1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
28 #include "insn-config.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx
, const_rtx
, void *);
43 static bool covers_regno_p (const_rtx
, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
45 static int rtx_referenced_p_1 (rtx
*, void *);
46 static int computed_jump_p_1 (const_rtx
);
47 static void parms_set (rtx
, const_rtx
, void *);
49 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
50 const_rtx
, enum machine_mode
,
51 unsigned HOST_WIDE_INT
);
52 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
53 const_rtx
, enum machine_mode
,
54 unsigned HOST_WIDE_INT
);
55 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
58 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
59 enum machine_mode
, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
79 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
81 /* Return 1 if the value of X is unstable
82 (would be different at a different point in the program).
83 The frame pointer, arg pointer, etc. are considered stable
84 (within one function) and so is anything marked `unchanging'. */
87 rtx_unstable_p (const_rtx x
)
89 const RTX_CODE code
= GET_CODE (x
);
96 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
105 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
106 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
107 /* The arg pointer varies if it is not a fixed register. */
108 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
110 /* ??? When call-clobbered, the value is stable modulo the restore
111 that must happen after a call. This currently screws up local-alloc
112 into believing that the restore is not needed. */
113 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
118 if (MEM_VOLATILE_P (x
))
127 fmt
= GET_RTX_FORMAT (code
);
128 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
131 if (rtx_unstable_p (XEXP (x
, i
)))
134 else if (fmt
[i
] == 'E')
137 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
138 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
145 /* Return 1 if X has a value that can vary even between two
146 executions of the program. 0 means X can be compared reliably
147 against certain constants or near-constants.
148 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149 zero, we are slightly more conservative.
150 The frame pointer and the arg pointer are considered constant. */
153 rtx_varies_p (const_rtx x
, bool for_alias
)
166 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
175 /* Note that we have to test for the actual rtx used for the frame
176 and arg pointers and not just the register number in case we have
177 eliminated the frame and/or arg pointer and are using it
179 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
180 /* The arg pointer varies if it is not a fixed register. */
181 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
183 if (x
== pic_offset_table_rtx
184 /* ??? When call-clobbered, the value is stable modulo the restore
185 that must happen after a call. This currently screws up
186 local-alloc into believing that the restore is not needed, so we
187 must return 0 only if we are called from alias analysis. */
188 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
193 /* The operand 0 of a LO_SUM is considered constant
194 (in fact it is related specifically to operand 1)
195 during alias analysis. */
196 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
197 || rtx_varies_p (XEXP (x
, 1), for_alias
);
200 if (MEM_VOLATILE_P (x
))
209 fmt
= GET_RTX_FORMAT (code
);
210 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
213 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
216 else if (fmt
[i
] == 'E')
219 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
220 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
227 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
228 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
229 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
230 references on strict alignment machines. */
233 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
234 enum machine_mode mode
, bool unaligned_mems
)
236 enum rtx_code code
= GET_CODE (x
);
238 /* The offset must be a multiple of the mode size if we are considering
239 unaligned memory references on strict alignment machines. */
240 if (STRICT_ALIGNMENT
&& unaligned_mems
&& GET_MODE_SIZE (mode
) != 0)
242 HOST_WIDE_INT actual_offset
= offset
;
244 #ifdef SPARC_STACK_BOUNDARY_HACK
245 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
246 the real alignment of %sp. However, when it does this, the
247 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
248 if (SPARC_STACK_BOUNDARY_HACK
249 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
250 actual_offset
-= STACK_POINTER_OFFSET
;
253 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
260 if (SYMBOL_REF_WEAK (x
))
262 if (!CONSTANT_POOL_ADDRESS_P (x
))
265 HOST_WIDE_INT decl_size
;
270 size
= GET_MODE_SIZE (mode
);
274 /* If the size of the access or of the symbol is unknown,
276 decl
= SYMBOL_REF_DECL (x
);
278 /* Else check that the access is in bounds. TODO: restructure
279 expr_size/tree_expr_size/int_expr_size and just use the latter. */
282 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
283 decl_size
= (tree_fits_shwi_p (DECL_SIZE_UNIT (decl
))
284 ? tree_to_shwi (DECL_SIZE_UNIT (decl
))
286 else if (TREE_CODE (decl
) == STRING_CST
)
287 decl_size
= TREE_STRING_LENGTH (decl
);
288 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
289 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
293 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
302 /* Stack references are assumed not to trap, but we need to deal with
303 nonsensical offsets. */
304 if (x
== frame_pointer_rtx
)
306 HOST_WIDE_INT adj_offset
= offset
- STARTING_FRAME_OFFSET
;
308 size
= GET_MODE_SIZE (mode
);
309 if (FRAME_GROWS_DOWNWARD
)
311 if (adj_offset
< frame_offset
|| adj_offset
+ size
- 1 >= 0)
316 if (adj_offset
< 0 || adj_offset
+ size
- 1 >= frame_offset
)
321 /* ??? Need to add a similar guard for nonsensical offsets. */
322 if (x
== hard_frame_pointer_rtx
323 || x
== stack_pointer_rtx
324 /* The arg pointer varies if it is not a fixed register. */
325 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
327 /* All of the virtual frame registers are stack references. */
328 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
329 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
334 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
335 mode
, unaligned_mems
);
338 /* An address is assumed not to trap if:
339 - it is the pic register plus a constant. */
340 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
343 /* - or it is an address that can't trap plus a constant integer. */
344 if (CONST_INT_P (XEXP (x
, 1))
345 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
346 size
, mode
, unaligned_mems
))
353 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
354 mode
, unaligned_mems
);
361 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
362 mode
, unaligned_mems
);
368 /* If it isn't one of the case above, it can cause a trap. */
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
375 rtx_addr_can_trap_p (const_rtx x
)
377 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
380 /* Return true if X is an address that is known to not be zero. */
383 nonzero_address_p (const_rtx x
)
385 const enum rtx_code code
= GET_CODE (x
);
390 return !SYMBOL_REF_WEAK (x
);
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
398 || x
== stack_pointer_rtx
399 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
408 return nonzero_address_p (XEXP (x
, 0));
411 /* Handle PIC references. */
412 if (XEXP (x
, 0) == pic_offset_table_rtx
413 && CONSTANT_P (XEXP (x
, 1)))
418 /* Similar to the above; allow positive offsets. Further, since
419 auto-inc is only allowed in memories, the register must be a
421 if (CONST_INT_P (XEXP (x
, 1))
422 && INTVAL (XEXP (x
, 1)) > 0)
424 return nonzero_address_p (XEXP (x
, 0));
427 /* Similarly. Further, the offset is always positive. */
434 return nonzero_address_p (XEXP (x
, 0));
437 return nonzero_address_p (XEXP (x
, 1));
443 /* If it isn't one of the case above, might be zero. */
447 /* Return 1 if X refers to a memory location whose address
448 cannot be compared reliably with constant addresses,
449 or if X refers to a BLKmode memory object.
450 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
451 zero, we are slightly more conservative. */
454 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
465 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
467 fmt
= GET_RTX_FORMAT (code
);
468 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
471 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
474 else if (fmt
[i
] == 'E')
477 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
478 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
484 /* Return the CALL in X if there is one. */
487 get_call_rtx_from (rtx x
)
491 if (GET_CODE (x
) == PARALLEL
)
492 x
= XVECEXP (x
, 0, 0);
493 if (GET_CODE (x
) == SET
)
495 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
500 /* Return the value of the integer term in X, if one is apparent;
502 Only obvious integer terms are detected.
503 This is used in cse.c with the `related_value' field. */
506 get_integer_term (const_rtx x
)
508 if (GET_CODE (x
) == CONST
)
511 if (GET_CODE (x
) == MINUS
512 && CONST_INT_P (XEXP (x
, 1)))
513 return - INTVAL (XEXP (x
, 1));
514 if (GET_CODE (x
) == PLUS
515 && CONST_INT_P (XEXP (x
, 1)))
516 return INTVAL (XEXP (x
, 1));
520 /* If X is a constant, return the value sans apparent integer term;
522 Only obvious integer terms are detected. */
525 get_related_value (const_rtx x
)
527 if (GET_CODE (x
) != CONST
)
530 if (GET_CODE (x
) == PLUS
531 && CONST_INT_P (XEXP (x
, 1)))
533 else if (GET_CODE (x
) == MINUS
534 && CONST_INT_P (XEXP (x
, 1)))
539 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
540 to somewhere in the same object or object_block as SYMBOL. */
543 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
547 if (GET_CODE (symbol
) != SYMBOL_REF
)
555 if (CONSTANT_POOL_ADDRESS_P (symbol
)
556 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
559 decl
= SYMBOL_REF_DECL (symbol
);
560 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
564 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
565 && SYMBOL_REF_BLOCK (symbol
)
566 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
567 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
568 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
574 /* Split X into a base and a constant offset, storing them in *BASE_OUT
575 and *OFFSET_OUT respectively. */
578 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
580 if (GET_CODE (x
) == CONST
)
583 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
585 *base_out
= XEXP (x
, 0);
586 *offset_out
= XEXP (x
, 1);
591 *offset_out
= const0_rtx
;
594 /* Return the number of places FIND appears within X. If COUNT_DEST is
595 zero, we do not count occurrences inside the destination of a SET. */
598 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
602 const char *format_ptr
;
621 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
623 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
627 if (MEM_P (find
) && rtx_equal_p (x
, find
))
632 if (SET_DEST (x
) == find
&& ! count_dest
)
633 return count_occurrences (SET_SRC (x
), find
, count_dest
);
640 format_ptr
= GET_RTX_FORMAT (code
);
643 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
645 switch (*format_ptr
++)
648 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
652 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
653 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
661 /* Return TRUE if OP is a register or subreg of a register that
662 holds an unsigned quantity. Otherwise, return FALSE. */
665 unsigned_reg_p (rtx op
)
669 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
672 if (GET_CODE (op
) == SUBREG
673 && SUBREG_PROMOTED_UNSIGNED_P (op
))
680 /* Nonzero if register REG appears somewhere within IN.
681 Also works if REG is not a register; in this case it checks
682 for a subexpression of IN that is Lisp "equal" to REG. */
685 reg_mentioned_p (const_rtx reg
, const_rtx in
)
697 if (GET_CODE (in
) == LABEL_REF
)
698 return reg
== XEXP (in
, 0);
700 code
= GET_CODE (in
);
704 /* Compare registers by number. */
706 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
708 /* These codes have no constituent expressions
716 /* These are kept unique for a given value. */
723 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
726 fmt
= GET_RTX_FORMAT (code
);
728 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
733 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
734 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
737 else if (fmt
[i
] == 'e'
738 && reg_mentioned_p (reg
, XEXP (in
, i
)))
744 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
745 no CODE_LABEL insn. */
748 no_labels_between_p (const_rtx beg
, const_rtx end
)
753 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
759 /* Nonzero if register REG is used in an insn between
760 FROM_INSN and TO_INSN (exclusive of those two). */
763 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
767 if (from_insn
== to_insn
)
770 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
771 if (NONDEBUG_INSN_P (insn
)
772 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
773 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
778 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
779 is entirely replaced by a new value and the only use is as a SET_DEST,
780 we do not consider it a reference. */
783 reg_referenced_p (const_rtx x
, const_rtx body
)
787 switch (GET_CODE (body
))
790 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
793 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
794 of a REG that occupies all of the REG, the insn references X if
795 it is mentioned in the destination. */
796 if (GET_CODE (SET_DEST (body
)) != CC0
797 && GET_CODE (SET_DEST (body
)) != PC
798 && !REG_P (SET_DEST (body
))
799 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
800 && REG_P (SUBREG_REG (SET_DEST (body
)))
801 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
802 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
803 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
804 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
805 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
810 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
811 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
818 return reg_overlap_mentioned_p (x
, body
);
821 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
824 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
827 case UNSPEC_VOLATILE
:
828 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
829 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
834 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
835 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
840 if (MEM_P (XEXP (body
, 0)))
841 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
846 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
848 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
855 /* Nonzero if register REG is set or clobbered in an insn between
856 FROM_INSN and TO_INSN (exclusive of those two). */
859 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
863 if (from_insn
== to_insn
)
866 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
867 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
872 /* Internals of reg_set_between_p. */
874 reg_set_p (const_rtx reg
, const_rtx insn
)
876 /* We can be passed an insn or part of one. If we are passed an insn,
877 check if a side-effect of the insn clobbers REG. */
879 && (FIND_REG_INC_NOTE (insn
, reg
)
882 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
883 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
884 GET_MODE (reg
), REGNO (reg
)))
886 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
889 return set_of (reg
, insn
) != NULL_RTX
;
892 /* Similar to reg_set_between_p, but check all registers in X. Return 0
893 only if none of them are modified between START and END. Return 1 if
894 X contains a MEM; this routine does use memory aliasing. */
897 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
899 const enum rtx_code code
= GET_CODE (x
);
920 if (modified_between_p (XEXP (x
, 0), start
, end
))
922 if (MEM_READONLY_P (x
))
924 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
925 if (memory_modified_in_insn_p (x
, insn
))
931 return reg_set_between_p (x
, start
, end
);
937 fmt
= GET_RTX_FORMAT (code
);
938 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
940 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
943 else if (fmt
[i
] == 'E')
944 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
945 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
952 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
953 of them are modified in INSN. Return 1 if X contains a MEM; this routine
954 does use memory aliasing. */
957 modified_in_p (const_rtx x
, const_rtx insn
)
959 const enum rtx_code code
= GET_CODE (x
);
976 if (modified_in_p (XEXP (x
, 0), insn
))
978 if (MEM_READONLY_P (x
))
980 if (memory_modified_in_insn_p (x
, insn
))
986 return reg_set_p (x
, insn
);
992 fmt
= GET_RTX_FORMAT (code
);
993 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
995 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
998 else if (fmt
[i
] == 'E')
999 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1000 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
1007 /* Helper function for set_of. */
1015 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
1017 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1018 if (rtx_equal_p (x
, data
->pat
)
1019 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1023 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1024 (either directly or via STRICT_LOW_PART and similar modifiers). */
1026 set_of (const_rtx pat
, const_rtx insn
)
1028 struct set_of_data data
;
1029 data
.found
= NULL_RTX
;
1031 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1035 /* This function, called through note_stores, collects sets and
1036 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1039 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1041 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1042 if (REG_P (x
) && HARD_REGISTER_P (x
))
1043 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1046 /* Examine INSN, and compute the set of hard registers written by it.
1047 Store it in *PSET. Should only be called after reload. */
1049 find_all_hard_reg_sets (const_rtx insn
, HARD_REG_SET
*pset
, bool implicit
)
1053 CLEAR_HARD_REG_SET (*pset
);
1054 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1055 if (implicit
&& CALL_P (insn
))
1056 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1057 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1058 if (REG_NOTE_KIND (link
) == REG_INC
)
1059 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1062 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1064 record_hard_reg_uses_1 (rtx
*px
, void *data
)
1067 HARD_REG_SET
*pused
= (HARD_REG_SET
*)data
;
1069 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1071 int nregs
= hard_regno_nregs
[REGNO (x
)][GET_MODE (x
)];
1073 SET_HARD_REG_BIT (*pused
, REGNO (x
) + nregs
);
1078 /* Like record_hard_reg_sets, but called through note_uses. */
1080 record_hard_reg_uses (rtx
*px
, void *data
)
1082 for_each_rtx (px
, record_hard_reg_uses_1
, data
);
1085 /* Given an INSN, return a SET expression if this insn has only a single SET.
1086 It may also have CLOBBERs, USEs, or SET whose output
1087 will not be used, which we ignore. */
1090 single_set_2 (const_rtx insn
, const_rtx pat
)
1093 int set_verified
= 1;
1096 if (GET_CODE (pat
) == PARALLEL
)
1098 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1100 rtx sub
= XVECEXP (pat
, 0, i
);
1101 switch (GET_CODE (sub
))
1108 /* We can consider insns having multiple sets, where all
1109 but one are dead as single set insns. In common case
1110 only single set is present in the pattern so we want
1111 to avoid checking for REG_UNUSED notes unless necessary.
1113 When we reach set first time, we just expect this is
1114 the single set we are looking for and only when more
1115 sets are found in the insn, we check them. */
1118 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1119 && !side_effects_p (set
))
1125 set
= sub
, set_verified
= 0;
1126 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1127 || side_effects_p (sub
))
1139 /* Given an INSN, return nonzero if it has more than one SET, else return
1143 multiple_sets (const_rtx insn
)
1148 /* INSN must be an insn. */
1149 if (! INSN_P (insn
))
1152 /* Only a PARALLEL can have multiple SETs. */
1153 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1155 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1156 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1158 /* If we have already found a SET, then return now. */
1166 /* Either zero or one SET. */
1170 /* Return nonzero if the destination of SET equals the source
1171 and there are no side effects. */
1174 set_noop_p (const_rtx set
)
1176 rtx src
= SET_SRC (set
);
1177 rtx dst
= SET_DEST (set
);
1179 if (dst
== pc_rtx
&& src
== pc_rtx
)
1182 if (MEM_P (dst
) && MEM_P (src
))
1183 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1185 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1186 return rtx_equal_p (XEXP (dst
, 0), src
)
1187 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1188 && !side_effects_p (src
);
1190 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1191 dst
= XEXP (dst
, 0);
1193 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1195 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1197 src
= SUBREG_REG (src
);
1198 dst
= SUBREG_REG (dst
);
1201 /* It is a NOOP if destination overlaps with selected src vector
1203 if (GET_CODE (src
) == VEC_SELECT
1204 && REG_P (XEXP (src
, 0)) && REG_P (dst
)
1205 && HARD_REGISTER_P (XEXP (src
, 0))
1206 && HARD_REGISTER_P (dst
))
1209 rtx par
= XEXP (src
, 1);
1210 rtx src0
= XEXP (src
, 0);
1211 int c0
= INTVAL (XVECEXP (par
, 0, 0));
1212 HOST_WIDE_INT offset
= GET_MODE_UNIT_SIZE (GET_MODE (src0
)) * c0
;
1214 for (i
= 1; i
< XVECLEN (par
, 0); i
++)
1215 if (INTVAL (XVECEXP (par
, 0, i
)) != c0
+ i
)
1218 simplify_subreg_regno (REGNO (src0
), GET_MODE (src0
),
1219 offset
, GET_MODE (dst
)) == (int) REGNO (dst
);
1222 return (REG_P (src
) && REG_P (dst
)
1223 && REGNO (src
) == REGNO (dst
));
1226 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1230 noop_move_p (const_rtx insn
)
1232 rtx pat
= PATTERN (insn
);
1234 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1237 /* Insns carrying these notes are useful later on. */
1238 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1241 /* Check the code to be executed for COND_EXEC. */
1242 if (GET_CODE (pat
) == COND_EXEC
)
1243 pat
= COND_EXEC_CODE (pat
);
1245 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1248 if (GET_CODE (pat
) == PARALLEL
)
1251 /* If nothing but SETs of registers to themselves,
1252 this insn can also be deleted. */
1253 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1255 rtx tem
= XVECEXP (pat
, 0, i
);
1257 if (GET_CODE (tem
) == USE
1258 || GET_CODE (tem
) == CLOBBER
)
1261 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1271 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1272 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1273 If the object was modified, if we hit a partial assignment to X, or hit a
1274 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1275 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1279 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1283 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1287 rtx set
= single_set (p
);
1288 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1290 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1292 rtx src
= SET_SRC (set
);
1294 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1295 src
= XEXP (note
, 0);
1297 if ((valid_to
== NULL_RTX
1298 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1299 /* Reject hard registers because we don't usually want
1300 to use them; we'd rather use a pseudo. */
1302 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1309 /* If set in non-simple way, we don't have a value. */
1310 if (reg_set_p (x
, p
))
1317 /* Return nonzero if register in range [REGNO, ENDREGNO)
1318 appears either explicitly or implicitly in X
1319 other than being stored into.
1321 References contained within the substructure at LOC do not count.
1322 LOC may be zero, meaning don't ignore anything. */
1325 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1329 unsigned int x_regno
;
1334 /* The contents of a REG_NONNEG note is always zero, so we must come here
1335 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1339 code
= GET_CODE (x
);
1344 x_regno
= REGNO (x
);
1346 /* If we modifying the stack, frame, or argument pointer, it will
1347 clobber a virtual register. In fact, we could be more precise,
1348 but it isn't worth it. */
1349 if ((x_regno
== STACK_POINTER_REGNUM
1350 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1351 || x_regno
== ARG_POINTER_REGNUM
1353 || x_regno
== FRAME_POINTER_REGNUM
)
1354 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1357 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1360 /* If this is a SUBREG of a hard reg, we can see exactly which
1361 registers are being modified. Otherwise, handle normally. */
1362 if (REG_P (SUBREG_REG (x
))
1363 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1365 unsigned int inner_regno
= subreg_regno (x
);
1366 unsigned int inner_endregno
1367 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1368 ? subreg_nregs (x
) : 1);
1370 return endregno
> inner_regno
&& regno
< inner_endregno
;
1376 if (&SET_DEST (x
) != loc
1377 /* Note setting a SUBREG counts as referring to the REG it is in for
1378 a pseudo but not for hard registers since we can
1379 treat each word individually. */
1380 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1381 && loc
!= &SUBREG_REG (SET_DEST (x
))
1382 && REG_P (SUBREG_REG (SET_DEST (x
)))
1383 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1384 && refers_to_regno_p (regno
, endregno
,
1385 SUBREG_REG (SET_DEST (x
)), loc
))
1386 || (!REG_P (SET_DEST (x
))
1387 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1390 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1399 /* X does not match, so try its subexpressions. */
1401 fmt
= GET_RTX_FORMAT (code
);
1402 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1404 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1412 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1415 else if (fmt
[i
] == 'E')
1418 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1419 if (loc
!= &XVECEXP (x
, i
, j
)
1420 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1427 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1428 we check if any register number in X conflicts with the relevant register
1429 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1430 contains a MEM (we don't bother checking for memory addresses that can't
1431 conflict because we expect this to be a rare case. */
1434 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1436 unsigned int regno
, endregno
;
1438 /* If either argument is a constant, then modifying X can not
1439 affect IN. Here we look at IN, we can profitably combine
1440 CONSTANT_P (x) with the switch statement below. */
1441 if (CONSTANT_P (in
))
1445 switch (GET_CODE (x
))
1447 case STRICT_LOW_PART
:
1450 /* Overly conservative. */
1455 regno
= REGNO (SUBREG_REG (x
));
1456 if (regno
< FIRST_PSEUDO_REGISTER
)
1457 regno
= subreg_regno (x
);
1458 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1459 ? subreg_nregs (x
) : 1);
1464 endregno
= END_REGNO (x
);
1466 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1476 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1477 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1480 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1483 else if (fmt
[i
] == 'E')
1486 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1487 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1497 return reg_mentioned_p (x
, in
);
1503 /* If any register in here refers to it we return true. */
1504 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1505 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1506 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1512 gcc_assert (CONSTANT_P (x
));
1517 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1518 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1519 ignored by note_stores, but passed to FUN.
1521 FUN receives three arguments:
1522 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1523 2. the SET or CLOBBER rtx that does the store,
1524 3. the pointer DATA provided to note_stores.
1526 If the item being stored in or clobbered is a SUBREG of a hard register,
1527 the SUBREG will be passed. */
1530 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1534 if (GET_CODE (x
) == COND_EXEC
)
1535 x
= COND_EXEC_CODE (x
);
1537 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1539 rtx dest
= SET_DEST (x
);
1541 while ((GET_CODE (dest
) == SUBREG
1542 && (!REG_P (SUBREG_REG (dest
))
1543 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1544 || GET_CODE (dest
) == ZERO_EXTRACT
1545 || GET_CODE (dest
) == STRICT_LOW_PART
)
1546 dest
= XEXP (dest
, 0);
1548 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1549 each of whose first operand is a register. */
1550 if (GET_CODE (dest
) == PARALLEL
)
1552 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1553 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1554 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1557 (*fun
) (dest
, x
, data
);
1560 else if (GET_CODE (x
) == PARALLEL
)
1561 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1562 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1565 /* Like notes_stores, but call FUN for each expression that is being
1566 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1567 FUN for each expression, not any interior subexpressions. FUN receives a
1568 pointer to the expression and the DATA passed to this function.
1570 Note that this is not quite the same test as that done in reg_referenced_p
1571 since that considers something as being referenced if it is being
1572 partially set, while we do not. */
1575 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1580 switch (GET_CODE (body
))
1583 (*fun
) (&COND_EXEC_TEST (body
), data
);
1584 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1588 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1589 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1593 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1594 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1598 (*fun
) (&XEXP (body
, 0), data
);
1602 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1603 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1607 (*fun
) (&TRAP_CONDITION (body
), data
);
1611 (*fun
) (&XEXP (body
, 0), data
);
1615 case UNSPEC_VOLATILE
:
1616 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1617 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1621 if (MEM_P (XEXP (body
, 0)))
1622 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1627 rtx dest
= SET_DEST (body
);
1629 /* For sets we replace everything in source plus registers in memory
1630 expression in store and operands of a ZERO_EXTRACT. */
1631 (*fun
) (&SET_SRC (body
), data
);
1633 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1635 (*fun
) (&XEXP (dest
, 1), data
);
1636 (*fun
) (&XEXP (dest
, 2), data
);
1639 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1640 dest
= XEXP (dest
, 0);
1643 (*fun
) (&XEXP (dest
, 0), data
);
1648 /* All the other possibilities never store. */
1649 (*fun
) (pbody
, data
);
1654 /* Return nonzero if X's old contents don't survive after INSN.
1655 This will be true if X is (cc0) or if X is a register and
1656 X dies in INSN or because INSN entirely sets X.
1658 "Entirely set" means set directly and not through a SUBREG, or
1659 ZERO_EXTRACT, so no trace of the old contents remains.
1660 Likewise, REG_INC does not count.
1662 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1663 but for this use that makes no difference, since regs don't overlap
1664 during their lifetimes. Therefore, this function may be used
1665 at any time after deaths have been computed.
1667 If REG is a hard reg that occupies multiple machine registers, this
1668 function will only return 1 if each of those registers will be replaced
1672 dead_or_set_p (const_rtx insn
, const_rtx x
)
1674 unsigned int regno
, end_regno
;
1677 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1678 if (GET_CODE (x
) == CC0
)
1681 gcc_assert (REG_P (x
));
1684 end_regno
= END_REGNO (x
);
1685 for (i
= regno
; i
< end_regno
; i
++)
1686 if (! dead_or_set_regno_p (insn
, i
))
1692 /* Return TRUE iff DEST is a register or subreg of a register and
1693 doesn't change the number of words of the inner register, and any
1694 part of the register is TEST_REGNO. */
1697 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1699 unsigned int regno
, endregno
;
1701 if (GET_CODE (dest
) == SUBREG
1702 && (((GET_MODE_SIZE (GET_MODE (dest
))
1703 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1704 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1705 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1706 dest
= SUBREG_REG (dest
);
1711 regno
= REGNO (dest
);
1712 endregno
= END_REGNO (dest
);
1713 return (test_regno
>= regno
&& test_regno
< endregno
);
1716 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1717 any member matches the covers_regno_no_parallel_p criteria. */
1720 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1722 if (GET_CODE (dest
) == PARALLEL
)
1724 /* Some targets place small structures in registers for return
1725 values of functions, and those registers are wrapped in
1726 PARALLELs that we may see as the destination of a SET. */
1729 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1731 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1732 if (inner
!= NULL_RTX
1733 && covers_regno_no_parallel_p (inner
, test_regno
))
1740 return covers_regno_no_parallel_p (dest
, test_regno
);
1743 /* Utility function for dead_or_set_p to check an individual register. */
1746 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1750 /* See if there is a death note for something that includes TEST_REGNO. */
1751 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1755 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1758 pattern
= PATTERN (insn
);
1760 /* If a COND_EXEC is not executed, the value survives. */
1761 if (GET_CODE (pattern
) == COND_EXEC
)
1764 if (GET_CODE (pattern
) == SET
)
1765 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1766 else if (GET_CODE (pattern
) == PARALLEL
)
1770 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1772 rtx body
= XVECEXP (pattern
, 0, i
);
1774 if (GET_CODE (body
) == COND_EXEC
)
1775 body
= COND_EXEC_CODE (body
);
1777 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1778 && covers_regno_p (SET_DEST (body
), test_regno
))
1786 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1787 If DATUM is nonzero, look for one whose datum is DATUM. */
1790 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1794 gcc_checking_assert (insn
);
1796 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1797 if (! INSN_P (insn
))
1801 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1802 if (REG_NOTE_KIND (link
) == kind
)
1807 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1808 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1813 /* Return the reg-note of kind KIND in insn INSN which applies to register
1814 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1815 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1816 it might be the case that the note overlaps REGNO. */
1819 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1823 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1824 if (! INSN_P (insn
))
1827 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1828 if (REG_NOTE_KIND (link
) == kind
1829 /* Verify that it is a register, so that scratch and MEM won't cause a
1831 && REG_P (XEXP (link
, 0))
1832 && REGNO (XEXP (link
, 0)) <= regno
1833 && END_REGNO (XEXP (link
, 0)) > regno
)
1838 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1842 find_reg_equal_equiv_note (const_rtx insn
)
1849 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1850 if (REG_NOTE_KIND (link
) == REG_EQUAL
1851 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1853 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1854 insns that have multiple sets. Checking single_set to
1855 make sure of this is not the proper check, as explained
1856 in the comment in set_unique_reg_note.
1858 This should be changed into an assert. */
1859 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1866 /* Check whether INSN is a single_set whose source is known to be
1867 equivalent to a constant. Return that constant if so, otherwise
1871 find_constant_src (const_rtx insn
)
1875 set
= single_set (insn
);
1878 x
= avoid_constant_pool_reference (SET_SRC (set
));
1883 note
= find_reg_equal_equiv_note (insn
);
1884 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1885 return XEXP (note
, 0);
1890 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1891 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1894 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1896 /* If it's not a CALL_INSN, it can't possibly have a
1897 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1907 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1909 link
= XEXP (link
, 1))
1910 if (GET_CODE (XEXP (link
, 0)) == code
1911 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1916 unsigned int regno
= REGNO (datum
);
1918 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1919 to pseudo registers, so don't bother checking. */
1921 if (regno
< FIRST_PSEUDO_REGISTER
)
1923 unsigned int end_regno
= END_HARD_REGNO (datum
);
1926 for (i
= regno
; i
< end_regno
; i
++)
1927 if (find_regno_fusage (insn
, code
, i
))
1935 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1936 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1939 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1943 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1944 to pseudo registers, so don't bother checking. */
1946 if (regno
>= FIRST_PSEUDO_REGISTER
1950 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1954 if (GET_CODE (op
= XEXP (link
, 0)) == code
1955 && REG_P (reg
= XEXP (op
, 0))
1956 && REGNO (reg
) <= regno
1957 && END_HARD_REGNO (reg
) > regno
)
1965 /* Return true if KIND is an integer REG_NOTE. */
1968 int_reg_note_p (enum reg_note kind
)
1970 return kind
== REG_BR_PROB
;
1973 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1974 stored as the pointer to the next register note. */
1977 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1981 gcc_checking_assert (!int_reg_note_p (kind
));
1986 case REG_LABEL_TARGET
:
1987 case REG_LABEL_OPERAND
:
1989 /* These types of register notes use an INSN_LIST rather than an
1990 EXPR_LIST, so that copying is done right and dumps look
1992 note
= alloc_INSN_LIST (datum
, list
);
1993 PUT_REG_NOTE_KIND (note
, kind
);
1997 note
= alloc_EXPR_LIST (kind
, datum
, list
);
2004 /* Add register note with kind KIND and datum DATUM to INSN. */
2007 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
2009 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
2012 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2015 add_int_reg_note (rtx insn
, enum reg_note kind
, int datum
)
2017 gcc_checking_assert (int_reg_note_p (kind
));
2018 REG_NOTES (insn
) = gen_rtx_INT_LIST ((enum machine_mode
) kind
,
2019 datum
, REG_NOTES (insn
));
2022 /* Add a register note like NOTE to INSN. */
2025 add_shallow_copy_of_reg_note (rtx insn
, rtx note
)
2027 if (GET_CODE (note
) == INT_LIST
)
2028 add_int_reg_note (insn
, REG_NOTE_KIND (note
), XINT (note
, 0));
2030 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
2033 /* Remove register note NOTE from the REG_NOTES of INSN. */
2036 remove_note (rtx insn
, const_rtx note
)
2040 if (note
== NULL_RTX
)
2043 if (REG_NOTES (insn
) == note
)
2044 REG_NOTES (insn
) = XEXP (note
, 1);
2046 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2047 if (XEXP (link
, 1) == note
)
2049 XEXP (link
, 1) = XEXP (note
, 1);
2053 switch (REG_NOTE_KIND (note
))
2057 df_notes_rescan (insn
);
2064 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2067 remove_reg_equal_equiv_notes (rtx insn
)
2071 loc
= ®_NOTES (insn
);
2074 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2075 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2076 *loc
= XEXP (*loc
, 1);
2078 loc
= &XEXP (*loc
, 1);
2082 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2085 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2092 /* This loop is a little tricky. We cannot just go down the chain because
2093 it is being modified by some actions in the loop. So we just iterate
2094 over the head. We plan to drain the list anyway. */
2095 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2097 rtx insn
= DF_REF_INSN (eq_use
);
2098 rtx note
= find_reg_equal_equiv_note (insn
);
2100 /* This assert is generally triggered when someone deletes a REG_EQUAL
2101 or REG_EQUIV note by hacking the list manually rather than calling
2105 remove_note (insn
, note
);
2109 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2110 return 1 if it is found. A simple equality test is used to determine if
2114 in_expr_list_p (const_rtx listp
, const_rtx node
)
2118 for (x
= listp
; x
; x
= XEXP (x
, 1))
2119 if (node
== XEXP (x
, 0))
2125 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2126 remove that entry from the list if it is found.
2128 A simple equality test is used to determine if NODE matches. */
2131 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
2134 rtx prev
= NULL_RTX
;
2138 if (node
== XEXP (temp
, 0))
2140 /* Splice the node out of the list. */
2142 XEXP (prev
, 1) = XEXP (temp
, 1);
2144 *listp
= XEXP (temp
, 1);
2150 temp
= XEXP (temp
, 1);
2154 /* Nonzero if X contains any volatile instructions. These are instructions
2155 which may cause unpredictable machine state instructions, and thus no
2156 instructions or register uses should be moved or combined across them.
2157 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2160 volatile_insn_p (const_rtx x
)
2162 const RTX_CODE code
= GET_CODE (x
);
2180 case UNSPEC_VOLATILE
:
2185 if (MEM_VOLATILE_P (x
))
2192 /* Recursively scan the operands of this expression. */
2195 const char *const fmt
= GET_RTX_FORMAT (code
);
2198 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2202 if (volatile_insn_p (XEXP (x
, i
)))
2205 else if (fmt
[i
] == 'E')
2208 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2209 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2217 /* Nonzero if X contains any volatile memory references
2218 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2221 volatile_refs_p (const_rtx x
)
2223 const RTX_CODE code
= GET_CODE (x
);
2239 case UNSPEC_VOLATILE
:
2245 if (MEM_VOLATILE_P (x
))
2252 /* Recursively scan the operands of this expression. */
2255 const char *const fmt
= GET_RTX_FORMAT (code
);
2258 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2262 if (volatile_refs_p (XEXP (x
, i
)))
2265 else if (fmt
[i
] == 'E')
2268 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2269 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2277 /* Similar to above, except that it also rejects register pre- and post-
2281 side_effects_p (const_rtx x
)
2283 const RTX_CODE code
= GET_CODE (x
);
2300 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2301 when some combination can't be done. If we see one, don't think
2302 that we can simplify the expression. */
2303 return (GET_MODE (x
) != VOIDmode
);
2312 case UNSPEC_VOLATILE
:
2318 if (MEM_VOLATILE_P (x
))
2325 /* Recursively scan the operands of this expression. */
2328 const char *fmt
= GET_RTX_FORMAT (code
);
2331 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2335 if (side_effects_p (XEXP (x
, i
)))
2338 else if (fmt
[i
] == 'E')
2341 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2342 if (side_effects_p (XVECEXP (x
, i
, j
)))
2350 /* Return nonzero if evaluating rtx X might cause a trap.
2351 FLAGS controls how to consider MEMs. A nonzero means the context
2352 of the access may have changed from the original, such that the
2353 address may have become invalid. */
2356 may_trap_p_1 (const_rtx x
, unsigned flags
)
2362 /* We make no distinction currently, but this function is part of
2363 the internal target-hooks ABI so we keep the parameter as
2364 "unsigned flags". */
2365 bool code_changed
= flags
!= 0;
2369 code
= GET_CODE (x
);
2372 /* Handle these cases quickly. */
2384 return targetm
.unspec_may_trap_p (x
, flags
);
2386 case UNSPEC_VOLATILE
:
2392 return MEM_VOLATILE_P (x
);
2394 /* Memory ref can trap unless it's a static var or a stack slot. */
2396 /* Recognize specific pattern of stack checking probes. */
2397 if (flag_stack_check
2398 && MEM_VOLATILE_P (x
)
2399 && XEXP (x
, 0) == stack_pointer_rtx
)
2401 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2402 reference; moving it out of context such as when moving code
2403 when optimizing, might cause its address to become invalid. */
2405 || !MEM_NOTRAP_P (x
))
2407 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2408 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2409 GET_MODE (x
), code_changed
);
2414 /* Division by a non-constant might trap. */
2419 if (HONOR_SNANS (GET_MODE (x
)))
2421 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2422 return flag_trapping_math
;
2423 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2428 /* An EXPR_LIST is used to represent a function call. This
2429 certainly may trap. */
2438 /* Some floating point comparisons may trap. */
2439 if (!flag_trapping_math
)
2441 /* ??? There is no machine independent way to check for tests that trap
2442 when COMPARE is used, though many targets do make this distinction.
2443 For instance, sparc uses CCFPE for compares which generate exceptions
2444 and CCFP for compares which do not generate exceptions. */
2445 if (HONOR_NANS (GET_MODE (x
)))
2447 /* But often the compare has some CC mode, so check operand
2449 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2450 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2456 if (HONOR_SNANS (GET_MODE (x
)))
2458 /* Often comparison is CC mode, so check operand modes. */
2459 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2460 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2465 /* Conversion of floating point might trap. */
2466 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2473 /* These operations don't trap even with floating point. */
2477 /* Any floating arithmetic may trap. */
2478 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)) && flag_trapping_math
)
2482 fmt
= GET_RTX_FORMAT (code
);
2483 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2487 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2490 else if (fmt
[i
] == 'E')
2493 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2494 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2501 /* Return nonzero if evaluating rtx X might cause a trap. */
2504 may_trap_p (const_rtx x
)
2506 return may_trap_p_1 (x
, 0);
2509 /* Same as above, but additionally return nonzero if evaluating rtx X might
2510 cause a fault. We define a fault for the purpose of this function as a
2511 erroneous execution condition that cannot be encountered during the normal
2512 execution of a valid program; the typical example is an unaligned memory
2513 access on a strict alignment machine. The compiler guarantees that it
2514 doesn't generate code that will fault from a valid program, but this
2515 guarantee doesn't mean anything for individual instructions. Consider
2516 the following example:
2518 struct S { int d; union { char *cp; int *ip; }; };
2520 int foo(struct S *s)
2528 on a strict alignment machine. In a valid program, foo will never be
2529 invoked on a structure for which d is equal to 1 and the underlying
2530 unique field of the union not aligned on a 4-byte boundary, but the
2531 expression *s->ip might cause a fault if considered individually.
2533 At the RTL level, potentially problematic expressions will almost always
2534 verify may_trap_p; for example, the above dereference can be emitted as
2535 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2536 However, suppose that foo is inlined in a caller that causes s->cp to
2537 point to a local character variable and guarantees that s->d is not set
2538 to 1; foo may have been effectively translated into pseudo-RTL as:
2541 (set (reg:SI) (mem:SI (%fp - 7)))
2543 (set (reg:QI) (mem:QI (%fp - 7)))
2545 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2546 memory reference to a stack slot, but it will certainly cause a fault
2547 on a strict alignment machine. */
2550 may_trap_or_fault_p (const_rtx x
)
2552 return may_trap_p_1 (x
, 1);
2555 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2556 i.e., an inequality. */
2559 inequality_comparisons_p (const_rtx x
)
2563 const enum rtx_code code
= GET_CODE (x
);
2591 len
= GET_RTX_LENGTH (code
);
2592 fmt
= GET_RTX_FORMAT (code
);
2594 for (i
= 0; i
< len
; i
++)
2598 if (inequality_comparisons_p (XEXP (x
, i
)))
2601 else if (fmt
[i
] == 'E')
2604 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2605 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2613 /* Replace any occurrence of FROM in X with TO. The function does
2614 not enter into CONST_DOUBLE for the replace.
2616 Note that copying is not done so X must not be shared unless all copies
2617 are to be modified. */
2620 replace_rtx (rtx x
, rtx from
, rtx to
)
2628 /* Allow this function to make replacements in EXPR_LISTs. */
2632 if (GET_CODE (x
) == SUBREG
)
2634 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2636 if (CONST_INT_P (new_rtx
))
2638 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2639 GET_MODE (SUBREG_REG (x
)),
2644 SUBREG_REG (x
) = new_rtx
;
2648 else if (GET_CODE (x
) == ZERO_EXTEND
)
2650 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2652 if (CONST_INT_P (new_rtx
))
2654 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2655 new_rtx
, GET_MODE (XEXP (x
, 0)));
2659 XEXP (x
, 0) = new_rtx
;
2664 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2665 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2668 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2669 else if (fmt
[i
] == 'E')
2670 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2671 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2677 /* Replace occurrences of the old label in *X with the new one.
2678 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2681 replace_label (rtx
*x
, void *data
)
2684 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2685 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2686 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2691 if (GET_CODE (l
) == SYMBOL_REF
2692 && CONSTANT_POOL_ADDRESS_P (l
))
2694 rtx c
= get_pool_constant (l
);
2695 if (rtx_referenced_p (old_label
, c
))
2698 replace_label_data
*d
= (replace_label_data
*) data
;
2700 /* Create a copy of constant C; replace the label inside
2701 but do not update LABEL_NUSES because uses in constant pool
2703 new_c
= copy_rtx (c
);
2704 d
->update_label_nuses
= false;
2705 for_each_rtx (&new_c
, replace_label
, data
);
2706 d
->update_label_nuses
= update_label_nuses
;
2708 /* Add the new constant NEW_C to constant pool and replace
2709 the old reference to constant by new reference. */
2710 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2711 *x
= replace_rtx (l
, l
, new_l
);
2716 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2717 field. This is not handled by for_each_rtx because it doesn't
2718 handle unprinted ('0') fields. */
2719 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2720 JUMP_LABEL (l
) = new_label
;
2722 if ((GET_CODE (l
) == LABEL_REF
2723 || GET_CODE (l
) == INSN_LIST
)
2724 && XEXP (l
, 0) == old_label
)
2726 XEXP (l
, 0) = new_label
;
2727 if (update_label_nuses
)
2729 ++LABEL_NUSES (new_label
);
2730 --LABEL_NUSES (old_label
);
2738 /* When *BODY is equal to X or X is directly referenced by *BODY
2739 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2740 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2743 rtx_referenced_p_1 (rtx
*body
, void *x
)
2747 if (*body
== NULL_RTX
)
2748 return y
== NULL_RTX
;
2750 /* Return true if a label_ref *BODY refers to label Y. */
2751 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2752 return XEXP (*body
, 0) == y
;
2754 /* If *BODY is a reference to pool constant traverse the constant. */
2755 if (GET_CODE (*body
) == SYMBOL_REF
2756 && CONSTANT_POOL_ADDRESS_P (*body
))
2757 return rtx_referenced_p (y
, get_pool_constant (*body
));
2759 /* By default, compare the RTL expressions. */
2760 return rtx_equal_p (*body
, y
);
2763 /* Return true if X is referenced in BODY. */
2766 rtx_referenced_p (rtx x
, rtx body
)
2768 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2771 /* If INSN is a tablejump return true and store the label (before jump table) to
2772 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2775 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2782 label
= JUMP_LABEL (insn
);
2783 if (label
!= NULL_RTX
&& !ANY_RETURN_P (label
)
2784 && (table
= NEXT_INSN (label
)) != NULL_RTX
2785 && JUMP_TABLE_DATA_P (table
))
2796 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2797 constant that is not in the constant pool and not in the condition
2798 of an IF_THEN_ELSE. */
2801 computed_jump_p_1 (const_rtx x
)
2803 const enum rtx_code code
= GET_CODE (x
);
2820 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2821 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2824 return (computed_jump_p_1 (XEXP (x
, 1))
2825 || computed_jump_p_1 (XEXP (x
, 2)));
2831 fmt
= GET_RTX_FORMAT (code
);
2832 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2835 && computed_jump_p_1 (XEXP (x
, i
)))
2838 else if (fmt
[i
] == 'E')
2839 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2840 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2847 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2849 Tablejumps and casesi insns are not considered indirect jumps;
2850 we can recognize them by a (use (label_ref)). */
2853 computed_jump_p (const_rtx insn
)
2858 rtx pat
= PATTERN (insn
);
2860 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2861 if (JUMP_LABEL (insn
) != NULL
)
2864 if (GET_CODE (pat
) == PARALLEL
)
2866 int len
= XVECLEN (pat
, 0);
2867 int has_use_labelref
= 0;
2869 for (i
= len
- 1; i
>= 0; i
--)
2870 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2871 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2874 has_use_labelref
= 1;
2878 if (! has_use_labelref
)
2879 for (i
= len
- 1; i
>= 0; i
--)
2880 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2881 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2882 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2885 else if (GET_CODE (pat
) == SET
2886 && SET_DEST (pat
) == pc_rtx
2887 && computed_jump_p_1 (SET_SRC (pat
)))
2893 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2894 calls. Processes the subexpressions of EXP and passes them to F. */
2896 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2899 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2902 for (; format
[n
] != '\0'; n
++)
2909 result
= (*f
) (x
, data
);
2911 /* Do not traverse sub-expressions. */
2913 else if (result
!= 0)
2914 /* Stop the traversal. */
2918 /* There are no sub-expressions. */
2921 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2924 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2932 if (XVEC (exp
, n
) == 0)
2934 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2937 x
= &XVECEXP (exp
, n
, j
);
2938 result
= (*f
) (x
, data
);
2940 /* Do not traverse sub-expressions. */
2942 else if (result
!= 0)
2943 /* Stop the traversal. */
2947 /* There are no sub-expressions. */
2950 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2953 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2961 /* Nothing to do. */
2969 /* Traverse X via depth-first search, calling F for each
2970 sub-expression (including X itself). F is also passed the DATA.
2971 If F returns -1, do not traverse sub-expressions, but continue
2972 traversing the rest of the tree. If F ever returns any other
2973 nonzero value, stop the traversal, and return the value returned
2974 by F. Otherwise, return 0. This function does not traverse inside
2975 tree structure that contains RTX_EXPRs, or into sub-expressions
2976 whose format code is `0' since it is not known whether or not those
2977 codes are actually RTL.
2979 This routine is very general, and could (should?) be used to
2980 implement many of the other routines in this file. */
2983 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2989 result
= (*f
) (x
, data
);
2991 /* Do not traverse sub-expressions. */
2993 else if (result
!= 0)
2994 /* Stop the traversal. */
2998 /* There are no sub-expressions. */
3001 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
3005 return for_each_rtx_1 (*x
, i
, f
, data
);
3010 /* Data structure that holds the internal state communicated between
3011 for_each_inc_dec, for_each_inc_dec_find_mem and
3012 for_each_inc_dec_find_inc_dec. */
3014 struct for_each_inc_dec_ops
{
3015 /* The function to be called for each autoinc operation found. */
3016 for_each_inc_dec_fn fn
;
3017 /* The opaque argument to be passed to it. */
3019 /* The MEM we're visiting, if any. */
3023 static int for_each_inc_dec_find_mem (rtx
*r
, void *d
);
3025 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
3026 operands of the equivalent add insn and pass the result to the
3027 operator specified by *D. */
3030 for_each_inc_dec_find_inc_dec (rtx
*r
, void *d
)
3033 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*)d
;
3035 switch (GET_CODE (x
))
3040 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
3041 rtx r1
= XEXP (x
, 0);
3042 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
3043 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
3049 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
3050 rtx r1
= XEXP (x
, 0);
3051 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
3052 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
3058 rtx r1
= XEXP (x
, 0);
3059 rtx add
= XEXP (x
, 1);
3060 return data
->fn (data
->mem
, x
, r1
, add
, NULL
, data
->arg
);
3065 rtx save
= data
->mem
;
3066 int ret
= for_each_inc_dec_find_mem (r
, d
);
3076 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3077 address, extract the operands of the equivalent add insn and pass
3078 the result to the operator specified by *D. */
3081 for_each_inc_dec_find_mem (rtx
*r
, void *d
)
3084 if (x
!= NULL_RTX
&& MEM_P (x
))
3086 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*) d
;
3091 result
= for_each_rtx (&XEXP (x
, 0), for_each_inc_dec_find_inc_dec
,
3101 /* Traverse *X looking for MEMs, and for autoinc operations within
3102 them. For each such autoinc operation found, call FN, passing it
3103 the innermost enclosing MEM, the operation itself, the RTX modified
3104 by the operation, two RTXs (the second may be NULL) that, once
3105 added, represent the value to be held by the modified RTX
3106 afterwards, and ARG. FN is to return -1 to skip looking for other
3107 autoinc operations within the visited operation, 0 to continue the
3108 traversal, or any other value to have it returned to the caller of
3109 for_each_inc_dec. */
3112 for_each_inc_dec (rtx
*x
,
3113 for_each_inc_dec_fn fn
,
3116 struct for_each_inc_dec_ops data
;
3122 return for_each_rtx (x
, for_each_inc_dec_find_mem
, &data
);
3126 /* Searches X for any reference to REGNO, returning the rtx of the
3127 reference found if any. Otherwise, returns NULL_RTX. */
3130 regno_use_in (unsigned int regno
, rtx x
)
3136 if (REG_P (x
) && REGNO (x
) == regno
)
3139 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3140 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3144 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3147 else if (fmt
[i
] == 'E')
3148 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3149 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3156 /* Return a value indicating whether OP, an operand of a commutative
3157 operation, is preferred as the first or second operand. The higher
3158 the value, the stronger the preference for being the first operand.
3159 We use negative values to indicate a preference for the first operand
3160 and positive values for the second operand. */
3163 commutative_operand_precedence (rtx op
)
3165 enum rtx_code code
= GET_CODE (op
);
3167 /* Constants always come the second operand. Prefer "nice" constants. */
3168 if (code
== CONST_INT
)
3170 if (code
== CONST_DOUBLE
)
3172 if (code
== CONST_FIXED
)
3174 op
= avoid_constant_pool_reference (op
);
3175 code
= GET_CODE (op
);
3177 switch (GET_RTX_CLASS (code
))
3180 if (code
== CONST_INT
)
3182 if (code
== CONST_DOUBLE
)
3184 if (code
== CONST_FIXED
)
3189 /* SUBREGs of objects should come second. */
3190 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3195 /* Complex expressions should be the first, so decrease priority
3196 of objects. Prefer pointer objects over non pointer objects. */
3197 if ((REG_P (op
) && REG_POINTER (op
))
3198 || (MEM_P (op
) && MEM_POINTER (op
)))
3202 case RTX_COMM_ARITH
:
3203 /* Prefer operands that are themselves commutative to be first.
3204 This helps to make things linear. In particular,
3205 (and (and (reg) (reg)) (not (reg))) is canonical. */
3209 /* If only one operand is a binary expression, it will be the first
3210 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3211 is canonical, although it will usually be further simplified. */
3215 /* Then prefer NEG and NOT. */
3216 if (code
== NEG
|| code
== NOT
)
3224 /* Return 1 iff it is necessary to swap operands of commutative operation
3225 in order to canonicalize expression. */
3228 swap_commutative_operands_p (rtx x
, rtx y
)
3230 return (commutative_operand_precedence (x
)
3231 < commutative_operand_precedence (y
));
3234 /* Return 1 if X is an autoincrement side effect and the register is
3235 not the stack pointer. */
3237 auto_inc_p (const_rtx x
)
3239 switch (GET_CODE (x
))
3247 /* There are no REG_INC notes for SP. */
3248 if (XEXP (x
, 0) != stack_pointer_rtx
)
3256 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3258 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3267 code
= GET_CODE (in
);
3268 fmt
= GET_RTX_FORMAT (code
);
3269 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3273 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3276 else if (fmt
[i
] == 'E')
3277 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3278 if (loc
== &XVECEXP (in
, i
, j
)
3279 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3285 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3286 and SUBREG_BYTE, return the bit offset where the subreg begins
3287 (counting from the least significant bit of the operand). */
3290 subreg_lsb_1 (enum machine_mode outer_mode
,
3291 enum machine_mode inner_mode
,
3292 unsigned int subreg_byte
)
3294 unsigned int bitpos
;
3298 /* A paradoxical subreg begins at bit position 0. */
3299 if (GET_MODE_PRECISION (outer_mode
) > GET_MODE_PRECISION (inner_mode
))
3302 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3303 /* If the subreg crosses a word boundary ensure that
3304 it also begins and ends on a word boundary. */
3305 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3306 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3307 && (subreg_byte
% UNITS_PER_WORD
3308 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3310 if (WORDS_BIG_ENDIAN
)
3311 word
= (GET_MODE_SIZE (inner_mode
)
3312 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3314 word
= subreg_byte
/ UNITS_PER_WORD
;
3315 bitpos
= word
* BITS_PER_WORD
;
3317 if (BYTES_BIG_ENDIAN
)
3318 byte
= (GET_MODE_SIZE (inner_mode
)
3319 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3321 byte
= subreg_byte
% UNITS_PER_WORD
;
3322 bitpos
+= byte
* BITS_PER_UNIT
;
3327 /* Given a subreg X, return the bit offset where the subreg begins
3328 (counting from the least significant bit of the reg). */
3331 subreg_lsb (const_rtx x
)
3333 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3337 /* Fill in information about a subreg of a hard register.
3338 xregno - A regno of an inner hard subreg_reg (or what will become one).
3339 xmode - The mode of xregno.
3340 offset - The byte offset.
3341 ymode - The mode of a top level SUBREG (or what may become one).
3342 info - Pointer to structure to fill in. */
3344 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3345 unsigned int offset
, enum machine_mode ymode
,
3346 struct subreg_info
*info
)
3348 int nregs_xmode
, nregs_ymode
;
3349 int mode_multiple
, nregs_multiple
;
3350 int offset_adj
, y_offset
, y_offset_adj
;
3351 int regsize_xmode
, regsize_ymode
;
3354 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3358 /* If there are holes in a non-scalar mode in registers, we expect
3359 that it is made up of its units concatenated together. */
3360 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3362 enum machine_mode xmode_unit
;
3364 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3365 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3368 xmode_unit
= GET_MODE_INNER (xmode
);
3369 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3370 gcc_assert (nregs_xmode
3371 == (GET_MODE_NUNITS (xmode
)
3372 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3373 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3374 == (hard_regno_nregs
[xregno
][xmode_unit
]
3375 * GET_MODE_NUNITS (xmode
)));
3377 /* You can only ask for a SUBREG of a value with holes in the middle
3378 if you don't cross the holes. (Such a SUBREG should be done by
3379 picking a different register class, or doing it in memory if
3380 necessary.) An example of a value with holes is XCmode on 32-bit
3381 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3382 3 for each part, but in memory it's two 128-bit parts.
3383 Padding is assumed to be at the end (not necessarily the 'high part')
3385 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3386 < GET_MODE_NUNITS (xmode
))
3387 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3388 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3389 / GET_MODE_SIZE (xmode_unit
))))
3391 info
->representable_p
= false;
3396 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3398 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3400 /* Paradoxical subregs are otherwise valid. */
3403 && GET_MODE_PRECISION (ymode
) > GET_MODE_PRECISION (xmode
))
3405 info
->representable_p
= true;
3406 /* If this is a big endian paradoxical subreg, which uses more
3407 actual hard registers than the original register, we must
3408 return a negative offset so that we find the proper highpart
3410 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3411 ? REG_WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3412 info
->offset
= nregs_xmode
- nregs_ymode
;
3415 info
->nregs
= nregs_ymode
;
3419 /* If registers store different numbers of bits in the different
3420 modes, we cannot generally form this subreg. */
3421 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3422 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3423 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3424 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3426 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3427 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3428 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3430 info
->representable_p
= false;
3432 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3433 info
->offset
= offset
/ regsize_xmode
;
3436 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3438 info
->representable_p
= false;
3440 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3441 info
->offset
= offset
/ regsize_xmode
;
3446 /* Lowpart subregs are otherwise valid. */
3447 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3449 info
->representable_p
= true;
3452 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3455 info
->nregs
= nregs_ymode
;
3460 /* This should always pass, otherwise we don't know how to verify
3461 the constraint. These conditions may be relaxed but
3462 subreg_regno_offset would need to be redesigned. */
3463 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3464 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3466 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
3467 && GET_MODE_SIZE (xmode
) > UNITS_PER_WORD
)
3469 HOST_WIDE_INT xsize
= GET_MODE_SIZE (xmode
);
3470 HOST_WIDE_INT ysize
= GET_MODE_SIZE (ymode
);
3471 HOST_WIDE_INT off_low
= offset
& (ysize
- 1);
3472 HOST_WIDE_INT off_high
= offset
& ~(ysize
- 1);
3473 offset
= (xsize
- ysize
- off_high
) | off_low
;
3475 /* The XMODE value can be seen as a vector of NREGS_XMODE
3476 values. The subreg must represent a lowpart of given field.
3477 Compute what field it is. */
3478 offset_adj
= offset
;
3479 offset_adj
-= subreg_lowpart_offset (ymode
,
3480 mode_for_size (GET_MODE_BITSIZE (xmode
)
3484 /* Size of ymode must not be greater than the size of xmode. */
3485 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3486 gcc_assert (mode_multiple
!= 0);
3488 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3489 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3490 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3492 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3493 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3497 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3500 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3501 info
->nregs
= nregs_ymode
;
3504 /* This function returns the regno offset of a subreg expression.
3505 xregno - A regno of an inner hard subreg_reg (or what will become one).
3506 xmode - The mode of xregno.
3507 offset - The byte offset.
3508 ymode - The mode of a top level SUBREG (or what may become one).
3509 RETURN - The regno offset which would be used. */
3511 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3512 unsigned int offset
, enum machine_mode ymode
)
3514 struct subreg_info info
;
3515 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3519 /* This function returns true when the offset is representable via
3520 subreg_offset in the given regno.
3521 xregno - A regno of an inner hard subreg_reg (or what will become one).
3522 xmode - The mode of xregno.
3523 offset - The byte offset.
3524 ymode - The mode of a top level SUBREG (or what may become one).
3525 RETURN - Whether the offset is representable. */
3527 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3528 unsigned int offset
, enum machine_mode ymode
)
3530 struct subreg_info info
;
3531 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3532 return info
.representable_p
;
3535 /* Return the number of a YMODE register to which
3537 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3539 can be simplified. Return -1 if the subreg can't be simplified.
3541 XREGNO is a hard register number. */
3544 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3545 unsigned int offset
, enum machine_mode ymode
)
3547 struct subreg_info info
;
3548 unsigned int yregno
;
3550 #ifdef CANNOT_CHANGE_MODE_CLASS
3551 /* Give the backend a chance to disallow the mode change. */
3552 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3553 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3554 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3555 /* We can use mode change in LRA for some transformations. */
3556 && ! lra_in_progress
)
3560 /* We shouldn't simplify stack-related registers. */
3561 if ((!reload_completed
|| frame_pointer_needed
)
3562 && xregno
== FRAME_POINTER_REGNUM
)
3565 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3566 && xregno
== ARG_POINTER_REGNUM
)
3569 if (xregno
== STACK_POINTER_REGNUM
3570 /* We should convert hard stack register in LRA if it is
3572 && ! lra_in_progress
)
3575 /* Try to get the register offset. */
3576 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3577 if (!info
.representable_p
)
3580 /* Make sure that the offsetted register value is in range. */
3581 yregno
= xregno
+ info
.offset
;
3582 if (!HARD_REGISTER_NUM_P (yregno
))
3585 /* See whether (reg:YMODE YREGNO) is valid.
3587 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3588 This is a kludge to work around how complex FP arguments are passed
3589 on IA-64 and should be fixed. See PR target/49226. */
3590 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3591 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3594 return (int) yregno
;
3597 /* Return the final regno that a subreg expression refers to. */
3599 subreg_regno (const_rtx x
)
3602 rtx subreg
= SUBREG_REG (x
);
3603 int regno
= REGNO (subreg
);
3605 ret
= regno
+ subreg_regno_offset (regno
,
3613 /* Return the number of registers that a subreg expression refers
3616 subreg_nregs (const_rtx x
)
3618 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3621 /* Return the number of registers that a subreg REG with REGNO
3622 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3623 changed so that the regno can be passed in. */
3626 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3628 struct subreg_info info
;
3629 rtx subreg
= SUBREG_REG (x
);
3631 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3637 struct parms_set_data
3643 /* Helper function for noticing stores to parameter registers. */
3645 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3647 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3648 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3649 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3651 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3656 /* Look backward for first parameter to be loaded.
3657 Note that loads of all parameters will not necessarily be
3658 found if CSE has eliminated some of them (e.g., an argument
3659 to the outer function is passed down as a parameter).
3660 Do not skip BOUNDARY. */
3662 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3664 struct parms_set_data parm
;
3665 rtx p
, before
, first_set
;
3667 /* Since different machines initialize their parameter registers
3668 in different orders, assume nothing. Collect the set of all
3669 parameter registers. */
3670 CLEAR_HARD_REG_SET (parm
.regs
);
3672 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3673 if (GET_CODE (XEXP (p
, 0)) == USE
3674 && REG_P (XEXP (XEXP (p
, 0), 0)))
3676 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3678 /* We only care about registers which can hold function
3680 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3683 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3687 first_set
= call_insn
;
3689 /* Search backward for the first set of a register in this set. */
3690 while (parm
.nregs
&& before
!= boundary
)
3692 before
= PREV_INSN (before
);
3694 /* It is possible that some loads got CSEed from one call to
3695 another. Stop in that case. */
3696 if (CALL_P (before
))
3699 /* Our caller needs either ensure that we will find all sets
3700 (in case code has not been optimized yet), or take care
3701 for possible labels in a way by setting boundary to preceding
3703 if (LABEL_P (before
))
3705 gcc_assert (before
== boundary
);
3709 if (INSN_P (before
))
3711 int nregs_old
= parm
.nregs
;
3712 note_stores (PATTERN (before
), parms_set
, &parm
);
3713 /* If we found something that did not set a parameter reg,
3714 we're done. Do not keep going, as that might result
3715 in hoisting an insn before the setting of a pseudo
3716 that is used by the hoisted insn. */
3717 if (nregs_old
!= parm
.nregs
)
3726 /* Return true if we should avoid inserting code between INSN and preceding
3727 call instruction. */
3730 keep_with_call_p (const_rtx insn
)
3734 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3736 if (REG_P (SET_DEST (set
))
3737 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3738 && fixed_regs
[REGNO (SET_DEST (set
))]
3739 && general_operand (SET_SRC (set
), VOIDmode
))
3741 if (REG_P (SET_SRC (set
))
3742 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3743 && REG_P (SET_DEST (set
))
3744 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3746 /* There may be a stack pop just after the call and before the store
3747 of the return register. Search for the actual store when deciding
3748 if we can break or not. */
3749 if (SET_DEST (set
) == stack_pointer_rtx
)
3751 /* This CONST_CAST is okay because next_nonnote_insn just
3752 returns its argument and we assign it to a const_rtx
3754 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX (insn
));
3755 if (i2
&& keep_with_call_p (i2
))
3762 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3763 to non-complex jumps. That is, direct unconditional, conditional,
3764 and tablejumps, but not computed jumps or returns. It also does
3765 not apply to the fallthru case of a conditional jump. */
3768 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3770 rtx tmp
= JUMP_LABEL (jump_insn
);
3775 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3777 rtvec vec
= XVEC (PATTERN (tmp
),
3778 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3779 int i
, veclen
= GET_NUM_ELEM (vec
);
3781 for (i
= 0; i
< veclen
; ++i
)
3782 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3786 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3793 /* Return an estimate of the cost of computing rtx X.
3794 One use is in cse, to decide which expression to keep in the hash table.
3795 Another is in rtl generation, to pick the cheapest way to multiply.
3796 Other uses like the latter are expected in the future.
3798 X appears as operand OPNO in an expression with code OUTER_CODE.
3799 SPEED specifies whether costs optimized for speed or size should
3803 rtx_cost (rtx x
, enum rtx_code outer_code
, int opno
, bool speed
)
3814 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3815 many insns, taking N times as long. */
3816 factor
= GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
;
3820 /* Compute the default costs of certain things.
3821 Note that targetm.rtx_costs can override the defaults. */
3823 code
= GET_CODE (x
);
3827 /* Multiplication has time-complexity O(N*N), where N is the
3828 number of units (translated from digits) when using
3829 schoolbook long multiplication. */
3830 total
= factor
* factor
* COSTS_N_INSNS (5);
3836 /* Similarly, complexity for schoolbook long division. */
3837 total
= factor
* factor
* COSTS_N_INSNS (7);
3840 /* Used in combine.c as a marker. */
3844 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3845 the mode for the factor. */
3846 factor
= GET_MODE_SIZE (GET_MODE (SET_DEST (x
))) / UNITS_PER_WORD
;
3851 total
= factor
* COSTS_N_INSNS (1);
3861 /* If we can't tie these modes, make this expensive. The larger
3862 the mode, the more expensive it is. */
3863 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3864 return COSTS_N_INSNS (2 + factor
);
3868 if (targetm
.rtx_costs (x
, code
, outer_code
, opno
, &total
, speed
))
3873 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3874 which is already in total. */
3876 fmt
= GET_RTX_FORMAT (code
);
3877 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3879 total
+= rtx_cost (XEXP (x
, i
), code
, i
, speed
);
3880 else if (fmt
[i
] == 'E')
3881 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3882 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, i
, speed
);
3887 /* Fill in the structure C with information about both speed and size rtx
3888 costs for X, which is operand OPNO in an expression with code OUTER. */
3891 get_full_rtx_cost (rtx x
, enum rtx_code outer
, int opno
,
3892 struct full_rtx_costs
*c
)
3894 c
->speed
= rtx_cost (x
, outer
, opno
, true);
3895 c
->size
= rtx_cost (x
, outer
, opno
, false);
3899 /* Return cost of address expression X.
3900 Expect that X is properly formed address reference.
3902 SPEED parameter specify whether costs optimized for speed or size should
3906 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3908 /* We may be asked for cost of various unusual addresses, such as operands
3909 of push instruction. It is not worthwhile to complicate writing
3910 of the target hook by such cases. */
3912 if (!memory_address_addr_space_p (mode
, x
, as
))
3915 return targetm
.address_cost (x
, mode
, as
, speed
);
3918 /* If the target doesn't override, compute the cost as with arithmetic. */
3921 default_address_cost (rtx x
, enum machine_mode
, addr_space_t
, bool speed
)
3923 return rtx_cost (x
, MEM
, 0, speed
);
3927 unsigned HOST_WIDE_INT
3928 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3930 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3934 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3936 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3939 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3940 It avoids exponential behavior in nonzero_bits1 when X has
3941 identical subexpressions on the first or the second level. */
3943 static unsigned HOST_WIDE_INT
3944 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3945 enum machine_mode known_mode
,
3946 unsigned HOST_WIDE_INT known_ret
)
3948 if (x
== known_x
&& mode
== known_mode
)
3951 /* Try to find identical subexpressions. If found call
3952 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3953 precomputed value for the subexpression as KNOWN_RET. */
3955 if (ARITHMETIC_P (x
))
3957 rtx x0
= XEXP (x
, 0);
3958 rtx x1
= XEXP (x
, 1);
3960 /* Check the first level. */
3962 return nonzero_bits1 (x
, mode
, x0
, mode
,
3963 cached_nonzero_bits (x0
, mode
, known_x
,
3964 known_mode
, known_ret
));
3966 /* Check the second level. */
3967 if (ARITHMETIC_P (x0
)
3968 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3969 return nonzero_bits1 (x
, mode
, x1
, mode
,
3970 cached_nonzero_bits (x1
, mode
, known_x
,
3971 known_mode
, known_ret
));
3973 if (ARITHMETIC_P (x1
)
3974 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3975 return nonzero_bits1 (x
, mode
, x0
, mode
,
3976 cached_nonzero_bits (x0
, mode
, known_x
,
3977 known_mode
, known_ret
));
3980 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3983 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3984 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3985 is less useful. We can't allow both, because that results in exponential
3986 run time recursion. There is a nullstone testcase that triggered
3987 this. This macro avoids accidental uses of num_sign_bit_copies. */
3988 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3990 /* Given an expression, X, compute which bits in X can be nonzero.
3991 We don't care about bits outside of those defined in MODE.
3993 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3994 an arithmetic operation, we can do better. */
3996 static unsigned HOST_WIDE_INT
3997 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3998 enum machine_mode known_mode
,
3999 unsigned HOST_WIDE_INT known_ret
)
4001 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
4002 unsigned HOST_WIDE_INT inner_nz
;
4004 enum machine_mode inner_mode
;
4005 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
4007 /* For floating-point and vector values, assume all bits are needed. */
4008 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
4009 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4012 /* If X is wider than MODE, use its mode instead. */
4013 if (GET_MODE_PRECISION (GET_MODE (x
)) > mode_width
)
4015 mode
= GET_MODE (x
);
4016 nonzero
= GET_MODE_MASK (mode
);
4017 mode_width
= GET_MODE_PRECISION (mode
);
4020 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
4021 /* Our only callers in this case look for single bit values. So
4022 just return the mode mask. Those tests will then be false. */
4025 #ifndef WORD_REGISTER_OPERATIONS
4026 /* If MODE is wider than X, but both are a single word for both the host
4027 and target machines, we can compute this from which bits of the
4028 object might be nonzero in its own mode, taking into account the fact
4029 that on many CISC machines, accessing an object in a wider mode
4030 causes the high-order bits to become undefined. So they are
4031 not known to be zero. */
4033 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
4034 && GET_MODE_PRECISION (GET_MODE (x
)) <= BITS_PER_WORD
4035 && GET_MODE_PRECISION (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
4036 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (GET_MODE (x
)))
4038 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
4039 known_x
, known_mode
, known_ret
);
4040 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
4045 code
= GET_CODE (x
);
4049 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4050 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4051 all the bits above ptr_mode are known to be zero. */
4052 /* As we do not know which address space the pointer is referring to,
4053 we can do this only if the target does not support different pointer
4054 or address modes depending on the address space. */
4055 if (target_default_pointer_address_modes_p ()
4056 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4058 nonzero
&= GET_MODE_MASK (ptr_mode
);
4061 /* Include declared information about alignment of pointers. */
4062 /* ??? We don't properly preserve REG_POINTER changes across
4063 pointer-to-integer casts, so we can't trust it except for
4064 things that we know must be pointers. See execute/960116-1.c. */
4065 if ((x
== stack_pointer_rtx
4066 || x
== frame_pointer_rtx
4067 || x
== arg_pointer_rtx
)
4068 && REGNO_POINTER_ALIGN (REGNO (x
)))
4070 unsigned HOST_WIDE_INT alignment
4071 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
4073 #ifdef PUSH_ROUNDING
4074 /* If PUSH_ROUNDING is defined, it is possible for the
4075 stack to be momentarily aligned only to that amount,
4076 so we pick the least alignment. */
4077 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4078 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
4082 nonzero
&= ~(alignment
- 1);
4086 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4087 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
4088 known_mode
, known_ret
,
4092 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4093 known_mode
, known_ret
);
4095 return nonzero_for_hook
;
4099 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4100 /* If X is negative in MODE, sign-extend the value. */
4102 && mode_width
< BITS_PER_WORD
4103 && (UINTVAL (x
) & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
4105 return UINTVAL (x
) | (HOST_WIDE_INT_M1U
<< mode_width
);
4111 #ifdef LOAD_EXTEND_OP
4112 /* In many, if not most, RISC machines, reading a byte from memory
4113 zeros the rest of the register. Noticing that fact saves a lot
4114 of extra zero-extends. */
4115 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
4116 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
4121 case UNEQ
: case LTGT
:
4122 case GT
: case GTU
: case UNGT
:
4123 case LT
: case LTU
: case UNLT
:
4124 case GE
: case GEU
: case UNGE
:
4125 case LE
: case LEU
: case UNLE
:
4126 case UNORDERED
: case ORDERED
:
4127 /* If this produces an integer result, we know which bits are set.
4128 Code here used to clear bits outside the mode of X, but that is
4130 /* Mind that MODE is the mode the caller wants to look at this
4131 operation in, and not the actual operation mode. We can wind
4132 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4133 that describes the results of a vector compare. */
4134 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
4135 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4136 nonzero
= STORE_FLAG_VALUE
;
4141 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4142 and num_sign_bit_copies. */
4143 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4144 == GET_MODE_PRECISION (GET_MODE (x
)))
4148 if (GET_MODE_PRECISION (GET_MODE (x
)) < mode_width
)
4149 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
4154 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4155 and num_sign_bit_copies. */
4156 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4157 == GET_MODE_PRECISION (GET_MODE (x
)))
4163 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4164 known_x
, known_mode
, known_ret
)
4165 & GET_MODE_MASK (mode
));
4169 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4170 known_x
, known_mode
, known_ret
);
4171 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4172 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4176 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4177 Otherwise, show all the bits in the outer mode but not the inner
4179 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4180 known_x
, known_mode
, known_ret
);
4181 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4183 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4184 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4185 inner_nz
|= (GET_MODE_MASK (mode
)
4186 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4189 nonzero
&= inner_nz
;
4193 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4194 known_x
, known_mode
, known_ret
)
4195 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4196 known_x
, known_mode
, known_ret
);
4200 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4202 unsigned HOST_WIDE_INT nonzero0
4203 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4204 known_x
, known_mode
, known_ret
);
4206 /* Don't call nonzero_bits for the second time if it cannot change
4208 if ((nonzero
& nonzero0
) != nonzero
)
4210 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4211 known_x
, known_mode
, known_ret
);
4215 case PLUS
: case MINUS
:
4217 case DIV
: case UDIV
:
4218 case MOD
: case UMOD
:
4219 /* We can apply the rules of arithmetic to compute the number of
4220 high- and low-order zero bits of these operations. We start by
4221 computing the width (position of the highest-order nonzero bit)
4222 and the number of low-order zero bits for each value. */
4224 unsigned HOST_WIDE_INT nz0
4225 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4226 known_x
, known_mode
, known_ret
);
4227 unsigned HOST_WIDE_INT nz1
4228 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4229 known_x
, known_mode
, known_ret
);
4230 int sign_index
= GET_MODE_PRECISION (GET_MODE (x
)) - 1;
4231 int width0
= floor_log2 (nz0
) + 1;
4232 int width1
= floor_log2 (nz1
) + 1;
4233 int low0
= floor_log2 (nz0
& -nz0
);
4234 int low1
= floor_log2 (nz1
& -nz1
);
4235 unsigned HOST_WIDE_INT op0_maybe_minusp
4236 = nz0
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4237 unsigned HOST_WIDE_INT op1_maybe_minusp
4238 = nz1
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4239 unsigned int result_width
= mode_width
;
4245 result_width
= MAX (width0
, width1
) + 1;
4246 result_low
= MIN (low0
, low1
);
4249 result_low
= MIN (low0
, low1
);
4252 result_width
= width0
+ width1
;
4253 result_low
= low0
+ low1
;
4258 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4259 result_width
= width0
;
4264 result_width
= width0
;
4269 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4270 result_width
= MIN (width0
, width1
);
4271 result_low
= MIN (low0
, low1
);
4276 result_width
= MIN (width0
, width1
);
4277 result_low
= MIN (low0
, low1
);
4283 if (result_width
< mode_width
)
4284 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << result_width
) - 1;
4287 nonzero
&= ~(((unsigned HOST_WIDE_INT
) 1 << result_low
) - 1);
4292 if (CONST_INT_P (XEXP (x
, 1))
4293 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4294 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4298 /* If this is a SUBREG formed for a promoted variable that has
4299 been zero-extended, we know that at least the high-order bits
4300 are zero, though others might be too. */
4302 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4303 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4304 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4305 known_x
, known_mode
, known_ret
);
4307 inner_mode
= GET_MODE (SUBREG_REG (x
));
4308 /* If the inner mode is a single word for both the host and target
4309 machines, we can compute this from which bits of the inner
4310 object might be nonzero. */
4311 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4312 && (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
))
4314 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4315 known_x
, known_mode
, known_ret
);
4317 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4318 /* If this is a typical RISC machine, we only have to worry
4319 about the way loads are extended. */
4320 if ((LOAD_EXTEND_OP (inner_mode
) == SIGN_EXTEND
4321 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4322 : LOAD_EXTEND_OP (inner_mode
) != ZERO_EXTEND
)
4323 || !MEM_P (SUBREG_REG (x
)))
4326 /* On many CISC machines, accessing an object in a wider mode
4327 causes the high-order bits to become undefined. So they are
4328 not known to be zero. */
4329 if (GET_MODE_PRECISION (GET_MODE (x
))
4330 > GET_MODE_PRECISION (inner_mode
))
4331 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4332 & ~GET_MODE_MASK (inner_mode
));
4341 /* The nonzero bits are in two classes: any bits within MODE
4342 that aren't in GET_MODE (x) are always significant. The rest of the
4343 nonzero bits are those that are significant in the operand of
4344 the shift when shifted the appropriate number of bits. This
4345 shows that high-order bits are cleared by the right shift and
4346 low-order bits by left shifts. */
4347 if (CONST_INT_P (XEXP (x
, 1))
4348 && INTVAL (XEXP (x
, 1)) >= 0
4349 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4350 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4352 enum machine_mode inner_mode
= GET_MODE (x
);
4353 unsigned int width
= GET_MODE_PRECISION (inner_mode
);
4354 int count
= INTVAL (XEXP (x
, 1));
4355 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4356 unsigned HOST_WIDE_INT op_nonzero
4357 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4358 known_x
, known_mode
, known_ret
);
4359 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4360 unsigned HOST_WIDE_INT outer
= 0;
4362 if (mode_width
> width
)
4363 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4365 if (code
== LSHIFTRT
)
4367 else if (code
== ASHIFTRT
)
4371 /* If the sign bit may have been nonzero before the shift, we
4372 need to mark all the places it could have been copied to
4373 by the shift as possibly nonzero. */
4374 if (inner
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4375 inner
|= (((unsigned HOST_WIDE_INT
) 1 << count
) - 1)
4378 else if (code
== ASHIFT
)
4381 inner
= ((inner
<< (count
% width
)
4382 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4384 nonzero
&= (outer
| inner
);
4390 /* This is at most the number of bits in the mode. */
4391 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4395 /* If CLZ has a known value at zero, then the nonzero bits are
4396 that value, plus the number of bits in the mode minus one. */
4397 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4399 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4405 /* If CTZ has a known value at zero, then the nonzero bits are
4406 that value, plus the number of bits in the mode minus one. */
4407 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4409 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4415 /* This is at most the number of bits in the mode minus 1. */
4416 nonzero
= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4425 unsigned HOST_WIDE_INT nonzero_true
4426 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4427 known_x
, known_mode
, known_ret
);
4429 /* Don't call nonzero_bits for the second time if it cannot change
4431 if ((nonzero
& nonzero_true
) != nonzero
)
4432 nonzero
&= nonzero_true
4433 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4434 known_x
, known_mode
, known_ret
);
4445 /* See the macro definition above. */
4446 #undef cached_num_sign_bit_copies
4449 /* The function cached_num_sign_bit_copies is a wrapper around
4450 num_sign_bit_copies1. It avoids exponential behavior in
4451 num_sign_bit_copies1 when X has identical subexpressions on the
4452 first or the second level. */
4455 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4456 enum machine_mode known_mode
,
4457 unsigned int known_ret
)
4459 if (x
== known_x
&& mode
== known_mode
)
4462 /* Try to find identical subexpressions. If found call
4463 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4464 the precomputed value for the subexpression as KNOWN_RET. */
4466 if (ARITHMETIC_P (x
))
4468 rtx x0
= XEXP (x
, 0);
4469 rtx x1
= XEXP (x
, 1);
4471 /* Check the first level. */
4474 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4475 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4479 /* Check the second level. */
4480 if (ARITHMETIC_P (x0
)
4481 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4483 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4484 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4488 if (ARITHMETIC_P (x1
)
4489 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4491 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4492 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4497 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4500 /* Return the number of bits at the high-order end of X that are known to
4501 be equal to the sign bit. X will be used in mode MODE; if MODE is
4502 VOIDmode, X will be used in its own mode. The returned value will always
4503 be between 1 and the number of bits in MODE. */
4506 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4507 enum machine_mode known_mode
,
4508 unsigned int known_ret
)
4510 enum rtx_code code
= GET_CODE (x
);
4511 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4512 int num0
, num1
, result
;
4513 unsigned HOST_WIDE_INT nonzero
;
4515 /* If we weren't given a mode, use the mode of X. If the mode is still
4516 VOIDmode, we don't know anything. Likewise if one of the modes is
4519 if (mode
== VOIDmode
)
4520 mode
= GET_MODE (x
);
4522 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4523 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4526 /* For a smaller object, just ignore the high bits. */
4527 if (bitwidth
< GET_MODE_PRECISION (GET_MODE (x
)))
4529 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4530 known_x
, known_mode
, known_ret
);
4532 num0
- (int) (GET_MODE_PRECISION (GET_MODE (x
)) - bitwidth
));
4535 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_PRECISION (GET_MODE (x
)))
4537 #ifndef WORD_REGISTER_OPERATIONS
4538 /* If this machine does not do all register operations on the entire
4539 register and MODE is wider than the mode of X, we can say nothing
4540 at all about the high-order bits. */
4543 /* Likewise on machines that do, if the mode of the object is smaller
4544 than a word and loads of that size don't sign extend, we can say
4545 nothing about the high order bits. */
4546 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
4547 #ifdef LOAD_EXTEND_OP
4548 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4559 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4560 /* If pointers extend signed and this is a pointer in Pmode, say that
4561 all the bits above ptr_mode are known to be sign bit copies. */
4562 /* As we do not know which address space the pointer is referring to,
4563 we can do this only if the target does not support different pointer
4564 or address modes depending on the address space. */
4565 if (target_default_pointer_address_modes_p ()
4566 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4567 && mode
== Pmode
&& REG_POINTER (x
))
4568 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4572 unsigned int copies_for_hook
= 1, copies
= 1;
4573 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4574 known_mode
, known_ret
,
4578 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4579 known_mode
, known_ret
);
4581 if (copies
> 1 || copies_for_hook
> 1)
4582 return MAX (copies
, copies_for_hook
);
4584 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4589 #ifdef LOAD_EXTEND_OP
4590 /* Some RISC machines sign-extend all loads of smaller than a word. */
4591 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4592 return MAX (1, ((int) bitwidth
4593 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1));
4598 /* If the constant is negative, take its 1's complement and remask.
4599 Then see how many zero bits we have. */
4600 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4601 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4602 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4603 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4605 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4608 /* If this is a SUBREG for a promoted object that is sign-extended
4609 and we are looking at it in a wider mode, we know that at least the
4610 high-order bits are known to be sign bit copies. */
4612 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4614 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4615 known_x
, known_mode
, known_ret
);
4616 return MAX ((int) bitwidth
4617 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1,
4621 /* For a smaller object, just ignore the high bits. */
4622 if (bitwidth
<= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))))
4624 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4625 known_x
, known_mode
, known_ret
);
4626 return MAX (1, (num0
4627 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
)))
4631 #ifdef WORD_REGISTER_OPERATIONS
4632 #ifdef LOAD_EXTEND_OP
4633 /* For paradoxical SUBREGs on machines where all register operations
4634 affect the entire register, just look inside. Note that we are
4635 passing MODE to the recursive call, so the number of sign bit copies
4636 will remain relative to that mode, not the inner mode. */
4638 /* This works only if loads sign extend. Otherwise, if we get a
4639 reload for the inner part, it may be loaded from the stack, and
4640 then we lose all sign bit copies that existed before the store
4643 if (paradoxical_subreg_p (x
)
4644 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4645 && MEM_P (SUBREG_REG (x
)))
4646 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4647 known_x
, known_mode
, known_ret
);
4653 if (CONST_INT_P (XEXP (x
, 1)))
4654 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4658 return (bitwidth
- GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4659 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4660 known_x
, known_mode
, known_ret
));
4663 /* For a smaller object, just ignore the high bits. */
4664 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4665 known_x
, known_mode
, known_ret
);
4666 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4670 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4671 known_x
, known_mode
, known_ret
);
4673 case ROTATE
: case ROTATERT
:
4674 /* If we are rotating left by a number of bits less than the number
4675 of sign bit copies, we can just subtract that amount from the
4677 if (CONST_INT_P (XEXP (x
, 1))
4678 && INTVAL (XEXP (x
, 1)) >= 0
4679 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4681 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4682 known_x
, known_mode
, known_ret
);
4683 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4684 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4689 /* In general, this subtracts one sign bit copy. But if the value
4690 is known to be positive, the number of sign bit copies is the
4691 same as that of the input. Finally, if the input has just one bit
4692 that might be nonzero, all the bits are copies of the sign bit. */
4693 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4694 known_x
, known_mode
, known_ret
);
4695 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4696 return num0
> 1 ? num0
- 1 : 1;
4698 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4703 && (((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4708 case IOR
: case AND
: case XOR
:
4709 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4710 /* Logical operations will preserve the number of sign-bit copies.
4711 MIN and MAX operations always return one of the operands. */
4712 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4713 known_x
, known_mode
, known_ret
);
4714 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4715 known_x
, known_mode
, known_ret
);
4717 /* If num1 is clearing some of the top bits then regardless of
4718 the other term, we are guaranteed to have at least that many
4719 high-order zero bits. */
4722 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4723 && CONST_INT_P (XEXP (x
, 1))
4724 && (UINTVAL (XEXP (x
, 1))
4725 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) == 0)
4728 /* Similarly for IOR when setting high-order bits. */
4731 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4732 && CONST_INT_P (XEXP (x
, 1))
4733 && (UINTVAL (XEXP (x
, 1))
4734 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4737 return MIN (num0
, num1
);
4739 case PLUS
: case MINUS
:
4740 /* For addition and subtraction, we can have a 1-bit carry. However,
4741 if we are subtracting 1 from a positive number, there will not
4742 be such a carry. Furthermore, if the positive number is known to
4743 be 0 or 1, we know the result is either -1 or 0. */
4745 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4746 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4748 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4749 if ((((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4750 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4751 : bitwidth
- floor_log2 (nonzero
) - 1);
4754 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4755 known_x
, known_mode
, known_ret
);
4756 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4757 known_x
, known_mode
, known_ret
);
4758 result
= MAX (1, MIN (num0
, num1
) - 1);
4763 /* The number of bits of the product is the sum of the number of
4764 bits of both terms. However, unless one of the terms if known
4765 to be positive, we must allow for an additional bit since negating
4766 a negative number can remove one sign bit copy. */
4768 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4769 known_x
, known_mode
, known_ret
);
4770 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4771 known_x
, known_mode
, known_ret
);
4773 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4775 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4776 || (((nonzero_bits (XEXP (x
, 0), mode
)
4777 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4778 && ((nonzero_bits (XEXP (x
, 1), mode
)
4779 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)))
4783 return MAX (1, result
);
4786 /* The result must be <= the first operand. If the first operand
4787 has the high bit set, we know nothing about the number of sign
4789 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4791 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4792 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4795 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4796 known_x
, known_mode
, known_ret
);
4799 /* The result must be <= the second operand. If the second operand
4800 has (or just might have) the high bit set, we know nothing about
4801 the number of sign bit copies. */
4802 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4804 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4805 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4808 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4809 known_x
, known_mode
, known_ret
);
4812 /* Similar to unsigned division, except that we have to worry about
4813 the case where the divisor is negative, in which case we have
4815 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4816 known_x
, known_mode
, known_ret
);
4818 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4819 || (nonzero_bits (XEXP (x
, 1), mode
)
4820 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4826 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4827 known_x
, known_mode
, known_ret
);
4829 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4830 || (nonzero_bits (XEXP (x
, 1), mode
)
4831 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4837 /* Shifts by a constant add to the number of bits equal to the
4839 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4840 known_x
, known_mode
, known_ret
);
4841 if (CONST_INT_P (XEXP (x
, 1))
4842 && INTVAL (XEXP (x
, 1)) > 0
4843 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4844 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4849 /* Left shifts destroy copies. */
4850 if (!CONST_INT_P (XEXP (x
, 1))
4851 || INTVAL (XEXP (x
, 1)) < 0
4852 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4853 || INTVAL (XEXP (x
, 1)) >= GET_MODE_PRECISION (GET_MODE (x
)))
4856 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4857 known_x
, known_mode
, known_ret
);
4858 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4861 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4862 known_x
, known_mode
, known_ret
);
4863 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4864 known_x
, known_mode
, known_ret
);
4865 return MIN (num0
, num1
);
4867 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4868 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4869 case GEU
: case GTU
: case LEU
: case LTU
:
4870 case UNORDERED
: case ORDERED
:
4871 /* If the constant is negative, take its 1's complement and remask.
4872 Then see how many zero bits we have. */
4873 nonzero
= STORE_FLAG_VALUE
;
4874 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4875 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4876 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4878 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4884 /* If we haven't been able to figure it out by one of the above rules,
4885 see if some of the high-order bits are known to be zero. If so,
4886 count those bits and return one less than that amount. If we can't
4887 safely compute the mask for this mode, always return BITWIDTH. */
4889 bitwidth
= GET_MODE_PRECISION (mode
);
4890 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4893 nonzero
= nonzero_bits (x
, mode
);
4894 return nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4895 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4898 /* Calculate the rtx_cost of a single instruction. A return value of
4899 zero indicates an instruction pattern without a known cost. */
4902 insn_rtx_cost (rtx pat
, bool speed
)
4907 /* Extract the single set rtx from the instruction pattern.
4908 We can't use single_set since we only have the pattern. */
4909 if (GET_CODE (pat
) == SET
)
4911 else if (GET_CODE (pat
) == PARALLEL
)
4914 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4916 rtx x
= XVECEXP (pat
, 0, i
);
4917 if (GET_CODE (x
) == SET
)
4930 cost
= set_src_cost (SET_SRC (set
), speed
);
4931 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4934 /* Given an insn INSN and condition COND, return the condition in a
4935 canonical form to simplify testing by callers. Specifically:
4937 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4938 (2) Both operands will be machine operands; (cc0) will have been replaced.
4939 (3) If an operand is a constant, it will be the second operand.
4940 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4941 for GE, GEU, and LEU.
4943 If the condition cannot be understood, or is an inequality floating-point
4944 comparison which needs to be reversed, 0 will be returned.
4946 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4948 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4949 insn used in locating the condition was found. If a replacement test
4950 of the condition is desired, it should be placed in front of that
4951 insn and we will be sure that the inputs are still valid.
4953 If WANT_REG is nonzero, we wish the condition to be relative to that
4954 register, if possible. Therefore, do not canonicalize the condition
4955 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4956 to be a compare to a CC mode register.
4958 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4962 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4963 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4970 int reverse_code
= 0;
4971 enum machine_mode mode
;
4972 basic_block bb
= BLOCK_FOR_INSN (insn
);
4974 code
= GET_CODE (cond
);
4975 mode
= GET_MODE (cond
);
4976 op0
= XEXP (cond
, 0);
4977 op1
= XEXP (cond
, 1);
4980 code
= reversed_comparison_code (cond
, insn
);
4981 if (code
== UNKNOWN
)
4987 /* If we are comparing a register with zero, see if the register is set
4988 in the previous insn to a COMPARE or a comparison operation. Perform
4989 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4992 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4993 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4994 && op1
== CONST0_RTX (GET_MODE (op0
))
4997 /* Set nonzero when we find something of interest. */
5001 /* If comparison with cc0, import actual comparison from compare
5005 if ((prev
= prev_nonnote_insn (prev
)) == 0
5006 || !NONJUMP_INSN_P (prev
)
5007 || (set
= single_set (prev
)) == 0
5008 || SET_DEST (set
) != cc0_rtx
)
5011 op0
= SET_SRC (set
);
5012 op1
= CONST0_RTX (GET_MODE (op0
));
5018 /* If this is a COMPARE, pick up the two things being compared. */
5019 if (GET_CODE (op0
) == COMPARE
)
5021 op1
= XEXP (op0
, 1);
5022 op0
= XEXP (op0
, 0);
5025 else if (!REG_P (op0
))
5028 /* Go back to the previous insn. Stop if it is not an INSN. We also
5029 stop if it isn't a single set or if it has a REG_INC note because
5030 we don't want to bother dealing with it. */
5032 prev
= prev_nonnote_nondebug_insn (prev
);
5035 || !NONJUMP_INSN_P (prev
)
5036 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
5037 /* In cfglayout mode, there do not have to be labels at the
5038 beginning of a block, or jumps at the end, so the previous
5039 conditions would not stop us when we reach bb boundary. */
5040 || BLOCK_FOR_INSN (prev
) != bb
)
5043 set
= set_of (op0
, prev
);
5046 && (GET_CODE (set
) != SET
5047 || !rtx_equal_p (SET_DEST (set
), op0
)))
5050 /* If this is setting OP0, get what it sets it to if it looks
5054 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
5055 #ifdef FLOAT_STORE_FLAG_VALUE
5056 REAL_VALUE_TYPE fsfv
;
5059 /* ??? We may not combine comparisons done in a CCmode with
5060 comparisons not done in a CCmode. This is to aid targets
5061 like Alpha that have an IEEE compliant EQ instruction, and
5062 a non-IEEE compliant BEQ instruction. The use of CCmode is
5063 actually artificial, simply to prevent the combination, but
5064 should not affect other platforms.
5066 However, we must allow VOIDmode comparisons to match either
5067 CCmode or non-CCmode comparison, because some ports have
5068 modeless comparisons inside branch patterns.
5070 ??? This mode check should perhaps look more like the mode check
5071 in simplify_comparison in combine. */
5072 if (((GET_MODE_CLASS (mode
) == MODE_CC
)
5073 != (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5075 && inner_mode
!= VOIDmode
)
5077 if (GET_CODE (SET_SRC (set
)) == COMPARE
5080 && val_signbit_known_set_p (inner_mode
,
5082 #ifdef FLOAT_STORE_FLAG_VALUE
5084 && SCALAR_FLOAT_MODE_P (inner_mode
)
5085 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5086 REAL_VALUE_NEGATIVE (fsfv
)))
5089 && COMPARISON_P (SET_SRC (set
))))
5091 else if (((code
== EQ
5093 && val_signbit_known_set_p (inner_mode
,
5095 #ifdef FLOAT_STORE_FLAG_VALUE
5097 && SCALAR_FLOAT_MODE_P (inner_mode
)
5098 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5099 REAL_VALUE_NEGATIVE (fsfv
)))
5102 && COMPARISON_P (SET_SRC (set
)))
5107 else if ((code
== EQ
|| code
== NE
)
5108 && GET_CODE (SET_SRC (set
)) == XOR
)
5109 /* Handle sequences like:
5112 ...(eq|ne op0 (const_int 0))...
5116 (eq op0 (const_int 0)) reduces to (eq X Y)
5117 (ne op0 (const_int 0)) reduces to (ne X Y)
5119 This is the form used by MIPS16, for example. */
5125 else if (reg_set_p (op0
, prev
))
5126 /* If this sets OP0, but not directly, we have to give up. */
5131 /* If the caller is expecting the condition to be valid at INSN,
5132 make sure X doesn't change before INSN. */
5133 if (valid_at_insn_p
)
5134 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5136 if (COMPARISON_P (x
))
5137 code
= GET_CODE (x
);
5140 code
= reversed_comparison_code (x
, prev
);
5141 if (code
== UNKNOWN
)
5146 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5152 /* If constant is first, put it last. */
5153 if (CONSTANT_P (op0
))
5154 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5156 /* If OP0 is the result of a comparison, we weren't able to find what
5157 was really being compared, so fail. */
5159 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5162 /* Canonicalize any ordered comparison with integers involving equality
5163 if we can do computations in the relevant mode and we do not
5166 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
5167 && CONST_INT_P (op1
)
5168 && GET_MODE (op0
) != VOIDmode
5169 && GET_MODE_PRECISION (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
5171 HOST_WIDE_INT const_val
= INTVAL (op1
);
5172 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5173 unsigned HOST_WIDE_INT max_val
5174 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
5179 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5180 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
5183 /* When cross-compiling, const_val might be sign-extended from
5184 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5186 if ((const_val
& max_val
)
5187 != ((unsigned HOST_WIDE_INT
) 1
5188 << (GET_MODE_PRECISION (GET_MODE (op0
)) - 1)))
5189 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
5193 if (uconst_val
< max_val
)
5194 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
5198 if (uconst_val
!= 0)
5199 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
5207 /* Never return CC0; return zero instead. */
5211 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5214 /* Given a jump insn JUMP, return the condition that will cause it to branch
5215 to its JUMP_LABEL. If the condition cannot be understood, or is an
5216 inequality floating-point comparison which needs to be reversed, 0 will
5219 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5220 insn used in locating the condition was found. If a replacement test
5221 of the condition is desired, it should be placed in front of that
5222 insn and we will be sure that the inputs are still valid. If EARLIEST
5223 is null, the returned condition will be valid at INSN.
5225 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5226 compare CC mode register.
5228 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5231 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
5237 /* If this is not a standard conditional jump, we can't parse it. */
5239 || ! any_condjump_p (jump
))
5241 set
= pc_set (jump
);
5243 cond
= XEXP (SET_SRC (set
), 0);
5245 /* If this branches to JUMP_LABEL when the condition is false, reverse
5248 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5249 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
5251 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5252 allow_cc_mode
, valid_at_insn_p
);
5255 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5256 TARGET_MODE_REP_EXTENDED.
5258 Note that we assume that the property of
5259 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5260 narrower than mode B. I.e., if A is a mode narrower than B then in
5261 order to be able to operate on it in mode B, mode A needs to
5262 satisfy the requirements set by the representation of mode B. */
5265 init_num_sign_bit_copies_in_rep (void)
5267 enum machine_mode mode
, in_mode
;
5269 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
5270 in_mode
= GET_MODE_WIDER_MODE (mode
))
5271 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
5272 mode
= GET_MODE_WIDER_MODE (mode
))
5274 enum machine_mode i
;
5276 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5277 extends to the next widest mode. */
5278 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5279 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5281 /* We are in in_mode. Count how many bits outside of mode
5282 have to be copies of the sign-bit. */
5283 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5285 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5287 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5288 /* We can only check sign-bit copies starting from the
5289 top-bit. In order to be able to check the bits we
5290 have already seen we pretend that subsequent bits
5291 have to be sign-bit copies too. */
5292 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5293 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5294 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5299 /* Suppose that truncation from the machine mode of X to MODE is not a
5300 no-op. See if there is anything special about X so that we can
5301 assume it already contains a truncated value of MODE. */
5304 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5306 /* This register has already been used in MODE without explicit
5308 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5311 /* See if we already satisfy the requirements of MODE. If yes we
5312 can just switch to MODE. */
5313 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5314 && (num_sign_bit_copies (x
, GET_MODE (x
))
5315 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5321 /* Initialize non_rtx_starting_operands, which is used to speed up
5327 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5329 const char *format
= GET_RTX_FORMAT (i
);
5330 const char *first
= strpbrk (format
, "eEV");
5331 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5334 init_num_sign_bit_copies_in_rep ();
5337 /* Check whether this is a constant pool constant. */
5339 constant_pool_constant_p (rtx x
)
5341 x
= avoid_constant_pool_reference (x
);
5342 return CONST_DOUBLE_P (x
);
5345 /* If M is a bitmask that selects a field of low-order bits within an item but
5346 not the entire word, return the length of the field. Return -1 otherwise.
5347 M is used in machine mode MODE. */
5350 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5352 if (mode
!= VOIDmode
)
5354 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5356 m
&= GET_MODE_MASK (mode
);
5359 return exact_log2 (m
+ 1);
5362 /* Return the mode of MEM's address. */
5365 get_address_mode (rtx mem
)
5367 enum machine_mode mode
;
5369 gcc_assert (MEM_P (mem
));
5370 mode
= GET_MODE (XEXP (mem
, 0));
5371 if (mode
!= VOIDmode
)
5373 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5376 /* Split up a CONST_DOUBLE or integer constant rtx
5377 into two rtx's for single words,
5378 storing in *FIRST the word that comes first in memory in the target
5379 and in *SECOND the other. */
5382 split_double (rtx value
, rtx
*first
, rtx
*second
)
5384 if (CONST_INT_P (value
))
5386 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5388 /* In this case the CONST_INT holds both target words.
5389 Extract the bits from it into two word-sized pieces.
5390 Sign extend each half to HOST_WIDE_INT. */
5391 unsigned HOST_WIDE_INT low
, high
;
5392 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5393 unsigned bits_per_word
= BITS_PER_WORD
;
5395 /* Set sign_bit to the most significant bit of a word. */
5397 sign_bit
<<= bits_per_word
- 1;
5399 /* Set mask so that all bits of the word are set. We could
5400 have used 1 << BITS_PER_WORD instead of basing the
5401 calculation on sign_bit. However, on machines where
5402 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5403 compiler warning, even though the code would never be
5405 mask
= sign_bit
<< 1;
5408 /* Set sign_extend as any remaining bits. */
5409 sign_extend
= ~mask
;
5411 /* Pick the lower word and sign-extend it. */
5412 low
= INTVAL (value
);
5417 /* Pick the higher word, shifted to the least significant
5418 bits, and sign-extend it. */
5419 high
= INTVAL (value
);
5420 high
>>= bits_per_word
- 1;
5423 if (high
& sign_bit
)
5424 high
|= sign_extend
;
5426 /* Store the words in the target machine order. */
5427 if (WORDS_BIG_ENDIAN
)
5429 *first
= GEN_INT (high
);
5430 *second
= GEN_INT (low
);
5434 *first
= GEN_INT (low
);
5435 *second
= GEN_INT (high
);
5440 /* The rule for using CONST_INT for a wider mode
5441 is that we regard the value as signed.
5442 So sign-extend it. */
5443 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
5444 if (WORDS_BIG_ENDIAN
)
5456 else if (!CONST_DOUBLE_P (value
))
5458 if (WORDS_BIG_ENDIAN
)
5460 *first
= const0_rtx
;
5466 *second
= const0_rtx
;
5469 else if (GET_MODE (value
) == VOIDmode
5470 /* This is the old way we did CONST_DOUBLE integers. */
5471 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
5473 /* In an integer, the words are defined as most and least significant.
5474 So order them by the target's convention. */
5475 if (WORDS_BIG_ENDIAN
)
5477 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5478 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
5482 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
5483 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5490 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
5492 /* Note, this converts the REAL_VALUE_TYPE to the target's
5493 format, splits up the floating point double and outputs
5494 exactly 32 bits of it into each of l[0] and l[1] --
5495 not necessarily BITS_PER_WORD bits. */
5496 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
5498 /* If 32 bits is an entire word for the target, but not for the host,
5499 then sign-extend on the host so that the number will look the same
5500 way on the host that it would on the target. See for instance
5501 simplify_unary_operation. The #if is needed to avoid compiler
5504 #if HOST_BITS_PER_LONG > 32
5505 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
5507 if (l
[0] & ((long) 1 << 31))
5508 l
[0] |= ((long) (-1) << 32);
5509 if (l
[1] & ((long) 1 << 31))
5510 l
[1] |= ((long) (-1) << 32);
5514 *first
= GEN_INT (l
[0]);
5515 *second
= GEN_INT (l
[1]);
5519 /* Return true if X is a sign_extract or zero_extract from the least
5523 lsb_bitfield_op_p (rtx x
)
5525 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_BITFIELD_OPS
)
5527 enum machine_mode mode
= GET_MODE (XEXP (x
, 0));
5528 HOST_WIDE_INT len
= INTVAL (XEXP (x
, 1));
5529 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
5531 return (pos
== (BITS_BIG_ENDIAN
? GET_MODE_PRECISION (mode
) - len
: 0));
5536 /* Strip outer address "mutations" from LOC and return a pointer to the
5537 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5538 stripped expression there.
5540 "Mutations" either convert between modes or apply some kind of
5541 extension, truncation or alignment. */
5544 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
5548 enum rtx_code code
= GET_CODE (*loc
);
5549 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
5550 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5551 used to convert between pointer sizes. */
5552 loc
= &XEXP (*loc
, 0);
5553 else if (lsb_bitfield_op_p (*loc
))
5554 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5555 acts as a combined truncation and extension. */
5556 loc
= &XEXP (*loc
, 0);
5557 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
5558 /* (and ... (const_int -X)) is used to align to X bytes. */
5559 loc
= &XEXP (*loc
, 0);
5560 else if (code
== SUBREG
5561 && !OBJECT_P (SUBREG_REG (*loc
))
5562 && subreg_lowpart_p (*loc
))
5563 /* (subreg (operator ...) ...) inside and is used for mode
5565 loc
= &SUBREG_REG (*loc
);
5573 /* Return true if CODE applies some kind of scale. The scaled value is
5574 is the first operand and the scale is the second. */
5577 binary_scale_code_p (enum rtx_code code
)
5579 return (code
== MULT
5581 /* Needed by ARM targets. */
5585 || code
== ROTATERT
);
5588 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5589 (see address_info). Return null otherwise. */
5592 get_base_term (rtx
*inner
)
5594 if (GET_CODE (*inner
) == LO_SUM
)
5595 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5598 || GET_CODE (*inner
) == SUBREG
)
5603 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5604 (see address_info). Return null otherwise. */
5607 get_index_term (rtx
*inner
)
5609 /* At present, only constant scales are allowed. */
5610 if (binary_scale_code_p (GET_CODE (*inner
)) && CONSTANT_P (XEXP (*inner
, 1)))
5611 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5614 || GET_CODE (*inner
) == SUBREG
)
5619 /* Set the segment part of address INFO to LOC, given that INNER is the
5623 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5625 gcc_assert (!info
->segment
);
5626 info
->segment
= loc
;
5627 info
->segment_term
= inner
;
5630 /* Set the base part of address INFO to LOC, given that INNER is the
5634 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5636 gcc_assert (!info
->base
);
5638 info
->base_term
= inner
;
5641 /* Set the index part of address INFO to LOC, given that INNER is the
5645 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5647 gcc_assert (!info
->index
);
5649 info
->index_term
= inner
;
5652 /* Set the displacement part of address INFO to LOC, given that INNER
5653 is the constant term. */
5656 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5658 gcc_assert (!info
->disp
);
5660 info
->disp_term
= inner
;
5663 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5664 rest of INFO accordingly. */
5667 decompose_incdec_address (struct address_info
*info
)
5669 info
->autoinc_p
= true;
5671 rtx
*base
= &XEXP (*info
->inner
, 0);
5672 set_address_base (info
, base
, base
);
5673 gcc_checking_assert (info
->base
== info
->base_term
);
5675 /* These addresses are only valid when the size of the addressed
5677 gcc_checking_assert (info
->mode
!= VOIDmode
);
5680 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5681 of INFO accordingly. */
5684 decompose_automod_address (struct address_info
*info
)
5686 info
->autoinc_p
= true;
5688 rtx
*base
= &XEXP (*info
->inner
, 0);
5689 set_address_base (info
, base
, base
);
5690 gcc_checking_assert (info
->base
== info
->base_term
);
5692 rtx plus
= XEXP (*info
->inner
, 1);
5693 gcc_assert (GET_CODE (plus
) == PLUS
);
5695 info
->base_term2
= &XEXP (plus
, 0);
5696 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
5698 rtx
*step
= &XEXP (plus
, 1);
5699 rtx
*inner_step
= strip_address_mutations (step
);
5700 if (CONSTANT_P (*inner_step
))
5701 set_address_disp (info
, step
, inner_step
);
5703 set_address_index (info
, step
, inner_step
);
5706 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5707 values in [PTR, END). Return a pointer to the end of the used array. */
5710 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
5713 if (GET_CODE (x
) == PLUS
)
5715 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
5716 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
5720 gcc_assert (ptr
!= end
);
5726 /* Evaluate the likelihood of X being a base or index value, returning
5727 positive if it is likely to be a base, negative if it is likely to be
5728 an index, and 0 if we can't tell. Make the magnitude of the return
5729 value reflect the amount of confidence we have in the answer.
5731 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5734 baseness (rtx x
, enum machine_mode mode
, addr_space_t as
,
5735 enum rtx_code outer_code
, enum rtx_code index_code
)
5737 /* Believe *_POINTER unless the address shape requires otherwise. */
5738 if (REG_P (x
) && REG_POINTER (x
))
5740 if (MEM_P (x
) && MEM_POINTER (x
))
5743 if (REG_P (x
) && HARD_REGISTER_P (x
))
5745 /* X is a hard register. If it only fits one of the base
5746 or index classes, choose that interpretation. */
5747 int regno
= REGNO (x
);
5748 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
5749 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
5750 if (base_p
!= index_p
)
5751 return base_p
? 1 : -1;
5756 /* INFO->INNER describes a normal, non-automodified address.
5757 Fill in the rest of INFO accordingly. */
5760 decompose_normal_address (struct address_info
*info
)
5762 /* Treat the address as the sum of up to four values. */
5764 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
5765 ops
+ ARRAY_SIZE (ops
)) - ops
;
5767 /* If there is more than one component, any base component is in a PLUS. */
5769 info
->base_outer_code
= PLUS
;
5771 /* Try to classify each sum operand now. Leave those that could be
5772 either a base or an index in OPS. */
5775 for (size_t in
= 0; in
< n_ops
; ++in
)
5778 rtx
*inner
= strip_address_mutations (loc
);
5779 if (CONSTANT_P (*inner
))
5780 set_address_disp (info
, loc
, inner
);
5781 else if (GET_CODE (*inner
) == UNSPEC
)
5782 set_address_segment (info
, loc
, inner
);
5785 /* The only other possibilities are a base or an index. */
5786 rtx
*base_term
= get_base_term (inner
);
5787 rtx
*index_term
= get_index_term (inner
);
5788 gcc_assert (base_term
|| index_term
);
5790 set_address_index (info
, loc
, index_term
);
5791 else if (!index_term
)
5792 set_address_base (info
, loc
, base_term
);
5795 gcc_assert (base_term
== index_term
);
5797 inner_ops
[out
] = base_term
;
5803 /* Classify the remaining OPS members as bases and indexes. */
5806 /* If we haven't seen a base or an index yet, assume that this is
5807 the base. If we were confident that another term was the base
5808 or index, treat the remaining operand as the other kind. */
5810 set_address_base (info
, ops
[0], inner_ops
[0]);
5812 set_address_index (info
, ops
[0], inner_ops
[0]);
5816 /* In the event of a tie, assume the base comes first. */
5817 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
5819 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
5820 GET_CODE (*ops
[0])))
5822 set_address_base (info
, ops
[0], inner_ops
[0]);
5823 set_address_index (info
, ops
[1], inner_ops
[1]);
5827 set_address_base (info
, ops
[1], inner_ops
[1]);
5828 set_address_index (info
, ops
[0], inner_ops
[0]);
5832 gcc_assert (out
== 0);
5835 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5836 or VOIDmode if not known. AS is the address space associated with LOC.
5837 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5840 decompose_address (struct address_info
*info
, rtx
*loc
, enum machine_mode mode
,
5841 addr_space_t as
, enum rtx_code outer_code
)
5843 memset (info
, 0, sizeof (*info
));
5846 info
->addr_outer_code
= outer_code
;
5848 info
->inner
= strip_address_mutations (loc
, &outer_code
);
5849 info
->base_outer_code
= outer_code
;
5850 switch (GET_CODE (*info
->inner
))
5856 decompose_incdec_address (info
);
5861 decompose_automod_address (info
);
5865 decompose_normal_address (info
);
5870 /* Describe address operand LOC in INFO. */
5873 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
5875 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
5878 /* Describe the address of MEM X in INFO. */
5881 decompose_mem_address (struct address_info
*info
, rtx x
)
5883 gcc_assert (MEM_P (x
));
5884 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
5885 MEM_ADDR_SPACE (x
), MEM
);
5888 /* Update INFO after a change to the address it describes. */
5891 update_address (struct address_info
*info
)
5893 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
5894 info
->addr_outer_code
);
5897 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5898 more complicated than that. */
5901 get_index_scale (const struct address_info
*info
)
5903 rtx index
= *info
->index
;
5904 if (GET_CODE (index
) == MULT
5905 && CONST_INT_P (XEXP (index
, 1))
5906 && info
->index_term
== &XEXP (index
, 0))
5907 return INTVAL (XEXP (index
, 1));
5909 if (GET_CODE (index
) == ASHIFT
5910 && CONST_INT_P (XEXP (index
, 1))
5911 && info
->index_term
== &XEXP (index
, 0))
5912 return (HOST_WIDE_INT
) 1 << INTVAL (XEXP (index
, 1));
5914 if (info
->index
== info
->index_term
)
5920 /* Return the "index code" of INFO, in the form required by
5924 get_index_code (const struct address_info
*info
)
5927 return GET_CODE (*info
->index
);
5930 return GET_CODE (*info
->disp
);