2005-06-09 Adrian Straetling <straetling@de.ibm.com>
[official-gcc.git] / gcc / cfg.c
blobe842a5083467182e43898ddde9675404301b0cff
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "ggc.h"
67 /* The obstack on which the flow graph components are allocated. */
69 struct bitmap_obstack reg_obstack;
71 void debug_flow_info (void);
72 static void free_edge (edge);
74 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
76 /* Called once at initialization time. */
78 void
79 init_flow (void)
81 if (!cfun->cfg)
82 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
83 n_edges = 0;
84 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
85 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
86 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
87 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
88 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
89 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
92 /* Helper function for remove_edge and clear_edges. Frees edge structure
93 without actually unlinking it from the pred/succ lists. */
95 static void
96 free_edge (edge e ATTRIBUTE_UNUSED)
98 n_edges--;
99 ggc_free (e);
102 /* Free the memory associated with the edge structures. */
104 void
105 clear_edges (void)
107 basic_block bb;
108 edge e;
109 edge_iterator ei;
111 FOR_EACH_BB (bb)
113 FOR_EACH_EDGE (e, ei, bb->succs)
114 free_edge (e);
115 VEC_truncate (edge, bb->succs, 0);
116 VEC_truncate (edge, bb->preds, 0);
119 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
120 free_edge (e);
121 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
122 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
124 gcc_assert (!n_edges);
127 /* Allocate memory for basic_block. */
129 basic_block
130 alloc_block (void)
132 basic_block bb;
133 bb = ggc_alloc_cleared (sizeof (*bb));
134 return bb;
137 /* Initialize rbi (the structure containing data used by basic block
138 duplication and reordering) for the given basic block. */
140 void
141 initialize_bb_rbi (basic_block bb)
143 gcc_assert (!bb->rbi);
144 bb->rbi = ggc_alloc_cleared (sizeof (struct reorder_block_def));
147 /* Link block B to chain after AFTER. */
148 void
149 link_block (basic_block b, basic_block after)
151 b->next_bb = after->next_bb;
152 b->prev_bb = after;
153 after->next_bb = b;
154 b->next_bb->prev_bb = b;
157 /* Unlink block B from chain. */
158 void
159 unlink_block (basic_block b)
161 b->next_bb->prev_bb = b->prev_bb;
162 b->prev_bb->next_bb = b->next_bb;
163 b->prev_bb = NULL;
164 b->next_bb = NULL;
167 /* Sequentially order blocks and compact the arrays. */
168 void
169 compact_blocks (void)
171 int i;
172 basic_block bb;
174 i = 0;
175 FOR_EACH_BB (bb)
177 BASIC_BLOCK (i) = bb;
178 bb->index = i;
179 i++;
182 gcc_assert (i == n_basic_blocks);
184 for (; i < last_basic_block; i++)
185 BASIC_BLOCK (i) = NULL;
187 last_basic_block = n_basic_blocks;
190 /* Remove block B from the basic block array. */
192 void
193 expunge_block (basic_block b)
195 unlink_block (b);
196 BASIC_BLOCK (b->index) = NULL;
197 n_basic_blocks--;
198 /* We should be able to ggc_free here, but we are not.
199 The dead SSA_NAMES are left pointing to dead statements that are pointing
200 to dead basic blocks making garbage collector to die.
201 We should be able to release all dead SSA_NAMES and at the same time we should
202 clear out BB pointer of dead statements consistently. */
205 /* Connect E to E->src. */
207 static inline void
208 connect_src (edge e)
210 VEC_safe_push (edge, gc, e->src->succs, e);
213 /* Connect E to E->dest. */
215 static inline void
216 connect_dest (edge e)
218 basic_block dest = e->dest;
219 VEC_safe_push (edge, gc, dest->preds, e);
220 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
223 /* Disconnect edge E from E->src. */
225 static inline void
226 disconnect_src (edge e)
228 basic_block src = e->src;
229 edge_iterator ei;
230 edge tmp;
232 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
234 if (tmp == e)
236 VEC_unordered_remove (edge, src->succs, ei.index);
237 return;
239 else
240 ei_next (&ei);
243 gcc_unreachable ();
246 /* Disconnect edge E from E->dest. */
248 static inline void
249 disconnect_dest (edge e)
251 basic_block dest = e->dest;
252 unsigned int dest_idx = e->dest_idx;
254 VEC_unordered_remove (edge, dest->preds, dest_idx);
256 /* If we removed an edge in the middle of the edge vector, we need
257 to update dest_idx of the edge that moved into the "hole". */
258 if (dest_idx < EDGE_COUNT (dest->preds))
259 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
262 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
263 created edge. Use this only if you are sure that this edge can't
264 possibly already exist. */
266 edge
267 unchecked_make_edge (basic_block src, basic_block dst, int flags)
269 edge e;
270 e = ggc_alloc_cleared (sizeof (*e));
271 n_edges++;
273 e->src = src;
274 e->dest = dst;
275 e->flags = flags;
277 connect_src (e);
278 connect_dest (e);
280 execute_on_growing_pred (e);
282 return e;
285 /* Create an edge connecting SRC and DST with FLAGS optionally using
286 edge cache CACHE. Return the new edge, NULL if already exist. */
288 edge
289 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
291 if (edge_cache == NULL
292 || src == ENTRY_BLOCK_PTR
293 || dst == EXIT_BLOCK_PTR)
294 return make_edge (src, dst, flags);
296 /* Does the requested edge already exist? */
297 if (! TEST_BIT (edge_cache, dst->index))
299 /* The edge does not exist. Create one and update the
300 cache. */
301 SET_BIT (edge_cache, dst->index);
302 return unchecked_make_edge (src, dst, flags);
305 /* At this point, we know that the requested edge exists. Adjust
306 flags if necessary. */
307 if (flags)
309 edge e = find_edge (src, dst);
310 e->flags |= flags;
313 return NULL;
316 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
317 created edge or NULL if already exist. */
319 edge
320 make_edge (basic_block src, basic_block dest, int flags)
322 edge e = find_edge (src, dest);
324 /* Make sure we don't add duplicate edges. */
325 if (e)
327 e->flags |= flags;
328 return NULL;
331 return unchecked_make_edge (src, dest, flags);
334 /* Create an edge connecting SRC to DEST and set probability by knowing
335 that it is the single edge leaving SRC. */
337 edge
338 make_single_succ_edge (basic_block src, basic_block dest, int flags)
340 edge e = make_edge (src, dest, flags);
342 e->probability = REG_BR_PROB_BASE;
343 e->count = src->count;
344 return e;
347 /* This function will remove an edge from the flow graph. */
349 void
350 remove_edge (edge e)
352 remove_predictions_associated_with_edge (e);
353 execute_on_shrinking_pred (e);
355 disconnect_src (e);
356 disconnect_dest (e);
358 free_edge (e);
361 /* Redirect an edge's successor from one block to another. */
363 void
364 redirect_edge_succ (edge e, basic_block new_succ)
366 execute_on_shrinking_pred (e);
368 disconnect_dest (e);
370 e->dest = new_succ;
372 /* Reconnect the edge to the new successor block. */
373 connect_dest (e);
375 execute_on_growing_pred (e);
378 /* Like previous but avoid possible duplicate edge. */
380 edge
381 redirect_edge_succ_nodup (edge e, basic_block new_succ)
383 edge s;
385 s = find_edge (e->src, new_succ);
386 if (s && s != e)
388 s->flags |= e->flags;
389 s->probability += e->probability;
390 if (s->probability > REG_BR_PROB_BASE)
391 s->probability = REG_BR_PROB_BASE;
392 s->count += e->count;
393 remove_edge (e);
394 e = s;
396 else
397 redirect_edge_succ (e, new_succ);
399 return e;
402 /* Redirect an edge's predecessor from one block to another. */
404 void
405 redirect_edge_pred (edge e, basic_block new_pred)
407 disconnect_src (e);
409 e->src = new_pred;
411 /* Reconnect the edge to the new predecessor block. */
412 connect_src (e);
415 /* Clear all basic block flags, with the exception of partitioning. */
416 void
417 clear_bb_flags (void)
419 basic_block bb;
421 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
422 bb->flags = BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE);
425 /* Check the consistency of profile information. We can't do that
426 in verify_flow_info, as the counts may get invalid for incompletely
427 solved graphs, later eliminating of conditionals or roundoff errors.
428 It is still practical to have them reported for debugging of simple
429 testcases. */
430 void
431 check_bb_profile (basic_block bb, FILE * file)
433 edge e;
434 int sum = 0;
435 gcov_type lsum;
436 edge_iterator ei;
438 if (profile_status == PROFILE_ABSENT)
439 return;
441 if (bb != EXIT_BLOCK_PTR)
443 FOR_EACH_EDGE (e, ei, bb->succs)
444 sum += e->probability;
445 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
446 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
447 sum * 100.0 / REG_BR_PROB_BASE);
448 lsum = 0;
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 lsum += e->count;
451 if (EDGE_COUNT (bb->succs)
452 && (lsum - bb->count > 100 || lsum - bb->count < -100))
453 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
454 (int) lsum, (int) bb->count);
456 if (bb != ENTRY_BLOCK_PTR)
458 sum = 0;
459 FOR_EACH_EDGE (e, ei, bb->preds)
460 sum += EDGE_FREQUENCY (e);
461 if (abs (sum - bb->frequency) > 100)
462 fprintf (file,
463 "Invalid sum of incoming frequencies %i, should be %i\n",
464 sum, bb->frequency);
465 lsum = 0;
466 FOR_EACH_EDGE (e, ei, bb->preds)
467 lsum += e->count;
468 if (lsum - bb->count > 100 || lsum - bb->count < -100)
469 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
470 (int) lsum, (int) bb->count);
474 void
475 dump_flow_info (FILE *file)
477 basic_block bb;
479 /* There are no pseudo registers after reload. Don't dump them. */
480 if (reg_n_info && !reload_completed)
482 unsigned int i, max = max_reg_num ();
483 fprintf (file, "%d registers.\n", max);
484 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
485 if (REG_N_REFS (i))
487 enum reg_class class, altclass;
489 fprintf (file, "\nRegister %d used %d times across %d insns",
490 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
491 if (REG_BASIC_BLOCK (i) >= 0)
492 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
493 if (REG_N_SETS (i))
494 fprintf (file, "; set %d time%s", REG_N_SETS (i),
495 (REG_N_SETS (i) == 1) ? "" : "s");
496 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
497 fprintf (file, "; user var");
498 if (REG_N_DEATHS (i) != 1)
499 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
500 if (REG_N_CALLS_CROSSED (i) == 1)
501 fprintf (file, "; crosses 1 call");
502 else if (REG_N_CALLS_CROSSED (i))
503 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
504 if (regno_reg_rtx[i] != NULL
505 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
506 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
508 class = reg_preferred_class (i);
509 altclass = reg_alternate_class (i);
510 if (class != GENERAL_REGS || altclass != ALL_REGS)
512 if (altclass == ALL_REGS || class == ALL_REGS)
513 fprintf (file, "; pref %s", reg_class_names[(int) class]);
514 else if (altclass == NO_REGS)
515 fprintf (file, "; %s or none", reg_class_names[(int) class]);
516 else
517 fprintf (file, "; pref %s, else %s",
518 reg_class_names[(int) class],
519 reg_class_names[(int) altclass]);
522 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
523 fprintf (file, "; pointer");
524 fprintf (file, ".\n");
528 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
529 FOR_EACH_BB (bb)
531 edge e;
532 edge_iterator ei;
534 fprintf (file, "\nBasic block %d ", bb->index);
535 fprintf (file, "prev %d, next %d, ",
536 bb->prev_bb->index, bb->next_bb->index);
537 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
538 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
539 fprintf (file, ", freq %i", bb->frequency);
540 if (maybe_hot_bb_p (bb))
541 fprintf (file, ", maybe hot");
542 if (probably_never_executed_bb_p (bb))
543 fprintf (file, ", probably never executed");
544 fprintf (file, ".\n");
546 fprintf (file, "Predecessors: ");
547 FOR_EACH_EDGE (e, ei, bb->preds)
548 dump_edge_info (file, e, 0);
550 fprintf (file, "\nSuccessors: ");
551 FOR_EACH_EDGE (e, ei, bb->succs)
552 dump_edge_info (file, e, 1);
554 if (bb->global_live_at_start)
556 fprintf (file, "\nRegisters live at start:");
557 dump_regset (bb->global_live_at_start, file);
560 if (bb->global_live_at_end)
562 fprintf (file, "\nRegisters live at end:");
563 dump_regset (bb->global_live_at_end, file);
566 putc ('\n', file);
567 check_bb_profile (bb, file);
570 putc ('\n', file);
573 void
574 debug_flow_info (void)
576 dump_flow_info (stderr);
579 void
580 dump_edge_info (FILE *file, edge e, int do_succ)
582 basic_block side = (do_succ ? e->dest : e->src);
584 if (side == ENTRY_BLOCK_PTR)
585 fputs (" ENTRY", file);
586 else if (side == EXIT_BLOCK_PTR)
587 fputs (" EXIT", file);
588 else
589 fprintf (file, " %d", side->index);
591 if (e->probability)
592 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
594 if (e->count)
596 fprintf (file, " count:");
597 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
600 if (e->flags)
602 static const char * const bitnames[] = {
603 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
604 "can_fallthru", "irreducible", "sibcall", "loop_exit",
605 "true", "false", "exec"
607 int comma = 0;
608 int i, flags = e->flags;
610 fputs (" (", file);
611 for (i = 0; flags; i++)
612 if (flags & (1 << i))
614 flags &= ~(1 << i);
616 if (comma)
617 fputc (',', file);
618 if (i < (int) ARRAY_SIZE (bitnames))
619 fputs (bitnames[i], file);
620 else
621 fprintf (file, "%d", i);
622 comma = 1;
625 fputc (')', file);
629 /* Simple routines to easily allocate AUX fields of basic blocks. */
631 static struct obstack block_aux_obstack;
632 static void *first_block_aux_obj = 0;
633 static struct obstack edge_aux_obstack;
634 static void *first_edge_aux_obj = 0;
636 /* Allocate a memory block of SIZE as BB->aux. The obstack must
637 be first initialized by alloc_aux_for_blocks. */
639 inline void
640 alloc_aux_for_block (basic_block bb, int size)
642 /* Verify that aux field is clear. */
643 gcc_assert (!bb->aux && first_block_aux_obj);
644 bb->aux = obstack_alloc (&block_aux_obstack, size);
645 memset (bb->aux, 0, size);
648 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
649 alloc_aux_for_block for each basic block. */
651 void
652 alloc_aux_for_blocks (int size)
654 static int initialized;
656 if (!initialized)
658 gcc_obstack_init (&block_aux_obstack);
659 initialized = 1;
661 else
662 /* Check whether AUX data are still allocated. */
663 gcc_assert (!first_block_aux_obj);
665 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
666 if (size)
668 basic_block bb;
670 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
671 alloc_aux_for_block (bb, size);
675 /* Clear AUX pointers of all blocks. */
677 void
678 clear_aux_for_blocks (void)
680 basic_block bb;
682 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
683 bb->aux = NULL;
686 /* Free data allocated in block_aux_obstack and clear AUX pointers
687 of all blocks. */
689 void
690 free_aux_for_blocks (void)
692 gcc_assert (first_block_aux_obj);
693 obstack_free (&block_aux_obstack, first_block_aux_obj);
694 first_block_aux_obj = NULL;
696 clear_aux_for_blocks ();
699 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
700 be first initialized by alloc_aux_for_edges. */
702 inline void
703 alloc_aux_for_edge (edge e, int size)
705 /* Verify that aux field is clear. */
706 gcc_assert (!e->aux && first_edge_aux_obj);
707 e->aux = obstack_alloc (&edge_aux_obstack, size);
708 memset (e->aux, 0, size);
711 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
712 alloc_aux_for_edge for each basic edge. */
714 void
715 alloc_aux_for_edges (int size)
717 static int initialized;
719 if (!initialized)
721 gcc_obstack_init (&edge_aux_obstack);
722 initialized = 1;
724 else
725 /* Check whether AUX data are still allocated. */
726 gcc_assert (!first_edge_aux_obj);
728 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
729 if (size)
731 basic_block bb;
733 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
735 edge e;
736 edge_iterator ei;
738 FOR_EACH_EDGE (e, ei, bb->succs)
739 alloc_aux_for_edge (e, size);
744 /* Clear AUX pointers of all edges. */
746 void
747 clear_aux_for_edges (void)
749 basic_block bb;
750 edge e;
752 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
754 edge_iterator ei;
755 FOR_EACH_EDGE (e, ei, bb->succs)
756 e->aux = NULL;
760 /* Free data allocated in edge_aux_obstack and clear AUX pointers
761 of all edges. */
763 void
764 free_aux_for_edges (void)
766 gcc_assert (first_edge_aux_obj);
767 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
768 first_edge_aux_obj = NULL;
770 clear_aux_for_edges ();
773 void
774 debug_bb (basic_block bb)
776 dump_bb (bb, stderr, 0);
779 basic_block
780 debug_bb_n (int n)
782 basic_block bb = BASIC_BLOCK (n);
783 dump_bb (bb, stderr, 0);
784 return bb;
787 /* Dumps cfg related information about basic block BB to FILE. */
789 static void
790 dump_cfg_bb_info (FILE *file, basic_block bb)
792 unsigned i;
793 edge_iterator ei;
794 bool first = true;
795 static const char * const bb_bitnames[] =
797 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
799 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
800 edge e;
802 fprintf (file, "Basic block %d", bb->index);
803 for (i = 0; i < n_bitnames; i++)
804 if (bb->flags & (1 << i))
806 if (first)
807 fprintf (file, " (");
808 else
809 fprintf (file, ", ");
810 first = false;
811 fprintf (file, bb_bitnames[i]);
813 if (!first)
814 fprintf (file, ")");
815 fprintf (file, "\n");
817 fprintf (file, "Predecessors: ");
818 FOR_EACH_EDGE (e, ei, bb->preds)
819 dump_edge_info (file, e, 0);
821 fprintf (file, "\nSuccessors: ");
822 FOR_EACH_EDGE (e, ei, bb->succs)
823 dump_edge_info (file, e, 1);
824 fprintf (file, "\n\n");
827 /* Dumps a brief description of cfg to FILE. */
829 void
830 brief_dump_cfg (FILE *file)
832 basic_block bb;
834 FOR_EACH_BB (bb)
836 dump_cfg_bb_info (file, bb);
840 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
841 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
842 redirected to destination of TAKEN_EDGE.
844 This function may leave the profile inconsistent in the case TAKEN_EDGE
845 frequency or count is believed to be lower than FREQUENCY or COUNT
846 respectively. */
847 void
848 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
849 gcov_type count, edge taken_edge)
851 edge c;
852 int prob;
853 edge_iterator ei;
855 bb->count -= count;
856 if (bb->count < 0)
857 bb->count = 0;
859 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
860 Watch for overflows. */
861 if (bb->frequency)
862 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
863 else
864 prob = 0;
865 if (prob > taken_edge->probability)
867 if (dump_file)
868 fprintf (dump_file, "Jump threading proved probability of edge "
869 "%i->%i too small (it is %i, should be %i).\n",
870 taken_edge->src->index, taken_edge->dest->index,
871 taken_edge->probability, prob);
872 prob = taken_edge->probability;
875 /* Now rescale the probabilities. */
876 taken_edge->probability -= prob;
877 prob = REG_BR_PROB_BASE - prob;
878 bb->frequency -= edge_frequency;
879 if (bb->frequency < 0)
880 bb->frequency = 0;
881 if (prob <= 0)
883 if (dump_file)
884 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
885 "frequency of block should end up being 0, it is %i\n",
886 bb->index, bb->frequency);
887 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
888 ei = ei_start (bb->succs);
889 ei_next (&ei);
890 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
891 c->probability = 0;
893 else if (prob != REG_BR_PROB_BASE)
895 int scale = 65536 * REG_BR_PROB_BASE / prob;
897 FOR_EACH_EDGE (c, ei, bb->succs)
898 c->probability *= scale / 65536;
901 gcc_assert (bb == taken_edge->src);
902 taken_edge->count -= count;
903 if (taken_edge->count < 0)
904 taken_edge->count = 0;
907 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
908 by NUM/DEN, in int arithmetic. May lose some accuracy. */
909 void
910 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
912 int i;
913 edge e;
914 for (i = 0; i < nbbs; i++)
916 edge_iterator ei;
917 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
918 bbs[i]->count = RDIV (bbs[i]->count * num, den);
919 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
920 e->count = (e->count * num) /den;
924 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
925 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
926 function but considerably slower. */
927 void
928 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
929 gcov_type den)
931 int i;
932 edge e;
934 for (i = 0; i < nbbs; i++)
936 edge_iterator ei;
937 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
938 bbs[i]->count = RDIV (bbs[i]->count * num, den);
939 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
940 e->count = (e->count * num) /den;