1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Exp_Util
; use Exp_Util
;
35 with Freeze
; use Freeze
;
36 with Itypes
; use Itypes
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
44 with Restrict
; use Restrict
;
46 with Sem_Aux
; use Sem_Aux
;
47 with Sem_Cat
; use Sem_Cat
;
48 with Sem_Ch3
; use Sem_Ch3
;
49 with Sem_Ch8
; use Sem_Ch8
;
50 with Sem_Ch13
; use Sem_Ch13
;
51 with Sem_Dim
; use Sem_Dim
;
52 with Sem_Eval
; use Sem_Eval
;
53 with Sem_Res
; use Sem_Res
;
54 with Sem_Util
; use Sem_Util
;
55 with Sem_Type
; use Sem_Type
;
56 with Sem_Warn
; use Sem_Warn
;
57 with Sinfo
; use Sinfo
;
58 with Snames
; use Snames
;
59 with Stringt
; use Stringt
;
60 with Stand
; use Stand
;
61 with Style
; use Style
;
62 with Targparm
; use Targparm
;
63 with Tbuild
; use Tbuild
;
64 with Uintp
; use Uintp
;
66 package body Sem_Aggr
is
68 type Case_Bounds
is record
70 -- Low bound of choice. Once we sort the Case_Table, then entries
71 -- will be in order of ascending Choice_Lo values.
74 -- High Bound of choice. The sort does not pay any attention to the
75 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78 -- If there are duplicates or missing entries, then in the sorted
79 -- table, this records the highest value among Choice_Hi values
80 -- seen so far, including this entry.
83 -- The node of the choice
86 type Case_Table_Type
is array (Nat
range <>) of Case_Bounds
;
87 -- Table type used by Check_Case_Choices procedure. Entry zero is not
88 -- used (reserved for the sort). Real entries start at one.
90 -----------------------
91 -- Local Subprograms --
92 -----------------------
94 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
95 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
96 -- simple insertion sort is used since the choices in a case statement will
97 -- usually be in near sorted order.
99 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
);
100 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
101 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
102 -- the array case (the component type of the array will be used) or an
103 -- E_Component/E_Discriminant entity in the record case, in which case the
104 -- type of the component will be used for the test. If Typ is any other
105 -- kind of entity, the call is ignored. Expr is the component node in the
106 -- aggregate which is known to have a null value. A warning message will be
107 -- issued if the component is null excluding.
109 -- It would be better to pass the proper type for Typ ???
111 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
);
112 -- Check that Expr is either not limited or else is one of the cases of
113 -- expressions allowed for a limited component association (namely, an
114 -- aggregate, function call, or <> notation). Report error for violations.
115 -- Expression is also OK in an instance or inlining context, because we
116 -- have already pre-analyzed and it is known to be type correct.
118 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
);
119 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
120 -- at Level are qualified. If Level = 0, this applies to Expr directly.
121 -- Only issue errors in formal verification mode.
123 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean;
124 -- Return True of Expr is an aggregate not contained directly in another
127 ------------------------------------------------------
128 -- Subprograms used for RECORD AGGREGATE Processing --
129 ------------------------------------------------------
131 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
132 -- This procedure performs all the semantic checks required for record
133 -- aggregates. Note that for aggregates analysis and resolution go
134 -- hand in hand. Aggregate analysis has been delayed up to here and
135 -- it is done while resolving the aggregate.
137 -- N is the N_Aggregate node.
138 -- Typ is the record type for the aggregate resolution
140 -- While performing the semantic checks, this procedure builds a new
141 -- Component_Association_List where each record field appears alone in a
142 -- Component_Choice_List along with its corresponding expression. The
143 -- record fields in the Component_Association_List appear in the same order
144 -- in which they appear in the record type Typ.
146 -- Once this new Component_Association_List is built and all the semantic
147 -- checks performed, the original aggregate subtree is replaced with the
148 -- new named record aggregate just built. Note that subtree substitution is
149 -- performed with Rewrite so as to be able to retrieve the original
152 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
153 -- yields the aggregate format expected by Gigi. Typically, this kind of
154 -- tree manipulations are done in the expander. However, because the
155 -- semantic checks that need to be performed on record aggregates really go
156 -- hand in hand with the record aggregate normalization, the aggregate
157 -- subtree transformation is performed during resolution rather than
158 -- expansion. Had we decided otherwise we would have had to duplicate most
159 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
160 -- however, that all the expansion concerning aggregates for tagged records
161 -- is done in Expand_Record_Aggregate.
163 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
165 -- 1. Make sure that the record type against which the record aggregate
166 -- has to be resolved is not abstract. Furthermore if the type is a
167 -- null aggregate make sure the input aggregate N is also null.
169 -- 2. Verify that the structure of the aggregate is that of a record
170 -- aggregate. Specifically, look for component associations and ensure
171 -- that each choice list only has identifiers or the N_Others_Choice
172 -- node. Also make sure that if present, the N_Others_Choice occurs
173 -- last and by itself.
175 -- 3. If Typ contains discriminants, the values for each discriminant is
176 -- looked for. If the record type Typ has variants, we check that the
177 -- expressions corresponding to each discriminant ruling the (possibly
178 -- nested) variant parts of Typ, are static. This allows us to determine
179 -- the variant parts to which the rest of the aggregate must conform.
180 -- The names of discriminants with their values are saved in a new
181 -- association list, New_Assoc_List which is later augmented with the
182 -- names and values of the remaining components in the record type.
184 -- During this phase we also make sure that every discriminant is
185 -- assigned exactly one value. Note that when several values for a given
186 -- discriminant are found, semantic processing continues looking for
187 -- further errors. In this case it's the first discriminant value found
188 -- which we will be recorded.
190 -- IMPORTANT NOTE: For derived tagged types this procedure expects
191 -- First_Discriminant and Next_Discriminant to give the correct list
192 -- of discriminants, in the correct order.
194 -- 4. After all the discriminant values have been gathered, we can set the
195 -- Etype of the record aggregate. If Typ contains no discriminants this
196 -- is straightforward: the Etype of N is just Typ, otherwise a new
197 -- implicit constrained subtype of Typ is built to be the Etype of N.
199 -- 5. Gather the remaining record components according to the discriminant
200 -- values. This involves recursively traversing the record type
201 -- structure to see what variants are selected by the given discriminant
202 -- values. This processing is a little more convoluted if Typ is a
203 -- derived tagged types since we need to retrieve the record structure
204 -- of all the ancestors of Typ.
206 -- 6. After gathering the record components we look for their values in the
207 -- record aggregate and emit appropriate error messages should we not
208 -- find such values or should they be duplicated.
210 -- 7. We then make sure no illegal component names appear in the record
211 -- aggregate and make sure that the type of the record components
212 -- appearing in a same choice list is the same. Finally we ensure that
213 -- the others choice, if present, is used to provide the value of at
214 -- least a record component.
216 -- 8. The original aggregate node is replaced with the new named aggregate
217 -- built in steps 3 through 6, as explained earlier.
219 -- Given the complexity of record aggregate resolution, the primary goal of
220 -- this routine is clarity and simplicity rather than execution and storage
221 -- efficiency. If there are only positional components in the aggregate the
222 -- running time is linear. If there are associations the running time is
223 -- still linear as long as the order of the associations is not too far off
224 -- the order of the components in the record type. If this is not the case
225 -- the running time is at worst quadratic in the size of the association
228 procedure Check_Misspelled_Component
229 (Elements
: Elist_Id
;
230 Component
: Node_Id
);
231 -- Give possible misspelling diagnostic if Component is likely to be a
232 -- misspelling of one of the components of the Assoc_List. This is called
233 -- by Resolve_Aggr_Expr after producing an invalid component error message.
235 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
);
236 -- An optimization: determine whether a discriminated subtype has a static
237 -- constraint, and contains array components whose length is also static,
238 -- either because they are constrained by the discriminant, or because the
239 -- original component bounds are static.
241 -----------------------------------------------------
242 -- Subprograms used for ARRAY AGGREGATE Processing --
243 -----------------------------------------------------
245 function Resolve_Array_Aggregate
248 Index_Constr
: Node_Id
;
249 Component_Typ
: Entity_Id
;
250 Others_Allowed
: Boolean) return Boolean;
251 -- This procedure performs the semantic checks for an array aggregate.
252 -- True is returned if the aggregate resolution succeeds.
254 -- The procedure works by recursively checking each nested aggregate.
255 -- Specifically, after checking a sub-aggregate nested at the i-th level
256 -- we recursively check all the subaggregates at the i+1-st level (if any).
257 -- Note that for aggregates analysis and resolution go hand in hand.
258 -- Aggregate analysis has been delayed up to here and it is done while
259 -- resolving the aggregate.
261 -- N is the current N_Aggregate node to be checked.
263 -- Index is the index node corresponding to the array sub-aggregate that
264 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
265 -- corresponding index type (or subtype).
267 -- Index_Constr is the node giving the applicable index constraint if
268 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
269 -- contexts [...] that can be used to determine the bounds of the array
270 -- value specified by the aggregate". If Others_Allowed below is False
271 -- there is no applicable index constraint and this node is set to Index.
273 -- Component_Typ is the array component type.
275 -- Others_Allowed indicates whether an others choice is allowed
276 -- in the context where the top-level aggregate appeared.
278 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
280 -- 1. Make sure that the others choice, if present, is by itself and
281 -- appears last in the sub-aggregate. Check that we do not have
282 -- positional and named components in the array sub-aggregate (unless
283 -- the named association is an others choice). Finally if an others
284 -- choice is present, make sure it is allowed in the aggregate context.
286 -- 2. If the array sub-aggregate contains discrete_choices:
288 -- (A) Verify their validity. Specifically verify that:
290 -- (a) If a null range is present it must be the only possible
291 -- choice in the array aggregate.
293 -- (b) Ditto for a non static range.
295 -- (c) Ditto for a non static expression.
297 -- In addition this step analyzes and resolves each discrete_choice,
298 -- making sure that its type is the type of the corresponding Index.
299 -- If we are not at the lowest array aggregate level (in the case of
300 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
301 -- recursively on each component expression. Otherwise, resolve the
302 -- bottom level component expressions against the expected component
303 -- type ONLY IF the component corresponds to a single discrete choice
304 -- which is not an others choice (to see why read the DELAYED
305 -- COMPONENT RESOLUTION below).
307 -- (B) Determine the bounds of the sub-aggregate and lowest and
308 -- highest choice values.
310 -- 3. For positional aggregates:
312 -- (A) Loop over the component expressions either recursively invoking
313 -- Resolve_Array_Aggregate on each of these for multi-dimensional
314 -- array aggregates or resolving the bottom level component
315 -- expressions against the expected component type.
317 -- (B) Determine the bounds of the positional sub-aggregates.
319 -- 4. Try to determine statically whether the evaluation of the array
320 -- sub-aggregate raises Constraint_Error. If yes emit proper
321 -- warnings. The precise checks are the following:
323 -- (A) Check that the index range defined by aggregate bounds is
324 -- compatible with corresponding index subtype.
325 -- We also check against the base type. In fact it could be that
326 -- Low/High bounds of the base type are static whereas those of
327 -- the index subtype are not. Thus if we can statically catch
328 -- a problem with respect to the base type we are guaranteed
329 -- that the same problem will arise with the index subtype
331 -- (B) If we are dealing with a named aggregate containing an others
332 -- choice and at least one discrete choice then make sure the range
333 -- specified by the discrete choices does not overflow the
334 -- aggregate bounds. We also check against the index type and base
335 -- type bounds for the same reasons given in (A).
337 -- (C) If we are dealing with a positional aggregate with an others
338 -- choice make sure the number of positional elements specified
339 -- does not overflow the aggregate bounds. We also check against
340 -- the index type and base type bounds as mentioned in (A).
342 -- Finally construct an N_Range node giving the sub-aggregate bounds.
343 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
344 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
345 -- to build the appropriate aggregate subtype. Aggregate_Bounds
346 -- information is needed during expansion.
348 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
349 -- expressions in an array aggregate may call Duplicate_Subexpr or some
350 -- other routine that inserts code just outside the outermost aggregate.
351 -- If the array aggregate contains discrete choices or an others choice,
352 -- this may be wrong. Consider for instance the following example.
354 -- type Rec is record
358 -- type Acc_Rec is access Rec;
359 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
361 -- Then the transformation of "new Rec" that occurs during resolution
362 -- entails the following code modifications
364 -- P7b : constant Acc_Rec := new Rec;
366 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
368 -- This code transformation is clearly wrong, since we need to call
369 -- "new Rec" for each of the 3 array elements. To avoid this problem we
370 -- delay resolution of the components of non positional array aggregates
371 -- to the expansion phase. As an optimization, if the discrete choice
372 -- specifies a single value we do not delay resolution.
374 function Array_Aggr_Subtype
(N
: Node_Id
; Typ
: Node_Id
) return Entity_Id
;
375 -- This routine returns the type or subtype of an array aggregate.
377 -- N is the array aggregate node whose type we return.
379 -- Typ is the context type in which N occurs.
381 -- This routine creates an implicit array subtype whose bounds are
382 -- those defined by the aggregate. When this routine is invoked
383 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
384 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
385 -- sub-aggregate bounds. When building the aggregate itype, this function
386 -- traverses the array aggregate N collecting such Aggregate_Bounds and
387 -- constructs the proper array aggregate itype.
389 -- Note that in the case of multidimensional aggregates each inner
390 -- sub-aggregate corresponding to a given array dimension, may provide a
391 -- different bounds. If it is possible to determine statically that
392 -- some sub-aggregates corresponding to the same index do not have the
393 -- same bounds, then a warning is emitted. If such check is not possible
394 -- statically (because some sub-aggregate bounds are dynamic expressions)
395 -- then this job is left to the expander. In all cases the particular
396 -- bounds that this function will chose for a given dimension is the first
397 -- N_Range node for a sub-aggregate corresponding to that dimension.
399 -- Note that the Raises_Constraint_Error flag of an array aggregate
400 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
401 -- is set in Resolve_Array_Aggregate but the aggregate is not
402 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
403 -- first construct the proper itype for the aggregate (Gigi needs
404 -- this). After constructing the proper itype we will eventually replace
405 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
406 -- Of course in cases such as:
408 -- type Arr is array (integer range <>) of Integer;
409 -- A : Arr := (positive range -1 .. 2 => 0);
411 -- The bounds of the aggregate itype are cooked up to look reasonable
412 -- (in this particular case the bounds will be 1 .. 2).
414 procedure Make_String_Into_Aggregate
(N
: Node_Id
);
415 -- A string literal can appear in a context in which a one dimensional
416 -- array of characters is expected. This procedure simply rewrites the
417 -- string as an aggregate, prior to resolution.
419 ------------------------
420 -- Array_Aggr_Subtype --
421 ------------------------
423 function Array_Aggr_Subtype
425 Typ
: Entity_Id
) return Entity_Id
427 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
428 -- Number of aggregate index dimensions
430 Aggr_Range
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
431 -- Constrained N_Range of each index dimension in our aggregate itype
433 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
434 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
435 -- Low and High bounds for each index dimension in our aggregate itype
437 Is_Fully_Positional
: Boolean := True;
439 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
);
440 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
441 -- to (sub-)aggregate N. This procedure collects and removes the side
442 -- effects of the constrained N_Range nodes corresponding to each index
443 -- dimension of our aggregate itype. These N_Range nodes are collected
444 -- in Aggr_Range above.
446 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
447 -- bounds of each index dimension. If, when collecting, two bounds
448 -- corresponding to the same dimension are static and found to differ,
449 -- then emit a warning, and mark N as raising Constraint_Error.
451 -------------------------
452 -- Collect_Aggr_Bounds --
453 -------------------------
455 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
) is
456 This_Range
: constant Node_Id
:= Aggregate_Bounds
(N
);
457 -- The aggregate range node of this specific sub-aggregate
459 This_Low
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(N
));
460 This_High
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(N
));
461 -- The aggregate bounds of this specific sub-aggregate
467 Remove_Side_Effects
(This_Low
, Variable_Ref
=> True);
468 Remove_Side_Effects
(This_High
, Variable_Ref
=> True);
470 -- Collect the first N_Range for a given dimension that you find.
471 -- For a given dimension they must be all equal anyway.
473 if No
(Aggr_Range
(Dim
)) then
474 Aggr_Low
(Dim
) := This_Low
;
475 Aggr_High
(Dim
) := This_High
;
476 Aggr_Range
(Dim
) := This_Range
;
479 if Compile_Time_Known_Value
(This_Low
) then
480 if not Compile_Time_Known_Value
(Aggr_Low
(Dim
)) then
481 Aggr_Low
(Dim
) := This_Low
;
483 elsif Expr_Value
(This_Low
) /= Expr_Value
(Aggr_Low
(Dim
)) then
484 Set_Raises_Constraint_Error
(N
);
485 Error_Msg_Warn
:= SPARK_Mode
/= On
;
486 Error_Msg_N
("sub-aggregate low bound mismatch<<", N
);
487 Error_Msg_N
("\Constraint_Error [<<", N
);
491 if Compile_Time_Known_Value
(This_High
) then
492 if not Compile_Time_Known_Value
(Aggr_High
(Dim
)) then
493 Aggr_High
(Dim
) := This_High
;
496 Expr_Value
(This_High
) /= Expr_Value
(Aggr_High
(Dim
))
498 Set_Raises_Constraint_Error
(N
);
499 Error_Msg_Warn
:= SPARK_Mode
/= On
;
500 Error_Msg_N
("sub-aggregate high bound mismatch<<", N
);
501 Error_Msg_N
("\Constraint_Error [<<", N
);
506 if Dim
< Aggr_Dimension
then
508 -- Process positional components
510 if Present
(Expressions
(N
)) then
511 Expr
:= First
(Expressions
(N
));
512 while Present
(Expr
) loop
513 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
518 -- Process component associations
520 if Present
(Component_Associations
(N
)) then
521 Is_Fully_Positional
:= False;
523 Assoc
:= First
(Component_Associations
(N
));
524 while Present
(Assoc
) loop
525 Expr
:= Expression
(Assoc
);
526 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
531 end Collect_Aggr_Bounds
;
533 -- Array_Aggr_Subtype variables
536 -- The final itype of the overall aggregate
538 Index_Constraints
: constant List_Id
:= New_List
;
539 -- The list of index constraints of the aggregate itype
541 -- Start of processing for Array_Aggr_Subtype
544 -- Make sure that the list of index constraints is properly attached to
545 -- the tree, and then collect the aggregate bounds.
547 Set_Parent
(Index_Constraints
, N
);
548 Collect_Aggr_Bounds
(N
, 1);
550 -- Build the list of constrained indexes of our aggregate itype
552 for J
in 1 .. Aggr_Dimension
loop
553 Create_Index
: declare
554 Index_Base
: constant Entity_Id
:=
555 Base_Type
(Etype
(Aggr_Range
(J
)));
556 Index_Typ
: Entity_Id
;
559 -- Construct the Index subtype, and associate it with the range
560 -- construct that generates it.
563 Create_Itype
(Subtype_Kind
(Ekind
(Index_Base
)), Aggr_Range
(J
));
565 Set_Etype
(Index_Typ
, Index_Base
);
567 if Is_Character_Type
(Index_Base
) then
568 Set_Is_Character_Type
(Index_Typ
);
571 Set_Size_Info
(Index_Typ
, (Index_Base
));
572 Set_RM_Size
(Index_Typ
, RM_Size
(Index_Base
));
573 Set_First_Rep_Item
(Index_Typ
, First_Rep_Item
(Index_Base
));
574 Set_Scalar_Range
(Index_Typ
, Aggr_Range
(J
));
576 if Is_Discrete_Or_Fixed_Point_Type
(Index_Typ
) then
577 Set_RM_Size
(Index_Typ
, UI_From_Int
(Minimum_Size
(Index_Typ
)));
580 Set_Etype
(Aggr_Range
(J
), Index_Typ
);
582 Append
(Aggr_Range
(J
), To
=> Index_Constraints
);
586 -- Now build the Itype
588 Itype
:= Create_Itype
(E_Array_Subtype
, N
);
590 Set_First_Rep_Item
(Itype
, First_Rep_Item
(Typ
));
591 Set_Convention
(Itype
, Convention
(Typ
));
592 Set_Depends_On_Private
(Itype
, Has_Private_Component
(Typ
));
593 Set_Etype
(Itype
, Base_Type
(Typ
));
594 Set_Has_Alignment_Clause
(Itype
, Has_Alignment_Clause
(Typ
));
595 Set_Is_Aliased
(Itype
, Is_Aliased
(Typ
));
596 Set_Depends_On_Private
(Itype
, Depends_On_Private
(Typ
));
598 Copy_Suppress_Status
(Index_Check
, Typ
, Itype
);
599 Copy_Suppress_Status
(Length_Check
, Typ
, Itype
);
601 Set_First_Index
(Itype
, First
(Index_Constraints
));
602 Set_Is_Constrained
(Itype
, True);
603 Set_Is_Internal
(Itype
, True);
605 -- A simple optimization: purely positional aggregates of static
606 -- components should be passed to gigi unexpanded whenever possible, and
607 -- regardless of the staticness of the bounds themselves. Subsequent
608 -- checks in exp_aggr verify that type is not packed, etc.
610 Set_Size_Known_At_Compile_Time
(Itype
,
612 and then Comes_From_Source
(N
)
613 and then Size_Known_At_Compile_Time
(Component_Type
(Typ
)));
615 -- We always need a freeze node for a packed array subtype, so that we
616 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
617 -- expansion is disabled, the packed array subtype is not built, and we
618 -- must not generate a freeze node for the type, or else it will appear
619 -- incomplete to gigi.
622 and then not In_Spec_Expression
623 and then Expander_Active
625 Freeze_Itype
(Itype
, N
);
629 end Array_Aggr_Subtype
;
631 --------------------------------
632 -- Check_Misspelled_Component --
633 --------------------------------
635 procedure Check_Misspelled_Component
636 (Elements
: Elist_Id
;
639 Max_Suggestions
: constant := 2;
641 Nr_Of_Suggestions
: Natural := 0;
642 Suggestion_1
: Entity_Id
:= Empty
;
643 Suggestion_2
: Entity_Id
:= Empty
;
644 Component_Elmt
: Elmt_Id
;
647 -- All the components of List are matched against Component and a count
648 -- is maintained of possible misspellings. When at the end of the the
649 -- analysis there are one or two (not more) possible misspellings,
650 -- these misspellings will be suggested as possible correction.
652 Component_Elmt
:= First_Elmt
(Elements
);
653 while Nr_Of_Suggestions
<= Max_Suggestions
654 and then Present
(Component_Elmt
)
656 if Is_Bad_Spelling_Of
657 (Chars
(Node
(Component_Elmt
)),
660 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
662 case Nr_Of_Suggestions
is
663 when 1 => Suggestion_1
:= Node
(Component_Elmt
);
664 when 2 => Suggestion_2
:= Node
(Component_Elmt
);
669 Next_Elmt
(Component_Elmt
);
672 -- Report at most two suggestions
674 if Nr_Of_Suggestions
= 1 then
675 Error_Msg_NE
-- CODEFIX
676 ("\possible misspelling of&", Component
, Suggestion_1
);
678 elsif Nr_Of_Suggestions
= 2 then
679 Error_Msg_Node_2
:= Suggestion_2
;
680 Error_Msg_NE
-- CODEFIX
681 ("\possible misspelling of& or&", Component
, Suggestion_1
);
683 end Check_Misspelled_Component
;
685 ----------------------------------------
686 -- Check_Expr_OK_In_Limited_Aggregate --
687 ----------------------------------------
689 procedure Check_Expr_OK_In_Limited_Aggregate
(Expr
: Node_Id
) is
691 if Is_Limited_Type
(Etype
(Expr
))
692 and then Comes_From_Source
(Expr
)
694 if In_Instance_Body
or else In_Inlined_Body
then
697 elsif not OK_For_Limited_Init
(Etype
(Expr
), Expr
) then
699 ("initialization not allowed for limited types", Expr
);
700 Explain_Limited_Type
(Etype
(Expr
), Expr
);
703 end Check_Expr_OK_In_Limited_Aggregate
;
705 -------------------------------
706 -- Check_Qualified_Aggregate --
707 -------------------------------
709 procedure Check_Qualified_Aggregate
(Level
: Nat
; Expr
: Node_Id
) is
715 if Nkind
(Parent
(Expr
)) /= N_Qualified_Expression
then
716 Check_SPARK_05_Restriction
("aggregate should be qualified", Expr
);
720 Comp_Expr
:= First
(Expressions
(Expr
));
721 while Present
(Comp_Expr
) loop
722 if Nkind
(Comp_Expr
) = N_Aggregate
then
723 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
726 Comp_Expr
:= Next
(Comp_Expr
);
729 Comp_Assn
:= First
(Component_Associations
(Expr
));
730 while Present
(Comp_Assn
) loop
731 Comp_Expr
:= Expression
(Comp_Assn
);
733 if Nkind
(Comp_Expr
) = N_Aggregate
then
734 Check_Qualified_Aggregate
(Level
- 1, Comp_Expr
);
737 Comp_Assn
:= Next
(Comp_Assn
);
740 end Check_Qualified_Aggregate
;
742 ----------------------------------------
743 -- Check_Static_Discriminated_Subtype --
744 ----------------------------------------
746 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
) is
747 Disc
: constant Entity_Id
:= First_Discriminant
(T
);
752 if Has_Record_Rep_Clause
(T
) then
755 elsif Present
(Next_Discriminant
(Disc
)) then
758 elsif Nkind
(V
) /= N_Integer_Literal
then
762 Comp
:= First_Component
(T
);
763 while Present
(Comp
) loop
764 if Is_Scalar_Type
(Etype
(Comp
)) then
767 elsif Is_Private_Type
(Etype
(Comp
))
768 and then Present
(Full_View
(Etype
(Comp
)))
769 and then Is_Scalar_Type
(Full_View
(Etype
(Comp
)))
773 elsif Is_Array_Type
(Etype
(Comp
)) then
774 if Is_Bit_Packed_Array
(Etype
(Comp
)) then
778 Ind
:= First_Index
(Etype
(Comp
));
779 while Present
(Ind
) loop
780 if Nkind
(Ind
) /= N_Range
781 or else Nkind
(Low_Bound
(Ind
)) /= N_Integer_Literal
782 or else Nkind
(High_Bound
(Ind
)) /= N_Integer_Literal
794 Next_Component
(Comp
);
797 -- On exit, all components have statically known sizes
799 Set_Size_Known_At_Compile_Time
(T
);
800 end Check_Static_Discriminated_Subtype
;
802 -------------------------
803 -- Is_Others_Aggregate --
804 -------------------------
806 function Is_Others_Aggregate
(Aggr
: Node_Id
) return Boolean is
808 return No
(Expressions
(Aggr
))
810 Nkind
(First
(Choices
(First
(Component_Associations
(Aggr
)))))
812 end Is_Others_Aggregate
;
814 ----------------------------
815 -- Is_Top_Level_Aggregate --
816 ----------------------------
818 function Is_Top_Level_Aggregate
(Expr
: Node_Id
) return Boolean is
820 return Nkind
(Parent
(Expr
)) /= N_Aggregate
821 and then (Nkind
(Parent
(Expr
)) /= N_Component_Association
822 or else Nkind
(Parent
(Parent
(Expr
))) /= N_Aggregate
);
823 end Is_Top_Level_Aggregate
;
825 --------------------------------
826 -- Make_String_Into_Aggregate --
827 --------------------------------
829 procedure Make_String_Into_Aggregate
(N
: Node_Id
) is
830 Exprs
: constant List_Id
:= New_List
;
831 Loc
: constant Source_Ptr
:= Sloc
(N
);
832 Str
: constant String_Id
:= Strval
(N
);
833 Strlen
: constant Nat
:= String_Length
(Str
);
841 for J
in 1 .. Strlen
loop
842 C
:= Get_String_Char
(Str
, J
);
843 Set_Character_Literal_Name
(C
);
846 Make_Character_Literal
(P
,
848 Char_Literal_Value
=> UI_From_CC
(C
));
849 Set_Etype
(C_Node
, Any_Character
);
850 Append_To
(Exprs
, C_Node
);
853 -- Something special for wide strings???
856 New_N
:= Make_Aggregate
(Loc
, Expressions
=> Exprs
);
857 Set_Analyzed
(New_N
);
858 Set_Etype
(New_N
, Any_Composite
);
861 end Make_String_Into_Aggregate
;
863 -----------------------
864 -- Resolve_Aggregate --
865 -----------------------
867 procedure Resolve_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
868 Loc
: constant Source_Ptr
:= Sloc
(N
);
869 Pkind
: constant Node_Kind
:= Nkind
(Parent
(N
));
871 Aggr_Subtyp
: Entity_Id
;
872 -- The actual aggregate subtype. This is not necessarily the same as Typ
873 -- which is the subtype of the context in which the aggregate was found.
876 -- Ignore junk empty aggregate resulting from parser error
878 if No
(Expressions
(N
))
879 and then No
(Component_Associations
(N
))
880 and then not Null_Record_Present
(N
)
885 -- If the aggregate has box-initialized components, its type must be
886 -- frozen so that initialization procedures can properly be called
887 -- in the resolution that follows. The replacement of boxes with
888 -- initialization calls is properly an expansion activity but it must
889 -- be done during resolution.
892 and then Present
(Component_Associations
(N
))
898 Comp
:= First
(Component_Associations
(N
));
899 while Present
(Comp
) loop
900 if Box_Present
(Comp
) then
901 Insert_Actions
(N
, Freeze_Entity
(Typ
, N
));
910 -- An unqualified aggregate is restricted in SPARK to:
912 -- An aggregate item inside an aggregate for a multi-dimensional array
914 -- An expression being assigned to an unconstrained array, but only if
915 -- the aggregate specifies a value for OTHERS only.
917 if Nkind
(Parent
(N
)) = N_Qualified_Expression
then
918 if Is_Array_Type
(Typ
) then
919 Check_Qualified_Aggregate
(Number_Dimensions
(Typ
), N
);
921 Check_Qualified_Aggregate
(1, N
);
924 if Is_Array_Type
(Typ
)
925 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
926 and then not Is_Constrained
(Etype
(Name
(Parent
(N
))))
928 if not Is_Others_Aggregate
(N
) then
929 Check_SPARK_05_Restriction
930 ("array aggregate should have only OTHERS", N
);
933 elsif Is_Top_Level_Aggregate
(N
) then
934 Check_SPARK_05_Restriction
("aggregate should be qualified", N
);
936 -- The legality of this unqualified aggregate is checked by calling
937 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
938 -- unless one of these already causes an error to be issued.
945 -- Check for aggregates not allowed in configurable run-time mode.
946 -- We allow all cases of aggregates that do not come from source, since
947 -- these are all assumed to be small (e.g. bounds of a string literal).
948 -- We also allow aggregates of types we know to be small.
950 if not Support_Aggregates_On_Target
951 and then Comes_From_Source
(N
)
952 and then (not Known_Static_Esize
(Typ
) or else Esize
(Typ
) > 64)
954 Error_Msg_CRT
("aggregate", N
);
957 -- Ada 2005 (AI-287): Limited aggregates allowed
959 -- In an instance, ignore aggregate subcomponents tnat may be limited,
960 -- because they originate in view conflicts. If the original aggregate
961 -- is legal and the actuals are legal, the aggregate itself is legal.
963 if Is_Limited_Type
(Typ
)
964 and then Ada_Version
< Ada_2005
965 and then not In_Instance
967 Error_Msg_N
("aggregate type cannot be limited", N
);
968 Explain_Limited_Type
(Typ
, N
);
970 elsif Is_Class_Wide_Type
(Typ
) then
971 Error_Msg_N
("type of aggregate cannot be class-wide", N
);
973 elsif Typ
= Any_String
974 or else Typ
= Any_Composite
976 Error_Msg_N
("no unique type for aggregate", N
);
977 Set_Etype
(N
, Any_Composite
);
979 elsif Is_Array_Type
(Typ
) and then Null_Record_Present
(N
) then
980 Error_Msg_N
("null record forbidden in array aggregate", N
);
982 elsif Is_Record_Type
(Typ
) then
983 Resolve_Record_Aggregate
(N
, Typ
);
985 elsif Is_Array_Type
(Typ
) then
987 -- First a special test, for the case of a positional aggregate
988 -- of characters which can be replaced by a string literal.
990 -- Do not perform this transformation if this was a string literal to
991 -- start with, whose components needed constraint checks, or if the
992 -- component type is non-static, because it will require those checks
993 -- and be transformed back into an aggregate.
995 if Number_Dimensions
(Typ
) = 1
996 and then Is_Standard_Character_Type
(Component_Type
(Typ
))
997 and then No
(Component_Associations
(N
))
998 and then not Is_Limited_Composite
(Typ
)
999 and then not Is_Private_Composite
(Typ
)
1000 and then not Is_Bit_Packed_Array
(Typ
)
1001 and then Nkind
(Original_Node
(Parent
(N
))) /= N_String_Literal
1002 and then Is_OK_Static_Subtype
(Component_Type
(Typ
))
1008 Expr
:= First
(Expressions
(N
));
1009 while Present
(Expr
) loop
1010 exit when Nkind
(Expr
) /= N_Character_Literal
;
1017 Expr
:= First
(Expressions
(N
));
1018 while Present
(Expr
) loop
1019 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Expr
)));
1023 Rewrite
(N
, Make_String_Literal
(Loc
, End_String
));
1025 Analyze_And_Resolve
(N
, Typ
);
1031 -- Here if we have a real aggregate to deal with
1033 Array_Aggregate
: declare
1034 Aggr_Resolved
: Boolean;
1036 Aggr_Typ
: constant Entity_Id
:= Etype
(Typ
);
1037 -- This is the unconstrained array type, which is the type against
1038 -- which the aggregate is to be resolved. Typ itself is the array
1039 -- type of the context which may not be the same subtype as the
1040 -- subtype for the final aggregate.
1043 -- In the following we determine whether an OTHERS choice is
1044 -- allowed inside the array aggregate. The test checks the context
1045 -- in which the array aggregate occurs. If the context does not
1046 -- permit it, or the aggregate type is unconstrained, an OTHERS
1047 -- choice is not allowed (except that it is always allowed on the
1048 -- right-hand side of an assignment statement; in this case the
1049 -- constrainedness of the type doesn't matter).
1051 -- If expansion is disabled (generic context, or semantics-only
1052 -- mode) actual subtypes cannot be constructed, and the type of an
1053 -- object may be its unconstrained nominal type. However, if the
1054 -- context is an assignment, we assume that OTHERS is allowed,
1055 -- because the target of the assignment will have a constrained
1056 -- subtype when fully compiled.
1058 -- Note that there is no node for Explicit_Actual_Parameter.
1059 -- To test for this context we therefore have to test for node
1060 -- N_Parameter_Association which itself appears only if there is a
1061 -- formal parameter. Consequently we also need to test for
1062 -- N_Procedure_Call_Statement or N_Function_Call.
1064 -- The context may be an N_Reference node, created by expansion.
1065 -- Legality of the others clause was established in the source,
1066 -- so the context is legal.
1068 Set_Etype
(N
, Aggr_Typ
); -- May be overridden later on
1070 if Pkind
= N_Assignment_Statement
1071 or else (Is_Constrained
(Typ
)
1073 (Pkind
= N_Parameter_Association
or else
1074 Pkind
= N_Function_Call
or else
1075 Pkind
= N_Procedure_Call_Statement
or else
1076 Pkind
= N_Generic_Association
or else
1077 Pkind
= N_Formal_Object_Declaration
or else
1078 Pkind
= N_Simple_Return_Statement
or else
1079 Pkind
= N_Object_Declaration
or else
1080 Pkind
= N_Component_Declaration
or else
1081 Pkind
= N_Parameter_Specification
or else
1082 Pkind
= N_Qualified_Expression
or else
1083 Pkind
= N_Reference
or else
1084 Pkind
= N_Aggregate
or else
1085 Pkind
= N_Extension_Aggregate
or else
1086 Pkind
= N_Component_Association
))
1089 Resolve_Array_Aggregate
1091 Index
=> First_Index
(Aggr_Typ
),
1092 Index_Constr
=> First_Index
(Typ
),
1093 Component_Typ
=> Component_Type
(Typ
),
1094 Others_Allowed
=> True);
1096 elsif not Expander_Active
1097 and then Pkind
= N_Assignment_Statement
1100 Resolve_Array_Aggregate
1102 Index
=> First_Index
(Aggr_Typ
),
1103 Index_Constr
=> First_Index
(Typ
),
1104 Component_Typ
=> Component_Type
(Typ
),
1105 Others_Allowed
=> True);
1109 Resolve_Array_Aggregate
1111 Index
=> First_Index
(Aggr_Typ
),
1112 Index_Constr
=> First_Index
(Aggr_Typ
),
1113 Component_Typ
=> Component_Type
(Typ
),
1114 Others_Allowed
=> False);
1117 if not Aggr_Resolved
then
1119 -- A parenthesized expression may have been intended as an
1120 -- aggregate, leading to a type error when analyzing the
1121 -- component. This can also happen for a nested component
1122 -- (see Analyze_Aggr_Expr).
1124 if Paren_Count
(N
) > 0 then
1126 ("positional aggregate cannot have one component", N
);
1129 Aggr_Subtyp
:= Any_Composite
;
1132 Aggr_Subtyp
:= Array_Aggr_Subtype
(N
, Typ
);
1135 Set_Etype
(N
, Aggr_Subtyp
);
1136 end Array_Aggregate
;
1138 elsif Is_Private_Type
(Typ
)
1139 and then Present
(Full_View
(Typ
))
1140 and then (In_Inlined_Body
or In_Instance_Body
)
1141 and then Is_Composite_Type
(Full_View
(Typ
))
1143 Resolve
(N
, Full_View
(Typ
));
1146 Error_Msg_N
("illegal context for aggregate", N
);
1149 -- If we can determine statically that the evaluation of the aggregate
1150 -- raises Constraint_Error, then replace the aggregate with an
1151 -- N_Raise_Constraint_Error node, but set the Etype to the right
1152 -- aggregate subtype. Gigi needs this.
1154 if Raises_Constraint_Error
(N
) then
1155 Aggr_Subtyp
:= Etype
(N
);
1157 Make_Raise_Constraint_Error
(Loc
, Reason
=> CE_Range_Check_Failed
));
1158 Set_Raises_Constraint_Error
(N
);
1159 Set_Etype
(N
, Aggr_Subtyp
);
1163 Check_Function_Writable_Actuals
(N
);
1164 end Resolve_Aggregate
;
1166 -----------------------------
1167 -- Resolve_Array_Aggregate --
1168 -----------------------------
1170 function Resolve_Array_Aggregate
1173 Index_Constr
: Node_Id
;
1174 Component_Typ
: Entity_Id
;
1175 Others_Allowed
: Boolean) return Boolean
1177 Loc
: constant Source_Ptr
:= Sloc
(N
);
1179 Failure
: constant Boolean := False;
1180 Success
: constant Boolean := True;
1182 Index_Typ
: constant Entity_Id
:= Etype
(Index
);
1183 Index_Typ_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Typ
);
1184 Index_Typ_High
: constant Node_Id
:= Type_High_Bound
(Index_Typ
);
1185 -- The type of the index corresponding to the array sub-aggregate along
1186 -- with its low and upper bounds.
1188 Index_Base
: constant Entity_Id
:= Base_Type
(Index_Typ
);
1189 Index_Base_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
1190 Index_Base_High
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
1191 -- Ditto for the base type
1193 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
;
1194 -- Creates a new expression node where Val is added to expression To.
1195 -- Tries to constant fold whenever possible. To must be an already
1196 -- analyzed expression.
1198 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
);
1199 -- Checks that AH (the upper bound of an array aggregate) is less than
1200 -- or equal to BH (the upper bound of the index base type). If the check
1201 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1202 -- set, and AH is replaced with a duplicate of BH.
1204 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
);
1205 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1206 -- warning if not and sets the Raises_Constraint_Error flag in N.
1208 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
);
1209 -- Checks that range L .. H contains at least Len elements. Emits a
1210 -- warning if not and sets the Raises_Constraint_Error flag in N.
1212 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean;
1213 -- Returns True if range L .. H is dynamic or null
1215 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean);
1216 -- Given expression node From, this routine sets OK to False if it
1217 -- cannot statically evaluate From. Otherwise it stores this static
1218 -- value into Value.
1220 function Resolve_Aggr_Expr
1222 Single_Elmt
: Boolean) return Boolean;
1223 -- Resolves aggregate expression Expr. Returns False if resolution
1224 -- fails. If Single_Elmt is set to False, the expression Expr may be
1225 -- used to initialize several array aggregate elements (this can happen
1226 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1227 -- In this event we do not resolve Expr unless expansion is disabled.
1228 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1230 -- NOTE: In the case of "... => <>", we pass the in the
1231 -- N_Component_Association node as Expr, since there is no Expression in
1232 -- that case, and we need a Sloc for the error message.
1238 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
is
1244 if Raises_Constraint_Error
(To
) then
1248 -- First test if we can do constant folding
1250 if Compile_Time_Known_Value
(To
)
1251 or else Nkind
(To
) = N_Integer_Literal
1253 Expr_Pos
:= Make_Integer_Literal
(Loc
, Expr_Value
(To
) + Val
);
1254 Set_Is_Static_Expression
(Expr_Pos
);
1255 Set_Etype
(Expr_Pos
, Etype
(To
));
1256 Set_Analyzed
(Expr_Pos
, Analyzed
(To
));
1258 if not Is_Enumeration_Type
(Index_Typ
) then
1261 -- If we are dealing with enumeration return
1262 -- Index_Typ'Val (Expr_Pos)
1266 Make_Attribute_Reference
1268 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1269 Attribute_Name
=> Name_Val
,
1270 Expressions
=> New_List
(Expr_Pos
));
1276 -- If we are here no constant folding possible
1278 if not Is_Enumeration_Type
(Index_Base
) then
1281 Left_Opnd
=> Duplicate_Subexpr
(To
),
1282 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1284 -- If we are dealing with enumeration return
1285 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1289 Make_Attribute_Reference
1291 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1292 Attribute_Name
=> Name_Pos
,
1293 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
1297 Left_Opnd
=> To_Pos
,
1298 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1301 Make_Attribute_Reference
1303 Prefix
=> New_Occurrence_Of
(Index_Typ
, Loc
),
1304 Attribute_Name
=> Name_Val
,
1305 Expressions
=> New_List
(Expr_Pos
));
1307 -- If the index type has a non standard representation, the
1308 -- attributes 'Val and 'Pos expand into function calls and the
1309 -- resulting expression is considered non-safe for reevaluation
1310 -- by the backend. Relocate it into a constant temporary in order
1311 -- to make it safe for reevaluation.
1313 if Has_Non_Standard_Rep
(Etype
(N
)) then
1318 Def_Id
:= Make_Temporary
(Loc
, 'R', Expr
);
1319 Set_Etype
(Def_Id
, Index_Typ
);
1321 Make_Object_Declaration
(Loc
,
1322 Defining_Identifier
=> Def_Id
,
1323 Object_Definition
=>
1324 New_Occurrence_Of
(Index_Typ
, Loc
),
1325 Constant_Present
=> True,
1326 Expression
=> Relocate_Node
(Expr
)));
1328 Expr
:= New_Occurrence_Of
(Def_Id
, Loc
);
1340 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
) is
1348 Get
(Value
=> Val_BH
, From
=> BH
, OK
=> OK_BH
);
1349 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1351 if OK_BH
and then OK_AH
and then Val_BH
< Val_AH
then
1352 Set_Raises_Constraint_Error
(N
);
1353 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1354 Error_Msg_N
("upper bound out of range<<", AH
);
1355 Error_Msg_N
("\Constraint_Error [<<", AH
);
1357 -- You need to set AH to BH or else in the case of enumerations
1358 -- indexes we will not be able to resolve the aggregate bounds.
1360 AH
:= Duplicate_Subexpr
(BH
);
1368 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
) is
1379 pragma Warnings
(Off
, OK_AL
);
1380 pragma Warnings
(Off
, OK_AH
);
1383 if Raises_Constraint_Error
(N
)
1384 or else Dynamic_Or_Null_Range
(AL
, AH
)
1389 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1390 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1392 Get
(Value
=> Val_AL
, From
=> AL
, OK
=> OK_AL
);
1393 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1395 if OK_L
and then Val_L
> Val_AL
then
1396 Set_Raises_Constraint_Error
(N
);
1397 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1398 Error_Msg_N
("lower bound of aggregate out of range<<", N
);
1399 Error_Msg_N
("\Constraint_Error [<<", N
);
1402 if OK_H
and then Val_H
< Val_AH
then
1403 Set_Raises_Constraint_Error
(N
);
1404 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1405 Error_Msg_N
("upper bound of aggregate out of range<<", N
);
1406 Error_Msg_N
("\Constraint_Error [<<", N
);
1414 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
) is
1424 if Raises_Constraint_Error
(N
) then
1428 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1429 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1431 if not OK_L
or else not OK_H
then
1435 -- If null range length is zero
1437 if Val_L
> Val_H
then
1438 Range_Len
:= Uint_0
;
1440 Range_Len
:= Val_H
- Val_L
+ 1;
1443 if Range_Len
< Len
then
1444 Set_Raises_Constraint_Error
(N
);
1445 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1446 Error_Msg_N
("too many elements<<", N
);
1447 Error_Msg_N
("\Constraint_Error [<<", N
);
1451 ---------------------------
1452 -- Dynamic_Or_Null_Range --
1453 ---------------------------
1455 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean is
1463 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1464 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1466 return not OK_L
or else not OK_H
1467 or else not Is_OK_Static_Expression
(L
)
1468 or else not Is_OK_Static_Expression
(H
)
1469 or else Val_L
> Val_H
;
1470 end Dynamic_Or_Null_Range
;
1476 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean) is
1480 if Compile_Time_Known_Value
(From
) then
1481 Value
:= Expr_Value
(From
);
1483 -- If expression From is something like Some_Type'Val (10) then
1486 elsif Nkind
(From
) = N_Attribute_Reference
1487 and then Attribute_Name
(From
) = Name_Val
1488 and then Compile_Time_Known_Value
(First
(Expressions
(From
)))
1490 Value
:= Expr_Value
(First
(Expressions
(From
)));
1498 -----------------------
1499 -- Resolve_Aggr_Expr --
1500 -----------------------
1502 function Resolve_Aggr_Expr
1504 Single_Elmt
: Boolean) return Boolean
1506 Nxt_Ind
: constant Node_Id
:= Next_Index
(Index
);
1507 Nxt_Ind_Constr
: constant Node_Id
:= Next_Index
(Index_Constr
);
1508 -- Index is the current index corresponding to the expression
1510 Resolution_OK
: Boolean := True;
1511 -- Set to False if resolution of the expression failed
1514 -- Defend against previous errors
1516 if Nkind
(Expr
) = N_Error
1517 or else Error_Posted
(Expr
)
1522 -- If the array type against which we are resolving the aggregate
1523 -- has several dimensions, the expressions nested inside the
1524 -- aggregate must be further aggregates (or strings).
1526 if Present
(Nxt_Ind
) then
1527 if Nkind
(Expr
) /= N_Aggregate
then
1529 -- A string literal can appear where a one-dimensional array
1530 -- of characters is expected. If the literal looks like an
1531 -- operator, it is still an operator symbol, which will be
1532 -- transformed into a string when analyzed.
1534 if Is_Character_Type
(Component_Typ
)
1535 and then No
(Next_Index
(Nxt_Ind
))
1536 and then Nkind_In
(Expr
, N_String_Literal
, N_Operator_Symbol
)
1538 -- A string literal used in a multidimensional array
1539 -- aggregate in place of the final one-dimensional
1540 -- aggregate must not be enclosed in parentheses.
1542 if Paren_Count
(Expr
) /= 0 then
1543 Error_Msg_N
("no parenthesis allowed here", Expr
);
1546 Make_String_Into_Aggregate
(Expr
);
1549 Error_Msg_N
("nested array aggregate expected", Expr
);
1551 -- If the expression is parenthesized, this may be
1552 -- a missing component association for a 1-aggregate.
1554 if Paren_Count
(Expr
) > 0 then
1556 ("\if single-component aggregate is intended,"
1557 & " write e.g. (1 ='> ...)", Expr
);
1564 -- If it's "... => <>", nothing to resolve
1566 if Nkind
(Expr
) = N_Component_Association
then
1567 pragma Assert
(Box_Present
(Expr
));
1571 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1572 -- Required to check the null-exclusion attribute (if present).
1573 -- This value may be overridden later on.
1575 Set_Etype
(Expr
, Etype
(N
));
1577 Resolution_OK
:= Resolve_Array_Aggregate
1578 (Expr
, Nxt_Ind
, Nxt_Ind_Constr
, Component_Typ
, Others_Allowed
);
1581 -- If it's "... => <>", nothing to resolve
1583 if Nkind
(Expr
) = N_Component_Association
then
1584 pragma Assert
(Box_Present
(Expr
));
1588 -- Do not resolve the expressions of discrete or others choices
1589 -- unless the expression covers a single component, or the
1590 -- expander is inactive.
1592 -- In SPARK mode, expressions that can perform side-effects will
1593 -- be recognized by the gnat2why back-end, and the whole
1594 -- subprogram will be ignored. So semantic analysis can be
1595 -- performed safely.
1598 or else not Expander_Active
1599 or else In_Spec_Expression
1601 Analyze_And_Resolve
(Expr
, Component_Typ
);
1602 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
1603 Check_Non_Static_Context
(Expr
);
1604 Aggregate_Constraint_Checks
(Expr
, Component_Typ
);
1605 Check_Unset_Reference
(Expr
);
1609 -- If an aggregate component has a type with predicates, an explicit
1610 -- predicate check must be applied, as for an assignment statement,
1611 -- because the aggegate might not be expanded into individual
1612 -- component assignments.
1614 if Present
(Predicate_Function
(Component_Typ
)) then
1615 Apply_Predicate_Check
(Expr
, Component_Typ
);
1618 if Raises_Constraint_Error
(Expr
)
1619 and then Nkind
(Parent
(Expr
)) /= N_Component_Association
1621 Set_Raises_Constraint_Error
(N
);
1624 -- If the expression has been marked as requiring a range check,
1625 -- then generate it here. It's a bit odd to be generating such
1626 -- checks in the analyzer, but harmless since Generate_Range_Check
1627 -- does nothing (other than making sure Do_Range_Check is set) if
1628 -- the expander is not active.
1630 if Do_Range_Check
(Expr
) then
1631 Generate_Range_Check
(Expr
, Component_Typ
, CE_Range_Check_Failed
);
1634 return Resolution_OK
;
1635 end Resolve_Aggr_Expr
;
1637 -- Variables local to Resolve_Array_Aggregate
1644 pragma Warnings
(Off
, Discard
);
1646 Delete_Choice
: Boolean;
1647 -- Used when replacing a subtype choice with predicate by a list
1649 Aggr_Low
: Node_Id
:= Empty
;
1650 Aggr_High
: Node_Id
:= Empty
;
1651 -- The actual low and high bounds of this sub-aggregate
1653 Choices_Low
: Node_Id
:= Empty
;
1654 Choices_High
: Node_Id
:= Empty
;
1655 -- The lowest and highest discrete choices values for a named aggregate
1657 Nb_Elements
: Uint
:= Uint_0
;
1658 -- The number of elements in a positional aggregate
1660 Others_Present
: Boolean := False;
1662 Nb_Choices
: Nat
:= 0;
1663 -- Contains the overall number of named choices in this sub-aggregate
1665 Nb_Discrete_Choices
: Nat
:= 0;
1666 -- The overall number of discrete choices (not counting others choice)
1668 Case_Table_Size
: Nat
;
1669 -- Contains the size of the case table needed to sort aggregate choices
1671 -- Start of processing for Resolve_Array_Aggregate
1674 -- Ignore junk empty aggregate resulting from parser error
1676 if No
(Expressions
(N
))
1677 and then No
(Component_Associations
(N
))
1678 and then not Null_Record_Present
(N
)
1683 -- STEP 1: make sure the aggregate is correctly formatted
1685 if Present
(Component_Associations
(N
)) then
1686 Assoc
:= First
(Component_Associations
(N
));
1687 while Present
(Assoc
) loop
1688 Choice
:= First
(Choices
(Assoc
));
1689 Delete_Choice
:= False;
1691 while Present
(Choice
) loop
1692 if Nkind
(Choice
) = N_Others_Choice
then
1693 Others_Present
:= True;
1695 if Choice
/= First
(Choices
(Assoc
))
1696 or else Present
(Next
(Choice
))
1699 ("OTHERS must appear alone in a choice list", Choice
);
1703 if Present
(Next
(Assoc
)) then
1705 ("OTHERS must appear last in an aggregate", Choice
);
1709 if Ada_Version
= Ada_83
1710 and then Assoc
/= First
(Component_Associations
(N
))
1711 and then Nkind_In
(Parent
(N
), N_Assignment_Statement
,
1712 N_Object_Declaration
)
1715 ("(Ada 83) illegal context for OTHERS choice", N
);
1718 elsif Is_Entity_Name
(Choice
) then
1722 E
: constant Entity_Id
:= Entity
(Choice
);
1728 if Is_Type
(E
) and then Has_Predicates
(E
) then
1729 Freeze_Before
(N
, E
);
1731 if Has_Dynamic_Predicate_Aspect
(E
) then
1733 ("subtype& has dynamic predicate, not allowed "
1734 & "in aggregate choice", Choice
, E
);
1736 elsif not Is_OK_Static_Subtype
(E
) then
1738 ("non-static subtype& has predicate, not allowed "
1739 & "in aggregate choice", Choice
, E
);
1742 -- If the subtype has a static predicate, replace the
1743 -- original choice with the list of individual values
1744 -- covered by the predicate.
1746 if Present
(Static_Discrete_Predicate
(E
)) then
1747 Delete_Choice
:= True;
1750 P
:= First
(Static_Discrete_Predicate
(E
));
1751 while Present
(P
) loop
1753 Set_Sloc
(C
, Sloc
(Choice
));
1754 Append_To
(New_Cs
, C
);
1758 Insert_List_After
(Choice
, New_Cs
);
1764 Nb_Choices
:= Nb_Choices
+ 1;
1767 C
: constant Node_Id
:= Choice
;
1772 if Delete_Choice
then
1774 Nb_Choices
:= Nb_Choices
- 1;
1775 Delete_Choice
:= False;
1784 -- At this point we know that the others choice, if present, is by
1785 -- itself and appears last in the aggregate. Check if we have mixed
1786 -- positional and discrete associations (other than the others choice).
1788 if Present
(Expressions
(N
))
1789 and then (Nb_Choices
> 1
1790 or else (Nb_Choices
= 1 and then not Others_Present
))
1793 ("named association cannot follow positional association",
1794 First
(Choices
(First
(Component_Associations
(N
)))));
1798 -- Test for the validity of an others choice if present
1800 if Others_Present
and then not Others_Allowed
then
1802 ("OTHERS choice not allowed here",
1803 First
(Choices
(First
(Component_Associations
(N
)))));
1807 -- Protect against cascaded errors
1809 if Etype
(Index_Typ
) = Any_Type
then
1813 -- STEP 2: Process named components
1815 if No
(Expressions
(N
)) then
1816 if Others_Present
then
1817 Case_Table_Size
:= Nb_Choices
- 1;
1819 Case_Table_Size
:= Nb_Choices
;
1825 -- Denote the lowest and highest values in an aggregate choice
1827 S_Low
: Node_Id
:= Empty
;
1828 S_High
: Node_Id
:= Empty
;
1829 -- if a choice in an aggregate is a subtype indication these
1830 -- denote the lowest and highest values of the subtype
1832 Table
: Case_Table_Type
(0 .. Case_Table_Size
);
1833 -- Used to sort all the different choice values. Entry zero is
1834 -- reserved for sorting purposes.
1836 Single_Choice
: Boolean;
1837 -- Set to true every time there is a single discrete choice in a
1838 -- discrete association
1840 Prev_Nb_Discrete_Choices
: Nat
;
1841 -- Used to keep track of the number of discrete choices in the
1842 -- current association.
1844 Errors_Posted_On_Choices
: Boolean := False;
1845 -- Keeps track of whether any choices have semantic errors
1847 function Empty_Range
(A
: Node_Id
) return Boolean;
1848 -- If an association covers an empty range, some warnings on the
1849 -- expression of the association can be disabled.
1855 function Empty_Range
(A
: Node_Id
) return Boolean is
1856 R
: constant Node_Id
:= First
(Choices
(A
));
1858 return No
(Next
(R
))
1859 and then Nkind
(R
) = N_Range
1860 and then Compile_Time_Compare
1861 (Low_Bound
(R
), High_Bound
(R
), False) = GT
;
1864 -- Start of processing for Step_2
1867 -- STEP 2 (A): Check discrete choices validity
1869 Assoc
:= First
(Component_Associations
(N
));
1870 while Present
(Assoc
) loop
1871 Prev_Nb_Discrete_Choices
:= Nb_Discrete_Choices
;
1872 Choice
:= First
(Choices
(Assoc
));
1876 if Nkind
(Choice
) = N_Others_Choice
then
1877 Single_Choice
:= False;
1880 -- Test for subtype mark without constraint
1882 elsif Is_Entity_Name
(Choice
) and then
1883 Is_Type
(Entity
(Choice
))
1885 if Base_Type
(Entity
(Choice
)) /= Index_Base
then
1887 ("invalid subtype mark in aggregate choice",
1892 -- Case of subtype indication
1894 elsif Nkind
(Choice
) = N_Subtype_Indication
then
1895 Resolve_Discrete_Subtype_Indication
(Choice
, Index_Base
);
1897 if Has_Dynamic_Predicate_Aspect
1898 (Entity
(Subtype_Mark
(Choice
)))
1900 Error_Msg_NE
("subtype& has dynamic predicate, "
1901 & "not allowed in aggregate choice",
1902 Choice
, Entity
(Subtype_Mark
(Choice
)));
1905 -- Does the subtype indication evaluation raise CE?
1907 Get_Index_Bounds
(Subtype_Mark
(Choice
), S_Low
, S_High
);
1908 Get_Index_Bounds
(Choice
, Low
, High
);
1909 Check_Bounds
(S_Low
, S_High
, Low
, High
);
1911 -- Case of range or expression
1914 Resolve
(Choice
, Index_Base
);
1915 Check_Unset_Reference
(Choice
);
1916 Check_Non_Static_Context
(Choice
);
1918 -- If semantic errors were posted on the choice, then
1919 -- record that for possible early return from later
1920 -- processing (see handling of enumeration choices).
1922 if Error_Posted
(Choice
) then
1923 Errors_Posted_On_Choices
:= True;
1926 -- Do not range check a choice. This check is redundant
1927 -- since this test is already done when we check that the
1928 -- bounds of the array aggregate are within range.
1930 Set_Do_Range_Check
(Choice
, False);
1932 -- In SPARK, the choice must be static
1934 if not (Is_OK_Static_Expression
(Choice
)
1935 or else (Nkind
(Choice
) = N_Range
1936 and then Is_OK_Static_Range
(Choice
)))
1938 Check_SPARK_05_Restriction
1939 ("choice should be static", Choice
);
1943 -- If we could not resolve the discrete choice stop here
1945 if Etype
(Choice
) = Any_Type
then
1948 -- If the discrete choice raises CE get its original bounds
1950 elsif Nkind
(Choice
) = N_Raise_Constraint_Error
then
1951 Set_Raises_Constraint_Error
(N
);
1952 Get_Index_Bounds
(Original_Node
(Choice
), Low
, High
);
1954 -- Otherwise get its bounds as usual
1957 Get_Index_Bounds
(Choice
, Low
, High
);
1960 if (Dynamic_Or_Null_Range
(Low
, High
)
1961 or else (Nkind
(Choice
) = N_Subtype_Indication
1963 Dynamic_Or_Null_Range
(S_Low
, S_High
)))
1964 and then Nb_Choices
/= 1
1967 ("dynamic or empty choice in aggregate " &
1968 "must be the only choice", Choice
);
1972 Nb_Discrete_Choices
:= Nb_Discrete_Choices
+ 1;
1973 Table
(Nb_Discrete_Choices
).Lo
:= Low
;
1974 Table
(Nb_Discrete_Choices
).Hi
:= High
;
1975 Table
(Nb_Discrete_Choices
).Choice
:= Choice
;
1981 -- Check if we have a single discrete choice and whether
1982 -- this discrete choice specifies a single value.
1985 (Nb_Discrete_Choices
= Prev_Nb_Discrete_Choices
+ 1)
1986 and then (Low
= High
);
1992 -- Ada 2005 (AI-231)
1994 if Ada_Version
>= Ada_2005
1995 and then Known_Null
(Expression
(Assoc
))
1996 and then not Empty_Range
(Assoc
)
1998 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2001 -- Ada 2005 (AI-287): In case of default initialized component
2002 -- we delay the resolution to the expansion phase.
2004 if Box_Present
(Assoc
) then
2006 -- Ada 2005 (AI-287): In case of default initialization of a
2007 -- component the expander will generate calls to the
2008 -- corresponding initialization subprogram. We need to call
2009 -- Resolve_Aggr_Expr to check the rules about
2012 if not Resolve_Aggr_Expr
2013 (Assoc
, Single_Elmt
=> Single_Choice
)
2018 elsif not Resolve_Aggr_Expr
2019 (Expression
(Assoc
), Single_Elmt
=> Single_Choice
)
2023 -- Check incorrect use of dynamically tagged expression
2025 -- We differentiate here two cases because the expression may
2026 -- not be decorated. For example, the analysis and resolution
2027 -- of the expression associated with the others choice will be
2028 -- done later with the full aggregate. In such case we
2029 -- duplicate the expression tree to analyze the copy and
2030 -- perform the required check.
2032 elsif not Present
(Etype
(Expression
(Assoc
))) then
2034 Save_Analysis
: constant Boolean := Full_Analysis
;
2035 Expr
: constant Node_Id
:=
2036 New_Copy_Tree
(Expression
(Assoc
));
2039 Expander_Mode_Save_And_Set
(False);
2040 Full_Analysis
:= False;
2042 -- Analyze the expression, making sure it is properly
2043 -- attached to the tree before we do the analysis.
2045 Set_Parent
(Expr
, Parent
(Expression
(Assoc
)));
2048 -- If the expression is a literal, propagate this info
2049 -- to the expression in the association, to enable some
2050 -- optimizations downstream.
2052 if Is_Entity_Name
(Expr
)
2053 and then Present
(Entity
(Expr
))
2054 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
2057 (Expression
(Assoc
), Component_Typ
);
2060 Full_Analysis
:= Save_Analysis
;
2061 Expander_Mode_Restore
;
2063 if Is_Tagged_Type
(Etype
(Expr
)) then
2064 Check_Dynamically_Tagged_Expression
2066 Typ
=> Component_Type
(Etype
(N
)),
2071 elsif Is_Tagged_Type
(Etype
(Expression
(Assoc
))) then
2072 Check_Dynamically_Tagged_Expression
2073 (Expr
=> Expression
(Assoc
),
2074 Typ
=> Component_Type
(Etype
(N
)),
2081 -- If aggregate contains more than one choice then these must be
2082 -- static. Check for duplicate and missing values.
2084 -- Note: there is duplicated code here wrt Check_Choice_Set in
2085 -- the body of Sem_Case, and it is possible we could just reuse
2086 -- that procedure. To be checked ???
2088 if Nb_Discrete_Choices
> 1 then
2089 Check_Choices
: declare
2091 -- Location of choice for messages
2095 -- High end of one range and Low end of the next. Should be
2096 -- contiguous if there is no hole in the list of values.
2100 -- End points of duplicated range
2102 Missing_Or_Duplicates
: Boolean := False;
2103 -- Set True if missing or duplicate choices found
2105 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
);
2106 -- Output continuation message with a representation of the
2107 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2108 -- choice node where the message is to be posted.
2110 ------------------------
2111 -- Output_Bad_Choices --
2112 ------------------------
2114 procedure Output_Bad_Choices
(Lo
, Hi
: Uint
; C
: Node_Id
) is
2116 -- Enumeration type case
2118 if Is_Enumeration_Type
(Index_Typ
) then
2120 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Lo
, Loc
));
2122 Chars
(Get_Enum_Lit_From_Pos
(Index_Typ
, Hi
, Loc
));
2125 Error_Msg_N
("\\ %!", C
);
2127 Error_Msg_N
("\\ % .. %!", C
);
2130 -- Integer types case
2133 Error_Msg_Uint_1
:= Lo
;
2134 Error_Msg_Uint_2
:= Hi
;
2137 Error_Msg_N
("\\ ^!", C
);
2139 Error_Msg_N
("\\ ^ .. ^!", C
);
2142 end Output_Bad_Choices
;
2144 -- Start of processing for Check_Choices
2147 Sort_Case_Table
(Table
);
2149 -- First we do a quick linear loop to find out if we have
2150 -- any duplicates or missing entries (usually we have a
2151 -- legal aggregate, so this will get us out quickly).
2153 for J
in 1 .. Nb_Discrete_Choices
- 1 loop
2154 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2155 Lo_Val
:= Expr_Value
(Table
(J
+ 1).Lo
);
2158 or else (Lo_Val
> Hi_Val
+ 1
2159 and then not Others_Present
)
2161 Missing_Or_Duplicates
:= True;
2166 -- If we have missing or duplicate entries, first fill in
2167 -- the Highest entries to make life easier in the following
2168 -- loops to detect bad entries.
2170 if Missing_Or_Duplicates
then
2171 Table
(1).Highest
:= Expr_Value
(Table
(1).Hi
);
2173 for J
in 2 .. Nb_Discrete_Choices
loop
2174 Table
(J
).Highest
:=
2176 (Table
(J
- 1).Highest
, Expr_Value
(Table
(J
).Hi
));
2179 -- Loop through table entries to find duplicate indexes
2181 for J
in 2 .. Nb_Discrete_Choices
loop
2182 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2183 Hi_Val
:= Expr_Value
(Table
(J
).Hi
);
2185 -- Case where we have duplicates (the lower bound of
2186 -- this choice is less than or equal to the highest
2187 -- high bound found so far).
2189 if Lo_Val
<= Table
(J
- 1).Highest
then
2191 -- We move backwards looking for duplicates. We can
2192 -- abandon this loop as soon as we reach a choice
2193 -- highest value that is less than Lo_Val.
2195 for K
in reverse 1 .. J
- 1 loop
2196 exit when Table
(K
).Highest
< Lo_Val
;
2198 -- Here we may have duplicates between entries
2199 -- for K and J. Get range of duplicates.
2202 UI_Max
(Lo_Val
, Expr_Value
(Table
(K
).Lo
));
2204 UI_Min
(Hi_Val
, Expr_Value
(Table
(K
).Hi
));
2206 -- Nothing to do if duplicate range is null
2208 if Lo_Dup
> Hi_Dup
then
2211 -- Otherwise place proper message
2214 -- We place message on later choice, with a
2215 -- line reference to the earlier choice.
2217 if Sloc
(Table
(J
).Choice
) <
2218 Sloc
(Table
(K
).Choice
)
2220 Choice
:= Table
(K
).Choice
;
2221 Error_Msg_Sloc
:= Sloc
(Table
(J
).Choice
);
2223 Choice
:= Table
(J
).Choice
;
2224 Error_Msg_Sloc
:= Sloc
(Table
(K
).Choice
);
2227 if Lo_Dup
= Hi_Dup
then
2229 ("index value in array aggregate "
2230 & "duplicates the one given#!", Choice
);
2233 ("index values in array aggregate "
2234 & "duplicate those given#!", Choice
);
2237 Output_Bad_Choices
(Lo_Dup
, Hi_Dup
, Choice
);
2243 -- Loop through entries in table to find missing indexes.
2244 -- Not needed if others, since missing impossible.
2246 if not Others_Present
then
2247 for J
in 2 .. Nb_Discrete_Choices
loop
2248 Lo_Val
:= Expr_Value
(Table
(J
).Lo
);
2249 Hi_Val
:= Table
(J
- 1).Highest
;
2251 if Lo_Val
> Hi_Val
+ 1 then
2254 Error_Node
: Node_Id
;
2257 -- If the choice is the bound of a range in
2258 -- a subtype indication, it is not in the
2259 -- source lists for the aggregate itself, so
2260 -- post the error on the aggregate. Otherwise
2261 -- post it on choice itself.
2263 Choice
:= Table
(J
).Choice
;
2265 if Is_List_Member
(Choice
) then
2266 Error_Node
:= Choice
;
2271 if Hi_Val
+ 1 = Lo_Val
- 1 then
2273 ("missing index value "
2274 & "in array aggregate!", Error_Node
);
2277 ("missing index values "
2278 & "in array aggregate!", Error_Node
);
2282 (Hi_Val
+ 1, Lo_Val
- 1, Error_Node
);
2288 -- If either missing or duplicate values, return failure
2290 Set_Etype
(N
, Any_Composite
);
2296 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2298 if Nb_Discrete_Choices
> 0 then
2299 Choices_Low
:= Table
(1).Lo
;
2300 Choices_High
:= Table
(Nb_Discrete_Choices
).Hi
;
2303 -- If Others is present, then bounds of aggregate come from the
2304 -- index constraint (not the choices in the aggregate itself).
2306 if Others_Present
then
2307 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2309 -- No others clause present
2312 -- Special processing if others allowed and not present. This
2313 -- means that the bounds of the aggregate come from the index
2314 -- constraint (and the length must match).
2316 if Others_Allowed
then
2317 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2319 -- If others allowed, and no others present, then the array
2320 -- should cover all index values. If it does not, we will
2321 -- get a length check warning, but there is two cases where
2322 -- an additional warning is useful:
2324 -- If we have no positional components, and the length is
2325 -- wrong (which we can tell by others being allowed with
2326 -- missing components), and the index type is an enumeration
2327 -- type, then issue appropriate warnings about these missing
2328 -- components. They are only warnings, since the aggregate
2329 -- is fine, it's just the wrong length. We skip this check
2330 -- for standard character types (since there are no literals
2331 -- and it is too much trouble to concoct them), and also if
2332 -- any of the bounds have values that are not known at
2335 -- Another case warranting a warning is when the length is
2336 -- right, but as above we have an index type that is an
2337 -- enumeration, and the bounds do not match. This is a
2338 -- case where dubious sliding is allowed and we generate
2339 -- a warning that the bounds do not match.
2341 if No
(Expressions
(N
))
2342 and then Nkind
(Index
) = N_Range
2343 and then Is_Enumeration_Type
(Etype
(Index
))
2344 and then not Is_Standard_Character_Type
(Etype
(Index
))
2345 and then Compile_Time_Known_Value
(Aggr_Low
)
2346 and then Compile_Time_Known_Value
(Aggr_High
)
2347 and then Compile_Time_Known_Value
(Choices_Low
)
2348 and then Compile_Time_Known_Value
(Choices_High
)
2350 -- If any of the expressions or range bounds in choices
2351 -- have semantic errors, then do not attempt further
2352 -- resolution, to prevent cascaded errors.
2354 if Errors_Posted_On_Choices
then
2359 ALo
: constant Node_Id
:= Expr_Value_E
(Aggr_Low
);
2360 AHi
: constant Node_Id
:= Expr_Value_E
(Aggr_High
);
2361 CLo
: constant Node_Id
:= Expr_Value_E
(Choices_Low
);
2362 CHi
: constant Node_Id
:= Expr_Value_E
(Choices_High
);
2367 -- Warning case 1, missing values at start/end. Only
2368 -- do the check if the number of entries is too small.
2370 if (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2372 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2375 ("missing index value(s) in array aggregate??",
2378 -- Output missing value(s) at start
2380 if Chars
(ALo
) /= Chars
(CLo
) then
2383 if Chars
(ALo
) = Chars
(Ent
) then
2384 Error_Msg_Name_1
:= Chars
(ALo
);
2385 Error_Msg_N
("\ %??", N
);
2387 Error_Msg_Name_1
:= Chars
(ALo
);
2388 Error_Msg_Name_2
:= Chars
(Ent
);
2389 Error_Msg_N
("\ % .. %??", N
);
2393 -- Output missing value(s) at end
2395 if Chars
(AHi
) /= Chars
(CHi
) then
2398 if Chars
(AHi
) = Chars
(Ent
) then
2399 Error_Msg_Name_1
:= Chars
(Ent
);
2400 Error_Msg_N
("\ %??", N
);
2402 Error_Msg_Name_1
:= Chars
(Ent
);
2403 Error_Msg_Name_2
:= Chars
(AHi
);
2404 Error_Msg_N
("\ % .. %??", N
);
2408 -- Warning case 2, dubious sliding. The First_Subtype
2409 -- test distinguishes between a constrained type where
2410 -- sliding is not allowed (so we will get a warning
2411 -- later that Constraint_Error will be raised), and
2412 -- the unconstrained case where sliding is permitted.
2414 elsif (Enumeration_Pos
(CHi
) - Enumeration_Pos
(CLo
))
2416 (Enumeration_Pos
(AHi
) - Enumeration_Pos
(ALo
))
2417 and then Chars
(ALo
) /= Chars
(CLo
)
2419 not Is_Constrained
(First_Subtype
(Etype
(N
)))
2422 ("bounds of aggregate do not match target??", N
);
2428 -- If no others, aggregate bounds come from aggregate
2430 Aggr_Low
:= Choices_Low
;
2431 Aggr_High
:= Choices_High
;
2435 -- STEP 3: Process positional components
2438 -- STEP 3 (A): Process positional elements
2440 Expr
:= First
(Expressions
(N
));
2441 Nb_Elements
:= Uint_0
;
2442 while Present
(Expr
) loop
2443 Nb_Elements
:= Nb_Elements
+ 1;
2445 -- Ada 2005 (AI-231)
2447 if Ada_Version
>= Ada_2005
2448 and then Known_Null
(Expr
)
2450 Check_Can_Never_Be_Null
(Etype
(N
), Expr
);
2453 if not Resolve_Aggr_Expr
(Expr
, Single_Elmt
=> True) then
2457 -- Check incorrect use of dynamically tagged expression
2459 if Is_Tagged_Type
(Etype
(Expr
)) then
2460 Check_Dynamically_Tagged_Expression
2462 Typ
=> Component_Type
(Etype
(N
)),
2469 if Others_Present
then
2470 Assoc
:= Last
(Component_Associations
(N
));
2472 -- Ada 2005 (AI-231)
2474 if Ada_Version
>= Ada_2005
2475 and then Known_Null
(Assoc
)
2477 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
2480 -- Ada 2005 (AI-287): In case of default initialized component,
2481 -- we delay the resolution to the expansion phase.
2483 if Box_Present
(Assoc
) then
2485 -- Ada 2005 (AI-287): In case of default initialization of a
2486 -- component the expander will generate calls to the
2487 -- corresponding initialization subprogram. We need to call
2488 -- Resolve_Aggr_Expr to check the rules about
2491 if not Resolve_Aggr_Expr
(Assoc
, Single_Elmt
=> False) then
2495 elsif not Resolve_Aggr_Expr
(Expression
(Assoc
),
2496 Single_Elmt
=> False)
2500 -- Check incorrect use of dynamically tagged expression. The
2501 -- expression of the others choice has not been resolved yet.
2502 -- In order to diagnose the semantic error we create a duplicate
2503 -- tree to analyze it and perform the check.
2507 Save_Analysis
: constant Boolean := Full_Analysis
;
2508 Expr
: constant Node_Id
:=
2509 New_Copy_Tree
(Expression
(Assoc
));
2512 Expander_Mode_Save_And_Set
(False);
2513 Full_Analysis
:= False;
2515 Full_Analysis
:= Save_Analysis
;
2516 Expander_Mode_Restore
;
2518 if Is_Tagged_Type
(Etype
(Expr
)) then
2519 Check_Dynamically_Tagged_Expression
2521 Typ
=> Component_Type
(Etype
(N
)),
2528 -- STEP 3 (B): Compute the aggregate bounds
2530 if Others_Present
then
2531 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
2534 if Others_Allowed
then
2535 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Discard
);
2537 Aggr_Low
:= Index_Typ_Low
;
2540 Aggr_High
:= Add
(Nb_Elements
- 1, To
=> Aggr_Low
);
2541 Check_Bound
(Index_Base_High
, Aggr_High
);
2545 -- STEP 4: Perform static aggregate checks and save the bounds
2549 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
, Aggr_Low
, Aggr_High
);
2550 Check_Bounds
(Index_Base_Low
, Index_Base_High
, Aggr_Low
, Aggr_High
);
2554 if Others_Present
and then Nb_Discrete_Choices
> 0 then
2555 Check_Bounds
(Aggr_Low
, Aggr_High
, Choices_Low
, Choices_High
);
2556 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
,
2557 Choices_Low
, Choices_High
);
2558 Check_Bounds
(Index_Base_Low
, Index_Base_High
,
2559 Choices_Low
, Choices_High
);
2563 elsif Others_Present
and then Nb_Elements
> 0 then
2564 Check_Length
(Aggr_Low
, Aggr_High
, Nb_Elements
);
2565 Check_Length
(Index_Typ_Low
, Index_Typ_High
, Nb_Elements
);
2566 Check_Length
(Index_Base_Low
, Index_Base_High
, Nb_Elements
);
2569 if Raises_Constraint_Error
(Aggr_Low
)
2570 or else Raises_Constraint_Error
(Aggr_High
)
2572 Set_Raises_Constraint_Error
(N
);
2575 Aggr_Low
:= Duplicate_Subexpr
(Aggr_Low
);
2577 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2578 -- since the addition node returned by Add is not yet analyzed. Attach
2579 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2580 -- analyzed when it is a literal bound whose type must be properly set.
2582 if Others_Present
or else Nb_Discrete_Choices
> 0 then
2583 Aggr_High
:= Duplicate_Subexpr
(Aggr_High
);
2585 if Etype
(Aggr_High
) = Universal_Integer
then
2586 Set_Analyzed
(Aggr_High
, False);
2590 -- If the aggregate already has bounds attached to it, it means this is
2591 -- a positional aggregate created as an optimization by
2592 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2595 if Present
(Aggregate_Bounds
(N
)) and then not Others_Allowed
then
2596 Aggr_Low
:= Low_Bound
(Aggregate_Bounds
(N
));
2597 Aggr_High
:= High_Bound
(Aggregate_Bounds
(N
));
2600 Set_Aggregate_Bounds
2601 (N
, Make_Range
(Loc
, Low_Bound
=> Aggr_Low
, High_Bound
=> Aggr_High
));
2603 -- The bounds may contain expressions that must be inserted upwards.
2604 -- Attach them fully to the tree. After analysis, remove side effects
2605 -- from upper bound, if still needed.
2607 Set_Parent
(Aggregate_Bounds
(N
), N
);
2608 Analyze_And_Resolve
(Aggregate_Bounds
(N
), Index_Typ
);
2609 Check_Unset_Reference
(Aggregate_Bounds
(N
));
2611 if not Others_Present
and then Nb_Discrete_Choices
= 0 then
2613 (Aggregate_Bounds
(N
),
2614 Duplicate_Subexpr
(High_Bound
(Aggregate_Bounds
(N
))));
2617 -- Check the dimensions of each component in the array aggregate
2619 Analyze_Dimension_Array_Aggregate
(N
, Component_Typ
);
2622 end Resolve_Array_Aggregate
;
2624 ---------------------------------
2625 -- Resolve_Extension_Aggregate --
2626 ---------------------------------
2628 -- There are two cases to consider:
2630 -- a) If the ancestor part is a type mark, the components needed are the
2631 -- difference between the components of the expected type and the
2632 -- components of the given type mark.
2634 -- b) If the ancestor part is an expression, it must be unambiguous, and
2635 -- once we have its type we can also compute the needed components as in
2636 -- the previous case. In both cases, if the ancestor type is not the
2637 -- immediate ancestor, we have to build this ancestor recursively.
2639 -- In both cases, discriminants of the ancestor type do not play a role in
2640 -- the resolution of the needed components, because inherited discriminants
2641 -- cannot be used in a type extension. As a result we can compute
2642 -- independently the list of components of the ancestor type and of the
2645 procedure Resolve_Extension_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2646 A
: constant Node_Id
:= Ancestor_Part
(N
);
2651 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean;
2652 -- If the type is limited, verify that the ancestor part is a legal
2653 -- expression (aggregate or function call, including 'Input)) that does
2654 -- not require a copy, as specified in 7.5(2).
2656 function Valid_Ancestor_Type
return Boolean;
2657 -- Verify that the type of the ancestor part is a non-private ancestor
2658 -- of the expected type, which must be a type extension.
2660 ----------------------------
2661 -- Valid_Limited_Ancestor --
2662 ----------------------------
2664 function Valid_Limited_Ancestor
(Anc
: Node_Id
) return Boolean is
2666 if Is_Entity_Name
(Anc
) and then Is_Type
(Entity
(Anc
)) then
2669 -- The ancestor must be a call or an aggregate, but a call may
2670 -- have been expanded into a temporary, so check original node.
2672 elsif Nkind_In
(Anc
, N_Aggregate
,
2673 N_Extension_Aggregate
,
2678 elsif Nkind
(Original_Node
(Anc
)) = N_Function_Call
then
2681 elsif Nkind
(Anc
) = N_Attribute_Reference
2682 and then Attribute_Name
(Anc
) = Name_Input
2686 elsif Nkind
(Anc
) = N_Qualified_Expression
then
2687 return Valid_Limited_Ancestor
(Expression
(Anc
));
2692 end Valid_Limited_Ancestor
;
2694 -------------------------
2695 -- Valid_Ancestor_Type --
2696 -------------------------
2698 function Valid_Ancestor_Type
return Boolean is
2699 Imm_Type
: Entity_Id
;
2702 Imm_Type
:= Base_Type
(Typ
);
2703 while Is_Derived_Type
(Imm_Type
) loop
2704 if Etype
(Imm_Type
) = Base_Type
(A_Type
) then
2707 -- The base type of the parent type may appear as a private
2708 -- extension if it is declared as such in a parent unit of the
2709 -- current one. For consistency of the subsequent analysis use
2710 -- the partial view for the ancestor part.
2712 elsif Is_Private_Type
(Etype
(Imm_Type
))
2713 and then Present
(Full_View
(Etype
(Imm_Type
)))
2714 and then Base_Type
(A_Type
) = Full_View
(Etype
(Imm_Type
))
2716 A_Type
:= Etype
(Imm_Type
);
2719 -- The parent type may be a private extension. The aggregate is
2720 -- legal if the type of the aggregate is an extension of it that
2721 -- is not a private extension.
2723 elsif Is_Private_Type
(A_Type
)
2724 and then not Is_Private_Type
(Imm_Type
)
2725 and then Present
(Full_View
(A_Type
))
2726 and then Base_Type
(Full_View
(A_Type
)) = Etype
(Imm_Type
)
2731 Imm_Type
:= Etype
(Base_Type
(Imm_Type
));
2735 -- If previous loop did not find a proper ancestor, report error
2737 Error_Msg_NE
("expect ancestor type of &", A
, Typ
);
2739 end Valid_Ancestor_Type
;
2741 -- Start of processing for Resolve_Extension_Aggregate
2744 -- Analyze the ancestor part and account for the case where it is a
2745 -- parameterless function call.
2748 Check_Parameterless_Call
(A
);
2750 -- In SPARK, the ancestor part cannot be a type mark
2752 if Is_Entity_Name
(A
)
2753 and then Is_Type
(Entity
(A
))
2755 Check_SPARK_05_Restriction
("ancestor part cannot be a type mark", A
);
2757 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2758 -- must not have unknown discriminants.
2760 if Has_Unknown_Discriminants
(Root_Type
(Typ
)) then
2762 ("aggregate not available for type& whose ancestor "
2763 & "has unknown discriminants", N
, Typ
);
2767 if not Is_Tagged_Type
(Typ
) then
2768 Error_Msg_N
("type of extension aggregate must be tagged", N
);
2771 elsif Is_Limited_Type
(Typ
) then
2773 -- Ada 2005 (AI-287): Limited aggregates are allowed
2775 if Ada_Version
< Ada_2005
then
2776 Error_Msg_N
("aggregate type cannot be limited", N
);
2777 Explain_Limited_Type
(Typ
, N
);
2780 elsif Valid_Limited_Ancestor
(A
) then
2785 ("limited ancestor part must be aggregate or function call", A
);
2788 elsif Is_Class_Wide_Type
(Typ
) then
2789 Error_Msg_N
("aggregate cannot be of a class-wide type", N
);
2793 if Is_Entity_Name
(A
)
2794 and then Is_Type
(Entity
(A
))
2796 A_Type
:= Get_Full_View
(Entity
(A
));
2798 if Valid_Ancestor_Type
then
2799 Set_Entity
(A
, A_Type
);
2800 Set_Etype
(A
, A_Type
);
2802 Validate_Ancestor_Part
(N
);
2803 Resolve_Record_Aggregate
(N
, Typ
);
2806 elsif Nkind
(A
) /= N_Aggregate
then
2807 if Is_Overloaded
(A
) then
2810 Get_First_Interp
(A
, I
, It
);
2811 while Present
(It
.Typ
) loop
2812 -- Only consider limited interpretations in the Ada 2005 case
2814 if Is_Tagged_Type
(It
.Typ
)
2815 and then (Ada_Version
>= Ada_2005
2816 or else not Is_Limited_Type
(It
.Typ
))
2818 if A_Type
/= Any_Type
then
2819 Error_Msg_N
("cannot resolve expression", A
);
2826 Get_Next_Interp
(I
, It
);
2829 if A_Type
= Any_Type
then
2830 if Ada_Version
>= Ada_2005
then
2831 Error_Msg_N
("ancestor part must be of a tagged type", A
);
2834 ("ancestor part must be of a nonlimited tagged type", A
);
2841 A_Type
:= Etype
(A
);
2844 if Valid_Ancestor_Type
then
2845 Resolve
(A
, A_Type
);
2846 Check_Unset_Reference
(A
);
2847 Check_Non_Static_Context
(A
);
2849 -- The aggregate is illegal if the ancestor expression is a call
2850 -- to a function with a limited unconstrained result, unless the
2851 -- type of the aggregate is a null extension. This restriction
2852 -- was added in AI05-67 to simplify implementation.
2854 if Nkind
(A
) = N_Function_Call
2855 and then Is_Limited_Type
(A_Type
)
2856 and then not Is_Null_Extension
(Typ
)
2857 and then not Is_Constrained
(A_Type
)
2860 ("type of limited ancestor part must be constrained", A
);
2862 -- Reject the use of CPP constructors that leave objects partially
2863 -- initialized. For example:
2865 -- type CPP_Root is tagged limited record ...
2866 -- pragma Import (CPP, CPP_Root);
2868 -- type CPP_DT is new CPP_Root and Iface ...
2869 -- pragma Import (CPP, CPP_DT);
2871 -- type Ada_DT is new CPP_DT with ...
2873 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2875 -- Using the constructor of CPP_Root the slots of the dispatch
2876 -- table of CPP_DT cannot be set, and the secondary tag of
2877 -- CPP_DT is unknown.
2879 elsif Nkind
(A
) = N_Function_Call
2880 and then Is_CPP_Constructor_Call
(A
)
2881 and then Enclosing_CPP_Parent
(Typ
) /= A_Type
2884 ("??must use 'C'P'P constructor for type &", A
,
2885 Enclosing_CPP_Parent
(Typ
));
2887 -- The following call is not needed if the previous warning
2888 -- is promoted to an error.
2890 Resolve_Record_Aggregate
(N
, Typ
);
2892 elsif Is_Class_Wide_Type
(Etype
(A
))
2893 and then Nkind
(Original_Node
(A
)) = N_Function_Call
2895 -- If the ancestor part is a dispatching call, it appears
2896 -- statically to be a legal ancestor, but it yields any member
2897 -- of the class, and it is not possible to determine whether
2898 -- it is an ancestor of the extension aggregate (much less
2899 -- which ancestor). It is not possible to determine the
2900 -- components of the extension part.
2902 -- This check implements AI-306, which in fact was motivated by
2903 -- an AdaCore query to the ARG after this test was added.
2905 Error_Msg_N
("ancestor part must be statically tagged", A
);
2907 Resolve_Record_Aggregate
(N
, Typ
);
2912 Error_Msg_N
("no unique type for this aggregate", A
);
2915 Check_Function_Writable_Actuals
(N
);
2916 end Resolve_Extension_Aggregate
;
2918 ------------------------------
2919 -- Resolve_Record_Aggregate --
2920 ------------------------------
2922 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2924 -- N_Component_Association node belonging to the input aggregate N
2927 Positional_Expr
: Node_Id
;
2928 Component
: Entity_Id
;
2929 Component_Elmt
: Elmt_Id
;
2931 Components
: constant Elist_Id
:= New_Elmt_List
;
2932 -- Components is the list of the record components whose value must be
2933 -- provided in the aggregate. This list does include discriminants.
2935 New_Assoc_List
: constant List_Id
:= New_List
;
2936 New_Assoc
: Node_Id
;
2937 -- New_Assoc_List is the newly built list of N_Component_Association
2938 -- nodes. New_Assoc is one such N_Component_Association node in it.
2939 -- Note that while Assoc and New_Assoc contain the same kind of nodes,
2940 -- they are used to iterate over two different N_Component_Association
2943 Others_Etype
: Entity_Id
:= Empty
;
2944 -- This variable is used to save the Etype of the last record component
2945 -- that takes its value from the others choice. Its purpose is:
2947 -- (a) make sure the others choice is useful
2949 -- (b) make sure the type of all the components whose value is
2950 -- subsumed by the others choice are the same.
2952 -- This variable is updated as a side effect of function Get_Value.
2954 Is_Box_Present
: Boolean := False;
2955 Others_Box
: Boolean := False;
2956 -- Ada 2005 (AI-287): Variables used in case of default initialization
2957 -- to provide a functionality similar to Others_Etype. Box_Present
2958 -- indicates that the component takes its default initialization;
2959 -- Others_Box indicates that at least one component takes its default
2960 -- initialization. Similar to Others_Etype, they are also updated as a
2961 -- side effect of function Get_Value.
2963 procedure Add_Association
2964 (Component
: Entity_Id
;
2966 Assoc_List
: List_Id
;
2967 Is_Box_Present
: Boolean := False);
2968 -- Builds a new N_Component_Association node which associates Component
2969 -- to expression Expr and adds it to the association list being built,
2970 -- either New_Assoc_List, or the association being built for an inner
2973 function Discr_Present
(Discr
: Entity_Id
) return Boolean;
2974 -- If aggregate N is a regular aggregate this routine will return True.
2975 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2976 -- whose value may already have been specified by N's ancestor part.
2977 -- This routine checks whether this is indeed the case and if so returns
2978 -- False, signaling that no value for Discr should appear in N's
2979 -- aggregate part. Also, in this case, the routine appends to
2980 -- New_Assoc_List the discriminant value specified in the ancestor part.
2982 -- If the aggregate is in a context with expansion delayed, it will be
2983 -- reanalyzed. The inherited discriminant values must not be reinserted
2984 -- in the component list to prevent spurious errors, but they must be
2985 -- present on first analysis to build the proper subtype indications.
2986 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
2991 Consider_Others_Choice
: Boolean := False)
2993 -- Given a record component stored in parameter Compon, this function
2994 -- returns its value as it appears in the list From, which is a list
2995 -- of N_Component_Association nodes.
2997 -- If no component association has a choice for the searched component,
2998 -- the value provided by the others choice is returned, if there is one,
2999 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3000 -- returned. If there is more than one component association giving a
3001 -- value for the searched record component, an error message is emitted
3002 -- and the first found value is returned.
3004 -- If Consider_Others_Choice is set and the returned expression comes
3005 -- from the others choice, then Others_Etype is set as a side effect.
3006 -- An error message is emitted if the components taking their value from
3007 -- the others choice do not have same type.
3009 function New_Copy_Tree_And_Copy_Dimensions
3011 Map
: Elist_Id
:= No_Elist
;
3012 New_Sloc
: Source_Ptr
:= No_Location
;
3013 New_Scope
: Entity_Id
:= Empty
) return Node_Id
;
3014 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3015 -- also copies the dimensions of Source to the returned node.
3017 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
);
3018 -- Analyzes and resolves expression Expr against the Etype of the
3019 -- Component. This routine also applies all appropriate checks to Expr.
3020 -- It finally saves a Expr in the newly created association list that
3021 -- will be attached to the final record aggregate. Note that if the
3022 -- Parent pointer of Expr is not set then Expr was produced with a
3023 -- New_Copy_Tree or some such.
3025 ---------------------
3026 -- Add_Association --
3027 ---------------------
3029 procedure Add_Association
3030 (Component
: Entity_Id
;
3032 Assoc_List
: List_Id
;
3033 Is_Box_Present
: Boolean := False)
3036 Choice_List
: constant List_Id
:= New_List
;
3037 New_Assoc
: Node_Id
;
3040 -- If this is a box association the expression is missing, so
3041 -- use the Sloc of the aggregate itself for the new association.
3043 if Present
(Expr
) then
3049 Append
(New_Occurrence_Of
(Component
, Loc
), Choice_List
);
3051 Make_Component_Association
(Loc
,
3052 Choices
=> Choice_List
,
3054 Box_Present
=> Is_Box_Present
);
3055 Append
(New_Assoc
, Assoc_List
);
3056 end Add_Association
;
3062 function Discr_Present
(Discr
: Entity_Id
) return Boolean is
3063 Regular_Aggr
: constant Boolean := Nkind
(N
) /= N_Extension_Aggregate
;
3068 Comp_Assoc
: Node_Id
;
3069 Discr_Expr
: Node_Id
;
3071 Ancestor_Typ
: Entity_Id
;
3072 Orig_Discr
: Entity_Id
;
3074 D_Val
: Elmt_Id
:= No_Elmt
; -- stop junk warning
3076 Ancestor_Is_Subtyp
: Boolean;
3079 if Regular_Aggr
then
3083 -- Check whether inherited discriminant values have already been
3084 -- inserted in the aggregate. This will be the case if we are
3085 -- re-analyzing an aggregate whose expansion was delayed.
3087 if Present
(Component_Associations
(N
)) then
3088 Comp_Assoc
:= First
(Component_Associations
(N
));
3089 while Present
(Comp_Assoc
) loop
3090 if Inherited_Discriminant
(Comp_Assoc
) then
3098 Ancestor
:= Ancestor_Part
(N
);
3099 Ancestor_Typ
:= Etype
(Ancestor
);
3100 Loc
:= Sloc
(Ancestor
);
3102 -- For a private type with unknown discriminants, use the underlying
3103 -- record view if it is available.
3105 if Has_Unknown_Discriminants
(Ancestor_Typ
)
3106 and then Present
(Full_View
(Ancestor_Typ
))
3107 and then Present
(Underlying_Record_View
(Full_View
(Ancestor_Typ
)))
3109 Ancestor_Typ
:= Underlying_Record_View
(Full_View
(Ancestor_Typ
));
3112 Ancestor_Is_Subtyp
:=
3113 Is_Entity_Name
(Ancestor
) and then Is_Type
(Entity
(Ancestor
));
3115 -- If the ancestor part has no discriminants clearly N's aggregate
3116 -- part must provide a value for Discr.
3118 if not Has_Discriminants
(Ancestor_Typ
) then
3121 -- If the ancestor part is an unconstrained subtype mark then the
3122 -- Discr must be present in N's aggregate part.
3124 elsif Ancestor_Is_Subtyp
3125 and then not Is_Constrained
(Entity
(Ancestor
))
3130 -- Now look to see if Discr was specified in the ancestor part
3132 if Ancestor_Is_Subtyp
then
3133 D_Val
:= First_Elmt
(Discriminant_Constraint
(Entity
(Ancestor
)));
3136 Orig_Discr
:= Original_Record_Component
(Discr
);
3138 D
:= First_Discriminant
(Ancestor_Typ
);
3139 while Present
(D
) loop
3141 -- If Ancestor has already specified Disc value then insert its
3142 -- value in the final aggregate.
3144 if Original_Record_Component
(D
) = Orig_Discr
then
3145 if Ancestor_Is_Subtyp
then
3146 Discr_Expr
:= New_Copy_Tree
(Node
(D_Val
));
3149 Make_Selected_Component
(Loc
,
3150 Prefix
=> Duplicate_Subexpr
(Ancestor
),
3151 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
));
3154 Resolve_Aggr_Expr
(Discr_Expr
, Discr
);
3155 Set_Inherited_Discriminant
(Last
(New_Assoc_List
));
3159 Next_Discriminant
(D
);
3161 if Ancestor_Is_Subtyp
then
3176 Consider_Others_Choice
: Boolean := False)
3179 Typ
: constant Entity_Id
:= Etype
(Compon
);
3181 Expr
: Node_Id
:= Empty
;
3182 Selector_Name
: Node_Id
;
3185 Is_Box_Present
:= False;
3187 if Present
(From
) then
3188 Assoc
:= First
(From
);
3193 while Present
(Assoc
) loop
3194 Selector_Name
:= First
(Choices
(Assoc
));
3195 while Present
(Selector_Name
) loop
3196 if Nkind
(Selector_Name
) = N_Others_Choice
then
3197 if Consider_Others_Choice
and then No
(Expr
) then
3199 -- We need to duplicate the expression for each
3200 -- successive component covered by the others choice.
3201 -- This is redundant if the others_choice covers only
3202 -- one component (small optimization possible???), but
3203 -- indispensable otherwise, because each one must be
3204 -- expanded individually to preserve side-effects.
3206 -- Ada 2005 (AI-287): In case of default initialization
3207 -- of components, we duplicate the corresponding default
3208 -- expression (from the record type declaration). The
3209 -- copy must carry the sloc of the association (not the
3210 -- original expression) to prevent spurious elaboration
3211 -- checks when the default includes function calls.
3213 if Box_Present
(Assoc
) then
3215 Is_Box_Present
:= True;
3217 if Expander_Active
then
3219 New_Copy_Tree_And_Copy_Dimensions
3220 (Expression
(Parent
(Compon
)),
3221 New_Sloc
=> Sloc
(Assoc
));
3223 return Expression
(Parent
(Compon
));
3227 if Present
(Others_Etype
)
3228 and then Base_Type
(Others_Etype
) /= Base_Type
(Typ
)
3230 -- If the components are of an anonymous access
3231 -- type they are distinct, but this is legal in
3232 -- Ada 2012 as long as designated types match.
3234 if (Ekind
(Typ
) = E_Anonymous_Access_Type
3235 or else Ekind
(Typ
) =
3236 E_Anonymous_Access_Subprogram_Type
)
3237 and then Designated_Type
(Typ
) =
3238 Designated_Type
(Others_Etype
)
3243 ("components in OTHERS choice must "
3244 & "have same type", Selector_Name
);
3248 Others_Etype
:= Typ
;
3250 -- Copy expression so that it is resolved
3251 -- independently for each component, This is needed
3252 -- for accessibility checks on compoents of anonymous
3253 -- access types, even in compile_only mode.
3255 if not Inside_A_Generic
then
3257 -- In ASIS mode, preanalyze the expression in an
3258 -- others association before making copies for
3259 -- separate resolution and accessibility checks.
3260 -- This ensures that the type of the expression is
3261 -- available to ASIS in all cases, in particular if
3262 -- the expression is itself an aggregate.
3265 Preanalyze_And_Resolve
(Expression
(Assoc
), Typ
);
3269 New_Copy_Tree_And_Copy_Dimensions
3270 (Expression
(Assoc
));
3273 return Expression
(Assoc
);
3278 elsif Chars
(Compon
) = Chars
(Selector_Name
) then
3281 -- Ada 2005 (AI-231)
3283 if Ada_Version
>= Ada_2005
3284 and then Known_Null
(Expression
(Assoc
))
3286 Check_Can_Never_Be_Null
(Compon
, Expression
(Assoc
));
3289 -- We need to duplicate the expression when several
3290 -- components are grouped together with a "|" choice.
3291 -- For instance "filed1 | filed2 => Expr"
3293 -- Ada 2005 (AI-287)
3295 if Box_Present
(Assoc
) then
3296 Is_Box_Present
:= True;
3298 -- Duplicate the default expression of the component
3299 -- from the record type declaration, so a new copy
3300 -- can be attached to the association.
3302 -- Note that we always copy the default expression,
3303 -- even when the association has a single choice, in
3304 -- order to create a proper association for the
3305 -- expanded aggregate.
3307 -- Component may have no default, in which case the
3308 -- expression is empty and the component is default-
3309 -- initialized, but an association for the component
3310 -- exists, and it is not covered by an others clause.
3312 -- Scalar and private types have no initialization
3313 -- procedure, so they remain uninitialized. If the
3314 -- target of the aggregate is a constant this
3315 -- deserves a warning.
3317 if No
(Expression
(Parent
(Compon
)))
3318 and then not Has_Non_Null_Base_Init_Proc
(Typ
)
3319 and then not Has_Aspect
(Typ
, Aspect_Default_Value
)
3320 and then not Is_Concurrent_Type
(Typ
)
3321 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3322 and then Constant_Present
(Parent
(N
))
3324 Error_Msg_Node_2
:= Typ
;
3326 ("component&? of type& is uninitialized",
3327 Assoc
, Selector_Name
);
3329 -- An additional reminder if the component type
3330 -- is a generic formal.
3332 if Is_Generic_Type
(Base_Type
(Typ
)) then
3334 ("\instance should provide actual "
3335 & "type with initialization for&",
3341 New_Copy_Tree_And_Copy_Dimensions
3342 (Expression
(Parent
(Compon
)));
3345 if Present
(Next
(Selector_Name
)) then
3346 Expr
:= New_Copy_Tree_And_Copy_Dimensions
3347 (Expression
(Assoc
));
3349 Expr
:= Expression
(Assoc
);
3353 Generate_Reference
(Compon
, Selector_Name
, 'm');
3357 ("more than one value supplied for &",
3358 Selector_Name
, Compon
);
3363 Next
(Selector_Name
);
3372 ---------------------------------------
3373 -- New_Copy_Tree_And_Copy_Dimensions --
3374 ---------------------------------------
3376 function New_Copy_Tree_And_Copy_Dimensions
3378 Map
: Elist_Id
:= No_Elist
;
3379 New_Sloc
: Source_Ptr
:= No_Location
;
3380 New_Scope
: Entity_Id
:= Empty
) return Node_Id
3382 New_Copy
: constant Node_Id
:=
3383 New_Copy_Tree
(Source
, Map
, New_Sloc
, New_Scope
);
3385 -- Move the dimensions of Source to New_Copy
3387 Copy_Dimensions
(Source
, New_Copy
);
3389 end New_Copy_Tree_And_Copy_Dimensions
;
3391 -----------------------
3392 -- Resolve_Aggr_Expr --
3393 -----------------------
3395 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
) is
3396 Expr_Type
: Entity_Id
:= Empty
;
3397 New_C
: Entity_Id
:= Component
;
3400 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean;
3401 -- If the expression is an aggregate (possibly qualified) then its
3402 -- expansion is delayed until the enclosing aggregate is expanded
3403 -- into assignments. In that case, do not generate checks on the
3404 -- expression, because they will be generated later, and will other-
3405 -- wise force a copy (to remove side-effects) that would leave a
3406 -- dynamic-sized aggregate in the code, something that gigi cannot
3410 -- Set to True if the resolved Expr node needs to be relocated when
3411 -- attached to the newly created association list. This node need not
3412 -- be relocated if its parent pointer is not set. In fact in this
3413 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3414 -- True then we have analyzed the expression node in the original
3415 -- aggregate and hence it needs to be relocated when moved over to
3416 -- the new association list.
3418 ---------------------------
3419 -- Has_Expansion_Delayed --
3420 ---------------------------
3422 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean is
3423 Kind
: constant Node_Kind
:= Nkind
(Expr
);
3425 return (Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
)
3426 and then Present
(Etype
(Expr
))
3427 and then Is_Record_Type
(Etype
(Expr
))
3428 and then Expansion_Delayed
(Expr
))
3429 or else (Kind
= N_Qualified_Expression
3430 and then Has_Expansion_Delayed
(Expression
(Expr
)));
3431 end Has_Expansion_Delayed
;
3433 -- Start of processing for Resolve_Aggr_Expr
3436 -- If the type of the component is elementary or the type of the
3437 -- aggregate does not contain discriminants, use the type of the
3438 -- component to resolve Expr.
3440 if Is_Elementary_Type
(Etype
(Component
))
3441 or else not Has_Discriminants
(Etype
(N
))
3443 Expr_Type
:= Etype
(Component
);
3445 -- Otherwise we have to pick up the new type of the component from
3446 -- the new constrained subtype of the aggregate. In fact components
3447 -- which are of a composite type might be constrained by a
3448 -- discriminant, and we want to resolve Expr against the subtype were
3449 -- all discriminant occurrences are replaced with their actual value.
3452 New_C
:= First_Component
(Etype
(N
));
3453 while Present
(New_C
) loop
3454 if Chars
(New_C
) = Chars
(Component
) then
3455 Expr_Type
:= Etype
(New_C
);
3459 Next_Component
(New_C
);
3462 pragma Assert
(Present
(Expr_Type
));
3464 -- For each range in an array type where a discriminant has been
3465 -- replaced with the constraint, check that this range is within
3466 -- the range of the base type. This checks is done in the init
3467 -- proc for regular objects, but has to be done here for
3468 -- aggregates since no init proc is called for them.
3470 if Is_Array_Type
(Expr_Type
) then
3473 -- Range of the current constrained index in the array
3475 Orig_Index
: Node_Id
:= First_Index
(Etype
(Component
));
3476 -- Range corresponding to the range Index above in the
3477 -- original unconstrained record type. The bounds of this
3478 -- range may be governed by discriminants.
3480 Unconstr_Index
: Node_Id
:= First_Index
(Etype
(Expr_Type
));
3481 -- Range corresponding to the range Index above for the
3482 -- unconstrained array type. This range is needed to apply
3486 Index
:= First_Index
(Expr_Type
);
3487 while Present
(Index
) loop
3488 if Depends_On_Discriminant
(Orig_Index
) then
3489 Apply_Range_Check
(Index
, Etype
(Unconstr_Index
));
3493 Next_Index
(Orig_Index
);
3494 Next_Index
(Unconstr_Index
);
3500 -- If the Parent pointer of Expr is not set, Expr is an expression
3501 -- duplicated by New_Tree_Copy (this happens for record aggregates
3502 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3503 -- Such a duplicated expression must be attached to the tree
3504 -- before analysis and resolution to enforce the rule that a tree
3505 -- fragment should never be analyzed or resolved unless it is
3506 -- attached to the current compilation unit.
3508 if No
(Parent
(Expr
)) then
3509 Set_Parent
(Expr
, N
);
3515 Analyze_And_Resolve
(Expr
, Expr_Type
);
3516 Check_Expr_OK_In_Limited_Aggregate
(Expr
);
3517 Check_Non_Static_Context
(Expr
);
3518 Check_Unset_Reference
(Expr
);
3520 -- Check wrong use of class-wide types
3522 if Is_Class_Wide_Type
(Etype
(Expr
)) then
3523 Error_Msg_N
("dynamically tagged expression not allowed", Expr
);
3526 if not Has_Expansion_Delayed
(Expr
) then
3527 Aggregate_Constraint_Checks
(Expr
, Expr_Type
);
3530 -- If an aggregate component has a type with predicates, an explicit
3531 -- predicate check must be applied, as for an assignment statement,
3532 -- because the aggegate might not be expanded into individual
3533 -- component assignments.
3535 if Present
(Predicate_Function
(Expr_Type
)) then
3536 Apply_Predicate_Check
(Expr
, Expr_Type
);
3539 if Raises_Constraint_Error
(Expr
) then
3540 Set_Raises_Constraint_Error
(N
);
3543 -- If the expression has been marked as requiring a range check, then
3544 -- generate it here. It's a bit odd to be generating such checks in
3545 -- the analyzer, but harmless since Generate_Range_Check does nothing
3546 -- (other than making sure Do_Range_Check is set) if the expander is
3549 if Do_Range_Check
(Expr
) then
3550 Generate_Range_Check
(Expr
, Expr_Type
, CE_Range_Check_Failed
);
3554 New_Expr
:= Relocate_Node
(Expr
);
3556 -- Since New_Expr is not gonna be analyzed later on, we need to
3557 -- propagate here the dimensions form Expr to New_Expr.
3559 Copy_Dimensions
(Expr
, New_Expr
);
3565 Add_Association
(New_C
, New_Expr
, New_Assoc_List
);
3566 end Resolve_Aggr_Expr
;
3568 -- Start of processing for Resolve_Record_Aggregate
3571 -- A record aggregate is restricted in SPARK:
3573 -- Each named association can have only a single choice.
3574 -- OTHERS cannot be used.
3575 -- Positional and named associations cannot be mixed.
3577 if Present
(Component_Associations
(N
))
3578 and then Present
(First
(Component_Associations
(N
)))
3581 if Present
(Expressions
(N
)) then
3582 Check_SPARK_05_Restriction
3583 ("named association cannot follow positional one",
3584 First
(Choices
(First
(Component_Associations
(N
)))));
3591 Assoc
:= First
(Component_Associations
(N
));
3592 while Present
(Assoc
) loop
3593 if List_Length
(Choices
(Assoc
)) > 1 then
3594 Check_SPARK_05_Restriction
3595 ("component association in record aggregate must "
3596 & "contain a single choice", Assoc
);
3599 if Nkind
(First
(Choices
(Assoc
))) = N_Others_Choice
then
3600 Check_SPARK_05_Restriction
3601 ("record aggregate cannot contain OTHERS", Assoc
);
3604 Assoc
:= Next
(Assoc
);
3609 -- We may end up calling Duplicate_Subexpr on expressions that are
3610 -- attached to New_Assoc_List. For this reason we need to attach it
3611 -- to the tree by setting its parent pointer to N. This parent point
3612 -- will change in STEP 8 below.
3614 Set_Parent
(New_Assoc_List
, N
);
3616 -- STEP 1: abstract type and null record verification
3618 if Is_Abstract_Type
(Typ
) then
3619 Error_Msg_N
("type of aggregate cannot be abstract", N
);
3622 if No
(First_Entity
(Typ
)) and then Null_Record_Present
(N
) then
3626 elsif Present
(First_Entity
(Typ
))
3627 and then Null_Record_Present
(N
)
3628 and then not Is_Tagged_Type
(Typ
)
3630 Error_Msg_N
("record aggregate cannot be null", N
);
3633 -- If the type has no components, then the aggregate should either
3634 -- have "null record", or in Ada 2005 it could instead have a single
3635 -- component association given by "others => <>". For Ada 95 we flag an
3636 -- error at this point, but for Ada 2005 we proceed with checking the
3637 -- associations below, which will catch the case where it's not an
3638 -- aggregate with "others => <>". Note that the legality of a <>
3639 -- aggregate for a null record type was established by AI05-016.
3641 elsif No
(First_Entity
(Typ
))
3642 and then Ada_Version
< Ada_2005
3644 Error_Msg_N
("record aggregate must be null", N
);
3648 -- STEP 2: Verify aggregate structure
3651 Selector_Name
: Node_Id
;
3652 Bad_Aggregate
: Boolean := False;
3655 if Present
(Component_Associations
(N
)) then
3656 Assoc
:= First
(Component_Associations
(N
));
3661 while Present
(Assoc
) loop
3662 Selector_Name
:= First
(Choices
(Assoc
));
3663 while Present
(Selector_Name
) loop
3664 if Nkind
(Selector_Name
) = N_Identifier
then
3667 elsif Nkind
(Selector_Name
) = N_Others_Choice
then
3668 if Selector_Name
/= First
(Choices
(Assoc
))
3669 or else Present
(Next
(Selector_Name
))
3672 ("OTHERS must appear alone in a choice list",
3676 elsif Present
(Next
(Assoc
)) then
3678 ("OTHERS must appear last in an aggregate",
3682 -- (Ada 2005): If this is an association with a box,
3683 -- indicate that the association need not represent
3686 elsif Box_Present
(Assoc
) then
3692 ("selector name should be identifier or OTHERS",
3694 Bad_Aggregate
:= True;
3697 Next
(Selector_Name
);
3703 if Bad_Aggregate
then
3708 -- STEP 3: Find discriminant Values
3711 Discrim
: Entity_Id
;
3712 Missing_Discriminants
: Boolean := False;
3715 if Present
(Expressions
(N
)) then
3716 Positional_Expr
:= First
(Expressions
(N
));
3718 Positional_Expr
:= Empty
;
3721 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3722 -- must not have unknown discriminants.
3724 if Is_Derived_Type
(Typ
)
3725 and then Has_Unknown_Discriminants
(Root_Type
(Typ
))
3726 and then Nkind
(N
) /= N_Extension_Aggregate
3729 ("aggregate not available for type& whose ancestor "
3730 & "has unknown discriminants ", N
, Typ
);
3733 if Has_Unknown_Discriminants
(Typ
)
3734 and then Present
(Underlying_Record_View
(Typ
))
3736 Discrim
:= First_Discriminant
(Underlying_Record_View
(Typ
));
3737 elsif Has_Discriminants
(Typ
) then
3738 Discrim
:= First_Discriminant
(Typ
);
3743 -- First find the discriminant values in the positional components
3745 while Present
(Discrim
) and then Present
(Positional_Expr
) loop
3746 if Discr_Present
(Discrim
) then
3747 Resolve_Aggr_Expr
(Positional_Expr
, Discrim
);
3749 -- Ada 2005 (AI-231)
3751 if Ada_Version
>= Ada_2005
3752 and then Known_Null
(Positional_Expr
)
3754 Check_Can_Never_Be_Null
(Discrim
, Positional_Expr
);
3757 Next
(Positional_Expr
);
3760 if Present
(Get_Value
(Discrim
, Component_Associations
(N
))) then
3762 ("more than one value supplied for discriminant&",
3766 Next_Discriminant
(Discrim
);
3769 -- Find remaining discriminant values if any among named components
3771 while Present
(Discrim
) loop
3772 Expr
:= Get_Value
(Discrim
, Component_Associations
(N
), True);
3774 if not Discr_Present
(Discrim
) then
3775 if Present
(Expr
) then
3777 ("more than one value supplied for discriminant&",
3781 elsif No
(Expr
) then
3783 ("no value supplied for discriminant &", N
, Discrim
);
3784 Missing_Discriminants
:= True;
3787 Resolve_Aggr_Expr
(Expr
, Discrim
);
3790 Next_Discriminant
(Discrim
);
3793 if Missing_Discriminants
then
3797 -- At this point and until the beginning of STEP 6, New_Assoc_List
3798 -- contains only the discriminants and their values.
3802 -- STEP 4: Set the Etype of the record aggregate
3804 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3805 -- routine should really be exported in sem_util or some such and used
3806 -- in sem_ch3 and here rather than have a copy of the code which is a
3807 -- maintenance nightmare.
3809 -- ??? Performance WARNING. The current implementation creates a new
3810 -- itype for all aggregates whose base type is discriminated. This means
3811 -- that for record aggregates nested inside an array aggregate we will
3812 -- create a new itype for each record aggregate if the array component
3813 -- type has discriminants. For large aggregates this may be a problem.
3814 -- What should be done in this case is to reuse itypes as much as
3817 if Has_Discriminants
(Typ
)
3818 or else (Has_Unknown_Discriminants
(Typ
)
3819 and then Present
(Underlying_Record_View
(Typ
)))
3821 Build_Constrained_Itype
: declare
3822 Loc
: constant Source_Ptr
:= Sloc
(N
);
3824 Subtyp_Decl
: Node_Id
;
3827 C
: constant List_Id
:= New_List
;
3830 New_Assoc
:= First
(New_Assoc_List
);
3831 while Present
(New_Assoc
) loop
3832 Append
(Duplicate_Subexpr
(Expression
(New_Assoc
)), To
=> C
);
3836 if Has_Unknown_Discriminants
(Typ
)
3837 and then Present
(Underlying_Record_View
(Typ
))
3840 Make_Subtype_Indication
(Loc
,
3842 New_Occurrence_Of
(Underlying_Record_View
(Typ
), Loc
),
3844 Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
3847 Make_Subtype_Indication
(Loc
,
3849 New_Occurrence_Of
(Base_Type
(Typ
), Loc
),
3851 Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
3854 Def_Id
:= Create_Itype
(Ekind
(Typ
), N
);
3857 Make_Subtype_Declaration
(Loc
,
3858 Defining_Identifier
=> Def_Id
,
3859 Subtype_Indication
=> Indic
);
3860 Set_Parent
(Subtyp_Decl
, Parent
(N
));
3862 -- Itypes must be analyzed with checks off (see itypes.ads)
3864 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
3866 Set_Etype
(N
, Def_Id
);
3867 Check_Static_Discriminated_Subtype
3868 (Def_Id
, Expression
(First
(New_Assoc_List
)));
3869 end Build_Constrained_Itype
;
3875 -- STEP 5: Get remaining components according to discriminant values
3878 Record_Def
: Node_Id
;
3879 Parent_Typ
: Entity_Id
;
3880 Root_Typ
: Entity_Id
;
3881 Parent_Typ_List
: Elist_Id
;
3882 Parent_Elmt
: Elmt_Id
;
3883 Errors_Found
: Boolean := False;
3886 function Find_Private_Ancestor
return Entity_Id
;
3887 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3888 -- derived from a private view. Whether the aggregate is legal
3889 -- depends on the current visibility of the type as well as that
3890 -- of the parent of the ancestor.
3892 ---------------------------
3893 -- Find_Private_Ancestor --
3894 ---------------------------
3896 function Find_Private_Ancestor
return Entity_Id
is
3901 if Has_Private_Ancestor
(Par
)
3902 and then not Has_Private_Ancestor
(Etype
(Base_Type
(Par
)))
3906 elsif not Is_Derived_Type
(Par
) then
3910 Par
:= Etype
(Base_Type
(Par
));
3913 end Find_Private_Ancestor
;
3915 -- Start of processing for Step_5
3918 if Is_Derived_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
3919 Parent_Typ_List
:= New_Elmt_List
;
3921 -- If this is an extension aggregate, the component list must
3922 -- include all components that are not in the given ancestor type.
3923 -- Otherwise, the component list must include components of all
3924 -- ancestors, starting with the root.
3926 if Nkind
(N
) = N_Extension_Aggregate
then
3927 Root_Typ
:= Base_Type
(Etype
(Ancestor_Part
(N
)));
3930 -- AI05-0115: check legality of aggregate for type with
3931 -- aa private ancestor.
3933 Root_Typ
:= Root_Type
(Typ
);
3934 if Has_Private_Ancestor
(Typ
) then
3936 Ancestor
: constant Entity_Id
:=
3937 Find_Private_Ancestor
;
3938 Ancestor_Unit
: constant Entity_Id
:=
3939 Cunit_Entity
(Get_Source_Unit
(Ancestor
));
3940 Parent_Unit
: constant Entity_Id
:=
3942 (Get_Source_Unit
(Base_Type
(Etype
(Ancestor
))));
3945 -- check whether we are in a scope that has full view
3946 -- over the private ancestor and its parent. This can
3947 -- only happen if the derivation takes place in a child
3948 -- unit of the unit that declares the parent, and we are
3949 -- in the private part or body of that child unit, else
3950 -- the aggregate is illegal.
3952 if Is_Child_Unit
(Ancestor_Unit
)
3953 and then Scope
(Ancestor_Unit
) = Parent_Unit
3954 and then In_Open_Scopes
(Scope
(Ancestor
))
3956 (In_Private_Part
(Scope
(Ancestor
))
3957 or else In_Package_Body
(Scope
(Ancestor
)))
3963 ("type of aggregate has private ancestor&!",
3965 Error_Msg_N
("must use extension aggregate!", N
);
3971 Dnode
:= Declaration_Node
(Base_Type
(Root_Typ
));
3973 -- If we don't get a full declaration, then we have some error
3974 -- which will get signalled later so skip this part. Otherwise
3975 -- gather components of root that apply to the aggregate type.
3976 -- We use the base type in case there is an applicable stored
3977 -- constraint that renames the discriminants of the root.
3979 if Nkind
(Dnode
) = N_Full_Type_Declaration
then
3980 Record_Def
:= Type_Definition
(Dnode
);
3983 Component_List
(Record_Def
),
3984 Governed_By
=> New_Assoc_List
,
3986 Report_Errors
=> Errors_Found
);
3988 if Errors_Found
then
3990 ("discriminant controlling variant part is not static",
3997 Parent_Typ
:= Base_Type
(Typ
);
3998 while Parent_Typ
/= Root_Typ
loop
3999 Prepend_Elmt
(Parent_Typ
, To
=> Parent_Typ_List
);
4000 Parent_Typ
:= Etype
(Parent_Typ
);
4002 if Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
4003 N_Private_Type_Declaration
4004 or else Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
4005 N_Private_Extension_Declaration
4007 if Nkind
(N
) /= N_Extension_Aggregate
then
4009 ("type of aggregate has private ancestor&!",
4011 Error_Msg_N
("must use extension aggregate!", N
);
4014 elsif Parent_Typ
/= Root_Typ
then
4016 ("ancestor part of aggregate must be private type&",
4017 Ancestor_Part
(N
), Parent_Typ
);
4021 -- The current view of ancestor part may be a private type,
4022 -- while the context type is always non-private.
4024 elsif Is_Private_Type
(Root_Typ
)
4025 and then Present
(Full_View
(Root_Typ
))
4026 and then Nkind
(N
) = N_Extension_Aggregate
4028 exit when Base_Type
(Full_View
(Root_Typ
)) = Parent_Typ
;
4032 -- Now collect components from all other ancestors, beginning
4033 -- with the current type. If the type has unknown discriminants
4034 -- use the component list of the Underlying_Record_View, which
4035 -- needs to be used for the subsequent expansion of the aggregate
4036 -- into assignments.
4038 Parent_Elmt
:= First_Elmt
(Parent_Typ_List
);
4039 while Present
(Parent_Elmt
) loop
4040 Parent_Typ
:= Node
(Parent_Elmt
);
4042 if Has_Unknown_Discriminants
(Parent_Typ
)
4043 and then Present
(Underlying_Record_View
(Typ
))
4045 Parent_Typ
:= Underlying_Record_View
(Parent_Typ
);
4048 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Parent_Typ
)));
4049 Gather_Components
(Empty
,
4050 Component_List
(Record_Extension_Part
(Record_Def
)),
4051 Governed_By
=> New_Assoc_List
,
4053 Report_Errors
=> Errors_Found
);
4055 Next_Elmt
(Parent_Elmt
);
4058 -- Typ is not a derived tagged type
4061 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Typ
)));
4063 if Null_Present
(Record_Def
) then
4066 elsif not Has_Unknown_Discriminants
(Typ
) then
4069 Component_List
(Record_Def
),
4070 Governed_By
=> New_Assoc_List
,
4072 Report_Errors
=> Errors_Found
);
4076 (Base_Type
(Underlying_Record_View
(Typ
)),
4077 Component_List
(Record_Def
),
4078 Governed_By
=> New_Assoc_List
,
4080 Report_Errors
=> Errors_Found
);
4084 if Errors_Found
then
4089 -- STEP 6: Find component Values
4092 Component_Elmt
:= First_Elmt
(Components
);
4094 -- First scan the remaining positional associations in the aggregate.
4095 -- Remember that at this point Positional_Expr contains the current
4096 -- positional association if any is left after looking for discriminant
4097 -- values in step 3.
4099 while Present
(Positional_Expr
) and then Present
(Component_Elmt
) loop
4100 Component
:= Node
(Component_Elmt
);
4101 Resolve_Aggr_Expr
(Positional_Expr
, Component
);
4103 -- Ada 2005 (AI-231)
4105 if Ada_Version
>= Ada_2005
4106 and then Known_Null
(Positional_Expr
)
4108 Check_Can_Never_Be_Null
(Component
, Positional_Expr
);
4111 if Present
(Get_Value
(Component
, Component_Associations
(N
))) then
4113 ("more than one value supplied for Component &", N
, Component
);
4116 Next
(Positional_Expr
);
4117 Next_Elmt
(Component_Elmt
);
4120 if Present
(Positional_Expr
) then
4122 ("too many components for record aggregate", Positional_Expr
);
4125 -- Now scan for the named arguments of the aggregate
4127 while Present
(Component_Elmt
) loop
4128 Component
:= Node
(Component_Elmt
);
4129 Expr
:= Get_Value
(Component
, Component_Associations
(N
), True);
4131 -- Note: The previous call to Get_Value sets the value of the
4132 -- variable Is_Box_Present.
4134 -- Ada 2005 (AI-287): Handle components with default initialization.
4135 -- Note: This feature was originally added to Ada 2005 for limited
4136 -- but it was finally allowed with any type.
4138 if Is_Box_Present
then
4139 Check_Box_Component
: declare
4140 Ctyp
: constant Entity_Id
:= Etype
(Component
);
4143 -- If there is a default expression for the aggregate, copy
4144 -- it into a new association. This copy must modify the scopes
4145 -- of internal types that may be attached to the expression
4146 -- (e.g. index subtypes of arrays) because in general the type
4147 -- declaration and the aggregate appear in different scopes,
4148 -- and the backend requires the scope of the type to match the
4149 -- point at which it is elaborated.
4151 -- If the component has an initialization procedure (IP) we
4152 -- pass the component to the expander, which will generate
4153 -- the call to such IP.
4155 -- If the component has discriminants, their values must
4156 -- be taken from their subtype. This is indispensable for
4157 -- constraints that are given by the current instance of an
4158 -- enclosing type, to allow the expansion of the aggregate to
4159 -- replace the reference to the current instance by the target
4160 -- object of the aggregate.
4162 if Present
(Parent
(Component
))
4164 Nkind
(Parent
(Component
)) = N_Component_Declaration
4165 and then Present
(Expression
(Parent
(Component
)))
4168 New_Copy_Tree_And_Copy_Dimensions
4169 (Expression
(Parent
(Component
)),
4170 New_Scope
=> Current_Scope
,
4171 New_Sloc
=> Sloc
(N
));
4174 (Component
=> Component
,
4176 Assoc_List
=> New_Assoc_List
);
4177 Set_Has_Self_Reference
(N
);
4179 -- A box-defaulted access component gets the value null. Also
4180 -- included are components of private types whose underlying
4181 -- type is an access type. In either case set the type of the
4182 -- literal, for subsequent use in semantic checks.
4184 elsif Present
(Underlying_Type
(Ctyp
))
4185 and then Is_Access_Type
(Underlying_Type
(Ctyp
))
4187 if not Is_Private_Type
(Ctyp
) then
4188 Expr
:= Make_Null
(Sloc
(N
));
4189 Set_Etype
(Expr
, Ctyp
);
4191 (Component
=> Component
,
4193 Assoc_List
=> New_Assoc_List
);
4195 -- If the component's type is private with an access type as
4196 -- its underlying type then we have to create an unchecked
4197 -- conversion to satisfy type checking.
4201 Qual_Null
: constant Node_Id
:=
4202 Make_Qualified_Expression
(Sloc
(N
),
4205 (Underlying_Type
(Ctyp
), Sloc
(N
)),
4206 Expression
=> Make_Null
(Sloc
(N
)));
4208 Convert_Null
: constant Node_Id
:=
4209 Unchecked_Convert_To
4213 Analyze_And_Resolve
(Convert_Null
, Ctyp
);
4215 (Component
=> Component
,
4216 Expr
=> Convert_Null
,
4217 Assoc_List
=> New_Assoc_List
);
4221 -- Ada 2012: If component is scalar with default value, use it
4223 elsif Is_Scalar_Type
(Ctyp
)
4224 and then Has_Default_Aspect
(Ctyp
)
4227 (Component
=> Component
,
4228 Expr
=> Default_Aspect_Value
4229 (First_Subtype
(Underlying_Type
(Ctyp
))),
4230 Assoc_List
=> New_Assoc_List
);
4232 elsif Has_Non_Null_Base_Init_Proc
(Ctyp
)
4233 or else not Expander_Active
4235 if Is_Record_Type
(Ctyp
)
4236 and then Has_Discriminants
(Ctyp
)
4237 and then not Is_Private_Type
(Ctyp
)
4239 -- We build a partially initialized aggregate with the
4240 -- values of the discriminants and box initialization
4241 -- for the rest, if other components are present.
4243 -- The type of the aggregate is the known subtype of
4244 -- the component. The capture of discriminants must
4245 -- be recursive because subcomponents may be constrained
4246 -- (transitively) by discriminants of enclosing types.
4247 -- For a private type with discriminants, a call to the
4248 -- initialization procedure will be generated, and no
4249 -- subaggregate is needed.
4251 Capture_Discriminants
: declare
4252 Loc
: constant Source_Ptr
:= Sloc
(N
);
4255 procedure Add_Discriminant_Values
4256 (New_Aggr
: Node_Id
;
4257 Assoc_List
: List_Id
);
4258 -- The constraint to a component may be given by a
4259 -- discriminant of the enclosing type, in which case
4260 -- we have to retrieve its value, which is part of the
4261 -- enclosing aggregate. Assoc_List provides the
4262 -- discriminant associations of the current type or
4263 -- of some enclosing record.
4265 procedure Propagate_Discriminants
4267 Assoc_List
: List_Id
);
4268 -- Nested components may themselves be discriminated
4269 -- types constrained by outer discriminants, whose
4270 -- values must be captured before the aggregate is
4271 -- expanded into assignments.
4273 -----------------------------
4274 -- Add_Discriminant_Values --
4275 -----------------------------
4277 procedure Add_Discriminant_Values
4278 (New_Aggr
: Node_Id
;
4279 Assoc_List
: List_Id
)
4283 Discr_Elmt
: Elmt_Id
;
4284 Discr_Val
: Node_Id
;
4288 Discr
:= First_Discriminant
(Etype
(New_Aggr
));
4291 (Discriminant_Constraint
(Etype
(New_Aggr
)));
4292 while Present
(Discr_Elmt
) loop
4293 Discr_Val
:= Node
(Discr_Elmt
);
4295 -- If the constraint is given by a discriminant
4296 -- it is a discriminant of an enclosing record,
4297 -- and its value has already been placed in the
4298 -- association list.
4300 if Is_Entity_Name
(Discr_Val
)
4302 Ekind
(Entity
(Discr_Val
)) = E_Discriminant
4304 Val
:= Entity
(Discr_Val
);
4306 Assoc
:= First
(Assoc_List
);
4307 while Present
(Assoc
) loop
4309 (Entity
(First
(Choices
(Assoc
))))
4311 Entity
(First
(Choices
(Assoc
)))
4314 Discr_Val
:= Expression
(Assoc
);
4322 (Discr
, New_Copy_Tree
(Discr_Val
),
4323 Component_Associations
(New_Aggr
));
4325 -- If the discriminant constraint is a current
4326 -- instance, mark the current aggregate so that
4327 -- the self-reference can be expanded later.
4329 if Nkind
(Discr_Val
) = N_Attribute_Reference
4330 and then Is_Entity_Name
(Prefix
(Discr_Val
))
4331 and then Is_Type
(Entity
(Prefix
(Discr_Val
)))
4332 and then Etype
(N
) =
4333 Entity
(Prefix
(Discr_Val
))
4335 Set_Has_Self_Reference
(N
);
4338 Next_Elmt
(Discr_Elmt
);
4339 Next_Discriminant
(Discr
);
4341 end Add_Discriminant_Values
;
4343 ------------------------------
4344 -- Propagate_Discriminants --
4345 ------------------------------
4347 procedure Propagate_Discriminants
4349 Assoc_List
: List_Id
)
4351 Aggr_Type
: constant Entity_Id
:=
4352 Base_Type
(Etype
(Aggr
));
4353 Def_Node
: constant Node_Id
:=
4355 (Declaration_Node
(Aggr_Type
));
4358 Comp_Elmt
: Elmt_Id
;
4359 Components
: constant Elist_Id
:= New_Elmt_List
;
4360 Needs_Box
: Boolean := False;
4363 procedure Process_Component
(Comp
: Entity_Id
);
4364 -- Add one component with a box association to the
4365 -- inner aggregate, and recurse if component is
4366 -- itself composite.
4368 ------------------------
4369 -- Process_Component --
4370 ------------------------
4372 procedure Process_Component
(Comp
: Entity_Id
) is
4373 T
: constant Entity_Id
:= Etype
(Comp
);
4377 if Is_Record_Type
(T
)
4378 and then Has_Discriminants
(T
)
4381 Make_Aggregate
(Loc
, New_List
, New_List
);
4382 Set_Etype
(New_Aggr
, T
);
4385 Component_Associations
(Aggr
));
4387 -- Collect discriminant values and recurse
4389 Add_Discriminant_Values
4390 (New_Aggr
, Assoc_List
);
4391 Propagate_Discriminants
4392 (New_Aggr
, Assoc_List
);
4397 end Process_Component
;
4399 -- Start of processing for Propagate_Discriminants
4402 -- The component type may be a variant type, so
4403 -- collect the components that are ruled by the
4404 -- known values of the discriminants. Their values
4405 -- have already been inserted into the component
4406 -- list of the current aggregate.
4408 if Nkind
(Def_Node
) = N_Record_Definition
4410 Present
(Component_List
(Def_Node
))
4413 (Variant_Part
(Component_List
(Def_Node
)))
4415 Gather_Components
(Aggr_Type
,
4416 Component_List
(Def_Node
),
4417 Governed_By
=> Component_Associations
(Aggr
),
4419 Report_Errors
=> Errors
);
4421 Comp_Elmt
:= First_Elmt
(Components
);
4422 while Present
(Comp_Elmt
) loop
4424 Ekind
(Node
(Comp_Elmt
)) /= E_Discriminant
4426 Process_Component
(Node
(Comp_Elmt
));
4429 Next_Elmt
(Comp_Elmt
);
4432 -- No variant part, iterate over all components
4435 Comp
:= First_Component
(Etype
(Aggr
));
4436 while Present
(Comp
) loop
4437 Process_Component
(Comp
);
4438 Next_Component
(Comp
);
4443 Append_To
(Component_Associations
(Aggr
),
4444 Make_Component_Association
(Loc
,
4446 New_List
(Make_Others_Choice
(Loc
)),
4447 Expression
=> Empty
,
4448 Box_Present
=> True));
4450 end Propagate_Discriminants
;
4452 -- Start of processing for Capture_Discriminants
4455 Expr
:= Make_Aggregate
(Loc
, New_List
, New_List
);
4456 Set_Etype
(Expr
, Ctyp
);
4458 -- If the enclosing type has discriminants, they have
4459 -- been collected in the aggregate earlier, and they
4460 -- may appear as constraints of subcomponents.
4462 -- Similarly if this component has discriminants, they
4463 -- might in turn be propagated to their components.
4465 if Has_Discriminants
(Typ
) then
4466 Add_Discriminant_Values
(Expr
, New_Assoc_List
);
4467 Propagate_Discriminants
(Expr
, New_Assoc_List
);
4469 elsif Has_Discriminants
(Ctyp
) then
4470 Add_Discriminant_Values
4471 (Expr
, Component_Associations
(Expr
));
4472 Propagate_Discriminants
4473 (Expr
, Component_Associations
(Expr
));
4480 -- If the type has additional components, create
4481 -- an OTHERS box association for them.
4483 Comp
:= First_Component
(Ctyp
);
4484 while Present
(Comp
) loop
4485 if Ekind
(Comp
) = E_Component
then
4486 if not Is_Record_Type
(Etype
(Comp
)) then
4488 (Component_Associations
(Expr
),
4489 Make_Component_Association
(Loc
,
4492 (Make_Others_Choice
(Loc
)),
4493 Expression
=> Empty
,
4494 Box_Present
=> True));
4499 Next_Component
(Comp
);
4505 (Component
=> Component
,
4507 Assoc_List
=> New_Assoc_List
);
4508 end Capture_Discriminants
;
4512 (Component
=> Component
,
4514 Assoc_List
=> New_Assoc_List
,
4515 Is_Box_Present
=> True);
4518 -- Otherwise we only need to resolve the expression if the
4519 -- component has partially initialized values (required to
4520 -- expand the corresponding assignments and run-time checks).
4522 elsif Present
(Expr
)
4523 and then Is_Partially_Initialized_Type
(Ctyp
)
4525 Resolve_Aggr_Expr
(Expr
, Component
);
4527 end Check_Box_Component
;
4529 elsif No
(Expr
) then
4531 -- Ignore hidden components associated with the position of the
4532 -- interface tags: these are initialized dynamically.
4534 if not Present
(Related_Type
(Component
)) then
4536 ("no value supplied for component &!", N
, Component
);
4540 Resolve_Aggr_Expr
(Expr
, Component
);
4543 Next_Elmt
(Component_Elmt
);
4546 -- STEP 7: check for invalid components + check type in choice list
4553 -- Type of first component in choice list
4556 if Present
(Component_Associations
(N
)) then
4557 Assoc
:= First
(Component_Associations
(N
));
4562 Verification
: while Present
(Assoc
) loop
4563 Selectr
:= First
(Choices
(Assoc
));
4566 if Nkind
(Selectr
) = N_Others_Choice
then
4568 -- Ada 2005 (AI-287): others choice may have expression or box
4570 if No
(Others_Etype
)
4571 and then not Others_Box
4574 ("OTHERS must represent at least one component", Selectr
);
4580 while Present
(Selectr
) loop
4581 New_Assoc
:= First
(New_Assoc_List
);
4582 while Present
(New_Assoc
) loop
4583 Component
:= First
(Choices
(New_Assoc
));
4585 if Chars
(Selectr
) = Chars
(Component
) then
4587 Check_Identifier
(Selectr
, Entity
(Component
));
4596 -- If no association, this is not a legal component of the type
4597 -- in question, unless its association is provided with a box.
4599 if No
(New_Assoc
) then
4600 if Box_Present
(Parent
(Selectr
)) then
4602 -- This may still be a bogus component with a box. Scan
4603 -- list of components to verify that a component with
4604 -- that name exists.
4610 C
:= First_Component
(Typ
);
4611 while Present
(C
) loop
4612 if Chars
(C
) = Chars
(Selectr
) then
4614 -- If the context is an extension aggregate,
4615 -- the component must not be inherited from
4616 -- the ancestor part of the aggregate.
4618 if Nkind
(N
) /= N_Extension_Aggregate
4620 Scope
(Original_Record_Component
(C
)) /=
4621 Etype
(Ancestor_Part
(N
))
4631 Error_Msg_Node_2
:= Typ
;
4632 Error_Msg_N
("& is not a component of}", Selectr
);
4636 elsif Chars
(Selectr
) /= Name_uTag
4637 and then Chars
(Selectr
) /= Name_uParent
4639 if not Has_Discriminants
(Typ
) then
4640 Error_Msg_Node_2
:= Typ
;
4641 Error_Msg_N
("& is not a component of}", Selectr
);
4644 ("& is not a component of the aggregate subtype",
4648 Check_Misspelled_Component
(Components
, Selectr
);
4651 elsif No
(Typech
) then
4652 Typech
:= Base_Type
(Etype
(Component
));
4654 -- AI05-0199: In Ada 2012, several components of anonymous
4655 -- access types can appear in a choice list, as long as the
4656 -- designated types match.
4658 elsif Typech
/= Base_Type
(Etype
(Component
)) then
4659 if Ada_Version
>= Ada_2012
4660 and then Ekind
(Typech
) = E_Anonymous_Access_Type
4662 Ekind
(Etype
(Component
)) = E_Anonymous_Access_Type
4663 and then Base_Type
(Designated_Type
(Typech
)) =
4664 Base_Type
(Designated_Type
(Etype
(Component
)))
4666 Subtypes_Statically_Match
(Typech
, (Etype
(Component
)))
4670 elsif not Box_Present
(Parent
(Selectr
)) then
4672 ("components in choice list must have same type",
4681 end loop Verification
;
4684 -- STEP 8: replace the original aggregate
4687 New_Aggregate
: constant Node_Id
:= New_Copy
(N
);
4690 Set_Expressions
(New_Aggregate
, No_List
);
4691 Set_Etype
(New_Aggregate
, Etype
(N
));
4692 Set_Component_Associations
(New_Aggregate
, New_Assoc_List
);
4694 Rewrite
(N
, New_Aggregate
);
4697 -- Check the dimensions of the components in the record aggregate
4699 Analyze_Dimension_Extension_Or_Record_Aggregate
(N
);
4700 end Resolve_Record_Aggregate
;
4702 -----------------------------
4703 -- Check_Can_Never_Be_Null --
4704 -----------------------------
4706 procedure Check_Can_Never_Be_Null
(Typ
: Entity_Id
; Expr
: Node_Id
) is
4707 Comp_Typ
: Entity_Id
;
4711 (Ada_Version
>= Ada_2005
4712 and then Present
(Expr
)
4713 and then Known_Null
(Expr
));
4716 when E_Array_Type
=>
4717 Comp_Typ
:= Component_Type
(Typ
);
4721 Comp_Typ
:= Etype
(Typ
);
4727 if Can_Never_Be_Null
(Comp_Typ
) then
4729 -- Here we know we have a constraint error. Note that we do not use
4730 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4731 -- seem the more natural approach. That's because in some cases the
4732 -- components are rewritten, and the replacement would be missed.
4733 -- We do not mark the whole aggregate as raising a constraint error,
4734 -- because the association may be a null array range.
4737 ("(Ada 2005) null not allowed in null-excluding component??", Expr
);
4739 ("\Constraint_Error will be raised at run time??", Expr
);
4742 Make_Raise_Constraint_Error
4743 (Sloc
(Expr
), Reason
=> CE_Access_Check_Failed
));
4744 Set_Etype
(Expr
, Comp_Typ
);
4745 Set_Analyzed
(Expr
);
4747 end Check_Can_Never_Be_Null
;
4749 ---------------------
4750 -- Sort_Case_Table --
4751 ---------------------
4753 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
4754 U
: constant Int
:= Case_Table
'Last;
4762 T
:= Case_Table
(K
+ 1);
4766 and then Expr_Value
(Case_Table
(J
- 1).Lo
) > Expr_Value
(T
.Lo
)
4768 Case_Table
(J
) := Case_Table
(J
- 1);
4772 Case_Table
(J
) := T
;
4775 end Sort_Case_Table
;