re PR middle-end/33617 (ICE for nonconstant callee-copied constructor arguments)
[official-gcc.git] / gcc / emit-rtl.c
blob8d1b1c7e85a71a06bd3db72389928d2f5ac08e92
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
70 /* This is *not* reset after each function. It gives each CODE_LABEL
71 in the entire compilation a unique label number. */
73 static GTY(()) int label_num = 1;
75 /* Nonzero means do not generate NOTEs for source line numbers. */
77 static int no_line_numbers;
79 /* Commonly used rtx's, so that we only need space for one copy.
80 These are initialized once for the entire compilation.
81 All of these are unique; no other rtx-object will be equal to any
82 of these. */
84 rtx global_rtl[GR_MAX];
86 /* Commonly used RTL for hard registers. These objects are not necessarily
87 unique, so we allocate them separately from global_rtl. They are
88 initialized once per compilation unit, then copied into regno_reg_rtx
89 at the beginning of each function. */
90 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx. */
96 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
98 rtx const_true_rtx;
100 REAL_VALUE_TYPE dconst0;
101 REAL_VALUE_TYPE dconst1;
102 REAL_VALUE_TYPE dconst2;
103 REAL_VALUE_TYPE dconst3;
104 REAL_VALUE_TYPE dconst10;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconstm2;
107 REAL_VALUE_TYPE dconsthalf;
108 REAL_VALUE_TYPE dconstthird;
109 REAL_VALUE_TYPE dconstsqrt2;
110 REAL_VALUE_TYPE dconste;
112 /* Record fixed-point constant 0 and 1. */
113 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
114 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
116 /* All references to the following fixed hard registers go through
117 these unique rtl objects. On machines where the frame-pointer and
118 arg-pointer are the same register, they use the same unique object.
120 After register allocation, other rtl objects which used to be pseudo-regs
121 may be clobbered to refer to the frame-pointer register.
122 But references that were originally to the frame-pointer can be
123 distinguished from the others because they contain frame_pointer_rtx.
125 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
126 tricky: until register elimination has taken place hard_frame_pointer_rtx
127 should be used if it is being set, and frame_pointer_rtx otherwise. After
128 register elimination hard_frame_pointer_rtx should always be used.
129 On machines where the two registers are same (most) then these are the
130 same.
132 In an inline procedure, the stack and frame pointer rtxs may not be
133 used for anything else. */
134 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
138 /* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
142 /* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
147 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
149 /* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
155 /* A hash table storing memory attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
159 /* A hash table storing register attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161 htab_t reg_attrs_htab;
163 /* A hash table storing all CONST_DOUBLEs. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165 htab_t const_double_htab;
167 /* A hash table storing all CONST_FIXEDs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_fixed_htab;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
177 static rtx make_call_insn_raw (rtx);
178 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
179 static void set_used_decls (tree);
180 static void mark_label_nuses (rtx);
181 static hashval_t const_int_htab_hash (const void *);
182 static int const_int_htab_eq (const void *, const void *);
183 static hashval_t const_double_htab_hash (const void *);
184 static int const_double_htab_eq (const void *, const void *);
185 static rtx lookup_const_double (rtx);
186 static hashval_t const_fixed_htab_hash (const void *);
187 static int const_fixed_htab_eq (const void *, const void *);
188 static rtx lookup_const_fixed (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector (enum machine_mode, int);
198 static void copy_rtx_if_shared_1 (rtx *orig);
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
204 /* Returns a hash code for X (which is a really a CONST_INT). */
206 static hashval_t
207 const_int_htab_hash (const void *x)
209 return (hashval_t) INTVAL ((const_rtx) x);
212 /* Returns nonzero if the value represented by X (which is really a
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
216 static int
217 const_int_htab_eq (const void *x, const void *y)
219 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
222 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
223 static hashval_t
224 const_double_htab_hash (const void *x)
226 const_rtx const value = (const_rtx) x;
227 hashval_t h;
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
237 return h;
240 /* Returns nonzero if the value represented by X (really a ...)
241 is the same as that represented by Y (really a ...) */
242 static int
243 const_double_htab_eq (const void *x, const void *y)
245 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
257 /* Returns a hash code for X (which is really a CONST_FIXED). */
259 static hashval_t
260 const_fixed_htab_hash (const void *x)
262 const_rtx const value = (const_rtx) x;
263 hashval_t h;
265 h = fixed_hash (CONST_FIXED_VALUE (value));
266 /* MODE is used in the comparison, so it should be in the hash. */
267 h ^= GET_MODE (value);
268 return h;
271 /* Returns nonzero if the value represented by X (really a ...)
272 is the same as that represented by Y (really a ...). */
274 static int
275 const_fixed_htab_eq (const void *x, const void *y)
277 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
279 if (GET_MODE (a) != GET_MODE (b))
280 return 0;
281 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
284 /* Returns a hash code for X (which is a really a mem_attrs *). */
286 static hashval_t
287 mem_attrs_htab_hash (const void *x)
289 const mem_attrs *const p = (const mem_attrs *) x;
291 return (p->alias ^ (p->align * 1000)
292 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
293 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
294 ^ (size_t) iterative_hash_expr (p->expr, 0));
297 /* Returns nonzero if the value represented by X (which is really a
298 mem_attrs *) is the same as that given by Y (which is also really a
299 mem_attrs *). */
301 static int
302 mem_attrs_htab_eq (const void *x, const void *y)
304 const mem_attrs *const p = (const mem_attrs *) x;
305 const mem_attrs *const q = (const mem_attrs *) y;
307 return (p->alias == q->alias && p->offset == q->offset
308 && p->size == q->size && p->align == q->align
309 && (p->expr == q->expr
310 || (p->expr != NULL_TREE && q->expr != NULL_TREE
311 && operand_equal_p (p->expr, q->expr, 0))));
314 /* Allocate a new mem_attrs structure and insert it into the hash table if
315 one identical to it is not already in the table. We are doing this for
316 MEM of mode MODE. */
318 static mem_attrs *
319 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
320 unsigned int align, enum machine_mode mode)
322 mem_attrs attrs;
323 void **slot;
325 /* If everything is the default, we can just return zero.
326 This must match what the corresponding MEM_* macros return when the
327 field is not present. */
328 if (alias == 0 && expr == 0 && offset == 0
329 && (size == 0
330 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
331 && (STRICT_ALIGNMENT && mode != BLKmode
332 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
333 return 0;
335 attrs.alias = alias;
336 attrs.expr = expr;
337 attrs.offset = offset;
338 attrs.size = size;
339 attrs.align = align;
341 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
342 if (*slot == 0)
344 *slot = ggc_alloc (sizeof (mem_attrs));
345 memcpy (*slot, &attrs, sizeof (mem_attrs));
348 return *slot;
351 /* Returns a hash code for X (which is a really a reg_attrs *). */
353 static hashval_t
354 reg_attrs_htab_hash (const void *x)
356 const reg_attrs *const p = (const reg_attrs *) x;
358 return ((p->offset * 1000) ^ (long) p->decl);
361 /* Returns nonzero if the value represented by X (which is really a
362 reg_attrs *) is the same as that given by Y (which is also really a
363 reg_attrs *). */
365 static int
366 reg_attrs_htab_eq (const void *x, const void *y)
368 const reg_attrs *const p = (const reg_attrs *) x;
369 const reg_attrs *const q = (const reg_attrs *) y;
371 return (p->decl == q->decl && p->offset == q->offset);
373 /* Allocate a new reg_attrs structure and insert it into the hash table if
374 one identical to it is not already in the table. We are doing this for
375 MEM of mode MODE. */
377 static reg_attrs *
378 get_reg_attrs (tree decl, int offset)
380 reg_attrs attrs;
381 void **slot;
383 /* If everything is the default, we can just return zero. */
384 if (decl == 0 && offset == 0)
385 return 0;
387 attrs.decl = decl;
388 attrs.offset = offset;
390 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
391 if (*slot == 0)
393 *slot = ggc_alloc (sizeof (reg_attrs));
394 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 return *slot;
401 #if !HAVE_blockage
402 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
403 across this insn. */
406 gen_blockage (void)
408 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
409 MEM_VOLATILE_P (x) = true;
410 return x;
412 #endif
415 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
416 don't attempt to share with the various global pieces of rtl (such as
417 frame_pointer_rtx). */
420 gen_raw_REG (enum machine_mode mode, int regno)
422 rtx x = gen_rtx_raw_REG (mode, regno);
423 ORIGINAL_REGNO (x) = regno;
424 return x;
427 /* There are some RTL codes that require special attention; the generation
428 functions do the raw handling. If you add to this list, modify
429 special_rtx in gengenrtl.c as well. */
432 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
434 void **slot;
436 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
437 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
439 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
440 if (const_true_rtx && arg == STORE_FLAG_VALUE)
441 return const_true_rtx;
442 #endif
444 /* Look up the CONST_INT in the hash table. */
445 slot = htab_find_slot_with_hash (const_int_htab, &arg,
446 (hashval_t) arg, INSERT);
447 if (*slot == 0)
448 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
450 return (rtx) *slot;
454 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
456 return GEN_INT (trunc_int_for_mode (c, mode));
459 /* CONST_DOUBLEs might be created from pairs of integers, or from
460 REAL_VALUE_TYPEs. Also, their length is known only at run time,
461 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
463 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
464 hash table. If so, return its counterpart; otherwise add it
465 to the hash table and return it. */
466 static rtx
467 lookup_const_double (rtx real)
469 void **slot = htab_find_slot (const_double_htab, real, INSERT);
470 if (*slot == 0)
471 *slot = real;
473 return (rtx) *slot;
476 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
477 VALUE in mode MODE. */
479 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
481 rtx real = rtx_alloc (CONST_DOUBLE);
482 PUT_MODE (real, mode);
484 real->u.rv = value;
486 return lookup_const_double (real);
489 /* Determine whether FIXED, a CONST_FIXED, already exists in the
490 hash table. If so, return its counterpart; otherwise add it
491 to the hash table and return it. */
493 static rtx
494 lookup_const_fixed (rtx fixed)
496 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
497 if (*slot == 0)
498 *slot = fixed;
500 return (rtx) *slot;
503 /* Return a CONST_FIXED rtx for a fixed-point value specified by
504 VALUE in mode MODE. */
507 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
509 rtx fixed = rtx_alloc (CONST_FIXED);
510 PUT_MODE (fixed, mode);
512 fixed->u.fv = value;
514 return lookup_const_fixed (fixed);
517 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
518 of ints: I0 is the low-order word and I1 is the high-order word.
519 Do not use this routine for non-integer modes; convert to
520 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
523 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
525 rtx value;
526 unsigned int i;
528 /* There are the following cases (note that there are no modes with
529 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
531 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
532 gen_int_mode.
533 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
534 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
535 from copies of the sign bit, and sign of i0 and i1 are the same), then
536 we return a CONST_INT for i0.
537 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
538 if (mode != VOIDmode)
540 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
541 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
542 /* We can get a 0 for an error mark. */
543 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
547 return gen_int_mode (i0, mode);
549 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
552 /* If this integer fits in one word, return a CONST_INT. */
553 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
554 return GEN_INT (i0);
556 /* We use VOIDmode for integers. */
557 value = rtx_alloc (CONST_DOUBLE);
558 PUT_MODE (value, VOIDmode);
560 CONST_DOUBLE_LOW (value) = i0;
561 CONST_DOUBLE_HIGH (value) = i1;
563 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
564 XWINT (value, i) = 0;
566 return lookup_const_double (value);
570 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
572 /* In case the MD file explicitly references the frame pointer, have
573 all such references point to the same frame pointer. This is
574 used during frame pointer elimination to distinguish the explicit
575 references to these registers from pseudos that happened to be
576 assigned to them.
578 If we have eliminated the frame pointer or arg pointer, we will
579 be using it as a normal register, for example as a spill
580 register. In such cases, we might be accessing it in a mode that
581 is not Pmode and therefore cannot use the pre-allocated rtx.
583 Also don't do this when we are making new REGs in reload, since
584 we don't want to get confused with the real pointers. */
586 if (mode == Pmode && !reload_in_progress)
588 if (regno == FRAME_POINTER_REGNUM
589 && (!reload_completed || frame_pointer_needed))
590 return frame_pointer_rtx;
591 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
592 if (regno == HARD_FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return hard_frame_pointer_rtx;
595 #endif
596 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
597 if (regno == ARG_POINTER_REGNUM)
598 return arg_pointer_rtx;
599 #endif
600 #ifdef RETURN_ADDRESS_POINTER_REGNUM
601 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
602 return return_address_pointer_rtx;
603 #endif
604 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
605 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
606 return pic_offset_table_rtx;
607 if (regno == STACK_POINTER_REGNUM)
608 return stack_pointer_rtx;
611 #if 0
612 /* If the per-function register table has been set up, try to re-use
613 an existing entry in that table to avoid useless generation of RTL.
615 This code is disabled for now until we can fix the various backends
616 which depend on having non-shared hard registers in some cases. Long
617 term we want to re-enable this code as it can significantly cut down
618 on the amount of useless RTL that gets generated.
620 We'll also need to fix some code that runs after reload that wants to
621 set ORIGINAL_REGNO. */
623 if (cfun
624 && cfun->emit
625 && regno_reg_rtx
626 && regno < FIRST_PSEUDO_REGISTER
627 && reg_raw_mode[regno] == mode)
628 return regno_reg_rtx[regno];
629 #endif
631 return gen_raw_REG (mode, regno);
635 gen_rtx_MEM (enum machine_mode mode, rtx addr)
637 rtx rt = gen_rtx_raw_MEM (mode, addr);
639 /* This field is not cleared by the mere allocation of the rtx, so
640 we clear it here. */
641 MEM_ATTRS (rt) = 0;
643 return rt;
646 /* Generate a memory referring to non-trapping constant memory. */
649 gen_const_mem (enum machine_mode mode, rtx addr)
651 rtx mem = gen_rtx_MEM (mode, addr);
652 MEM_READONLY_P (mem) = 1;
653 MEM_NOTRAP_P (mem) = 1;
654 return mem;
657 /* Generate a MEM referring to fixed portions of the frame, e.g., register
658 save areas. */
661 gen_frame_mem (enum machine_mode mode, rtx addr)
663 rtx mem = gen_rtx_MEM (mode, addr);
664 MEM_NOTRAP_P (mem) = 1;
665 set_mem_alias_set (mem, get_frame_alias_set ());
666 return mem;
669 /* Generate a MEM referring to a temporary use of the stack, not part
670 of the fixed stack frame. For example, something which is pushed
671 by a target splitter. */
673 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
675 rtx mem = gen_rtx_MEM (mode, addr);
676 MEM_NOTRAP_P (mem) = 1;
677 if (!current_function_calls_alloca)
678 set_mem_alias_set (mem, get_frame_alias_set ());
679 return mem;
682 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
683 this construct would be valid, and false otherwise. */
685 bool
686 validate_subreg (enum machine_mode omode, enum machine_mode imode,
687 const_rtx reg, unsigned int offset)
689 unsigned int isize = GET_MODE_SIZE (imode);
690 unsigned int osize = GET_MODE_SIZE (omode);
692 /* All subregs must be aligned. */
693 if (offset % osize != 0)
694 return false;
696 /* The subreg offset cannot be outside the inner object. */
697 if (offset >= isize)
698 return false;
700 /* ??? This should not be here. Temporarily continue to allow word_mode
701 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
702 Generally, backends are doing something sketchy but it'll take time to
703 fix them all. */
704 if (omode == word_mode)
706 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
707 is the culprit here, and not the backends. */
708 else if (osize >= UNITS_PER_WORD && isize >= osize)
710 /* Allow component subregs of complex and vector. Though given the below
711 extraction rules, it's not always clear what that means. */
712 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
713 && GET_MODE_INNER (imode) == omode)
715 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
716 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
717 represent this. It's questionable if this ought to be represented at
718 all -- why can't this all be hidden in post-reload splitters that make
719 arbitrarily mode changes to the registers themselves. */
720 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
722 /* Subregs involving floating point modes are not allowed to
723 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
724 (subreg:SI (reg:DF) 0) isn't. */
725 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
727 if (isize != osize)
728 return false;
731 /* Paradoxical subregs must have offset zero. */
732 if (osize > isize)
733 return offset == 0;
735 /* This is a normal subreg. Verify that the offset is representable. */
737 /* For hard registers, we already have most of these rules collected in
738 subreg_offset_representable_p. */
739 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
741 unsigned int regno = REGNO (reg);
743 #ifdef CANNOT_CHANGE_MODE_CLASS
744 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
745 && GET_MODE_INNER (imode) == omode)
747 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
748 return false;
749 #endif
751 return subreg_offset_representable_p (regno, imode, offset, omode);
754 /* For pseudo registers, we want most of the same checks. Namely:
755 If the register no larger than a word, the subreg must be lowpart.
756 If the register is larger than a word, the subreg must be the lowpart
757 of a subword. A subreg does *not* perform arbitrary bit extraction.
758 Given that we've already checked mode/offset alignment, we only have
759 to check subword subregs here. */
760 if (osize < UNITS_PER_WORD)
762 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
763 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
764 if (offset % UNITS_PER_WORD != low_off)
765 return false;
767 return true;
771 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
773 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
774 return gen_rtx_raw_SUBREG (mode, reg, offset);
777 /* Generate a SUBREG representing the least-significant part of REG if MODE
778 is smaller than mode of REG, otherwise paradoxical SUBREG. */
781 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
783 enum machine_mode inmode;
785 inmode = GET_MODE (reg);
786 if (inmode == VOIDmode)
787 inmode = mode;
788 return gen_rtx_SUBREG (mode, reg,
789 subreg_lowpart_offset (mode, inmode));
792 /* gen_rtvec (n, [rt1, ..., rtn])
794 ** This routine creates an rtvec and stores within it the
795 ** pointers to rtx's which are its arguments.
798 /*VARARGS1*/
799 rtvec
800 gen_rtvec (int n, ...)
802 int i, save_n;
803 rtx *vector;
804 va_list p;
806 va_start (p, n);
808 if (n == 0)
809 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
811 vector = alloca (n * sizeof (rtx));
813 for (i = 0; i < n; i++)
814 vector[i] = va_arg (p, rtx);
816 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
817 save_n = n;
818 va_end (p);
820 return gen_rtvec_v (save_n, vector);
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
826 int i;
827 rtvec rt_val;
829 if (n == 0)
830 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
832 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
834 for (i = 0; i < n; i++)
835 rt_val->elem[i] = *argp++;
837 return rt_val;
840 /* Generate a REG rtx for a new pseudo register of mode MODE.
841 This pseudo is assigned the next sequential register number. */
844 gen_reg_rtx (enum machine_mode mode)
846 struct function *f = cfun;
847 rtx val;
849 gcc_assert (can_create_pseudo_p ());
851 if (generating_concat_p
852 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
853 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
855 /* For complex modes, don't make a single pseudo.
856 Instead, make a CONCAT of two pseudos.
857 This allows noncontiguous allocation of the real and imaginary parts,
858 which makes much better code. Besides, allocating DCmode
859 pseudos overstrains reload on some machines like the 386. */
860 rtx realpart, imagpart;
861 enum machine_mode partmode = GET_MODE_INNER (mode);
863 realpart = gen_reg_rtx (partmode);
864 imagpart = gen_reg_rtx (partmode);
865 return gen_rtx_CONCAT (mode, realpart, imagpart);
868 /* Make sure regno_pointer_align, and regno_reg_rtx are large
869 enough to have an element for this pseudo reg number. */
871 if (reg_rtx_no == f->emit->regno_pointer_align_length)
873 int old_size = f->emit->regno_pointer_align_length;
874 char *new;
875 rtx *new1;
877 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
878 memset (new + old_size, 0, old_size);
879 f->emit->regno_pointer_align = (unsigned char *) new;
881 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
882 old_size * 2 * sizeof (rtx));
883 memset (new1 + old_size, 0, old_size * sizeof (rtx));
884 regno_reg_rtx = new1;
886 f->emit->regno_pointer_align_length = old_size * 2;
889 val = gen_raw_REG (mode, reg_rtx_no);
890 regno_reg_rtx[reg_rtx_no++] = val;
891 return val;
894 /* Update NEW with the same attributes as REG, but offsetted by OFFSET.
895 Do the big endian correction if needed. */
897 static void
898 update_reg_offset (rtx new, rtx reg, int offset)
900 tree decl;
901 HOST_WIDE_INT var_size;
903 /* PR middle-end/14084
904 The problem appears when a variable is stored in a larger register
905 and later it is used in the original mode or some mode in between
906 or some part of variable is accessed.
908 On little endian machines there is no problem because
909 the REG_OFFSET of the start of the variable is the same when
910 accessed in any mode (it is 0).
912 However, this is not true on big endian machines.
913 The offset of the start of the variable is different when accessed
914 in different modes.
915 When we are taking a part of the REG we have to change the OFFSET
916 from offset WRT size of mode of REG to offset WRT size of variable.
918 If we would not do the big endian correction the resulting REG_OFFSET
919 would be larger than the size of the DECL.
921 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
923 REG.mode MODE DECL size old offset new offset description
924 DI SI 4 4 0 int32 in SImode
925 DI SI 1 4 0 char in SImode
926 DI QI 1 7 0 char in QImode
927 DI QI 4 5 1 1st element in QImode
928 of char[4]
929 DI HI 4 6 2 1st element in HImode
930 of int16[2]
932 If the size of DECL is equal or greater than the size of REG
933 we can't do this correction because the register holds the
934 whole variable or a part of the variable and thus the REG_OFFSET
935 is already correct. */
937 decl = REG_EXPR (reg);
938 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
939 && decl != NULL
940 && offset > 0
941 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (GET_MODE (new))
942 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
943 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
945 int offset_le;
947 /* Convert machine endian to little endian WRT size of mode of REG. */
948 if (WORDS_BIG_ENDIAN)
949 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
950 / UNITS_PER_WORD) * UNITS_PER_WORD;
951 else
952 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
954 if (BYTES_BIG_ENDIAN)
955 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
956 % UNITS_PER_WORD);
957 else
958 offset_le += offset % UNITS_PER_WORD;
960 if (offset_le >= var_size)
962 /* MODE is wider than the variable so the new reg will cover
963 the whole variable so the resulting OFFSET should be 0. */
964 offset = 0;
966 else
968 /* Convert little endian to machine endian WRT size of variable. */
969 if (WORDS_BIG_ENDIAN)
970 offset = ((var_size - 1 - offset_le)
971 / UNITS_PER_WORD) * UNITS_PER_WORD;
972 else
973 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
975 if (BYTES_BIG_ENDIAN)
976 offset += ((var_size - 1 - offset_le)
977 % UNITS_PER_WORD);
978 else
979 offset += offset_le % UNITS_PER_WORD;
983 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
984 REG_OFFSET (reg) + offset);
987 /* Generate a register with same attributes as REG, but offsetted by
988 OFFSET. */
991 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
992 int offset)
994 rtx new = gen_rtx_REG (mode, regno);
996 update_reg_offset (new, reg, offset);
997 return new;
1000 /* Generate a new pseudo-register with the same attributes as REG, but
1001 offsetted by OFFSET. */
1004 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1006 rtx new = gen_reg_rtx (mode);
1008 update_reg_offset (new, reg, offset);
1009 return new;
1012 /* Set the decl for MEM to DECL. */
1014 void
1015 set_reg_attrs_from_mem (rtx reg, rtx mem)
1017 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
1018 REG_ATTRS (reg)
1019 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
1022 /* Set the register attributes for registers contained in PARM_RTX.
1023 Use needed values from memory attributes of MEM. */
1025 void
1026 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1028 if (REG_P (parm_rtx))
1029 set_reg_attrs_from_mem (parm_rtx, mem);
1030 else if (GET_CODE (parm_rtx) == PARALLEL)
1032 /* Check for a NULL entry in the first slot, used to indicate that the
1033 parameter goes both on the stack and in registers. */
1034 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1035 for (; i < XVECLEN (parm_rtx, 0); i++)
1037 rtx x = XVECEXP (parm_rtx, 0, i);
1038 if (REG_P (XEXP (x, 0)))
1039 REG_ATTRS (XEXP (x, 0))
1040 = get_reg_attrs (MEM_EXPR (mem),
1041 INTVAL (XEXP (x, 1)));
1046 /* Assign the RTX X to declaration T. */
1047 void
1048 set_decl_rtl (tree t, rtx x)
1050 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1052 if (!x)
1053 return;
1054 /* For register, we maintain the reverse information too. */
1055 if (REG_P (x))
1056 REG_ATTRS (x) = get_reg_attrs (t, 0);
1057 else if (GET_CODE (x) == SUBREG)
1058 REG_ATTRS (SUBREG_REG (x))
1059 = get_reg_attrs (t, -SUBREG_BYTE (x));
1060 if (GET_CODE (x) == CONCAT)
1062 if (REG_P (XEXP (x, 0)))
1063 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1064 if (REG_P (XEXP (x, 1)))
1065 REG_ATTRS (XEXP (x, 1))
1066 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1068 if (GET_CODE (x) == PARALLEL)
1070 int i;
1071 for (i = 0; i < XVECLEN (x, 0); i++)
1073 rtx y = XVECEXP (x, 0, i);
1074 if (REG_P (XEXP (y, 0)))
1075 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1080 /* Assign the RTX X to parameter declaration T. */
1081 void
1082 set_decl_incoming_rtl (tree t, rtx x)
1084 DECL_INCOMING_RTL (t) = x;
1086 if (!x)
1087 return;
1088 /* For register, we maintain the reverse information too. */
1089 if (REG_P (x))
1090 REG_ATTRS (x) = get_reg_attrs (t, 0);
1091 else if (GET_CODE (x) == SUBREG)
1092 REG_ATTRS (SUBREG_REG (x))
1093 = get_reg_attrs (t, -SUBREG_BYTE (x));
1094 if (GET_CODE (x) == CONCAT)
1096 if (REG_P (XEXP (x, 0)))
1097 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1098 if (REG_P (XEXP (x, 1)))
1099 REG_ATTRS (XEXP (x, 1))
1100 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1102 if (GET_CODE (x) == PARALLEL)
1104 int i, start;
1106 /* Check for a NULL entry, used to indicate that the parameter goes
1107 both on the stack and in registers. */
1108 if (XEXP (XVECEXP (x, 0, 0), 0))
1109 start = 0;
1110 else
1111 start = 1;
1113 for (i = start; i < XVECLEN (x, 0); i++)
1115 rtx y = XVECEXP (x, 0, i);
1116 if (REG_P (XEXP (y, 0)))
1117 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1122 /* Identify REG (which may be a CONCAT) as a user register. */
1124 void
1125 mark_user_reg (rtx reg)
1127 if (GET_CODE (reg) == CONCAT)
1129 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1130 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1132 else
1134 gcc_assert (REG_P (reg));
1135 REG_USERVAR_P (reg) = 1;
1139 /* Identify REG as a probable pointer register and show its alignment
1140 as ALIGN, if nonzero. */
1142 void
1143 mark_reg_pointer (rtx reg, int align)
1145 if (! REG_POINTER (reg))
1147 REG_POINTER (reg) = 1;
1149 if (align)
1150 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1152 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1153 /* We can no-longer be sure just how aligned this pointer is. */
1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1157 /* Return 1 plus largest pseudo reg number used in the current function. */
1160 max_reg_num (void)
1162 return reg_rtx_no;
1165 /* Return 1 + the largest label number used so far in the current function. */
1168 max_label_num (void)
1170 return label_num;
1173 /* Return first label number used in this function (if any were used). */
1176 get_first_label_num (void)
1178 return first_label_num;
1181 /* If the rtx for label was created during the expansion of a nested
1182 function, then first_label_num won't include this label number.
1183 Fix this now so that array indicies work later. */
1185 void
1186 maybe_set_first_label_num (rtx x)
1188 if (CODE_LABEL_NUMBER (x) < first_label_num)
1189 first_label_num = CODE_LABEL_NUMBER (x);
1192 /* Return a value representing some low-order bits of X, where the number
1193 of low-order bits is given by MODE. Note that no conversion is done
1194 between floating-point and fixed-point values, rather, the bit
1195 representation is returned.
1197 This function handles the cases in common between gen_lowpart, below,
1198 and two variants in cse.c and combine.c. These are the cases that can
1199 be safely handled at all points in the compilation.
1201 If this is not a case we can handle, return 0. */
1204 gen_lowpart_common (enum machine_mode mode, rtx x)
1206 int msize = GET_MODE_SIZE (mode);
1207 int xsize;
1208 int offset = 0;
1209 enum machine_mode innermode;
1211 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1212 so we have to make one up. Yuk. */
1213 innermode = GET_MODE (x);
1214 if (GET_CODE (x) == CONST_INT
1215 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1216 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1217 else if (innermode == VOIDmode)
1218 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1220 xsize = GET_MODE_SIZE (innermode);
1222 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1224 if (innermode == mode)
1225 return x;
1227 /* MODE must occupy no more words than the mode of X. */
1228 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1229 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1230 return 0;
1232 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1233 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1234 return 0;
1236 offset = subreg_lowpart_offset (mode, innermode);
1238 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1239 && (GET_MODE_CLASS (mode) == MODE_INT
1240 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1242 /* If we are getting the low-order part of something that has been
1243 sign- or zero-extended, we can either just use the object being
1244 extended or make a narrower extension. If we want an even smaller
1245 piece than the size of the object being extended, call ourselves
1246 recursively.
1248 This case is used mostly by combine and cse. */
1250 if (GET_MODE (XEXP (x, 0)) == mode)
1251 return XEXP (x, 0);
1252 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1253 return gen_lowpart_common (mode, XEXP (x, 0));
1254 else if (msize < xsize)
1255 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1257 else if (GET_CODE (x) == SUBREG || REG_P (x)
1258 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1259 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1260 return simplify_gen_subreg (mode, x, innermode, offset);
1262 /* Otherwise, we can't do this. */
1263 return 0;
1267 gen_highpart (enum machine_mode mode, rtx x)
1269 unsigned int msize = GET_MODE_SIZE (mode);
1270 rtx result;
1272 /* This case loses if X is a subreg. To catch bugs early,
1273 complain if an invalid MODE is used even in other cases. */
1274 gcc_assert (msize <= UNITS_PER_WORD
1275 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1277 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1278 subreg_highpart_offset (mode, GET_MODE (x)));
1279 gcc_assert (result);
1281 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1282 the target if we have a MEM. gen_highpart must return a valid operand,
1283 emitting code if necessary to do so. */
1284 if (MEM_P (result))
1286 result = validize_mem (result);
1287 gcc_assert (result);
1290 return result;
1293 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1294 be VOIDmode constant. */
1296 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1298 if (GET_MODE (exp) != VOIDmode)
1300 gcc_assert (GET_MODE (exp) == innermode);
1301 return gen_highpart (outermode, exp);
1303 return simplify_gen_subreg (outermode, exp, innermode,
1304 subreg_highpart_offset (outermode, innermode));
1307 /* Return offset in bytes to get OUTERMODE low part
1308 of the value in mode INNERMODE stored in memory in target format. */
1310 unsigned int
1311 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1313 unsigned int offset = 0;
1314 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1316 if (difference > 0)
1318 if (WORDS_BIG_ENDIAN)
1319 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1320 if (BYTES_BIG_ENDIAN)
1321 offset += difference % UNITS_PER_WORD;
1324 return offset;
1327 /* Return offset in bytes to get OUTERMODE high part
1328 of the value in mode INNERMODE stored in memory in target format. */
1329 unsigned int
1330 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1332 unsigned int offset = 0;
1333 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1335 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1337 if (difference > 0)
1339 if (! WORDS_BIG_ENDIAN)
1340 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1341 if (! BYTES_BIG_ENDIAN)
1342 offset += difference % UNITS_PER_WORD;
1345 return offset;
1348 /* Return 1 iff X, assumed to be a SUBREG,
1349 refers to the least significant part of its containing reg.
1350 If X is not a SUBREG, always return 1 (it is its own low part!). */
1353 subreg_lowpart_p (const_rtx x)
1355 if (GET_CODE (x) != SUBREG)
1356 return 1;
1357 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1358 return 0;
1360 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1361 == SUBREG_BYTE (x));
1364 /* Return subword OFFSET of operand OP.
1365 The word number, OFFSET, is interpreted as the word number starting
1366 at the low-order address. OFFSET 0 is the low-order word if not
1367 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1369 If we cannot extract the required word, we return zero. Otherwise,
1370 an rtx corresponding to the requested word will be returned.
1372 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1373 reload has completed, a valid address will always be returned. After
1374 reload, if a valid address cannot be returned, we return zero.
1376 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1377 it is the responsibility of the caller.
1379 MODE is the mode of OP in case it is a CONST_INT.
1381 ??? This is still rather broken for some cases. The problem for the
1382 moment is that all callers of this thing provide no 'goal mode' to
1383 tell us to work with. This exists because all callers were written
1384 in a word based SUBREG world.
1385 Now use of this function can be deprecated by simplify_subreg in most
1386 cases.
1390 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1392 if (mode == VOIDmode)
1393 mode = GET_MODE (op);
1395 gcc_assert (mode != VOIDmode);
1397 /* If OP is narrower than a word, fail. */
1398 if (mode != BLKmode
1399 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1400 return 0;
1402 /* If we want a word outside OP, return zero. */
1403 if (mode != BLKmode
1404 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1405 return const0_rtx;
1407 /* Form a new MEM at the requested address. */
1408 if (MEM_P (op))
1410 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1412 if (! validate_address)
1413 return new;
1415 else if (reload_completed)
1417 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1418 return 0;
1420 else
1421 return replace_equiv_address (new, XEXP (new, 0));
1424 /* Rest can be handled by simplify_subreg. */
1425 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1428 /* Similar to `operand_subword', but never return 0. If we can't
1429 extract the required subword, put OP into a register and try again.
1430 The second attempt must succeed. We always validate the address in
1431 this case.
1433 MODE is the mode of OP, in case it is CONST_INT. */
1436 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1438 rtx result = operand_subword (op, offset, 1, mode);
1440 if (result)
1441 return result;
1443 if (mode != BLKmode && mode != VOIDmode)
1445 /* If this is a register which can not be accessed by words, copy it
1446 to a pseudo register. */
1447 if (REG_P (op))
1448 op = copy_to_reg (op);
1449 else
1450 op = force_reg (mode, op);
1453 result = operand_subword (op, offset, 1, mode);
1454 gcc_assert (result);
1456 return result;
1459 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1460 or (2) a component ref of something variable. Represent the later with
1461 a NULL expression. */
1463 static tree
1464 component_ref_for_mem_expr (tree ref)
1466 tree inner = TREE_OPERAND (ref, 0);
1468 if (TREE_CODE (inner) == COMPONENT_REF)
1469 inner = component_ref_for_mem_expr (inner);
1470 else
1472 /* Now remove any conversions: they don't change what the underlying
1473 object is. Likewise for SAVE_EXPR. */
1474 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1475 || TREE_CODE (inner) == NON_LVALUE_EXPR
1476 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1477 || TREE_CODE (inner) == SAVE_EXPR)
1478 inner = TREE_OPERAND (inner, 0);
1480 if (! DECL_P (inner))
1481 inner = NULL_TREE;
1484 if (inner == TREE_OPERAND (ref, 0))
1485 return ref;
1486 else
1487 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1488 TREE_OPERAND (ref, 1), NULL_TREE);
1491 /* Returns 1 if both MEM_EXPR can be considered equal
1492 and 0 otherwise. */
1495 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1497 if (expr1 == expr2)
1498 return 1;
1500 if (! expr1 || ! expr2)
1501 return 0;
1503 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1504 return 0;
1506 if (TREE_CODE (expr1) == COMPONENT_REF)
1507 return
1508 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1509 TREE_OPERAND (expr2, 0))
1510 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1511 TREE_OPERAND (expr2, 1));
1513 if (INDIRECT_REF_P (expr1))
1514 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1515 TREE_OPERAND (expr2, 0));
1517 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1518 have been resolved here. */
1519 gcc_assert (DECL_P (expr1));
1521 /* Decls with different pointers can't be equal. */
1522 return 0;
1525 /* Given REF, a MEM, and T, either the type of X or the expression
1526 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1527 if we are making a new object of this type. BITPOS is nonzero if
1528 there is an offset outstanding on T that will be applied later. */
1530 void
1531 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1532 HOST_WIDE_INT bitpos)
1534 alias_set_type alias = MEM_ALIAS_SET (ref);
1535 tree expr = MEM_EXPR (ref);
1536 rtx offset = MEM_OFFSET (ref);
1537 rtx size = MEM_SIZE (ref);
1538 unsigned int align = MEM_ALIGN (ref);
1539 HOST_WIDE_INT apply_bitpos = 0;
1540 tree type;
1542 /* It can happen that type_for_mode was given a mode for which there
1543 is no language-level type. In which case it returns NULL, which
1544 we can see here. */
1545 if (t == NULL_TREE)
1546 return;
1548 type = TYPE_P (t) ? t : TREE_TYPE (t);
1549 if (type == error_mark_node)
1550 return;
1552 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1553 wrong answer, as it assumes that DECL_RTL already has the right alias
1554 info. Callers should not set DECL_RTL until after the call to
1555 set_mem_attributes. */
1556 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1558 /* Get the alias set from the expression or type (perhaps using a
1559 front-end routine) and use it. */
1560 alias = get_alias_set (t);
1562 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1563 MEM_IN_STRUCT_P (ref)
1564 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1565 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1567 /* If we are making an object of this type, or if this is a DECL, we know
1568 that it is a scalar if the type is not an aggregate. */
1569 if ((objectp || DECL_P (t))
1570 && ! AGGREGATE_TYPE_P (type)
1571 && TREE_CODE (type) != COMPLEX_TYPE)
1572 MEM_SCALAR_P (ref) = 1;
1574 /* We can set the alignment from the type if we are making an object,
1575 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1576 if (objectp || TREE_CODE (t) == INDIRECT_REF
1577 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1578 || TYPE_ALIGN_OK (type))
1579 align = MAX (align, TYPE_ALIGN (type));
1580 else
1581 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1583 if (integer_zerop (TREE_OPERAND (t, 1)))
1584 /* We don't know anything about the alignment. */
1585 align = BITS_PER_UNIT;
1586 else
1587 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1590 /* If the size is known, we can set that. */
1591 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1592 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1594 /* If T is not a type, we may be able to deduce some more information about
1595 the expression. */
1596 if (! TYPE_P (t))
1598 tree base;
1600 if (TREE_THIS_VOLATILE (t))
1601 MEM_VOLATILE_P (ref) = 1;
1603 /* Now remove any conversions: they don't change what the underlying
1604 object is. Likewise for SAVE_EXPR. */
1605 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1606 || TREE_CODE (t) == NON_LVALUE_EXPR
1607 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1608 || TREE_CODE (t) == SAVE_EXPR)
1609 t = TREE_OPERAND (t, 0);
1611 /* We may look through structure-like accesses for the purposes of
1612 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1613 base = t;
1614 while (TREE_CODE (base) == COMPONENT_REF
1615 || TREE_CODE (base) == REALPART_EXPR
1616 || TREE_CODE (base) == IMAGPART_EXPR
1617 || TREE_CODE (base) == BIT_FIELD_REF)
1618 base = TREE_OPERAND (base, 0);
1620 if (DECL_P (base))
1622 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1623 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1624 else
1625 MEM_NOTRAP_P (ref) = 1;
1627 else
1628 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1630 base = get_base_address (base);
1631 if (base && DECL_P (base)
1632 && TREE_READONLY (base)
1633 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1635 tree base_type = TREE_TYPE (base);
1636 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1637 || DECL_ARTIFICIAL (base));
1638 MEM_READONLY_P (ref) = 1;
1641 /* If this expression uses it's parent's alias set, mark it such
1642 that we won't change it. */
1643 if (component_uses_parent_alias_set (t))
1644 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1646 /* If this is a decl, set the attributes of the MEM from it. */
1647 if (DECL_P (t))
1649 expr = t;
1650 offset = const0_rtx;
1651 apply_bitpos = bitpos;
1652 size = (DECL_SIZE_UNIT (t)
1653 && host_integerp (DECL_SIZE_UNIT (t), 1)
1654 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1655 align = DECL_ALIGN (t);
1658 /* If this is a constant, we know the alignment. */
1659 else if (CONSTANT_CLASS_P (t))
1661 align = TYPE_ALIGN (type);
1662 #ifdef CONSTANT_ALIGNMENT
1663 align = CONSTANT_ALIGNMENT (t, align);
1664 #endif
1667 /* If this is a field reference and not a bit-field, record it. */
1668 /* ??? There is some information that can be gleened from bit-fields,
1669 such as the word offset in the structure that might be modified.
1670 But skip it for now. */
1671 else if (TREE_CODE (t) == COMPONENT_REF
1672 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1674 expr = component_ref_for_mem_expr (t);
1675 offset = const0_rtx;
1676 apply_bitpos = bitpos;
1677 /* ??? Any reason the field size would be different than
1678 the size we got from the type? */
1681 /* If this is an array reference, look for an outer field reference. */
1682 else if (TREE_CODE (t) == ARRAY_REF)
1684 tree off_tree = size_zero_node;
1685 /* We can't modify t, because we use it at the end of the
1686 function. */
1687 tree t2 = t;
1691 tree index = TREE_OPERAND (t2, 1);
1692 tree low_bound = array_ref_low_bound (t2);
1693 tree unit_size = array_ref_element_size (t2);
1695 /* We assume all arrays have sizes that are a multiple of a byte.
1696 First subtract the lower bound, if any, in the type of the
1697 index, then convert to sizetype and multiply by the size of
1698 the array element. */
1699 if (! integer_zerop (low_bound))
1700 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1701 index, low_bound);
1703 off_tree = size_binop (PLUS_EXPR,
1704 size_binop (MULT_EXPR,
1705 fold_convert (sizetype,
1706 index),
1707 unit_size),
1708 off_tree);
1709 t2 = TREE_OPERAND (t2, 0);
1711 while (TREE_CODE (t2) == ARRAY_REF);
1713 if (DECL_P (t2))
1715 expr = t2;
1716 offset = NULL;
1717 if (host_integerp (off_tree, 1))
1719 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1720 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1721 align = DECL_ALIGN (t2);
1722 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1723 align = aoff;
1724 offset = GEN_INT (ioff);
1725 apply_bitpos = bitpos;
1728 else if (TREE_CODE (t2) == COMPONENT_REF)
1730 expr = component_ref_for_mem_expr (t2);
1731 if (host_integerp (off_tree, 1))
1733 offset = GEN_INT (tree_low_cst (off_tree, 1));
1734 apply_bitpos = bitpos;
1736 /* ??? Any reason the field size would be different than
1737 the size we got from the type? */
1739 else if (flag_argument_noalias > 1
1740 && (INDIRECT_REF_P (t2))
1741 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1743 expr = t2;
1744 offset = NULL;
1748 /* If this is a Fortran indirect argument reference, record the
1749 parameter decl. */
1750 else if (flag_argument_noalias > 1
1751 && (INDIRECT_REF_P (t))
1752 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1754 expr = t;
1755 offset = NULL;
1759 /* If we modified OFFSET based on T, then subtract the outstanding
1760 bit position offset. Similarly, increase the size of the accessed
1761 object to contain the negative offset. */
1762 if (apply_bitpos)
1764 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1765 if (size)
1766 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1769 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1771 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1772 we're overlapping. */
1773 offset = NULL;
1774 expr = NULL;
1777 /* Now set the attributes we computed above. */
1778 MEM_ATTRS (ref)
1779 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1781 /* If this is already known to be a scalar or aggregate, we are done. */
1782 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1783 return;
1785 /* If it is a reference into an aggregate, this is part of an aggregate.
1786 Otherwise we don't know. */
1787 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1788 || TREE_CODE (t) == ARRAY_RANGE_REF
1789 || TREE_CODE (t) == BIT_FIELD_REF)
1790 MEM_IN_STRUCT_P (ref) = 1;
1793 void
1794 set_mem_attributes (rtx ref, tree t, int objectp)
1796 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1799 /* Set the decl for MEM to DECL. */
1801 void
1802 set_mem_attrs_from_reg (rtx mem, rtx reg)
1804 MEM_ATTRS (mem)
1805 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1806 GEN_INT (REG_OFFSET (reg)),
1807 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1810 /* Set the alias set of MEM to SET. */
1812 void
1813 set_mem_alias_set (rtx mem, alias_set_type set)
1815 #ifdef ENABLE_CHECKING
1816 /* If the new and old alias sets don't conflict, something is wrong. */
1817 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1818 #endif
1820 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1821 MEM_SIZE (mem), MEM_ALIGN (mem),
1822 GET_MODE (mem));
1825 /* Set the alignment of MEM to ALIGN bits. */
1827 void
1828 set_mem_align (rtx mem, unsigned int align)
1830 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1831 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1832 GET_MODE (mem));
1835 /* Set the expr for MEM to EXPR. */
1837 void
1838 set_mem_expr (rtx mem, tree expr)
1840 MEM_ATTRS (mem)
1841 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1842 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1845 /* Set the offset of MEM to OFFSET. */
1847 void
1848 set_mem_offset (rtx mem, rtx offset)
1850 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1851 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1852 GET_MODE (mem));
1855 /* Set the size of MEM to SIZE. */
1857 void
1858 set_mem_size (rtx mem, rtx size)
1860 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1861 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1862 GET_MODE (mem));
1865 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1866 and its address changed to ADDR. (VOIDmode means don't change the mode.
1867 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1868 returned memory location is required to be valid. The memory
1869 attributes are not changed. */
1871 static rtx
1872 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1874 rtx new;
1876 gcc_assert (MEM_P (memref));
1877 if (mode == VOIDmode)
1878 mode = GET_MODE (memref);
1879 if (addr == 0)
1880 addr = XEXP (memref, 0);
1881 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1882 && (!validate || memory_address_p (mode, addr)))
1883 return memref;
1885 if (validate)
1887 if (reload_in_progress || reload_completed)
1888 gcc_assert (memory_address_p (mode, addr));
1889 else
1890 addr = memory_address (mode, addr);
1893 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1894 return memref;
1896 new = gen_rtx_MEM (mode, addr);
1897 MEM_COPY_ATTRIBUTES (new, memref);
1898 return new;
1901 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1902 way we are changing MEMREF, so we only preserve the alias set. */
1905 change_address (rtx memref, enum machine_mode mode, rtx addr)
1907 rtx new = change_address_1 (memref, mode, addr, 1), size;
1908 enum machine_mode mmode = GET_MODE (new);
1909 unsigned int align;
1911 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1912 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1914 /* If there are no changes, just return the original memory reference. */
1915 if (new == memref)
1917 if (MEM_ATTRS (memref) == 0
1918 || (MEM_EXPR (memref) == NULL
1919 && MEM_OFFSET (memref) == NULL
1920 && MEM_SIZE (memref) == size
1921 && MEM_ALIGN (memref) == align))
1922 return new;
1924 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1925 MEM_COPY_ATTRIBUTES (new, memref);
1928 MEM_ATTRS (new)
1929 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1931 return new;
1934 /* Return a memory reference like MEMREF, but with its mode changed
1935 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1936 nonzero, the memory address is forced to be valid.
1937 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1938 and caller is responsible for adjusting MEMREF base register. */
1941 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1942 int validate, int adjust)
1944 rtx addr = XEXP (memref, 0);
1945 rtx new;
1946 rtx memoffset = MEM_OFFSET (memref);
1947 rtx size = 0;
1948 unsigned int memalign = MEM_ALIGN (memref);
1950 /* If there are no changes, just return the original memory reference. */
1951 if (mode == GET_MODE (memref) && !offset
1952 && (!validate || memory_address_p (mode, addr)))
1953 return memref;
1955 /* ??? Prefer to create garbage instead of creating shared rtl.
1956 This may happen even if offset is nonzero -- consider
1957 (plus (plus reg reg) const_int) -- so do this always. */
1958 addr = copy_rtx (addr);
1960 if (adjust)
1962 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1963 object, we can merge it into the LO_SUM. */
1964 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1965 && offset >= 0
1966 && (unsigned HOST_WIDE_INT) offset
1967 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1968 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1969 plus_constant (XEXP (addr, 1), offset));
1970 else
1971 addr = plus_constant (addr, offset);
1974 new = change_address_1 (memref, mode, addr, validate);
1976 /* Compute the new values of the memory attributes due to this adjustment.
1977 We add the offsets and update the alignment. */
1978 if (memoffset)
1979 memoffset = GEN_INT (offset + INTVAL (memoffset));
1981 /* Compute the new alignment by taking the MIN of the alignment and the
1982 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1983 if zero. */
1984 if (offset != 0)
1985 memalign
1986 = MIN (memalign,
1987 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1989 /* We can compute the size in a number of ways. */
1990 if (GET_MODE (new) != BLKmode)
1991 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1992 else if (MEM_SIZE (memref))
1993 size = plus_constant (MEM_SIZE (memref), -offset);
1995 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1996 memoffset, size, memalign, GET_MODE (new));
1998 /* At some point, we should validate that this offset is within the object,
1999 if all the appropriate values are known. */
2000 return new;
2003 /* Return a memory reference like MEMREF, but with its mode changed
2004 to MODE and its address changed to ADDR, which is assumed to be
2005 MEMREF offseted by OFFSET bytes. If VALIDATE is
2006 nonzero, the memory address is forced to be valid. */
2009 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2010 HOST_WIDE_INT offset, int validate)
2012 memref = change_address_1 (memref, VOIDmode, addr, validate);
2013 return adjust_address_1 (memref, mode, offset, validate, 0);
2016 /* Return a memory reference like MEMREF, but whose address is changed by
2017 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2018 known to be in OFFSET (possibly 1). */
2021 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2023 rtx new, addr = XEXP (memref, 0);
2025 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2027 /* At this point we don't know _why_ the address is invalid. It
2028 could have secondary memory references, multiplies or anything.
2030 However, if we did go and rearrange things, we can wind up not
2031 being able to recognize the magic around pic_offset_table_rtx.
2032 This stuff is fragile, and is yet another example of why it is
2033 bad to expose PIC machinery too early. */
2034 if (! memory_address_p (GET_MODE (memref), new)
2035 && GET_CODE (addr) == PLUS
2036 && XEXP (addr, 0) == pic_offset_table_rtx)
2038 addr = force_reg (GET_MODE (addr), addr);
2039 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2042 update_temp_slot_address (XEXP (memref, 0), new);
2043 new = change_address_1 (memref, VOIDmode, new, 1);
2045 /* If there are no changes, just return the original memory reference. */
2046 if (new == memref)
2047 return new;
2049 /* Update the alignment to reflect the offset. Reset the offset, which
2050 we don't know. */
2051 MEM_ATTRS (new)
2052 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2053 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2054 GET_MODE (new));
2055 return new;
2058 /* Return a memory reference like MEMREF, but with its address changed to
2059 ADDR. The caller is asserting that the actual piece of memory pointed
2060 to is the same, just the form of the address is being changed, such as
2061 by putting something into a register. */
2064 replace_equiv_address (rtx memref, rtx addr)
2066 /* change_address_1 copies the memory attribute structure without change
2067 and that's exactly what we want here. */
2068 update_temp_slot_address (XEXP (memref, 0), addr);
2069 return change_address_1 (memref, VOIDmode, addr, 1);
2072 /* Likewise, but the reference is not required to be valid. */
2075 replace_equiv_address_nv (rtx memref, rtx addr)
2077 return change_address_1 (memref, VOIDmode, addr, 0);
2080 /* Return a memory reference like MEMREF, but with its mode widened to
2081 MODE and offset by OFFSET. This would be used by targets that e.g.
2082 cannot issue QImode memory operations and have to use SImode memory
2083 operations plus masking logic. */
2086 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2088 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2089 tree expr = MEM_EXPR (new);
2090 rtx memoffset = MEM_OFFSET (new);
2091 unsigned int size = GET_MODE_SIZE (mode);
2093 /* If there are no changes, just return the original memory reference. */
2094 if (new == memref)
2095 return new;
2097 /* If we don't know what offset we were at within the expression, then
2098 we can't know if we've overstepped the bounds. */
2099 if (! memoffset)
2100 expr = NULL_TREE;
2102 while (expr)
2104 if (TREE_CODE (expr) == COMPONENT_REF)
2106 tree field = TREE_OPERAND (expr, 1);
2107 tree offset = component_ref_field_offset (expr);
2109 if (! DECL_SIZE_UNIT (field))
2111 expr = NULL_TREE;
2112 break;
2115 /* Is the field at least as large as the access? If so, ok,
2116 otherwise strip back to the containing structure. */
2117 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2118 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2119 && INTVAL (memoffset) >= 0)
2120 break;
2122 if (! host_integerp (offset, 1))
2124 expr = NULL_TREE;
2125 break;
2128 expr = TREE_OPERAND (expr, 0);
2129 memoffset
2130 = (GEN_INT (INTVAL (memoffset)
2131 + tree_low_cst (offset, 1)
2132 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2133 / BITS_PER_UNIT)));
2135 /* Similarly for the decl. */
2136 else if (DECL_P (expr)
2137 && DECL_SIZE_UNIT (expr)
2138 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2139 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2140 && (! memoffset || INTVAL (memoffset) >= 0))
2141 break;
2142 else
2144 /* The widened memory access overflows the expression, which means
2145 that it could alias another expression. Zap it. */
2146 expr = NULL_TREE;
2147 break;
2151 if (! expr)
2152 memoffset = NULL_RTX;
2154 /* The widened memory may alias other stuff, so zap the alias set. */
2155 /* ??? Maybe use get_alias_set on any remaining expression. */
2157 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2158 MEM_ALIGN (new), mode);
2160 return new;
2163 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2166 gen_label_rtx (void)
2168 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2169 NULL, label_num++, NULL);
2172 /* For procedure integration. */
2174 /* Install new pointers to the first and last insns in the chain.
2175 Also, set cur_insn_uid to one higher than the last in use.
2176 Used for an inline-procedure after copying the insn chain. */
2178 void
2179 set_new_first_and_last_insn (rtx first, rtx last)
2181 rtx insn;
2183 first_insn = first;
2184 last_insn = last;
2185 cur_insn_uid = 0;
2187 for (insn = first; insn; insn = NEXT_INSN (insn))
2188 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2190 cur_insn_uid++;
2193 /* Go through all the RTL insn bodies and copy any invalid shared
2194 structure. This routine should only be called once. */
2196 static void
2197 unshare_all_rtl_1 (rtx insn)
2199 /* Unshare just about everything else. */
2200 unshare_all_rtl_in_chain (insn);
2202 /* Make sure the addresses of stack slots found outside the insn chain
2203 (such as, in DECL_RTL of a variable) are not shared
2204 with the insn chain.
2206 This special care is necessary when the stack slot MEM does not
2207 actually appear in the insn chain. If it does appear, its address
2208 is unshared from all else at that point. */
2209 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2212 /* Go through all the RTL insn bodies and copy any invalid shared
2213 structure, again. This is a fairly expensive thing to do so it
2214 should be done sparingly. */
2216 void
2217 unshare_all_rtl_again (rtx insn)
2219 rtx p;
2220 tree decl;
2222 for (p = insn; p; p = NEXT_INSN (p))
2223 if (INSN_P (p))
2225 reset_used_flags (PATTERN (p));
2226 reset_used_flags (REG_NOTES (p));
2229 /* Make sure that virtual stack slots are not shared. */
2230 set_used_decls (DECL_INITIAL (cfun->decl));
2232 /* Make sure that virtual parameters are not shared. */
2233 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2234 set_used_flags (DECL_RTL (decl));
2236 reset_used_flags (stack_slot_list);
2238 unshare_all_rtl_1 (insn);
2241 unsigned int
2242 unshare_all_rtl (void)
2244 unshare_all_rtl_1 (get_insns ());
2245 return 0;
2248 struct tree_opt_pass pass_unshare_all_rtl =
2250 "unshare", /* name */
2251 NULL, /* gate */
2252 unshare_all_rtl, /* execute */
2253 NULL, /* sub */
2254 NULL, /* next */
2255 0, /* static_pass_number */
2256 0, /* tv_id */
2257 0, /* properties_required */
2258 0, /* properties_provided */
2259 0, /* properties_destroyed */
2260 0, /* todo_flags_start */
2261 TODO_dump_func | TODO_verify_rtl_sharing, /* todo_flags_finish */
2262 0 /* letter */
2266 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2267 Recursively does the same for subexpressions. */
2269 static void
2270 verify_rtx_sharing (rtx orig, rtx insn)
2272 rtx x = orig;
2273 int i;
2274 enum rtx_code code;
2275 const char *format_ptr;
2277 if (x == 0)
2278 return;
2280 code = GET_CODE (x);
2282 /* These types may be freely shared. */
2284 switch (code)
2286 case REG:
2287 case CONST_INT:
2288 case CONST_DOUBLE:
2289 case CONST_FIXED:
2290 case CONST_VECTOR:
2291 case SYMBOL_REF:
2292 case LABEL_REF:
2293 case CODE_LABEL:
2294 case PC:
2295 case CC0:
2296 case SCRATCH:
2297 return;
2298 /* SCRATCH must be shared because they represent distinct values. */
2299 case CLOBBER:
2300 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2301 return;
2302 break;
2304 case CONST:
2305 if (shared_const_p (orig))
2306 return;
2307 break;
2309 case MEM:
2310 /* A MEM is allowed to be shared if its address is constant. */
2311 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2312 || reload_completed || reload_in_progress)
2313 return;
2315 break;
2317 default:
2318 break;
2321 /* This rtx may not be shared. If it has already been seen,
2322 replace it with a copy of itself. */
2323 #ifdef ENABLE_CHECKING
2324 if (RTX_FLAG (x, used))
2326 error ("invalid rtl sharing found in the insn");
2327 debug_rtx (insn);
2328 error ("shared rtx");
2329 debug_rtx (x);
2330 internal_error ("internal consistency failure");
2332 #endif
2333 gcc_assert (!RTX_FLAG (x, used));
2335 RTX_FLAG (x, used) = 1;
2337 /* Now scan the subexpressions recursively. */
2339 format_ptr = GET_RTX_FORMAT (code);
2341 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2343 switch (*format_ptr++)
2345 case 'e':
2346 verify_rtx_sharing (XEXP (x, i), insn);
2347 break;
2349 case 'E':
2350 if (XVEC (x, i) != NULL)
2352 int j;
2353 int len = XVECLEN (x, i);
2355 for (j = 0; j < len; j++)
2357 /* We allow sharing of ASM_OPERANDS inside single
2358 instruction. */
2359 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2360 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2361 == ASM_OPERANDS))
2362 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2363 else
2364 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2367 break;
2370 return;
2373 /* Go through all the RTL insn bodies and check that there is no unexpected
2374 sharing in between the subexpressions. */
2376 void
2377 verify_rtl_sharing (void)
2379 rtx p;
2381 for (p = get_insns (); p; p = NEXT_INSN (p))
2382 if (INSN_P (p))
2384 reset_used_flags (PATTERN (p));
2385 reset_used_flags (REG_NOTES (p));
2386 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2388 int i;
2389 rtx q, sequence = PATTERN (p);
2391 for (i = 0; i < XVECLEN (sequence, 0); i++)
2393 q = XVECEXP (sequence, 0, i);
2394 gcc_assert (INSN_P (q));
2395 reset_used_flags (PATTERN (q));
2396 reset_used_flags (REG_NOTES (q));
2401 for (p = get_insns (); p; p = NEXT_INSN (p))
2402 if (INSN_P (p))
2404 verify_rtx_sharing (PATTERN (p), p);
2405 verify_rtx_sharing (REG_NOTES (p), p);
2409 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2410 Assumes the mark bits are cleared at entry. */
2412 void
2413 unshare_all_rtl_in_chain (rtx insn)
2415 for (; insn; insn = NEXT_INSN (insn))
2416 if (INSN_P (insn))
2418 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2419 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2423 /* Go through all virtual stack slots of a function and mark them as
2424 shared. We never replace the DECL_RTLs themselves with a copy,
2425 but expressions mentioned into a DECL_RTL cannot be shared with
2426 expressions in the instruction stream.
2428 Note that reload may convert pseudo registers into memories in-place.
2429 Pseudo registers are always shared, but MEMs never are. Thus if we
2430 reset the used flags on MEMs in the instruction stream, we must set
2431 them again on MEMs that appear in DECL_RTLs. */
2433 static void
2434 set_used_decls (tree blk)
2436 tree t;
2438 /* Mark decls. */
2439 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2440 if (DECL_RTL_SET_P (t))
2441 set_used_flags (DECL_RTL (t));
2443 /* Now process sub-blocks. */
2444 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2445 set_used_decls (t);
2448 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2449 Recursively does the same for subexpressions. Uses
2450 copy_rtx_if_shared_1 to reduce stack space. */
2453 copy_rtx_if_shared (rtx orig)
2455 copy_rtx_if_shared_1 (&orig);
2456 return orig;
2459 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2460 use. Recursively does the same for subexpressions. */
2462 static void
2463 copy_rtx_if_shared_1 (rtx *orig1)
2465 rtx x;
2466 int i;
2467 enum rtx_code code;
2468 rtx *last_ptr;
2469 const char *format_ptr;
2470 int copied = 0;
2471 int length;
2473 /* Repeat is used to turn tail-recursion into iteration. */
2474 repeat:
2475 x = *orig1;
2477 if (x == 0)
2478 return;
2480 code = GET_CODE (x);
2482 /* These types may be freely shared. */
2484 switch (code)
2486 case REG:
2487 case CONST_INT:
2488 case CONST_DOUBLE:
2489 case CONST_FIXED:
2490 case CONST_VECTOR:
2491 case SYMBOL_REF:
2492 case LABEL_REF:
2493 case CODE_LABEL:
2494 case PC:
2495 case CC0:
2496 case SCRATCH:
2497 /* SCRATCH must be shared because they represent distinct values. */
2498 return;
2499 case CLOBBER:
2500 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2501 return;
2502 break;
2504 case CONST:
2505 if (shared_const_p (x))
2506 return;
2507 break;
2509 case INSN:
2510 case JUMP_INSN:
2511 case CALL_INSN:
2512 case NOTE:
2513 case BARRIER:
2514 /* The chain of insns is not being copied. */
2515 return;
2517 default:
2518 break;
2521 /* This rtx may not be shared. If it has already been seen,
2522 replace it with a copy of itself. */
2524 if (RTX_FLAG (x, used))
2526 x = shallow_copy_rtx (x);
2527 copied = 1;
2529 RTX_FLAG (x, used) = 1;
2531 /* Now scan the subexpressions recursively.
2532 We can store any replaced subexpressions directly into X
2533 since we know X is not shared! Any vectors in X
2534 must be copied if X was copied. */
2536 format_ptr = GET_RTX_FORMAT (code);
2537 length = GET_RTX_LENGTH (code);
2538 last_ptr = NULL;
2540 for (i = 0; i < length; i++)
2542 switch (*format_ptr++)
2544 case 'e':
2545 if (last_ptr)
2546 copy_rtx_if_shared_1 (last_ptr);
2547 last_ptr = &XEXP (x, i);
2548 break;
2550 case 'E':
2551 if (XVEC (x, i) != NULL)
2553 int j;
2554 int len = XVECLEN (x, i);
2556 /* Copy the vector iff I copied the rtx and the length
2557 is nonzero. */
2558 if (copied && len > 0)
2559 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2561 /* Call recursively on all inside the vector. */
2562 for (j = 0; j < len; j++)
2564 if (last_ptr)
2565 copy_rtx_if_shared_1 (last_ptr);
2566 last_ptr = &XVECEXP (x, i, j);
2569 break;
2572 *orig1 = x;
2573 if (last_ptr)
2575 orig1 = last_ptr;
2576 goto repeat;
2578 return;
2581 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2582 to look for shared sub-parts. */
2584 void
2585 reset_used_flags (rtx x)
2587 int i, j;
2588 enum rtx_code code;
2589 const char *format_ptr;
2590 int length;
2592 /* Repeat is used to turn tail-recursion into iteration. */
2593 repeat:
2594 if (x == 0)
2595 return;
2597 code = GET_CODE (x);
2599 /* These types may be freely shared so we needn't do any resetting
2600 for them. */
2602 switch (code)
2604 case REG:
2605 case CONST_INT:
2606 case CONST_DOUBLE:
2607 case CONST_FIXED:
2608 case CONST_VECTOR:
2609 case SYMBOL_REF:
2610 case CODE_LABEL:
2611 case PC:
2612 case CC0:
2613 return;
2615 case INSN:
2616 case JUMP_INSN:
2617 case CALL_INSN:
2618 case NOTE:
2619 case LABEL_REF:
2620 case BARRIER:
2621 /* The chain of insns is not being copied. */
2622 return;
2624 default:
2625 break;
2628 RTX_FLAG (x, used) = 0;
2630 format_ptr = GET_RTX_FORMAT (code);
2631 length = GET_RTX_LENGTH (code);
2633 for (i = 0; i < length; i++)
2635 switch (*format_ptr++)
2637 case 'e':
2638 if (i == length-1)
2640 x = XEXP (x, i);
2641 goto repeat;
2643 reset_used_flags (XEXP (x, i));
2644 break;
2646 case 'E':
2647 for (j = 0; j < XVECLEN (x, i); j++)
2648 reset_used_flags (XVECEXP (x, i, j));
2649 break;
2654 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2655 to look for shared sub-parts. */
2657 void
2658 set_used_flags (rtx x)
2660 int i, j;
2661 enum rtx_code code;
2662 const char *format_ptr;
2664 if (x == 0)
2665 return;
2667 code = GET_CODE (x);
2669 /* These types may be freely shared so we needn't do any resetting
2670 for them. */
2672 switch (code)
2674 case REG:
2675 case CONST_INT:
2676 case CONST_DOUBLE:
2677 case CONST_FIXED:
2678 case CONST_VECTOR:
2679 case SYMBOL_REF:
2680 case CODE_LABEL:
2681 case PC:
2682 case CC0:
2683 return;
2685 case INSN:
2686 case JUMP_INSN:
2687 case CALL_INSN:
2688 case NOTE:
2689 case LABEL_REF:
2690 case BARRIER:
2691 /* The chain of insns is not being copied. */
2692 return;
2694 default:
2695 break;
2698 RTX_FLAG (x, used) = 1;
2700 format_ptr = GET_RTX_FORMAT (code);
2701 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2703 switch (*format_ptr++)
2705 case 'e':
2706 set_used_flags (XEXP (x, i));
2707 break;
2709 case 'E':
2710 for (j = 0; j < XVECLEN (x, i); j++)
2711 set_used_flags (XVECEXP (x, i, j));
2712 break;
2717 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2718 Return X or the rtx for the pseudo reg the value of X was copied into.
2719 OTHER must be valid as a SET_DEST. */
2722 make_safe_from (rtx x, rtx other)
2724 while (1)
2725 switch (GET_CODE (other))
2727 case SUBREG:
2728 other = SUBREG_REG (other);
2729 break;
2730 case STRICT_LOW_PART:
2731 case SIGN_EXTEND:
2732 case ZERO_EXTEND:
2733 other = XEXP (other, 0);
2734 break;
2735 default:
2736 goto done;
2738 done:
2739 if ((MEM_P (other)
2740 && ! CONSTANT_P (x)
2741 && !REG_P (x)
2742 && GET_CODE (x) != SUBREG)
2743 || (REG_P (other)
2744 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2745 || reg_mentioned_p (other, x))))
2747 rtx temp = gen_reg_rtx (GET_MODE (x));
2748 emit_move_insn (temp, x);
2749 return temp;
2751 return x;
2754 /* Emission of insns (adding them to the doubly-linked list). */
2756 /* Return the first insn of the current sequence or current function. */
2759 get_insns (void)
2761 return first_insn;
2764 /* Specify a new insn as the first in the chain. */
2766 void
2767 set_first_insn (rtx insn)
2769 gcc_assert (!PREV_INSN (insn));
2770 first_insn = insn;
2773 /* Return the last insn emitted in current sequence or current function. */
2776 get_last_insn (void)
2778 return last_insn;
2781 /* Specify a new insn as the last in the chain. */
2783 void
2784 set_last_insn (rtx insn)
2786 gcc_assert (!NEXT_INSN (insn));
2787 last_insn = insn;
2790 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2793 get_last_insn_anywhere (void)
2795 struct sequence_stack *stack;
2796 if (last_insn)
2797 return last_insn;
2798 for (stack = seq_stack; stack; stack = stack->next)
2799 if (stack->last != 0)
2800 return stack->last;
2801 return 0;
2804 /* Return the first nonnote insn emitted in current sequence or current
2805 function. This routine looks inside SEQUENCEs. */
2808 get_first_nonnote_insn (void)
2810 rtx insn = first_insn;
2812 if (insn)
2814 if (NOTE_P (insn))
2815 for (insn = next_insn (insn);
2816 insn && NOTE_P (insn);
2817 insn = next_insn (insn))
2818 continue;
2819 else
2821 if (NONJUMP_INSN_P (insn)
2822 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2823 insn = XVECEXP (PATTERN (insn), 0, 0);
2827 return insn;
2830 /* Return the last nonnote insn emitted in current sequence or current
2831 function. This routine looks inside SEQUENCEs. */
2834 get_last_nonnote_insn (void)
2836 rtx insn = last_insn;
2838 if (insn)
2840 if (NOTE_P (insn))
2841 for (insn = previous_insn (insn);
2842 insn && NOTE_P (insn);
2843 insn = previous_insn (insn))
2844 continue;
2845 else
2847 if (NONJUMP_INSN_P (insn)
2848 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2849 insn = XVECEXP (PATTERN (insn), 0,
2850 XVECLEN (PATTERN (insn), 0) - 1);
2854 return insn;
2857 /* Return a number larger than any instruction's uid in this function. */
2860 get_max_uid (void)
2862 return cur_insn_uid;
2865 /* Return the next insn. If it is a SEQUENCE, return the first insn
2866 of the sequence. */
2869 next_insn (rtx insn)
2871 if (insn)
2873 insn = NEXT_INSN (insn);
2874 if (insn && NONJUMP_INSN_P (insn)
2875 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2876 insn = XVECEXP (PATTERN (insn), 0, 0);
2879 return insn;
2882 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2883 of the sequence. */
2886 previous_insn (rtx insn)
2888 if (insn)
2890 insn = PREV_INSN (insn);
2891 if (insn && NONJUMP_INSN_P (insn)
2892 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2893 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2896 return insn;
2899 /* Return the next insn after INSN that is not a NOTE. This routine does not
2900 look inside SEQUENCEs. */
2903 next_nonnote_insn (rtx insn)
2905 while (insn)
2907 insn = NEXT_INSN (insn);
2908 if (insn == 0 || !NOTE_P (insn))
2909 break;
2912 return insn;
2915 /* Return the previous insn before INSN that is not a NOTE. This routine does
2916 not look inside SEQUENCEs. */
2919 prev_nonnote_insn (rtx insn)
2921 while (insn)
2923 insn = PREV_INSN (insn);
2924 if (insn == 0 || !NOTE_P (insn))
2925 break;
2928 return insn;
2931 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2932 or 0, if there is none. This routine does not look inside
2933 SEQUENCEs. */
2936 next_real_insn (rtx insn)
2938 while (insn)
2940 insn = NEXT_INSN (insn);
2941 if (insn == 0 || INSN_P (insn))
2942 break;
2945 return insn;
2948 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2949 or 0, if there is none. This routine does not look inside
2950 SEQUENCEs. */
2953 prev_real_insn (rtx insn)
2955 while (insn)
2957 insn = PREV_INSN (insn);
2958 if (insn == 0 || INSN_P (insn))
2959 break;
2962 return insn;
2965 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2966 This routine does not look inside SEQUENCEs. */
2969 last_call_insn (void)
2971 rtx insn;
2973 for (insn = get_last_insn ();
2974 insn && !CALL_P (insn);
2975 insn = PREV_INSN (insn))
2978 return insn;
2981 /* Find the next insn after INSN that really does something. This routine
2982 does not look inside SEQUENCEs. Until reload has completed, this is the
2983 same as next_real_insn. */
2986 active_insn_p (const_rtx insn)
2988 return (CALL_P (insn) || JUMP_P (insn)
2989 || (NONJUMP_INSN_P (insn)
2990 && (! reload_completed
2991 || (GET_CODE (PATTERN (insn)) != USE
2992 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2996 next_active_insn (rtx insn)
2998 while (insn)
3000 insn = NEXT_INSN (insn);
3001 if (insn == 0 || active_insn_p (insn))
3002 break;
3005 return insn;
3008 /* Find the last insn before INSN that really does something. This routine
3009 does not look inside SEQUENCEs. Until reload has completed, this is the
3010 same as prev_real_insn. */
3013 prev_active_insn (rtx insn)
3015 while (insn)
3017 insn = PREV_INSN (insn);
3018 if (insn == 0 || active_insn_p (insn))
3019 break;
3022 return insn;
3025 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3028 next_label (rtx insn)
3030 while (insn)
3032 insn = NEXT_INSN (insn);
3033 if (insn == 0 || LABEL_P (insn))
3034 break;
3037 return insn;
3040 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3043 prev_label (rtx insn)
3045 while (insn)
3047 insn = PREV_INSN (insn);
3048 if (insn == 0 || LABEL_P (insn))
3049 break;
3052 return insn;
3055 /* Return the last label to mark the same position as LABEL. Return null
3056 if LABEL itself is null. */
3059 skip_consecutive_labels (rtx label)
3061 rtx insn;
3063 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3064 if (LABEL_P (insn))
3065 label = insn;
3067 return label;
3070 #ifdef HAVE_cc0
3071 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3072 and REG_CC_USER notes so we can find it. */
3074 void
3075 link_cc0_insns (rtx insn)
3077 rtx user = next_nonnote_insn (insn);
3079 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3080 user = XVECEXP (PATTERN (user), 0, 0);
3082 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3083 REG_NOTES (user));
3084 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3087 /* Return the next insn that uses CC0 after INSN, which is assumed to
3088 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3089 applied to the result of this function should yield INSN).
3091 Normally, this is simply the next insn. However, if a REG_CC_USER note
3092 is present, it contains the insn that uses CC0.
3094 Return 0 if we can't find the insn. */
3097 next_cc0_user (rtx insn)
3099 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3101 if (note)
3102 return XEXP (note, 0);
3104 insn = next_nonnote_insn (insn);
3105 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3106 insn = XVECEXP (PATTERN (insn), 0, 0);
3108 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3109 return insn;
3111 return 0;
3114 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3115 note, it is the previous insn. */
3118 prev_cc0_setter (rtx insn)
3120 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3122 if (note)
3123 return XEXP (note, 0);
3125 insn = prev_nonnote_insn (insn);
3126 gcc_assert (sets_cc0_p (PATTERN (insn)));
3128 return insn;
3130 #endif
3132 #ifdef AUTO_INC_DEC
3133 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3135 static int
3136 find_auto_inc (rtx *xp, void *data)
3138 rtx x = *xp;
3139 rtx reg = data;
3141 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3142 return 0;
3144 switch (GET_CODE (x))
3146 case PRE_DEC:
3147 case PRE_INC:
3148 case POST_DEC:
3149 case POST_INC:
3150 case PRE_MODIFY:
3151 case POST_MODIFY:
3152 if (rtx_equal_p (reg, XEXP (x, 0)))
3153 return 1;
3154 break;
3156 default:
3157 gcc_unreachable ();
3159 return -1;
3161 #endif
3163 /* Increment the label uses for all labels present in rtx. */
3165 static void
3166 mark_label_nuses (rtx x)
3168 enum rtx_code code;
3169 int i, j;
3170 const char *fmt;
3172 code = GET_CODE (x);
3173 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3174 LABEL_NUSES (XEXP (x, 0))++;
3176 fmt = GET_RTX_FORMAT (code);
3177 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3179 if (fmt[i] == 'e')
3180 mark_label_nuses (XEXP (x, i));
3181 else if (fmt[i] == 'E')
3182 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3183 mark_label_nuses (XVECEXP (x, i, j));
3188 /* Try splitting insns that can be split for better scheduling.
3189 PAT is the pattern which might split.
3190 TRIAL is the insn providing PAT.
3191 LAST is nonzero if we should return the last insn of the sequence produced.
3193 If this routine succeeds in splitting, it returns the first or last
3194 replacement insn depending on the value of LAST. Otherwise, it
3195 returns TRIAL. If the insn to be returned can be split, it will be. */
3198 try_split (rtx pat, rtx trial, int last)
3200 rtx before = PREV_INSN (trial);
3201 rtx after = NEXT_INSN (trial);
3202 int has_barrier = 0;
3203 rtx tem, note_retval;
3204 rtx note, seq;
3205 int probability;
3206 rtx insn_last, insn;
3207 int njumps = 0;
3209 if (any_condjump_p (trial)
3210 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3211 split_branch_probability = INTVAL (XEXP (note, 0));
3212 probability = split_branch_probability;
3214 seq = split_insns (pat, trial);
3216 split_branch_probability = -1;
3218 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3219 We may need to handle this specially. */
3220 if (after && BARRIER_P (after))
3222 has_barrier = 1;
3223 after = NEXT_INSN (after);
3226 if (!seq)
3227 return trial;
3229 /* Avoid infinite loop if any insn of the result matches
3230 the original pattern. */
3231 insn_last = seq;
3232 while (1)
3234 if (INSN_P (insn_last)
3235 && rtx_equal_p (PATTERN (insn_last), pat))
3236 return trial;
3237 if (!NEXT_INSN (insn_last))
3238 break;
3239 insn_last = NEXT_INSN (insn_last);
3242 /* We will be adding the new sequence to the function. The splitters
3243 may have introduced invalid RTL sharing, so unshare the sequence now. */
3244 unshare_all_rtl_in_chain (seq);
3246 /* Mark labels. */
3247 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3249 if (JUMP_P (insn))
3251 mark_jump_label (PATTERN (insn), insn, 0);
3252 njumps++;
3253 if (probability != -1
3254 && any_condjump_p (insn)
3255 && !find_reg_note (insn, REG_BR_PROB, 0))
3257 /* We can preserve the REG_BR_PROB notes only if exactly
3258 one jump is created, otherwise the machine description
3259 is responsible for this step using
3260 split_branch_probability variable. */
3261 gcc_assert (njumps == 1);
3262 REG_NOTES (insn)
3263 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3264 GEN_INT (probability),
3265 REG_NOTES (insn));
3270 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3271 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3272 if (CALL_P (trial))
3274 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3275 if (CALL_P (insn))
3277 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3278 while (*p)
3279 p = &XEXP (*p, 1);
3280 *p = CALL_INSN_FUNCTION_USAGE (trial);
3281 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3285 /* Copy notes, particularly those related to the CFG. */
3286 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3288 switch (REG_NOTE_KIND (note))
3290 case REG_EH_REGION:
3291 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3293 if (CALL_P (insn)
3294 || (flag_non_call_exceptions && INSN_P (insn)
3295 && may_trap_p (PATTERN (insn))))
3296 REG_NOTES (insn)
3297 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3298 XEXP (note, 0),
3299 REG_NOTES (insn));
3301 break;
3303 case REG_NORETURN:
3304 case REG_SETJMP:
3305 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3307 if (CALL_P (insn))
3308 REG_NOTES (insn)
3309 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3310 XEXP (note, 0),
3311 REG_NOTES (insn));
3313 break;
3315 case REG_NON_LOCAL_GOTO:
3316 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3318 if (JUMP_P (insn))
3319 REG_NOTES (insn)
3320 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3321 XEXP (note, 0),
3322 REG_NOTES (insn));
3324 break;
3326 #ifdef AUTO_INC_DEC
3327 case REG_INC:
3328 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3330 rtx reg = XEXP (note, 0);
3331 if (!FIND_REG_INC_NOTE (insn, reg)
3332 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3333 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3334 REG_NOTES (insn));
3336 break;
3337 #endif
3339 case REG_LIBCALL:
3340 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3341 after split. */
3342 REG_NOTES (insn_last)
3343 = gen_rtx_INSN_LIST (REG_LIBCALL,
3344 XEXP (note, 0),
3345 REG_NOTES (insn_last));
3347 note_retval = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL);
3348 XEXP (note_retval, 0) = insn_last;
3349 break;
3351 default:
3352 break;
3356 /* If there are LABELS inside the split insns increment the
3357 usage count so we don't delete the label. */
3358 if (INSN_P (trial))
3360 insn = insn_last;
3361 while (insn != NULL_RTX)
3363 /* JUMP_P insns have already been "marked" above. */
3364 if (NONJUMP_INSN_P (insn))
3365 mark_label_nuses (PATTERN (insn));
3367 insn = PREV_INSN (insn);
3371 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3373 delete_insn (trial);
3374 if (has_barrier)
3375 emit_barrier_after (tem);
3377 /* Recursively call try_split for each new insn created; by the
3378 time control returns here that insn will be fully split, so
3379 set LAST and continue from the insn after the one returned.
3380 We can't use next_active_insn here since AFTER may be a note.
3381 Ignore deleted insns, which can be occur if not optimizing. */
3382 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3383 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3384 tem = try_split (PATTERN (tem), tem, 1);
3386 /* Return either the first or the last insn, depending on which was
3387 requested. */
3388 return last
3389 ? (after ? PREV_INSN (after) : last_insn)
3390 : NEXT_INSN (before);
3393 /* Make and return an INSN rtx, initializing all its slots.
3394 Store PATTERN in the pattern slots. */
3397 make_insn_raw (rtx pattern)
3399 rtx insn;
3401 insn = rtx_alloc (INSN);
3403 INSN_UID (insn) = cur_insn_uid++;
3404 PATTERN (insn) = pattern;
3405 INSN_CODE (insn) = -1;
3406 REG_NOTES (insn) = NULL;
3407 INSN_LOCATOR (insn) = curr_insn_locator ();
3408 BLOCK_FOR_INSN (insn) = NULL;
3410 #ifdef ENABLE_RTL_CHECKING
3411 if (insn
3412 && INSN_P (insn)
3413 && (returnjump_p (insn)
3414 || (GET_CODE (insn) == SET
3415 && SET_DEST (insn) == pc_rtx)))
3417 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3418 debug_rtx (insn);
3420 #endif
3422 return insn;
3425 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3428 make_jump_insn_raw (rtx pattern)
3430 rtx insn;
3432 insn = rtx_alloc (JUMP_INSN);
3433 INSN_UID (insn) = cur_insn_uid++;
3435 PATTERN (insn) = pattern;
3436 INSN_CODE (insn) = -1;
3437 REG_NOTES (insn) = NULL;
3438 JUMP_LABEL (insn) = NULL;
3439 INSN_LOCATOR (insn) = curr_insn_locator ();
3440 BLOCK_FOR_INSN (insn) = NULL;
3442 return insn;
3445 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3447 static rtx
3448 make_call_insn_raw (rtx pattern)
3450 rtx insn;
3452 insn = rtx_alloc (CALL_INSN);
3453 INSN_UID (insn) = cur_insn_uid++;
3455 PATTERN (insn) = pattern;
3456 INSN_CODE (insn) = -1;
3457 REG_NOTES (insn) = NULL;
3458 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3459 INSN_LOCATOR (insn) = curr_insn_locator ();
3460 BLOCK_FOR_INSN (insn) = NULL;
3462 return insn;
3465 /* Add INSN to the end of the doubly-linked list.
3466 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3468 void
3469 add_insn (rtx insn)
3471 PREV_INSN (insn) = last_insn;
3472 NEXT_INSN (insn) = 0;
3474 if (NULL != last_insn)
3475 NEXT_INSN (last_insn) = insn;
3477 if (NULL == first_insn)
3478 first_insn = insn;
3480 last_insn = insn;
3483 /* Add INSN into the doubly-linked list after insn AFTER. This and
3484 the next should be the only functions called to insert an insn once
3485 delay slots have been filled since only they know how to update a
3486 SEQUENCE. */
3488 void
3489 add_insn_after (rtx insn, rtx after, basic_block bb)
3491 rtx next = NEXT_INSN (after);
3493 gcc_assert (!optimize || !INSN_DELETED_P (after));
3495 NEXT_INSN (insn) = next;
3496 PREV_INSN (insn) = after;
3498 if (next)
3500 PREV_INSN (next) = insn;
3501 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3502 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3504 else if (last_insn == after)
3505 last_insn = insn;
3506 else
3508 struct sequence_stack *stack = seq_stack;
3509 /* Scan all pending sequences too. */
3510 for (; stack; stack = stack->next)
3511 if (after == stack->last)
3513 stack->last = insn;
3514 break;
3517 gcc_assert (stack);
3520 if (!BARRIER_P (after)
3521 && !BARRIER_P (insn)
3522 && (bb = BLOCK_FOR_INSN (after)))
3524 set_block_for_insn (insn, bb);
3525 if (INSN_P (insn))
3526 df_insn_rescan (insn);
3527 /* Should not happen as first in the BB is always
3528 either NOTE or LABEL. */
3529 if (BB_END (bb) == after
3530 /* Avoid clobbering of structure when creating new BB. */
3531 && !BARRIER_P (insn)
3532 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3533 BB_END (bb) = insn;
3536 NEXT_INSN (after) = insn;
3537 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3539 rtx sequence = PATTERN (after);
3540 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3544 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3545 the previous should be the only functions called to insert an insn
3546 once delay slots have been filled since only they know how to
3547 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3548 bb from before. */
3550 void
3551 add_insn_before (rtx insn, rtx before, basic_block bb)
3553 rtx prev = PREV_INSN (before);
3555 gcc_assert (!optimize || !INSN_DELETED_P (before));
3557 PREV_INSN (insn) = prev;
3558 NEXT_INSN (insn) = before;
3560 if (prev)
3562 NEXT_INSN (prev) = insn;
3563 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3565 rtx sequence = PATTERN (prev);
3566 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3569 else if (first_insn == before)
3570 first_insn = insn;
3571 else
3573 struct sequence_stack *stack = seq_stack;
3574 /* Scan all pending sequences too. */
3575 for (; stack; stack = stack->next)
3576 if (before == stack->first)
3578 stack->first = insn;
3579 break;
3582 gcc_assert (stack);
3585 if (!bb
3586 && !BARRIER_P (before)
3587 && !BARRIER_P (insn))
3588 bb = BLOCK_FOR_INSN (before);
3590 if (bb)
3592 set_block_for_insn (insn, bb);
3593 if (INSN_P (insn))
3594 df_insn_rescan (insn);
3595 /* Should not happen as first in the BB is always either NOTE or
3596 LABEL. */
3597 gcc_assert (BB_HEAD (bb) != insn
3598 /* Avoid clobbering of structure when creating new BB. */
3599 || BARRIER_P (insn)
3600 || NOTE_INSN_BASIC_BLOCK_P (insn));
3603 PREV_INSN (before) = insn;
3604 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3605 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3609 /* Replace insn with an deleted instruction note. */
3611 void set_insn_deleted (rtx insn)
3613 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3614 PUT_CODE (insn, NOTE);
3615 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3619 /* Remove an insn from its doubly-linked list. This function knows how
3620 to handle sequences. */
3621 void
3622 remove_insn (rtx insn)
3624 rtx next = NEXT_INSN (insn);
3625 rtx prev = PREV_INSN (insn);
3626 basic_block bb;
3628 /* Later in the code, the block will be marked dirty. */
3629 df_insn_delete (NULL, INSN_UID (insn));
3631 if (prev)
3633 NEXT_INSN (prev) = next;
3634 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3636 rtx sequence = PATTERN (prev);
3637 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3640 else if (first_insn == insn)
3641 first_insn = next;
3642 else
3644 struct sequence_stack *stack = seq_stack;
3645 /* Scan all pending sequences too. */
3646 for (; stack; stack = stack->next)
3647 if (insn == stack->first)
3649 stack->first = next;
3650 break;
3653 gcc_assert (stack);
3656 if (next)
3658 PREV_INSN (next) = prev;
3659 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3660 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3662 else if (last_insn == insn)
3663 last_insn = prev;
3664 else
3666 struct sequence_stack *stack = seq_stack;
3667 /* Scan all pending sequences too. */
3668 for (; stack; stack = stack->next)
3669 if (insn == stack->last)
3671 stack->last = prev;
3672 break;
3675 gcc_assert (stack);
3677 if (!BARRIER_P (insn)
3678 && (bb = BLOCK_FOR_INSN (insn)))
3680 if (INSN_P (insn))
3681 df_set_bb_dirty (bb);
3682 if (BB_HEAD (bb) == insn)
3684 /* Never ever delete the basic block note without deleting whole
3685 basic block. */
3686 gcc_assert (!NOTE_P (insn));
3687 BB_HEAD (bb) = next;
3689 if (BB_END (bb) == insn)
3690 BB_END (bb) = prev;
3694 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3696 void
3697 add_function_usage_to (rtx call_insn, rtx call_fusage)
3699 gcc_assert (call_insn && CALL_P (call_insn));
3701 /* Put the register usage information on the CALL. If there is already
3702 some usage information, put ours at the end. */
3703 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3705 rtx link;
3707 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3708 link = XEXP (link, 1))
3711 XEXP (link, 1) = call_fusage;
3713 else
3714 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3717 /* Delete all insns made since FROM.
3718 FROM becomes the new last instruction. */
3720 void
3721 delete_insns_since (rtx from)
3723 if (from == 0)
3724 first_insn = 0;
3725 else
3726 NEXT_INSN (from) = 0;
3727 last_insn = from;
3730 /* This function is deprecated, please use sequences instead.
3732 Move a consecutive bunch of insns to a different place in the chain.
3733 The insns to be moved are those between FROM and TO.
3734 They are moved to a new position after the insn AFTER.
3735 AFTER must not be FROM or TO or any insn in between.
3737 This function does not know about SEQUENCEs and hence should not be
3738 called after delay-slot filling has been done. */
3740 void
3741 reorder_insns_nobb (rtx from, rtx to, rtx after)
3743 /* Splice this bunch out of where it is now. */
3744 if (PREV_INSN (from))
3745 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3746 if (NEXT_INSN (to))
3747 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3748 if (last_insn == to)
3749 last_insn = PREV_INSN (from);
3750 if (first_insn == from)
3751 first_insn = NEXT_INSN (to);
3753 /* Make the new neighbors point to it and it to them. */
3754 if (NEXT_INSN (after))
3755 PREV_INSN (NEXT_INSN (after)) = to;
3757 NEXT_INSN (to) = NEXT_INSN (after);
3758 PREV_INSN (from) = after;
3759 NEXT_INSN (after) = from;
3760 if (after == last_insn)
3761 last_insn = to;
3764 /* Same as function above, but take care to update BB boundaries. */
3765 void
3766 reorder_insns (rtx from, rtx to, rtx after)
3768 rtx prev = PREV_INSN (from);
3769 basic_block bb, bb2;
3771 reorder_insns_nobb (from, to, after);
3773 if (!BARRIER_P (after)
3774 && (bb = BLOCK_FOR_INSN (after)))
3776 rtx x;
3777 df_set_bb_dirty (bb);
3779 if (!BARRIER_P (from)
3780 && (bb2 = BLOCK_FOR_INSN (from)))
3782 if (BB_END (bb2) == to)
3783 BB_END (bb2) = prev;
3784 df_set_bb_dirty (bb2);
3787 if (BB_END (bb) == after)
3788 BB_END (bb) = to;
3790 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3791 if (!BARRIER_P (x))
3793 set_block_for_insn (x, bb);
3794 df_insn_change_bb (x);
3800 /* Emit insn(s) of given code and pattern
3801 at a specified place within the doubly-linked list.
3803 All of the emit_foo global entry points accept an object
3804 X which is either an insn list or a PATTERN of a single
3805 instruction.
3807 There are thus a few canonical ways to generate code and
3808 emit it at a specific place in the instruction stream. For
3809 example, consider the instruction named SPOT and the fact that
3810 we would like to emit some instructions before SPOT. We might
3811 do it like this:
3813 start_sequence ();
3814 ... emit the new instructions ...
3815 insns_head = get_insns ();
3816 end_sequence ();
3818 emit_insn_before (insns_head, SPOT);
3820 It used to be common to generate SEQUENCE rtl instead, but that
3821 is a relic of the past which no longer occurs. The reason is that
3822 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3823 generated would almost certainly die right after it was created. */
3825 /* Make X be output before the instruction BEFORE. */
3828 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3830 rtx last = before;
3831 rtx insn;
3833 gcc_assert (before);
3835 if (x == NULL_RTX)
3836 return last;
3838 switch (GET_CODE (x))
3840 case INSN:
3841 case JUMP_INSN:
3842 case CALL_INSN:
3843 case CODE_LABEL:
3844 case BARRIER:
3845 case NOTE:
3846 insn = x;
3847 while (insn)
3849 rtx next = NEXT_INSN (insn);
3850 add_insn_before (insn, before, bb);
3851 last = insn;
3852 insn = next;
3854 break;
3856 #ifdef ENABLE_RTL_CHECKING
3857 case SEQUENCE:
3858 gcc_unreachable ();
3859 break;
3860 #endif
3862 default:
3863 last = make_insn_raw (x);
3864 add_insn_before (last, before, bb);
3865 break;
3868 return last;
3871 /* Make an instruction with body X and code JUMP_INSN
3872 and output it before the instruction BEFORE. */
3875 emit_jump_insn_before_noloc (rtx x, rtx before)
3877 rtx insn, last = NULL_RTX;
3879 gcc_assert (before);
3881 switch (GET_CODE (x))
3883 case INSN:
3884 case JUMP_INSN:
3885 case CALL_INSN:
3886 case CODE_LABEL:
3887 case BARRIER:
3888 case NOTE:
3889 insn = x;
3890 while (insn)
3892 rtx next = NEXT_INSN (insn);
3893 add_insn_before (insn, before, NULL);
3894 last = insn;
3895 insn = next;
3897 break;
3899 #ifdef ENABLE_RTL_CHECKING
3900 case SEQUENCE:
3901 gcc_unreachable ();
3902 break;
3903 #endif
3905 default:
3906 last = make_jump_insn_raw (x);
3907 add_insn_before (last, before, NULL);
3908 break;
3911 return last;
3914 /* Make an instruction with body X and code CALL_INSN
3915 and output it before the instruction BEFORE. */
3918 emit_call_insn_before_noloc (rtx x, rtx before)
3920 rtx last = NULL_RTX, insn;
3922 gcc_assert (before);
3924 switch (GET_CODE (x))
3926 case INSN:
3927 case JUMP_INSN:
3928 case CALL_INSN:
3929 case CODE_LABEL:
3930 case BARRIER:
3931 case NOTE:
3932 insn = x;
3933 while (insn)
3935 rtx next = NEXT_INSN (insn);
3936 add_insn_before (insn, before, NULL);
3937 last = insn;
3938 insn = next;
3940 break;
3942 #ifdef ENABLE_RTL_CHECKING
3943 case SEQUENCE:
3944 gcc_unreachable ();
3945 break;
3946 #endif
3948 default:
3949 last = make_call_insn_raw (x);
3950 add_insn_before (last, before, NULL);
3951 break;
3954 return last;
3957 /* Make an insn of code BARRIER
3958 and output it before the insn BEFORE. */
3961 emit_barrier_before (rtx before)
3963 rtx insn = rtx_alloc (BARRIER);
3965 INSN_UID (insn) = cur_insn_uid++;
3967 add_insn_before (insn, before, NULL);
3968 return insn;
3971 /* Emit the label LABEL before the insn BEFORE. */
3974 emit_label_before (rtx label, rtx before)
3976 /* This can be called twice for the same label as a result of the
3977 confusion that follows a syntax error! So make it harmless. */
3978 if (INSN_UID (label) == 0)
3980 INSN_UID (label) = cur_insn_uid++;
3981 add_insn_before (label, before, NULL);
3984 return label;
3987 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3990 emit_note_before (enum insn_note subtype, rtx before)
3992 rtx note = rtx_alloc (NOTE);
3993 INSN_UID (note) = cur_insn_uid++;
3994 NOTE_KIND (note) = subtype;
3995 BLOCK_FOR_INSN (note) = NULL;
3996 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3998 add_insn_before (note, before, NULL);
3999 return note;
4002 /* Helper for emit_insn_after, handles lists of instructions
4003 efficiently. */
4005 static rtx
4006 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4008 rtx last;
4009 rtx after_after;
4010 if (!bb && !BARRIER_P (after))
4011 bb = BLOCK_FOR_INSN (after);
4013 if (bb)
4015 df_set_bb_dirty (bb);
4016 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4017 if (!BARRIER_P (last))
4019 set_block_for_insn (last, bb);
4020 df_insn_rescan (last);
4022 if (!BARRIER_P (last))
4024 set_block_for_insn (last, bb);
4025 df_insn_rescan (last);
4027 if (BB_END (bb) == after)
4028 BB_END (bb) = last;
4030 else
4031 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4032 continue;
4034 after_after = NEXT_INSN (after);
4036 NEXT_INSN (after) = first;
4037 PREV_INSN (first) = after;
4038 NEXT_INSN (last) = after_after;
4039 if (after_after)
4040 PREV_INSN (after_after) = last;
4042 if (after == last_insn)
4043 last_insn = last;
4044 return last;
4047 /* Make X be output after the insn AFTER and set the BB of insn. If
4048 BB is NULL, an attempt is made to infer the BB from AFTER. */
4051 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4053 rtx last = after;
4055 gcc_assert (after);
4057 if (x == NULL_RTX)
4058 return last;
4060 switch (GET_CODE (x))
4062 case INSN:
4063 case JUMP_INSN:
4064 case CALL_INSN:
4065 case CODE_LABEL:
4066 case BARRIER:
4067 case NOTE:
4068 last = emit_insn_after_1 (x, after, bb);
4069 break;
4071 #ifdef ENABLE_RTL_CHECKING
4072 case SEQUENCE:
4073 gcc_unreachable ();
4074 break;
4075 #endif
4077 default:
4078 last = make_insn_raw (x);
4079 add_insn_after (last, after, bb);
4080 break;
4083 return last;
4087 /* Make an insn of code JUMP_INSN with body X
4088 and output it after the insn AFTER. */
4091 emit_jump_insn_after_noloc (rtx x, rtx after)
4093 rtx last;
4095 gcc_assert (after);
4097 switch (GET_CODE (x))
4099 case INSN:
4100 case JUMP_INSN:
4101 case CALL_INSN:
4102 case CODE_LABEL:
4103 case BARRIER:
4104 case NOTE:
4105 last = emit_insn_after_1 (x, after, NULL);
4106 break;
4108 #ifdef ENABLE_RTL_CHECKING
4109 case SEQUENCE:
4110 gcc_unreachable ();
4111 break;
4112 #endif
4114 default:
4115 last = make_jump_insn_raw (x);
4116 add_insn_after (last, after, NULL);
4117 break;
4120 return last;
4123 /* Make an instruction with body X and code CALL_INSN
4124 and output it after the instruction AFTER. */
4127 emit_call_insn_after_noloc (rtx x, rtx after)
4129 rtx last;
4131 gcc_assert (after);
4133 switch (GET_CODE (x))
4135 case INSN:
4136 case JUMP_INSN:
4137 case CALL_INSN:
4138 case CODE_LABEL:
4139 case BARRIER:
4140 case NOTE:
4141 last = emit_insn_after_1 (x, after, NULL);
4142 break;
4144 #ifdef ENABLE_RTL_CHECKING
4145 case SEQUENCE:
4146 gcc_unreachable ();
4147 break;
4148 #endif
4150 default:
4151 last = make_call_insn_raw (x);
4152 add_insn_after (last, after, NULL);
4153 break;
4156 return last;
4159 /* Make an insn of code BARRIER
4160 and output it after the insn AFTER. */
4163 emit_barrier_after (rtx after)
4165 rtx insn = rtx_alloc (BARRIER);
4167 INSN_UID (insn) = cur_insn_uid++;
4169 add_insn_after (insn, after, NULL);
4170 return insn;
4173 /* Emit the label LABEL after the insn AFTER. */
4176 emit_label_after (rtx label, rtx after)
4178 /* This can be called twice for the same label
4179 as a result of the confusion that follows a syntax error!
4180 So make it harmless. */
4181 if (INSN_UID (label) == 0)
4183 INSN_UID (label) = cur_insn_uid++;
4184 add_insn_after (label, after, NULL);
4187 return label;
4190 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4193 emit_note_after (enum insn_note subtype, rtx after)
4195 rtx note = rtx_alloc (NOTE);
4196 INSN_UID (note) = cur_insn_uid++;
4197 NOTE_KIND (note) = subtype;
4198 BLOCK_FOR_INSN (note) = NULL;
4199 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4200 add_insn_after (note, after, NULL);
4201 return note;
4204 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4206 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4208 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4210 if (pattern == NULL_RTX || !loc)
4211 return last;
4213 after = NEXT_INSN (after);
4214 while (1)
4216 if (active_insn_p (after) && !INSN_LOCATOR (after))
4217 INSN_LOCATOR (after) = loc;
4218 if (after == last)
4219 break;
4220 after = NEXT_INSN (after);
4222 return last;
4225 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4227 emit_insn_after (rtx pattern, rtx after)
4229 if (INSN_P (after))
4230 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4231 else
4232 return emit_insn_after_noloc (pattern, after, NULL);
4235 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4237 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4239 rtx last = emit_jump_insn_after_noloc (pattern, after);
4241 if (pattern == NULL_RTX || !loc)
4242 return last;
4244 after = NEXT_INSN (after);
4245 while (1)
4247 if (active_insn_p (after) && !INSN_LOCATOR (after))
4248 INSN_LOCATOR (after) = loc;
4249 if (after == last)
4250 break;
4251 after = NEXT_INSN (after);
4253 return last;
4256 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4258 emit_jump_insn_after (rtx pattern, rtx after)
4260 if (INSN_P (after))
4261 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4262 else
4263 return emit_jump_insn_after_noloc (pattern, after);
4266 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4268 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4270 rtx last = emit_call_insn_after_noloc (pattern, after);
4272 if (pattern == NULL_RTX || !loc)
4273 return last;
4275 after = NEXT_INSN (after);
4276 while (1)
4278 if (active_insn_p (after) && !INSN_LOCATOR (after))
4279 INSN_LOCATOR (after) = loc;
4280 if (after == last)
4281 break;
4282 after = NEXT_INSN (after);
4284 return last;
4287 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4289 emit_call_insn_after (rtx pattern, rtx after)
4291 if (INSN_P (after))
4292 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4293 else
4294 return emit_call_insn_after_noloc (pattern, after);
4297 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4299 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4301 rtx first = PREV_INSN (before);
4302 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4304 if (pattern == NULL_RTX || !loc)
4305 return last;
4307 if (!first)
4308 first = get_insns ();
4309 else
4310 first = NEXT_INSN (first);
4311 while (1)
4313 if (active_insn_p (first) && !INSN_LOCATOR (first))
4314 INSN_LOCATOR (first) = loc;
4315 if (first == last)
4316 break;
4317 first = NEXT_INSN (first);
4319 return last;
4322 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4324 emit_insn_before (rtx pattern, rtx before)
4326 if (INSN_P (before))
4327 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4328 else
4329 return emit_insn_before_noloc (pattern, before, NULL);
4332 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4334 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4336 rtx first = PREV_INSN (before);
4337 rtx last = emit_jump_insn_before_noloc (pattern, before);
4339 if (pattern == NULL_RTX)
4340 return last;
4342 first = NEXT_INSN (first);
4343 while (1)
4345 if (active_insn_p (first) && !INSN_LOCATOR (first))
4346 INSN_LOCATOR (first) = loc;
4347 if (first == last)
4348 break;
4349 first = NEXT_INSN (first);
4351 return last;
4354 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4356 emit_jump_insn_before (rtx pattern, rtx before)
4358 if (INSN_P (before))
4359 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4360 else
4361 return emit_jump_insn_before_noloc (pattern, before);
4364 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4366 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4368 rtx first = PREV_INSN (before);
4369 rtx last = emit_call_insn_before_noloc (pattern, before);
4371 if (pattern == NULL_RTX)
4372 return last;
4374 first = NEXT_INSN (first);
4375 while (1)
4377 if (active_insn_p (first) && !INSN_LOCATOR (first))
4378 INSN_LOCATOR (first) = loc;
4379 if (first == last)
4380 break;
4381 first = NEXT_INSN (first);
4383 return last;
4386 /* like emit_call_insn_before_noloc,
4387 but set insn_locator according to before. */
4389 emit_call_insn_before (rtx pattern, rtx before)
4391 if (INSN_P (before))
4392 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4393 else
4394 return emit_call_insn_before_noloc (pattern, before);
4397 /* Take X and emit it at the end of the doubly-linked
4398 INSN list.
4400 Returns the last insn emitted. */
4403 emit_insn (rtx x)
4405 rtx last = last_insn;
4406 rtx insn;
4408 if (x == NULL_RTX)
4409 return last;
4411 switch (GET_CODE (x))
4413 case INSN:
4414 case JUMP_INSN:
4415 case CALL_INSN:
4416 case CODE_LABEL:
4417 case BARRIER:
4418 case NOTE:
4419 insn = x;
4420 while (insn)
4422 rtx next = NEXT_INSN (insn);
4423 add_insn (insn);
4424 last = insn;
4425 insn = next;
4427 break;
4429 #ifdef ENABLE_RTL_CHECKING
4430 case SEQUENCE:
4431 gcc_unreachable ();
4432 break;
4433 #endif
4435 default:
4436 last = make_insn_raw (x);
4437 add_insn (last);
4438 break;
4441 return last;
4444 /* Make an insn of code JUMP_INSN with pattern X
4445 and add it to the end of the doubly-linked list. */
4448 emit_jump_insn (rtx x)
4450 rtx last = NULL_RTX, insn;
4452 switch (GET_CODE (x))
4454 case INSN:
4455 case JUMP_INSN:
4456 case CALL_INSN:
4457 case CODE_LABEL:
4458 case BARRIER:
4459 case NOTE:
4460 insn = x;
4461 while (insn)
4463 rtx next = NEXT_INSN (insn);
4464 add_insn (insn);
4465 last = insn;
4466 insn = next;
4468 break;
4470 #ifdef ENABLE_RTL_CHECKING
4471 case SEQUENCE:
4472 gcc_unreachable ();
4473 break;
4474 #endif
4476 default:
4477 last = make_jump_insn_raw (x);
4478 add_insn (last);
4479 break;
4482 return last;
4485 /* Make an insn of code CALL_INSN with pattern X
4486 and add it to the end of the doubly-linked list. */
4489 emit_call_insn (rtx x)
4491 rtx insn;
4493 switch (GET_CODE (x))
4495 case INSN:
4496 case JUMP_INSN:
4497 case CALL_INSN:
4498 case CODE_LABEL:
4499 case BARRIER:
4500 case NOTE:
4501 insn = emit_insn (x);
4502 break;
4504 #ifdef ENABLE_RTL_CHECKING
4505 case SEQUENCE:
4506 gcc_unreachable ();
4507 break;
4508 #endif
4510 default:
4511 insn = make_call_insn_raw (x);
4512 add_insn (insn);
4513 break;
4516 return insn;
4519 /* Add the label LABEL to the end of the doubly-linked list. */
4522 emit_label (rtx label)
4524 /* This can be called twice for the same label
4525 as a result of the confusion that follows a syntax error!
4526 So make it harmless. */
4527 if (INSN_UID (label) == 0)
4529 INSN_UID (label) = cur_insn_uid++;
4530 add_insn (label);
4532 return label;
4535 /* Make an insn of code BARRIER
4536 and add it to the end of the doubly-linked list. */
4539 emit_barrier (void)
4541 rtx barrier = rtx_alloc (BARRIER);
4542 INSN_UID (barrier) = cur_insn_uid++;
4543 add_insn (barrier);
4544 return barrier;
4547 /* Emit a copy of note ORIG. */
4550 emit_note_copy (rtx orig)
4552 rtx note;
4554 note = rtx_alloc (NOTE);
4556 INSN_UID (note) = cur_insn_uid++;
4557 NOTE_DATA (note) = NOTE_DATA (orig);
4558 NOTE_KIND (note) = NOTE_KIND (orig);
4559 BLOCK_FOR_INSN (note) = NULL;
4560 add_insn (note);
4562 return note;
4565 /* Make an insn of code NOTE or type NOTE_NO
4566 and add it to the end of the doubly-linked list. */
4569 emit_note (enum insn_note kind)
4571 rtx note;
4573 note = rtx_alloc (NOTE);
4574 INSN_UID (note) = cur_insn_uid++;
4575 NOTE_KIND (note) = kind;
4576 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4577 BLOCK_FOR_INSN (note) = NULL;
4578 add_insn (note);
4579 return note;
4582 /* Cause next statement to emit a line note even if the line number
4583 has not changed. */
4585 void
4586 force_next_line_note (void)
4588 #ifdef USE_MAPPED_LOCATION
4589 last_location = -1;
4590 #else
4591 last_location.line = -1;
4592 #endif
4595 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4596 note of this type already exists, remove it first. */
4599 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4601 rtx note = find_reg_note (insn, kind, NULL_RTX);
4602 rtx new_note = NULL;
4604 switch (kind)
4606 case REG_EQUAL:
4607 case REG_EQUIV:
4608 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4609 has multiple sets (some callers assume single_set
4610 means the insn only has one set, when in fact it
4611 means the insn only has one * useful * set). */
4612 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4614 gcc_assert (!note);
4615 return NULL_RTX;
4618 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4619 It serves no useful purpose and breaks eliminate_regs. */
4620 if (GET_CODE (datum) == ASM_OPERANDS)
4621 return NULL_RTX;
4623 if (note)
4625 XEXP (note, 0) = datum;
4626 df_notes_rescan (insn);
4627 return note;
4629 break;
4631 default:
4632 if (note)
4634 XEXP (note, 0) = datum;
4635 return note;
4637 break;
4640 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4641 REG_NOTES (insn) = new_note;
4643 switch (kind)
4645 case REG_EQUAL:
4646 case REG_EQUIV:
4647 df_notes_rescan (insn);
4648 break;
4649 default:
4650 break;
4653 return REG_NOTES (insn);
4656 /* Return an indication of which type of insn should have X as a body.
4657 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4659 static enum rtx_code
4660 classify_insn (rtx x)
4662 if (LABEL_P (x))
4663 return CODE_LABEL;
4664 if (GET_CODE (x) == CALL)
4665 return CALL_INSN;
4666 if (GET_CODE (x) == RETURN)
4667 return JUMP_INSN;
4668 if (GET_CODE (x) == SET)
4670 if (SET_DEST (x) == pc_rtx)
4671 return JUMP_INSN;
4672 else if (GET_CODE (SET_SRC (x)) == CALL)
4673 return CALL_INSN;
4674 else
4675 return INSN;
4677 if (GET_CODE (x) == PARALLEL)
4679 int j;
4680 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4681 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4682 return CALL_INSN;
4683 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4684 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4685 return JUMP_INSN;
4686 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4687 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4688 return CALL_INSN;
4690 return INSN;
4693 /* Emit the rtl pattern X as an appropriate kind of insn.
4694 If X is a label, it is simply added into the insn chain. */
4697 emit (rtx x)
4699 enum rtx_code code = classify_insn (x);
4701 switch (code)
4703 case CODE_LABEL:
4704 return emit_label (x);
4705 case INSN:
4706 return emit_insn (x);
4707 case JUMP_INSN:
4709 rtx insn = emit_jump_insn (x);
4710 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4711 return emit_barrier ();
4712 return insn;
4714 case CALL_INSN:
4715 return emit_call_insn (x);
4716 default:
4717 gcc_unreachable ();
4721 /* Space for free sequence stack entries. */
4722 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4724 /* Begin emitting insns to a sequence. If this sequence will contain
4725 something that might cause the compiler to pop arguments to function
4726 calls (because those pops have previously been deferred; see
4727 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4728 before calling this function. That will ensure that the deferred
4729 pops are not accidentally emitted in the middle of this sequence. */
4731 void
4732 start_sequence (void)
4734 struct sequence_stack *tem;
4736 if (free_sequence_stack != NULL)
4738 tem = free_sequence_stack;
4739 free_sequence_stack = tem->next;
4741 else
4742 tem = ggc_alloc (sizeof (struct sequence_stack));
4744 tem->next = seq_stack;
4745 tem->first = first_insn;
4746 tem->last = last_insn;
4748 seq_stack = tem;
4750 first_insn = 0;
4751 last_insn = 0;
4754 /* Set up the insn chain starting with FIRST as the current sequence,
4755 saving the previously current one. See the documentation for
4756 start_sequence for more information about how to use this function. */
4758 void
4759 push_to_sequence (rtx first)
4761 rtx last;
4763 start_sequence ();
4765 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4767 first_insn = first;
4768 last_insn = last;
4771 /* Like push_to_sequence, but take the last insn as an argument to avoid
4772 looping through the list. */
4774 void
4775 push_to_sequence2 (rtx first, rtx last)
4777 start_sequence ();
4779 first_insn = first;
4780 last_insn = last;
4783 /* Set up the outer-level insn chain
4784 as the current sequence, saving the previously current one. */
4786 void
4787 push_topmost_sequence (void)
4789 struct sequence_stack *stack, *top = NULL;
4791 start_sequence ();
4793 for (stack = seq_stack; stack; stack = stack->next)
4794 top = stack;
4796 first_insn = top->first;
4797 last_insn = top->last;
4800 /* After emitting to the outer-level insn chain, update the outer-level
4801 insn chain, and restore the previous saved state. */
4803 void
4804 pop_topmost_sequence (void)
4806 struct sequence_stack *stack, *top = NULL;
4808 for (stack = seq_stack; stack; stack = stack->next)
4809 top = stack;
4811 top->first = first_insn;
4812 top->last = last_insn;
4814 end_sequence ();
4817 /* After emitting to a sequence, restore previous saved state.
4819 To get the contents of the sequence just made, you must call
4820 `get_insns' *before* calling here.
4822 If the compiler might have deferred popping arguments while
4823 generating this sequence, and this sequence will not be immediately
4824 inserted into the instruction stream, use do_pending_stack_adjust
4825 before calling get_insns. That will ensure that the deferred
4826 pops are inserted into this sequence, and not into some random
4827 location in the instruction stream. See INHIBIT_DEFER_POP for more
4828 information about deferred popping of arguments. */
4830 void
4831 end_sequence (void)
4833 struct sequence_stack *tem = seq_stack;
4835 first_insn = tem->first;
4836 last_insn = tem->last;
4837 seq_stack = tem->next;
4839 memset (tem, 0, sizeof (*tem));
4840 tem->next = free_sequence_stack;
4841 free_sequence_stack = tem;
4844 /* Return 1 if currently emitting into a sequence. */
4847 in_sequence_p (void)
4849 return seq_stack != 0;
4852 /* Put the various virtual registers into REGNO_REG_RTX. */
4854 static void
4855 init_virtual_regs (struct emit_status *es)
4857 rtx *ptr = es->x_regno_reg_rtx;
4858 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4859 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4860 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4861 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4862 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4866 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4867 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4868 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4869 static int copy_insn_n_scratches;
4871 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4872 copied an ASM_OPERANDS.
4873 In that case, it is the original input-operand vector. */
4874 static rtvec orig_asm_operands_vector;
4876 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4877 copied an ASM_OPERANDS.
4878 In that case, it is the copied input-operand vector. */
4879 static rtvec copy_asm_operands_vector;
4881 /* Likewise for the constraints vector. */
4882 static rtvec orig_asm_constraints_vector;
4883 static rtvec copy_asm_constraints_vector;
4885 /* Recursively create a new copy of an rtx for copy_insn.
4886 This function differs from copy_rtx in that it handles SCRATCHes and
4887 ASM_OPERANDs properly.
4888 Normally, this function is not used directly; use copy_insn as front end.
4889 However, you could first copy an insn pattern with copy_insn and then use
4890 this function afterwards to properly copy any REG_NOTEs containing
4891 SCRATCHes. */
4894 copy_insn_1 (rtx orig)
4896 rtx copy;
4897 int i, j;
4898 RTX_CODE code;
4899 const char *format_ptr;
4901 code = GET_CODE (orig);
4903 switch (code)
4905 case REG:
4906 case CONST_INT:
4907 case CONST_DOUBLE:
4908 case CONST_FIXED:
4909 case CONST_VECTOR:
4910 case SYMBOL_REF:
4911 case CODE_LABEL:
4912 case PC:
4913 case CC0:
4914 return orig;
4915 case CLOBBER:
4916 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4917 return orig;
4918 break;
4920 case SCRATCH:
4921 for (i = 0; i < copy_insn_n_scratches; i++)
4922 if (copy_insn_scratch_in[i] == orig)
4923 return copy_insn_scratch_out[i];
4924 break;
4926 case CONST:
4927 if (shared_const_p (orig))
4928 return orig;
4929 break;
4931 /* A MEM with a constant address is not sharable. The problem is that
4932 the constant address may need to be reloaded. If the mem is shared,
4933 then reloading one copy of this mem will cause all copies to appear
4934 to have been reloaded. */
4936 default:
4937 break;
4940 /* Copy the various flags, fields, and other information. We assume
4941 that all fields need copying, and then clear the fields that should
4942 not be copied. That is the sensible default behavior, and forces
4943 us to explicitly document why we are *not* copying a flag. */
4944 copy = shallow_copy_rtx (orig);
4946 /* We do not copy the USED flag, which is used as a mark bit during
4947 walks over the RTL. */
4948 RTX_FLAG (copy, used) = 0;
4950 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4951 if (INSN_P (orig))
4953 RTX_FLAG (copy, jump) = 0;
4954 RTX_FLAG (copy, call) = 0;
4955 RTX_FLAG (copy, frame_related) = 0;
4958 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4960 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4961 switch (*format_ptr++)
4963 case 'e':
4964 if (XEXP (orig, i) != NULL)
4965 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4966 break;
4968 case 'E':
4969 case 'V':
4970 if (XVEC (orig, i) == orig_asm_constraints_vector)
4971 XVEC (copy, i) = copy_asm_constraints_vector;
4972 else if (XVEC (orig, i) == orig_asm_operands_vector)
4973 XVEC (copy, i) = copy_asm_operands_vector;
4974 else if (XVEC (orig, i) != NULL)
4976 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4977 for (j = 0; j < XVECLEN (copy, i); j++)
4978 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4980 break;
4982 case 't':
4983 case 'w':
4984 case 'i':
4985 case 's':
4986 case 'S':
4987 case 'u':
4988 case '0':
4989 /* These are left unchanged. */
4990 break;
4992 default:
4993 gcc_unreachable ();
4996 if (code == SCRATCH)
4998 i = copy_insn_n_scratches++;
4999 gcc_assert (i < MAX_RECOG_OPERANDS);
5000 copy_insn_scratch_in[i] = orig;
5001 copy_insn_scratch_out[i] = copy;
5003 else if (code == ASM_OPERANDS)
5005 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5006 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5007 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5008 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5011 return copy;
5014 /* Create a new copy of an rtx.
5015 This function differs from copy_rtx in that it handles SCRATCHes and
5016 ASM_OPERANDs properly.
5017 INSN doesn't really have to be a full INSN; it could be just the
5018 pattern. */
5020 copy_insn (rtx insn)
5022 copy_insn_n_scratches = 0;
5023 orig_asm_operands_vector = 0;
5024 orig_asm_constraints_vector = 0;
5025 copy_asm_operands_vector = 0;
5026 copy_asm_constraints_vector = 0;
5027 return copy_insn_1 (insn);
5030 /* Initialize data structures and variables in this file
5031 before generating rtl for each function. */
5033 void
5034 init_emit (void)
5036 struct function *f = cfun;
5038 f->emit = ggc_alloc (sizeof (struct emit_status));
5039 first_insn = NULL;
5040 last_insn = NULL;
5041 cur_insn_uid = 1;
5042 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5043 last_location = UNKNOWN_LOCATION;
5044 first_label_num = label_num;
5045 seq_stack = NULL;
5047 /* Init the tables that describe all the pseudo regs. */
5049 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5051 f->emit->regno_pointer_align
5052 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5053 * sizeof (unsigned char));
5055 regno_reg_rtx
5056 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5058 /* Put copies of all the hard registers into regno_reg_rtx. */
5059 memcpy (regno_reg_rtx,
5060 static_regno_reg_rtx,
5061 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5063 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5064 init_virtual_regs (f->emit);
5066 /* Indicate that the virtual registers and stack locations are
5067 all pointers. */
5068 REG_POINTER (stack_pointer_rtx) = 1;
5069 REG_POINTER (frame_pointer_rtx) = 1;
5070 REG_POINTER (hard_frame_pointer_rtx) = 1;
5071 REG_POINTER (arg_pointer_rtx) = 1;
5073 REG_POINTER (virtual_incoming_args_rtx) = 1;
5074 REG_POINTER (virtual_stack_vars_rtx) = 1;
5075 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5076 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5077 REG_POINTER (virtual_cfa_rtx) = 1;
5079 #ifdef STACK_BOUNDARY
5080 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5081 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5082 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5083 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5085 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5086 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5087 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5088 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5089 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5090 #endif
5092 #ifdef INIT_EXPANDERS
5093 INIT_EXPANDERS;
5094 #endif
5097 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5099 static rtx
5100 gen_const_vector (enum machine_mode mode, int constant)
5102 rtx tem;
5103 rtvec v;
5104 int units, i;
5105 enum machine_mode inner;
5107 units = GET_MODE_NUNITS (mode);
5108 inner = GET_MODE_INNER (mode);
5110 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5112 v = rtvec_alloc (units);
5114 /* We need to call this function after we set the scalar const_tiny_rtx
5115 entries. */
5116 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5118 for (i = 0; i < units; ++i)
5119 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5121 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5122 return tem;
5125 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5126 all elements are zero, and the one vector when all elements are one. */
5128 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5130 enum machine_mode inner = GET_MODE_INNER (mode);
5131 int nunits = GET_MODE_NUNITS (mode);
5132 rtx x;
5133 int i;
5135 /* Check to see if all of the elements have the same value. */
5136 x = RTVEC_ELT (v, nunits - 1);
5137 for (i = nunits - 2; i >= 0; i--)
5138 if (RTVEC_ELT (v, i) != x)
5139 break;
5141 /* If the values are all the same, check to see if we can use one of the
5142 standard constant vectors. */
5143 if (i == -1)
5145 if (x == CONST0_RTX (inner))
5146 return CONST0_RTX (mode);
5147 else if (x == CONST1_RTX (inner))
5148 return CONST1_RTX (mode);
5151 return gen_rtx_raw_CONST_VECTOR (mode, v);
5154 /* Initialise global register information required by all functions. */
5156 void
5157 init_emit_regs (void)
5159 int i;
5161 /* Reset register attributes */
5162 htab_empty (reg_attrs_htab);
5164 /* We need reg_raw_mode, so initialize the modes now. */
5165 init_reg_modes_target ();
5167 /* Assign register numbers to the globally defined register rtx. */
5168 pc_rtx = gen_rtx_PC (VOIDmode);
5169 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5170 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5171 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5172 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5173 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5174 virtual_incoming_args_rtx =
5175 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5176 virtual_stack_vars_rtx =
5177 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5178 virtual_stack_dynamic_rtx =
5179 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5180 virtual_outgoing_args_rtx =
5181 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5182 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5184 /* Initialize RTL for commonly used hard registers. These are
5185 copied into regno_reg_rtx as we begin to compile each function. */
5186 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5187 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5189 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5190 return_address_pointer_rtx
5191 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5192 #endif
5194 #ifdef STATIC_CHAIN_REGNUM
5195 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5197 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5198 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5199 static_chain_incoming_rtx
5200 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5201 else
5202 #endif
5203 static_chain_incoming_rtx = static_chain_rtx;
5204 #endif
5206 #ifdef STATIC_CHAIN
5207 static_chain_rtx = STATIC_CHAIN;
5209 #ifdef STATIC_CHAIN_INCOMING
5210 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5211 #else
5212 static_chain_incoming_rtx = static_chain_rtx;
5213 #endif
5214 #endif
5216 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5217 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5218 else
5219 pic_offset_table_rtx = NULL_RTX;
5222 /* Create some permanent unique rtl objects shared between all functions.
5223 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5225 void
5226 init_emit_once (int line_numbers)
5228 int i;
5229 enum machine_mode mode;
5230 enum machine_mode double_mode;
5232 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5233 hash tables. */
5234 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5235 const_int_htab_eq, NULL);
5237 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5238 const_double_htab_eq, NULL);
5240 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5241 const_fixed_htab_eq, NULL);
5243 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5244 mem_attrs_htab_eq, NULL);
5245 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5246 reg_attrs_htab_eq, NULL);
5248 no_line_numbers = ! line_numbers;
5250 /* Compute the word and byte modes. */
5252 byte_mode = VOIDmode;
5253 word_mode = VOIDmode;
5254 double_mode = VOIDmode;
5256 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5257 mode != VOIDmode;
5258 mode = GET_MODE_WIDER_MODE (mode))
5260 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5261 && byte_mode == VOIDmode)
5262 byte_mode = mode;
5264 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5265 && word_mode == VOIDmode)
5266 word_mode = mode;
5269 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5270 mode != VOIDmode;
5271 mode = GET_MODE_WIDER_MODE (mode))
5273 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5274 && double_mode == VOIDmode)
5275 double_mode = mode;
5278 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5280 #ifdef INIT_EXPANDERS
5281 /* This is to initialize {init|mark|free}_machine_status before the first
5282 call to push_function_context_to. This is needed by the Chill front
5283 end which calls push_function_context_to before the first call to
5284 init_function_start. */
5285 INIT_EXPANDERS;
5286 #endif
5288 /* Create the unique rtx's for certain rtx codes and operand values. */
5290 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5291 tries to use these variables. */
5292 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5293 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5294 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5296 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5297 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5298 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5299 else
5300 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5302 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5303 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5304 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5305 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5306 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5307 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5308 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5310 dconsthalf = dconst1;
5311 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5313 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5315 /* Initialize mathematical constants for constant folding builtins.
5316 These constants need to be given to at least 160 bits precision. */
5317 real_from_string (&dconstsqrt2,
5318 "1.4142135623730950488016887242096980785696718753769480731766797379907");
5319 real_from_string (&dconste,
5320 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5322 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5324 REAL_VALUE_TYPE *r =
5325 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5327 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5328 mode != VOIDmode;
5329 mode = GET_MODE_WIDER_MODE (mode))
5330 const_tiny_rtx[i][(int) mode] =
5331 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5333 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5334 mode != VOIDmode;
5335 mode = GET_MODE_WIDER_MODE (mode))
5336 const_tiny_rtx[i][(int) mode] =
5337 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5339 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5341 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5342 mode != VOIDmode;
5343 mode = GET_MODE_WIDER_MODE (mode))
5344 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5347 mode != VOIDmode;
5348 mode = GET_MODE_WIDER_MODE (mode))
5349 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5352 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5353 mode != VOIDmode;
5354 mode = GET_MODE_WIDER_MODE (mode))
5356 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5357 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5360 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5361 mode != VOIDmode;
5362 mode = GET_MODE_WIDER_MODE (mode))
5364 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5365 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5368 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5369 mode != VOIDmode;
5370 mode = GET_MODE_WIDER_MODE (mode))
5372 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5373 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5376 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5377 mode != VOIDmode;
5378 mode = GET_MODE_WIDER_MODE (mode))
5380 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5381 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5384 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5385 mode != VOIDmode;
5386 mode = GET_MODE_WIDER_MODE (mode))
5388 FCONST0(mode).data.high = 0;
5389 FCONST0(mode).data.low = 0;
5390 FCONST0(mode).mode = mode;
5391 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5392 FCONST0 (mode), mode);
5395 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5396 mode != VOIDmode;
5397 mode = GET_MODE_WIDER_MODE (mode))
5399 FCONST0(mode).data.high = 0;
5400 FCONST0(mode).data.low = 0;
5401 FCONST0(mode).mode = mode;
5402 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5403 FCONST0 (mode), mode);
5406 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5407 mode != VOIDmode;
5408 mode = GET_MODE_WIDER_MODE (mode))
5410 FCONST0(mode).data.high = 0;
5411 FCONST0(mode).data.low = 0;
5412 FCONST0(mode).mode = mode;
5413 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5414 FCONST0 (mode), mode);
5416 /* We store the value 1. */
5417 FCONST1(mode).data.high = 0;
5418 FCONST1(mode).data.low = 0;
5419 FCONST1(mode).mode = mode;
5420 lshift_double (1, 0, GET_MODE_FBIT (mode),
5421 2 * HOST_BITS_PER_WIDE_INT,
5422 &FCONST1(mode).data.low,
5423 &FCONST1(mode).data.high,
5424 SIGNED_FIXED_POINT_MODE_P (mode));
5425 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5426 FCONST1 (mode), mode);
5429 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5430 mode != VOIDmode;
5431 mode = GET_MODE_WIDER_MODE (mode))
5433 FCONST0(mode).data.high = 0;
5434 FCONST0(mode).data.low = 0;
5435 FCONST0(mode).mode = mode;
5436 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5437 FCONST0 (mode), mode);
5439 /* We store the value 1. */
5440 FCONST1(mode).data.high = 0;
5441 FCONST1(mode).data.low = 0;
5442 FCONST1(mode).mode = mode;
5443 lshift_double (1, 0, GET_MODE_FBIT (mode),
5444 2 * HOST_BITS_PER_WIDE_INT,
5445 &FCONST1(mode).data.low,
5446 &FCONST1(mode).data.high,
5447 SIGNED_FIXED_POINT_MODE_P (mode));
5448 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5449 FCONST1 (mode), mode);
5452 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5453 mode != VOIDmode;
5454 mode = GET_MODE_WIDER_MODE (mode))
5456 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5459 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5460 mode != VOIDmode;
5461 mode = GET_MODE_WIDER_MODE (mode))
5463 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5466 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5467 mode != VOIDmode;
5468 mode = GET_MODE_WIDER_MODE (mode))
5470 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5471 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5474 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5475 mode != VOIDmode;
5476 mode = GET_MODE_WIDER_MODE (mode))
5478 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5479 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5482 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5483 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5484 const_tiny_rtx[0][i] = const0_rtx;
5486 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5487 if (STORE_FLAG_VALUE == 1)
5488 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5491 /* Produce exact duplicate of insn INSN after AFTER.
5492 Care updating of libcall regions if present. */
5495 emit_copy_of_insn_after (rtx insn, rtx after)
5497 rtx new;
5498 rtx note1, note2, link;
5500 switch (GET_CODE (insn))
5502 case INSN:
5503 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5504 break;
5506 case JUMP_INSN:
5507 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5508 break;
5510 case CALL_INSN:
5511 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5512 if (CALL_INSN_FUNCTION_USAGE (insn))
5513 CALL_INSN_FUNCTION_USAGE (new)
5514 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5515 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5516 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5517 break;
5519 default:
5520 gcc_unreachable ();
5523 /* Update LABEL_NUSES. */
5524 mark_jump_label (PATTERN (new), new, 0);
5526 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5528 /* If the old insn is frame related, then so is the new one. This is
5529 primarily needed for IA-64 unwind info which marks epilogue insns,
5530 which may be duplicated by the basic block reordering code. */
5531 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5533 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5534 will make them. REG_LABEL_TARGETs are created there too, but are
5535 supposed to be sticky, so we copy them. */
5536 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5537 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5539 if (GET_CODE (link) == EXPR_LIST)
5540 REG_NOTES (new)
5541 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5542 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5543 else
5544 REG_NOTES (new)
5545 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5546 XEXP (link, 0), REG_NOTES (new));
5549 /* Fix the libcall sequences. */
5550 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5552 rtx p = new;
5553 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5554 p = PREV_INSN (p);
5555 XEXP (note1, 0) = p;
5556 XEXP (note2, 0) = new;
5558 INSN_CODE (new) = INSN_CODE (insn);
5559 return new;
5562 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5564 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5566 if (hard_reg_clobbers[mode][regno])
5567 return hard_reg_clobbers[mode][regno];
5568 else
5569 return (hard_reg_clobbers[mode][regno] =
5570 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5573 #include "gt-emit-rtl.h"