1 /* s_cosl.c -- long double version of s_cos.c.
2 * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
13 * ====================================================
17 * Return cosine function of x.
20 * __quadmath_kernel_sinq ... sine function on [-pi/4,pi/4]
21 * __quadmath_kernel_cosq ... cosine function on [-pi/4,pi/4]
22 * __quadmath_rem_pio2q ... argument reduction routine
25 * Let S,C and T denote the sin, cos and tan respectively on
26 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27 * in [-pi/4 , +pi/4], and let n = k mod 4.
30 * n sin(x) cos(x) tan(x)
31 * ----------------------------------------------------------
36 * ----------------------------------------------------------
39 * Let trig be any of sin, cos, or tan.
40 * trig(+-INF) is NaN, with signals;
41 * trig(NaN) is that NaN;
44 * TRIG(x) returns trig(x) nearly rounded
47 #include "quadmath-imp.h"
49 __float128
cosq(__float128 x
)
55 GET_FLT128_MSW64(ix
,x
);
58 ix
&= 0x7fffffffffffffffLL
;
59 if(ix
<= 0x3ffe921fb54442d1LL
)
60 return __quadmath_kernel_cosq(x
,z
);
62 /* cos(Inf or NaN) is NaN */
63 else if (ix
>=0x7fff000000000000LL
) {
64 if (ix
== 0x7fff000000000000LL
) {
65 GET_FLT128_LSW64(n
,x
);
72 /* argument reduction needed */
74 n
= __quadmath_rem_pio2q(x
,y
);
76 case 0: return __quadmath_kernel_cosq(y
[0],y
[1]);
77 case 1: return -__quadmath_kernel_sinq(y
[0],y
[1],1);
78 case 2: return -__quadmath_kernel_cosq(y
[0],y
[1]);
80 return __quadmath_kernel_sinq(y
[0],y
[1],1);