Merge from trunk rev 172662.
[official-gcc.git] / gcc / cp / init.c
blob3280d9b5d0dc221dd089496ab8ad045270ea5902
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "target.h"
35 static bool begin_init_stmts (tree *, tree *);
36 static tree finish_init_stmts (bool, tree, tree);
37 static void construct_virtual_base (tree, tree);
38 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
40 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
41 static void perform_member_init (tree, tree);
42 static tree build_builtin_delete_call (tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_dtor_call (tree, special_function_kind, int);
50 static tree build_field_list (tree, tree, int *);
51 static tree build_vtbl_address (tree);
52 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
54 /* We are about to generate some complex initialization code.
55 Conceptually, it is all a single expression. However, we may want
56 to include conditionals, loops, and other such statement-level
57 constructs. Therefore, we build the initialization code inside a
58 statement-expression. This function starts such an expression.
59 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
60 pass them back to finish_init_stmts when the expression is
61 complete. */
63 static bool
64 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
66 bool is_global = !building_stmt_tree ();
68 *stmt_expr_p = begin_stmt_expr ();
69 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
71 return is_global;
74 /* Finish out the statement-expression begun by the previous call to
75 begin_init_stmts. Returns the statement-expression itself. */
77 static tree
78 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
80 finish_compound_stmt (compound_stmt);
82 stmt_expr = finish_stmt_expr (stmt_expr, true);
84 gcc_assert (!building_stmt_tree () == is_global);
86 return stmt_expr;
89 /* Constructors */
91 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
92 which we want to initialize the vtable pointer for, DATA is
93 TREE_LIST whose TREE_VALUE is the this ptr expression. */
95 static tree
96 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
98 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
99 return dfs_skip_bases;
101 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
103 tree base_ptr = TREE_VALUE ((tree) data);
105 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
107 expand_virtual_init (binfo, base_ptr);
110 return NULL_TREE;
113 /* Initialize all the vtable pointers in the object pointed to by
114 ADDR. */
116 void
117 initialize_vtbl_ptrs (tree addr)
119 tree list;
120 tree type;
122 type = TREE_TYPE (TREE_TYPE (addr));
123 list = build_tree_list (type, addr);
125 /* Walk through the hierarchy, initializing the vptr in each base
126 class. We do these in pre-order because we can't find the virtual
127 bases for a class until we've initialized the vtbl for that
128 class. */
129 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
132 /* Return an expression for the zero-initialization of an object with
133 type T. This expression will either be a constant (in the case
134 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
135 aggregate), or NULL (in the case that T does not require
136 initialization). In either case, the value can be used as
137 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
138 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
139 is the number of elements in the array. If STATIC_STORAGE_P is
140 TRUE, initializers are only generated for entities for which
141 zero-initialization does not simply mean filling the storage with
142 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
143 subfields with bit positions at or above that bit size shouldn't
144 be added. */
146 static tree
147 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
148 tree field_size)
150 tree init = NULL_TREE;
152 /* [dcl.init]
154 To zero-initialize an object of type T means:
156 -- if T is a scalar type, the storage is set to the value of zero
157 converted to T.
159 -- if T is a non-union class type, the storage for each nonstatic
160 data member and each base-class subobject is zero-initialized.
162 -- if T is a union type, the storage for its first data member is
163 zero-initialized.
165 -- if T is an array type, the storage for each element is
166 zero-initialized.
168 -- if T is a reference type, no initialization is performed. */
170 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172 if (type == error_mark_node)
174 else if (static_storage_p && zero_init_p (type))
175 /* In order to save space, we do not explicitly build initializers
176 for items that do not need them. GCC's semantics are that
177 items with static storage duration that are not otherwise
178 initialized are initialized to zero. */
180 else if (SCALAR_TYPE_P (type))
181 init = convert (type, integer_zero_node);
182 else if (CLASS_TYPE_P (type))
184 tree field;
185 VEC(constructor_elt,gc) *v = NULL;
187 /* Iterate over the fields, building initializations. */
188 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
190 if (TREE_CODE (field) != FIELD_DECL)
191 continue;
193 /* Don't add virtual bases for base classes if they are beyond
194 the size of the current field, that means it is present
195 somewhere else in the object. */
196 if (field_size)
198 tree bitpos = bit_position (field);
199 if (TREE_CODE (bitpos) == INTEGER_CST
200 && !tree_int_cst_lt (bitpos, field_size))
201 continue;
204 /* Note that for class types there will be FIELD_DECLs
205 corresponding to base classes as well. Thus, iterating
206 over TYPE_FIELDs will result in correct initialization of
207 all of the subobjects. */
208 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
210 tree new_field_size
211 = (DECL_FIELD_IS_BASE (field)
212 && DECL_SIZE (field)
213 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
214 ? DECL_SIZE (field) : NULL_TREE;
215 tree value = build_zero_init_1 (TREE_TYPE (field),
216 /*nelts=*/NULL_TREE,
217 static_storage_p,
218 new_field_size);
219 if (value)
220 CONSTRUCTOR_APPEND_ELT(v, field, value);
223 /* For unions, only the first field is initialized. */
224 if (TREE_CODE (type) == UNION_TYPE)
225 break;
228 /* Build a constructor to contain the initializations. */
229 init = build_constructor (type, v);
231 else if (TREE_CODE (type) == ARRAY_TYPE)
233 tree max_index;
234 VEC(constructor_elt,gc) *v = NULL;
236 /* Iterate over the array elements, building initializations. */
237 if (nelts)
238 max_index = fold_build2_loc (input_location,
239 MINUS_EXPR, TREE_TYPE (nelts),
240 nelts, integer_one_node);
241 else
242 max_index = array_type_nelts (type);
244 /* If we have an error_mark here, we should just return error mark
245 as we don't know the size of the array yet. */
246 if (max_index == error_mark_node)
247 return error_mark_node;
248 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
250 /* A zero-sized array, which is accepted as an extension, will
251 have an upper bound of -1. */
252 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
254 constructor_elt *ce;
256 v = VEC_alloc (constructor_elt, gc, 1);
257 ce = VEC_quick_push (constructor_elt, v, NULL);
259 /* If this is a one element array, we just use a regular init. */
260 if (tree_int_cst_equal (size_zero_node, max_index))
261 ce->index = size_zero_node;
262 else
263 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
264 max_index);
266 ce->value = build_zero_init_1 (TREE_TYPE (type),
267 /*nelts=*/NULL_TREE,
268 static_storage_p, NULL_TREE);
271 /* Build a constructor to contain the initializations. */
272 init = build_constructor (type, v);
274 else if (TREE_CODE (type) == VECTOR_TYPE)
275 init = build_zero_cst (type);
276 else
277 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
279 /* In all cases, the initializer is a constant. */
280 if (init)
281 TREE_CONSTANT (init) = 1;
283 return init;
286 /* Return an expression for the zero-initialization of an object with
287 type T. This expression will either be a constant (in the case
288 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
289 aggregate), or NULL (in the case that T does not require
290 initialization). In either case, the value can be used as
291 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
292 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
293 is the number of elements in the array. If STATIC_STORAGE_P is
294 TRUE, initializers are only generated for entities for which
295 zero-initialization does not simply mean filling the storage with
296 zero bytes. */
298 tree
299 build_zero_init (tree type, tree nelts, bool static_storage_p)
301 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
304 /* Return a suitable initializer for value-initializing an object of type
305 TYPE, as described in [dcl.init]. */
307 tree
308 build_value_init (tree type, tsubst_flags_t complain)
310 /* [dcl.init]
312 To value-initialize an object of type T means:
314 - if T is a class type (clause 9) with a user-provided constructor
315 (12.1), then the default constructor for T is called (and the
316 initialization is ill-formed if T has no accessible default
317 constructor);
319 - if T is a non-union class type without a user-provided constructor,
320 then every non-static data member and base-class component of T is
321 value-initialized;92)
323 - if T is an array type, then each element is value-initialized;
325 - otherwise, the object is zero-initialized.
327 A program that calls for default-initialization or
328 value-initialization of an entity of reference type is ill-formed.
330 92) Value-initialization for such a class object may be implemented by
331 zero-initializing the object and then calling the default
332 constructor. */
334 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
335 gcc_assert (!processing_template_decl);
337 if (CLASS_TYPE_P (type))
339 if (type_has_user_provided_constructor (type))
340 return build_aggr_init_expr
341 (type,
342 build_special_member_call (NULL_TREE, complete_ctor_identifier,
343 NULL, type, LOOKUP_NORMAL,
344 complain),
345 complain);
346 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
348 /* This is a class that needs constructing, but doesn't have
349 a user-provided constructor. So we need to zero-initialize
350 the object and then call the implicitly defined ctor.
351 This will be handled in simplify_aggr_init_expr. */
352 tree ctor = build_special_member_call
353 (NULL_TREE, complete_ctor_identifier,
354 NULL, type, LOOKUP_NORMAL, complain);
355 if (ctor != error_mark_node)
357 ctor = build_aggr_init_expr (type, ctor, complain);
358 AGGR_INIT_ZERO_FIRST (ctor) = 1;
360 return ctor;
363 return build_value_init_noctor (type, complain);
366 /* Like build_value_init, but don't call the constructor for TYPE. Used
367 for base initializers. */
369 tree
370 build_value_init_noctor (tree type, tsubst_flags_t complain)
372 /* FIXME the class and array cases should just use digest_init once it is
373 SFINAE-enabled. */
374 if (CLASS_TYPE_P (type))
376 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
378 if (TREE_CODE (type) != UNION_TYPE)
380 tree field;
381 VEC(constructor_elt,gc) *v = NULL;
383 /* Iterate over the fields, building initializations. */
384 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
386 tree ftype, value;
388 if (TREE_CODE (field) != FIELD_DECL)
389 continue;
391 ftype = TREE_TYPE (field);
393 /* We could skip vfields and fields of types with
394 user-defined constructors, but I think that won't improve
395 performance at all; it should be simpler in general just
396 to zero out the entire object than try to only zero the
397 bits that actually need it. */
399 /* Note that for class types there will be FIELD_DECLs
400 corresponding to base classes as well. Thus, iterating
401 over TYPE_FIELDs will result in correct initialization of
402 all of the subobjects. */
403 value = build_value_init (ftype, complain);
405 if (value == error_mark_node)
406 return error_mark_node;
408 if (value)
409 CONSTRUCTOR_APPEND_ELT(v, field, value);
412 /* Build a constructor to contain the zero- initializations. */
413 return build_constructor (type, v);
416 else if (TREE_CODE (type) == ARRAY_TYPE)
418 VEC(constructor_elt,gc) *v = NULL;
420 /* Iterate over the array elements, building initializations. */
421 tree max_index = array_type_nelts (type);
423 /* If we have an error_mark here, we should just return error mark
424 as we don't know the size of the array yet. */
425 if (max_index == error_mark_node)
427 if (complain & tf_error)
428 error ("cannot value-initialize array of unknown bound %qT",
429 type);
430 return error_mark_node;
432 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
434 /* A zero-sized array, which is accepted as an extension, will
435 have an upper bound of -1. */
436 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
438 constructor_elt *ce;
440 v = VEC_alloc (constructor_elt, gc, 1);
441 ce = VEC_quick_push (constructor_elt, v, NULL);
443 /* If this is a one element array, we just use a regular init. */
444 if (tree_int_cst_equal (size_zero_node, max_index))
445 ce->index = size_zero_node;
446 else
447 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
448 max_index);
450 ce->value = build_value_init (TREE_TYPE (type), complain);
452 if (ce->value == error_mark_node)
453 return error_mark_node;
455 /* We shouldn't have gotten here for anything that would need
456 non-trivial initialization, and gimplify_init_ctor_preeval
457 would need to be fixed to allow it. */
458 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
459 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
462 /* Build a constructor to contain the initializations. */
463 return build_constructor (type, v);
465 else if (TREE_CODE (type) == FUNCTION_TYPE)
467 if (complain & tf_error)
468 error ("value-initialization of function type %qT", type);
469 return error_mark_node;
471 else if (TREE_CODE (type) == REFERENCE_TYPE)
473 if (complain & tf_error)
474 error ("value-initialization of reference type %qT", type);
475 return error_mark_node;
478 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
481 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
482 arguments. If TREE_LIST is void_type_node, an empty initializer
483 list was given; if NULL_TREE no initializer was given. */
485 static void
486 perform_member_init (tree member, tree init)
488 tree decl;
489 tree type = TREE_TYPE (member);
491 /* Effective C++ rule 12 requires that all data members be
492 initialized. */
493 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
494 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
495 "%qD should be initialized in the member initialization list",
496 member);
498 /* Get an lvalue for the data member. */
499 decl = build_class_member_access_expr (current_class_ref, member,
500 /*access_path=*/NULL_TREE,
501 /*preserve_reference=*/true,
502 tf_warning_or_error);
503 if (decl == error_mark_node)
504 return;
506 if (init == void_type_node)
508 /* mem() means value-initialization. */
509 if (TREE_CODE (type) == ARRAY_TYPE)
511 init = build_vec_init_expr (type, init);
512 init = build2 (INIT_EXPR, type, decl, init);
513 finish_expr_stmt (init);
515 else
517 init = build2 (INIT_EXPR, type, decl,
518 build_value_init (type, tf_warning_or_error));
519 finish_expr_stmt (init);
522 /* Deal with this here, as we will get confused if we try to call the
523 assignment op for an anonymous union. This can happen in a
524 synthesized copy constructor. */
525 else if (ANON_AGGR_TYPE_P (type))
527 if (init)
529 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
530 finish_expr_stmt (init);
533 else if (TYPE_NEEDS_CONSTRUCTING (type))
535 if (TREE_CODE (type) == ARRAY_TYPE)
537 if (init)
539 gcc_assert (TREE_CHAIN (init) == NULL_TREE);
540 init = TREE_VALUE (init);
542 if (init == NULL_TREE
543 || same_type_ignoring_top_level_qualifiers_p (type,
544 TREE_TYPE (init)))
546 init = build_vec_init_expr (type, init);
547 init = build2 (INIT_EXPR, type, decl, init);
548 finish_expr_stmt (init);
550 else
551 error ("invalid initializer for array member %q#D", member);
553 else
555 int flags = LOOKUP_NORMAL;
556 if (DECL_DEFAULTED_FN (current_function_decl))
557 flags |= LOOKUP_DEFAULTED;
558 if (CP_TYPE_CONST_P (type)
559 && init == NULL_TREE
560 && !type_has_user_provided_default_constructor (type))
561 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
562 vtable; still give this diagnostic. */
563 permerror (DECL_SOURCE_LOCATION (current_function_decl),
564 "uninitialized member %qD with %<const%> type %qT",
565 member, type);
566 finish_expr_stmt (build_aggr_init (decl, init, flags,
567 tf_warning_or_error));
570 else
572 if (init == NULL_TREE)
574 tree core_type;
575 /* member traversal: note it leaves init NULL */
576 if (TREE_CODE (type) == REFERENCE_TYPE)
577 permerror (DECL_SOURCE_LOCATION (current_function_decl),
578 "uninitialized reference member %qD",
579 member);
580 else if (CP_TYPE_CONST_P (type))
581 permerror (DECL_SOURCE_LOCATION (current_function_decl),
582 "uninitialized member %qD with %<const%> type %qT",
583 member, type);
585 core_type = strip_array_types (type);
587 if (DECL_DECLARED_CONSTEXPR_P (current_function_decl)
588 && !type_has_constexpr_default_constructor (core_type))
590 if (!DECL_TEMPLATE_INSTANTIATION (current_function_decl))
591 error ("uninitialized member %qD in %<constexpr%> constructor",
592 member);
593 DECL_DECLARED_CONSTEXPR_P (current_function_decl) = false;
596 if (CLASS_TYPE_P (core_type)
597 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
598 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
599 diagnose_uninitialized_cst_or_ref_member (core_type,
600 /*using_new=*/false,
601 /*complain=*/true);
603 else if (TREE_CODE (init) == TREE_LIST)
604 /* There was an explicit member initialization. Do some work
605 in that case. */
606 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
607 tf_warning_or_error);
609 if (init)
610 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
611 tf_warning_or_error));
614 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
616 tree expr;
618 expr = build_class_member_access_expr (current_class_ref, member,
619 /*access_path=*/NULL_TREE,
620 /*preserve_reference=*/false,
621 tf_warning_or_error);
622 expr = build_delete (type, expr, sfk_complete_destructor,
623 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
625 if (expr != error_mark_node)
626 finish_eh_cleanup (expr);
630 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
631 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
633 static tree
634 build_field_list (tree t, tree list, int *uses_unions_p)
636 tree fields;
638 *uses_unions_p = 0;
640 /* Note whether or not T is a union. */
641 if (TREE_CODE (t) == UNION_TYPE)
642 *uses_unions_p = 1;
644 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
646 tree fieldtype;
648 /* Skip CONST_DECLs for enumeration constants and so forth. */
649 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
650 continue;
652 fieldtype = TREE_TYPE (fields);
653 /* Keep track of whether or not any fields are unions. */
654 if (TREE_CODE (fieldtype) == UNION_TYPE)
655 *uses_unions_p = 1;
657 /* For an anonymous struct or union, we must recursively
658 consider the fields of the anonymous type. They can be
659 directly initialized from the constructor. */
660 if (ANON_AGGR_TYPE_P (fieldtype))
662 /* Add this field itself. Synthesized copy constructors
663 initialize the entire aggregate. */
664 list = tree_cons (fields, NULL_TREE, list);
665 /* And now add the fields in the anonymous aggregate. */
666 list = build_field_list (fieldtype, list, uses_unions_p);
668 /* Add this field. */
669 else if (DECL_NAME (fields))
670 list = tree_cons (fields, NULL_TREE, list);
673 return list;
676 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
677 a FIELD_DECL or BINFO in T that needs initialization. The
678 TREE_VALUE gives the initializer, or list of initializer arguments.
680 Return a TREE_LIST containing all of the initializations required
681 for T, in the order in which they should be performed. The output
682 list has the same format as the input. */
684 static tree
685 sort_mem_initializers (tree t, tree mem_inits)
687 tree init;
688 tree base, binfo, base_binfo;
689 tree sorted_inits;
690 tree next_subobject;
691 VEC(tree,gc) *vbases;
692 int i;
693 int uses_unions_p;
695 /* Build up a list of initializations. The TREE_PURPOSE of entry
696 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
697 TREE_VALUE will be the constructor arguments, or NULL if no
698 explicit initialization was provided. */
699 sorted_inits = NULL_TREE;
701 /* Process the virtual bases. */
702 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
703 VEC_iterate (tree, vbases, i, base); i++)
704 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
706 /* Process the direct bases. */
707 for (binfo = TYPE_BINFO (t), i = 0;
708 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
709 if (!BINFO_VIRTUAL_P (base_binfo))
710 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
712 /* Process the non-static data members. */
713 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
714 /* Reverse the entire list of initializations, so that they are in
715 the order that they will actually be performed. */
716 sorted_inits = nreverse (sorted_inits);
718 /* If the user presented the initializers in an order different from
719 that in which they will actually occur, we issue a warning. Keep
720 track of the next subobject which can be explicitly initialized
721 without issuing a warning. */
722 next_subobject = sorted_inits;
724 /* Go through the explicit initializers, filling in TREE_PURPOSE in
725 the SORTED_INITS. */
726 for (init = mem_inits; init; init = TREE_CHAIN (init))
728 tree subobject;
729 tree subobject_init;
731 subobject = TREE_PURPOSE (init);
733 /* If the explicit initializers are in sorted order, then
734 SUBOBJECT will be NEXT_SUBOBJECT, or something following
735 it. */
736 for (subobject_init = next_subobject;
737 subobject_init;
738 subobject_init = TREE_CHAIN (subobject_init))
739 if (TREE_PURPOSE (subobject_init) == subobject)
740 break;
742 /* Issue a warning if the explicit initializer order does not
743 match that which will actually occur.
744 ??? Are all these on the correct lines? */
745 if (warn_reorder && !subobject_init)
747 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
748 warning (OPT_Wreorder, "%q+D will be initialized after",
749 TREE_PURPOSE (next_subobject));
750 else
751 warning (OPT_Wreorder, "base %qT will be initialized after",
752 TREE_PURPOSE (next_subobject));
753 if (TREE_CODE (subobject) == FIELD_DECL)
754 warning (OPT_Wreorder, " %q+#D", subobject);
755 else
756 warning (OPT_Wreorder, " base %qT", subobject);
757 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
758 OPT_Wreorder, " when initialized here");
761 /* Look again, from the beginning of the list. */
762 if (!subobject_init)
764 subobject_init = sorted_inits;
765 while (TREE_PURPOSE (subobject_init) != subobject)
766 subobject_init = TREE_CHAIN (subobject_init);
769 /* It is invalid to initialize the same subobject more than
770 once. */
771 if (TREE_VALUE (subobject_init))
773 if (TREE_CODE (subobject) == FIELD_DECL)
774 error_at (DECL_SOURCE_LOCATION (current_function_decl),
775 "multiple initializations given for %qD",
776 subobject);
777 else
778 error_at (DECL_SOURCE_LOCATION (current_function_decl),
779 "multiple initializations given for base %qT",
780 subobject);
783 /* Record the initialization. */
784 TREE_VALUE (subobject_init) = TREE_VALUE (init);
785 next_subobject = subobject_init;
788 /* [class.base.init]
790 If a ctor-initializer specifies more than one mem-initializer for
791 multiple members of the same union (including members of
792 anonymous unions), the ctor-initializer is ill-formed.
794 Here we also splice out uninitialized union members. */
795 if (uses_unions_p)
797 tree last_field = NULL_TREE;
798 tree *p;
799 for (p = &sorted_inits; *p; )
801 tree field;
802 tree ctx;
803 int done;
805 init = *p;
807 field = TREE_PURPOSE (init);
809 /* Skip base classes. */
810 if (TREE_CODE (field) != FIELD_DECL)
811 goto next;
813 /* If this is an anonymous union with no explicit initializer,
814 splice it out. */
815 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
816 goto splice;
818 /* See if this field is a member of a union, or a member of a
819 structure contained in a union, etc. */
820 for (ctx = DECL_CONTEXT (field);
821 !same_type_p (ctx, t);
822 ctx = TYPE_CONTEXT (ctx))
823 if (TREE_CODE (ctx) == UNION_TYPE)
824 break;
825 /* If this field is not a member of a union, skip it. */
826 if (TREE_CODE (ctx) != UNION_TYPE)
827 goto next;
829 /* If this union member has no explicit initializer, splice
830 it out. */
831 if (!TREE_VALUE (init))
832 goto splice;
834 /* It's only an error if we have two initializers for the same
835 union type. */
836 if (!last_field)
838 last_field = field;
839 goto next;
842 /* See if LAST_FIELD and the field initialized by INIT are
843 members of the same union. If so, there's a problem,
844 unless they're actually members of the same structure
845 which is itself a member of a union. For example, given:
847 union { struct { int i; int j; }; };
849 initializing both `i' and `j' makes sense. */
850 ctx = DECL_CONTEXT (field);
851 done = 0;
854 tree last_ctx;
856 last_ctx = DECL_CONTEXT (last_field);
857 while (1)
859 if (same_type_p (last_ctx, ctx))
861 if (TREE_CODE (ctx) == UNION_TYPE)
862 error_at (DECL_SOURCE_LOCATION (current_function_decl),
863 "initializations for multiple members of %qT",
864 last_ctx);
865 done = 1;
866 break;
869 if (same_type_p (last_ctx, t))
870 break;
872 last_ctx = TYPE_CONTEXT (last_ctx);
875 /* If we've reached the outermost class, then we're
876 done. */
877 if (same_type_p (ctx, t))
878 break;
880 ctx = TYPE_CONTEXT (ctx);
882 while (!done);
884 last_field = field;
886 next:
887 p = &TREE_CHAIN (*p);
888 continue;
889 splice:
890 *p = TREE_CHAIN (*p);
891 continue;
895 return sorted_inits;
898 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
899 is a TREE_LIST giving the explicit mem-initializer-list for the
900 constructor. The TREE_PURPOSE of each entry is a subobject (a
901 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
902 is a TREE_LIST giving the arguments to the constructor or
903 void_type_node for an empty list of arguments. */
905 void
906 emit_mem_initializers (tree mem_inits)
908 int flags = LOOKUP_NORMAL;
910 /* We will already have issued an error message about the fact that
911 the type is incomplete. */
912 if (!COMPLETE_TYPE_P (current_class_type))
913 return;
915 if (DECL_DEFAULTED_FN (current_function_decl))
916 flags |= LOOKUP_DEFAULTED;
918 /* Sort the mem-initializers into the order in which the
919 initializations should be performed. */
920 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
922 in_base_initializer = 1;
924 /* Initialize base classes. */
925 while (mem_inits
926 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
928 tree subobject = TREE_PURPOSE (mem_inits);
929 tree arguments = TREE_VALUE (mem_inits);
931 if (arguments == NULL_TREE)
933 /* If these initializations are taking place in a copy constructor,
934 the base class should probably be explicitly initialized if there
935 is a user-defined constructor in the base class (other than the
936 default constructor, which will be called anyway). */
937 if (extra_warnings
938 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
939 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
940 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
941 OPT_Wextra, "base class %q#T should be explicitly "
942 "initialized in the copy constructor",
943 BINFO_TYPE (subobject));
945 if (DECL_DECLARED_CONSTEXPR_P (current_function_decl)
946 && !(type_has_constexpr_default_constructor
947 (BINFO_TYPE (subobject))))
949 if (!DECL_TEMPLATE_INSTANTIATION (current_function_decl))
950 error ("uninitialized base %qT in %<constexpr%> constructor",
951 BINFO_TYPE (subobject));
952 DECL_DECLARED_CONSTEXPR_P (current_function_decl) = false;
956 /* Initialize the base. */
957 if (BINFO_VIRTUAL_P (subobject))
958 construct_virtual_base (subobject, arguments);
959 else
961 tree base_addr;
963 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
964 subobject, 1);
965 expand_aggr_init_1 (subobject, NULL_TREE,
966 cp_build_indirect_ref (base_addr, RO_NULL,
967 tf_warning_or_error),
968 arguments,
969 flags,
970 tf_warning_or_error);
971 expand_cleanup_for_base (subobject, NULL_TREE);
974 mem_inits = TREE_CHAIN (mem_inits);
976 in_base_initializer = 0;
978 /* Initialize the vptrs. */
979 initialize_vtbl_ptrs (current_class_ptr);
981 /* Initialize the data members. */
982 while (mem_inits)
984 perform_member_init (TREE_PURPOSE (mem_inits),
985 TREE_VALUE (mem_inits));
986 mem_inits = TREE_CHAIN (mem_inits);
990 /* Returns the address of the vtable (i.e., the value that should be
991 assigned to the vptr) for BINFO. */
993 static tree
994 build_vtbl_address (tree binfo)
996 tree binfo_for = binfo;
997 tree vtbl;
999 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1000 /* If this is a virtual primary base, then the vtable we want to store
1001 is that for the base this is being used as the primary base of. We
1002 can't simply skip the initialization, because we may be expanding the
1003 inits of a subobject constructor where the virtual base layout
1004 can be different. */
1005 while (BINFO_PRIMARY_P (binfo_for))
1006 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1008 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1009 used. */
1010 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1011 TREE_USED (vtbl) = 1;
1013 /* Now compute the address to use when initializing the vptr. */
1014 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1015 if (TREE_CODE (vtbl) == VAR_DECL)
1016 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1018 return vtbl;
1021 /* This code sets up the virtual function tables appropriate for
1022 the pointer DECL. It is a one-ply initialization.
1024 BINFO is the exact type that DECL is supposed to be. In
1025 multiple inheritance, this might mean "C's A" if C : A, B. */
1027 static void
1028 expand_virtual_init (tree binfo, tree decl)
1030 tree vtbl, vtbl_ptr;
1031 tree vtt_index;
1033 /* Compute the initializer for vptr. */
1034 vtbl = build_vtbl_address (binfo);
1036 /* We may get this vptr from a VTT, if this is a subobject
1037 constructor or subobject destructor. */
1038 vtt_index = BINFO_VPTR_INDEX (binfo);
1039 if (vtt_index)
1041 tree vtbl2;
1042 tree vtt_parm;
1044 /* Compute the value to use, when there's a VTT. */
1045 vtt_parm = current_vtt_parm;
1046 vtbl2 = build2 (POINTER_PLUS_EXPR,
1047 TREE_TYPE (vtt_parm),
1048 vtt_parm,
1049 vtt_index);
1050 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1051 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1053 /* The actual initializer is the VTT value only in the subobject
1054 constructor. In maybe_clone_body we'll substitute NULL for
1055 the vtt_parm in the case of the non-subobject constructor. */
1056 vtbl = build3 (COND_EXPR,
1057 TREE_TYPE (vtbl),
1058 build2 (EQ_EXPR, boolean_type_node,
1059 current_in_charge_parm, integer_zero_node),
1060 vtbl2,
1061 vtbl);
1064 /* Compute the location of the vtpr. */
1065 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1066 tf_warning_or_error),
1067 TREE_TYPE (binfo));
1068 gcc_assert (vtbl_ptr != error_mark_node);
1070 /* Assign the vtable to the vptr. */
1071 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
1072 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1073 tf_warning_or_error));
1076 /* If an exception is thrown in a constructor, those base classes already
1077 constructed must be destroyed. This function creates the cleanup
1078 for BINFO, which has just been constructed. If FLAG is non-NULL,
1079 it is a DECL which is nonzero when this base needs to be
1080 destroyed. */
1082 static void
1083 expand_cleanup_for_base (tree binfo, tree flag)
1085 tree expr;
1087 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1088 return;
1090 /* Call the destructor. */
1091 expr = build_special_member_call (current_class_ref,
1092 base_dtor_identifier,
1093 NULL,
1094 binfo,
1095 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1096 tf_warning_or_error);
1097 if (flag)
1098 expr = fold_build3_loc (input_location,
1099 COND_EXPR, void_type_node,
1100 c_common_truthvalue_conversion (input_location, flag),
1101 expr, integer_zero_node);
1103 finish_eh_cleanup (expr);
1106 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1107 constructor. */
1109 static void
1110 construct_virtual_base (tree vbase, tree arguments)
1112 tree inner_if_stmt;
1113 tree exp;
1114 tree flag;
1116 /* If there are virtual base classes with destructors, we need to
1117 emit cleanups to destroy them if an exception is thrown during
1118 the construction process. These exception regions (i.e., the
1119 period during which the cleanups must occur) begin from the time
1120 the construction is complete to the end of the function. If we
1121 create a conditional block in which to initialize the
1122 base-classes, then the cleanup region for the virtual base begins
1123 inside a block, and ends outside of that block. This situation
1124 confuses the sjlj exception-handling code. Therefore, we do not
1125 create a single conditional block, but one for each
1126 initialization. (That way the cleanup regions always begin
1127 in the outer block.) We trust the back end to figure out
1128 that the FLAG will not change across initializations, and
1129 avoid doing multiple tests. */
1130 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1131 inner_if_stmt = begin_if_stmt ();
1132 finish_if_stmt_cond (flag, inner_if_stmt);
1134 /* Compute the location of the virtual base. If we're
1135 constructing virtual bases, then we must be the most derived
1136 class. Therefore, we don't have to look up the virtual base;
1137 we already know where it is. */
1138 exp = convert_to_base_statically (current_class_ref, vbase);
1140 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1141 LOOKUP_COMPLAIN, tf_warning_or_error);
1142 finish_then_clause (inner_if_stmt);
1143 finish_if_stmt (inner_if_stmt);
1145 expand_cleanup_for_base (vbase, flag);
1148 /* Find the context in which this FIELD can be initialized. */
1150 static tree
1151 initializing_context (tree field)
1153 tree t = DECL_CONTEXT (field);
1155 /* Anonymous union members can be initialized in the first enclosing
1156 non-anonymous union context. */
1157 while (t && ANON_AGGR_TYPE_P (t))
1158 t = TYPE_CONTEXT (t);
1159 return t;
1162 /* Function to give error message if member initialization specification
1163 is erroneous. FIELD is the member we decided to initialize.
1164 TYPE is the type for which the initialization is being performed.
1165 FIELD must be a member of TYPE.
1167 MEMBER_NAME is the name of the member. */
1169 static int
1170 member_init_ok_or_else (tree field, tree type, tree member_name)
1172 if (field == error_mark_node)
1173 return 0;
1174 if (!field)
1176 error ("class %qT does not have any field named %qD", type,
1177 member_name);
1178 return 0;
1180 if (TREE_CODE (field) == VAR_DECL)
1182 error ("%q#D is a static data member; it can only be "
1183 "initialized at its definition",
1184 field);
1185 return 0;
1187 if (TREE_CODE (field) != FIELD_DECL)
1189 error ("%q#D is not a non-static data member of %qT",
1190 field, type);
1191 return 0;
1193 if (initializing_context (field) != type)
1195 error ("class %qT does not have any field named %qD", type,
1196 member_name);
1197 return 0;
1200 return 1;
1203 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1204 is a _TYPE node or TYPE_DECL which names a base for that type.
1205 Check the validity of NAME, and return either the base _TYPE, base
1206 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1207 NULL_TREE and issue a diagnostic.
1209 An old style unnamed direct single base construction is permitted,
1210 where NAME is NULL. */
1212 tree
1213 expand_member_init (tree name)
1215 tree basetype;
1216 tree field;
1218 if (!current_class_ref)
1219 return NULL_TREE;
1221 if (!name)
1223 /* This is an obsolete unnamed base class initializer. The
1224 parser will already have warned about its use. */
1225 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1227 case 0:
1228 error ("unnamed initializer for %qT, which has no base classes",
1229 current_class_type);
1230 return NULL_TREE;
1231 case 1:
1232 basetype = BINFO_TYPE
1233 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1234 break;
1235 default:
1236 error ("unnamed initializer for %qT, which uses multiple inheritance",
1237 current_class_type);
1238 return NULL_TREE;
1241 else if (TYPE_P (name))
1243 basetype = TYPE_MAIN_VARIANT (name);
1244 name = TYPE_NAME (name);
1246 else if (TREE_CODE (name) == TYPE_DECL)
1247 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1248 else
1249 basetype = NULL_TREE;
1251 if (basetype)
1253 tree class_binfo;
1254 tree direct_binfo;
1255 tree virtual_binfo;
1256 int i;
1258 if (current_template_parms)
1259 return basetype;
1261 class_binfo = TYPE_BINFO (current_class_type);
1262 direct_binfo = NULL_TREE;
1263 virtual_binfo = NULL_TREE;
1265 /* Look for a direct base. */
1266 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1267 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1268 break;
1270 /* Look for a virtual base -- unless the direct base is itself
1271 virtual. */
1272 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1273 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1275 /* [class.base.init]
1277 If a mem-initializer-id is ambiguous because it designates
1278 both a direct non-virtual base class and an inherited virtual
1279 base class, the mem-initializer is ill-formed. */
1280 if (direct_binfo && virtual_binfo)
1282 error ("%qD is both a direct base and an indirect virtual base",
1283 basetype);
1284 return NULL_TREE;
1287 if (!direct_binfo && !virtual_binfo)
1289 if (CLASSTYPE_VBASECLASSES (current_class_type))
1290 error ("type %qT is not a direct or virtual base of %qT",
1291 basetype, current_class_type);
1292 else
1293 error ("type %qT is not a direct base of %qT",
1294 basetype, current_class_type);
1295 return NULL_TREE;
1298 return direct_binfo ? direct_binfo : virtual_binfo;
1300 else
1302 if (TREE_CODE (name) == IDENTIFIER_NODE)
1303 field = lookup_field (current_class_type, name, 1, false);
1304 else
1305 field = name;
1307 if (member_init_ok_or_else (field, current_class_type, name))
1308 return field;
1311 return NULL_TREE;
1314 /* This is like `expand_member_init', only it stores one aggregate
1315 value into another.
1317 INIT comes in two flavors: it is either a value which
1318 is to be stored in EXP, or it is a parameter list
1319 to go to a constructor, which will operate on EXP.
1320 If INIT is not a parameter list for a constructor, then set
1321 LOOKUP_ONLYCONVERTING.
1322 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1323 the initializer, if FLAGS is 0, then it is the (init) form.
1324 If `init' is a CONSTRUCTOR, then we emit a warning message,
1325 explaining that such initializations are invalid.
1327 If INIT resolves to a CALL_EXPR which happens to return
1328 something of the type we are looking for, then we know
1329 that we can safely use that call to perform the
1330 initialization.
1332 The virtual function table pointer cannot be set up here, because
1333 we do not really know its type.
1335 This never calls operator=().
1337 When initializing, nothing is CONST.
1339 A default copy constructor may have to be used to perform the
1340 initialization.
1342 A constructor or a conversion operator may have to be used to
1343 perform the initialization, but not both, as it would be ambiguous. */
1345 tree
1346 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1348 tree stmt_expr;
1349 tree compound_stmt;
1350 int destroy_temps;
1351 tree type = TREE_TYPE (exp);
1352 int was_const = TREE_READONLY (exp);
1353 int was_volatile = TREE_THIS_VOLATILE (exp);
1354 int is_global;
1356 if (init == error_mark_node)
1357 return error_mark_node;
1359 TREE_READONLY (exp) = 0;
1360 TREE_THIS_VOLATILE (exp) = 0;
1362 if (init && TREE_CODE (init) != TREE_LIST
1363 && !(BRACE_ENCLOSED_INITIALIZER_P (init)
1364 && CONSTRUCTOR_IS_DIRECT_INIT (init)))
1365 flags |= LOOKUP_ONLYCONVERTING;
1367 if (TREE_CODE (type) == ARRAY_TYPE)
1369 tree itype;
1371 /* An array may not be initialized use the parenthesized
1372 initialization form -- unless the initializer is "()". */
1373 if (init && TREE_CODE (init) == TREE_LIST)
1375 if (complain & tf_error)
1376 error ("bad array initializer");
1377 return error_mark_node;
1379 /* Must arrange to initialize each element of EXP
1380 from elements of INIT. */
1381 itype = init ? TREE_TYPE (init) : NULL_TREE;
1382 if (cv_qualified_p (type))
1383 TREE_TYPE (exp) = cv_unqualified (type);
1384 if (itype && cv_qualified_p (itype))
1385 TREE_TYPE (init) = cv_unqualified (itype);
1386 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1387 /*explicit_value_init_p=*/false,
1388 itype && same_type_p (TREE_TYPE (init),
1389 TREE_TYPE (exp)),
1390 complain);
1391 TREE_READONLY (exp) = was_const;
1392 TREE_THIS_VOLATILE (exp) = was_volatile;
1393 TREE_TYPE (exp) = type;
1394 if (init)
1395 TREE_TYPE (init) = itype;
1396 return stmt_expr;
1399 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1400 /* Just know that we've seen something for this node. */
1401 TREE_USED (exp) = 1;
1403 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1404 destroy_temps = stmts_are_full_exprs_p ();
1405 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1406 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1407 init, LOOKUP_NORMAL|flags, complain);
1408 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1409 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1410 TREE_READONLY (exp) = was_const;
1411 TREE_THIS_VOLATILE (exp) = was_volatile;
1413 return stmt_expr;
1416 static void
1417 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1418 tsubst_flags_t complain)
1420 tree type = TREE_TYPE (exp);
1421 tree ctor_name;
1423 /* It fails because there may not be a constructor which takes
1424 its own type as the first (or only parameter), but which does
1425 take other types via a conversion. So, if the thing initializing
1426 the expression is a unit element of type X, first try X(X&),
1427 followed by initialization by X. If neither of these work
1428 out, then look hard. */
1429 tree rval;
1430 VEC(tree,gc) *parms;
1432 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1433 && CP_AGGREGATE_TYPE_P (type))
1435 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1436 happen for direct-initialization, too. */
1437 init = digest_init (type, init);
1438 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1439 TREE_SIDE_EFFECTS (init) = 1;
1440 finish_expr_stmt (init);
1441 return;
1444 if (init && TREE_CODE (init) != TREE_LIST
1445 && (flags & LOOKUP_ONLYCONVERTING))
1447 /* Base subobjects should only get direct-initialization. */
1448 gcc_assert (true_exp == exp);
1450 if (flags & DIRECT_BIND)
1451 /* Do nothing. We hit this in two cases: Reference initialization,
1452 where we aren't initializing a real variable, so we don't want
1453 to run a new constructor; and catching an exception, where we
1454 have already built up the constructor call so we could wrap it
1455 in an exception region. */;
1456 else
1457 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1459 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1460 /* We need to protect the initialization of a catch parm with a
1461 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1462 around the TARGET_EXPR for the copy constructor. See
1463 initialize_handler_parm. */
1465 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1466 TREE_OPERAND (init, 0));
1467 TREE_TYPE (init) = void_type_node;
1469 else
1470 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1471 TREE_SIDE_EFFECTS (init) = 1;
1472 finish_expr_stmt (init);
1473 return;
1476 if (init == NULL_TREE)
1477 parms = NULL;
1478 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1480 parms = make_tree_vector ();
1481 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1482 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1484 else
1485 parms = make_tree_vector_single (init);
1487 if (true_exp == exp)
1488 ctor_name = complete_ctor_identifier;
1489 else
1490 ctor_name = base_ctor_identifier;
1492 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1493 complain);
1495 if (parms != NULL)
1496 release_tree_vector (parms);
1498 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1500 tree fn = get_callee_fndecl (rval);
1501 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1503 tree e = maybe_constant_value (rval);
1504 if (TREE_CONSTANT (e))
1505 rval = build2 (INIT_EXPR, type, exp, e);
1509 /* FIXME put back convert_to_void? */
1510 if (TREE_SIDE_EFFECTS (rval))
1511 finish_expr_stmt (rval);
1514 /* This function is responsible for initializing EXP with INIT
1515 (if any).
1517 BINFO is the binfo of the type for who we are performing the
1518 initialization. For example, if W is a virtual base class of A and B,
1519 and C : A, B.
1520 If we are initializing B, then W must contain B's W vtable, whereas
1521 were we initializing C, W must contain C's W vtable.
1523 TRUE_EXP is nonzero if it is the true expression being initialized.
1524 In this case, it may be EXP, or may just contain EXP. The reason we
1525 need this is because if EXP is a base element of TRUE_EXP, we
1526 don't necessarily know by looking at EXP where its virtual
1527 baseclass fields should really be pointing. But we do know
1528 from TRUE_EXP. In constructors, we don't know anything about
1529 the value being initialized.
1531 FLAGS is just passed to `build_new_method_call'. See that function
1532 for its description. */
1534 static void
1535 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1536 tsubst_flags_t complain)
1538 tree type = TREE_TYPE (exp);
1540 gcc_assert (init != error_mark_node && type != error_mark_node);
1541 gcc_assert (building_stmt_tree ());
1543 /* Use a function returning the desired type to initialize EXP for us.
1544 If the function is a constructor, and its first argument is
1545 NULL_TREE, know that it was meant for us--just slide exp on
1546 in and expand the constructor. Constructors now come
1547 as TARGET_EXPRs. */
1549 if (init && TREE_CODE (exp) == VAR_DECL
1550 && COMPOUND_LITERAL_P (init))
1552 /* If store_init_value returns NULL_TREE, the INIT has been
1553 recorded as the DECL_INITIAL for EXP. That means there's
1554 nothing more we have to do. */
1555 init = store_init_value (exp, init, flags);
1556 if (init)
1557 finish_expr_stmt (init);
1558 return;
1561 /* If an explicit -- but empty -- initializer list was present,
1562 that's value-initialization. */
1563 if (init == void_type_node)
1565 /* If there's a user-provided constructor, we just call that. */
1566 if (type_has_user_provided_constructor (type))
1567 /* Fall through. */;
1568 /* If there isn't, but we still need to call the constructor,
1569 zero out the object first. */
1570 else if (TYPE_NEEDS_CONSTRUCTING (type))
1572 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1573 init = build2 (INIT_EXPR, type, exp, init);
1574 finish_expr_stmt (init);
1575 /* And then call the constructor. */
1577 /* If we don't need to mess with the constructor at all,
1578 then just zero out the object and we're done. */
1579 else
1581 init = build2 (INIT_EXPR, type, exp,
1582 build_value_init_noctor (type, complain));
1583 finish_expr_stmt (init);
1584 return;
1586 init = NULL_TREE;
1589 /* We know that expand_default_init can handle everything we want
1590 at this point. */
1591 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1594 /* Report an error if TYPE is not a user-defined, class type. If
1595 OR_ELSE is nonzero, give an error message. */
1598 is_class_type (tree type, int or_else)
1600 if (type == error_mark_node)
1601 return 0;
1603 if (! CLASS_TYPE_P (type))
1605 if (or_else)
1606 error ("%qT is not a class type", type);
1607 return 0;
1609 return 1;
1612 tree
1613 get_type_value (tree name)
1615 if (name == error_mark_node)
1616 return NULL_TREE;
1618 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1619 return IDENTIFIER_TYPE_VALUE (name);
1620 else
1621 return NULL_TREE;
1624 /* Build a reference to a member of an aggregate. This is not a C++
1625 `&', but really something which can have its address taken, and
1626 then act as a pointer to member, for example TYPE :: FIELD can have
1627 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1628 this expression is the operand of "&".
1630 @@ Prints out lousy diagnostics for operator <typename>
1631 @@ fields.
1633 @@ This function should be rewritten and placed in search.c. */
1635 tree
1636 build_offset_ref (tree type, tree member, bool address_p)
1638 tree decl;
1639 tree basebinfo = NULL_TREE;
1641 /* class templates can come in as TEMPLATE_DECLs here. */
1642 if (TREE_CODE (member) == TEMPLATE_DECL)
1643 return member;
1645 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1646 return build_qualified_name (NULL_TREE, type, member,
1647 /*template_p=*/false);
1649 gcc_assert (TYPE_P (type));
1650 if (! is_class_type (type, 1))
1651 return error_mark_node;
1653 gcc_assert (DECL_P (member) || BASELINK_P (member));
1654 /* Callers should call mark_used before this point. */
1655 gcc_assert (!DECL_P (member) || TREE_USED (member));
1657 type = TYPE_MAIN_VARIANT (type);
1658 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1660 error ("incomplete type %qT does not have member %qD", type, member);
1661 return error_mark_node;
1664 /* Entities other than non-static members need no further
1665 processing. */
1666 if (TREE_CODE (member) == TYPE_DECL)
1667 return member;
1668 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1669 return convert_from_reference (member);
1671 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1673 error ("invalid pointer to bit-field %qD", member);
1674 return error_mark_node;
1677 /* Set up BASEBINFO for member lookup. */
1678 decl = maybe_dummy_object (type, &basebinfo);
1680 /* A lot of this logic is now handled in lookup_member. */
1681 if (BASELINK_P (member))
1683 /* Go from the TREE_BASELINK to the member function info. */
1684 tree t = BASELINK_FUNCTIONS (member);
1686 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1688 /* Get rid of a potential OVERLOAD around it. */
1689 t = OVL_CURRENT (t);
1691 /* Unique functions are handled easily. */
1693 /* For non-static member of base class, we need a special rule
1694 for access checking [class.protected]:
1696 If the access is to form a pointer to member, the
1697 nested-name-specifier shall name the derived class
1698 (or any class derived from that class). */
1699 if (address_p && DECL_P (t)
1700 && DECL_NONSTATIC_MEMBER_P (t))
1701 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1702 else
1703 perform_or_defer_access_check (basebinfo, t, t);
1705 if (DECL_STATIC_FUNCTION_P (t))
1706 return t;
1707 member = t;
1709 else
1710 TREE_TYPE (member) = unknown_type_node;
1712 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1713 /* We need additional test besides the one in
1714 check_accessibility_of_qualified_id in case it is
1715 a pointer to non-static member. */
1716 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1718 if (!address_p)
1720 /* If MEMBER is non-static, then the program has fallen afoul of
1721 [expr.prim]:
1723 An id-expression that denotes a nonstatic data member or
1724 nonstatic member function of a class can only be used:
1726 -- as part of a class member access (_expr.ref_) in which the
1727 object-expression refers to the member's class or a class
1728 derived from that class, or
1730 -- to form a pointer to member (_expr.unary.op_), or
1732 -- in the body of a nonstatic member function of that class or
1733 of a class derived from that class (_class.mfct.nonstatic_), or
1735 -- in a mem-initializer for a constructor for that class or for
1736 a class derived from that class (_class.base.init_). */
1737 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1739 /* Build a representation of the qualified name suitable
1740 for use as the operand to "&" -- even though the "&" is
1741 not actually present. */
1742 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1743 /* In Microsoft mode, treat a non-static member function as if
1744 it were a pointer-to-member. */
1745 if (flag_ms_extensions)
1747 PTRMEM_OK_P (member) = 1;
1748 return cp_build_addr_expr (member, tf_warning_or_error);
1750 error ("invalid use of non-static member function %qD",
1751 TREE_OPERAND (member, 1));
1752 return error_mark_node;
1754 else if (TREE_CODE (member) == FIELD_DECL)
1756 error ("invalid use of non-static data member %qD", member);
1757 return error_mark_node;
1759 return member;
1762 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1763 PTRMEM_OK_P (member) = 1;
1764 return member;
1767 /* If DECL is a scalar enumeration constant or variable with a
1768 constant initializer, return the initializer (or, its initializers,
1769 recursively); otherwise, return DECL. If INTEGRAL_P, the
1770 initializer is only returned if DECL is an integral
1771 constant-expression. */
1773 static tree
1774 constant_value_1 (tree decl, bool integral_p)
1776 while (TREE_CODE (decl) == CONST_DECL
1777 || (integral_p
1778 ? decl_constant_var_p (decl)
1779 : (TREE_CODE (decl) == VAR_DECL
1780 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1782 tree init;
1783 /* If DECL is a static data member in a template
1784 specialization, we must instantiate it here. The
1785 initializer for the static data member is not processed
1786 until needed; we need it now. */
1787 mark_used (decl);
1788 mark_rvalue_use (decl);
1789 init = DECL_INITIAL (decl);
1790 if (init == error_mark_node)
1792 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1793 /* Treat the error as a constant to avoid cascading errors on
1794 excessively recursive template instantiation (c++/9335). */
1795 return init;
1796 else
1797 return decl;
1799 /* Initializers in templates are generally expanded during
1800 instantiation, so before that for const int i(2)
1801 INIT is a TREE_LIST with the actual initializer as
1802 TREE_VALUE. */
1803 if (processing_template_decl
1804 && init
1805 && TREE_CODE (init) == TREE_LIST
1806 && TREE_CHAIN (init) == NULL_TREE)
1807 init = TREE_VALUE (init);
1808 if (!init
1809 || !TREE_TYPE (init)
1810 || !TREE_CONSTANT (init)
1811 || (!integral_p
1812 /* Do not return an aggregate constant (of which
1813 string literals are a special case), as we do not
1814 want to make inadvertent copies of such entities,
1815 and we must be sure that their addresses are the
1816 same everywhere. */
1817 && (TREE_CODE (init) == CONSTRUCTOR
1818 || TREE_CODE (init) == STRING_CST)))
1819 break;
1820 decl = unshare_expr (init);
1822 return decl;
1825 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1826 constant of integral or enumeration type, then return that value.
1827 These are those variables permitted in constant expressions by
1828 [5.19/1]. */
1830 tree
1831 integral_constant_value (tree decl)
1833 return constant_value_1 (decl, /*integral_p=*/true);
1836 /* A more relaxed version of integral_constant_value, used by the
1837 common C/C++ code and by the C++ front end for optimization
1838 purposes. */
1840 tree
1841 decl_constant_value (tree decl)
1843 return constant_value_1 (decl,
1844 /*integral_p=*/processing_template_decl);
1847 /* Common subroutines of build_new and build_vec_delete. */
1849 /* Call the global __builtin_delete to delete ADDR. */
1851 static tree
1852 build_builtin_delete_call (tree addr)
1854 mark_used (global_delete_fndecl);
1855 return build_call_n (global_delete_fndecl, 1, addr);
1858 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1859 the type of the object being allocated; otherwise, it's just TYPE.
1860 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1861 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1862 a vector of arguments to be provided as arguments to a placement
1863 new operator. This routine performs no semantic checks; it just
1864 creates and returns a NEW_EXPR. */
1866 static tree
1867 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1868 VEC(tree,gc) *init, int use_global_new)
1870 tree init_list;
1871 tree new_expr;
1873 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1874 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1875 permits us to distinguish the case of a missing initializer "new
1876 int" from an empty initializer "new int()". */
1877 if (init == NULL)
1878 init_list = NULL_TREE;
1879 else if (VEC_empty (tree, init))
1880 init_list = void_zero_node;
1881 else
1882 init_list = build_tree_list_vec (init);
1884 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1885 build_tree_list_vec (placement), type, nelts,
1886 init_list);
1887 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1888 TREE_SIDE_EFFECTS (new_expr) = 1;
1890 return new_expr;
1893 /* Diagnose uninitialized const members or reference members of type
1894 TYPE. USING_NEW is used to disambiguate the diagnostic between a
1895 new expression without a new-initializer and a declaration. Returns
1896 the error count. */
1898 static int
1899 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
1900 bool using_new, bool complain)
1902 tree field;
1903 int error_count = 0;
1905 if (type_has_user_provided_constructor (type))
1906 return 0;
1908 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1910 tree field_type;
1912 if (TREE_CODE (field) != FIELD_DECL)
1913 continue;
1915 field_type = strip_array_types (TREE_TYPE (field));
1917 if (TREE_CODE (field_type) == REFERENCE_TYPE)
1919 ++ error_count;
1920 if (complain)
1922 if (using_new)
1923 error ("uninitialized reference member in %q#T "
1924 "using %<new%> without new-initializer", origin);
1925 else
1926 error ("uninitialized reference member in %q#T", origin);
1927 inform (DECL_SOURCE_LOCATION (field),
1928 "%qD should be initialized", field);
1932 if (CP_TYPE_CONST_P (field_type))
1934 ++ error_count;
1935 if (complain)
1937 if (using_new)
1938 error ("uninitialized const member in %q#T "
1939 "using %<new%> without new-initializer", origin);
1940 else
1941 error ("uninitialized const member in %q#T", origin);
1942 inform (DECL_SOURCE_LOCATION (field),
1943 "%qD should be initialized", field);
1947 if (CLASS_TYPE_P (field_type))
1948 error_count
1949 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
1950 using_new, complain);
1952 return error_count;
1956 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
1958 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
1961 /* Generate code for a new-expression, including calling the "operator
1962 new" function, initializing the object, and, if an exception occurs
1963 during construction, cleaning up. The arguments are as for
1964 build_raw_new_expr. This may change PLACEMENT and INIT. */
1966 static tree
1967 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1968 VEC(tree,gc) **init, bool globally_qualified_p,
1969 tsubst_flags_t complain)
1971 tree size, rval;
1972 /* True iff this is a call to "operator new[]" instead of just
1973 "operator new". */
1974 bool array_p = false;
1975 /* If ARRAY_P is true, the element type of the array. This is never
1976 an ARRAY_TYPE; for something like "new int[3][4]", the
1977 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1978 TYPE. */
1979 tree elt_type;
1980 /* The type of the new-expression. (This type is always a pointer
1981 type.) */
1982 tree pointer_type;
1983 tree non_const_pointer_type;
1984 tree outer_nelts = NULL_TREE;
1985 tree alloc_call, alloc_expr;
1986 /* The address returned by the call to "operator new". This node is
1987 a VAR_DECL and is therefore reusable. */
1988 tree alloc_node;
1989 tree alloc_fn;
1990 tree cookie_expr, init_expr;
1991 int nothrow, check_new;
1992 int use_java_new = 0;
1993 /* If non-NULL, the number of extra bytes to allocate at the
1994 beginning of the storage allocated for an array-new expression in
1995 order to store the number of elements. */
1996 tree cookie_size = NULL_TREE;
1997 tree placement_first;
1998 tree placement_expr = NULL_TREE;
1999 /* True if the function we are calling is a placement allocation
2000 function. */
2001 bool placement_allocation_fn_p;
2002 /* True if the storage must be initialized, either by a constructor
2003 or due to an explicit new-initializer. */
2004 bool is_initialized;
2005 /* The address of the thing allocated, not including any cookie. In
2006 particular, if an array cookie is in use, DATA_ADDR is the
2007 address of the first array element. This node is a VAR_DECL, and
2008 is therefore reusable. */
2009 tree data_addr;
2010 tree init_preeval_expr = NULL_TREE;
2012 if (nelts)
2014 outer_nelts = nelts;
2015 array_p = true;
2017 else if (TREE_CODE (type) == ARRAY_TYPE)
2019 array_p = true;
2020 nelts = array_type_nelts_top (type);
2021 outer_nelts = nelts;
2022 type = TREE_TYPE (type);
2025 /* If our base type is an array, then make sure we know how many elements
2026 it has. */
2027 for (elt_type = type;
2028 TREE_CODE (elt_type) == ARRAY_TYPE;
2029 elt_type = TREE_TYPE (elt_type))
2030 nelts = cp_build_binary_op (input_location,
2031 MULT_EXPR, nelts,
2032 array_type_nelts_top (elt_type),
2033 complain);
2035 if (TREE_CODE (elt_type) == VOID_TYPE)
2037 if (complain & tf_error)
2038 error ("invalid type %<void%> for new");
2039 return error_mark_node;
2042 if (abstract_virtuals_error_sfinae (NULL_TREE, elt_type, complain))
2043 return error_mark_node;
2045 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
2047 if (*init == NULL)
2049 bool maybe_uninitialized_error = false;
2050 /* A program that calls for default-initialization [...] of an
2051 entity of reference type is ill-formed. */
2052 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2053 maybe_uninitialized_error = true;
2055 /* A new-expression that creates an object of type T initializes
2056 that object as follows:
2057 - If the new-initializer is omitted:
2058 -- If T is a (possibly cv-qualified) non-POD class type
2059 (or array thereof), the object is default-initialized (8.5).
2060 [...]
2061 -- Otherwise, the object created has indeterminate
2062 value. If T is a const-qualified type, or a (possibly
2063 cv-qualified) POD class type (or array thereof)
2064 containing (directly or indirectly) a member of
2065 const-qualified type, the program is ill-formed; */
2067 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2068 maybe_uninitialized_error = true;
2070 if (maybe_uninitialized_error
2071 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2072 /*using_new=*/true,
2073 complain & tf_error))
2074 return error_mark_node;
2077 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2078 && !type_has_user_provided_default_constructor (elt_type))
2080 if (complain & tf_error)
2081 error ("uninitialized const in %<new%> of %q#T", elt_type);
2082 return error_mark_node;
2085 size = size_in_bytes (elt_type);
2086 if (array_p)
2087 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2089 alloc_fn = NULL_TREE;
2091 /* If PLACEMENT is a single simple pointer type not passed by
2092 reference, prepare to capture it in a temporary variable. Do
2093 this now, since PLACEMENT will change in the calls below. */
2094 placement_first = NULL_TREE;
2095 if (VEC_length (tree, *placement) == 1
2096 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
2097 == POINTER_TYPE))
2098 placement_first = VEC_index (tree, *placement, 0);
2100 /* Allocate the object. */
2101 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
2103 tree class_addr;
2104 tree class_decl = build_java_class_ref (elt_type);
2105 static const char alloc_name[] = "_Jv_AllocObject";
2107 if (class_decl == error_mark_node)
2108 return error_mark_node;
2110 use_java_new = 1;
2111 if (!get_global_value_if_present (get_identifier (alloc_name),
2112 &alloc_fn))
2114 if (complain & tf_error)
2115 error ("call to Java constructor with %qs undefined", alloc_name);
2116 return error_mark_node;
2118 else if (really_overloaded_fn (alloc_fn))
2120 if (complain & tf_error)
2121 error ("%qD should never be overloaded", alloc_fn);
2122 return error_mark_node;
2124 alloc_fn = OVL_CURRENT (alloc_fn);
2125 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2126 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2127 class_addr, NULL_TREE);
2129 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2131 error ("Java class %q#T object allocated using placement new", elt_type);
2132 return error_mark_node;
2134 else
2136 tree fnname;
2137 tree fns;
2139 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2141 if (!globally_qualified_p
2142 && CLASS_TYPE_P (elt_type)
2143 && (array_p
2144 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2145 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2147 /* Use a class-specific operator new. */
2148 /* If a cookie is required, add some extra space. */
2149 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2151 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2152 size = size_binop (PLUS_EXPR, size, cookie_size);
2154 /* Create the argument list. */
2155 VEC_safe_insert (tree, gc, *placement, 0, size);
2156 /* Do name-lookup to find the appropriate operator. */
2157 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2158 if (fns == NULL_TREE)
2160 if (complain & tf_error)
2161 error ("no suitable %qD found in class %qT", fnname, elt_type);
2162 return error_mark_node;
2164 if (TREE_CODE (fns) == TREE_LIST)
2166 if (complain & tf_error)
2168 error ("request for member %qD is ambiguous", fnname);
2169 print_candidates (fns);
2171 return error_mark_node;
2173 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2174 fns, placement,
2175 /*conversion_path=*/NULL_TREE,
2176 LOOKUP_NORMAL,
2177 &alloc_fn,
2178 complain);
2180 else
2182 /* Use a global operator new. */
2183 /* See if a cookie might be required. */
2184 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2185 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2186 else
2187 cookie_size = NULL_TREE;
2189 alloc_call = build_operator_new_call (fnname, placement,
2190 &size, &cookie_size,
2191 &alloc_fn);
2195 if (alloc_call == error_mark_node)
2196 return error_mark_node;
2198 gcc_assert (alloc_fn != NULL_TREE);
2200 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2201 into a temporary variable. */
2202 if (!processing_template_decl
2203 && placement_first != NULL_TREE
2204 && TREE_CODE (alloc_call) == CALL_EXPR
2205 && call_expr_nargs (alloc_call) == 2
2206 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2207 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2209 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2211 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2212 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2214 placement_expr = get_target_expr (placement_first);
2215 CALL_EXPR_ARG (alloc_call, 1)
2216 = convert (TREE_TYPE (placement_arg), placement_expr);
2220 /* In the simple case, we can stop now. */
2221 pointer_type = build_pointer_type (type);
2222 if (!cookie_size && !is_initialized)
2223 return build_nop (pointer_type, alloc_call);
2225 /* Store the result of the allocation call in a variable so that we can
2226 use it more than once. */
2227 alloc_expr = get_target_expr (alloc_call);
2228 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2230 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2231 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2232 alloc_call = TREE_OPERAND (alloc_call, 1);
2234 /* Now, check to see if this function is actually a placement
2235 allocation function. This can happen even when PLACEMENT is NULL
2236 because we might have something like:
2238 struct S { void* operator new (size_t, int i = 0); };
2240 A call to `new S' will get this allocation function, even though
2241 there is no explicit placement argument. If there is more than
2242 one argument, or there are variable arguments, then this is a
2243 placement allocation function. */
2244 placement_allocation_fn_p
2245 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2246 || varargs_function_p (alloc_fn));
2248 /* Preevaluate the placement args so that we don't reevaluate them for a
2249 placement delete. */
2250 if (placement_allocation_fn_p)
2252 tree inits;
2253 stabilize_call (alloc_call, &inits);
2254 if (inits)
2255 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2256 alloc_expr);
2259 /* unless an allocation function is declared with an empty excep-
2260 tion-specification (_except.spec_), throw(), it indicates failure to
2261 allocate storage by throwing a bad_alloc exception (clause _except_,
2262 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2263 cation function is declared with an empty exception-specification,
2264 throw(), it returns null to indicate failure to allocate storage and a
2265 non-null pointer otherwise.
2267 So check for a null exception spec on the op new we just called. */
2269 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2270 check_new = (flag_check_new || nothrow) && ! use_java_new;
2272 if (cookie_size)
2274 tree cookie;
2275 tree cookie_ptr;
2276 tree size_ptr_type;
2278 /* Adjust so we're pointing to the start of the object. */
2279 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2280 alloc_node, cookie_size);
2282 /* Store the number of bytes allocated so that we can know how
2283 many elements to destroy later. We use the last sizeof
2284 (size_t) bytes to store the number of elements. */
2285 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2286 cookie_ptr = fold_build2_loc (input_location,
2287 POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2288 alloc_node, cookie_ptr);
2289 size_ptr_type = build_pointer_type (sizetype);
2290 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2291 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2293 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2295 if (targetm.cxx.cookie_has_size ())
2297 /* Also store the element size. */
2298 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2299 fold_build1_loc (input_location,
2300 NEGATE_EXPR, sizetype,
2301 size_in_bytes (sizetype)));
2303 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2304 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2305 size_in_bytes (elt_type));
2306 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2307 cookie, cookie_expr);
2310 else
2312 cookie_expr = NULL_TREE;
2313 data_addr = alloc_node;
2316 /* Now use a pointer to the type we've actually allocated. */
2318 /* But we want to operate on a non-const version to start with,
2319 since we'll be modifying the elements. */
2320 non_const_pointer_type = build_pointer_type
2321 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2323 data_addr = fold_convert (non_const_pointer_type, data_addr);
2324 /* Any further uses of alloc_node will want this type, too. */
2325 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2327 /* Now initialize the allocated object. Note that we preevaluate the
2328 initialization expression, apart from the actual constructor call or
2329 assignment--we do this because we want to delay the allocation as long
2330 as possible in order to minimize the size of the exception region for
2331 placement delete. */
2332 if (is_initialized)
2334 bool stable;
2335 bool explicit_value_init_p = false;
2337 if (*init != NULL && VEC_empty (tree, *init))
2339 *init = NULL;
2340 explicit_value_init_p = true;
2343 if (processing_template_decl && explicit_value_init_p)
2345 /* build_value_init doesn't work in templates, and we don't need
2346 the initializer anyway since we're going to throw it away and
2347 rebuild it at instantiation time, so just build up a single
2348 constructor call to get any appropriate diagnostics. */
2349 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2350 if (TYPE_NEEDS_CONSTRUCTING (elt_type))
2351 init_expr = build_special_member_call (init_expr,
2352 complete_ctor_identifier,
2353 init, elt_type,
2354 LOOKUP_NORMAL,
2355 complain);
2356 stable = stabilize_init (init_expr, &init_preeval_expr);
2358 else if (array_p)
2360 tree vecinit = NULL_TREE;
2361 if (*init && VEC_length (tree, *init) == 1
2362 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2363 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2365 tree arraytype, domain;
2366 vecinit = VEC_index (tree, *init, 0);
2367 if (TREE_CONSTANT (nelts))
2368 domain = compute_array_index_type (NULL_TREE, nelts, complain);
2369 else
2371 domain = NULL_TREE;
2372 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2373 warning (0, "non-constant array size in new, unable to "
2374 "verify length of initializer-list");
2376 arraytype = build_cplus_array_type (type, domain);
2377 vecinit = digest_init (arraytype, vecinit);
2379 else if (*init)
2381 if (complain & tf_error)
2382 permerror (input_location, "ISO C++ forbids initialization in array new");
2383 else
2384 return error_mark_node;
2385 vecinit = build_tree_list_vec (*init);
2387 init_expr
2388 = build_vec_init (data_addr,
2389 cp_build_binary_op (input_location,
2390 MINUS_EXPR, outer_nelts,
2391 integer_one_node,
2392 complain),
2393 vecinit,
2394 explicit_value_init_p,
2395 /*from_array=*/0,
2396 complain);
2398 /* An array initialization is stable because the initialization
2399 of each element is a full-expression, so the temporaries don't
2400 leak out. */
2401 stable = true;
2403 else
2405 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2407 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2409 init_expr = build_special_member_call (init_expr,
2410 complete_ctor_identifier,
2411 init, elt_type,
2412 LOOKUP_NORMAL,
2413 complain);
2415 else if (explicit_value_init_p)
2417 /* Something like `new int()'. */
2418 tree val = build_value_init (type, complain);
2419 if (val == error_mark_node)
2420 return error_mark_node;
2421 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2423 else
2425 tree ie;
2427 /* We are processing something like `new int (10)', which
2428 means allocate an int, and initialize it with 10. */
2430 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2431 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2432 complain);
2434 stable = stabilize_init (init_expr, &init_preeval_expr);
2437 if (init_expr == error_mark_node)
2438 return error_mark_node;
2440 /* If any part of the object initialization terminates by throwing an
2441 exception and a suitable deallocation function can be found, the
2442 deallocation function is called to free the memory in which the
2443 object was being constructed, after which the exception continues
2444 to propagate in the context of the new-expression. If no
2445 unambiguous matching deallocation function can be found,
2446 propagating the exception does not cause the object's memory to be
2447 freed. */
2448 if (flag_exceptions && ! use_java_new)
2450 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2451 tree cleanup;
2453 /* The Standard is unclear here, but the right thing to do
2454 is to use the same method for finding deallocation
2455 functions that we use for finding allocation functions. */
2456 cleanup = (build_op_delete_call
2457 (dcode,
2458 alloc_node,
2459 size,
2460 globally_qualified_p,
2461 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2462 alloc_fn));
2464 if (!cleanup)
2465 /* We're done. */;
2466 else if (stable)
2467 /* This is much simpler if we were able to preevaluate all of
2468 the arguments to the constructor call. */
2470 /* CLEANUP is compiler-generated, so no diagnostics. */
2471 TREE_NO_WARNING (cleanup) = true;
2472 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2473 init_expr, cleanup);
2474 /* Likewise, this try-catch is compiler-generated. */
2475 TREE_NO_WARNING (init_expr) = true;
2477 else
2478 /* Ack! First we allocate the memory. Then we set our sentry
2479 variable to true, and expand a cleanup that deletes the
2480 memory if sentry is true. Then we run the constructor, and
2481 finally clear the sentry.
2483 We need to do this because we allocate the space first, so
2484 if there are any temporaries with cleanups in the
2485 constructor args and we weren't able to preevaluate them, we
2486 need this EH region to extend until end of full-expression
2487 to preserve nesting. */
2489 tree end, sentry, begin;
2491 begin = get_target_expr (boolean_true_node);
2492 CLEANUP_EH_ONLY (begin) = 1;
2494 sentry = TARGET_EXPR_SLOT (begin);
2496 /* CLEANUP is compiler-generated, so no diagnostics. */
2497 TREE_NO_WARNING (cleanup) = true;
2499 TARGET_EXPR_CLEANUP (begin)
2500 = build3 (COND_EXPR, void_type_node, sentry,
2501 cleanup, void_zero_node);
2503 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2504 sentry, boolean_false_node);
2506 init_expr
2507 = build2 (COMPOUND_EXPR, void_type_node, begin,
2508 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2509 end));
2510 /* Likewise, this is compiler-generated. */
2511 TREE_NO_WARNING (init_expr) = true;
2515 else
2516 init_expr = NULL_TREE;
2518 /* Now build up the return value in reverse order. */
2520 rval = data_addr;
2522 if (init_expr)
2523 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2524 if (cookie_expr)
2525 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2527 if (rval == data_addr)
2528 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2529 and return the call (which doesn't need to be adjusted). */
2530 rval = TARGET_EXPR_INITIAL (alloc_expr);
2531 else
2533 if (check_new)
2535 tree ifexp = cp_build_binary_op (input_location,
2536 NE_EXPR, alloc_node,
2537 integer_zero_node,
2538 complain);
2539 rval = build_conditional_expr (ifexp, rval, alloc_node,
2540 complain);
2543 /* Perform the allocation before anything else, so that ALLOC_NODE
2544 has been initialized before we start using it. */
2545 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2548 if (init_preeval_expr)
2549 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2551 /* A new-expression is never an lvalue. */
2552 gcc_assert (!lvalue_p (rval));
2554 return convert (pointer_type, rval);
2557 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2558 is a vector of placement-new arguments (or NULL if none). If NELTS
2559 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2560 is not NULL, then this is an array-new allocation; TYPE is the type
2561 of the elements in the array and NELTS is the number of elements in
2562 the array. *INIT, if non-NULL, is the initializer for the new
2563 object, or an empty vector to indicate an initializer of "()". If
2564 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2565 rather than just "new". This may change PLACEMENT and INIT. */
2567 tree
2568 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2569 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2571 tree rval;
2572 VEC(tree,gc) *orig_placement = NULL;
2573 tree orig_nelts = NULL_TREE;
2574 VEC(tree,gc) *orig_init = NULL;
2576 if (type == error_mark_node)
2577 return error_mark_node;
2579 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2581 tree auto_node = type_uses_auto (type);
2582 if (auto_node)
2584 tree d_init = VEC_index (tree, *init, 0);
2585 d_init = resolve_nondeduced_context (d_init);
2586 if (describable_type (d_init))
2587 type = do_auto_deduction (type, d_init, auto_node);
2591 if (processing_template_decl)
2593 if (dependent_type_p (type)
2594 || any_type_dependent_arguments_p (*placement)
2595 || (nelts && type_dependent_expression_p (nelts))
2596 || any_type_dependent_arguments_p (*init))
2597 return build_raw_new_expr (*placement, type, nelts, *init,
2598 use_global_new);
2600 orig_placement = make_tree_vector_copy (*placement);
2601 orig_nelts = nelts;
2602 orig_init = make_tree_vector_copy (*init);
2604 make_args_non_dependent (*placement);
2605 if (nelts)
2606 nelts = build_non_dependent_expr (nelts);
2607 make_args_non_dependent (*init);
2610 if (nelts)
2612 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2614 if (complain & tf_error)
2615 permerror (input_location, "size in array new must have integral type");
2616 else
2617 return error_mark_node;
2619 nelts = mark_rvalue_use (nelts);
2620 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2623 /* ``A reference cannot be created by the new operator. A reference
2624 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2625 returned by new.'' ARM 5.3.3 */
2626 if (TREE_CODE (type) == REFERENCE_TYPE)
2628 if (complain & tf_error)
2629 error ("new cannot be applied to a reference type");
2630 else
2631 return error_mark_node;
2632 type = TREE_TYPE (type);
2635 if (TREE_CODE (type) == FUNCTION_TYPE)
2637 if (complain & tf_error)
2638 error ("new cannot be applied to a function type");
2639 return error_mark_node;
2642 /* The type allocated must be complete. If the new-type-id was
2643 "T[N]" then we are just checking that "T" is complete here, but
2644 that is equivalent, since the value of "N" doesn't matter. */
2645 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
2646 return error_mark_node;
2648 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2649 if (rval == error_mark_node)
2650 return error_mark_node;
2652 if (processing_template_decl)
2654 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2655 orig_init, use_global_new);
2656 release_tree_vector (orig_placement);
2657 release_tree_vector (orig_init);
2658 return ret;
2661 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2662 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2663 TREE_NO_WARNING (rval) = 1;
2665 return rval;
2668 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2670 tree
2671 build_java_class_ref (tree type)
2673 tree name = NULL_TREE, class_decl;
2674 static tree CL_suffix = NULL_TREE;
2675 if (CL_suffix == NULL_TREE)
2676 CL_suffix = get_identifier("class$");
2677 if (jclass_node == NULL_TREE)
2679 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2680 if (jclass_node == NULL_TREE)
2682 error ("call to Java constructor, while %<jclass%> undefined");
2683 return error_mark_node;
2685 jclass_node = TREE_TYPE (jclass_node);
2688 /* Mangle the class$ field. */
2690 tree field;
2691 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2692 if (DECL_NAME (field) == CL_suffix)
2694 mangle_decl (field);
2695 name = DECL_ASSEMBLER_NAME (field);
2696 break;
2698 if (!field)
2700 error ("can%'t find %<class$%> in %qT", type);
2701 return error_mark_node;
2705 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2706 if (class_decl == NULL_TREE)
2708 class_decl = build_decl (input_location,
2709 VAR_DECL, name, TREE_TYPE (jclass_node));
2710 TREE_STATIC (class_decl) = 1;
2711 DECL_EXTERNAL (class_decl) = 1;
2712 TREE_PUBLIC (class_decl) = 1;
2713 DECL_ARTIFICIAL (class_decl) = 1;
2714 DECL_IGNORED_P (class_decl) = 1;
2715 pushdecl_top_level (class_decl);
2716 make_decl_rtl (class_decl);
2718 return class_decl;
2721 static tree
2722 build_vec_delete_1 (tree base, tree maxindex, tree type,
2723 special_function_kind auto_delete_vec, int use_global_delete)
2725 tree virtual_size;
2726 tree ptype = build_pointer_type (type = complete_type (type));
2727 tree size_exp = size_in_bytes (type);
2729 /* Temporary variables used by the loop. */
2730 tree tbase, tbase_init;
2732 /* This is the body of the loop that implements the deletion of a
2733 single element, and moves temp variables to next elements. */
2734 tree body;
2736 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2737 tree loop = 0;
2739 /* This is the thing that governs what to do after the loop has run. */
2740 tree deallocate_expr = 0;
2742 /* This is the BIND_EXPR which holds the outermost iterator of the
2743 loop. It is convenient to set this variable up and test it before
2744 executing any other code in the loop.
2745 This is also the containing expression returned by this function. */
2746 tree controller = NULL_TREE;
2747 tree tmp;
2749 /* We should only have 1-D arrays here. */
2750 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2752 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2753 goto no_destructor;
2755 /* The below is short by the cookie size. */
2756 virtual_size = size_binop (MULT_EXPR, size_exp,
2757 convert (sizetype, maxindex));
2759 tbase = create_temporary_var (ptype);
2760 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2761 fold_build2_loc (input_location,
2762 POINTER_PLUS_EXPR, ptype,
2763 fold_convert (ptype, base),
2764 virtual_size),
2765 tf_warning_or_error);
2766 controller = build3 (BIND_EXPR, void_type_node, tbase,
2767 NULL_TREE, NULL_TREE);
2768 TREE_SIDE_EFFECTS (controller) = 1;
2770 body = build1 (EXIT_EXPR, void_type_node,
2771 build2 (EQ_EXPR, boolean_type_node, tbase,
2772 fold_convert (ptype, base)));
2773 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2774 body = build_compound_expr
2775 (input_location,
2776 body, cp_build_modify_expr (tbase, NOP_EXPR,
2777 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2778 tf_warning_or_error));
2779 body = build_compound_expr
2780 (input_location,
2781 body, build_delete (ptype, tbase, sfk_complete_destructor,
2782 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2784 loop = build1 (LOOP_EXPR, void_type_node, body);
2785 loop = build_compound_expr (input_location, tbase_init, loop);
2787 no_destructor:
2788 /* If the delete flag is one, or anything else with the low bit set,
2789 delete the storage. */
2790 if (auto_delete_vec != sfk_base_destructor)
2792 tree base_tbd;
2794 /* The below is short by the cookie size. */
2795 virtual_size = size_binop (MULT_EXPR, size_exp,
2796 convert (sizetype, maxindex));
2798 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2799 /* no header */
2800 base_tbd = base;
2801 else
2803 tree cookie_size;
2805 cookie_size = targetm.cxx.get_cookie_size (type);
2806 base_tbd
2807 = cp_convert (ptype,
2808 cp_build_binary_op (input_location,
2809 MINUS_EXPR,
2810 cp_convert (string_type_node,
2811 base),
2812 cookie_size,
2813 tf_warning_or_error));
2814 /* True size with header. */
2815 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2818 if (auto_delete_vec == sfk_deleting_destructor)
2819 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2820 base_tbd, virtual_size,
2821 use_global_delete & 1,
2822 /*placement=*/NULL_TREE,
2823 /*alloc_fn=*/NULL_TREE);
2826 body = loop;
2827 if (!deallocate_expr)
2829 else if (!body)
2830 body = deallocate_expr;
2831 else
2832 body = build_compound_expr (input_location, body, deallocate_expr);
2834 if (!body)
2835 body = integer_zero_node;
2837 /* Outermost wrapper: If pointer is null, punt. */
2838 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
2839 fold_build2_loc (input_location,
2840 NE_EXPR, boolean_type_node, base,
2841 convert (TREE_TYPE (base),
2842 integer_zero_node)),
2843 body, integer_zero_node);
2844 body = build1 (NOP_EXPR, void_type_node, body);
2846 if (controller)
2848 TREE_OPERAND (controller, 1) = body;
2849 body = controller;
2852 if (TREE_CODE (base) == SAVE_EXPR)
2853 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2854 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2856 return convert_to_void (body, ICV_CAST, tf_warning_or_error);
2859 /* Create an unnamed variable of the indicated TYPE. */
2861 tree
2862 create_temporary_var (tree type)
2864 tree decl;
2866 decl = build_decl (input_location,
2867 VAR_DECL, NULL_TREE, type);
2868 TREE_USED (decl) = 1;
2869 DECL_ARTIFICIAL (decl) = 1;
2870 DECL_IGNORED_P (decl) = 1;
2871 DECL_CONTEXT (decl) = current_function_decl;
2873 return decl;
2876 /* Create a new temporary variable of the indicated TYPE, initialized
2877 to INIT.
2879 It is not entered into current_binding_level, because that breaks
2880 things when it comes time to do final cleanups (which take place
2881 "outside" the binding contour of the function). */
2883 tree
2884 get_temp_regvar (tree type, tree init)
2886 tree decl;
2888 decl = create_temporary_var (type);
2889 add_decl_expr (decl);
2891 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2892 tf_warning_or_error));
2894 return decl;
2897 /* `build_vec_init' returns tree structure that performs
2898 initialization of a vector of aggregate types.
2900 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2901 to the first element, of POINTER_TYPE.
2902 MAXINDEX is the maximum index of the array (one less than the
2903 number of elements). It is only used if BASE is a pointer or
2904 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2906 INIT is the (possibly NULL) initializer.
2908 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2909 elements in the array are value-initialized.
2911 FROM_ARRAY is 0 if we should init everything with INIT
2912 (i.e., every element initialized from INIT).
2913 FROM_ARRAY is 1 if we should index into INIT in parallel
2914 with initialization of DECL.
2915 FROM_ARRAY is 2 if we should index into INIT in parallel,
2916 but use assignment instead of initialization. */
2918 tree
2919 build_vec_init (tree base, tree maxindex, tree init,
2920 bool explicit_value_init_p,
2921 int from_array, tsubst_flags_t complain)
2923 tree rval;
2924 tree base2 = NULL_TREE;
2925 tree itype = NULL_TREE;
2926 tree iterator;
2927 /* The type of BASE. */
2928 tree atype = TREE_TYPE (base);
2929 /* The type of an element in the array. */
2930 tree type = TREE_TYPE (atype);
2931 /* The element type reached after removing all outer array
2932 types. */
2933 tree inner_elt_type;
2934 /* The type of a pointer to an element in the array. */
2935 tree ptype;
2936 tree stmt_expr;
2937 tree compound_stmt;
2938 int destroy_temps;
2939 tree try_block = NULL_TREE;
2940 int num_initialized_elts = 0;
2941 bool is_global;
2942 tree const_init = NULL_TREE;
2943 tree obase = base;
2944 bool xvalue = false;
2946 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2947 maxindex = array_type_nelts (atype);
2949 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2950 return error_mark_node;
2952 if (explicit_value_init_p)
2953 gcc_assert (!init);
2955 inner_elt_type = strip_array_types (type);
2957 /* Look through the TARGET_EXPR around a compound literal. */
2958 if (init && TREE_CODE (init) == TARGET_EXPR
2959 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2960 && from_array != 2)
2961 init = TARGET_EXPR_INITIAL (init);
2963 if (init
2964 && TREE_CODE (atype) == ARRAY_TYPE
2965 && (from_array == 2
2966 ? (!CLASS_TYPE_P (inner_elt_type)
2967 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
2968 : !TYPE_NEEDS_CONSTRUCTING (type))
2969 && ((TREE_CODE (init) == CONSTRUCTOR
2970 /* Don't do this if the CONSTRUCTOR might contain something
2971 that might throw and require us to clean up. */
2972 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2973 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2974 || from_array))
2976 /* Do non-default initialization of trivial arrays resulting from
2977 brace-enclosed initializers. In this case, digest_init and
2978 store_constructor will handle the semantics for us. */
2980 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2981 return stmt_expr;
2984 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2985 if (TREE_CODE (atype) == ARRAY_TYPE)
2987 ptype = build_pointer_type (type);
2988 base = cp_convert (ptype, decay_conversion (base));
2990 else
2991 ptype = atype;
2993 /* The code we are generating looks like:
2995 T* t1 = (T*) base;
2996 T* rval = t1;
2997 ptrdiff_t iterator = maxindex;
2998 try {
2999 for (; iterator != -1; --iterator) {
3000 ... initialize *t1 ...
3001 ++t1;
3003 } catch (...) {
3004 ... destroy elements that were constructed ...
3006 rval;
3009 We can omit the try and catch blocks if we know that the
3010 initialization will never throw an exception, or if the array
3011 elements do not have destructors. We can omit the loop completely if
3012 the elements of the array do not have constructors.
3014 We actually wrap the entire body of the above in a STMT_EXPR, for
3015 tidiness.
3017 When copying from array to another, when the array elements have
3018 only trivial copy constructors, we should use __builtin_memcpy
3019 rather than generating a loop. That way, we could take advantage
3020 of whatever cleverness the back end has for dealing with copies
3021 of blocks of memory. */
3023 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3024 destroy_temps = stmts_are_full_exprs_p ();
3025 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3026 rval = get_temp_regvar (ptype, base);
3027 base = get_temp_regvar (ptype, rval);
3028 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3030 /* If initializing one array from another, initialize element by
3031 element. We rely upon the below calls to do the argument
3032 checking. Evaluate the initializer before entering the try block. */
3033 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3035 if (lvalue_kind (init) & clk_rvalueref)
3036 xvalue = true;
3037 base2 = decay_conversion (init);
3038 itype = TREE_TYPE (base2);
3039 base2 = get_temp_regvar (itype, base2);
3040 itype = TREE_TYPE (itype);
3043 /* Protect the entire array initialization so that we can destroy
3044 the partially constructed array if an exception is thrown.
3045 But don't do this if we're assigning. */
3046 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3047 && from_array != 2)
3049 try_block = begin_try_block ();
3052 /* Maybe pull out constant value when from_array? */
3054 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3056 /* Do non-default initialization of non-trivial arrays resulting from
3057 brace-enclosed initializers. */
3058 unsigned HOST_WIDE_INT idx;
3059 tree field, elt;
3060 /* Should we try to create a constant initializer? */
3061 bool try_const = (literal_type_p (inner_elt_type)
3062 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type));
3063 bool saw_non_const = false;
3064 bool saw_const = false;
3065 /* If we're initializing a static array, we want to do static
3066 initialization of any elements with constant initializers even if
3067 some are non-constant. */
3068 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3069 VEC(constructor_elt,gc) *new_vec;
3070 from_array = 0;
3072 if (try_const)
3073 new_vec = VEC_alloc (constructor_elt, gc, CONSTRUCTOR_NELTS (init));
3074 else
3075 new_vec = NULL;
3077 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3079 tree baseref = build1 (INDIRECT_REF, type, base);
3080 tree one_init;
3082 num_initialized_elts++;
3084 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3085 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3086 one_init = build_aggr_init (baseref, elt, 0, complain);
3087 else
3088 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3089 elt, complain);
3091 if (try_const)
3093 tree e = one_init;
3094 if (TREE_CODE (e) == EXPR_STMT)
3095 e = TREE_OPERAND (e, 0);
3096 if (TREE_CODE (e) == CONVERT_EXPR
3097 && VOID_TYPE_P (TREE_TYPE (e)))
3098 e = TREE_OPERAND (e, 0);
3099 e = maybe_constant_init (e);
3100 if (reduced_constant_expression_p (e))
3102 CONSTRUCTOR_APPEND_ELT (new_vec, field, e);
3103 if (do_static_init)
3104 one_init = NULL_TREE;
3105 else
3106 one_init = build2 (INIT_EXPR, type, baseref, e);
3107 saw_const = true;
3109 else
3111 if (do_static_init)
3112 CONSTRUCTOR_APPEND_ELT (new_vec, field,
3113 build_zero_init (TREE_TYPE (e),
3114 NULL_TREE, true));
3115 saw_non_const = true;
3119 if (one_init)
3120 finish_expr_stmt (one_init);
3121 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3123 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3124 complain));
3125 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3126 complain));
3129 if (try_const)
3131 if (!saw_non_const)
3132 const_init = build_constructor (atype, new_vec);
3133 else if (do_static_init && saw_const)
3134 DECL_INITIAL (obase) = build_constructor (atype, new_vec);
3135 else
3136 VEC_free (constructor_elt, gc, new_vec);
3139 /* Clear out INIT so that we don't get confused below. */
3140 init = NULL_TREE;
3142 else if (from_array)
3144 if (init)
3145 /* OK, we set base2 above. */;
3146 else if (TYPE_LANG_SPECIFIC (type)
3147 && TYPE_NEEDS_CONSTRUCTING (type)
3148 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3150 if (complain & tf_error)
3151 error ("initializer ends prematurely");
3152 return error_mark_node;
3156 /* Now, default-initialize any remaining elements. We don't need to
3157 do that if a) the type does not need constructing, or b) we've
3158 already initialized all the elements.
3160 We do need to keep going if we're copying an array. */
3162 if (from_array
3163 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
3164 && ! (host_integerp (maxindex, 0)
3165 && (num_initialized_elts
3166 == tree_low_cst (maxindex, 0) + 1))))
3168 /* If the ITERATOR is equal to -1, then we don't have to loop;
3169 we've already initialized all the elements. */
3170 tree for_stmt;
3171 tree elt_init;
3172 tree to;
3174 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3175 finish_for_init_stmt (for_stmt);
3176 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3177 build_int_cst (TREE_TYPE (iterator), -1)),
3178 for_stmt);
3179 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3180 complain),
3181 for_stmt);
3183 to = build1 (INDIRECT_REF, type, base);
3185 if (from_array)
3187 tree from;
3189 if (base2)
3191 from = build1 (INDIRECT_REF, itype, base2);
3192 if (xvalue)
3193 from = move (from);
3195 else
3196 from = NULL_TREE;
3198 if (from_array == 2)
3199 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3200 complain);
3201 else if (TYPE_NEEDS_CONSTRUCTING (type))
3202 elt_init = build_aggr_init (to, from, 0, complain);
3203 else if (from)
3204 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3205 complain);
3206 else
3207 gcc_unreachable ();
3209 else if (TREE_CODE (type) == ARRAY_TYPE)
3211 if (init != 0)
3212 sorry
3213 ("cannot initialize multi-dimensional array with initializer");
3214 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3215 0, 0,
3216 explicit_value_init_p,
3217 0, complain);
3219 else if (explicit_value_init_p)
3221 elt_init = build_value_init (type, complain);
3222 if (elt_init == error_mark_node)
3223 return error_mark_node;
3224 else
3225 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3227 else
3229 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
3230 elt_init = build_aggr_init (to, init, 0, complain);
3233 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3234 finish_expr_stmt (elt_init);
3235 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3237 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3238 complain));
3239 if (base2)
3240 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3241 complain));
3243 finish_for_stmt (for_stmt);
3246 /* Make sure to cleanup any partially constructed elements. */
3247 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3248 && from_array != 2)
3250 tree e;
3251 tree m = cp_build_binary_op (input_location,
3252 MINUS_EXPR, maxindex, iterator,
3253 complain);
3255 /* Flatten multi-dimensional array since build_vec_delete only
3256 expects one-dimensional array. */
3257 if (TREE_CODE (type) == ARRAY_TYPE)
3258 m = cp_build_binary_op (input_location,
3259 MULT_EXPR, m,
3260 array_type_nelts_total (type),
3261 complain);
3263 finish_cleanup_try_block (try_block);
3264 e = build_vec_delete_1 (rval, m,
3265 inner_elt_type, sfk_base_destructor,
3266 /*use_global_delete=*/0);
3267 finish_cleanup (e, try_block);
3270 /* The value of the array initialization is the array itself, RVAL
3271 is a pointer to the first element. */
3272 finish_stmt_expr_expr (rval, stmt_expr);
3274 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3276 /* Now make the result have the correct type. */
3277 if (TREE_CODE (atype) == ARRAY_TYPE)
3279 atype = build_pointer_type (atype);
3280 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3281 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3282 TREE_NO_WARNING (stmt_expr) = 1;
3285 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3287 if (const_init)
3288 return build2 (INIT_EXPR, atype, obase, const_init);
3289 return stmt_expr;
3292 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3293 build_delete. */
3295 static tree
3296 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
3298 tree name;
3299 tree fn;
3300 switch (dtor_kind)
3302 case sfk_complete_destructor:
3303 name = complete_dtor_identifier;
3304 break;
3306 case sfk_base_destructor:
3307 name = base_dtor_identifier;
3308 break;
3310 case sfk_deleting_destructor:
3311 name = deleting_dtor_identifier;
3312 break;
3314 default:
3315 gcc_unreachable ();
3317 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3318 return build_new_method_call (exp, fn,
3319 /*args=*/NULL,
3320 /*conversion_path=*/NULL_TREE,
3321 flags,
3322 /*fn_p=*/NULL,
3323 tf_warning_or_error);
3326 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3327 ADDR is an expression which yields the store to be destroyed.
3328 AUTO_DELETE is the name of the destructor to call, i.e., either
3329 sfk_complete_destructor, sfk_base_destructor, or
3330 sfk_deleting_destructor.
3332 FLAGS is the logical disjunction of zero or more LOOKUP_
3333 flags. See cp-tree.h for more info. */
3335 tree
3336 build_delete (tree type, tree addr, special_function_kind auto_delete,
3337 int flags, int use_global_delete)
3339 tree expr;
3341 if (addr == error_mark_node)
3342 return error_mark_node;
3344 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3345 set to `error_mark_node' before it gets properly cleaned up. */
3346 if (type == error_mark_node)
3347 return error_mark_node;
3349 type = TYPE_MAIN_VARIANT (type);
3351 addr = mark_rvalue_use (addr);
3353 if (TREE_CODE (type) == POINTER_TYPE)
3355 bool complete_p = true;
3357 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3358 if (TREE_CODE (type) == ARRAY_TYPE)
3359 goto handle_array;
3361 /* We don't want to warn about delete of void*, only other
3362 incomplete types. Deleting other incomplete types
3363 invokes undefined behavior, but it is not ill-formed, so
3364 compile to something that would even do The Right Thing
3365 (TM) should the type have a trivial dtor and no delete
3366 operator. */
3367 if (!VOID_TYPE_P (type))
3369 complete_type (type);
3370 if (!COMPLETE_TYPE_P (type))
3372 if (warning (0, "possible problem detected in invocation of "
3373 "delete operator:"))
3375 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3376 inform (input_location, "neither the destructor nor the class-specific "
3377 "operator delete will be called, even if they are "
3378 "declared when the class is defined");
3380 complete_p = false;
3383 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3384 /* Call the builtin operator delete. */
3385 return build_builtin_delete_call (addr);
3386 if (TREE_SIDE_EFFECTS (addr))
3387 addr = save_expr (addr);
3389 /* Throw away const and volatile on target type of addr. */
3390 addr = convert_force (build_pointer_type (type), addr, 0);
3392 else if (TREE_CODE (type) == ARRAY_TYPE)
3394 handle_array:
3396 if (TYPE_DOMAIN (type) == NULL_TREE)
3398 error ("unknown array size in delete");
3399 return error_mark_node;
3401 return build_vec_delete (addr, array_type_nelts (type),
3402 auto_delete, use_global_delete);
3404 else
3406 /* Don't check PROTECT here; leave that decision to the
3407 destructor. If the destructor is accessible, call it,
3408 else report error. */
3409 addr = cp_build_addr_expr (addr, tf_warning_or_error);
3410 if (TREE_SIDE_EFFECTS (addr))
3411 addr = save_expr (addr);
3413 addr = convert_force (build_pointer_type (type), addr, 0);
3416 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3418 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3420 if (auto_delete != sfk_deleting_destructor)
3421 return void_zero_node;
3423 return build_op_delete_call (DELETE_EXPR, addr,
3424 cxx_sizeof_nowarn (type),
3425 use_global_delete,
3426 /*placement=*/NULL_TREE,
3427 /*alloc_fn=*/NULL_TREE);
3429 else
3431 tree head = NULL_TREE;
3432 tree do_delete = NULL_TREE;
3433 tree ifexp;
3435 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3436 lazily_declare_fn (sfk_destructor, type);
3438 /* For `::delete x', we must not use the deleting destructor
3439 since then we would not be sure to get the global `operator
3440 delete'. */
3441 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3443 /* We will use ADDR multiple times so we must save it. */
3444 addr = save_expr (addr);
3445 head = get_target_expr (build_headof (addr));
3446 /* Delete the object. */
3447 do_delete = build_builtin_delete_call (head);
3448 /* Otherwise, treat this like a complete object destructor
3449 call. */
3450 auto_delete = sfk_complete_destructor;
3452 /* If the destructor is non-virtual, there is no deleting
3453 variant. Instead, we must explicitly call the appropriate
3454 `operator delete' here. */
3455 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3456 && auto_delete == sfk_deleting_destructor)
3458 /* We will use ADDR multiple times so we must save it. */
3459 addr = save_expr (addr);
3460 /* Build the call. */
3461 do_delete = build_op_delete_call (DELETE_EXPR,
3462 addr,
3463 cxx_sizeof_nowarn (type),
3464 /*global_p=*/false,
3465 /*placement=*/NULL_TREE,
3466 /*alloc_fn=*/NULL_TREE);
3467 /* Call the complete object destructor. */
3468 auto_delete = sfk_complete_destructor;
3470 else if (auto_delete == sfk_deleting_destructor
3471 && TYPE_GETS_REG_DELETE (type))
3473 /* Make sure we have access to the member op delete, even though
3474 we'll actually be calling it from the destructor. */
3475 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3476 /*global_p=*/false,
3477 /*placement=*/NULL_TREE,
3478 /*alloc_fn=*/NULL_TREE);
3481 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3482 tf_warning_or_error),
3483 auto_delete, flags);
3484 if (do_delete)
3485 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3487 /* We need to calculate this before the dtor changes the vptr. */
3488 if (head)
3489 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3491 if (flags & LOOKUP_DESTRUCTOR)
3492 /* Explicit destructor call; don't check for null pointer. */
3493 ifexp = integer_one_node;
3494 else
3495 /* Handle deleting a null pointer. */
3496 ifexp = fold (cp_build_binary_op (input_location,
3497 NE_EXPR, addr, integer_zero_node,
3498 tf_warning_or_error));
3500 if (ifexp != integer_one_node)
3501 expr = build3 (COND_EXPR, void_type_node,
3502 ifexp, expr, void_zero_node);
3504 return expr;
3508 /* At the beginning of a destructor, push cleanups that will call the
3509 destructors for our base classes and members.
3511 Called from begin_destructor_body. */
3513 void
3514 push_base_cleanups (void)
3516 tree binfo, base_binfo;
3517 int i;
3518 tree member;
3519 tree expr;
3520 VEC(tree,gc) *vbases;
3522 /* Run destructors for all virtual baseclasses. */
3523 if (CLASSTYPE_VBASECLASSES (current_class_type))
3525 tree cond = (condition_conversion
3526 (build2 (BIT_AND_EXPR, integer_type_node,
3527 current_in_charge_parm,
3528 integer_two_node)));
3530 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3531 order, which is also the right order for pushing cleanups. */
3532 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3533 VEC_iterate (tree, vbases, i, base_binfo); i++)
3535 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3537 expr = build_special_member_call (current_class_ref,
3538 base_dtor_identifier,
3539 NULL,
3540 base_binfo,
3541 (LOOKUP_NORMAL
3542 | LOOKUP_NONVIRTUAL),
3543 tf_warning_or_error);
3544 expr = build3 (COND_EXPR, void_type_node, cond,
3545 expr, void_zero_node);
3546 finish_decl_cleanup (NULL_TREE, expr);
3551 /* Take care of the remaining baseclasses. */
3552 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3553 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3555 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3556 || BINFO_VIRTUAL_P (base_binfo))
3557 continue;
3559 expr = build_special_member_call (current_class_ref,
3560 base_dtor_identifier,
3561 NULL, base_binfo,
3562 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3563 tf_warning_or_error);
3564 finish_decl_cleanup (NULL_TREE, expr);
3567 /* Don't automatically destroy union members. */
3568 if (TREE_CODE (current_class_type) == UNION_TYPE)
3569 return;
3571 for (member = TYPE_FIELDS (current_class_type); member;
3572 member = DECL_CHAIN (member))
3574 tree this_type = TREE_TYPE (member);
3575 if (this_type == error_mark_node
3576 || TREE_CODE (member) != FIELD_DECL
3577 || DECL_ARTIFICIAL (member))
3578 continue;
3579 if (ANON_UNION_TYPE_P (this_type))
3580 continue;
3581 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
3583 tree this_member = (build_class_member_access_expr
3584 (current_class_ref, member,
3585 /*access_path=*/NULL_TREE,
3586 /*preserve_reference=*/false,
3587 tf_warning_or_error));
3588 expr = build_delete (this_type, this_member,
3589 sfk_complete_destructor,
3590 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3592 finish_decl_cleanup (NULL_TREE, expr);
3597 /* Build a C++ vector delete expression.
3598 MAXINDEX is the number of elements to be deleted.
3599 ELT_SIZE is the nominal size of each element in the vector.
3600 BASE is the expression that should yield the store to be deleted.
3601 This function expands (or synthesizes) these calls itself.
3602 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3604 This also calls delete for virtual baseclasses of elements of the vector.
3606 Update: MAXINDEX is no longer needed. The size can be extracted from the
3607 start of the vector for pointers, and from the type for arrays. We still
3608 use MAXINDEX for arrays because it happens to already have one of the
3609 values we'd have to extract. (We could use MAXINDEX with pointers to
3610 confirm the size, and trap if the numbers differ; not clear that it'd
3611 be worth bothering.) */
3613 tree
3614 build_vec_delete (tree base, tree maxindex,
3615 special_function_kind auto_delete_vec, int use_global_delete)
3617 tree type;
3618 tree rval;
3619 tree base_init = NULL_TREE;
3621 type = TREE_TYPE (base);
3623 if (TREE_CODE (type) == POINTER_TYPE)
3625 /* Step back one from start of vector, and read dimension. */
3626 tree cookie_addr;
3627 tree size_ptr_type = build_pointer_type (sizetype);
3629 if (TREE_SIDE_EFFECTS (base))
3631 base_init = get_target_expr (base);
3632 base = TARGET_EXPR_SLOT (base_init);
3634 type = strip_array_types (TREE_TYPE (type));
3635 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3636 sizetype, TYPE_SIZE_UNIT (sizetype));
3637 cookie_addr = build2 (POINTER_PLUS_EXPR,
3638 size_ptr_type,
3639 fold_convert (size_ptr_type, base),
3640 cookie_addr);
3641 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
3643 else if (TREE_CODE (type) == ARRAY_TYPE)
3645 /* Get the total number of things in the array, maxindex is a
3646 bad name. */
3647 maxindex = array_type_nelts_total (type);
3648 type = strip_array_types (type);
3649 base = cp_build_addr_expr (base, tf_warning_or_error);
3650 if (TREE_SIDE_EFFECTS (base))
3652 base_init = get_target_expr (base);
3653 base = TARGET_EXPR_SLOT (base_init);
3656 else
3658 if (base != error_mark_node)
3659 error ("type to vector delete is neither pointer or array type");
3660 return error_mark_node;
3663 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3664 use_global_delete);
3665 if (base_init)
3666 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3668 return rval;