1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 #include "coretypes.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
41 #include "cfglayout.h"
42 #include "sched-int.h"
45 /* The number of insns to be scheduled in total. */
46 static int target_n_insns
;
47 /* The number of insns scheduled so far. */
48 static int sched_n_insns
;
50 /* Implementations of the sched_info functions for region scheduling. */
51 static void init_ready_list (struct ready_list
*);
52 static int can_schedule_ready_p (rtx
);
53 static int new_ready (rtx
);
54 static int schedule_more_p (void);
55 static const char *ebb_print_insn (rtx
, int);
56 static int rank (rtx
, rtx
);
57 static int contributes_to_priority (rtx
, rtx
);
58 static void compute_jump_reg_dependencies (rtx
, regset
);
59 static basic_block
earliest_block_with_similiar_load (basic_block
, rtx
);
60 static void add_deps_for_risky_insns (rtx
, rtx
);
61 static basic_block
schedule_ebb (rtx
, rtx
);
62 static basic_block
fix_basic_block_boundaries (basic_block
, basic_block
, rtx
,
64 static void add_missing_bbs (rtx
, basic_block
, basic_block
);
66 /* Return nonzero if there are more insns that should be scheduled. */
69 schedule_more_p (void)
71 return sched_n_insns
< target_n_insns
;
74 /* Add all insns that are initially ready to the ready list READY. Called
75 once before scheduling a set of insns. */
78 init_ready_list (struct ready_list
*ready
)
80 rtx prev_head
= current_sched_info
->prev_head
;
81 rtx next_tail
= current_sched_info
->next_tail
;
88 /* Print debugging information. */
89 if (sched_verbose
>= 5)
90 debug_dependencies ();
93 /* Initialize ready list with all 'ready' insns in target block.
94 Count number of insns in the target block being scheduled. */
95 for (insn
= NEXT_INSN (prev_head
); insn
!= next_tail
; insn
= NEXT_INSN (insn
))
97 if (INSN_DEP_COUNT (insn
) == 0)
98 ready_add (ready
, insn
);
103 /* Called after taking INSN from the ready list. Returns nonzero if this
104 insn can be scheduled, nonzero if we should silently discard it. */
107 can_schedule_ready_p (rtx insn ATTRIBUTE_UNUSED
)
113 /* Called after INSN has all its dependencies resolved. Return nonzero
114 if it should be moved to the ready list or the queue, or zero if we
115 should silently discard it. */
117 new_ready (rtx next ATTRIBUTE_UNUSED
)
122 /* Return a string that contains the insn uid and optionally anything else
123 necessary to identify this insn in an output. It's valid to use a
124 static buffer for this. The ALIGNED parameter should cause the string
125 to be formatted so that multiple output lines will line up nicely. */
128 ebb_print_insn (rtx insn
, int aligned ATTRIBUTE_UNUSED
)
132 sprintf (tmp
, "%4d", INSN_UID (insn
));
136 /* Compare priority of two insns. Return a positive number if the second
137 insn is to be preferred for scheduling, and a negative one if the first
138 is to be preferred. Zero if they are equally good. */
141 rank (rtx insn1
, rtx insn2
)
143 basic_block bb1
= BLOCK_FOR_INSN (insn1
);
144 basic_block bb2
= BLOCK_FOR_INSN (insn2
);
146 if (bb1
->count
> bb2
->count
147 || bb1
->frequency
> bb2
->frequency
)
149 if (bb1
->count
< bb2
->count
150 || bb1
->frequency
< bb2
->frequency
)
155 /* NEXT is an instruction that depends on INSN (a backward dependence);
156 return nonzero if we should include this dependence in priority
160 contributes_to_priority (rtx next ATTRIBUTE_UNUSED
,
161 rtx insn ATTRIBUTE_UNUSED
)
166 /* INSN is a JUMP_INSN. Store the set of registers that must be considered
167 to be set by this jump in SET. */
170 compute_jump_reg_dependencies (rtx insn
, regset set
)
172 basic_block b
= BLOCK_FOR_INSN (insn
);
174 for (e
= b
->succ
; e
; e
= e
->succ_next
)
175 if ((e
->flags
& EDGE_FALLTHRU
) == 0)
177 bitmap_operation (set
, set
, e
->dest
->global_live_at_start
,
182 /* Used in schedule_insns to initialize current_sched_info for scheduling
183 regions (or single basic blocks). */
185 static struct sched_info ebb_sched_info
=
188 can_schedule_ready_p
,
193 contributes_to_priority
,
194 compute_jump_reg_dependencies
,
201 /* It is possible that ebb scheduling eliminated some blocks.
202 Place blocks from FIRST to LAST before BEFORE. */
205 add_missing_bbs (rtx before
, basic_block first
, basic_block last
)
207 for (; last
!= first
->prev_bb
; last
= last
->prev_bb
)
209 before
= emit_note_before (NOTE_INSN_BASIC_BLOCK
, before
);
210 NOTE_BASIC_BLOCK (before
) = last
;
213 update_bb_for_insn (last
);
217 /* Fixup the CFG after EBB scheduling. Re-recognize the basic
218 block boundaries in between HEAD and TAIL and update basic block
219 structures between BB and LAST. */
222 fix_basic_block_boundaries (basic_block bb
, basic_block last
, rtx head
,
226 rtx last_inside
= bb
->head
;
227 rtx aftertail
= NEXT_INSN (tail
);
231 for (; insn
!= aftertail
; insn
= NEXT_INSN (insn
))
233 if (GET_CODE (insn
) == CODE_LABEL
)
235 /* Create new basic blocks just before first insn. */
236 if (inside_basic_block_p (insn
))
242 /* Re-emit the basic block note for newly found BB header. */
243 if (GET_CODE (insn
) == CODE_LABEL
)
245 note
= emit_note_after (NOTE_INSN_BASIC_BLOCK
, insn
);
251 note
= emit_note_before (NOTE_INSN_BASIC_BLOCK
, insn
);
259 /* Control flow instruction terminate basic block. It is possible
260 that we've eliminated some basic blocks (made them empty).
261 Find the proper basic block using BLOCK_FOR_INSN and arrange things in
262 a sensible way by inserting empty basic blocks as needed. */
263 if (control_flow_insn_p (insn
) || (insn
== tail
&& last_inside
))
265 basic_block curr_bb
= BLOCK_FOR_INSN (insn
);
268 if (!control_flow_insn_p (insn
))
270 if (bb
== last
->next_bb
)
275 /* An obscure special case, where we do have partially dead
276 instruction scheduled after last control flow instruction.
277 In this case we can create new basic block. It is
278 always exactly one basic block last in the sequence. Handle
279 it by splitting the edge and repositioning the block.
280 This is somewhat hackish, but at least avoid cut&paste
282 A safer solution can be to bring the code into sequence,
283 do the split and re-emit it back in case this will ever
285 f
= bb
->prev_bb
->succ
;
286 while (f
&& !(f
->flags
& EDGE_FALLTHRU
))
291 last
= curr_bb
= split_edge (f
);
293 curr_bb
->head
= head
;
295 /* Edge splitting created misplaced BASIC_BLOCK note, kill
299 /* It may happen that code got moved past unconditional jump in
300 case the code is completely dead. Kill it. */
303 rtx next
= next_nonnote_insn (insn
);
304 delete_insn_chain (head
, insn
);
305 /* We keep some notes in the way that may split barrier from the
307 if (GET_CODE (next
) == BARRIER
)
309 emit_barrier_after (prev_nonnote_insn (head
));
317 curr_bb
->head
= head
;
319 add_missing_bbs (curr_bb
->head
, bb
, curr_bb
->prev_bb
);
321 note
= GET_CODE (head
) == CODE_LABEL
? NEXT_INSN (head
) : head
;
322 NOTE_BASIC_BLOCK (note
) = curr_bb
;
323 update_bb_for_insn (curr_bb
);
324 bb
= curr_bb
->next_bb
;
330 add_missing_bbs (last
->next_bb
->head
, bb
, last
);
334 /* Returns the earliest block in EBB currently being processed where a
335 "similar load" 'insn2' is found, and hence LOAD_INSN can move
336 speculatively into the found block. All the following must hold:
338 (1) both loads have 1 base register (PFREE_CANDIDATEs).
339 (2) load_insn and load2 have a def-use dependence upon
340 the same insn 'insn1'.
342 From all these we can conclude that the two loads access memory
343 addresses that differ at most by a constant, and hence if moving
344 load_insn would cause an exception, it would have been caused by
347 The function uses list (given by LAST_BLOCK) of already processed
348 blocks in EBB. The list is formed in `add_deps_for_risky_insns'. */
351 earliest_block_with_similiar_load (basic_block last_block
, rtx load_insn
)
354 basic_block bb
, earliest_block
= NULL
;
356 for (back_link
= LOG_LINKS (load_insn
);
358 back_link
= XEXP (back_link
, 1))
360 rtx insn1
= XEXP (back_link
, 0);
362 if (GET_MODE (back_link
) == VOIDmode
)
364 /* Found a DEF-USE dependence (insn1, load_insn). */
367 for (fore_link
= INSN_DEPEND (insn1
);
369 fore_link
= XEXP (fore_link
, 1))
371 rtx insn2
= XEXP (fore_link
, 0);
372 basic_block insn2_block
= BLOCK_FOR_INSN (insn2
);
374 if (GET_MODE (fore_link
) == VOIDmode
)
376 if (earliest_block
!= NULL
377 && earliest_block
->index
< insn2_block
->index
)
380 /* Found a DEF-USE dependence (insn1, insn2). */
381 if (haifa_classify_insn (insn2
) != PFREE_CANDIDATE
)
382 /* insn2 not guaranteed to be a 1 base reg load. */
385 for (bb
= last_block
; bb
; bb
= bb
->aux
)
386 if (insn2_block
== bb
)
390 /* insn2 is the similar load. */
391 earliest_block
= insn2_block
;
397 return earliest_block
;
400 /* The following function adds dependencies between jumps and risky
401 insns in given ebb. */
404 add_deps_for_risky_insns (rtx head
, rtx tail
)
408 rtx last_jump
= NULL_RTX
;
409 rtx next_tail
= NEXT_INSN (tail
);
410 basic_block last_block
= NULL
, bb
;
412 for (insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
413 if (GET_CODE (insn
) == JUMP_INSN
)
415 bb
= BLOCK_FOR_INSN (insn
);
416 bb
->aux
= last_block
;
420 else if (INSN_P (insn
) && last_jump
!= NULL_RTX
)
422 class = haifa_classify_insn (insn
);
426 case PFREE_CANDIDATE
:
427 if (flag_schedule_speculative_load
)
429 bb
= earliest_block_with_similiar_load (last_block
, insn
);
441 case PRISKY_CANDIDATE
:
442 /* ??? We could implement better checking PRISKY_CANDIDATEs
443 analogous to sched-rgn.c. */
444 /* We can not change the mode of the backward
445 dependency because REG_DEP_ANTI has the lowest
447 if (add_dependence (insn
, prev
, REG_DEP_ANTI
))
448 add_forward_dependence (prev
, insn
, REG_DEP_ANTI
);
455 /* Maintain the invariant that bb->aux is clear after use. */
458 bb
= last_block
->aux
;
459 last_block
->aux
= NULL
;
464 /* Schedule a single extended basic block, defined by the boundaries HEAD
468 schedule_ebb (rtx head
, rtx tail
)
472 struct deps tmp_deps
;
473 basic_block first_bb
= BLOCK_FOR_INSN (head
);
474 basic_block last_bb
= BLOCK_FOR_INSN (tail
);
476 if (no_real_insns_p (head
, tail
))
477 return BLOCK_FOR_INSN (tail
);
481 /* Compute LOG_LINKS. */
482 init_deps (&tmp_deps
);
483 sched_analyze (&tmp_deps
, head
, tail
);
484 free_deps (&tmp_deps
);
486 /* Compute INSN_DEPEND. */
487 compute_forward_dependences (head
, tail
);
489 add_deps_for_risky_insns (head
, tail
);
491 if (targetm
.sched
.dependencies_evaluation_hook
)
492 targetm
.sched
.dependencies_evaluation_hook (head
, tail
);
494 /* Set priorities. */
495 n_insns
= set_priorities (head
, tail
);
497 current_sched_info
->prev_head
= PREV_INSN (head
);
498 current_sched_info
->next_tail
= NEXT_INSN (tail
);
500 if (write_symbols
!= NO_DEBUG
)
502 save_line_notes (first_bb
->index
, head
, tail
);
503 rm_line_notes (head
, tail
);
506 /* rm_other_notes only removes notes which are _inside_ the
507 block---that is, it won't remove notes before the first real insn
508 or after the last real insn of the block. So if the first insn
509 has a REG_SAVE_NOTE which would otherwise be emitted before the
510 insn, it is redundant with the note before the start of the
511 block, and so we have to take it out. */
516 for (note
= REG_NOTES (head
); note
; note
= XEXP (note
, 1))
517 if (REG_NOTE_KIND (note
) == REG_SAVE_NOTE
)
519 remove_note (head
, note
);
520 note
= XEXP (note
, 1);
521 remove_note (head
, note
);
525 /* Remove remaining note insns from the block, save them in
526 note_list. These notes are restored at the end of
527 schedule_block (). */
528 rm_other_notes (head
, tail
);
530 current_sched_info
->queue_must_finish_empty
= 1;
532 schedule_block (-1, n_insns
);
534 /* Sanity check: verify that all region insns were scheduled. */
535 if (sched_n_insns
!= n_insns
)
537 head
= current_sched_info
->head
;
538 tail
= current_sched_info
->tail
;
540 if (write_symbols
!= NO_DEBUG
)
541 restore_line_notes (head
, tail
);
542 b
= fix_basic_block_boundaries (first_bb
, last_bb
, head
, tail
);
544 finish_deps_global ();
548 /* The one entry point in this file. DUMP_FILE is the dump file for
552 schedule_ebbs (FILE *dump_file
)
556 /* Taking care of this degenerate case makes the rest of
557 this code simpler. */
558 if (n_basic_blocks
== 0)
561 sched_init (dump_file
);
563 current_sched_info
= &ebb_sched_info
;
565 allocate_reg_life_data ();
566 compute_bb_for_insn ();
568 /* Schedule every region in the subroutine. */
578 if (bb
->next_bb
== EXIT_BLOCK_PTR
579 || GET_CODE (bb
->next_bb
->head
) == CODE_LABEL
)
581 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
582 if ((e
->flags
& EDGE_FALLTHRU
) != 0)
586 if (e
->probability
< REG_BR_PROB_BASE
/ 2)
591 /* Blah. We should fix the rest of the code not to get confused by
595 if (GET_CODE (head
) == NOTE
)
596 head
= NEXT_INSN (head
);
597 else if (GET_CODE (tail
) == NOTE
)
598 tail
= PREV_INSN (tail
);
599 else if (GET_CODE (head
) == CODE_LABEL
)
600 head
= NEXT_INSN (head
);
605 bb
= schedule_ebb (head
, tail
);
608 /* Updating life info can be done by local propagation over the modified
611 /* Reposition the prologue and epilogue notes in case we moved the
612 prologue/epilogue insns. */
613 if (reload_completed
)
614 reposition_prologue_and_epilogue_notes (get_insns ());
616 if (write_symbols
!= NO_DEBUG
)
617 rm_redundant_line_notes ();