1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
52 #include "hard-reg-set.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
74 #include "dominance.h"
77 #include "basic-block.h"
79 #include "targhooks.h"
82 #include "tree-pass.h"
85 #include "plugin-api.h"
94 #include "tree-pretty-print.h" /* for dump_function_header */
96 #include "wide-int-print.h"
99 #ifdef XCOFF_DEBUGGING_INFO
100 #include "xcoffout.h" /* Needed for external data
101 declarations for e.g. AIX 4.x. */
104 #include "dwarf2out.h"
106 #ifdef DBX_DEBUGGING_INFO
110 #ifdef SDB_DEBUGGING_INFO
114 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
115 So define a null default for it to save conditionalization later. */
116 #ifndef CC_STATUS_INIT
117 #define CC_STATUS_INIT
120 /* Is the given character a logical line separator for the assembler? */
121 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
122 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
125 #ifndef JUMP_TABLES_IN_TEXT_SECTION
126 #define JUMP_TABLES_IN_TEXT_SECTION 0
129 /* Bitflags used by final_scan_insn. */
131 #define SEEN_EMITTED 2
133 /* Last insn processed by final_scan_insn. */
134 static rtx_insn
*debug_insn
;
135 rtx_insn
*current_output_insn
;
137 /* Line number of last NOTE. */
138 static int last_linenum
;
140 /* Last discriminator written to assembly. */
141 static int last_discriminator
;
143 /* Discriminator of current block. */
144 static int discriminator
;
146 /* Highest line number in current block. */
147 static int high_block_linenum
;
149 /* Likewise for function. */
150 static int high_function_linenum
;
152 /* Filename of last NOTE. */
153 static const char *last_filename
;
155 /* Override filename and line number. */
156 static const char *override_filename
;
157 static int override_linenum
;
159 /* Whether to force emission of a line note before the next insn. */
160 static bool force_source_line
= false;
162 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
164 /* Nonzero while outputting an `asm' with operands.
165 This means that inconsistencies are the user's fault, so don't die.
166 The precise value is the insn being output, to pass to error_for_asm. */
167 const rtx_insn
*this_is_asm_operands
;
169 /* Number of operands of this insn, for an `asm' with operands. */
170 static unsigned int insn_noperands
;
172 /* Compare optimization flag. */
174 static rtx last_ignored_compare
= 0;
176 /* Assign a unique number to each insn that is output.
177 This can be used to generate unique local labels. */
179 static int insn_counter
= 0;
182 /* This variable contains machine-dependent flags (defined in tm.h)
183 set and examined by output routines
184 that describe how to interpret the condition codes properly. */
188 /* During output of an insn, this contains a copy of cc_status
189 from before the insn. */
191 CC_STATUS cc_prev_status
;
194 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
196 static int block_depth
;
198 /* Nonzero if have enabled APP processing of our assembler output. */
202 /* If we are outputting an insn sequence, this contains the sequence rtx.
205 rtx_sequence
*final_sequence
;
207 #ifdef ASSEMBLER_DIALECT
209 /* Number of the assembler dialect to use, starting at 0. */
210 static int dialect_number
;
213 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
214 rtx current_insn_predicate
;
216 /* True if printing into -fdump-final-insns= dump. */
217 bool final_insns_dump_p
;
219 /* True if profile_function should be called, but hasn't been called yet. */
220 static bool need_profile_function
;
222 static int asm_insn_count (rtx
);
223 static void profile_function (FILE *);
224 static void profile_after_prologue (FILE *);
225 static bool notice_source_line (rtx_insn
*, bool *);
226 static rtx
walk_alter_subreg (rtx
*, bool *);
227 static void output_asm_name (void);
228 static void output_alternate_entry_point (FILE *, rtx_insn
*);
229 static tree
get_mem_expr_from_op (rtx
, int *);
230 static void output_asm_operand_names (rtx
*, int *, int);
231 #ifdef LEAF_REGISTERS
232 static void leaf_renumber_regs (rtx_insn
*);
235 static int alter_cond (rtx
);
237 #ifndef ADDR_VEC_ALIGN
238 static int final_addr_vec_align (rtx
);
240 static int align_fuzz (rtx
, rtx
, int, unsigned);
241 static void collect_fn_hard_reg_usage (void);
242 static tree
get_call_fndecl (rtx_insn
*);
244 /* Initialize data in final at the beginning of a compilation. */
247 init_final (const char *filename ATTRIBUTE_UNUSED
)
252 #ifdef ASSEMBLER_DIALECT
253 dialect_number
= ASSEMBLER_DIALECT
;
257 /* Default target function prologue and epilogue assembler output.
259 If not overridden for epilogue code, then the function body itself
260 contains return instructions wherever needed. */
262 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
263 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
268 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
269 tree decl ATTRIBUTE_UNUSED
,
270 bool new_is_cold ATTRIBUTE_UNUSED
)
274 /* Default target hook that outputs nothing to a stream. */
276 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
280 /* Enable APP processing of subsequent output.
281 Used before the output from an `asm' statement. */
288 fputs (ASM_APP_ON
, asm_out_file
);
293 /* Disable APP processing of subsequent output.
294 Called from varasm.c before most kinds of output. */
301 fputs (ASM_APP_OFF
, asm_out_file
);
306 /* Return the number of slots filled in the current
307 delayed branch sequence (we don't count the insn needing the
308 delay slot). Zero if not in a delayed branch sequence. */
312 dbr_sequence_length (void)
314 if (final_sequence
!= 0)
315 return XVECLEN (final_sequence
, 0) - 1;
321 /* The next two pages contain routines used to compute the length of an insn
322 and to shorten branches. */
324 /* Arrays for insn lengths, and addresses. The latter is referenced by
325 `insn_current_length'. */
327 static int *insn_lengths
;
329 vec
<int> insn_addresses_
;
331 /* Max uid for which the above arrays are valid. */
332 static int insn_lengths_max_uid
;
334 /* Address of insn being processed. Used by `insn_current_length'. */
335 int insn_current_address
;
337 /* Address of insn being processed in previous iteration. */
338 int insn_last_address
;
340 /* known invariant alignment of insn being processed. */
341 int insn_current_align
;
343 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
344 gives the next following alignment insn that increases the known
345 alignment, or NULL_RTX if there is no such insn.
346 For any alignment obtained this way, we can again index uid_align with
347 its uid to obtain the next following align that in turn increases the
348 alignment, till we reach NULL_RTX; the sequence obtained this way
349 for each insn we'll call the alignment chain of this insn in the following
352 struct label_alignment
358 static rtx
*uid_align
;
359 static int *uid_shuid
;
360 static struct label_alignment
*label_align
;
362 /* Indicate that branch shortening hasn't yet been done. */
365 init_insn_lengths (void)
376 insn_lengths_max_uid
= 0;
378 if (HAVE_ATTR_length
)
379 INSN_ADDRESSES_FREE ();
387 /* Obtain the current length of an insn. If branch shortening has been done,
388 get its actual length. Otherwise, use FALLBACK_FN to calculate the
391 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
397 if (!HAVE_ATTR_length
)
400 if (insn_lengths_max_uid
> INSN_UID (insn
))
401 return insn_lengths
[INSN_UID (insn
)];
403 switch (GET_CODE (insn
))
413 length
= fallback_fn (insn
);
417 body
= PATTERN (insn
);
418 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
421 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
422 length
= asm_insn_count (body
) * fallback_fn (insn
);
423 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
424 for (i
= 0; i
< seq
->len (); i
++)
425 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
427 length
= fallback_fn (insn
);
434 #ifdef ADJUST_INSN_LENGTH
435 ADJUST_INSN_LENGTH (insn
, length
);
440 /* Obtain the current length of an insn. If branch shortening has been done,
441 get its actual length. Otherwise, get its maximum length. */
443 get_attr_length (rtx_insn
*insn
)
445 return get_attr_length_1 (insn
, insn_default_length
);
448 /* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its minimum length. */
451 get_attr_min_length (rtx_insn
*insn
)
453 return get_attr_length_1 (insn
, insn_min_length
);
456 /* Code to handle alignment inside shorten_branches. */
458 /* Here is an explanation how the algorithm in align_fuzz can give
461 Call a sequence of instructions beginning with alignment point X
462 and continuing until the next alignment point `block X'. When `X'
463 is used in an expression, it means the alignment value of the
466 Call the distance between the start of the first insn of block X, and
467 the end of the last insn of block X `IX', for the `inner size of X'.
468 This is clearly the sum of the instruction lengths.
470 Likewise with the next alignment-delimited block following X, which we
473 Call the distance between the start of the first insn of block X, and
474 the start of the first insn of block Y `OX', for the `outer size of X'.
476 The estimated padding is then OX - IX.
478 OX can be safely estimated as
483 OX = round_up(IX, X) + Y - X
485 Clearly est(IX) >= real(IX), because that only depends on the
486 instruction lengths, and those being overestimated is a given.
488 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
489 we needn't worry about that when thinking about OX.
491 When X >= Y, the alignment provided by Y adds no uncertainty factor
492 for branch ranges starting before X, so we can just round what we have.
493 But when X < Y, we don't know anything about the, so to speak,
494 `middle bits', so we have to assume the worst when aligning up from an
495 address mod X to one mod Y, which is Y - X. */
498 #define LABEL_ALIGN(LABEL) align_labels_log
502 #define LOOP_ALIGN(LABEL) align_loops_log
505 #ifndef LABEL_ALIGN_AFTER_BARRIER
506 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
510 #define JUMP_ALIGN(LABEL) align_jumps_log
514 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
520 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
522 return align_loops_max_skip
;
526 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
528 return align_labels_max_skip
;
532 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
534 return align_jumps_max_skip
;
537 #ifndef ADDR_VEC_ALIGN
539 final_addr_vec_align (rtx addr_vec
)
541 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
543 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
544 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
545 return exact_log2 (align
);
549 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
552 #ifndef INSN_LENGTH_ALIGNMENT
553 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
556 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558 static int min_labelno
, max_labelno
;
560 #define LABEL_TO_ALIGNMENT(LABEL) \
561 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563 #define LABEL_TO_MAX_SKIP(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566 /* For the benefit of port specific code do this also as a function. */
569 label_to_alignment (rtx label
)
571 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
572 return LABEL_TO_ALIGNMENT (label
);
577 label_to_max_skip (rtx label
)
579 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
580 return LABEL_TO_MAX_SKIP (label
);
584 /* The differences in addresses
585 between a branch and its target might grow or shrink depending on
586 the alignment the start insn of the range (the branch for a forward
587 branch or the label for a backward branch) starts out on; if these
588 differences are used naively, they can even oscillate infinitely.
589 We therefore want to compute a 'worst case' address difference that
590 is independent of the alignment the start insn of the range end
591 up on, and that is at least as large as the actual difference.
592 The function align_fuzz calculates the amount we have to add to the
593 naively computed difference, by traversing the part of the alignment
594 chain of the start insn of the range that is in front of the end insn
595 of the range, and considering for each alignment the maximum amount
596 that it might contribute to a size increase.
598 For casesi tables, we also want to know worst case minimum amounts of
599 address difference, in case a machine description wants to introduce
600 some common offset that is added to all offsets in a table.
601 For this purpose, align_fuzz with a growth argument of 0 computes the
602 appropriate adjustment. */
604 /* Compute the maximum delta by which the difference of the addresses of
605 START and END might grow / shrink due to a different address for start
606 which changes the size of alignment insns between START and END.
607 KNOWN_ALIGN_LOG is the alignment known for START.
608 GROWTH should be ~0 if the objective is to compute potential code size
609 increase, and 0 if the objective is to compute potential shrink.
610 The return value is undefined for any other value of GROWTH. */
613 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
615 int uid
= INSN_UID (start
);
617 int known_align
= 1 << known_align_log
;
618 int end_shuid
= INSN_SHUID (end
);
621 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
623 int align_addr
, new_align
;
625 uid
= INSN_UID (align_label
);
626 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
627 if (uid_shuid
[uid
] > end_shuid
)
629 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
630 new_align
= 1 << known_align_log
;
631 if (new_align
< known_align
)
633 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
634 known_align
= new_align
;
639 /* Compute a worst-case reference address of a branch so that it
640 can be safely used in the presence of aligned labels. Since the
641 size of the branch itself is unknown, the size of the branch is
642 not included in the range. I.e. for a forward branch, the reference
643 address is the end address of the branch as known from the previous
644 branch shortening pass, minus a value to account for possible size
645 increase due to alignment. For a backward branch, it is the start
646 address of the branch as known from the current pass, plus a value
647 to account for possible size increase due to alignment.
648 NB.: Therefore, the maximum offset allowed for backward branches needs
649 to exclude the branch size. */
652 insn_current_reference_address (rtx_insn
*branch
)
657 if (! INSN_ADDRESSES_SET_P ())
660 seq
= NEXT_INSN (PREV_INSN (branch
));
661 seq_uid
= INSN_UID (seq
);
662 if (!JUMP_P (branch
))
663 /* This can happen for example on the PA; the objective is to know the
664 offset to address something in front of the start of the function.
665 Thus, we can treat it like a backward branch.
666 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
667 any alignment we'd encounter, so we skip the call to align_fuzz. */
668 return insn_current_address
;
669 dest
= JUMP_LABEL (branch
);
671 /* BRANCH has no proper alignment chain set, so use SEQ.
672 BRANCH also has no INSN_SHUID. */
673 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
675 /* Forward branch. */
676 return (insn_last_address
+ insn_lengths
[seq_uid
]
677 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
681 /* Backward branch. */
682 return (insn_current_address
683 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
687 /* Compute branch alignments based on frequency information in the
691 compute_alignments (void)
693 int log
, max_skip
, max_log
;
696 int freq_threshold
= 0;
704 max_labelno
= max_label_num ();
705 min_labelno
= get_first_label_num ();
706 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
708 /* If not optimizing or optimizing for size, don't assign any alignments. */
709 if (! optimize
|| optimize_function_for_size_p (cfun
))
714 dump_reg_info (dump_file
);
715 dump_flow_info (dump_file
, TDF_DETAILS
);
716 flow_loops_dump (dump_file
, NULL
, 1);
718 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
719 FOR_EACH_BB_FN (bb
, cfun
)
720 if (bb
->frequency
> freq_max
)
721 freq_max
= bb
->frequency
;
722 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
725 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
726 FOR_EACH_BB_FN (bb
, cfun
)
728 rtx_insn
*label
= BB_HEAD (bb
);
729 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
734 || optimize_bb_for_size_p (bb
))
738 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
739 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
743 max_log
= LABEL_ALIGN (label
);
744 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
746 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
748 if (e
->flags
& EDGE_FALLTHRU
)
749 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
751 branch_frequency
+= EDGE_FREQUENCY (e
);
755 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
756 " %2i fall %4i branch %4i",
757 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
759 fallthru_frequency
, branch_frequency
);
760 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
761 fprintf (dump_file
, " inner_loop");
762 if (bb
->loop_father
->header
== bb
)
763 fprintf (dump_file
, " loop_header");
764 fprintf (dump_file
, "\n");
767 /* There are two purposes to align block with no fallthru incoming edge:
768 1) to avoid fetch stalls when branch destination is near cache boundary
769 2) to improve cache efficiency in case the previous block is not executed
770 (so it does not need to be in the cache).
772 We to catch first case, we align frequently executed blocks.
773 To catch the second, we align blocks that are executed more frequently
774 than the predecessor and the predecessor is likely to not be executed
775 when function is called. */
778 && (branch_frequency
> freq_threshold
779 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
780 && (bb
->prev_bb
->frequency
781 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
783 log
= JUMP_ALIGN (label
);
785 fprintf (dump_file
, " jump alignment added.\n");
789 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
792 /* In case block is frequent and reached mostly by non-fallthru edge,
793 align it. It is most likely a first block of loop. */
795 && !(single_succ_p (bb
)
796 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
797 && optimize_bb_for_speed_p (bb
)
798 && branch_frequency
+ fallthru_frequency
> freq_threshold
800 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
802 log
= LOOP_ALIGN (label
);
804 fprintf (dump_file
, " internal loop alignment added.\n");
808 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
811 LABEL_TO_ALIGNMENT (label
) = max_log
;
812 LABEL_TO_MAX_SKIP (label
) = max_skip
;
815 loop_optimizer_finalize ();
816 free_dominance_info (CDI_DOMINATORS
);
820 /* Grow the LABEL_ALIGN array after new labels are created. */
823 grow_label_align (void)
825 int old
= max_labelno
;
829 max_labelno
= max_label_num ();
831 n_labels
= max_labelno
- min_labelno
+ 1;
832 n_old_labels
= old
- min_labelno
+ 1;
834 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels
<= n_labels
);
840 memset (label_align
+ n_old_labels
, 0,
841 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
844 /* Update the already computed alignment information. LABEL_PAIRS is a vector
845 made up of pairs of labels for which the alignment information of the first
846 element will be copied from that of the second element. */
849 update_alignments (vec
<rtx
> &label_pairs
)
852 rtx iter
, label
= NULL_RTX
;
854 if (max_labelno
!= max_label_num ())
857 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
860 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
861 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
869 const pass_data pass_data_compute_alignments
=
872 "alignments", /* name */
873 OPTGROUP_NONE
, /* optinfo_flags */
875 0, /* properties_required */
876 0, /* properties_provided */
877 0, /* properties_destroyed */
878 0, /* todo_flags_start */
879 0, /* todo_flags_finish */
882 class pass_compute_alignments
: public rtl_opt_pass
885 pass_compute_alignments (gcc::context
*ctxt
)
886 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
889 /* opt_pass methods: */
890 virtual unsigned int execute (function
*) { return compute_alignments (); }
892 }; // class pass_compute_alignments
897 make_pass_compute_alignments (gcc::context
*ctxt
)
899 return new pass_compute_alignments (ctxt
);
903 /* Make a pass over all insns and compute their actual lengths by shortening
904 any branches of variable length if possible. */
906 /* shorten_branches might be called multiple times: for example, the SH
907 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
908 In order to do this, it needs proper length information, which it obtains
909 by calling shorten_branches. This cannot be collapsed with
910 shorten_branches itself into a single pass unless we also want to integrate
911 reorg.c, since the branch splitting exposes new instructions with delay
915 shorten_branches (rtx_insn
*first
)
922 #define MAX_CODE_ALIGN 16
924 int something_changed
= 1;
925 char *varying_length
;
928 rtx align_tab
[MAX_CODE_ALIGN
];
930 /* Compute maximum UID and allocate label_align / uid_shuid. */
931 max_uid
= get_max_uid ();
933 /* Free uid_shuid before reallocating it. */
936 uid_shuid
= XNEWVEC (int, max_uid
);
938 if (max_labelno
!= max_label_num ())
941 /* Initialize label_align and set up uid_shuid to be strictly
942 monotonically rising with insn order. */
943 /* We use max_log here to keep track of the maximum alignment we want to
944 impose on the next CODE_LABEL (or the current one if we are processing
945 the CODE_LABEL itself). */
950 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
954 INSN_SHUID (insn
) = i
++;
961 bool next_is_jumptable
;
963 /* Merge in alignments computed by compute_alignments. */
964 log
= LABEL_TO_ALIGNMENT (insn
);
968 max_skip
= LABEL_TO_MAX_SKIP (insn
);
971 next
= next_nonnote_insn (insn
);
972 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
973 if (!next_is_jumptable
)
975 log
= LABEL_ALIGN (insn
);
979 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
982 /* ADDR_VECs only take room if read-only data goes into the text
984 if ((JUMP_TABLES_IN_TEXT_SECTION
985 || readonly_data_section
== text_section
)
986 && next_is_jumptable
)
988 log
= ADDR_VEC_ALIGN (next
);
992 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
995 LABEL_TO_ALIGNMENT (insn
) = max_log
;
996 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
1000 else if (BARRIER_P (insn
))
1004 for (label
= insn
; label
&& ! INSN_P (label
);
1005 label
= NEXT_INSN (label
))
1006 if (LABEL_P (label
))
1008 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1012 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1018 if (!HAVE_ATTR_length
)
1021 /* Allocate the rest of the arrays. */
1022 insn_lengths
= XNEWVEC (int, max_uid
);
1023 insn_lengths_max_uid
= max_uid
;
1024 /* Syntax errors can lead to labels being outside of the main insn stream.
1025 Initialize insn_addresses, so that we get reproducible results. */
1026 INSN_ADDRESSES_ALLOC (max_uid
);
1028 varying_length
= XCNEWVEC (char, max_uid
);
1030 /* Initialize uid_align. We scan instructions
1031 from end to start, and keep in align_tab[n] the last seen insn
1032 that does an alignment of at least n+1, i.e. the successor
1033 in the alignment chain for an insn that does / has a known
1035 uid_align
= XCNEWVEC (rtx
, max_uid
);
1037 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1038 align_tab
[i
] = NULL_RTX
;
1039 seq
= get_last_insn ();
1040 for (; seq
; seq
= PREV_INSN (seq
))
1042 int uid
= INSN_UID (seq
);
1044 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1045 uid_align
[uid
] = align_tab
[0];
1048 /* Found an alignment label. */
1049 uid_align
[uid
] = align_tab
[log
];
1050 for (i
= log
- 1; i
>= 0; i
--)
1055 /* When optimizing, we start assuming minimum length, and keep increasing
1056 lengths as we find the need for this, till nothing changes.
1057 When not optimizing, we start assuming maximum lengths, and
1058 do a single pass to update the lengths. */
1059 bool increasing
= optimize
!= 0;
1061 #ifdef CASE_VECTOR_SHORTEN_MODE
1064 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1067 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1068 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1071 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1073 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1074 int len
, i
, min
, max
, insn_shuid
;
1076 addr_diff_vec_flags flags
;
1078 if (! JUMP_TABLE_DATA_P (insn
)
1079 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1081 pat
= PATTERN (insn
);
1082 len
= XVECLEN (pat
, 1);
1083 gcc_assert (len
> 0);
1084 min_align
= MAX_CODE_ALIGN
;
1085 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1087 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1088 int shuid
= INSN_SHUID (lab
);
1099 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1100 min_align
= LABEL_TO_ALIGNMENT (lab
);
1102 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1103 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1104 insn_shuid
= INSN_SHUID (insn
);
1105 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1106 memset (&flags
, 0, sizeof (flags
));
1107 flags
.min_align
= min_align
;
1108 flags
.base_after_vec
= rel
> insn_shuid
;
1109 flags
.min_after_vec
= min
> insn_shuid
;
1110 flags
.max_after_vec
= max
> insn_shuid
;
1111 flags
.min_after_base
= min
> rel
;
1112 flags
.max_after_base
= max
> rel
;
1113 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1116 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1119 #endif /* CASE_VECTOR_SHORTEN_MODE */
1121 /* Compute initial lengths, addresses, and varying flags for each insn. */
1122 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1124 for (insn_current_address
= 0, insn
= first
;
1126 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1128 uid
= INSN_UID (insn
);
1130 insn_lengths
[uid
] = 0;
1134 int log
= LABEL_TO_ALIGNMENT (insn
);
1137 int align
= 1 << log
;
1138 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1139 insn_lengths
[uid
] = new_address
- insn_current_address
;
1143 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1145 if (NOTE_P (insn
) || BARRIER_P (insn
)
1146 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1148 if (insn
->deleted ())
1151 body
= PATTERN (insn
);
1152 if (JUMP_TABLE_DATA_P (insn
))
1154 /* This only takes room if read-only data goes into the text
1156 if (JUMP_TABLES_IN_TEXT_SECTION
1157 || readonly_data_section
== text_section
)
1158 insn_lengths
[uid
] = (XVECLEN (body
,
1159 GET_CODE (body
) == ADDR_DIFF_VEC
)
1160 * GET_MODE_SIZE (GET_MODE (body
)));
1161 /* Alignment is handled by ADDR_VEC_ALIGN. */
1163 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1164 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1165 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1168 int const_delay_slots
;
1170 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1172 const_delay_slots
= 0;
1174 int (*inner_length_fun
) (rtx_insn
*)
1175 = const_delay_slots
? length_fun
: insn_default_length
;
1176 /* Inside a delay slot sequence, we do not do any branch shortening
1177 if the shortening could change the number of delay slots
1179 for (i
= 0; i
< body_seq
->len (); i
++)
1181 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1182 int inner_uid
= INSN_UID (inner_insn
);
1185 if (GET_CODE (body
) == ASM_INPUT
1186 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1187 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1188 * insn_default_length (inner_insn
));
1190 inner_length
= inner_length_fun (inner_insn
);
1192 insn_lengths
[inner_uid
] = inner_length
;
1193 if (const_delay_slots
)
1195 if ((varying_length
[inner_uid
]
1196 = insn_variable_length_p (inner_insn
)) != 0)
1197 varying_length
[uid
] = 1;
1198 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1199 + insn_lengths
[uid
]);
1202 varying_length
[inner_uid
] = 0;
1203 insn_lengths
[uid
] += inner_length
;
1206 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1208 insn_lengths
[uid
] = length_fun (insn
);
1209 varying_length
[uid
] = insn_variable_length_p (insn
);
1212 /* If needed, do any adjustment. */
1213 #ifdef ADJUST_INSN_LENGTH
1214 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1215 if (insn_lengths
[uid
] < 0)
1216 fatal_insn ("negative insn length", insn
);
1220 /* Now loop over all the insns finding varying length insns. For each,
1221 get the current insn length. If it has changed, reflect the change.
1222 When nothing changes for a full pass, we are done. */
1224 while (something_changed
)
1226 something_changed
= 0;
1227 insn_current_align
= MAX_CODE_ALIGN
- 1;
1228 for (insn_current_address
= 0, insn
= first
;
1230 insn
= NEXT_INSN (insn
))
1233 #ifdef ADJUST_INSN_LENGTH
1238 uid
= INSN_UID (insn
);
1242 int log
= LABEL_TO_ALIGNMENT (insn
);
1244 #ifdef CASE_VECTOR_SHORTEN_MODE
1245 /* If the mode of a following jump table was changed, we
1246 may need to update the alignment of this label. */
1248 bool next_is_jumptable
;
1250 next
= next_nonnote_insn (insn
);
1251 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1252 if ((JUMP_TABLES_IN_TEXT_SECTION
1253 || readonly_data_section
== text_section
)
1254 && next_is_jumptable
)
1256 int newlog
= ADDR_VEC_ALIGN (next
);
1260 LABEL_TO_ALIGNMENT (insn
) = log
;
1261 something_changed
= 1;
1266 if (log
> insn_current_align
)
1268 int align
= 1 << log
;
1269 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1270 insn_lengths
[uid
] = new_address
- insn_current_address
;
1271 insn_current_align
= log
;
1272 insn_current_address
= new_address
;
1275 insn_lengths
[uid
] = 0;
1276 INSN_ADDRESSES (uid
) = insn_current_address
;
1280 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1281 if (length_align
< insn_current_align
)
1282 insn_current_align
= length_align
;
1284 insn_last_address
= INSN_ADDRESSES (uid
);
1285 INSN_ADDRESSES (uid
) = insn_current_address
;
1287 #ifdef CASE_VECTOR_SHORTEN_MODE
1289 && JUMP_TABLE_DATA_P (insn
)
1290 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1292 rtx body
= PATTERN (insn
);
1293 int old_length
= insn_lengths
[uid
];
1295 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1296 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1297 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1298 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1299 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1300 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1303 addr_diff_vec_flags flags
;
1304 machine_mode vec_mode
;
1306 /* Avoid automatic aggregate initialization. */
1307 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1309 /* Try to find a known alignment for rel_lab. */
1310 for (prev
= rel_lab
;
1312 && ! insn_lengths
[INSN_UID (prev
)]
1313 && ! (varying_length
[INSN_UID (prev
)] & 1);
1314 prev
= PREV_INSN (prev
))
1315 if (varying_length
[INSN_UID (prev
)] & 2)
1317 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1321 /* See the comment on addr_diff_vec_flags in rtl.h for the
1322 meaning of the flags values. base: REL_LAB vec: INSN */
1323 /* Anything after INSN has still addresses from the last
1324 pass; adjust these so that they reflect our current
1325 estimate for this pass. */
1326 if (flags
.base_after_vec
)
1327 rel_addr
+= insn_current_address
- insn_last_address
;
1328 if (flags
.min_after_vec
)
1329 min_addr
+= insn_current_address
- insn_last_address
;
1330 if (flags
.max_after_vec
)
1331 max_addr
+= insn_current_address
- insn_last_address
;
1332 /* We want to know the worst case, i.e. lowest possible value
1333 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1334 its offset is positive, and we have to be wary of code shrink;
1335 otherwise, it is negative, and we have to be vary of code
1337 if (flags
.min_after_base
)
1339 /* If INSN is between REL_LAB and MIN_LAB, the size
1340 changes we are about to make can change the alignment
1341 within the observed offset, therefore we have to break
1342 it up into two parts that are independent. */
1343 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1345 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1346 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1349 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1353 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1355 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1356 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1359 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1361 /* Likewise, determine the highest lowest possible value
1362 for the offset of MAX_LAB. */
1363 if (flags
.max_after_base
)
1365 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1367 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1368 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1371 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1375 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1377 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1378 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1381 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1383 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1384 max_addr
- rel_addr
, body
);
1386 || (GET_MODE_SIZE (vec_mode
)
1387 >= GET_MODE_SIZE (GET_MODE (body
))))
1388 PUT_MODE (body
, vec_mode
);
1389 if (JUMP_TABLES_IN_TEXT_SECTION
1390 || readonly_data_section
== text_section
)
1393 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1394 insn_current_address
+= insn_lengths
[uid
];
1395 if (insn_lengths
[uid
] != old_length
)
1396 something_changed
= 1;
1401 #endif /* CASE_VECTOR_SHORTEN_MODE */
1403 if (! (varying_length
[uid
]))
1405 if (NONJUMP_INSN_P (insn
)
1406 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1410 body
= PATTERN (insn
);
1411 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1413 rtx inner_insn
= XVECEXP (body
, 0, i
);
1414 int inner_uid
= INSN_UID (inner_insn
);
1416 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1418 insn_current_address
+= insn_lengths
[inner_uid
];
1422 insn_current_address
+= insn_lengths
[uid
];
1427 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1429 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1432 body
= PATTERN (insn
);
1434 for (i
= 0; i
< seqn
->len (); i
++)
1436 rtx_insn
*inner_insn
= seqn
->insn (i
);
1437 int inner_uid
= INSN_UID (inner_insn
);
1440 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1442 /* insn_current_length returns 0 for insns with a
1443 non-varying length. */
1444 if (! varying_length
[inner_uid
])
1445 inner_length
= insn_lengths
[inner_uid
];
1447 inner_length
= insn_current_length (inner_insn
);
1449 if (inner_length
!= insn_lengths
[inner_uid
])
1451 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1453 insn_lengths
[inner_uid
] = inner_length
;
1454 something_changed
= 1;
1457 inner_length
= insn_lengths
[inner_uid
];
1459 insn_current_address
+= inner_length
;
1460 new_length
+= inner_length
;
1465 new_length
= insn_current_length (insn
);
1466 insn_current_address
+= new_length
;
1469 #ifdef ADJUST_INSN_LENGTH
1470 /* If needed, do any adjustment. */
1471 tmp_length
= new_length
;
1472 ADJUST_INSN_LENGTH (insn
, new_length
);
1473 insn_current_address
+= (new_length
- tmp_length
);
1476 if (new_length
!= insn_lengths
[uid
]
1477 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1479 insn_lengths
[uid
] = new_length
;
1480 something_changed
= 1;
1483 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1485 /* For a non-optimizing compile, do only a single pass. */
1490 free (varying_length
);
1493 /* Given the body of an INSN known to be generated by an ASM statement, return
1494 the number of machine instructions likely to be generated for this insn.
1495 This is used to compute its length. */
1498 asm_insn_count (rtx body
)
1502 if (GET_CODE (body
) == ASM_INPUT
)
1503 templ
= XSTR (body
, 0);
1505 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1507 return asm_str_count (templ
);
1510 /* Return the number of machine instructions likely to be generated for the
1511 inline-asm template. */
1513 asm_str_count (const char *templ
)
1520 for (; *templ
; templ
++)
1521 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1528 /* ??? This is probably the wrong place for these. */
1529 /* Structure recording the mapping from source file and directory
1530 names at compile time to those to be embedded in debug
1532 typedef struct debug_prefix_map
1534 const char *old_prefix
;
1535 const char *new_prefix
;
1538 struct debug_prefix_map
*next
;
1541 /* Linked list of such structures. */
1542 static debug_prefix_map
*debug_prefix_maps
;
1545 /* Record a debug file prefix mapping. ARG is the argument to
1546 -fdebug-prefix-map and must be of the form OLD=NEW. */
1549 add_debug_prefix_map (const char *arg
)
1551 debug_prefix_map
*map
;
1554 p
= strchr (arg
, '=');
1557 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1560 map
= XNEW (debug_prefix_map
);
1561 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1562 map
->old_len
= p
- arg
;
1564 map
->new_prefix
= xstrdup (p
);
1565 map
->new_len
= strlen (p
);
1566 map
->next
= debug_prefix_maps
;
1567 debug_prefix_maps
= map
;
1570 /* Perform user-specified mapping of debug filename prefixes. Return
1571 the new name corresponding to FILENAME. */
1574 remap_debug_filename (const char *filename
)
1576 debug_prefix_map
*map
;
1581 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1582 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1586 name
= filename
+ map
->old_len
;
1587 name_len
= strlen (name
) + 1;
1588 s
= (char *) alloca (name_len
+ map
->new_len
);
1589 memcpy (s
, map
->new_prefix
, map
->new_len
);
1590 memcpy (s
+ map
->new_len
, name
, name_len
);
1591 return ggc_strdup (s
);
1594 /* Return true if DWARF2 debug info can be emitted for DECL. */
1597 dwarf2_debug_info_emitted_p (tree decl
)
1599 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1602 if (DECL_IGNORED_P (decl
))
1608 /* Return scope resulting from combination of S1 and S2. */
1610 choose_inner_scope (tree s1
, tree s2
)
1616 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1621 /* Emit lexical block notes needed to change scope from S1 to S2. */
1624 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1626 rtx_insn
*insn
= orig_insn
;
1627 tree com
= NULL_TREE
;
1628 tree ts1
= s1
, ts2
= s2
;
1633 gcc_assert (ts1
&& ts2
);
1634 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1635 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1636 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1637 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1640 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1641 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1650 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1651 NOTE_BLOCK (note
) = s
;
1652 s
= BLOCK_SUPERCONTEXT (s
);
1659 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1660 NOTE_BLOCK (insn
) = s
;
1661 s
= BLOCK_SUPERCONTEXT (s
);
1665 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1666 on the scope tree and the newly reordered instructions. */
1669 reemit_insn_block_notes (void)
1671 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1675 insn
= get_insns ();
1676 for (; insn
; insn
= NEXT_INSN (insn
))
1680 /* Prevent lexical blocks from straddling section boundaries. */
1681 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1683 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1684 s
= BLOCK_SUPERCONTEXT (s
))
1686 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1687 NOTE_BLOCK (note
) = s
;
1688 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1689 NOTE_BLOCK (note
) = s
;
1693 if (!active_insn_p (insn
))
1696 /* Avoid putting scope notes between jump table and its label. */
1697 if (JUMP_TABLE_DATA_P (insn
))
1700 this_block
= insn_scope (insn
);
1701 /* For sequences compute scope resulting from merging all scopes
1702 of instructions nested inside. */
1703 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1708 for (i
= 0; i
< body
->len (); i
++)
1709 this_block
= choose_inner_scope (this_block
,
1710 insn_scope (body
->insn (i
)));
1714 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1717 this_block
= DECL_INITIAL (cfun
->decl
);
1720 if (this_block
!= cur_block
)
1722 change_scope (insn
, cur_block
, this_block
);
1723 cur_block
= this_block
;
1727 /* change_scope emits before the insn, not after. */
1728 note
= emit_note (NOTE_INSN_DELETED
);
1729 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1735 static const char *some_local_dynamic_name
;
1737 /* Locate some local-dynamic symbol still in use by this function
1738 so that we can print its name in local-dynamic base patterns.
1739 Return null if there are no local-dynamic references. */
1742 get_some_local_dynamic_name ()
1744 subrtx_iterator::array_type array
;
1747 if (some_local_dynamic_name
)
1748 return some_local_dynamic_name
;
1750 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1751 if (NONDEBUG_INSN_P (insn
))
1752 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1754 const_rtx x
= *iter
;
1755 if (GET_CODE (x
) == SYMBOL_REF
)
1757 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1758 return some_local_dynamic_name
= XSTR (x
, 0);
1759 if (CONSTANT_POOL_ADDRESS_P (x
))
1760 iter
.substitute (get_pool_constant (x
));
1767 /* Output assembler code for the start of a function,
1768 and initialize some of the variables in this file
1769 for the new function. The label for the function and associated
1770 assembler pseudo-ops have already been output in `assemble_start_function'.
1772 FIRST is the first insn of the rtl for the function being compiled.
1773 FILE is the file to write assembler code to.
1774 OPTIMIZE_P is nonzero if we should eliminate redundant
1775 test and compare insns. */
1778 final_start_function (rtx_insn
*first
, FILE *file
,
1779 int optimize_p ATTRIBUTE_UNUSED
)
1783 this_is_asm_operands
= 0;
1785 need_profile_function
= false;
1787 last_filename
= LOCATION_FILE (prologue_location
);
1788 last_linenum
= LOCATION_LINE (prologue_location
);
1789 last_discriminator
= discriminator
= 0;
1791 high_block_linenum
= high_function_linenum
= last_linenum
;
1793 if (flag_sanitize
& SANITIZE_ADDRESS
)
1794 asan_function_start ();
1796 if (!DECL_IGNORED_P (current_function_decl
))
1797 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1799 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1800 dwarf2out_begin_prologue (0, NULL
);
1802 #ifdef LEAF_REG_REMAP
1803 if (crtl
->uses_only_leaf_regs
)
1804 leaf_renumber_regs (first
);
1807 /* The Sun386i and perhaps other machines don't work right
1808 if the profiling code comes after the prologue. */
1809 if (targetm
.profile_before_prologue () && crtl
->profile
)
1811 if (targetm
.asm_out
.function_prologue
1812 == default_function_pro_epilogue
1813 #ifdef HAVE_prologue
1819 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1825 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1826 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1828 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1829 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1838 need_profile_function
= true;
1840 profile_function (file
);
1843 profile_function (file
);
1846 /* If debugging, assign block numbers to all of the blocks in this
1850 reemit_insn_block_notes ();
1851 number_blocks (current_function_decl
);
1852 /* We never actually put out begin/end notes for the top-level
1853 block in the function. But, conceptually, that block is
1855 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1858 if (warn_frame_larger_than
1859 && get_frame_size () > frame_larger_than_size
)
1861 /* Issue a warning */
1862 warning (OPT_Wframe_larger_than_
,
1863 "the frame size of %wd bytes is larger than %wd bytes",
1864 get_frame_size (), frame_larger_than_size
);
1867 /* First output the function prologue: code to set up the stack frame. */
1868 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1870 /* If the machine represents the prologue as RTL, the profiling code must
1871 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1872 #ifdef HAVE_prologue
1873 if (! HAVE_prologue
)
1875 profile_after_prologue (file
);
1879 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1881 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1882 profile_function (file
);
1886 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1888 #ifndef NO_PROFILE_COUNTERS
1889 # define NO_PROFILE_COUNTERS 0
1891 #ifdef ASM_OUTPUT_REG_PUSH
1892 rtx sval
= NULL
, chain
= NULL
;
1894 if (cfun
->returns_struct
)
1895 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1897 if (cfun
->static_chain_decl
)
1898 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1899 #endif /* ASM_OUTPUT_REG_PUSH */
1901 if (! NO_PROFILE_COUNTERS
)
1903 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1904 switch_to_section (data_section
);
1905 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1906 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1907 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1910 switch_to_section (current_function_section ());
1912 #ifdef ASM_OUTPUT_REG_PUSH
1913 if (sval
&& REG_P (sval
))
1914 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1915 if (chain
&& REG_P (chain
))
1916 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1919 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1921 #ifdef ASM_OUTPUT_REG_PUSH
1922 if (chain
&& REG_P (chain
))
1923 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1924 if (sval
&& REG_P (sval
))
1925 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1929 /* Output assembler code for the end of a function.
1930 For clarity, args are same as those of `final_start_function'
1931 even though not all of them are needed. */
1934 final_end_function (void)
1938 if (!DECL_IGNORED_P (current_function_decl
))
1939 debug_hooks
->end_function (high_function_linenum
);
1941 /* Finally, output the function epilogue:
1942 code to restore the stack frame and return to the caller. */
1943 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1945 /* And debug output. */
1946 if (!DECL_IGNORED_P (current_function_decl
))
1947 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1949 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1950 && dwarf2out_do_frame ())
1951 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1953 some_local_dynamic_name
= 0;
1957 /* Dumper helper for basic block information. FILE is the assembly
1958 output file, and INSN is the instruction being emitted. */
1961 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1962 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1966 if (!flag_debug_asm
)
1969 if (INSN_UID (insn
) < bb_map_size
1970 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1975 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1977 fprintf (file
, " freq:%d", bb
->frequency
);
1979 fprintf (file
, " count:%"PRId64
,
1981 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1982 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1983 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1985 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1987 fprintf (file
, "\n");
1989 if (INSN_UID (insn
) < bb_map_size
1990 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1995 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1996 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1998 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
2000 fprintf (file
, "\n");
2004 /* Output assembler code for some insns: all or part of a function.
2005 For description of args, see `final_start_function', above. */
2008 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
2010 rtx_insn
*insn
, *next
;
2013 /* Used for -dA dump. */
2014 basic_block
*start_to_bb
= NULL
;
2015 basic_block
*end_to_bb
= NULL
;
2016 int bb_map_size
= 0;
2019 last_ignored_compare
= 0;
2022 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2024 /* If CC tracking across branches is enabled, record the insn which
2025 jumps to each branch only reached from one place. */
2026 if (optimize_p
&& JUMP_P (insn
))
2028 rtx lab
= JUMP_LABEL (insn
);
2029 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2031 LABEL_REFS (lab
) = insn
;
2045 bb_map_size
= get_max_uid () + 1;
2046 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2047 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2049 /* There is no cfg for a thunk. */
2050 if (!cfun
->is_thunk
)
2051 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2053 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2054 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2058 /* Output the insns. */
2059 for (insn
= first
; insn
;)
2061 if (HAVE_ATTR_length
)
2063 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2065 /* This can be triggered by bugs elsewhere in the compiler if
2066 new insns are created after init_insn_lengths is called. */
2067 gcc_assert (NOTE_P (insn
));
2068 insn_current_address
= -1;
2071 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2074 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2075 bb_map_size
, &bb_seqn
);
2076 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2085 /* Remove CFI notes, to avoid compare-debug failures. */
2086 for (insn
= first
; insn
; insn
= next
)
2088 next
= NEXT_INSN (insn
);
2090 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2091 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2097 get_insn_template (int code
, rtx insn
)
2099 switch (insn_data
[code
].output_format
)
2101 case INSN_OUTPUT_FORMAT_SINGLE
:
2102 return insn_data
[code
].output
.single
;
2103 case INSN_OUTPUT_FORMAT_MULTI
:
2104 return insn_data
[code
].output
.multi
[which_alternative
];
2105 case INSN_OUTPUT_FORMAT_FUNCTION
:
2107 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2108 as_a
<rtx_insn
*> (insn
));
2115 /* Emit the appropriate declaration for an alternate-entry-point
2116 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2117 LABEL_KIND != LABEL_NORMAL.
2119 The case fall-through in this function is intentional. */
2121 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2123 const char *name
= LABEL_NAME (insn
);
2125 switch (LABEL_KIND (insn
))
2127 case LABEL_WEAK_ENTRY
:
2128 #ifdef ASM_WEAKEN_LABEL
2129 ASM_WEAKEN_LABEL (file
, name
);
2131 case LABEL_GLOBAL_ENTRY
:
2132 targetm
.asm_out
.globalize_label (file
, name
);
2133 case LABEL_STATIC_ENTRY
:
2134 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2135 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2137 ASM_OUTPUT_LABEL (file
, name
);
2146 /* Given a CALL_INSN, find and return the nested CALL. */
2148 call_from_call_insn (rtx_call_insn
*insn
)
2151 gcc_assert (CALL_P (insn
));
2154 while (GET_CODE (x
) != CALL
)
2156 switch (GET_CODE (x
))
2161 x
= COND_EXEC_CODE (x
);
2164 x
= XVECEXP (x
, 0, 0);
2174 /* The final scan for one insn, INSN.
2175 Args are same as in `final', except that INSN
2176 is the insn being scanned.
2177 Value returned is the next insn to be scanned.
2179 NOPEEPHOLES is the flag to disallow peephole processing (currently
2180 used for within delayed branch sequence output).
2182 SEEN is used to track the end of the prologue, for emitting
2183 debug information. We force the emission of a line note after
2184 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2187 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2188 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2197 /* Ignore deleted insns. These can occur when we split insns (due to a
2198 template of "#") while not optimizing. */
2199 if (insn
->deleted ())
2200 return NEXT_INSN (insn
);
2202 switch (GET_CODE (insn
))
2205 switch (NOTE_KIND (insn
))
2207 case NOTE_INSN_DELETED
:
2210 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2211 in_cold_section_p
= !in_cold_section_p
;
2213 if (dwarf2out_do_frame ())
2214 dwarf2out_switch_text_section ();
2215 else if (!DECL_IGNORED_P (current_function_decl
))
2216 debug_hooks
->switch_text_section ();
2218 switch_to_section (current_function_section ());
2219 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2220 current_function_decl
,
2222 /* Emit a label for the split cold section. Form label name by
2223 suffixing "cold" to the original function's name. */
2224 if (in_cold_section_p
)
2226 tree cold_function_name
2227 = clone_function_name (current_function_decl
, "cold");
2228 ASM_OUTPUT_LABEL (asm_out_file
,
2229 IDENTIFIER_POINTER (cold_function_name
));
2233 case NOTE_INSN_BASIC_BLOCK
:
2234 if (need_profile_function
)
2236 profile_function (asm_out_file
);
2237 need_profile_function
= false;
2240 if (targetm
.asm_out
.unwind_emit
)
2241 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2243 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2247 case NOTE_INSN_EH_REGION_BEG
:
2248 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2249 NOTE_EH_HANDLER (insn
));
2252 case NOTE_INSN_EH_REGION_END
:
2253 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2254 NOTE_EH_HANDLER (insn
));
2257 case NOTE_INSN_PROLOGUE_END
:
2258 targetm
.asm_out
.function_end_prologue (file
);
2259 profile_after_prologue (file
);
2261 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2263 *seen
|= SEEN_EMITTED
;
2264 force_source_line
= true;
2271 case NOTE_INSN_EPILOGUE_BEG
:
2272 if (!DECL_IGNORED_P (current_function_decl
))
2273 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2274 targetm
.asm_out
.function_begin_epilogue (file
);
2278 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2281 case NOTE_INSN_CFI_LABEL
:
2282 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2283 NOTE_LABEL_NUMBER (insn
));
2286 case NOTE_INSN_FUNCTION_BEG
:
2287 if (need_profile_function
)
2289 profile_function (asm_out_file
);
2290 need_profile_function
= false;
2294 if (!DECL_IGNORED_P (current_function_decl
))
2295 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2297 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2299 *seen
|= SEEN_EMITTED
;
2300 force_source_line
= true;
2307 case NOTE_INSN_BLOCK_BEG
:
2308 if (debug_info_level
== DINFO_LEVEL_NORMAL
2309 || debug_info_level
== DINFO_LEVEL_VERBOSE
2310 || write_symbols
== DWARF2_DEBUG
2311 || write_symbols
== VMS_AND_DWARF2_DEBUG
2312 || write_symbols
== VMS_DEBUG
)
2314 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2318 high_block_linenum
= last_linenum
;
2320 /* Output debugging info about the symbol-block beginning. */
2321 if (!DECL_IGNORED_P (current_function_decl
))
2322 debug_hooks
->begin_block (last_linenum
, n
);
2324 /* Mark this block as output. */
2325 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2327 if (write_symbols
== DBX_DEBUG
2328 || write_symbols
== SDB_DEBUG
)
2330 location_t
*locus_ptr
2331 = block_nonartificial_location (NOTE_BLOCK (insn
));
2333 if (locus_ptr
!= NULL
)
2335 override_filename
= LOCATION_FILE (*locus_ptr
);
2336 override_linenum
= LOCATION_LINE (*locus_ptr
);
2341 case NOTE_INSN_BLOCK_END
:
2342 if (debug_info_level
== DINFO_LEVEL_NORMAL
2343 || debug_info_level
== DINFO_LEVEL_VERBOSE
2344 || write_symbols
== DWARF2_DEBUG
2345 || write_symbols
== VMS_AND_DWARF2_DEBUG
2346 || write_symbols
== VMS_DEBUG
)
2348 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2352 /* End of a symbol-block. */
2354 gcc_assert (block_depth
>= 0);
2356 if (!DECL_IGNORED_P (current_function_decl
))
2357 debug_hooks
->end_block (high_block_linenum
, n
);
2359 if (write_symbols
== DBX_DEBUG
2360 || write_symbols
== SDB_DEBUG
)
2362 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2363 location_t
*locus_ptr
2364 = block_nonartificial_location (outer_block
);
2366 if (locus_ptr
!= NULL
)
2368 override_filename
= LOCATION_FILE (*locus_ptr
);
2369 override_linenum
= LOCATION_LINE (*locus_ptr
);
2373 override_filename
= NULL
;
2374 override_linenum
= 0;
2379 case NOTE_INSN_DELETED_LABEL
:
2380 /* Emit the label. We may have deleted the CODE_LABEL because
2381 the label could be proved to be unreachable, though still
2382 referenced (in the form of having its address taken. */
2383 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2386 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2387 /* Similarly, but need to use different namespace for it. */
2388 if (CODE_LABEL_NUMBER (insn
) != -1)
2389 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2392 case NOTE_INSN_VAR_LOCATION
:
2393 case NOTE_INSN_CALL_ARG_LOCATION
:
2394 if (!DECL_IGNORED_P (current_function_decl
))
2395 debug_hooks
->var_location (insn
);
2408 /* The target port might emit labels in the output function for
2409 some insn, e.g. sh.c output_branchy_insn. */
2410 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2412 int align
= LABEL_TO_ALIGNMENT (insn
);
2413 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2414 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2417 if (align
&& NEXT_INSN (insn
))
2419 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2420 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2422 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2423 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2425 ASM_OUTPUT_ALIGN (file
, align
);
2432 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2433 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2437 next
= next_nonnote_insn (insn
);
2438 /* If this label is followed by a jump-table, make sure we put
2439 the label in the read-only section. Also possibly write the
2440 label and jump table together. */
2441 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2443 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2444 /* In this case, the case vector is being moved by the
2445 target, so don't output the label at all. Leave that
2446 to the back end macros. */
2448 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2452 switch_to_section (targetm
.asm_out
.function_rodata_section
2453 (current_function_decl
));
2455 #ifdef ADDR_VEC_ALIGN
2456 log_align
= ADDR_VEC_ALIGN (next
);
2458 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2460 ASM_OUTPUT_ALIGN (file
, log_align
);
2463 switch_to_section (current_function_section ());
2465 #ifdef ASM_OUTPUT_CASE_LABEL
2466 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2469 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2474 if (LABEL_ALT_ENTRY_P (insn
))
2475 output_alternate_entry_point (file
, insn
);
2477 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2482 rtx body
= PATTERN (insn
);
2483 int insn_code_number
;
2487 /* Reset this early so it is correct for ASM statements. */
2488 current_insn_predicate
= NULL_RTX
;
2490 /* An INSN, JUMP_INSN or CALL_INSN.
2491 First check for special kinds that recog doesn't recognize. */
2493 if (GET_CODE (body
) == USE
/* These are just declarations. */
2494 || GET_CODE (body
) == CLOBBER
)
2499 /* If there is a REG_CC_SETTER note on this insn, it means that
2500 the setting of the condition code was done in the delay slot
2501 of the insn that branched here. So recover the cc status
2502 from the insn that set it. */
2504 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2507 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2508 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2509 cc_prev_status
= cc_status
;
2514 /* Detect insns that are really jump-tables
2515 and output them as such. */
2517 if (JUMP_TABLE_DATA_P (insn
))
2519 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2523 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2524 switch_to_section (targetm
.asm_out
.function_rodata_section
2525 (current_function_decl
));
2527 switch_to_section (current_function_section ());
2531 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2532 if (GET_CODE (body
) == ADDR_VEC
)
2534 #ifdef ASM_OUTPUT_ADDR_VEC
2535 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2542 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2543 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2549 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2550 for (idx
= 0; idx
< vlen
; idx
++)
2552 if (GET_CODE (body
) == ADDR_VEC
)
2554 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2555 ASM_OUTPUT_ADDR_VEC_ELT
2556 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2563 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2564 ASM_OUTPUT_ADDR_DIFF_ELT
2567 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2568 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2574 #ifdef ASM_OUTPUT_CASE_END
2575 ASM_OUTPUT_CASE_END (file
,
2576 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2581 switch_to_section (current_function_section ());
2585 /* Output this line note if it is the first or the last line
2587 if (!DECL_IGNORED_P (current_function_decl
)
2588 && notice_source_line (insn
, &is_stmt
))
2589 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2590 last_discriminator
, is_stmt
);
2592 if (GET_CODE (body
) == ASM_INPUT
)
2594 const char *string
= XSTR (body
, 0);
2596 /* There's no telling what that did to the condition codes. */
2601 expanded_location loc
;
2604 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2605 if (*loc
.file
&& loc
.line
)
2606 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2607 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2608 fprintf (asm_out_file
, "\t%s\n", string
);
2609 #if HAVE_AS_LINE_ZERO
2610 if (*loc
.file
&& loc
.line
)
2611 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2617 /* Detect `asm' construct with operands. */
2618 if (asm_noperands (body
) >= 0)
2620 unsigned int noperands
= asm_noperands (body
);
2621 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2624 expanded_location expanded
;
2626 /* There's no telling what that did to the condition codes. */
2629 /* Get out the operand values. */
2630 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2631 /* Inhibit dying on what would otherwise be compiler bugs. */
2632 insn_noperands
= noperands
;
2633 this_is_asm_operands
= insn
;
2634 expanded
= expand_location (loc
);
2636 #ifdef FINAL_PRESCAN_INSN
2637 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2640 /* Output the insn using them. */
2644 if (expanded
.file
&& expanded
.line
)
2645 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2646 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2647 output_asm_insn (string
, ops
);
2648 #if HAVE_AS_LINE_ZERO
2649 if (expanded
.file
&& expanded
.line
)
2650 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2654 if (targetm
.asm_out
.final_postscan_insn
)
2655 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2658 this_is_asm_operands
= 0;
2664 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2666 /* A delayed-branch sequence */
2669 final_sequence
= seq
;
2671 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2672 force the restoration of a comparison that was previously
2673 thought unnecessary. If that happens, cancel this sequence
2674 and cause that insn to be restored. */
2676 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2677 if (next
!= seq
->insn (1))
2683 for (i
= 1; i
< seq
->len (); i
++)
2685 rtx_insn
*insn
= seq
->insn (i
);
2686 rtx_insn
*next
= NEXT_INSN (insn
);
2687 /* We loop in case any instruction in a delay slot gets
2690 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2691 while (insn
!= next
);
2693 #ifdef DBR_OUTPUT_SEQEND
2694 DBR_OUTPUT_SEQEND (file
);
2698 /* If the insn requiring the delay slot was a CALL_INSN, the
2699 insns in the delay slot are actually executed before the
2700 called function. Hence we don't preserve any CC-setting
2701 actions in these insns and the CC must be marked as being
2702 clobbered by the function. */
2703 if (CALL_P (seq
->insn (0)))
2710 /* We have a real machine instruction as rtl. */
2712 body
= PATTERN (insn
);
2715 set
= single_set (insn
);
2717 /* Check for redundant test and compare instructions
2718 (when the condition codes are already set up as desired).
2719 This is done only when optimizing; if not optimizing,
2720 it should be possible for the user to alter a variable
2721 with the debugger in between statements
2722 and the next statement should reexamine the variable
2723 to compute the condition codes. */
2728 && GET_CODE (SET_DEST (set
)) == CC0
2729 && insn
!= last_ignored_compare
)
2732 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2733 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2735 src1
= SET_SRC (set
);
2737 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2739 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2740 XEXP (SET_SRC (set
), 0)
2741 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2742 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2743 XEXP (SET_SRC (set
), 1)
2744 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2745 if (XEXP (SET_SRC (set
), 1)
2746 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2747 src2
= XEXP (SET_SRC (set
), 0);
2749 if ((cc_status
.value1
!= 0
2750 && rtx_equal_p (src1
, cc_status
.value1
))
2751 || (cc_status
.value2
!= 0
2752 && rtx_equal_p (src1
, cc_status
.value2
))
2753 || (src2
!= 0 && cc_status
.value1
!= 0
2754 && rtx_equal_p (src2
, cc_status
.value1
))
2755 || (src2
!= 0 && cc_status
.value2
!= 0
2756 && rtx_equal_p (src2
, cc_status
.value2
)))
2758 /* Don't delete insn if it has an addressing side-effect. */
2759 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2760 /* or if anything in it is volatile. */
2761 && ! volatile_refs_p (PATTERN (insn
)))
2763 /* We don't really delete the insn; just ignore it. */
2764 last_ignored_compare
= insn
;
2771 /* If this is a conditional branch, maybe modify it
2772 if the cc's are in a nonstandard state
2773 so that it accomplishes the same thing that it would
2774 do straightforwardly if the cc's were set up normally. */
2776 if (cc_status
.flags
!= 0
2778 && GET_CODE (body
) == SET
2779 && SET_DEST (body
) == pc_rtx
2780 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2781 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2782 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2784 /* This function may alter the contents of its argument
2785 and clear some of the cc_status.flags bits.
2786 It may also return 1 meaning condition now always true
2787 or -1 meaning condition now always false
2788 or 2 meaning condition nontrivial but altered. */
2789 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2790 /* If condition now has fixed value, replace the IF_THEN_ELSE
2791 with its then-operand or its else-operand. */
2793 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2795 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2797 /* The jump is now either unconditional or a no-op.
2798 If it has become a no-op, don't try to output it.
2799 (It would not be recognized.) */
2800 if (SET_SRC (body
) == pc_rtx
)
2805 else if (ANY_RETURN_P (SET_SRC (body
)))
2806 /* Replace (set (pc) (return)) with (return). */
2807 PATTERN (insn
) = body
= SET_SRC (body
);
2809 /* Rerecognize the instruction if it has changed. */
2811 INSN_CODE (insn
) = -1;
2814 /* If this is a conditional trap, maybe modify it if the cc's
2815 are in a nonstandard state so that it accomplishes the same
2816 thing that it would do straightforwardly if the cc's were
2818 if (cc_status
.flags
!= 0
2819 && NONJUMP_INSN_P (insn
)
2820 && GET_CODE (body
) == TRAP_IF
2821 && COMPARISON_P (TRAP_CONDITION (body
))
2822 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2824 /* This function may alter the contents of its argument
2825 and clear some of the cc_status.flags bits.
2826 It may also return 1 meaning condition now always true
2827 or -1 meaning condition now always false
2828 or 2 meaning condition nontrivial but altered. */
2829 int result
= alter_cond (TRAP_CONDITION (body
));
2831 /* If TRAP_CONDITION has become always false, delete the
2839 /* If TRAP_CONDITION has become always true, replace
2840 TRAP_CONDITION with const_true_rtx. */
2842 TRAP_CONDITION (body
) = const_true_rtx
;
2844 /* Rerecognize the instruction if it has changed. */
2846 INSN_CODE (insn
) = -1;
2849 /* Make same adjustments to instructions that examine the
2850 condition codes without jumping and instructions that
2851 handle conditional moves (if this machine has either one). */
2853 if (cc_status
.flags
!= 0
2856 rtx cond_rtx
, then_rtx
, else_rtx
;
2859 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2861 cond_rtx
= XEXP (SET_SRC (set
), 0);
2862 then_rtx
= XEXP (SET_SRC (set
), 1);
2863 else_rtx
= XEXP (SET_SRC (set
), 2);
2867 cond_rtx
= SET_SRC (set
);
2868 then_rtx
= const_true_rtx
;
2869 else_rtx
= const0_rtx
;
2872 if (COMPARISON_P (cond_rtx
)
2873 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2876 result
= alter_cond (cond_rtx
);
2878 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2879 else if (result
== -1)
2880 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2881 else if (result
== 2)
2882 INSN_CODE (insn
) = -1;
2883 if (SET_DEST (set
) == SET_SRC (set
))
2890 #ifdef HAVE_peephole
2891 /* Do machine-specific peephole optimizations if desired. */
2893 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2895 rtx_insn
*next
= peephole (insn
);
2896 /* When peepholing, if there were notes within the peephole,
2897 emit them before the peephole. */
2898 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2900 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2902 for (note
= NEXT_INSN (insn
); note
!= next
;
2903 note
= NEXT_INSN (note
))
2904 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2906 /* Put the notes in the proper position for a later
2907 rescan. For example, the SH target can do this
2908 when generating a far jump in a delayed branch
2910 note
= NEXT_INSN (insn
);
2911 SET_PREV_INSN (note
) = prev
;
2912 SET_NEXT_INSN (prev
) = note
;
2913 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2914 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2915 SET_NEXT_INSN (insn
) = next
;
2916 SET_PREV_INSN (next
) = insn
;
2919 /* PEEPHOLE might have changed this. */
2920 body
= PATTERN (insn
);
2924 /* Try to recognize the instruction.
2925 If successful, verify that the operands satisfy the
2926 constraints for the instruction. Crash if they don't,
2927 since `reload' should have changed them so that they do. */
2929 insn_code_number
= recog_memoized (insn
);
2930 cleanup_subreg_operands (insn
);
2932 /* Dump the insn in the assembly for debugging (-dAP).
2933 If the final dump is requested as slim RTL, dump slim
2934 RTL to the assembly file also. */
2935 if (flag_dump_rtl_in_asm
)
2937 print_rtx_head
= ASM_COMMENT_START
;
2938 if (! (dump_flags
& TDF_SLIM
))
2939 print_rtl_single (asm_out_file
, insn
);
2941 dump_insn_slim (asm_out_file
, insn
);
2942 print_rtx_head
= "";
2945 if (! constrain_operands_cached (insn
, 1))
2946 fatal_insn_not_found (insn
);
2948 /* Some target machines need to prescan each insn before
2951 #ifdef FINAL_PRESCAN_INSN
2952 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2955 if (targetm
.have_conditional_execution ()
2956 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2957 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2960 cc_prev_status
= cc_status
;
2962 /* Update `cc_status' for this instruction.
2963 The instruction's output routine may change it further.
2964 If the output routine for a jump insn needs to depend
2965 on the cc status, it should look at cc_prev_status. */
2967 NOTICE_UPDATE_CC (body
, insn
);
2970 current_output_insn
= debug_insn
= insn
;
2972 /* Find the proper template for this insn. */
2973 templ
= get_insn_template (insn_code_number
, insn
);
2975 /* If the C code returns 0, it means that it is a jump insn
2976 which follows a deleted test insn, and that test insn
2977 needs to be reinserted. */
2982 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2984 /* We have already processed the notes between the setter and
2985 the user. Make sure we don't process them again, this is
2986 particularly important if one of the notes is a block
2987 scope note or an EH note. */
2989 prev
!= last_ignored_compare
;
2990 prev
= PREV_INSN (prev
))
2993 delete_insn (prev
); /* Use delete_note. */
2999 /* If the template is the string "#", it means that this insn must
3001 if (templ
[0] == '#' && templ
[1] == '\0')
3003 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
3005 /* If we didn't split the insn, go away. */
3006 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
3007 fatal_insn ("could not split insn", insn
);
3009 /* If we have a length attribute, this instruction should have
3010 been split in shorten_branches, to ensure that we would have
3011 valid length info for the splitees. */
3012 gcc_assert (!HAVE_ATTR_length
);
3017 /* ??? This will put the directives in the wrong place if
3018 get_insn_template outputs assembly directly. However calling it
3019 before get_insn_template breaks if the insns is split. */
3020 if (targetm
.asm_out
.unwind_emit_before_insn
3021 && targetm
.asm_out
.unwind_emit
)
3022 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3024 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3026 rtx x
= call_from_call_insn (call_insn
);
3028 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3032 t
= SYMBOL_REF_DECL (x
);
3034 assemble_external (t
);
3036 if (!DECL_IGNORED_P (current_function_decl
))
3037 debug_hooks
->var_location (insn
);
3040 /* Output assembler code from the template. */
3041 output_asm_insn (templ
, recog_data
.operand
);
3043 /* Some target machines need to postscan each insn after
3045 if (targetm
.asm_out
.final_postscan_insn
)
3046 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3047 recog_data
.n_operands
);
3049 if (!targetm
.asm_out
.unwind_emit_before_insn
3050 && targetm
.asm_out
.unwind_emit
)
3051 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3053 current_output_insn
= debug_insn
= 0;
3056 return NEXT_INSN (insn
);
3059 /* Return whether a source line note needs to be emitted before INSN.
3060 Sets IS_STMT to TRUE if the line should be marked as a possible
3061 breakpoint location. */
3064 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3066 const char *filename
;
3069 if (override_filename
)
3071 filename
= override_filename
;
3072 linenum
= override_linenum
;
3074 else if (INSN_HAS_LOCATION (insn
))
3076 expanded_location xloc
= insn_location (insn
);
3077 filename
= xloc
.file
;
3078 linenum
= xloc
.line
;
3086 if (filename
== NULL
)
3089 if (force_source_line
3090 || filename
!= last_filename
3091 || last_linenum
!= linenum
)
3093 force_source_line
= false;
3094 last_filename
= filename
;
3095 last_linenum
= linenum
;
3096 last_discriminator
= discriminator
;
3098 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3099 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3103 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3105 /* If the discriminator changed, but the line number did not,
3106 output the line table entry with is_stmt false so the
3107 debugger does not treat this as a breakpoint location. */
3108 last_discriminator
= discriminator
;
3116 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3117 directly to the desired hard register. */
3120 cleanup_subreg_operands (rtx_insn
*insn
)
3123 bool changed
= false;
3124 extract_insn_cached (insn
);
3125 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3127 /* The following test cannot use recog_data.operand when testing
3128 for a SUBREG: the underlying object might have been changed
3129 already if we are inside a match_operator expression that
3130 matches the else clause. Instead we test the underlying
3131 expression directly. */
3132 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3134 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3137 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3138 || GET_CODE (recog_data
.operand
[i
]) == MULT
3139 || MEM_P (recog_data
.operand
[i
]))
3140 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3143 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3145 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3147 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3150 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3151 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3152 || MEM_P (*recog_data
.dup_loc
[i
]))
3153 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3156 df_insn_rescan (insn
);
3159 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3160 the thing it is a subreg of. Do it anyway if FINAL_P. */
3163 alter_subreg (rtx
*xp
, bool final_p
)
3166 rtx y
= SUBREG_REG (x
);
3168 /* simplify_subreg does not remove subreg from volatile references.
3169 We are required to. */
3172 int offset
= SUBREG_BYTE (x
);
3174 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3175 contains 0 instead of the proper offset. See simplify_subreg. */
3177 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3179 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3180 - GET_MODE_SIZE (GET_MODE (x
));
3181 if (WORDS_BIG_ENDIAN
)
3182 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3183 if (BYTES_BIG_ENDIAN
)
3184 offset
+= difference
% UNITS_PER_WORD
;
3188 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3190 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3192 else if (REG_P (y
) && HARD_REGISTER_P (y
))
3194 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3199 else if (final_p
&& REG_P (y
))
3201 /* Simplify_subreg can't handle some REG cases, but we have to. */
3203 HOST_WIDE_INT offset
;
3205 regno
= subreg_regno (x
);
3206 if (subreg_lowpart_p (x
))
3207 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3209 offset
= SUBREG_BYTE (x
);
3210 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3217 /* Do alter_subreg on all the SUBREGs contained in X. */
3220 walk_alter_subreg (rtx
*xp
, bool *changed
)
3223 switch (GET_CODE (x
))
3228 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3229 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3234 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3239 return alter_subreg (xp
, true);
3250 /* Given BODY, the body of a jump instruction, alter the jump condition
3251 as required by the bits that are set in cc_status.flags.
3252 Not all of the bits there can be handled at this level in all cases.
3254 The value is normally 0.
3255 1 means that the condition has become always true.
3256 -1 means that the condition has become always false.
3257 2 means that COND has been altered. */
3260 alter_cond (rtx cond
)
3264 if (cc_status
.flags
& CC_REVERSED
)
3267 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3270 if (cc_status
.flags
& CC_INVERTED
)
3273 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3276 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3277 switch (GET_CODE (cond
))
3282 /* Jump becomes unconditional. */
3288 /* Jump becomes no-op. */
3292 PUT_CODE (cond
, EQ
);
3297 PUT_CODE (cond
, NE
);
3305 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3306 switch (GET_CODE (cond
))
3310 /* Jump becomes unconditional. */
3315 /* Jump becomes no-op. */
3320 PUT_CODE (cond
, EQ
);
3326 PUT_CODE (cond
, NE
);
3334 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3335 switch (GET_CODE (cond
))
3338 /* Jump becomes unconditional. */
3342 PUT_CODE (cond
, EQ
);
3347 PUT_CODE (cond
, NE
);
3352 /* Jump becomes no-op. */
3359 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3360 switch (GET_CODE (cond
))
3366 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3371 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3376 if (cc_status
.flags
& CC_NOT_SIGNED
)
3377 /* The flags are valid if signed condition operators are converted
3379 switch (GET_CODE (cond
))
3382 PUT_CODE (cond
, LEU
);
3387 PUT_CODE (cond
, LTU
);
3392 PUT_CODE (cond
, GTU
);
3397 PUT_CODE (cond
, GEU
);
3409 /* Report inconsistency between the assembler template and the operands.
3410 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3413 output_operand_lossage (const char *cmsgid
, ...)
3417 const char *pfx_str
;
3420 va_start (ap
, cmsgid
);
3422 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3423 fmt_string
= xasprintf ("%s%s", pfx_str
, _(cmsgid
));
3424 new_message
= xvasprintf (fmt_string
, ap
);
3426 if (this_is_asm_operands
)
3427 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3429 internal_error ("%s", new_message
);
3436 /* Output of assembler code from a template, and its subroutines. */
3438 /* Annotate the assembly with a comment describing the pattern and
3439 alternative used. */
3442 output_asm_name (void)
3446 int num
= INSN_CODE (debug_insn
);
3447 fprintf (asm_out_file
, "\t%s %d\t%s",
3448 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3449 insn_data
[num
].name
);
3450 if (insn_data
[num
].n_alternatives
> 1)
3451 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3453 if (HAVE_ATTR_length
)
3454 fprintf (asm_out_file
, "\t[length = %d]",
3455 get_attr_length (debug_insn
));
3457 /* Clear this so only the first assembler insn
3458 of any rtl insn will get the special comment for -dp. */
3463 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3464 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3465 corresponds to the address of the object and 0 if to the object. */
3468 get_mem_expr_from_op (rtx op
, int *paddressp
)
3476 return REG_EXPR (op
);
3477 else if (!MEM_P (op
))
3480 if (MEM_EXPR (op
) != 0)
3481 return MEM_EXPR (op
);
3483 /* Otherwise we have an address, so indicate it and look at the address. */
3487 /* First check if we have a decl for the address, then look at the right side
3488 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3489 But don't allow the address to itself be indirect. */
3490 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3492 else if (GET_CODE (op
) == PLUS
3493 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3497 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3500 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3501 return inner_addressp
? 0 : expr
;
3504 /* Output operand names for assembler instructions. OPERANDS is the
3505 operand vector, OPORDER is the order to write the operands, and NOPS
3506 is the number of operands to write. */
3509 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3514 for (i
= 0; i
< nops
; i
++)
3517 rtx op
= operands
[oporder
[i
]];
3518 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3520 fprintf (asm_out_file
, "%c%s",
3521 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3525 fprintf (asm_out_file
, "%s",
3526 addressp
? "*" : "");
3527 print_mem_expr (asm_out_file
, expr
);
3530 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3531 && ORIGINAL_REGNO (op
) != REGNO (op
))
3532 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3536 #ifdef ASSEMBLER_DIALECT
3537 /* Helper function to parse assembler dialects in the asm string.
3538 This is called from output_asm_insn and asm_fprintf. */
3540 do_assembler_dialects (const char *p
, int *dialect
)
3551 output_operand_lossage ("nested assembly dialect alternatives");
3555 /* If we want the first dialect, do nothing. Otherwise, skip
3556 DIALECT_NUMBER of strings ending with '|'. */
3557 for (i
= 0; i
< dialect_number
; i
++)
3559 while (*p
&& *p
!= '}')
3567 /* Skip over any character after a percent sign. */
3579 output_operand_lossage ("unterminated assembly dialect alternative");
3586 /* Skip to close brace. */
3591 output_operand_lossage ("unterminated assembly dialect alternative");
3595 /* Skip over any character after a percent sign. */
3596 if (*p
== '%' && p
[1])
3610 putc (c
, asm_out_file
);
3615 putc (c
, asm_out_file
);
3626 /* Output text from TEMPLATE to the assembler output file,
3627 obeying %-directions to substitute operands taken from
3628 the vector OPERANDS.
3630 %N (for N a digit) means print operand N in usual manner.
3631 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3632 and print the label name with no punctuation.
3633 %cN means require operand N to be a constant
3634 and print the constant expression with no punctuation.
3635 %aN means expect operand N to be a memory address
3636 (not a memory reference!) and print a reference
3638 %nN means expect operand N to be a constant
3639 and print a constant expression for minus the value
3640 of the operand, with no other punctuation. */
3643 output_asm_insn (const char *templ
, rtx
*operands
)
3647 #ifdef ASSEMBLER_DIALECT
3650 int oporder
[MAX_RECOG_OPERANDS
];
3651 char opoutput
[MAX_RECOG_OPERANDS
];
3654 /* An insn may return a null string template
3655 in a case where no assembler code is needed. */
3659 memset (opoutput
, 0, sizeof opoutput
);
3661 putc ('\t', asm_out_file
);
3663 #ifdef ASM_OUTPUT_OPCODE
3664 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3671 if (flag_verbose_asm
)
3672 output_asm_operand_names (operands
, oporder
, ops
);
3673 if (flag_print_asm_name
)
3677 memset (opoutput
, 0, sizeof opoutput
);
3679 putc (c
, asm_out_file
);
3680 #ifdef ASM_OUTPUT_OPCODE
3681 while ((c
= *p
) == '\t')
3683 putc (c
, asm_out_file
);
3686 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3690 #ifdef ASSEMBLER_DIALECT
3694 p
= do_assembler_dialects (p
, &dialect
);
3699 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3700 if ASSEMBLER_DIALECT defined and these characters have a special
3701 meaning as dialect delimiters.*/
3703 #ifdef ASSEMBLER_DIALECT
3704 || *p
== '{' || *p
== '}' || *p
== '|'
3708 putc (*p
, asm_out_file
);
3711 /* %= outputs a number which is unique to each insn in the entire
3712 compilation. This is useful for making local labels that are
3713 referred to more than once in a given insn. */
3717 fprintf (asm_out_file
, "%d", insn_counter
);
3719 /* % followed by a letter and some digits
3720 outputs an operand in a special way depending on the letter.
3721 Letters `acln' are implemented directly.
3722 Other letters are passed to `output_operand' so that
3723 the TARGET_PRINT_OPERAND hook can define them. */
3724 else if (ISALPHA (*p
))
3727 unsigned long opnum
;
3730 opnum
= strtoul (p
, &endptr
, 10);
3733 output_operand_lossage ("operand number missing "
3735 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3736 output_operand_lossage ("operand number out of range");
3737 else if (letter
== 'l')
3738 output_asm_label (operands
[opnum
]);
3739 else if (letter
== 'a')
3740 output_address (operands
[opnum
]);
3741 else if (letter
== 'c')
3743 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3744 output_addr_const (asm_out_file
, operands
[opnum
]);
3746 output_operand (operands
[opnum
], 'c');
3748 else if (letter
== 'n')
3750 if (CONST_INT_P (operands
[opnum
]))
3751 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3752 - INTVAL (operands
[opnum
]));
3755 putc ('-', asm_out_file
);
3756 output_addr_const (asm_out_file
, operands
[opnum
]);
3760 output_operand (operands
[opnum
], letter
);
3762 if (!opoutput
[opnum
])
3763 oporder
[ops
++] = opnum
;
3764 opoutput
[opnum
] = 1;
3769 /* % followed by a digit outputs an operand the default way. */
3770 else if (ISDIGIT (*p
))
3772 unsigned long opnum
;
3775 opnum
= strtoul (p
, &endptr
, 10);
3776 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3777 output_operand_lossage ("operand number out of range");
3779 output_operand (operands
[opnum
], 0);
3781 if (!opoutput
[opnum
])
3782 oporder
[ops
++] = opnum
;
3783 opoutput
[opnum
] = 1;
3788 /* % followed by punctuation: output something for that
3789 punctuation character alone, with no operand. The
3790 TARGET_PRINT_OPERAND hook decides what is actually done. */
3791 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3792 output_operand (NULL_RTX
, *p
++);
3794 output_operand_lossage ("invalid %%-code");
3798 putc (c
, asm_out_file
);
3801 /* Write out the variable names for operands, if we know them. */
3802 if (flag_verbose_asm
)
3803 output_asm_operand_names (operands
, oporder
, ops
);
3804 if (flag_print_asm_name
)
3807 putc ('\n', asm_out_file
);
3810 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3813 output_asm_label (rtx x
)
3817 if (GET_CODE (x
) == LABEL_REF
)
3818 x
= LABEL_REF_LABEL (x
);
3821 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3822 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3824 output_operand_lossage ("'%%l' operand isn't a label");
3826 assemble_name (asm_out_file
, buf
);
3829 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3832 mark_symbol_refs_as_used (rtx x
)
3834 subrtx_iterator::array_type array
;
3835 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3837 const_rtx x
= *iter
;
3838 if (GET_CODE (x
) == SYMBOL_REF
)
3839 if (tree t
= SYMBOL_REF_DECL (x
))
3840 assemble_external (t
);
3844 /* Print operand X using machine-dependent assembler syntax.
3845 CODE is a non-digit that preceded the operand-number in the % spec,
3846 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3847 between the % and the digits.
3848 When CODE is a non-letter, X is 0.
3850 The meanings of the letters are machine-dependent and controlled
3851 by TARGET_PRINT_OPERAND. */
3854 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3856 if (x
&& GET_CODE (x
) == SUBREG
)
3857 x
= alter_subreg (&x
, true);
3859 /* X must not be a pseudo reg. */
3860 if (!targetm
.no_register_allocation
)
3861 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3863 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3868 mark_symbol_refs_as_used (x
);
3871 /* Print a memory reference operand for address X using
3872 machine-dependent assembler syntax. */
3875 output_address (rtx x
)
3877 bool changed
= false;
3878 walk_alter_subreg (&x
, &changed
);
3879 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3882 /* Print an integer constant expression in assembler syntax.
3883 Addition and subtraction are the only arithmetic
3884 that may appear in these expressions. */
3887 output_addr_const (FILE *file
, rtx x
)
3892 switch (GET_CODE (x
))
3899 if (SYMBOL_REF_DECL (x
))
3900 assemble_external (SYMBOL_REF_DECL (x
));
3901 #ifdef ASM_OUTPUT_SYMBOL_REF
3902 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3904 assemble_name (file
, XSTR (x
, 0));
3909 x
= LABEL_REF_LABEL (x
);
3912 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3913 #ifdef ASM_OUTPUT_LABEL_REF
3914 ASM_OUTPUT_LABEL_REF (file
, buf
);
3916 assemble_name (file
, buf
);
3921 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3925 /* This used to output parentheses around the expression,
3926 but that does not work on the 386 (either ATT or BSD assembler). */
3927 output_addr_const (file
, XEXP (x
, 0));
3930 case CONST_WIDE_INT
:
3931 /* We do not know the mode here so we have to use a round about
3932 way to build a wide-int to get it printed properly. */
3934 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3935 CONST_WIDE_INT_NUNITS (x
),
3936 CONST_WIDE_INT_NUNITS (x
)
3937 * HOST_BITS_PER_WIDE_INT
,
3939 print_decs (w
, file
);
3944 if (CONST_DOUBLE_AS_INT_P (x
))
3946 /* We can use %d if the number is one word and positive. */
3947 if (CONST_DOUBLE_HIGH (x
))
3948 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3949 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3950 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3951 else if (CONST_DOUBLE_LOW (x
) < 0)
3952 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3953 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3955 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3958 /* We can't handle floating point constants;
3959 PRINT_OPERAND must handle them. */
3960 output_operand_lossage ("floating constant misused");
3964 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3968 /* Some assemblers need integer constants to appear last (eg masm). */
3969 if (CONST_INT_P (XEXP (x
, 0)))
3971 output_addr_const (file
, XEXP (x
, 1));
3972 if (INTVAL (XEXP (x
, 0)) >= 0)
3973 fprintf (file
, "+");
3974 output_addr_const (file
, XEXP (x
, 0));
3978 output_addr_const (file
, XEXP (x
, 0));
3979 if (!CONST_INT_P (XEXP (x
, 1))
3980 || INTVAL (XEXP (x
, 1)) >= 0)
3981 fprintf (file
, "+");
3982 output_addr_const (file
, XEXP (x
, 1));
3987 /* Avoid outputting things like x-x or x+5-x,
3988 since some assemblers can't handle that. */
3989 x
= simplify_subtraction (x
);
3990 if (GET_CODE (x
) != MINUS
)
3993 output_addr_const (file
, XEXP (x
, 0));
3994 fprintf (file
, "-");
3995 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3996 || GET_CODE (XEXP (x
, 1)) == PC
3997 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3998 output_addr_const (file
, XEXP (x
, 1));
4001 fputs (targetm
.asm_out
.open_paren
, file
);
4002 output_addr_const (file
, XEXP (x
, 1));
4003 fputs (targetm
.asm_out
.close_paren
, file
);
4011 output_addr_const (file
, XEXP (x
, 0));
4015 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4018 output_operand_lossage ("invalid expression as operand");
4022 /* Output a quoted string. */
4025 output_quoted_string (FILE *asm_file
, const char *string
)
4027 #ifdef OUTPUT_QUOTED_STRING
4028 OUTPUT_QUOTED_STRING (asm_file
, string
);
4032 putc ('\"', asm_file
);
4033 while ((c
= *string
++) != 0)
4037 if (c
== '\"' || c
== '\\')
4038 putc ('\\', asm_file
);
4042 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4044 putc ('\"', asm_file
);
4048 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4051 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4053 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4058 char *p
= buf
+ sizeof (buf
);
4060 *--p
= "0123456789abcdef"[value
% 16];
4061 while ((value
/= 16) != 0);
4064 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4068 /* Internal function that prints an unsigned long in decimal in reverse.
4069 The output string IS NOT null-terminated. */
4072 sprint_ul_rev (char *s
, unsigned long value
)
4077 s
[i
] = "0123456789"[value
% 10];
4080 /* alternate version, without modulo */
4081 /* oldval = value; */
4083 /* s[i] = "0123456789" [oldval - 10*value]; */
4090 /* Write an unsigned long as decimal to a file, fast. */
4093 fprint_ul (FILE *f
, unsigned long value
)
4095 /* python says: len(str(2**64)) == 20 */
4099 i
= sprint_ul_rev (s
, value
);
4101 /* It's probably too small to bother with string reversal and fputs. */
4110 /* Write an unsigned long as decimal to a string, fast.
4111 s must be wide enough to not overflow, at least 21 chars.
4112 Returns the length of the string (without terminating '\0'). */
4115 sprint_ul (char *s
, unsigned long value
)
4122 len
= sprint_ul_rev (s
, value
);
4125 /* Reverse the string. */
4139 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4140 %R prints the value of REGISTER_PREFIX.
4141 %L prints the value of LOCAL_LABEL_PREFIX.
4142 %U prints the value of USER_LABEL_PREFIX.
4143 %I prints the value of IMMEDIATE_PREFIX.
4144 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4145 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4147 We handle alternate assembler dialects here, just like output_asm_insn. */
4150 asm_fprintf (FILE *file
, const char *p
, ...)
4154 #ifdef ASSEMBLER_DIALECT
4159 va_start (argptr
, p
);
4166 #ifdef ASSEMBLER_DIALECT
4170 p
= do_assembler_dialects (p
, &dialect
);
4177 while (strchr ("-+ #0", c
))
4182 while (ISDIGIT (c
) || c
== '.')
4193 case 'd': case 'i': case 'u':
4194 case 'x': case 'X': case 'o':
4198 fprintf (file
, buf
, va_arg (argptr
, int));
4202 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4203 'o' cases, but we do not check for those cases. It
4204 means that the value is a HOST_WIDE_INT, which may be
4205 either `long' or `long long'. */
4206 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4207 q
+= strlen (HOST_WIDE_INT_PRINT
);
4210 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4215 #ifdef HAVE_LONG_LONG
4221 fprintf (file
, buf
, va_arg (argptr
, long long));
4228 fprintf (file
, buf
, va_arg (argptr
, long));
4236 fprintf (file
, buf
, va_arg (argptr
, char *));
4240 #ifdef ASM_OUTPUT_OPCODE
4241 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4246 #ifdef REGISTER_PREFIX
4247 fprintf (file
, "%s", REGISTER_PREFIX
);
4252 #ifdef IMMEDIATE_PREFIX
4253 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4258 #ifdef LOCAL_LABEL_PREFIX
4259 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4264 fputs (user_label_prefix
, file
);
4267 #ifdef ASM_FPRINTF_EXTENSIONS
4268 /* Uppercase letters are reserved for general use by asm_fprintf
4269 and so are not available to target specific code. In order to
4270 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4271 they are defined here. As they get turned into real extensions
4272 to asm_fprintf they should be removed from this list. */
4273 case 'A': case 'B': case 'C': case 'D': case 'E':
4274 case 'F': case 'G': case 'H': case 'J': case 'K':
4275 case 'M': case 'N': case 'P': case 'Q': case 'S':
4276 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4279 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4292 /* Return nonzero if this function has no function calls. */
4295 leaf_function_p (void)
4299 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4300 functions even if they call mcount. */
4301 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4304 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4307 && ! SIBLING_CALL_P (insn
))
4309 if (NONJUMP_INSN_P (insn
)
4310 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4311 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4312 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4319 /* Return 1 if branch is a forward branch.
4320 Uses insn_shuid array, so it works only in the final pass. May be used by
4321 output templates to customary add branch prediction hints.
4324 final_forward_branch_p (rtx_insn
*insn
)
4326 int insn_id
, label_id
;
4328 gcc_assert (uid_shuid
);
4329 insn_id
= INSN_SHUID (insn
);
4330 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4331 /* We've hit some insns that does not have id information available. */
4332 gcc_assert (insn_id
&& label_id
);
4333 return insn_id
< label_id
;
4336 /* On some machines, a function with no call insns
4337 can run faster if it doesn't create its own register window.
4338 When output, the leaf function should use only the "output"
4339 registers. Ordinarily, the function would be compiled to use
4340 the "input" registers to find its arguments; it is a candidate
4341 for leaf treatment if it uses only the "input" registers.
4342 Leaf function treatment means renumbering so the function
4343 uses the "output" registers instead. */
4345 #ifdef LEAF_REGISTERS
4347 /* Return 1 if this function uses only the registers that can be
4348 safely renumbered. */
4351 only_leaf_regs_used (void)
4354 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4356 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4357 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4358 && ! permitted_reg_in_leaf_functions
[i
])
4361 if (crtl
->uses_pic_offset_table
4362 && pic_offset_table_rtx
!= 0
4363 && REG_P (pic_offset_table_rtx
)
4364 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4370 /* Scan all instructions and renumber all registers into those
4371 available in leaf functions. */
4374 leaf_renumber_regs (rtx_insn
*first
)
4378 /* Renumber only the actual patterns.
4379 The reg-notes can contain frame pointer refs,
4380 and renumbering them could crash, and should not be needed. */
4381 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4383 leaf_renumber_regs_insn (PATTERN (insn
));
4386 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4387 available in leaf functions. */
4390 leaf_renumber_regs_insn (rtx in_rtx
)
4393 const char *format_ptr
;
4398 /* Renumber all input-registers into output-registers.
4399 renumbered_regs would be 1 for an output-register;
4406 /* Don't renumber the same reg twice. */
4410 newreg
= REGNO (in_rtx
);
4411 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4412 to reach here as part of a REG_NOTE. */
4413 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4418 newreg
= LEAF_REG_REMAP (newreg
);
4419 gcc_assert (newreg
>= 0);
4420 df_set_regs_ever_live (REGNO (in_rtx
), false);
4421 df_set_regs_ever_live (newreg
, true);
4422 SET_REGNO (in_rtx
, newreg
);
4426 if (INSN_P (in_rtx
))
4428 /* Inside a SEQUENCE, we find insns.
4429 Renumber just the patterns of these insns,
4430 just as we do for the top-level insns. */
4431 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4435 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4437 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4438 switch (*format_ptr
++)
4441 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4445 if (NULL
!= XVEC (in_rtx
, i
))
4447 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4448 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4467 /* Turn the RTL into assembly. */
4469 rest_of_handle_final (void)
4471 const char *fnname
= get_fnname_from_decl (current_function_decl
);
4473 assemble_start_function (current_function_decl
, fnname
);
4474 final_start_function (get_insns (), asm_out_file
, optimize
);
4475 final (get_insns (), asm_out_file
, optimize
);
4477 collect_fn_hard_reg_usage ();
4478 final_end_function ();
4480 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4481 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4482 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4483 output_function_exception_table (fnname
);
4485 assemble_end_function (current_function_decl
, fnname
);
4487 user_defined_section_attribute
= false;
4489 /* Free up reg info memory. */
4493 fflush (asm_out_file
);
4495 /* Write DBX symbols if requested. */
4497 /* Note that for those inline functions where we don't initially
4498 know for certain that we will be generating an out-of-line copy,
4499 the first invocation of this routine (rest_of_compilation) will
4500 skip over this code by doing a `goto exit_rest_of_compilation;'.
4501 Later on, wrapup_global_declarations will (indirectly) call
4502 rest_of_compilation again for those inline functions that need
4503 to have out-of-line copies generated. During that call, we
4504 *will* be routed past here. */
4506 timevar_push (TV_SYMOUT
);
4507 if (!DECL_IGNORED_P (current_function_decl
))
4508 debug_hooks
->function_decl (current_function_decl
);
4509 timevar_pop (TV_SYMOUT
);
4511 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4512 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4514 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4515 && targetm
.have_ctors_dtors
)
4516 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4517 decl_init_priority_lookup
4518 (current_function_decl
));
4519 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4520 && targetm
.have_ctors_dtors
)
4521 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4522 decl_fini_priority_lookup
4523 (current_function_decl
));
4529 const pass_data pass_data_final
=
4531 RTL_PASS
, /* type */
4533 OPTGROUP_NONE
, /* optinfo_flags */
4534 TV_FINAL
, /* tv_id */
4535 0, /* properties_required */
4536 0, /* properties_provided */
4537 0, /* properties_destroyed */
4538 0, /* todo_flags_start */
4539 0, /* todo_flags_finish */
4542 class pass_final
: public rtl_opt_pass
4545 pass_final (gcc::context
*ctxt
)
4546 : rtl_opt_pass (pass_data_final
, ctxt
)
4549 /* opt_pass methods: */
4550 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4552 }; // class pass_final
4557 make_pass_final (gcc::context
*ctxt
)
4559 return new pass_final (ctxt
);
4564 rest_of_handle_shorten_branches (void)
4566 /* Shorten branches. */
4567 shorten_branches (get_insns ());
4573 const pass_data pass_data_shorten_branches
=
4575 RTL_PASS
, /* type */
4576 "shorten", /* name */
4577 OPTGROUP_NONE
, /* optinfo_flags */
4578 TV_SHORTEN_BRANCH
, /* tv_id */
4579 0, /* properties_required */
4580 0, /* properties_provided */
4581 0, /* properties_destroyed */
4582 0, /* todo_flags_start */
4583 0, /* todo_flags_finish */
4586 class pass_shorten_branches
: public rtl_opt_pass
4589 pass_shorten_branches (gcc::context
*ctxt
)
4590 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4593 /* opt_pass methods: */
4594 virtual unsigned int execute (function
*)
4596 return rest_of_handle_shorten_branches ();
4599 }; // class pass_shorten_branches
4604 make_pass_shorten_branches (gcc::context
*ctxt
)
4606 return new pass_shorten_branches (ctxt
);
4611 rest_of_clean_state (void)
4613 rtx_insn
*insn
, *next
;
4614 FILE *final_output
= NULL
;
4615 int save_unnumbered
= flag_dump_unnumbered
;
4616 int save_noaddr
= flag_dump_noaddr
;
4618 if (flag_dump_final_insns
)
4620 final_output
= fopen (flag_dump_final_insns
, "a");
4623 error ("could not open final insn dump file %qs: %m",
4624 flag_dump_final_insns
);
4625 flag_dump_final_insns
= NULL
;
4629 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4630 if (flag_compare_debug_opt
|| flag_compare_debug
)
4631 dump_flags
|= TDF_NOUID
;
4632 dump_function_header (final_output
, current_function_decl
,
4634 final_insns_dump_p
= true;
4636 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4638 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4642 set_block_for_insn (insn
, NULL
);
4643 INSN_UID (insn
) = 0;
4648 /* It is very important to decompose the RTL instruction chain here:
4649 debug information keeps pointing into CODE_LABEL insns inside the function
4650 body. If these remain pointing to the other insns, we end up preserving
4651 whole RTL chain and attached detailed debug info in memory. */
4652 for (insn
= get_insns (); insn
; insn
= next
)
4654 next
= NEXT_INSN (insn
);
4655 SET_NEXT_INSN (insn
) = NULL
;
4656 SET_PREV_INSN (insn
) = NULL
;
4659 && (!NOTE_P (insn
) ||
4660 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4661 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4662 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4663 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4664 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4665 print_rtl_single (final_output
, insn
);
4670 flag_dump_noaddr
= save_noaddr
;
4671 flag_dump_unnumbered
= save_unnumbered
;
4672 final_insns_dump_p
= false;
4674 if (fclose (final_output
))
4676 error ("could not close final insn dump file %qs: %m",
4677 flag_dump_final_insns
);
4678 flag_dump_final_insns
= NULL
;
4682 /* In case the function was not output,
4683 don't leave any temporary anonymous types
4684 queued up for sdb output. */
4685 #ifdef SDB_DEBUGGING_INFO
4686 if (write_symbols
== SDB_DEBUG
)
4687 sdbout_types (NULL_TREE
);
4690 flag_rerun_cse_after_global_opts
= 0;
4691 reload_completed
= 0;
4692 epilogue_completed
= 0;
4694 regstack_completed
= 0;
4697 /* Clear out the insn_length contents now that they are no
4699 init_insn_lengths ();
4701 /* Show no temporary slots allocated. */
4704 free_bb_for_insn ();
4708 /* We can reduce stack alignment on call site only when we are sure that
4709 the function body just produced will be actually used in the final
4711 if (decl_binds_to_current_def_p (current_function_decl
))
4713 unsigned int pref
= crtl
->preferred_stack_boundary
;
4714 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4715 pref
= crtl
->stack_alignment_needed
;
4716 cgraph_node::rtl_info (current_function_decl
)
4717 ->preferred_incoming_stack_boundary
= pref
;
4720 /* Make sure volatile mem refs aren't considered valid operands for
4721 arithmetic insns. We must call this here if this is a nested inline
4722 function, since the above code leaves us in the init_recog state,
4723 and the function context push/pop code does not save/restore volatile_ok.
4725 ??? Maybe it isn't necessary for expand_start_function to call this
4726 anymore if we do it here? */
4728 init_recog_no_volatile ();
4730 /* We're done with this function. Free up memory if we can. */
4731 free_after_parsing (cfun
);
4732 free_after_compilation (cfun
);
4738 const pass_data pass_data_clean_state
=
4740 RTL_PASS
, /* type */
4741 "*clean_state", /* name */
4742 OPTGROUP_NONE
, /* optinfo_flags */
4743 TV_FINAL
, /* tv_id */
4744 0, /* properties_required */
4745 0, /* properties_provided */
4746 PROP_rtl
, /* properties_destroyed */
4747 0, /* todo_flags_start */
4748 0, /* todo_flags_finish */
4751 class pass_clean_state
: public rtl_opt_pass
4754 pass_clean_state (gcc::context
*ctxt
)
4755 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4758 /* opt_pass methods: */
4759 virtual unsigned int execute (function
*)
4761 return rest_of_clean_state ();
4764 }; // class pass_clean_state
4769 make_pass_clean_state (gcc::context
*ctxt
)
4771 return new pass_clean_state (ctxt
);
4774 /* Return true if INSN is a call to the the current function. */
4777 self_recursive_call_p (rtx_insn
*insn
)
4779 tree fndecl
= get_call_fndecl (insn
);
4780 return (fndecl
== current_function_decl
4781 && decl_binds_to_current_def_p (fndecl
));
4784 /* Collect hard register usage for the current function. */
4787 collect_fn_hard_reg_usage (void)
4793 struct cgraph_rtl_info
*node
;
4794 HARD_REG_SET function_used_regs
;
4796 /* ??? To be removed when all the ports have been fixed. */
4797 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4800 CLEAR_HARD_REG_SET (function_used_regs
);
4802 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4804 HARD_REG_SET insn_used_regs
;
4806 if (!NONDEBUG_INSN_P (insn
))
4810 && !self_recursive_call_p (insn
))
4812 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4816 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4819 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4820 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4823 /* Be conservative - mark fixed and global registers as used. */
4824 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4827 /* Handle STACK_REGS conservatively, since the df-framework does not
4828 provide accurate information for them. */
4830 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4831 SET_HARD_REG_BIT (function_used_regs
, i
);
4834 /* The information we have gathered is only interesting if it exposes a
4835 register from the call_used_regs that is not used in this function. */
4836 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4839 node
= cgraph_node::rtl_info (current_function_decl
);
4840 gcc_assert (node
!= NULL
);
4842 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4843 node
->function_used_regs_valid
= 1;
4846 /* Get the declaration of the function called by INSN. */
4849 get_call_fndecl (rtx_insn
*insn
)
4853 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4854 if (note
== NULL_RTX
)
4857 datum
= XEXP (note
, 0);
4858 if (datum
!= NULL_RTX
)
4859 return SYMBOL_REF_DECL (datum
);
4864 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4865 call targets that can be overwritten. */
4867 static struct cgraph_rtl_info
*
4868 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4872 if (insn
== NULL_RTX
)
4875 fndecl
= get_call_fndecl (insn
);
4876 if (fndecl
== NULL_TREE
4877 || !decl_binds_to_current_def_p (fndecl
))
4880 return cgraph_node::rtl_info (fndecl
);
4883 /* Find hard registers used by function call instruction INSN, and return them
4884 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4887 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4888 HARD_REG_SET default_set
)
4892 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4894 && node
->function_used_regs_valid
)
4896 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4897 AND_HARD_REG_SET (*reg_set
, default_set
);
4902 COPY_HARD_REG_SET (*reg_set
, default_set
);