedure. Note that we use the same
8044 -- name for both predicate functions. That way the reference within the
8045 -- predicate expression is the same in both functions.
8047 Object_Entity
: constant Entity_Id
:=
8048 Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8049 -- Entity for argument of Predicate procedure
8051 Object_Entity_M
: constant Entity_Id
:=
8052 Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8053 -- Entity for argument of Predicate_M procedure
8055 Raise_Expression_Present
: Boolean := False;
8056 -- Set True if Expr has at least one Raise_Expression
8058 procedure Add_Call
(T
: Entity_Id
);
8059 -- Includes a call to the predicate function for type T in Expr if T
8060 -- has predicates and Predicate_Function (T) is non-empty.
8062 procedure Add_Predicates
;
8063 -- Appends expressions for any Predicate pragmas in the rep item chain
8064 -- Typ to Expr. Note that we look only at items for this exact entity.
8065 -- Inheritance of predicates for the parent type is done by calling the
8066 -- Predicate_Function of the parent type, using Add_Call above.
8068 function Test_RE
(N
: Node_Id
) return Traverse_Result
;
8069 -- Used in Test_REs, tests one node for being a raise expression, and if
8070 -- so sets Raise_Expression_Present True.
8072 procedure Test_REs
is new Traverse_Proc
(Test_RE
);
8073 -- Tests to see if Expr contains any raise expressions
8075 function Process_RE
(N
: Node_Id
) return Traverse_Result
;
8076 -- Used in Process REs, tests if node N is a raise expression, and if
8077 -- so, marks it to be converted to return False.
8079 procedure Process_REs
is new Traverse_Proc
(Process_RE
);
8080 -- Marks any raise expressions in Expr_M to return False
8086 procedure Add_Call
(T
: Entity_Id
) is
8090 if Present
(T
) and then Present
(Predicate_Function
(T
)) then
8091 Set_Has_Predicates
(Typ
);
8093 -- Build the call to the predicate function of T
8097 (T
, Convert_To
(T
, Make_Identifier
(Loc
, Object_Name
)));
8099 -- Add call to evolving expression, using AND THEN if needed
8106 Make_And_Then
(Sloc
(Expr
),
8107 Left_Opnd
=> Relocate_Node
(Expr
),
8111 -- Output info message on inheritance if required. Note we do not
8112 -- give this information for generic actual types, since it is
8113 -- unwelcome noise in that case in instantiations. We also
8114 -- generally suppress the message in instantiations, and also
8115 -- if it involves internal names.
8117 if Opt
.List_Inherited_Aspects
8118 and then not Is_Generic_Actual_Type
(Typ
)
8119 and then Instantiation_Depth
(Sloc
(Typ
)) = 0
8120 and then not Is_Internal_Name
(Chars
(T
))
8121 and then not Is_Internal_Name
(Chars
(Typ
))
8123 Error_Msg_Sloc
:= Sloc
(Predicate_Function
(T
));
8124 Error_Msg_Node_2
:= T
;
8125 Error_Msg_N
("info: & inherits predicate from & #?L?", Typ
);
8130 --------------------
8131 -- Add_Predicates --
8132 --------------------
8134 procedure Add_Predicates
is
8139 procedure Replace_Type_Reference
(N
: Node_Id
);
8140 -- Replace a single occurrence N of the subtype name with a reference
8141 -- to the formal of the predicate function. N can be an identifier
8142 -- referencing the subtype, or a selected component, representing an
8143 -- appropriately qualified occurrence of the subtype name.
8145 procedure Replace_Type_References
is
8146 new Replace_Type_References_Generic
(Replace_Type_Reference
);
8147 -- Traverse an expression changing every occurrence of an identifier
8148 -- whose name matches the name of the subtype with a reference to
8149 -- the formal parameter of the predicate function.
8151 ----------------------------
8152 -- Replace_Type_Reference --
8153 ----------------------------
8155 procedure Replace_Type_Reference
(N
: Node_Id
) is
8157 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
8158 -- Use the Sloc of the usage name, not the defining name
8161 Set_Entity
(N
, Object_Entity
);
8163 -- We want to treat the node as if it comes from source, so that
8164 -- ASIS will not ignore it
8166 Set_Comes_From_Source
(N
, True);
8167 end Replace_Type_Reference
;
8169 -- Start of processing for Add_Predicates
8172 Ritem
:= First_Rep_Item
(Typ
);
8173 while Present
(Ritem
) loop
8174 if Nkind
(Ritem
) = N_Pragma
8175 and then Pragma_Name
(Ritem
) = Name_Predicate
8177 -- Acquire arguments
8179 Arg1
:= First
(Pragma_Argument_Associations
(Ritem
));
8180 Arg2
:= Next
(Arg1
);
8182 Arg1
:= Get_Pragma_Arg
(Arg1
);
8183 Arg2
:= Get_Pragma_Arg
(Arg2
);
8185 -- See if this predicate pragma is for the current type or for
8186 -- its full view. A predicate on a private completion is placed
8187 -- on the partial view beause this is the visible entity that
8190 if Entity
(Arg1
) = Typ
8191 or else Full_View
(Entity
(Arg1
)) = Typ
8193 -- We have a match, this entry is for our subtype
8195 -- We need to replace any occurrences of the name of the
8196 -- type with references to the object.
8198 Replace_Type_References
(Arg2
, Typ
);
8200 -- If this predicate comes from an aspect, find the aspect
8201 -- specification, and replace the saved expression because
8202 -- we need the subtype references replaced for the calls to
8203 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8204 -- and Check_Aspect_At_End_Of_Declarations.
8206 if From_Aspect_Specification
(Ritem
) then
8211 -- Loop to find corresponding aspect, note that this
8212 -- must be present given the pragma is marked delayed.
8214 Aitem
:= Next_Rep_Item
(Ritem
);
8216 if Nkind
(Aitem
) = N_Aspect_Specification
8217 and then Aspect_Rep_Item
(Aitem
) = Ritem
8220 (Identifier
(Aitem
), New_Copy_Tree
(Arg2
));
8224 Aitem
:= Next_Rep_Item
(Aitem
);
8229 -- Now we can add the expression
8232 Expr
:= Relocate_Node
(Arg2
);
8234 -- There already was a predicate, so add to it
8239 Left_Opnd
=> Relocate_Node
(Expr
),
8240 Right_Opnd
=> Relocate_Node
(Arg2
));
8245 Next_Rep_Item
(Ritem
);
8253 function Process_RE
(N
: Node_Id
) return Traverse_Result
is
8255 if Nkind
(N
) = N_Raise_Expression
then
8256 Set_Convert_To_Return_False
(N
);
8267 function Test_RE
(N
: Node_Id
) return Traverse_Result
is
8269 if Nkind
(N
) = N_Raise_Expression
then
8270 Raise_Expression_Present
:= True;
8277 -- Start of processing for Build_Predicate_Functions
8280 -- Return if already built or if type does not have predicates
8282 if not Has_Predicates
(Typ
)
8283 or else Present
(Predicate_Function
(Typ
))
8288 -- Prepare to construct predicate expression
8292 -- Add Predicates for the current type
8296 -- Add predicates for ancestor if present
8299 Atyp
: constant Entity_Id
:= Nearest_Ancestor
(Typ
);
8301 if Present
(Atyp
) then
8306 -- Case where predicates are present
8308 if Present
(Expr
) then
8310 -- Test for raise expression present
8314 -- If raise expression is present, capture a copy of Expr for use
8315 -- in building the predicateM function version later on. For this
8316 -- copy we replace references to Object_Entity by Object_Entity_M.
8318 if Raise_Expression_Present
then
8320 Map
: constant Elist_Id
:= New_Elmt_List
;
8321 New_V
: Entity_Id
:= Empty
;
8323 -- The unanalyzed expression will be copied and appear in
8324 -- both functions. Normally expressions do not declare new
8325 -- entities, but quantified expressions do, so we need to
8326 -- create new entities for their bound variables, to prevent
8327 -- multiple definitions in gigi.
8329 function Reset_Loop_Variable
(N
: Node_Id
)
8330 return Traverse_Result
;
8332 procedure Collect_Loop_Variables
is
8333 new Traverse_Proc
(Reset_Loop_Variable
);
8335 ------------------------
8336 -- Reset_Loop_Variable --
8337 ------------------------
8339 function Reset_Loop_Variable
(N
: Node_Id
)
8340 return Traverse_Result
8343 if Nkind
(N
) = N_Iterator_Specification
then
8344 New_V
:= Make_Defining_Identifier
8345 (Sloc
(N
), Chars
(Defining_Identifier
(N
)));
8347 Set_Defining_Identifier
(N
, New_V
);
8351 end Reset_Loop_Variable
;
8354 Append_Elmt
(Object_Entity
, Map
);
8355 Append_Elmt
(Object_Entity_M
, Map
);
8356 Expr_M
:= New_Copy_Tree
(Expr
, Map
=> Map
);
8357 Collect_Loop_Variables
(Expr_M
);
8361 -- Build the main predicate function
8364 SId
: constant Entity_Id
:=
8365 Make_Defining_Identifier
(Loc
,
8366 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8367 -- The entity for the the function spec
8369 SIdB
: constant Entity_Id
:=
8370 Make_Defining_Identifier
(Loc
,
8371 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8372 -- The entity for the function body
8379 -- Build function declaration
8381 Set_Ekind
(SId
, E_Function
);
8382 Set_Is_Internal
(SId
);
8383 Set_Is_Predicate_Function
(SId
);
8384 Set_Predicate_Function
(Typ
, SId
);
8386 -- The predicate function is shared between views of a type
8388 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8389 Set_Predicate_Function
(Full_View
(Typ
), SId
);
8393 Make_Function_Specification
(Loc
,
8394 Defining_Unit_Name
=> SId
,
8395 Parameter_Specifications
=> New_List
(
8396 Make_Parameter_Specification
(Loc
,
8397 Defining_Identifier
=> Object_Entity
,
8398 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8399 Result_Definition
=>
8400 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8403 Make_Subprogram_Declaration
(Loc
,
8404 Specification
=> Spec
);
8406 -- Build function body
8409 Make_Function_Specification
(Loc
,
8410 Defining_Unit_Name
=> SIdB
,
8411 Parameter_Specifications
=> New_List
(
8412 Make_Parameter_Specification
(Loc
,
8413 Defining_Identifier
=>
8414 Make_Defining_Identifier
(Loc
, Object_Name
),
8416 New_Occurrence_Of
(Typ
, Loc
))),
8417 Result_Definition
=>
8418 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8421 Make_Subprogram_Body
(Loc
,
8422 Specification
=> Spec
,
8423 Declarations
=> Empty_List
,
8424 Handled_Statement_Sequence
=>
8425 Make_Handled_Sequence_Of_Statements
(Loc
,
8426 Statements
=> New_List
(
8427 Make_Simple_Return_Statement
(Loc
,
8428 Expression
=> Expr
))));
8430 -- Insert declaration before freeze node and body after
8432 Insert_Before_And_Analyze
(N
, FDecl
);
8433 Insert_After_And_Analyze
(N
, FBody
);
8436 -- Test for raise expressions present and if so build M version
8438 if Raise_Expression_Present
then
8440 SId
: constant Entity_Id
:=
8441 Make_Defining_Identifier
(Loc
,
8442 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8443 -- The entity for the the function spec
8445 SIdB
: constant Entity_Id
:=
8446 Make_Defining_Identifier
(Loc
,
8447 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8448 -- The entity for the function body
8456 -- Mark any raise expressions for special expansion
8458 Process_REs
(Expr_M
);
8460 -- Build function declaration
8462 Set_Ekind
(SId
, E_Function
);
8463 Set_Is_Predicate_Function_M
(SId
);
8464 Set_Predicate_Function_M
(Typ
, SId
);
8466 -- The predicate function is shared between views of a type
8468 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8469 Set_Predicate_Function_M
(Full_View
(Typ
), SId
);
8473 Make_Function_Specification
(Loc
,
8474 Defining_Unit_Name
=> SId
,
8475 Parameter_Specifications
=> New_List
(
8476 Make_Parameter_Specification
(Loc
,
8477 Defining_Identifier
=> Object_Entity_M
,
8478 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8479 Result_Definition
=>
8480 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8483 Make_Subprogram_Declaration
(Loc
,
8484 Specification
=> Spec
);
8486 -- Build function body
8489 Make_Function_Specification
(Loc
,
8490 Defining_Unit_Name
=> SIdB
,
8491 Parameter_Specifications
=> New_List
(
8492 Make_Parameter_Specification
(Loc
,
8493 Defining_Identifier
=>
8494 Make_Defining_Identifier
(Loc
, Object_Name
),
8496 New_Occurrence_Of
(Typ
, Loc
))),
8497 Result_Definition
=>
8498 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8500 -- Build the body, we declare the boolean expression before
8501 -- doing the return, because we are not really confident of
8502 -- what happens if a return appears within a return.
8505 Make_Defining_Identifier
(Loc
,
8506 Chars
=> New_Internal_Name
('B'));
8509 Make_Subprogram_Body
(Loc
,
8510 Specification
=> Spec
,
8512 Declarations
=> New_List
(
8513 Make_Object_Declaration
(Loc
,
8514 Defining_Identifier
=> BTemp
,
8515 Constant_Present
=> True,
8516 Object_Definition
=>
8517 New_Occurrence_Of
(Standard_Boolean
, Loc
),
8518 Expression
=> Expr_M
)),
8520 Handled_Statement_Sequence
=>
8521 Make_Handled_Sequence_Of_Statements
(Loc
,
8522 Statements
=> New_List
(
8523 Make_Simple_Return_Statement
(Loc
,
8524 Expression
=> New_Occurrence_Of
(BTemp
, Loc
)))));
8526 -- Insert declaration before freeze node and body after
8528 Insert_Before_And_Analyze
(N
, FDecl
);
8529 Insert_After_And_Analyze
(N
, FBody
);
8533 -- See if we have a static predicate. Note that the answer may be
8534 -- yes even if we have an explicit Dynamic_Predicate present.
8541 if not Is_Scalar_Type
(Typ
) and then not Is_String_Type
(Typ
) then
8544 PS
:= Is_Predicate_Static
(Expr
, Object_Name
);
8547 -- Case where we have a predicate-static aspect
8551 -- We don't set Has_Static_Predicate_Aspect, since we can have
8552 -- any of the three cases (Predicate, Dynamic_Predicate, or
8553 -- Static_Predicate) generating a predicate with an expression
8554 -- that is predicate-static. We just indicate that we have a
8555 -- predicate that can be treated as static.
8557 Set_Has_Static_Predicate
(Typ
);
8559 -- For discrete subtype, build the static predicate list
8561 if Is_Discrete_Type
(Typ
) then
8562 if not Is_Static_Subtype
(Typ
) then
8564 -- This can only happen in the presence of previous
8567 pragma Assert
(Serious_Errors_Detected
> 0);
8571 Build_Discrete_Static_Predicate
(Typ
, Expr
, Object_Name
);
8573 -- If we don't get a static predicate list, it means that we
8574 -- have a case where this is not possible, most typically in
8575 -- the case where we inherit a dynamic predicate. We do not
8576 -- consider this an error, we just leave the predicate as
8577 -- dynamic. But if we do succeed in building the list, then
8578 -- we mark the predicate as static.
8580 if No
(Static_Discrete_Predicate
(Typ
)) then
8581 Set_Has_Static_Predicate
(Typ
, False);
8584 -- For real or string subtype, save predicate expression
8586 elsif Is_Real_Type
(Typ
) or else Is_String_Type
(Typ
) then
8587 Set_Static_Real_Or_String_Predicate
(Typ
, Expr
);
8590 -- Case of dynamic predicate (expression is not predicate-static)
8593 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8594 -- is only set if we have an explicit Dynamic_Predicate aspect
8595 -- given. Here we may simply have a Predicate aspect where the
8596 -- expression happens not to be predicate-static.
8598 -- Emit an error when the predicate is categorized as static
8599 -- but its expression is not predicate-static.
8601 -- First a little fiddling to get a nice location for the
8602 -- message. If the expression is of the form (A and then B),
8603 -- then use the left operand for the Sloc. This avoids getting
8604 -- confused by a call to a higher-level predicate with a less
8605 -- convenient source location.
8608 while Nkind
(EN
) = N_And_Then
loop
8609 EN
:= Left_Opnd
(EN
);
8612 -- Now post appropriate message
8614 if Has_Static_Predicate_Aspect
(Typ
) then
8615 if Is_Scalar_Type
(Typ
) or else Is_String_Type
(Typ
) then
8617 ("expression is not predicate-static (RM 3.2.4(16-22))",
8621 ("static predicate requires scalar or string type", EN
);
8627 end Build_Predicate_Functions
;
8629 -----------------------------------------
8630 -- Check_Aspect_At_End_Of_Declarations --
8631 -----------------------------------------
8633 procedure Check_Aspect_At_End_Of_Declarations
(ASN
: Node_Id
) is
8634 Ent
: constant Entity_Id
:= Entity
(ASN
);
8635 Ident
: constant Node_Id
:= Identifier
(ASN
);
8636 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
8638 End_Decl_Expr
: constant Node_Id
:= Entity
(Ident
);
8639 -- Expression to be analyzed at end of declarations
8641 Freeze_Expr
: constant Node_Id
:= Expression
(ASN
);
8642 -- Expression from call to Check_Aspect_At_Freeze_Point
8644 T
: constant Entity_Id
:= Etype
(Freeze_Expr
);
8645 -- Type required for preanalyze call
8648 -- Set False if error
8650 -- On entry to this procedure, Entity (Ident) contains a copy of the
8651 -- original expression from the aspect, saved for this purpose, and
8652 -- but Expression (Ident) is a preanalyzed copy of the expression,
8653 -- preanalyzed just after the freeze point.
8655 procedure Check_Overloaded_Name
;
8656 -- For aspects whose expression is simply a name, this routine checks if
8657 -- the name is overloaded or not. If so, it verifies there is an
8658 -- interpretation that matches the entity obtained at the freeze point,
8659 -- otherwise the compiler complains.
8661 ---------------------------
8662 -- Check_Overloaded_Name --
8663 ---------------------------
8665 procedure Check_Overloaded_Name
is
8667 if not Is_Overloaded
(End_Decl_Expr
) then
8668 Err
:= not Is_Entity_Name
(End_Decl_Expr
)
8669 or else Entity
(End_Decl_Expr
) /= Entity
(Freeze_Expr
);
8675 Index
: Interp_Index
;
8679 Get_First_Interp
(End_Decl_Expr
, Index
, It
);
8680 while Present
(It
.Typ
) loop
8681 if It
.Nam
= Entity
(Freeze_Expr
) then
8686 Get_Next_Interp
(Index
, It
);
8690 end Check_Overloaded_Name
;
8692 -- Start of processing for Check_Aspect_At_End_Of_Declarations
8695 -- Case of aspects Dimension, Dimension_System and Synchronization
8697 if A_Id
= Aspect_Synchronization
then
8700 -- Case of stream attributes, just have to compare entities. However,
8701 -- the expression is just a name (possibly overloaded), and there may
8702 -- be stream operations declared for unrelated types, so we just need
8703 -- to verify that one of these interpretations is the one available at
8704 -- at the freeze point.
8706 elsif A_Id
= Aspect_Input
or else
8707 A_Id
= Aspect_Output
or else
8708 A_Id
= Aspect_Read
or else
8711 Analyze
(End_Decl_Expr
);
8712 Check_Overloaded_Name
;
8714 elsif A_Id
= Aspect_Variable_Indexing
or else
8715 A_Id
= Aspect_Constant_Indexing
or else
8716 A_Id
= Aspect_Default_Iterator
or else
8717 A_Id
= Aspect_Iterator_Element
8719 -- Make type unfrozen before analysis, to prevent spurious errors
8720 -- about late attributes.
8722 Set_Is_Frozen
(Ent
, False);
8723 Analyze
(End_Decl_Expr
);
8724 Set_Is_Frozen
(Ent
, True);
8726 -- If the end of declarations comes before any other freeze
8727 -- point, the Freeze_Expr is not analyzed: no check needed.
8729 if Analyzed
(Freeze_Expr
) and then not In_Instance
then
8730 Check_Overloaded_Name
;
8738 -- Indicate that the expression comes from an aspect specification,
8739 -- which is used in subsequent analysis even if expansion is off.
8741 Set_Parent
(End_Decl_Expr
, ASN
);
8743 -- In a generic context the aspect expressions have not been
8744 -- preanalyzed, so do it now. There are no conformance checks
8745 -- to perform in this case.
8748 Check_Aspect_At_Freeze_Point
(ASN
);
8751 -- The default values attributes may be defined in the private part,
8752 -- and the analysis of the expression may take place when only the
8753 -- partial view is visible. The expression must be scalar, so use
8754 -- the full view to resolve.
8756 elsif (A_Id
= Aspect_Default_Value
8758 A_Id
= Aspect_Default_Component_Value
)
8759 and then Is_Private_Type
(T
)
8761 Preanalyze_Spec_Expression
(End_Decl_Expr
, Full_View
(T
));
8764 Preanalyze_Spec_Expression
(End_Decl_Expr
, T
);
8767 Err
:= not Fully_Conformant_Expressions
(End_Decl_Expr
, Freeze_Expr
);
8770 -- Output error message if error. Force error on aspect specification
8771 -- even if there is an error on the expression itself.
8775 ("!visibility of aspect for& changes after freeze point",
8778 ("info: & is frozen here, aspects evaluated at this point??",
8779 Freeze_Node
(Ent
), Ent
);
8781 end Check_Aspect_At_End_Of_Declarations
;
8783 ----------------------------------
8784 -- Check_Aspect_At_Freeze_Point --
8785 ----------------------------------
8787 procedure Check_Aspect_At_Freeze_Point
(ASN
: Node_Id
) is
8788 Ident
: constant Node_Id
:= Identifier
(ASN
);
8789 -- Identifier (use Entity field to save expression)
8791 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
8793 T
: Entity_Id
:= Empty
;
8794 -- Type required for preanalyze call
8797 -- On entry to this procedure, Entity (Ident) contains a copy of the
8798 -- original expression from the aspect, saved for this purpose.
8800 -- On exit from this procedure Entity (Ident) is unchanged, still
8801 -- containing that copy, but Expression (Ident) is a preanalyzed copy
8802 -- of the expression, preanalyzed just after the freeze point.
8804 -- Make a copy of the expression to be preanalyzed
8806 Set_Expression
(ASN
, New_Copy_Tree
(Entity
(Ident
)));
8808 -- Find type for preanalyze call
8812 -- No_Aspect should be impossible
8815 raise Program_Error
;
8817 -- Aspects taking an optional boolean argument
8819 when Boolean_Aspects |
8820 Library_Unit_Aspects
=>
8822 T
:= Standard_Boolean
;
8824 -- Aspects corresponding to attribute definition clauses
8826 when Aspect_Address
=>
8827 T
:= RTE
(RE_Address
);
8829 when Aspect_Attach_Handler
=>
8830 T
:= RTE
(RE_Interrupt_ID
);
8832 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order
=>
8833 T
:= RTE
(RE_Bit_Order
);
8835 when Aspect_Convention
=>
8839 T
:= RTE
(RE_CPU_Range
);
8841 -- Default_Component_Value is resolved with the component type
8843 when Aspect_Default_Component_Value
=>
8844 T
:= Component_Type
(Entity
(ASN
));
8846 when Aspect_Default_Storage_Pool
=>
8847 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
8849 -- Default_Value is resolved with the type entity in question
8851 when Aspect_Default_Value
=>
8854 when Aspect_Dispatching_Domain
=>
8855 T
:= RTE
(RE_Dispatching_Domain
);
8857 when Aspect_External_Tag
=>
8858 T
:= Standard_String
;
8860 when Aspect_External_Name
=>
8861 T
:= Standard_String
;
8863 when Aspect_Link_Name
=>
8864 T
:= Standard_String
;
8866 when Aspect_Priority | Aspect_Interrupt_Priority
=>
8867 T
:= Standard_Integer
;
8869 when Aspect_Relative_Deadline
=>
8870 T
:= RTE
(RE_Time_Span
);
8872 when Aspect_Small
=>
8873 T
:= Universal_Real
;
8875 -- For a simple storage pool, we have to retrieve the type of the
8876 -- pool object associated with the aspect's corresponding attribute
8877 -- definition clause.
8879 when Aspect_Simple_Storage_Pool
=>
8880 T
:= Etype
(Expression
(Aspect_Rep_Item
(ASN
)));
8882 when Aspect_Storage_Pool
=>
8883 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
8885 when Aspect_Alignment |
8886 Aspect_Component_Size |
8887 Aspect_Machine_Radix |
8888 Aspect_Object_Size |
8890 Aspect_Storage_Size |
8891 Aspect_Stream_Size |
8892 Aspect_Value_Size
=>
8895 when Aspect_Linker_Section
=>
8896 T
:= Standard_String
;
8898 when Aspect_Synchronization
=>
8901 -- Special case, the expression of these aspects is just an entity
8902 -- that does not need any resolution, so just analyze.
8911 Analyze
(Expression
(ASN
));
8914 -- Same for Iterator aspects, where the expression is a function
8915 -- name. Legality rules are checked separately.
8917 when Aspect_Constant_Indexing |
8918 Aspect_Default_Iterator |
8919 Aspect_Iterator_Element |
8920 Aspect_Variable_Indexing
=>
8921 Analyze
(Expression
(ASN
));
8924 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
8926 when Aspect_Iterable
=>
8930 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, T
);
8935 if Cursor
= Any_Type
then
8939 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
8940 while Present
(Assoc
) loop
8941 Expr
:= Expression
(Assoc
);
8944 if not Error_Posted
(Expr
) then
8945 Resolve_Iterable_Operation
8946 (Expr
, Cursor
, T
, Chars
(First
(Choices
(Assoc
))));
8955 -- Invariant/Predicate take boolean expressions
8957 when Aspect_Dynamic_Predicate |
8960 Aspect_Static_Predicate |
8961 Aspect_Type_Invariant
=>
8962 T
:= Standard_Boolean
;
8964 -- Here is the list of aspects that don't require delay analysis
8966 when Aspect_Abstract_State |
8968 Aspect_Contract_Cases |
8969 Aspect_Default_Initial_Condition |
8972 Aspect_Dimension_System |
8973 Aspect_Extensions_Visible |
8976 Aspect_Implicit_Dereference |
8977 Aspect_Initial_Condition |
8978 Aspect_Initializes |
8979 Aspect_Obsolescent |
8982 Aspect_Postcondition |
8984 Aspect_Precondition |
8985 Aspect_Refined_Depends |
8986 Aspect_Refined_Global |
8987 Aspect_Refined_Post |
8988 Aspect_Refined_State |
8991 raise Program_Error
;
8995 -- Do the preanalyze call
8997 Preanalyze_Spec_Expression
(Expression
(ASN
), T
);
8998 end Check_Aspect_At_Freeze_Point
;
9000 -----------------------------------
9001 -- Check_Constant_Address_Clause --
9002 -----------------------------------
9004 procedure Check_Constant_Address_Clause
9008 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
9009 -- Checks that the given node N represents a name whose 'Address is
9010 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9011 -- address value is the same at the point of declaration of U_Ent and at
9012 -- the time of elaboration of the address clause.
9014 procedure Check_Expr_Constants
(Nod
: Node_Id
);
9015 -- Checks that Nod meets the requirements for a constant address clause
9016 -- in the sense of the enclosing procedure.
9018 procedure Check_List_Constants
(Lst
: List_Id
);
9019 -- Check that all elements of list Lst meet the requirements for a
9020 -- constant address clause in the sense of the enclosing procedure.
9022 -------------------------------
9023 -- Check_At_Constant_Address --
9024 -------------------------------
9026 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
9028 if Is_Entity_Name
(Nod
) then
9029 if Present
(Address_Clause
(Entity
((Nod
)))) then
9031 ("invalid address clause for initialized object &!",
9034 ("address for& cannot" &
9035 " depend on another address clause! (RM 13.1(22))!",
9038 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
9039 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
9042 ("invalid address clause for initialized object &!",
9044 Error_Msg_Node_2
:= U_Ent
;
9046 ("\& must be defined before & (RM 13.1(22))!",
9050 elsif Nkind
(Nod
) = N_Selected_Component
then
9052 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
9055 if (Is_Record_Type
(T
)
9056 and then Has_Discriminants
(T
))
9059 and then Is_Record_Type
(Designated_Type
(T
))
9060 and then Has_Discriminants
(Designated_Type
(T
)))
9063 ("invalid address clause for initialized object &!",
9066 ("\address cannot depend on component" &
9067 " of discriminated record (RM 13.1(22))!",
9070 Check_At_Constant_Address
(Prefix
(Nod
));
9074 elsif Nkind
(Nod
) = N_Indexed_Component
then
9075 Check_At_Constant_Address
(Prefix
(Nod
));
9076 Check_List_Constants
(Expressions
(Nod
));
9079 Check_Expr_Constants
(Nod
);
9081 end Check_At_Constant_Address
;
9083 --------------------------
9084 -- Check_Expr_Constants --
9085 --------------------------
9087 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
9088 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
9089 Ent
: Entity_Id
:= Empty
;
9092 if Nkind
(Nod
) in N_Has_Etype
9093 and then Etype
(Nod
) = Any_Type
9099 when N_Empty | N_Error
=>
9102 when N_Identifier | N_Expanded_Name
=>
9103 Ent
:= Entity
(Nod
);
9105 -- We need to look at the original node if it is different
9106 -- from the node, since we may have rewritten things and
9107 -- substituted an identifier representing the rewrite.
9109 if Original_Node
(Nod
) /= Nod
then
9110 Check_Expr_Constants
(Original_Node
(Nod
));
9112 -- If the node is an object declaration without initial
9113 -- value, some code has been expanded, and the expression
9114 -- is not constant, even if the constituents might be
9115 -- acceptable, as in A'Address + offset.
9117 if Ekind
(Ent
) = E_Variable
9119 Nkind
(Declaration_Node
(Ent
)) = N_Object_Declaration
9121 No
(Expression
(Declaration_Node
(Ent
)))
9124 ("invalid address clause for initialized object &!",
9127 -- If entity is constant, it may be the result of expanding
9128 -- a check. We must verify that its declaration appears
9129 -- before the object in question, else we also reject the
9132 elsif Ekind
(Ent
) = E_Constant
9133 and then In_Same_Source_Unit
(Ent
, U_Ent
)
9134 and then Sloc
(Ent
) > Loc_U_Ent
9137 ("invalid address clause for initialized object &!",
9144 -- Otherwise look at the identifier and see if it is OK
9146 if Ekind_In
(Ent
, E_Named_Integer
, E_Named_Real
)
9147 or else Is_Type
(Ent
)
9151 elsif Ekind_In
(Ent
, E_Constant
, E_In_Parameter
) then
9153 -- This is the case where we must have Ent defined before
9154 -- U_Ent. Clearly if they are in different units this
9155 -- requirement is met since the unit containing Ent is
9156 -- already processed.
9158 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
9161 -- Otherwise location of Ent must be before the location
9162 -- of U_Ent, that's what prior defined means.
9164 elsif Sloc
(Ent
) < Loc_U_Ent
then
9169 ("invalid address clause for initialized object &!",
9171 Error_Msg_Node_2
:= U_Ent
;
9173 ("\& must be defined before & (RM 13.1(22))!",
9177 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9178 Check_Expr_Constants
(Original_Node
(Nod
));
9182 ("invalid address clause for initialized object &!",
9185 if Comes_From_Source
(Ent
) then
9187 ("\reference to variable& not allowed"
9188 & " (RM 13.1(22))!", Nod
, Ent
);
9191 ("non-static expression not allowed"
9192 & " (RM 13.1(22))!", Nod
);
9196 when N_Integer_Literal
=>
9198 -- If this is a rewritten unchecked conversion, in a system
9199 -- where Address is an integer type, always use the base type
9200 -- for a literal value. This is user-friendly and prevents
9201 -- order-of-elaboration issues with instances of unchecked
9204 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9205 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
9208 when N_Real_Literal |
9210 N_Character_Literal
=>
9214 Check_Expr_Constants
(Low_Bound
(Nod
));
9215 Check_Expr_Constants
(High_Bound
(Nod
));
9217 when N_Explicit_Dereference
=>
9218 Check_Expr_Constants
(Prefix
(Nod
));
9220 when N_Indexed_Component
=>
9221 Check_Expr_Constants
(Prefix
(Nod
));
9222 Check_List_Constants
(Expressions
(Nod
));
9225 Check_Expr_Constants
(Prefix
(Nod
));
9226 Check_Expr_Constants
(Discrete_Range
(Nod
));
9228 when N_Selected_Component
=>
9229 Check_Expr_Constants
(Prefix
(Nod
));
9231 when N_Attribute_Reference
=>
9232 if Nam_In
(Attribute_Name
(Nod
), Name_Address
,
9234 Name_Unchecked_Access
,
9235 Name_Unrestricted_Access
)
9237 Check_At_Constant_Address
(Prefix
(Nod
));
9240 Check_Expr_Constants
(Prefix
(Nod
));
9241 Check_List_Constants
(Expressions
(Nod
));
9245 Check_List_Constants
(Component_Associations
(Nod
));
9246 Check_List_Constants
(Expressions
(Nod
));
9248 when N_Component_Association
=>
9249 Check_Expr_Constants
(Expression
(Nod
));
9251 when N_Extension_Aggregate
=>
9252 Check_Expr_Constants
(Ancestor_Part
(Nod
));
9253 Check_List_Constants
(Component_Associations
(Nod
));
9254 Check_List_Constants
(Expressions
(Nod
));
9259 when N_Binary_Op | N_Short_Circuit | N_Membership_Test
=>
9260 Check_Expr_Constants
(Left_Opnd
(Nod
));
9261 Check_Expr_Constants
(Right_Opnd
(Nod
));
9264 Check_Expr_Constants
(Right_Opnd
(Nod
));
9266 when N_Type_Conversion |
9267 N_Qualified_Expression |
9269 N_Unchecked_Type_Conversion
=>
9270 Check_Expr_Constants
(Expression
(Nod
));
9272 when N_Function_Call
=>
9273 if not Is_Pure
(Entity
(Name
(Nod
))) then
9275 ("invalid address clause for initialized object &!",
9279 ("\function & is not pure (RM 13.1(22))!",
9280 Nod
, Entity
(Name
(Nod
)));
9283 Check_List_Constants
(Parameter_Associations
(Nod
));
9286 when N_Parameter_Association
=>
9287 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
9291 ("invalid address clause for initialized object &!",
9294 ("\must be constant defined before& (RM 13.1(22))!",
9297 end Check_Expr_Constants
;
9299 --------------------------
9300 -- Check_List_Constants --
9301 --------------------------
9303 procedure Check_List_Constants
(Lst
: List_Id
) is
9307 if Present
(Lst
) then
9308 Nod1
:= First
(Lst
);
9309 while Present
(Nod1
) loop
9310 Check_Expr_Constants
(Nod1
);
9314 end Check_List_Constants
;
9316 -- Start of processing for Check_Constant_Address_Clause
9319 -- If rep_clauses are to be ignored, no need for legality checks. In
9320 -- particular, no need to pester user about rep clauses that violate the
9321 -- rule on constant addresses, given that these clauses will be removed
9322 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9323 -- we want to relax these checks.
9325 if not Ignore_Rep_Clauses
and not CodePeer_Mode
then
9326 Check_Expr_Constants
(Expr
);
9328 end Check_Constant_Address_Clause
;
9330 ---------------------------
9331 -- Check_Pool_Size_Clash --
9332 ---------------------------
9334 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
) is
9338 -- We need to find out which one came first. Note that in the case of
9339 -- aspects mixed with pragmas there are cases where the processing order
9340 -- is reversed, which is why we do the check here.
9342 if Sloc
(SP
) < Sloc
(SS
) then
9343 Error_Msg_Sloc
:= Sloc
(SP
);
9345 Error_Msg_NE
("Storage_Pool previously given for&#", Post
, Ent
);
9348 Error_Msg_Sloc
:= Sloc
(SS
);
9350 Error_Msg_NE
("Storage_Size previously given for&#", Post
, Ent
);
9354 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post
);
9355 end Check_Pool_Size_Clash
;
9357 ----------------------------------------
9358 -- Check_Record_Representation_Clause --
9359 ----------------------------------------
9361 procedure Check_Record_Representation_Clause
(N
: Node_Id
) is
9362 Loc
: constant Source_Ptr
:= Sloc
(N
);
9363 Ident
: constant Node_Id
:= Identifier
(N
);
9364 Rectype
: Entity_Id
;
9369 Hbit
: Uint
:= Uint_0
;
9373 Max_Bit_So_Far
: Uint
;
9374 -- Records the maximum bit position so far. If all field positions
9375 -- are monotonically increasing, then we can skip the circuit for
9376 -- checking for overlap, since no overlap is possible.
9378 Tagged_Parent
: Entity_Id
:= Empty
;
9379 -- This is set in the case of a derived tagged type for which we have
9380 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9381 -- positioned by record representation clauses). In this case we must
9382 -- check for overlap between components of this tagged type, and the
9383 -- components of its parent. Tagged_Parent will point to this parent
9384 -- type. For all other cases Tagged_Parent is left set to Empty.
9386 Parent_Last_Bit
: Uint
;
9387 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9388 -- last bit position for any field in the parent type. We only need to
9389 -- check overlap for fields starting below this point.
9391 Overlap_Check_Required
: Boolean;
9392 -- Used to keep track of whether or not an overlap check is required
9394 Overlap_Detected
: Boolean := False;
9395 -- Set True if an overlap is detected
9397 Ccount
: Natural := 0;
9398 -- Number of component clauses in record rep clause
9400 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
9401 -- Given two entities for record components or discriminants, checks
9402 -- if they have overlapping component clauses and issues errors if so.
9404 procedure Find_Component
;
9405 -- Finds component entity corresponding to current component clause (in
9406 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9407 -- start/stop bits for the field. If there is no matching component or
9408 -- if the matching component does not have a component clause, then
9409 -- that's an error and Comp is set to Empty, but no error message is
9410 -- issued, since the message was already given. Comp is also set to
9411 -- Empty if the current "component clause" is in fact a pragma.
9413 -----------------------------
9414 -- Check_Component_Overlap --
9415 -----------------------------
9417 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
9418 CC1
: constant Node_Id
:= Component_Clause
(C1_Ent
);
9419 CC2
: constant Node_Id
:= Component_Clause
(C2_Ent
);
9422 if Present
(CC1
) and then Present
(CC2
) then
9424 -- Exclude odd case where we have two tag components in the same
9425 -- record, both at location zero. This seems a bit strange, but
9426 -- it seems to happen in some circumstances, perhaps on an error.
9428 if Nam_In
(Chars
(C1_Ent
), Name_uTag
, Name_uTag
) then
9432 -- Here we check if the two fields overlap
9435 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
9436 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
9437 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
9438 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
9441 if E2
<= S1
or else E1
<= S2
then
9444 Error_Msg_Node_2
:= Component_Name
(CC2
);
9445 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
9446 Error_Msg_Node_1
:= Component_Name
(CC1
);
9448 ("component& overlaps & #", Component_Name
(CC1
));
9449 Overlap_Detected
:= True;
9453 end Check_Component_Overlap
;
9455 --------------------
9456 -- Find_Component --
9457 --------------------
9459 procedure Find_Component
is
9461 procedure Search_Component
(R
: Entity_Id
);
9462 -- Search components of R for a match. If found, Comp is set
9464 ----------------------
9465 -- Search_Component --
9466 ----------------------
9468 procedure Search_Component
(R
: Entity_Id
) is
9470 Comp
:= First_Component_Or_Discriminant
(R
);
9471 while Present
(Comp
) loop
9473 -- Ignore error of attribute name for component name (we
9474 -- already gave an error message for this, so no need to
9477 if Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
9480 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
9483 Next_Component_Or_Discriminant
(Comp
);
9485 end Search_Component
;
9487 -- Start of processing for Find_Component
9490 -- Return with Comp set to Empty if we have a pragma
9492 if Nkind
(CC
) = N_Pragma
then
9497 -- Search current record for matching component
9499 Search_Component
(Rectype
);
9501 -- If not found, maybe component of base type discriminant that is
9502 -- absent from statically constrained first subtype.
9505 Search_Component
(Base_Type
(Rectype
));
9508 -- If no component, or the component does not reference the component
9509 -- clause in question, then there was some previous error for which
9510 -- we already gave a message, so just return with Comp Empty.
9512 if No
(Comp
) or else Component_Clause
(Comp
) /= CC
then
9513 Check_Error_Detected
;
9516 -- Normal case where we have a component clause
9519 Fbit
:= Component_Bit_Offset
(Comp
);
9520 Lbit
:= Fbit
+ Esize
(Comp
) - 1;
9524 -- Start of processing for Check_Record_Representation_Clause
9528 Rectype
:= Entity
(Ident
);
9530 if Rectype
= Any_Type
then
9533 Rectype
:= Underlying_Type
(Rectype
);
9536 -- See if we have a fully repped derived tagged type
9539 PS
: constant Entity_Id
:= Parent_Subtype
(Rectype
);
9542 if Present
(PS
) and then Is_Fully_Repped_Tagged_Type
(PS
) then
9543 Tagged_Parent
:= PS
;
9545 -- Find maximum bit of any component of the parent type
9547 Parent_Last_Bit
:= UI_From_Int
(System_Address_Size
- 1);
9548 Pcomp
:= First_Entity
(Tagged_Parent
);
9549 while Present
(Pcomp
) loop
9550 if Ekind_In
(Pcomp
, E_Discriminant
, E_Component
) then
9551 if Component_Bit_Offset
(Pcomp
) /= No_Uint
9552 and then Known_Static_Esize
(Pcomp
)
9557 Component_Bit_Offset
(Pcomp
) + Esize
(Pcomp
) - 1);
9560 Next_Entity
(Pcomp
);
9566 -- All done if no component clauses
9568 CC
:= First
(Component_Clauses
(N
));
9574 -- If a tag is present, then create a component clause that places it
9575 -- at the start of the record (otherwise gigi may place it after other
9576 -- fields that have rep clauses).
9578 Fent
:= First_Entity
(Rectype
);
9580 if Nkind
(Fent
) = N_Defining_Identifier
9581 and then Chars
(Fent
) = Name_uTag
9583 Set_Component_Bit_Offset
(Fent
, Uint_0
);
9584 Set_Normalized_Position
(Fent
, Uint_0
);
9585 Set_Normalized_First_Bit
(Fent
, Uint_0
);
9586 Set_Normalized_Position_Max
(Fent
, Uint_0
);
9587 Init_Esize
(Fent
, System_Address_Size
);
9589 Set_Component_Clause
(Fent
,
9590 Make_Component_Clause
(Loc
,
9591 Component_Name
=> Make_Identifier
(Loc
, Name_uTag
),
9593 Position
=> Make_Integer_Literal
(Loc
, Uint_0
),
9594 First_Bit
=> Make_Integer_Literal
(Loc
, Uint_0
),
9596 Make_Integer_Literal
(Loc
,
9597 UI_From_Int
(System_Address_Size
))));
9599 Ccount
:= Ccount
+ 1;
9602 Max_Bit_So_Far
:= Uint_Minus_1
;
9603 Overlap_Check_Required
:= False;
9605 -- Process the component clauses
9607 while Present
(CC
) loop
9610 if Present
(Comp
) then
9611 Ccount
:= Ccount
+ 1;
9613 -- We need a full overlap check if record positions non-monotonic
9615 if Fbit
<= Max_Bit_So_Far
then
9616 Overlap_Check_Required
:= True;
9619 Max_Bit_So_Far
:= Lbit
;
9621 -- Check bit position out of range of specified size
9623 if Has_Size_Clause
(Rectype
)
9624 and then RM_Size
(Rectype
) <= Lbit
9627 ("bit number out of range of specified size",
9630 -- Check for overlap with tag component
9633 if Is_Tagged_Type
(Rectype
)
9634 and then Fbit
< System_Address_Size
9637 ("component overlaps tag field of&",
9638 Component_Name
(CC
), Rectype
);
9639 Overlap_Detected
:= True;
9647 -- Check parent overlap if component might overlap parent field
9649 if Present
(Tagged_Parent
) and then Fbit
<= Parent_Last_Bit
then
9650 Pcomp
:= First_Component_Or_Discriminant
(Tagged_Parent
);
9651 while Present
(Pcomp
) loop
9652 if not Is_Tag
(Pcomp
)
9653 and then Chars
(Pcomp
) /= Name_uParent
9655 Check_Component_Overlap
(Comp
, Pcomp
);
9658 Next_Component_Or_Discriminant
(Pcomp
);
9666 -- Now that we have processed all the component clauses, check for
9667 -- overlap. We have to leave this till last, since the components can
9668 -- appear in any arbitrary order in the representation clause.
9670 -- We do not need this check if all specified ranges were monotonic,
9671 -- as recorded by Overlap_Check_Required being False at this stage.
9673 -- This first section checks if there are any overlapping entries at
9674 -- all. It does this by sorting all entries and then seeing if there are
9675 -- any overlaps. If there are none, then that is decisive, but if there
9676 -- are overlaps, they may still be OK (they may result from fields in
9677 -- different variants).
9679 if Overlap_Check_Required
then
9680 Overlap_Check1
: declare
9682 OC_Fbit
: array (0 .. Ccount
) of Uint
;
9683 -- First-bit values for component clauses, the value is the offset
9684 -- of the first bit of the field from start of record. The zero
9685 -- entry is for use in sorting.
9687 OC_Lbit
: array (0 .. Ccount
) of Uint
;
9688 -- Last-bit values for component clauses, the value is the offset
9689 -- of the last bit of the field from start of record. The zero
9690 -- entry is for use in sorting.
9692 OC_Count
: Natural := 0;
9693 -- Count of entries in OC_Fbit and OC_Lbit
9695 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
9696 -- Compare routine for Sort
9698 procedure OC_Move
(From
: Natural; To
: Natural);
9699 -- Move routine for Sort
9701 package Sorting
is new GNAT
.Heap_Sort_G
(OC_Move
, OC_Lt
);
9707 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
9709 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
9716 procedure OC_Move
(From
: Natural; To
: Natural) is
9718 OC_Fbit
(To
) := OC_Fbit
(From
);
9719 OC_Lbit
(To
) := OC_Lbit
(From
);
9722 -- Start of processing for Overlap_Check
9725 CC
:= First
(Component_Clauses
(N
));
9726 while Present
(CC
) loop
9728 -- Exclude component clause already marked in error
9730 if not Error_Posted
(CC
) then
9733 if Present
(Comp
) then
9734 OC_Count
:= OC_Count
+ 1;
9735 OC_Fbit
(OC_Count
) := Fbit
;
9736 OC_Lbit
(OC_Count
) := Lbit
;
9743 Sorting
.Sort
(OC_Count
);
9745 Overlap_Check_Required
:= False;
9746 for J
in 1 .. OC_Count
- 1 loop
9747 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
9748 Overlap_Check_Required
:= True;
9755 -- If Overlap_Check_Required is still True, then we have to do the full
9756 -- scale overlap check, since we have at least two fields that do
9757 -- overlap, and we need to know if that is OK since they are in
9758 -- different variant, or whether we have a definite problem.
9760 if Overlap_Check_Required
then
9761 Overlap_Check2
: declare
9762 C1_Ent
, C2_Ent
: Entity_Id
;
9763 -- Entities of components being checked for overlap
9766 -- Component_List node whose Component_Items are being checked
9769 -- Component declaration for component being checked
9772 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
9774 -- Loop through all components in record. For each component check
9775 -- for overlap with any of the preceding elements on the component
9776 -- list containing the component and also, if the component is in
9777 -- a variant, check against components outside the case structure.
9778 -- This latter test is repeated recursively up the variant tree.
9780 Main_Component_Loop
: while Present
(C1_Ent
) loop
9781 if not Ekind_In
(C1_Ent
, E_Component
, E_Discriminant
) then
9782 goto Continue_Main_Component_Loop
;
9785 -- Skip overlap check if entity has no declaration node. This
9786 -- happens with discriminants in constrained derived types.
9787 -- Possibly we are missing some checks as a result, but that
9788 -- does not seem terribly serious.
9790 if No
(Declaration_Node
(C1_Ent
)) then
9791 goto Continue_Main_Component_Loop
;
9794 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
9796 -- Loop through component lists that need checking. Check the
9797 -- current component list and all lists in variants above us.
9799 Component_List_Loop
: loop
9801 -- If derived type definition, go to full declaration
9802 -- If at outer level, check discriminants if there are any.
9804 if Nkind
(Clist
) = N_Derived_Type_Definition
then
9805 Clist
:= Parent
(Clist
);
9808 -- Outer level of record definition, check discriminants
9810 if Nkind_In
(Clist
, N_Full_Type_Declaration
,
9811 N_Private_Type_Declaration
)
9813 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
9815 First_Discriminant
(Defining_Identifier
(Clist
));
9816 while Present
(C2_Ent
) loop
9817 exit when C1_Ent
= C2_Ent
;
9818 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
9819 Next_Discriminant
(C2_Ent
);
9823 -- Record extension case
9825 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
9828 -- Otherwise check one component list
9831 Citem
:= First
(Component_Items
(Clist
));
9832 while Present
(Citem
) loop
9833 if Nkind
(Citem
) = N_Component_Declaration
then
9834 C2_Ent
:= Defining_Identifier
(Citem
);
9835 exit when C1_Ent
= C2_Ent
;
9836 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
9843 -- Check for variants above us (the parent of the Clist can
9844 -- be a variant, in which case its parent is a variant part,
9845 -- and the parent of the variant part is a component list
9846 -- whose components must all be checked against the current
9847 -- component for overlap).
9849 if Nkind
(Parent
(Clist
)) = N_Variant
then
9850 Clist
:= Parent
(Parent
(Parent
(Clist
)));
9852 -- Check for possible discriminant part in record, this
9853 -- is treated essentially as another level in the
9854 -- recursion. For this case the parent of the component
9855 -- list is the record definition, and its parent is the
9856 -- full type declaration containing the discriminant
9859 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
9860 Clist
:= Parent
(Parent
((Clist
)));
9862 -- If neither of these two cases, we are at the top of
9866 exit Component_List_Loop
;
9868 end loop Component_List_Loop
;
9870 <<Continue_Main_Component_Loop
>>
9871 Next_Entity
(C1_Ent
);
9873 end loop Main_Component_Loop
;
9877 -- The following circuit deals with warning on record holes (gaps). We
9878 -- skip this check if overlap was detected, since it makes sense for the
9879 -- programmer to fix this illegality before worrying about warnings.
9881 if not Overlap_Detected
and Warn_On_Record_Holes
then
9882 Record_Hole_Check
: declare
9883 Decl
: constant Node_Id
:= Declaration_Node
(Base_Type
(Rectype
));
9884 -- Full declaration of record type
9886 procedure Check_Component_List
9890 -- Check component list CL for holes. The starting bit should be
9891 -- Sbit. which is zero for the main record component list and set
9892 -- appropriately for recursive calls for variants. DS is set to
9893 -- a list of discriminant specifications to be included in the
9894 -- consideration of components. It is No_List if none to consider.
9896 --------------------------
9897 -- Check_Component_List --
9898 --------------------------
9900 procedure Check_Component_List
9908 Compl
:= Integer (List_Length
(Component_Items
(CL
)));
9910 if DS
/= No_List
then
9911 Compl
:= Compl
+ Integer (List_Length
(DS
));
9915 Comps
: array (Natural range 0 .. Compl
) of Entity_Id
;
9916 -- Gather components (zero entry is for sort routine)
9918 Ncomps
: Natural := 0;
9919 -- Number of entries stored in Comps (starting at Comps (1))
9922 -- One component item or discriminant specification
9925 -- Starting bit for next component
9933 function Lt
(Op1
, Op2
: Natural) return Boolean;
9934 -- Compare routine for Sort
9936 procedure Move
(From
: Natural; To
: Natural);
9937 -- Move routine for Sort
9939 package Sorting
is new GNAT
.Heap_Sort_G
(Move
, Lt
);
9945 function Lt
(Op1
, Op2
: Natural) return Boolean is
9947 return Component_Bit_Offset
(Comps
(Op1
))
9949 Component_Bit_Offset
(Comps
(Op2
));
9956 procedure Move
(From
: Natural; To
: Natural) is
9958 Comps
(To
) := Comps
(From
);
9962 -- Gather discriminants into Comp
9964 if DS
/= No_List
then
9965 Citem
:= First
(DS
);
9966 while Present
(Citem
) loop
9967 if Nkind
(Citem
) = N_Discriminant_Specification
then
9969 Ent
: constant Entity_Id
:=
9970 Defining_Identifier
(Citem
);
9972 if Ekind
(Ent
) = E_Discriminant
then
9973 Ncomps
:= Ncomps
+ 1;
9974 Comps
(Ncomps
) := Ent
;
9983 -- Gather component entities into Comp
9985 Citem
:= First
(Component_Items
(CL
));
9986 while Present
(Citem
) loop
9987 if Nkind
(Citem
) = N_Component_Declaration
then
9988 Ncomps
:= Ncomps
+ 1;
9989 Comps
(Ncomps
) := Defining_Identifier
(Citem
);
9995 -- Now sort the component entities based on the first bit.
9996 -- Note we already know there are no overlapping components.
9998 Sorting
.Sort
(Ncomps
);
10000 -- Loop through entries checking for holes
10003 for J
in 1 .. Ncomps
loop
10005 Error_Msg_Uint_1
:= Component_Bit_Offset
(CEnt
) - Nbit
;
10007 if Error_Msg_Uint_1
> 0 then
10009 ("?H?^-bit gap before component&",
10010 Component_Name
(Component_Clause
(CEnt
)), CEnt
);
10013 Nbit
:= Component_Bit_Offset
(CEnt
) + Esize
(CEnt
);
10016 -- Process variant parts recursively if present
10018 if Present
(Variant_Part
(CL
)) then
10019 Variant
:= First
(Variants
(Variant_Part
(CL
)));
10020 while Present
(Variant
) loop
10021 Check_Component_List
10022 (Component_List
(Variant
), Nbit
, No_List
);
10027 end Check_Component_List
;
10029 -- Start of processing for Record_Hole_Check
10036 if Is_Tagged_Type
(Rectype
) then
10037 Sbit
:= UI_From_Int
(System_Address_Size
);
10042 if Nkind
(Decl
) = N_Full_Type_Declaration
10043 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
10045 Check_Component_List
10046 (Component_List
(Type_Definition
(Decl
)),
10048 Discriminant_Specifications
(Decl
));
10051 end Record_Hole_Check
;
10054 -- For records that have component clauses for all components, and whose
10055 -- size is less than or equal to 32, we need to know the size in the
10056 -- front end to activate possible packed array processing where the
10057 -- component type is a record.
10059 -- At this stage Hbit + 1 represents the first unused bit from all the
10060 -- component clauses processed, so if the component clauses are
10061 -- complete, then this is the length of the record.
10063 -- For records longer than System.Storage_Unit, and for those where not
10064 -- all components have component clauses, the back end determines the
10065 -- length (it may for example be appropriate to round up the size
10066 -- to some convenient boundary, based on alignment considerations, etc).
10068 if Unknown_RM_Size
(Rectype
) and then Hbit
+ 1 <= 32 then
10070 -- Nothing to do if at least one component has no component clause
10072 Comp
:= First_Component_Or_Discriminant
(Rectype
);
10073 while Present
(Comp
) loop
10074 exit when No
(Component_Clause
(Comp
));
10075 Next_Component_Or_Discriminant
(Comp
);
10078 -- If we fall out of loop, all components have component clauses
10079 -- and so we can set the size to the maximum value.
10082 Set_RM_Size
(Rectype
, Hbit
+ 1);
10085 end Check_Record_Representation_Clause
;
10091 procedure Check_Size
10095 Biased
: out Boolean)
10097 UT
: constant Entity_Id
:= Underlying_Type
(T
);
10103 -- Reject patently improper size values.
10105 if Is_Elementary_Type
(T
)
10106 and then Siz
> UI_From_Int
(Int
'Last)
10108 Error_Msg_N
("Size value too large for elementary type", N
);
10110 if Nkind
(Original_Node
(N
)) = N_Op_Expon
then
10112 ("\maybe '* was meant, rather than '*'*", Original_Node
(N
));
10116 -- Dismiss generic types
10118 if Is_Generic_Type
(T
)
10120 Is_Generic_Type
(UT
)
10122 Is_Generic_Type
(Root_Type
(UT
))
10126 -- Guard against previous errors
10128 elsif No
(UT
) or else UT
= Any_Type
then
10129 Check_Error_Detected
;
10132 -- Check case of bit packed array
10134 elsif Is_Array_Type
(UT
)
10135 and then Known_Static_Component_Size
(UT
)
10136 and then Is_Bit_Packed_Array
(UT
)
10144 Asiz
:= Component_Size
(UT
);
10145 Indx
:= First_Index
(UT
);
10147 Ityp
:= Etype
(Indx
);
10149 -- If non-static bound, then we are not in the business of
10150 -- trying to check the length, and indeed an error will be
10151 -- issued elsewhere, since sizes of non-static array types
10152 -- cannot be set implicitly or explicitly.
10154 if not Is_OK_Static_Subtype
(Ityp
) then
10158 -- Otherwise accumulate next dimension
10160 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
10161 Expr_Value
(Type_Low_Bound
(Ityp
)) +
10165 exit when No
(Indx
);
10168 if Asiz
<= Siz
then
10172 Error_Msg_Uint_1
:= Asiz
;
10174 ("size for& too small, minimum allowed is ^", N
, T
);
10175 Set_Esize
(T
, Asiz
);
10176 Set_RM_Size
(T
, Asiz
);
10180 -- All other composite types are ignored
10182 elsif Is_Composite_Type
(UT
) then
10185 -- For fixed-point types, don't check minimum if type is not frozen,
10186 -- since we don't know all the characteristics of the type that can
10187 -- affect the size (e.g. a specified small) till freeze time.
10189 elsif Is_Fixed_Point_Type
(UT
)
10190 and then not Is_Frozen
(UT
)
10194 -- Cases for which a minimum check is required
10197 -- Ignore if specified size is correct for the type
10199 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
10203 -- Otherwise get minimum size
10205 M
:= UI_From_Int
(Minimum_Size
(UT
));
10209 -- Size is less than minimum size, but one possibility remains
10210 -- that we can manage with the new size if we bias the type.
10212 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
10215 Error_Msg_Uint_1
:= M
;
10217 ("size for& too small, minimum allowed is ^", N
, T
);
10219 Set_RM_Size
(T
, M
);
10227 --------------------------
10228 -- Freeze_Entity_Checks --
10229 --------------------------
10231 procedure Freeze_Entity_Checks
(N
: Node_Id
) is
10232 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
);
10233 -- Inspect the primitive operations of type Typ and hide all pairs of
10234 -- implicitly declared non-overridden non-fully conformant homographs
10235 -- (Ada RM 8.3 12.3/2).
10237 -------------------------------------
10238 -- Hide_Non_Overridden_Subprograms --
10239 -------------------------------------
10241 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
) is
10242 procedure Hide_Matching_Homographs
10243 (Subp_Id
: Entity_Id
;
10244 Start_Elmt
: Elmt_Id
);
10245 -- Inspect a list of primitive operations starting with Start_Elmt
10246 -- and find matching implicitly declared non-overridden non-fully
10247 -- conformant homographs of Subp_Id. If found, all matches along
10248 -- with Subp_Id are hidden from all visibility.
10250 function Is_Non_Overridden_Or_Null_Procedure
10251 (Subp_Id
: Entity_Id
) return Boolean;
10252 -- Determine whether subprogram Subp_Id is implicitly declared non-
10253 -- overridden subprogram or an implicitly declared null procedure.
10255 ------------------------------
10256 -- Hide_Matching_Homographs --
10257 ------------------------------
10259 procedure Hide_Matching_Homographs
10260 (Subp_Id
: Entity_Id
;
10261 Start_Elmt
: Elmt_Id
)
10264 Prim_Elmt
: Elmt_Id
;
10267 Prim_Elmt
:= Start_Elmt
;
10268 while Present
(Prim_Elmt
) loop
10269 Prim
:= Node
(Prim_Elmt
);
10271 -- The current primitive is implicitly declared non-overridden
10272 -- non-fully conformant homograph of Subp_Id. Both subprograms
10273 -- must be hidden from visibility.
10275 if Chars
(Prim
) = Chars
(Subp_Id
)
10276 and then Is_Non_Overridden_Or_Null_Procedure
(Prim
)
10277 and then not Fully_Conformant
(Prim
, Subp_Id
)
10279 Set_Is_Hidden_Non_Overridden_Subpgm
(Prim
);
10280 Set_Is_Immediately_Visible
(Prim
, False);
10281 Set_Is_Potentially_Use_Visible
(Prim
, False);
10283 Set_Is_Hidden_Non_Overridden_Subpgm
(Subp_Id
);
10284 Set_Is_Immediately_Visible
(Subp_Id
, False);
10285 Set_Is_Potentially_Use_Visible
(Subp_Id
, False);
10288 Next_Elmt
(Prim_Elmt
);
10290 end Hide_Matching_Homographs
;
10292 -----------------------------------------
10293 -- Is_Non_Overridden_Or_Null_Procedure --
10294 -----------------------------------------
10296 function Is_Non_Overridden_Or_Null_Procedure
10297 (Subp_Id
: Entity_Id
) return Boolean
10299 Alias_Id
: Entity_Id
;
10302 -- The subprogram is inherited (implicitly declared), it does not
10303 -- override and does not cover a primitive of an interface.
10305 if Ekind_In
(Subp_Id
, E_Function
, E_Procedure
)
10306 and then Present
(Alias
(Subp_Id
))
10307 and then No
(Interface_Alias
(Subp_Id
))
10308 and then No
(Overridden_Operation
(Subp_Id
))
10310 Alias_Id
:= Alias
(Subp_Id
);
10312 if Requires_Overriding
(Alias_Id
) then
10315 elsif Nkind
(Parent
(Alias_Id
)) = N_Procedure_Specification
10316 and then Null_Present
(Parent
(Alias_Id
))
10323 end Is_Non_Overridden_Or_Null_Procedure
;
10327 Prim_Ops
: constant Elist_Id
:= Direct_Primitive_Operations
(Typ
);
10329 Prim_Elmt
: Elmt_Id
;
10331 -- Start of processing for Hide_Non_Overridden_Subprograms
10334 -- Inspect the list of primitives looking for non-overridden
10337 if Present
(Prim_Ops
) then
10338 Prim_Elmt
:= First_Elmt
(Prim_Ops
);
10339 while Present
(Prim_Elmt
) loop
10340 Prim
:= Node
(Prim_Elmt
);
10341 Next_Elmt
(Prim_Elmt
);
10343 if Is_Non_Overridden_Or_Null_Procedure
(Prim
) then
10344 Hide_Matching_Homographs
10346 Start_Elmt
=> Prim_Elmt
);
10350 end Hide_Non_Overridden_Subprograms
;
10352 ---------------------
10353 -- Local variables --
10354 ---------------------
10356 E
: constant Entity_Id
:= Entity
(N
);
10358 Non_Generic_Case
: constant Boolean := Nkind
(N
) = N_Freeze_Entity
;
10359 -- True in non-generic case. Some of the processing here is skipped
10360 -- for the generic case since it is not needed. Basically in the
10361 -- generic case, we only need to do stuff that might generate error
10362 -- messages or warnings.
10364 -- Start of processing for Freeze_Entity_Checks
10367 -- Remember that we are processing a freezing entity. Required to
10368 -- ensure correct decoration of internal entities associated with
10369 -- interfaces (see New_Overloaded_Entity).
10371 Inside_Freezing_Actions
:= Inside_Freezing_Actions
+ 1;
10373 -- For tagged types covering interfaces add internal entities that link
10374 -- the primitives of the interfaces with the primitives that cover them.
10375 -- Note: These entities were originally generated only when generating
10376 -- code because their main purpose was to provide support to initialize
10377 -- the secondary dispatch tables. They are now generated also when
10378 -- compiling with no code generation to provide ASIS the relationship
10379 -- between interface primitives and tagged type primitives. They are
10380 -- also used to locate primitives covering interfaces when processing
10381 -- generics (see Derive_Subprograms).
10383 -- This is not needed in the generic case
10385 if Ada_Version
>= Ada_2005
10386 and then Non_Generic_Case
10387 and then Ekind
(E
) = E_Record_Type
10388 and then Is_Tagged_Type
(E
)
10389 and then not Is_Interface
(E
)
10390 and then Has_Interfaces
(E
)
10392 -- This would be a good common place to call the routine that checks
10393 -- overriding of interface primitives (and thus factorize calls to
10394 -- Check_Abstract_Overriding located at different contexts in the
10395 -- compiler). However, this is not possible because it causes
10396 -- spurious errors in case of late overriding.
10398 Add_Internal_Interface_Entities
(E
);
10401 -- After all forms of overriding have been resolved, a tagged type may
10402 -- be left with a set of implicitly declared and possibly erroneous
10403 -- abstract subprograms, null procedures and subprograms that require
10404 -- overriding. If this set contains fully conformat homographs, then one
10405 -- is chosen arbitrarily (already done during resolution), otherwise all
10406 -- remaining non-fully conformant homographs are hidden from visibility
10407 -- (Ada RM 8.3 12.3/2).
10409 if Is_Tagged_Type
(E
) then
10410 Hide_Non_Overridden_Subprograms
(E
);
10415 if Ekind
(E
) = E_Record_Type
10416 and then Is_CPP_Class
(E
)
10417 and then Is_Tagged_Type
(E
)
10418 and then Tagged_Type_Expansion
10420 if CPP_Num_Prims
(E
) = 0 then
10422 -- If the CPP type has user defined components then it must import
10423 -- primitives from C++. This is required because if the C++ class
10424 -- has no primitives then the C++ compiler does not added the _tag
10425 -- component to the type.
10427 if First_Entity
(E
) /= Last_Entity
(E
) then
10429 ("'C'P'P type must import at least one primitive from C++??",
10434 -- Check that all its primitives are abstract or imported from C++.
10435 -- Check also availability of the C++ constructor.
10438 Has_Constructors
: constant Boolean := Has_CPP_Constructors
(E
);
10440 Error_Reported
: Boolean := False;
10444 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10445 while Present
(Elmt
) loop
10446 Prim
:= Node
(Elmt
);
10448 if Comes_From_Source
(Prim
) then
10449 if Is_Abstract_Subprogram
(Prim
) then
10452 elsif not Is_Imported
(Prim
)
10453 or else Convention
(Prim
) /= Convention_CPP
10456 ("primitives of 'C'P'P types must be imported from C++ "
10457 & "or abstract??", Prim
);
10459 elsif not Has_Constructors
10460 and then not Error_Reported
10462 Error_Msg_Name_1
:= Chars
(E
);
10464 ("??'C'P'P constructor required for type %", Prim
);
10465 Error_Reported
:= True;
10474 -- Check Ada derivation of CPP type
10476 if Expander_Active
-- why? losing errors in -gnatc mode???
10477 and then Present
(Etype
(E
)) -- defend against errors
10478 and then Tagged_Type_Expansion
10479 and then Ekind
(E
) = E_Record_Type
10480 and then Etype
(E
) /= E
10481 and then Is_CPP_Class
(Etype
(E
))
10482 and then CPP_Num_Prims
(Etype
(E
)) > 0
10483 and then not Is_CPP_Class
(E
)
10484 and then not Has_CPP_Constructors
(Etype
(E
))
10486 -- If the parent has C++ primitives but it has no constructor then
10487 -- check that all the primitives are overridden in this derivation;
10488 -- otherwise the constructor of the parent is needed to build the
10496 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10497 while Present
(Elmt
) loop
10498 Prim
:= Node
(Elmt
);
10500 if not Is_Abstract_Subprogram
(Prim
)
10501 and then No
(Interface_Alias
(Prim
))
10502 and then Find_Dispatching_Type
(Ultimate_Alias
(Prim
)) /= E
10504 Error_Msg_Name_1
:= Chars
(Etype
(E
));
10506 ("'C'P'P constructor required for parent type %", E
);
10515 Inside_Freezing_Actions
:= Inside_Freezing_Actions
- 1;
10517 -- If we have a type with predicates, build predicate function. This
10518 -- is not needed in the generic case, and is not needed within TSS
10519 -- subprograms and other predefined primitives.
10521 if Non_Generic_Case
10522 and then Is_Type
(E
)
10523 and then Has_Predicates
(E
)
10524 and then not Within_Internal_Subprogram
10526 Build_Predicate_Functions
(E
, N
);
10529 -- If type has delayed aspects, this is where we do the preanalysis at
10530 -- the freeze point, as part of the consistent visibility check. Note
10531 -- that this must be done after calling Build_Predicate_Functions or
10532 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10533 -- the subtype name in the saved expression so that they will not cause
10534 -- trouble in the preanalysis.
10536 -- This is also not needed in the generic case
10538 if Non_Generic_Case
10539 and then Has_Delayed_Aspects
(E
)
10540 and then Scope
(E
) = Current_Scope
10542 -- Retrieve the visibility to the discriminants in order to properly
10543 -- analyze the aspects.
10545 Push_Scope_And_Install_Discriminants
(E
);
10551 -- Look for aspect specification entries for this entity
10553 Ritem
:= First_Rep_Item
(E
);
10554 while Present
(Ritem
) loop
10555 if Nkind
(Ritem
) = N_Aspect_Specification
10556 and then Entity
(Ritem
) = E
10557 and then Is_Delayed_Aspect
(Ritem
)
10559 Check_Aspect_At_Freeze_Point
(Ritem
);
10562 Next_Rep_Item
(Ritem
);
10566 Uninstall_Discriminants_And_Pop_Scope
(E
);
10569 -- For a record type, deal with variant parts. This has to be delayed
10570 -- to this point, because of the issue of statically predicated
10571 -- subtypes, which we have to ensure are frozen before checking
10572 -- choices, since we need to have the static choice list set.
10574 if Is_Record_Type
(E
) then
10575 Check_Variant_Part
: declare
10576 D
: constant Node_Id
:= Declaration_Node
(E
);
10581 Others_Present
: Boolean;
10582 pragma Warnings
(Off
, Others_Present
);
10583 -- Indicates others present, not used in this case
10585 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
10586 -- Error routine invoked by the generic instantiation below when
10587 -- the variant part has a non static choice.
10589 procedure Process_Declarations
(Variant
: Node_Id
);
10590 -- Processes declarations associated with a variant. We analyzed
10591 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10592 -- but we still need the recursive call to Check_Choices for any
10593 -- nested variant to get its choices properly processed. This is
10594 -- also where we expand out the choices if expansion is active.
10596 package Variant_Choices_Processing
is new
10597 Generic_Check_Choices
10598 (Process_Empty_Choice
=> No_OP
,
10599 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
10600 Process_Associated_Node
=> Process_Declarations
);
10601 use Variant_Choices_Processing
;
10603 -----------------------------
10604 -- Non_Static_Choice_Error --
10605 -----------------------------
10607 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
10609 Flag_Non_Static_Expr
10610 ("choice given in variant part is not static!", Choice
);
10611 end Non_Static_Choice_Error
;
10613 --------------------------
10614 -- Process_Declarations --
10615 --------------------------
10617 procedure Process_Declarations
(Variant
: Node_Id
) is
10618 CL
: constant Node_Id
:= Component_List
(Variant
);
10622 -- Check for static predicate present in this variant
10624 if Has_SP_Choice
(Variant
) then
10626 -- Here we expand. You might expect to find this call in
10627 -- Expand_N_Variant_Part, but that is called when we first
10628 -- see the variant part, and we cannot do this expansion
10629 -- earlier than the freeze point, since for statically
10630 -- predicated subtypes, the predicate is not known till
10631 -- the freeze point.
10633 -- Furthermore, we do this expansion even if the expander
10634 -- is not active, because other semantic processing, e.g.
10635 -- for aggregates, requires the expanded list of choices.
10637 -- If the expander is not active, then we can't just clobber
10638 -- the list since it would invalidate the ASIS -gnatct tree.
10639 -- So we have to rewrite the variant part with a Rewrite
10640 -- call that replaces it with a copy and clobber the copy.
10642 if not Expander_Active
then
10644 NewV
: constant Node_Id
:= New_Copy
(Variant
);
10646 Set_Discrete_Choices
10647 (NewV
, New_Copy_List
(Discrete_Choices
(Variant
)));
10648 Rewrite
(Variant
, NewV
);
10652 Expand_Static_Predicates_In_Choices
(Variant
);
10655 -- We don't need to worry about the declarations in the variant
10656 -- (since they were analyzed by Analyze_Choices when we first
10657 -- encountered the variant), but we do need to take care of
10658 -- expansion of any nested variants.
10660 if not Null_Present
(CL
) then
10661 VP
:= Variant_Part
(CL
);
10663 if Present
(VP
) then
10665 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
10668 end Process_Declarations
;
10670 -- Start of processing for Check_Variant_Part
10673 -- Find component list
10677 if Nkind
(D
) = N_Full_Type_Declaration
then
10678 T
:= Type_Definition
(D
);
10680 if Nkind
(T
) = N_Record_Definition
then
10681 C
:= Component_List
(T
);
10683 elsif Nkind
(T
) = N_Derived_Type_Definition
10684 and then Present
(Record_Extension_Part
(T
))
10686 C
:= Component_List
(Record_Extension_Part
(T
));
10690 -- Case of variant part present
10692 if Present
(C
) and then Present
(Variant_Part
(C
)) then
10693 VP
:= Variant_Part
(C
);
10698 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
10700 -- If the last variant does not contain the Others choice,
10701 -- replace it with an N_Others_Choice node since Gigi always
10702 -- wants an Others. Note that we do not bother to call Analyze
10703 -- on the modified variant part, since its only effect would be
10704 -- to compute the Others_Discrete_Choices node laboriously, and
10705 -- of course we already know the list of choices corresponding
10706 -- to the others choice (it's the list we're replacing).
10708 -- We only want to do this if the expander is active, since
10709 -- we do not want to clobber the ASIS tree.
10711 if Expander_Active
then
10713 Last_Var
: constant Node_Id
:=
10714 Last_Non_Pragma
(Variants
(VP
));
10716 Others_Node
: Node_Id
;
10719 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /=
10722 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
10723 Set_Others_Discrete_Choices
10724 (Others_Node
, Discrete_Choices
(Last_Var
));
10725 Set_Discrete_Choices
10726 (Last_Var
, New_List
(Others_Node
));
10731 end Check_Variant_Part
;
10733 end Freeze_Entity_Checks
;
10735 -------------------------
10736 -- Get_Alignment_Value --
10737 -------------------------
10739 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
10740 Align
: constant Uint
:= Static_Integer
(Expr
);
10743 if Align
= No_Uint
then
10746 elsif Align
<= 0 then
10747 Error_Msg_N
("alignment value must be positive", Expr
);
10751 for J
in Int
range 0 .. 64 loop
10753 M
: constant Uint
:= Uint_2
** J
;
10756 exit when M
= Align
;
10760 ("alignment value must be power of 2", Expr
);
10768 end Get_Alignment_Value
;
10770 -------------------------------------
10771 -- Inherit_Aspects_At_Freeze_Point --
10772 -------------------------------------
10774 procedure Inherit_Aspects_At_Freeze_Point
(Typ
: Entity_Id
) is
10775 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10776 (Rep_Item
: Node_Id
) return Boolean;
10777 -- This routine checks if Rep_Item is either a pragma or an aspect
10778 -- specification node whose correponding pragma (if any) is present in
10779 -- the Rep Item chain of the entity it has been specified to.
10781 --------------------------------------------------
10782 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
10783 --------------------------------------------------
10785 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10786 (Rep_Item
: Node_Id
) return Boolean
10790 Nkind
(Rep_Item
) = N_Pragma
10791 or else Present_In_Rep_Item
10792 (Entity
(Rep_Item
), Aspect_Rep_Item
(Rep_Item
));
10793 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
;
10795 -- Start of processing for Inherit_Aspects_At_Freeze_Point
10798 -- A representation item is either subtype-specific (Size and Alignment
10799 -- clauses) or type-related (all others). Subtype-specific aspects may
10800 -- differ for different subtypes of the same type (RM 13.1.8).
10802 -- A derived type inherits each type-related representation aspect of
10803 -- its parent type that was directly specified before the declaration of
10804 -- the derived type (RM 13.1.15).
10806 -- A derived subtype inherits each subtype-specific representation
10807 -- aspect of its parent subtype that was directly specified before the
10808 -- declaration of the derived type (RM 13.1.15).
10810 -- The general processing involves inheriting a representation aspect
10811 -- from a parent type whenever the first rep item (aspect specification,
10812 -- attribute definition clause, pragma) corresponding to the given
10813 -- representation aspect in the rep item chain of Typ, if any, isn't
10814 -- directly specified to Typ but to one of its parents.
10816 -- ??? Note that, for now, just a limited number of representation
10817 -- aspects have been inherited here so far. Many of them are
10818 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
10819 -- a non- exhaustive list of aspects that likely also need to
10820 -- be moved to this routine: Alignment, Component_Alignment,
10821 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
10822 -- Preelaborable_Initialization, RM_Size and Small.
10824 -- In addition, Convention must be propagated from base type to subtype,
10825 -- because the subtype may have been declared on an incomplete view.
10827 if Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
then
10833 if not Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
, False)
10834 and then Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
)
10835 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10836 (Get_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
))
10838 Set_Is_Ada_2005_Only
(Typ
);
10843 if not Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
, False)
10844 and then Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
)
10845 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10846 (Get_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
))
10848 Set_Is_Ada_2012_Only
(Typ
);
10853 if not Has_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
, False)
10854 and then Has_Rep_Pragma
(Typ
, Name_Atomic
, Name_Shared
)
10855 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10856 (Get_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
))
10858 Set_Is_Atomic
(Typ
);
10859 Set_Treat_As_Volatile
(Typ
);
10860 Set_Is_Volatile
(Typ
);
10865 if Is_Record_Type
(Typ
)
10866 and then Typ
/= Base_Type
(Typ
) and then Is_Frozen
(Base_Type
(Typ
))
10868 Set_Convention
(Typ
, Convention
(Base_Type
(Typ
)));
10871 -- Default_Component_Value
10873 if Is_Array_Type
(Typ
)
10874 and then Is_Base_Type
(Typ
)
10875 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
, False)
10876 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
)
10878 Set_Default_Aspect_Component_Value
(Typ
,
10879 Default_Aspect_Component_Value
10880 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Component_Value
))));
10885 if Is_Scalar_Type
(Typ
)
10886 and then Is_Base_Type
(Typ
)
10887 and then Has_Rep_Item
(Typ
, Name_Default_Value
, False)
10888 and then Has_Rep_Item
(Typ
, Name_Default_Value
)
10890 Set_Default_Aspect_Value
(Typ
,
10891 Default_Aspect_Value
10892 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Value
))));
10897 if not Has_Rep_Item
(Typ
, Name_Discard_Names
, False)
10898 and then Has_Rep_Item
(Typ
, Name_Discard_Names
)
10899 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10900 (Get_Rep_Item
(Typ
, Name_Discard_Names
))
10902 Set_Discard_Names
(Typ
);
10907 if not Has_Rep_Item
(Typ
, Name_Invariant
, False)
10908 and then Has_Rep_Item
(Typ
, Name_Invariant
)
10909 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10910 (Get_Rep_Item
(Typ
, Name_Invariant
))
10912 Set_Has_Invariants
(Typ
);
10914 if Class_Present
(Get_Rep_Item
(Typ
, Name_Invariant
)) then
10915 Set_Has_Inheritable_Invariants
(Typ
);
10918 -- If we have a subtype with invariants, whose base type does not have
10919 -- invariants, copy these invariants to the base type. This happens for
10920 -- the case of implicit base types created for scalar and array types.
10922 elsif Has_Invariants
(Typ
)
10923 and then not Has_Invariants
(Base_Type
(Typ
))
10925 Set_Has_Invariants
(Base_Type
(Typ
));
10926 Set_Invariant_Procedure
(Base_Type
(Typ
), Invariant_Procedure
(Typ
));
10931 if not Has_Rep_Item
(Typ
, Name_Volatile
, False)
10932 and then Has_Rep_Item
(Typ
, Name_Volatile
)
10933 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10934 (Get_Rep_Item
(Typ
, Name_Volatile
))
10936 Set_Treat_As_Volatile
(Typ
);
10937 Set_Is_Volatile
(Typ
);
10940 -- Inheritance for derived types only
10942 if Is_Derived_Type
(Typ
) then
10944 Bas_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10945 Imp_Bas_Typ
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
10948 -- Atomic_Components
10950 if not Has_Rep_Item
(Typ
, Name_Atomic_Components
, False)
10951 and then Has_Rep_Item
(Typ
, Name_Atomic_Components
)
10952 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10953 (Get_Rep_Item
(Typ
, Name_Atomic_Components
))
10955 Set_Has_Atomic_Components
(Imp_Bas_Typ
);
10958 -- Volatile_Components
10960 if not Has_Rep_Item
(Typ
, Name_Volatile_Components
, False)
10961 and then Has_Rep_Item
(Typ
, Name_Volatile_Components
)
10962 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10963 (Get_Rep_Item
(Typ
, Name_Volatile_Components
))
10965 Set_Has_Volatile_Components
(Imp_Bas_Typ
);
10968 -- Finalize_Storage_Only
10970 if not Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
, False)
10971 and then Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
)
10973 Set_Finalize_Storage_Only
(Bas_Typ
);
10976 -- Universal_Aliasing
10978 if not Has_Rep_Item
(Typ
, Name_Universal_Aliasing
, False)
10979 and then Has_Rep_Item
(Typ
, Name_Universal_Aliasing
)
10980 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10981 (Get_Rep_Item
(Typ
, Name_Universal_Aliasing
))
10983 Set_Universal_Aliasing
(Imp_Bas_Typ
);
10988 if Is_Record_Type
(Typ
) then
10989 if not Has_Rep_Item
(Typ
, Name_Bit_Order
, False)
10990 and then Has_Rep_Item
(Typ
, Name_Bit_Order
)
10992 Set_Reverse_Bit_Order
(Bas_Typ
,
10993 Reverse_Bit_Order
(Entity
(Name
10994 (Get_Rep_Item
(Typ
, Name_Bit_Order
)))));
10998 -- Scalar_Storage_Order
11000 -- Note: the aspect is specified on a first subtype, but recorded
11001 -- in a flag of the base type!
11003 if (Is_Record_Type
(Typ
) or else Is_Array_Type
(Typ
))
11004 and then Typ
= Bas_Typ
11006 -- For a type extension, always inherit from parent; otherwise
11007 -- inherit if no default applies. Note: we do not check for
11008 -- an explicit rep item on the parent type when inheriting,
11009 -- because the parent SSO may itself have been set by default.
11011 if not Has_Rep_Item
(First_Subtype
(Typ
),
11012 Name_Scalar_Storage_Order
, False)
11013 and then (Is_Tagged_Type
(Bas_Typ
)
11014 or else not (SSO_Set_Low_By_Default
(Bas_Typ
)
11016 SSO_Set_High_By_Default
(Bas_Typ
)))
11018 Set_Reverse_Storage_Order
(Bas_Typ
,
11019 Reverse_Storage_Order
11020 (Implementation_Base_Type
(Etype
(Bas_Typ
))));
11022 -- Clear default SSO indications, since the inherited aspect
11023 -- which was set explicitly overrides the default.
11025 Set_SSO_Set_Low_By_Default
(Bas_Typ
, False);
11026 Set_SSO_Set_High_By_Default
(Bas_Typ
, False);
11031 end Inherit_Aspects_At_Freeze_Point
;
11037 procedure Initialize
is
11039 Address_Clause_Checks
.Init
;
11040 Independence_Checks
.Init
;
11041 Unchecked_Conversions
.Init
;
11044 ---------------------------
11045 -- Install_Discriminants --
11046 ---------------------------
11048 procedure Install_Discriminants
(E
: Entity_Id
) is
11052 Disc
:= First_Discriminant
(E
);
11053 while Present
(Disc
) loop
11054 Prev
:= Current_Entity
(Disc
);
11055 Set_Current_Entity
(Disc
);
11056 Set_Is_Immediately_Visible
(Disc
);
11057 Set_Homonym
(Disc
, Prev
);
11058 Next_Discriminant
(Disc
);
11060 end Install_Discriminants
;
11062 -------------------------
11063 -- Is_Operational_Item --
11064 -------------------------
11066 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
11068 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
11073 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
11075 return Id
= Attribute_Input
11076 or else Id
= Attribute_Output
11077 or else Id
= Attribute_Read
11078 or else Id
= Attribute_Write
11079 or else Id
= Attribute_External_Tag
;
11082 end Is_Operational_Item
;
11084 -------------------------
11085 -- Is_Predicate_Static --
11086 -------------------------
11088 -- Note: the basic legality of the expression has already been checked, so
11089 -- we don't need to worry about cases or ranges on strings for example.
11091 function Is_Predicate_Static
11093 Nam
: Name_Id
) return Boolean
11095 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean;
11096 -- Given a list of case expression alternatives, returns True if all
11097 -- the alternatives are static (have all static choices, and a static
11100 function All_Static_Choices
(L
: List_Id
) return Boolean;
11101 -- Returns true if all elements of the list are OK static choices
11102 -- as defined below for Is_Static_Choice. Used for case expression
11103 -- alternatives and for the right operand of a membership test. An
11104 -- others_choice is static if the corresponding expression is static.
11105 -- The staticness of the bounds is checked separately.
11107 function Is_Static_Choice
(N
: Node_Id
) return Boolean;
11108 -- Returns True if N represents a static choice (static subtype, or
11109 -- static subtype indication, or static expression, or static range).
11111 -- Note that this is a bit more inclusive than we actually need
11112 -- (in particular membership tests do not allow the use of subtype
11113 -- indications). But that doesn't matter, we have already checked
11114 -- that the construct is legal to get this far.
11116 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
11117 pragma Inline
(Is_Type_Ref
);
11118 -- Returns True if N is a reference to the type for the predicate in the
11119 -- expression (i.e. if it is an identifier whose Chars field matches the
11120 -- Nam given in the call). N must not be parenthesized, if the type name
11121 -- appears in parens, this routine will return False.
11123 ----------------------------------
11124 -- All_Static_Case_Alternatives --
11125 ----------------------------------
11127 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean is
11132 while Present
(N
) loop
11133 if not (All_Static_Choices
(Discrete_Choices
(N
))
11134 and then Is_OK_Static_Expression
(Expression
(N
)))
11143 end All_Static_Case_Alternatives
;
11145 ------------------------
11146 -- All_Static_Choices --
11147 ------------------------
11149 function All_Static_Choices
(L
: List_Id
) return Boolean is
11154 while Present
(N
) loop
11155 if not Is_Static_Choice
(N
) then
11163 end All_Static_Choices
;
11165 ----------------------
11166 -- Is_Static_Choice --
11167 ----------------------
11169 function Is_Static_Choice
(N
: Node_Id
) return Boolean is
11171 return Nkind
(N
) = N_Others_Choice
11172 or else Is_OK_Static_Expression
(N
)
11173 or else (Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
))
11174 and then Is_OK_Static_Subtype
(Entity
(N
)))
11175 or else (Nkind
(N
) = N_Subtype_Indication
11176 and then Is_OK_Static_Subtype
(Entity
(N
)))
11177 or else (Nkind
(N
) = N_Range
and then Is_OK_Static_Range
(N
));
11178 end Is_Static_Choice
;
11184 function Is_Type_Ref
(N
: Node_Id
) return Boolean is
11186 return Nkind
(N
) = N_Identifier
11187 and then Chars
(N
) = Nam
11188 and then Paren_Count
(N
) = 0;
11191 -- Start of processing for Is_Predicate_Static
11194 -- Predicate_Static means one of the following holds. Numbers are the
11195 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11197 -- 16: A static expression
11199 if Is_OK_Static_Expression
(Expr
) then
11202 -- 17: A membership test whose simple_expression is the current
11203 -- instance, and whose membership_choice_list meets the requirements
11204 -- for a static membership test.
11206 elsif Nkind
(Expr
) in N_Membership_Test
11207 and then ((Present
(Right_Opnd
(Expr
))
11208 and then Is_Static_Choice
(Right_Opnd
(Expr
)))
11210 (Present
(Alternatives
(Expr
))
11211 and then All_Static_Choices
(Alternatives
(Expr
))))
11215 -- 18. A case_expression whose selecting_expression is the current
11216 -- instance, and whose dependent expressions are static expressions.
11218 elsif Nkind
(Expr
) = N_Case_Expression
11219 and then Is_Type_Ref
(Expression
(Expr
))
11220 and then All_Static_Case_Alternatives
(Alternatives
(Expr
))
11224 -- 19. A call to a predefined equality or ordering operator, where one
11225 -- operand is the current instance, and the other is a static
11228 -- Note: the RM is clearly wrong here in not excluding string types.
11229 -- Without this exclusion, we would allow expressions like X > "ABC"
11230 -- to be considered as predicate-static, which is clearly not intended,
11231 -- since the idea is for predicate-static to be a subset of normal
11232 -- static expressions (and "DEF" > "ABC" is not a static expression).
11234 -- However, we do allow internally generated (not from source) equality
11235 -- and inequality operations to be valid on strings (this helps deal
11236 -- with cases where we transform A in "ABC" to A = "ABC).
11238 elsif Nkind
(Expr
) in N_Op_Compare
11239 and then ((not Is_String_Type
(Etype
(Left_Opnd
(Expr
))))
11240 or else (Nkind_In
(Expr
, N_Op_Eq
, N_Op_Ne
)
11241 and then not Comes_From_Source
(Expr
)))
11242 and then ((Is_Type_Ref
(Left_Opnd
(Expr
))
11243 and then Is_OK_Static_Expression
(Right_Opnd
(Expr
)))
11245 (Is_Type_Ref
(Right_Opnd
(Expr
))
11246 and then Is_OK_Static_Expression
(Left_Opnd
(Expr
))))
11250 -- 20. A call to a predefined boolean logical operator, where each
11251 -- operand is predicate-static.
11253 elsif (Nkind_In
(Expr
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
11254 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11255 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11257 (Nkind
(Expr
) = N_Op_Not
11258 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11262 -- 21. A short-circuit control form where both operands are
11263 -- predicate-static.
11265 elsif Nkind
(Expr
) in N_Short_Circuit
11266 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11267 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
)
11271 -- 22. A parenthesized predicate-static expression. This does not
11272 -- require any special test, since we just ignore paren levels in
11273 -- all the cases above.
11275 -- One more test that is an implementation artifact caused by the fact
11276 -- that we are analyzing not the original expression, but the generated
11277 -- expression in the body of the predicate function. This can include
11278 -- references to inherited predicates, so that the expression we are
11279 -- processing looks like:
11281 -- expression and then xxPredicate (typ (Inns))
11283 -- Where the call is to a Predicate function for an inherited predicate.
11284 -- We simply ignore such a call, which could be to either a dynamic or
11285 -- a static predicate. Note that if the parent predicate is dynamic then
11286 -- eventually this type will be marked as dynamic, but you are allowed
11287 -- to specify a static predicate for a subtype which is inheriting a
11288 -- dynamic predicate, so the static predicate validation here ignores
11289 -- the inherited predicate even if it is dynamic.
11291 elsif Nkind
(Expr
) = N_Function_Call
11292 and then Is_Predicate_Function
(Entity
(Name
(Expr
)))
11296 -- That's an exhaustive list of tests, all other cases are not
11297 -- predicate-static, so we return False.
11302 end Is_Predicate_Static
;
11304 ---------------------
11305 -- Kill_Rep_Clause --
11306 ---------------------
11308 procedure Kill_Rep_Clause
(N
: Node_Id
) is
11310 pragma Assert
(Ignore_Rep_Clauses
);
11312 -- Note: we use Replace rather than Rewrite, because we don't want
11313 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11314 -- rep clause that is being replaced.
11316 Replace
(N
, Make_Null_Statement
(Sloc
(N
)));
11318 -- The null statement must be marked as not coming from source. This is
11319 -- so that ASIS ignores it, and also the back end does not expect bogus
11320 -- "from source" null statements in weird places (e.g. in declarative
11321 -- regions where such null statements are not allowed).
11323 Set_Comes_From_Source
(N
, False);
11324 end Kill_Rep_Clause
;
11330 function Minimum_Size
11332 Biased
: Boolean := False) return Nat
11334 Lo
: Uint
:= No_Uint
;
11335 Hi
: Uint
:= No_Uint
;
11336 LoR
: Ureal
:= No_Ureal
;
11337 HiR
: Ureal
:= No_Ureal
;
11338 LoSet
: Boolean := False;
11339 HiSet
: Boolean := False;
11342 Ancest
: Entity_Id
;
11343 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
11346 -- If bad type, return 0
11348 if T
= Any_Type
then
11351 -- For generic types, just return zero. There cannot be any legitimate
11352 -- need to know such a size, but this routine may be called with a
11353 -- generic type as part of normal processing.
11355 elsif Is_Generic_Type
(R_Typ
) or else R_Typ
= Any_Type
then
11358 -- Access types (cannot have size smaller than System.Address)
11360 elsif Is_Access_Type
(T
) then
11361 return System_Address_Size
;
11363 -- Floating-point types
11365 elsif Is_Floating_Point_Type
(T
) then
11366 return UI_To_Int
(Esize
(R_Typ
));
11370 elsif Is_Discrete_Type
(T
) then
11372 -- The following loop is looking for the nearest compile time known
11373 -- bounds following the ancestor subtype chain. The idea is to find
11374 -- the most restrictive known bounds information.
11378 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11383 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
11384 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
11391 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
11392 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
11398 Ancest
:= Ancestor_Subtype
(Ancest
);
11400 if No
(Ancest
) then
11401 Ancest
:= Base_Type
(T
);
11403 if Is_Generic_Type
(Ancest
) then
11409 -- Fixed-point types. We can't simply use Expr_Value to get the
11410 -- Corresponding_Integer_Value values of the bounds, since these do not
11411 -- get set till the type is frozen, and this routine can be called
11412 -- before the type is frozen. Similarly the test for bounds being static
11413 -- needs to include the case where we have unanalyzed real literals for
11414 -- the same reason.
11416 elsif Is_Fixed_Point_Type
(T
) then
11418 -- The following loop is looking for the nearest compile time known
11419 -- bounds following the ancestor subtype chain. The idea is to find
11420 -- the most restrictive known bounds information.
11424 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11428 -- Note: In the following two tests for LoSet and HiSet, it may
11429 -- seem redundant to test for N_Real_Literal here since normally
11430 -- one would assume that the test for the value being known at
11431 -- compile time includes this case. However, there is a glitch.
11432 -- If the real literal comes from folding a non-static expression,
11433 -- then we don't consider any non- static expression to be known
11434 -- at compile time if we are in configurable run time mode (needed
11435 -- in some cases to give a clearer definition of what is and what
11436 -- is not accepted). So the test is indeed needed. Without it, we
11437 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11440 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
11441 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
11443 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
11450 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
11451 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
11453 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
11459 Ancest
:= Ancestor_Subtype
(Ancest
);
11461 if No
(Ancest
) then
11462 Ancest
:= Base_Type
(T
);
11464 if Is_Generic_Type
(Ancest
) then
11470 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
11471 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
11473 -- No other types allowed
11476 raise Program_Error
;
11479 -- Fall through with Hi and Lo set. Deal with biased case
11482 and then not Is_Fixed_Point_Type
(T
)
11483 and then not (Is_Enumeration_Type
(T
)
11484 and then Has_Non_Standard_Rep
(T
)))
11485 or else Has_Biased_Representation
(T
)
11491 -- Signed case. Note that we consider types like range 1 .. -1 to be
11492 -- signed for the purpose of computing the size, since the bounds have
11493 -- to be accommodated in the base type.
11495 if Lo
< 0 or else Hi
< 0 then
11499 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11500 -- Note that we accommodate the case where the bounds cross. This
11501 -- can happen either because of the way the bounds are declared
11502 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11516 -- If both bounds are positive, make sure that both are represen-
11517 -- table in the case where the bounds are crossed. This can happen
11518 -- either because of the way the bounds are declared, or because of
11519 -- the algorithm in Freeze_Fixed_Point_Type.
11525 -- S = size, (can accommodate 0 .. (2**size - 1))
11528 while Hi
>= Uint_2
** S
loop
11536 ---------------------------
11537 -- New_Stream_Subprogram --
11538 ---------------------------
11540 procedure New_Stream_Subprogram
11544 Nam
: TSS_Name_Type
)
11546 Loc
: constant Source_Ptr
:= Sloc
(N
);
11547 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
11548 Subp_Id
: Entity_Id
;
11549 Subp_Decl
: Node_Id
;
11553 Defer_Declaration
: constant Boolean :=
11554 Is_Tagged_Type
(Ent
) or else Is_Private_Type
(Ent
);
11555 -- For a tagged type, there is a declaration for each stream attribute
11556 -- at the freeze point, and we must generate only a completion of this
11557 -- declaration. We do the same for private types, because the full view
11558 -- might be tagged. Otherwise we generate a declaration at the point of
11559 -- the attribute definition clause.
11561 function Build_Spec
return Node_Id
;
11562 -- Used for declaration and renaming declaration, so that this is
11563 -- treated as a renaming_as_body.
11569 function Build_Spec
return Node_Id
is
11570 Out_P
: constant Boolean := (Nam
= TSS_Stream_Read
);
11573 T_Ref
: constant Node_Id
:= New_Occurrence_Of
(Etyp
, Loc
);
11576 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
11578 -- S : access Root_Stream_Type'Class
11580 Formals
:= New_List
(
11581 Make_Parameter_Specification
(Loc
,
11582 Defining_Identifier
=>
11583 Make_Defining_Identifier
(Loc
, Name_S
),
11585 Make_Access_Definition
(Loc
,
11587 New_Occurrence_Of
(
11588 Designated_Type
(Etype
(F
)), Loc
))));
11590 if Nam
= TSS_Stream_Input
then
11592 Make_Function_Specification
(Loc
,
11593 Defining_Unit_Name
=> Subp_Id
,
11594 Parameter_Specifications
=> Formals
,
11595 Result_Definition
=> T_Ref
);
11599 Append_To
(Formals
,
11600 Make_Parameter_Specification
(Loc
,
11601 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
11602 Out_Present
=> Out_P
,
11603 Parameter_Type
=> T_Ref
));
11606 Make_Procedure_Specification
(Loc
,
11607 Defining_Unit_Name
=> Subp_Id
,
11608 Parameter_Specifications
=> Formals
);
11614 -- Start of processing for New_Stream_Subprogram
11617 F
:= First_Formal
(Subp
);
11619 if Ekind
(Subp
) = E_Procedure
then
11620 Etyp
:= Etype
(Next_Formal
(F
));
11622 Etyp
:= Etype
(Subp
);
11625 -- Prepare subprogram declaration and insert it as an action on the
11626 -- clause node. The visibility for this entity is used to test for
11627 -- visibility of the attribute definition clause (in the sense of
11628 -- 8.3(23) as amended by AI-195).
11630 if not Defer_Declaration
then
11632 Make_Subprogram_Declaration
(Loc
,
11633 Specification
=> Build_Spec
);
11635 -- For a tagged type, there is always a visible declaration for each
11636 -- stream TSS (it is a predefined primitive operation), and the
11637 -- completion of this declaration occurs at the freeze point, which is
11638 -- not always visible at places where the attribute definition clause is
11639 -- visible. So, we create a dummy entity here for the purpose of
11640 -- tracking the visibility of the attribute definition clause itself.
11644 Make_Defining_Identifier
(Loc
, New_External_Name
(Sname
, 'V'));
11646 Make_Object_Declaration
(Loc
,
11647 Defining_Identifier
=> Subp_Id
,
11648 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
));
11651 Insert_Action
(N
, Subp_Decl
);
11652 Set_Entity
(N
, Subp_Id
);
11655 Make_Subprogram_Renaming_Declaration
(Loc
,
11656 Specification
=> Build_Spec
,
11657 Name
=> New_Occurrence_Of
(Subp
, Loc
));
11659 if Defer_Declaration
then
11660 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
11662 Insert_Action
(N
, Subp_Decl
);
11663 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
11665 end New_Stream_Subprogram
;
11667 ------------------------------------------
11668 -- Push_Scope_And_Install_Discriminants --
11669 ------------------------------------------
11671 procedure Push_Scope_And_Install_Discriminants
(E
: Entity_Id
) is
11673 if Has_Discriminants
(E
) then
11676 -- Make discriminants visible for type declarations and protected
11677 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11679 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
11680 Install_Discriminants
(E
);
11683 end Push_Scope_And_Install_Discriminants
;
11685 ------------------------
11686 -- Rep_Item_Too_Early --
11687 ------------------------
11689 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
11691 -- Cannot apply non-operational rep items to generic types
11693 if Is_Operational_Item
(N
) then
11697 and then Is_Generic_Type
(Root_Type
(T
))
11699 Error_Msg_N
("representation item not allowed for generic type", N
);
11703 -- Otherwise check for incomplete type
11705 if Is_Incomplete_Or_Private_Type
(T
)
11706 and then No
(Underlying_Type
(T
))
11708 (Nkind
(N
) /= N_Pragma
11709 or else Get_Pragma_Id
(N
) /= Pragma_Import
)
11712 ("representation item must be after full type declaration", N
);
11715 -- If the type has incomplete components, a representation clause is
11716 -- illegal but stream attributes and Convention pragmas are correct.
11718 elsif Has_Private_Component
(T
) then
11719 if Nkind
(N
) = N_Pragma
then
11724 ("representation item must appear after type is fully defined",
11731 end Rep_Item_Too_Early
;
11733 -----------------------
11734 -- Rep_Item_Too_Late --
11735 -----------------------
11737 function Rep_Item_Too_Late
11740 FOnly
: Boolean := False) return Boolean
11743 Parent_Type
: Entity_Id
;
11745 procedure No_Type_Rep_Item
;
11746 -- Output message indicating that no type-related aspects can be
11747 -- specified due to some property of the parent type.
11749 procedure Too_Late
;
11750 -- Output message for an aspect being specified too late
11752 -- Note that neither of the above errors is considered a serious one,
11753 -- since the effect is simply that we ignore the representation clause
11755 -- Is this really true? In any case if we make this change we must
11756 -- document the requirement in the spec of Rep_Item_Too_Late that
11757 -- if True is returned, then the rep item must be completely ignored???
11759 ----------------------
11760 -- No_Type_Rep_Item --
11761 ----------------------
11763 procedure No_Type_Rep_Item
is
11765 Error_Msg_N
("|type-related representation item not permitted!", N
);
11766 end No_Type_Rep_Item
;
11772 procedure Too_Late
is
11774 -- Other compilers seem more relaxed about rep items appearing too
11775 -- late. Since analysis tools typically don't care about rep items
11776 -- anyway, no reason to be too strict about this.
11778 if not Relaxed_RM_Semantics
then
11779 Error_Msg_N
("|representation item appears too late!", N
);
11783 -- Start of processing for Rep_Item_Too_Late
11786 -- First make sure entity is not frozen (RM 13.1(9))
11790 -- Exclude imported types, which may be frozen if they appear in a
11791 -- representation clause for a local type.
11793 and then not From_Limited_With
(T
)
11795 -- Exclude generated entities (not coming from source). The common
11796 -- case is when we generate a renaming which prematurely freezes the
11797 -- renamed internal entity, but we still want to be able to set copies
11798 -- of attribute values such as Size/Alignment.
11800 and then Comes_From_Source
(T
)
11803 S
:= First_Subtype
(T
);
11805 if Present
(Freeze_Node
(S
)) then
11806 if not Relaxed_RM_Semantics
then
11808 ("??no more representation items for }", Freeze_Node
(S
), S
);
11814 -- Check for case of untagged derived type whose parent either has
11815 -- primitive operations, or is a by reference type (RM 13.1(10)). In
11816 -- this case we do not output a Too_Late message, since there is no
11817 -- earlier point where the rep item could be placed to make it legal.
11821 and then Is_Derived_Type
(T
)
11822 and then not Is_Tagged_Type
(T
)
11824 Parent_Type
:= Etype
(Base_Type
(T
));
11826 if Has_Primitive_Operations
(Parent_Type
) then
11829 if not Relaxed_RM_Semantics
then
11831 ("\parent type & has primitive operations!", N
, Parent_Type
);
11836 elsif Is_By_Reference_Type
(Parent_Type
) then
11839 if not Relaxed_RM_Semantics
then
11841 ("\parent type & is a by reference type!", N
, Parent_Type
);
11848 -- No error, but one more warning to consider. The RM (surprisingly)
11849 -- allows this pattern:
11852 -- primitive operations for S
11853 -- type R is new S;
11854 -- rep clause for S
11856 -- Meaning that calls on the primitive operations of S for values of
11857 -- type R may require possibly expensive implicit conversion operations.
11858 -- This is not an error, but is worth a warning.
11860 if not Relaxed_RM_Semantics
and then Is_Type
(T
) then
11862 DTL
: constant Entity_Id
:= Derived_Type_Link
(Base_Type
(T
));
11866 and then Has_Primitive_Operations
(Base_Type
(T
))
11868 -- For now, do not generate this warning for the case of aspect
11869 -- specification using Ada 2012 syntax, since we get wrong
11870 -- messages we do not understand. The whole business of derived
11871 -- types and rep items seems a bit confused when aspects are
11872 -- used, since the aspects are not evaluated till freeze time.
11874 and then not From_Aspect_Specification
(N
)
11876 Error_Msg_Sloc
:= Sloc
(DTL
);
11878 ("representation item for& appears after derived type "
11879 & "declaration#??", N
);
11881 ("\may result in implicit conversions for primitive "
11882 & "operations of&??", N
, T
);
11884 ("\to change representations when called with arguments "
11885 & "of type&??", N
, DTL
);
11890 -- No error, link item into head of chain of rep items for the entity,
11891 -- but avoid chaining if we have an overloadable entity, and the pragma
11892 -- is one that can apply to multiple overloaded entities.
11894 if Is_Overloadable
(T
) and then Nkind
(N
) = N_Pragma
then
11896 Pname
: constant Name_Id
:= Pragma_Name
(N
);
11898 if Nam_In
(Pname
, Name_Convention
, Name_Import
, Name_Export
,
11899 Name_External
, Name_Interface
)
11906 Record_Rep_Item
(T
, N
);
11908 end Rep_Item_Too_Late
;
11910 -------------------------------------
11911 -- Replace_Type_References_Generic --
11912 -------------------------------------
11914 procedure Replace_Type_References_Generic
(N
: Node_Id
; T
: Entity_Id
) is
11915 TName
: constant Name_Id
:= Chars
(T
);
11917 function Replace_Node
(N
: Node_Id
) return Traverse_Result
;
11918 -- Processes a single node in the traversal procedure below, checking
11919 -- if node N should be replaced, and if so, doing the replacement.
11921 procedure Replace_Type_Refs
is new Traverse_Proc
(Replace_Node
);
11922 -- This instantiation provides the body of Replace_Type_References
11928 function Replace_Node
(N
: Node_Id
) return Traverse_Result
is
11933 -- Case of identifier
11935 if Nkind
(N
) = N_Identifier
then
11937 -- If not the type name, check whether it is a reference to
11938 -- some other type, which must be frozen before the predicate
11939 -- function is analyzed, i.e. before the freeze node of the
11940 -- type to which the predicate applies.
11942 if Chars
(N
) /= TName
then
11943 if Present
(Current_Entity
(N
))
11944 and then Is_Type
(Current_Entity
(N
))
11946 Freeze_Before
(Freeze_Node
(T
), Current_Entity
(N
));
11951 -- Otherwise do the replacement and we are done with this node
11954 Replace_Type_Reference
(N
);
11958 -- Case of selected component (which is what a qualification
11959 -- looks like in the unanalyzed tree, which is what we have.
11961 elsif Nkind
(N
) = N_Selected_Component
then
11963 -- If selector name is not our type, keeping going (we might
11964 -- still have an occurrence of the type in the prefix).
11966 if Nkind
(Selector_Name
(N
)) /= N_Identifier
11967 or else Chars
(Selector_Name
(N
)) /= TName
11971 -- Selector name is our type, check qualification
11974 -- Loop through scopes and prefixes, doing comparison
11976 S
:= Current_Scope
;
11979 -- Continue if no more scopes or scope with no name
11981 if No
(S
) or else Nkind
(S
) not in N_Has_Chars
then
11985 -- Do replace if prefix is an identifier matching the
11986 -- scope that we are currently looking at.
11988 if Nkind
(P
) = N_Identifier
11989 and then Chars
(P
) = Chars
(S
)
11991 Replace_Type_Reference
(N
);
11995 -- Go check scope above us if prefix is itself of the
11996 -- form of a selected component, whose selector matches
11997 -- the scope we are currently looking at.
11999 if Nkind
(P
) = N_Selected_Component
12000 and then Nkind
(Selector_Name
(P
)) = N_Identifier
12001 and then Chars
(Selector_Name
(P
)) = Chars
(S
)
12006 -- For anything else, we don't have a match, so keep on
12007 -- going, there are still some weird cases where we may
12008 -- still have a replacement within the prefix.
12016 -- Continue for any other node kind
12024 Replace_Type_Refs
(N
);
12025 end Replace_Type_References_Generic
;
12027 -------------------------
12028 -- Same_Representation --
12029 -------------------------
12031 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
12032 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
12033 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
12036 -- A quick check, if base types are the same, then we definitely have
12037 -- the same representation, because the subtype specific representation
12038 -- attributes (Size and Alignment) do not affect representation from
12039 -- the point of view of this test.
12041 if Base_Type
(T1
) = Base_Type
(T2
) then
12044 elsif Is_Private_Type
(Base_Type
(T2
))
12045 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
12050 -- Tagged types never have differing representations
12052 if Is_Tagged_Type
(T1
) then
12056 -- Representations are definitely different if conventions differ
12058 if Convention
(T1
) /= Convention
(T2
) then
12062 -- Representations are different if component alignments or scalar
12063 -- storage orders differ.
12065 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
12067 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
12069 (Component_Alignment
(T1
) /= Component_Alignment
(T2
)
12070 or else Reverse_Storage_Order
(T1
) /= Reverse_Storage_Order
(T2
))
12075 -- For arrays, the only real issue is component size. If we know the
12076 -- component size for both arrays, and it is the same, then that's
12077 -- good enough to know we don't have a change of representation.
12079 if Is_Array_Type
(T1
) then
12080 if Known_Component_Size
(T1
)
12081 and then Known_Component_Size
(T2
)
12082 and then Component_Size
(T1
) = Component_Size
(T2
)
12084 if VM_Target
= No_VM
then
12087 -- In VM targets the representation of arrays with aliased
12088 -- components differs from arrays with non-aliased components
12091 return Has_Aliased_Components
(Base_Type
(T1
))
12093 Has_Aliased_Components
(Base_Type
(T2
));
12098 -- Types definitely have same representation if neither has non-standard
12099 -- representation since default representations are always consistent.
12100 -- If only one has non-standard representation, and the other does not,
12101 -- then we consider that they do not have the same representation. They
12102 -- might, but there is no way of telling early enough.
12104 if Has_Non_Standard_Rep
(T1
) then
12105 if not Has_Non_Standard_Rep
(T2
) then
12109 return not Has_Non_Standard_Rep
(T2
);
12112 -- Here the two types both have non-standard representation, and we need
12113 -- to determine if they have the same non-standard representation.
12115 -- For arrays, we simply need to test if the component sizes are the
12116 -- same. Pragma Pack is reflected in modified component sizes, so this
12117 -- check also deals with pragma Pack.
12119 if Is_Array_Type
(T1
) then
12120 return Component_Size
(T1
) = Component_Size
(T2
);
12122 -- Tagged types always have the same representation, because it is not
12123 -- possible to specify different representations for common fields.
12125 elsif Is_Tagged_Type
(T1
) then
12128 -- Case of record types
12130 elsif Is_Record_Type
(T1
) then
12132 -- Packed status must conform
12134 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
12137 -- Otherwise we must check components. Typ2 maybe a constrained
12138 -- subtype with fewer components, so we compare the components
12139 -- of the base types.
12142 Record_Case
: declare
12143 CD1
, CD2
: Entity_Id
;
12145 function Same_Rep
return Boolean;
12146 -- CD1 and CD2 are either components or discriminants. This
12147 -- function tests whether they have the same representation.
12153 function Same_Rep
return Boolean is
12155 if No
(Component_Clause
(CD1
)) then
12156 return No
(Component_Clause
(CD2
));
12158 -- Note: at this point, component clauses have been
12159 -- normalized to the default bit order, so that the
12160 -- comparison of Component_Bit_Offsets is meaningful.
12163 Present
(Component_Clause
(CD2
))
12165 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
12167 Esize
(CD1
) = Esize
(CD2
);
12171 -- Start of processing for Record_Case
12174 if Has_Discriminants
(T1
) then
12176 -- The number of discriminants may be different if the
12177 -- derived type has fewer (constrained by values). The
12178 -- invisible discriminants retain the representation of
12179 -- the original, so the discrepancy does not per se
12180 -- indicate a different representation.
12182 CD1
:= First_Discriminant
(T1
);
12183 CD2
:= First_Discriminant
(T2
);
12184 while Present
(CD1
) and then Present
(CD2
) loop
12185 if not Same_Rep
then
12188 Next_Discriminant
(CD1
);
12189 Next_Discriminant
(CD2
);
12194 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
12195 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
12196 while Present
(CD1
) loop
12197 if not Same_Rep
then
12200 Next_Component
(CD1
);
12201 Next_Component
(CD2
);
12209 -- For enumeration types, we must check each literal to see if the
12210 -- representation is the same. Note that we do not permit enumeration
12211 -- representation clauses for Character and Wide_Character, so these
12212 -- cases were already dealt with.
12214 elsif Is_Enumeration_Type
(T1
) then
12215 Enumeration_Case
: declare
12216 L1
, L2
: Entity_Id
;
12219 L1
:= First_Literal
(T1
);
12220 L2
:= First_Literal
(T2
);
12221 while Present
(L1
) loop
12222 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
12231 end Enumeration_Case
;
12233 -- Any other types have the same representation for these purposes
12238 end Same_Representation
;
12240 --------------------------------
12241 -- Resolve_Iterable_Operation --
12242 --------------------------------
12244 procedure Resolve_Iterable_Operation
12246 Cursor
: Entity_Id
;
12255 if not Is_Overloaded
(N
) then
12256 if not Is_Entity_Name
(N
)
12257 or else Ekind
(Entity
(N
)) /= E_Function
12258 or else Scope
(Entity
(N
)) /= Scope
(Typ
)
12259 or else No
(First_Formal
(Entity
(N
)))
12260 or else Etype
(First_Formal
(Entity
(N
))) /= Typ
12262 Error_Msg_N
("iterable primitive must be local function name "
12263 & "whose first formal is an iterable type", N
);
12268 F1
:= First_Formal
(Ent
);
12269 if Nam
= Name_First
then
12271 -- First (Container) => Cursor
12273 if Etype
(Ent
) /= Cursor
then
12274 Error_Msg_N
("primitive for First must yield a curosr", N
);
12277 elsif Nam
= Name_Next
then
12279 -- Next (Container, Cursor) => Cursor
12281 F2
:= Next_Formal
(F1
);
12283 if Etype
(F2
) /= Cursor
12284 or else Etype
(Ent
) /= Cursor
12285 or else Present
(Next_Formal
(F2
))
12287 Error_Msg_N
("no match for Next iterable primitive", N
);
12290 elsif Nam
= Name_Has_Element
then
12292 -- Has_Element (Container, Cursor) => Boolean
12294 F2
:= Next_Formal
(F1
);
12295 if Etype
(F2
) /= Cursor
12296 or else Etype
(Ent
) /= Standard_Boolean
12297 or else Present
(Next_Formal
(F2
))
12299 Error_Msg_N
("no match for Has_Element iterable primitive", N
);
12302 elsif Nam
= Name_Element
then
12303 F2
:= Next_Formal
(F1
);
12306 or else Etype
(F2
) /= Cursor
12307 or else Present
(Next_Formal
(F2
))
12309 Error_Msg_N
("no match for Element iterable primitive", N
);
12314 raise Program_Error
;
12318 -- Overloaded case: find subprogram with proper signature.
12319 -- Caller will report error if no match is found.
12326 Get_First_Interp
(N
, I
, It
);
12327 while Present
(It
.Typ
) loop
12328 if Ekind
(It
.Nam
) = E_Function
12329 and then Scope
(It
.Nam
) = Scope
(Typ
)
12330 and then Etype
(First_Formal
(It
.Nam
)) = Typ
12332 F1
:= First_Formal
(It
.Nam
);
12334 if Nam
= Name_First
then
12335 if Etype
(It
.Nam
) = Cursor
12336 and then No
(Next_Formal
(F1
))
12338 Set_Entity
(N
, It
.Nam
);
12342 elsif Nam
= Name_Next
then
12343 F2
:= Next_Formal
(F1
);
12346 and then No
(Next_Formal
(F2
))
12347 and then Etype
(F2
) = Cursor
12348 and then Etype
(It
.Nam
) = Cursor
12350 Set_Entity
(N
, It
.Nam
);
12354 elsif Nam
= Name_Has_Element
then
12355 F2
:= Next_Formal
(F1
);
12358 and then No
(Next_Formal
(F2
))
12359 and then Etype
(F2
) = Cursor
12360 and then Etype
(It
.Nam
) = Standard_Boolean
12362 Set_Entity
(N
, It
.Nam
);
12363 F2
:= Next_Formal
(F1
);
12367 elsif Nam
= Name_Element
then
12368 F2
:= Next_Formal
(F1
);
12371 and then No
(Next_Formal
(F2
))
12372 and then Etype
(F2
) = Cursor
12374 Set_Entity
(N
, It
.Nam
);
12380 Get_Next_Interp
(I
, It
);
12384 end Resolve_Iterable_Operation
;
12390 procedure Set_Biased
12394 Biased
: Boolean := True)
12398 Set_Has_Biased_Representation
(E
);
12400 if Warn_On_Biased_Representation
then
12402 ("?B?" & Msg
& " forces biased representation for&", N
, E
);
12407 --------------------
12408 -- Set_Enum_Esize --
12409 --------------------
12411 procedure Set_Enum_Esize
(T
: Entity_Id
) is
12417 Init_Alignment
(T
);
12419 -- Find the minimum standard size (8,16,32,64) that fits
12421 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
12422 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
12425 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
12426 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
12428 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
12431 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
12434 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
12439 if Hi
< Uint_2
**08 then
12440 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
12442 elsif Hi
< Uint_2
**16 then
12445 elsif Hi
< Uint_2
**32 then
12448 else pragma Assert
(Hi
< Uint_2
**63);
12453 -- That minimum is the proper size unless we have a foreign convention
12454 -- and the size required is 32 or less, in which case we bump the size
12455 -- up to 32. This is required for C and C++ and seems reasonable for
12456 -- all other foreign conventions.
12458 if Has_Foreign_Convention
(T
)
12459 and then Esize
(T
) < Standard_Integer_Size
12461 -- Don't do this if Short_Enums on target
12463 and then not Target_Short_Enums
12465 Init_Esize
(T
, Standard_Integer_Size
);
12467 Init_Esize
(T
, Sz
);
12469 end Set_Enum_Esize
;
12471 -----------------------------
12472 -- Uninstall_Discriminants --
12473 -----------------------------
12475 procedure Uninstall_Discriminants
(E
: Entity_Id
) is
12481 -- Discriminants have been made visible for type declarations and
12482 -- protected type declarations, not for subtype declarations.
12484 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
12485 Disc
:= First_Discriminant
(E
);
12486 while Present
(Disc
) loop
12487 if Disc
/= Current_Entity
(Disc
) then
12488 Prev
:= Current_Entity
(Disc
);
12489 while Present
(Prev
)
12490 and then Present
(Homonym
(Prev
))
12491 and then Homonym
(Prev
) /= Disc
12493 Prev
:= Homonym
(Prev
);
12499 Set_Is_Immediately_Visible
(Disc
, False);
12501 Outer
:= Homonym
(Disc
);
12502 while Present
(Outer
) and then Scope
(Outer
) = E
loop
12503 Outer
:= Homonym
(Outer
);
12506 -- Reset homonym link of other entities, but do not modify link
12507 -- between entities in current scope, so that the back-end can
12508 -- have a proper count of local overloadings.
12511 Set_Name_Entity_Id
(Chars
(Disc
), Outer
);
12513 elsif Scope
(Prev
) /= Scope
(Disc
) then
12514 Set_Homonym
(Prev
, Outer
);
12517 Next_Discriminant
(Disc
);
12520 end Uninstall_Discriminants
;
12522 -------------------------------------------
12523 -- Uninstall_Discriminants_And_Pop_Scope --
12524 -------------------------------------------
12526 procedure Uninstall_Discriminants_And_Pop_Scope
(E
: Entity_Id
) is
12528 if Has_Discriminants
(E
) then
12529 Uninstall_Discriminants
(E
);
12532 end Uninstall_Discriminants_And_Pop_Scope
;
12534 ------------------------------
12535 -- Validate_Address_Clauses --
12536 ------------------------------
12538 procedure Validate_Address_Clauses
is
12540 for J
in Address_Clause_Checks
.First
.. Address_Clause_Checks
.Last
loop
12542 ACCR
: Address_Clause_Check_Record
12543 renames Address_Clause_Checks
.Table
(J
);
12547 X_Alignment
: Uint
;
12548 Y_Alignment
: Uint
;
12554 -- Skip processing of this entry if warning already posted
12556 if not Address_Warning_Posted
(ACCR
.N
) then
12557 Expr
:= Original_Node
(Expression
(ACCR
.N
));
12561 X_Alignment
:= Alignment
(ACCR
.X
);
12562 Y_Alignment
:= Alignment
(ACCR
.Y
);
12564 -- Similarly obtain sizes
12566 X_Size
:= Esize
(ACCR
.X
);
12567 Y_Size
:= Esize
(ACCR
.Y
);
12569 -- Check for large object overlaying smaller one
12572 and then X_Size
> Uint_0
12573 and then X_Size
> Y_Size
12576 ("??& overlays smaller object", ACCR
.N
, ACCR
.X
);
12578 ("\??program execution may be erroneous", ACCR
.N
);
12579 Error_Msg_Uint_1
:= X_Size
;
12581 ("\??size of & is ^", ACCR
.N
, ACCR
.X
);
12582 Error_Msg_Uint_1
:= Y_Size
;
12584 ("\??size of & is ^", ACCR
.N
, ACCR
.Y
);
12586 -- Check for inadequate alignment, both of the base object
12587 -- and of the offset, if any.
12589 -- Note: we do not check the alignment if we gave a size
12590 -- warning, since it would likely be redundant.
12592 elsif Y_Alignment
/= Uint_0
12593 and then (Y_Alignment
< X_Alignment
12596 Nkind
(Expr
) = N_Attribute_Reference
12598 Attribute_Name
(Expr
) = Name_Address
12600 Has_Compatible_Alignment
12601 (ACCR
.X
, Prefix
(Expr
))
12602 /= Known_Compatible
))
12605 ("??specified address for& may be inconsistent "
12606 & "with alignment", ACCR
.N
, ACCR
.X
);
12608 ("\??program execution may be erroneous (RM 13.3(27))",
12610 Error_Msg_Uint_1
:= X_Alignment
;
12612 ("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
12613 Error_Msg_Uint_1
:= Y_Alignment
;
12615 ("\??alignment of & is ^", ACCR
.N
, ACCR
.Y
);
12616 if Y_Alignment
>= X_Alignment
then
12618 ("\??but offset is not multiple of alignment", ACCR
.N
);
12624 end Validate_Address_Clauses
;
12626 ---------------------------
12627 -- Validate_Independence --
12628 ---------------------------
12630 procedure Validate_Independence
is
12631 SU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
12639 procedure Check_Array_Type
(Atyp
: Entity_Id
);
12640 -- Checks if the array type Atyp has independent components, and
12641 -- if not, outputs an appropriate set of error messages.
12643 procedure No_Independence
;
12644 -- Output message that independence cannot be guaranteed
12646 function OK_Component
(C
: Entity_Id
) return Boolean;
12647 -- Checks one component to see if it is independently accessible, and
12648 -- if so yields True, otherwise yields False if independent access
12649 -- cannot be guaranteed. This is a conservative routine, it only
12650 -- returns True if it knows for sure, it returns False if it knows
12651 -- there is a problem, or it cannot be sure there is no problem.
12653 procedure Reason_Bad_Component
(C
: Entity_Id
);
12654 -- Outputs continuation message if a reason can be determined for
12655 -- the component C being bad.
12657 ----------------------
12658 -- Check_Array_Type --
12659 ----------------------
12661 procedure Check_Array_Type
(Atyp
: Entity_Id
) is
12662 Ctyp
: constant Entity_Id
:= Component_Type
(Atyp
);
12665 -- OK if no alignment clause, no pack, and no component size
12667 if not Has_Component_Size_Clause
(Atyp
)
12668 and then not Has_Alignment_Clause
(Atyp
)
12669 and then not Is_Packed
(Atyp
)
12674 -- Case of component size is greater than or equal to 64 and the
12675 -- alignment of the array is at least as large as the alignment
12676 -- of the component. We are definitely OK in this situation.
12678 if Known_Component_Size
(Atyp
)
12679 and then Component_Size
(Atyp
) >= 64
12680 and then Known_Alignment
(Atyp
)
12681 and then Known_Alignment
(Ctyp
)
12682 and then Alignment
(Atyp
) >= Alignment
(Ctyp
)
12687 -- Check actual component size
12689 if not Known_Component_Size
(Atyp
)
12690 or else not (Addressable
(Component_Size
(Atyp
))
12691 and then Component_Size
(Atyp
) < 64)
12692 or else Component_Size
(Atyp
) mod Esize
(Ctyp
) /= 0
12696 -- Bad component size, check reason
12698 if Has_Component_Size_Clause
(Atyp
) then
12699 P
:= Get_Attribute_Definition_Clause
12700 (Atyp
, Attribute_Component_Size
);
12702 if Present
(P
) then
12703 Error_Msg_Sloc
:= Sloc
(P
);
12704 Error_Msg_N
("\because of Component_Size clause#", N
);
12709 if Is_Packed
(Atyp
) then
12710 P
:= Get_Rep_Pragma
(Atyp
, Name_Pack
);
12712 if Present
(P
) then
12713 Error_Msg_Sloc
:= Sloc
(P
);
12714 Error_Msg_N
("\because of pragma Pack#", N
);
12719 -- No reason found, just return
12724 -- Array type is OK independence-wise
12727 end Check_Array_Type
;
12729 ---------------------
12730 -- No_Independence --
12731 ---------------------
12733 procedure No_Independence
is
12735 if Pragma_Name
(N
) = Name_Independent
then
12736 Error_Msg_NE
("independence cannot be guaranteed for&", N
, E
);
12739 ("independent components cannot be guaranteed for&", N
, E
);
12741 end No_Independence
;
12747 function OK_Component
(C
: Entity_Id
) return Boolean is
12748 Rec
: constant Entity_Id
:= Scope
(C
);
12749 Ctyp
: constant Entity_Id
:= Etype
(C
);
12752 -- OK if no component clause, no Pack, and no alignment clause
12754 if No
(Component_Clause
(C
))
12755 and then not Is_Packed
(Rec
)
12756 and then not Has_Alignment_Clause
(Rec
)
12761 -- Here we look at the actual component layout. A component is
12762 -- addressable if its size is a multiple of the Esize of the
12763 -- component type, and its starting position in the record has
12764 -- appropriate alignment, and the record itself has appropriate
12765 -- alignment to guarantee the component alignment.
12767 -- Make sure sizes are static, always assume the worst for any
12768 -- cases where we cannot check static values.
12770 if not (Known_Static_Esize
(C
)
12772 Known_Static_Esize
(Ctyp
))
12777 -- Size of component must be addressable or greater than 64 bits
12778 -- and a multiple of bytes.
12780 if not Addressable
(Esize
(C
)) and then Esize
(C
) < Uint_64
then
12784 -- Check size is proper multiple
12786 if Esize
(C
) mod Esize
(Ctyp
) /= 0 then
12790 -- Check alignment of component is OK
12792 if not Known_Component_Bit_Offset
(C
)
12793 or else Component_Bit_Offset
(C
) < Uint_0
12794 or else Component_Bit_Offset
(C
) mod Esize
(Ctyp
) /= 0
12799 -- Check alignment of record type is OK
12801 if not Known_Alignment
(Rec
)
12802 or else (Alignment
(Rec
) * SU
) mod Esize
(Ctyp
) /= 0
12807 -- All tests passed, component is addressable
12812 --------------------------
12813 -- Reason_Bad_Component --
12814 --------------------------
12816 procedure Reason_Bad_Component
(C
: Entity_Id
) is
12817 Rec
: constant Entity_Id
:= Scope
(C
);
12818 Ctyp
: constant Entity_Id
:= Etype
(C
);
12821 -- If component clause present assume that's the problem
12823 if Present
(Component_Clause
(C
)) then
12824 Error_Msg_Sloc
:= Sloc
(Component_Clause
(C
));
12825 Error_Msg_N
("\because of Component_Clause#", N
);
12829 -- If pragma Pack clause present, assume that's the problem
12831 if Is_Packed
(Rec
) then
12832 P
:= Get_Rep_Pragma
(Rec
, Name_Pack
);
12834 if Present
(P
) then
12835 Error_Msg_Sloc
:= Sloc
(P
);
12836 Error_Msg_N
("\because of pragma Pack#", N
);
12841 -- See if record has bad alignment clause
12843 if Has_Alignment_Clause
(Rec
)
12844 and then Known_Alignment
(Rec
)
12845 and then (Alignment
(Rec
) * SU
) mod Esize
(Ctyp
) /= 0
12847 P
:= Get_Attribute_Definition_Clause
(Rec
, Attribute_Alignment
);
12849 if Present
(P
) then
12850 Error_Msg_Sloc
:= Sloc
(P
);
12851 Error_Msg_N
("\because of Alignment clause#", N
);
12855 -- Couldn't find a reason, so return without a message
12858 end Reason_Bad_Component
;
12860 -- Start of processing for Validate_Independence
12863 for J
in Independence_Checks
.First
.. Independence_Checks
.Last
loop
12864 N
:= Independence_Checks
.Table
(J
).N
;
12865 E
:= Independence_Checks
.Table
(J
).E
;
12866 IC
:= Pragma_Name
(N
) = Name_Independent_Components
;
12868 -- Deal with component case
12870 if Ekind
(E
) = E_Discriminant
or else Ekind
(E
) = E_Component
then
12871 if not OK_Component
(E
) then
12873 Reason_Bad_Component
(E
);
12878 -- Deal with record with Independent_Components
12880 if IC
and then Is_Record_Type
(E
) then
12881 Comp
:= First_Component_Or_Discriminant
(E
);
12882 while Present
(Comp
) loop
12883 if not OK_Component
(Comp
) then
12885 Reason_Bad_Component
(Comp
);
12889 Next_Component_Or_Discriminant
(Comp
);
12893 -- Deal with address clause case
12895 if Is_Object
(E
) then
12896 Addr
:= Address_Clause
(E
);
12898 if Present
(Addr
) then
12900 Error_Msg_Sloc
:= Sloc
(Addr
);
12901 Error_Msg_N
("\because of Address clause#", N
);
12906 -- Deal with independent components for array type
12908 if IC
and then Is_Array_Type
(E
) then
12909 Check_Array_Type
(E
);
12912 -- Deal with independent components for array object
12914 if IC
and then Is_Object
(E
) and then Is_Array_Type
(Etype
(E
)) then
12915 Check_Array_Type
(Etype
(E
));
12920 end Validate_Independence
;
12922 ------------------------------
12923 -- Validate_Iterable_Aspect --
12924 ------------------------------
12926 procedure Validate_Iterable_Aspect
(Typ
: Entity_Id
; ASN
: Node_Id
) is
12931 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, Typ
);
12933 First_Id
: Entity_Id
;
12934 Next_Id
: Entity_Id
;
12935 Has_Element_Id
: Entity_Id
;
12936 Element_Id
: Entity_Id
;
12939 -- If previous error aspect is unusable
12941 if Cursor
= Any_Type
then
12947 Has_Element_Id
:= Empty
;
12948 Element_Id
:= Empty
;
12950 -- Each expression must resolve to a function with the proper signature
12952 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
12953 while Present
(Assoc
) loop
12954 Expr
:= Expression
(Assoc
);
12957 Prim
:= First
(Choices
(Assoc
));
12959 if Nkind
(Prim
) /= N_Identifier
or else Present
(Next
(Prim
)) then
12960 Error_Msg_N
("illegal name in association", Prim
);
12962 elsif Chars
(Prim
) = Name_First
then
12963 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_First
);
12964 First_Id
:= Entity
(Expr
);
12966 elsif Chars
(Prim
) = Name_Next
then
12967 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Next
);
12968 Next_Id
:= Entity
(Expr
);
12970 elsif Chars
(Prim
) = Name_Has_Element
then
12971 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Has_Element
);
12972 Has_Element_Id
:= Entity
(Expr
);
12974 elsif Chars
(Prim
) = Name_Element
then
12975 Resolve_Iterable_Operation
(Expr
, Cursor
, Typ
, Name_Element
);
12976 Element_Id
:= Entity
(Expr
);
12979 Error_Msg_N
("invalid name for iterable function", Prim
);
12985 if No
(First_Id
) then
12986 Error_Msg_N
("match for First primitive not found", ASN
);
12988 elsif No
(Next_Id
) then
12989 Error_Msg_N
("match for Next primitive not found", ASN
);
12991 elsif No
(Has_Element_Id
) then
12992 Error_Msg_N
("match for Has_Element primitive not found", ASN
);
12994 elsif No
(Element_Id
) then
12997 end Validate_Iterable_Aspect
;
12999 -----------------------------------
13000 -- Validate_Unchecked_Conversion --
13001 -----------------------------------
13003 procedure Validate_Unchecked_Conversion
13005 Act_Unit
: Entity_Id
)
13007 Source
: Entity_Id
;
13008 Target
: Entity_Id
;
13012 -- Obtain source and target types. Note that we call Ancestor_Subtype
13013 -- here because the processing for generic instantiation always makes
13014 -- subtypes, and we want the original frozen actual types.
13016 -- If we are dealing with private types, then do the check on their
13017 -- fully declared counterparts if the full declarations have been
13018 -- encountered (they don't have to be visible, but they must exist).
13020 Source
:= Ancestor_Subtype
(Etype
(First_Formal
(Act_Unit
)));
13022 if Is_Private_Type
(Source
)
13023 and then Present
(Underlying_Type
(Source
))
13025 Source
:= Underlying_Type
(Source
);
13028 Target
:= Ancestor_Subtype
(Etype
(Act_Unit
));
13030 -- If either type is generic, the instantiation happens within a generic
13031 -- unit, and there is nothing to check. The proper check will happen
13032 -- when the enclosing generic is instantiated.
13034 if Is_Generic_Type
(Source
) or else Is_Generic_Type
(Target
) then
13038 if Is_Private_Type
(Target
)
13039 and then Present
(Underlying_Type
(Target
))
13041 Target
:= Underlying_Type
(Target
);
13044 -- Source may be unconstrained array, but not target
13046 if Is_Array_Type
(Target
) and then not Is_Constrained
(Target
) then
13048 ("unchecked conversion to unconstrained array not allowed", N
);
13052 -- Warn if conversion between two different convention pointers
13054 if Is_Access_Type
(Target
)
13055 and then Is_Access_Type
(Source
)
13056 and then Convention
(Target
) /= Convention
(Source
)
13057 and then Warn_On_Unchecked_Conversion
13059 -- Give warnings for subprogram pointers only on most targets
13061 if Is_Access_Subprogram_Type
(Target
)
13062 or else Is_Access_Subprogram_Type
(Source
)
13065 ("?z?conversion between pointers with different conventions!",
13070 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
13071 -- warning when compiling GNAT-related sources.
13073 if Warn_On_Unchecked_Conversion
13074 and then not In_Predefined_Unit
(N
)
13075 and then RTU_Loaded
(Ada_Calendar
)
13076 and then (Chars
(Source
) = Name_Time
13078 Chars
(Target
) = Name_Time
)
13080 -- If Ada.Calendar is loaded and the name of one of the operands is
13081 -- Time, there is a good chance that this is Ada.Calendar.Time.
13084 Calendar_Time
: constant Entity_Id
:= Full_View
(RTE
(RO_CA_Time
));
13086 pragma Assert
(Present
(Calendar_Time
));
13088 if Source
= Calendar_Time
or else Target
= Calendar_Time
then
13090 ("?z?representation of 'Time values may change between "
13091 & "'G'N'A'T versions", N
);
13096 -- Make entry in unchecked conversion table for later processing by
13097 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13098 -- (using values set by the back-end where possible). This is only done
13099 -- if the appropriate warning is active.
13101 if Warn_On_Unchecked_Conversion
then
13102 Unchecked_Conversions
.Append
13103 (New_Val
=> UC_Entry
'(Eloc => Sloc (N),
13106 Act_Unit => Act_Unit));
13108 -- If both sizes are known statically now, then back end annotation
13109 -- is not required to do a proper check but if either size is not
13110 -- known statically, then we need the annotation.
13112 if Known_Static_RM_Size (Source)
13114 Known_Static_RM_Size (Target)
13118 Back_Annotate_Rep_Info := True;
13122 -- If unchecked conversion to access type, and access type is declared
13123 -- in the same unit as the unchecked conversion, then set the flag
13124 -- No_Strict_Aliasing (no strict aliasing is implicit here)
13126 if Is_Access_Type (Target) and then
13127 In_Same_Source_Unit (Target, N)
13129 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13132 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13133 -- the back end needs to perform special validation checks.
13135 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13136 -- have full expansion and the back end is called ???
13139 Make_Validate_Unchecked_Conversion (Sloc (N));
13140 Set_Source_Type (Vnode, Source);
13141 Set_Target_Type (Vnode, Target);
13143 -- If the unchecked conversion node is in a list, just insert before it.
13144 -- If not we have some strange case, not worth bothering about.
13146 if Is_List_Member (N) then
13147 Insert_After (N, Vnode);
13149 end Validate_Unchecked_Conversion;
13151 ------------------------------------
13152 -- Validate_Unchecked_Conversions --
13153 ------------------------------------
13155 procedure Validate_Unchecked_Conversions is
13157 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13159 T : UC_Entry renames Unchecked_Conversions.Table (N);
13161 Eloc : constant Source_Ptr := T.Eloc;
13162 Source : constant Entity_Id := T.Source;
13163 Target : constant Entity_Id := T.Target;
13164 Act_Unit : constant Entity_Id := T.Act_Unit;
13170 -- Skip if function marked as warnings off
13172 if Warnings_Off (Act_Unit) then
13176 -- This validation check, which warns if we have unequal sizes for
13177 -- unchecked conversion, and thus potentially implementation
13178 -- dependent semantics, is one of the few occasions on which we
13179 -- use the official RM size instead of Esize. See description in
13180 -- Einfo "Handling of Type'Size Values" for details.
13182 if Serious_Errors_Detected = 0
13183 and then Known_Static_RM_Size (Source)
13184 and then Known_Static_RM_Size (Target)
13186 -- Don't do the check if warnings off for either type, note the
13187 -- deliberate use of OR here instead of OR ELSE to get the flag
13188 -- Warnings_Off_Used set for both types if appropriate.
13190 and then not (Has_Warnings_Off (Source)
13192 Has_Warnings_Off (Target))
13194 Source_Siz := RM_Size (Source);
13195 Target_Siz := RM_Size (Target);
13197 if Source_Siz /= Target_Siz then
13199 ("?z?types for unchecked conversion have different sizes!",
13202 if All_Errors_Mode then
13203 Error_Msg_Name_1 := Chars (Source);
13204 Error_Msg_Uint_1 := Source_Siz;
13205 Error_Msg_Name_2 := Chars (Target);
13206 Error_Msg_Uint_2 := Target_Siz;
13207 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
13209 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13211 if Is_Discrete_Type (Source)
13213 Is_Discrete_Type (Target)
13215 if Source_Siz > Target_Siz then
13217 ("\?z?^ high order bits of source will "
13218 & "be ignored!", Eloc);
13220 elsif Is_Unsigned_Type (Source) then
13222 ("\?z?source will be extended with ^ high order "
13223 & "zero bits!", Eloc);
13227 ("\?z?source will be extended with ^ high order "
13228 & "sign bits!", Eloc);
13231 elsif Source_Siz < Target_Siz then
13232 if Is_Discrete_Type (Target) then
13233 if Bytes_Big_Endian then
13235 ("\?z?target value will include ^ undefined "
13236 & "low order bits!", Eloc);
13239 ("\?z?target value will include ^ undefined "
13240 & "high order bits!", Eloc);
13245 ("\?z?^ trailing bits of target value will be "
13246 & "undefined!", Eloc);
13249 else pragma Assert (Source_Siz > Target_Siz);
13251 ("\?z?^ trailing bits of source will be ignored!",
13258 -- If both types are access types, we need to check the alignment.
13259 -- If the alignment of both is specified, we can do it here.
13261 if Serious_Errors_Detected = 0
13262 and then Is_Access_Type (Source)
13263 and then Is_Access_Type (Target)
13264 and then Target_Strict_Alignment
13265 and then Present (Designated_Type (Source))
13266 and then Present (Designated_Type (Target))
13269 D_Source : constant Entity_Id := Designated_Type (Source);
13270 D_Target : constant Entity_Id := Designated_Type (Target);
13273 if Known_Alignment (D_Source)
13275 Known_Alignment (D_Target)
13278 Source_Align : constant Uint := Alignment (D_Source);
13279 Target_Align : constant Uint := Alignment (D_Target);
13282 if Source_Align < Target_Align
13283 and then not Is_Tagged_Type (D_Source)
13285 -- Suppress warning if warnings suppressed on either
13286 -- type or either designated type. Note the use of
13287 -- OR here instead of OR ELSE. That is intentional,
13288 -- we would like to set flag Warnings_Off_Used in
13289 -- all types for which warnings are suppressed.
13291 and then not (Has_Warnings_Off (D_Source)
13293 Has_Warnings_Off (D_Target)
13295 Has_Warnings_Off (Source)
13297 Has_Warnings_Off (Target))
13299 Error_Msg_Uint_1 := Target_Align;
13300 Error_Msg_Uint_2 := Source_Align;
13301 Error_Msg_Node_1 := D_Target;
13302 Error_Msg_Node_2 := D_Source;
13304 ("?z?alignment of & (^) is stricter than "
13305 & "alignment of & (^)!", Eloc);
13307 ("\?z?resulting access value may have invalid "
13308 & "alignment!", Eloc);
13319 end Validate_Unchecked_Conversions;