gcc/
[official-gcc.git] / gcc / modulo-sched.c
blob3b62eafe157f15902b98a5203ace9d12afe4a6bf
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "function.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "except.h"
36 #include "recog.h"
37 #include "sched-int.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "expr.h"
41 #include "params.h"
42 #include "gcov-io.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "df.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
161 typedef struct ps_reg_move_info ps_reg_move_info;
163 /* Holds the partial schedule as an array of II rows. Each entry of the
164 array points to a linked list of PS_INSNs, which represents the
165 instructions that are scheduled for that row. */
166 struct partial_schedule
168 int ii; /* Number of rows in the partial schedule. */
169 int history; /* Threshold for conflict checking using DFA. */
171 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
172 ps_insn_ptr *rows;
174 /* All the moves added for this partial schedule. Index X has
175 a ps_insn id of X + g->num_nodes. */
176 vec<ps_reg_move_info> reg_moves;
178 /* rows_length[i] holds the number of instructions in the row.
179 It is used only (as an optimization) to back off quickly from
180 trying to schedule a node in a full row; that is, to avoid running
181 through futile DFA state transitions. */
182 int *rows_length;
184 /* The earliest absolute cycle of an insn in the partial schedule. */
185 int min_cycle;
187 /* The latest absolute cycle of an insn in the partial schedule. */
188 int max_cycle;
190 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
192 int stage_count; /* The stage count of the partial schedule. */
196 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
197 static void free_partial_schedule (partial_schedule_ptr);
198 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
199 void print_partial_schedule (partial_schedule_ptr, FILE *);
200 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
201 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
202 int, int, sbitmap, sbitmap);
203 static void rotate_partial_schedule (partial_schedule_ptr, int);
204 void set_row_column_for_ps (partial_schedule_ptr);
205 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
206 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
209 /* This page defines constants and structures for the modulo scheduling
210 driver. */
212 static int sms_order_nodes (ddg_ptr, int, int *, int *);
213 static void set_node_sched_params (ddg_ptr);
214 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
215 static void permute_partial_schedule (partial_schedule_ptr, rtx);
216 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
217 rtx, rtx);
218 static int calculate_stage_count (partial_schedule_ptr, int);
219 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
220 int, int, sbitmap, sbitmap, sbitmap);
221 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
222 sbitmap, int, int *, int *, int *);
223 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
224 sbitmap, int *, sbitmap, sbitmap);
225 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
227 #define NODE_ASAP(node) ((node)->aux.count)
229 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
230 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
231 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
232 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
233 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
235 /* The scheduling parameters held for each node. */
236 typedef struct node_sched_params
238 int time; /* The absolute scheduling cycle. */
240 int row; /* Holds time % ii. */
241 int stage; /* Holds time / ii. */
243 /* The column of a node inside the ps. If nodes u, v are on the same row,
244 u will precede v if column (u) < column (v). */
245 int column;
246 } *node_sched_params_ptr;
248 typedef struct node_sched_params node_sched_params;
250 /* The following three functions are copied from the current scheduler
251 code in order to use sched_analyze() for computing the dependencies.
252 They are used when initializing the sched_info structure. */
253 static const char *
254 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
256 static char tmp[80];
258 sprintf (tmp, "i%4d", INSN_UID (insn));
259 return tmp;
262 static void
263 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
264 regset used ATTRIBUTE_UNUSED)
268 static struct common_sched_info_def sms_common_sched_info;
270 static struct sched_deps_info_def sms_sched_deps_info =
272 compute_jump_reg_dependencies,
273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
274 NULL,
275 0, 0, 0
278 static struct haifa_sched_info sms_sched_info =
280 NULL,
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 sms_print_insn,
286 NULL,
287 NULL, /* insn_finishes_block_p */
288 NULL, NULL,
289 NULL, NULL,
290 0, 0,
292 NULL, NULL, NULL, NULL,
293 NULL, NULL,
297 /* Partial schedule instruction ID in PS is a register move. Return
298 information about it. */
299 static struct ps_reg_move_info *
300 ps_reg_move (partial_schedule_ptr ps, int id)
302 gcc_checking_assert (id >= ps->g->num_nodes);
303 return &ps->reg_moves[id - ps->g->num_nodes];
306 /* Return the rtl instruction that is being scheduled by partial schedule
307 instruction ID, which belongs to schedule PS. */
308 static rtx_insn *
309 ps_rtl_insn (partial_schedule_ptr ps, int id)
311 if (id < ps->g->num_nodes)
312 return ps->g->nodes[id].insn;
313 else
314 return ps_reg_move (ps, id)->insn;
317 /* Partial schedule instruction ID, which belongs to PS, occurred in
318 the original (unscheduled) loop. Return the first instruction
319 in the loop that was associated with ps_rtl_insn (PS, ID).
320 If the instruction had some notes before it, this is the first
321 of those notes. */
322 static rtx_insn *
323 ps_first_note (partial_schedule_ptr ps, int id)
325 gcc_assert (id < ps->g->num_nodes);
326 return ps->g->nodes[id].first_note;
329 /* Return the number of consecutive stages that are occupied by
330 partial schedule instruction ID in PS. */
331 static int
332 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
334 if (id < ps->g->num_nodes)
335 return 1;
336 else
337 return ps_reg_move (ps, id)->num_consecutive_stages;
340 /* Given HEAD and TAIL which are the first and last insns in a loop;
341 return the register which controls the loop. Return zero if it has
342 more than one occurrence in the loop besides the control part or the
343 do-loop pattern is not of the form we expect. */
344 static rtx
345 doloop_register_get (rtx_insn *head ATTRIBUTE_UNUSED, rtx_insn *tail ATTRIBUTE_UNUSED)
347 #ifdef HAVE_doloop_end
348 rtx reg, condition;
349 rtx_insn *insn, *first_insn_not_to_check;
351 if (!JUMP_P (tail))
352 return NULL_RTX;
354 /* TODO: Free SMS's dependence on doloop_condition_get. */
355 condition = doloop_condition_get (tail);
356 if (! condition)
357 return NULL_RTX;
359 if (REG_P (XEXP (condition, 0)))
360 reg = XEXP (condition, 0);
361 else if (GET_CODE (XEXP (condition, 0)) == PLUS
362 && REG_P (XEXP (XEXP (condition, 0), 0)))
363 reg = XEXP (XEXP (condition, 0), 0);
364 else
365 gcc_unreachable ();
367 /* Check that the COUNT_REG has no other occurrences in the loop
368 until the decrement. We assume the control part consists of
369 either a single (parallel) branch-on-count or a (non-parallel)
370 branch immediately preceded by a single (decrement) insn. */
371 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
372 : prev_nondebug_insn (tail));
374 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
375 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
377 if (dump_file)
379 fprintf (dump_file, "SMS count_reg found ");
380 print_rtl_single (dump_file, reg);
381 fprintf (dump_file, " outside control in insn:\n");
382 print_rtl_single (dump_file, insn);
385 return NULL_RTX;
388 return reg;
389 #else
390 return NULL_RTX;
391 #endif
394 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
395 that the number of iterations is a compile-time constant. If so,
396 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
397 this constant. Otherwise return 0. */
398 static rtx_insn *
399 const_iteration_count (rtx count_reg, basic_block pre_header,
400 int64_t * count)
402 rtx_insn *insn;
403 rtx_insn *head, *tail;
405 if (! pre_header)
406 return NULL;
408 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
410 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
411 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
412 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
414 rtx pat = single_set (insn);
416 if (CONST_INT_P (SET_SRC (pat)))
418 *count = INTVAL (SET_SRC (pat));
419 return insn;
422 return NULL;
425 return NULL;
428 /* A very simple resource-based lower bound on the initiation interval.
429 ??? Improve the accuracy of this bound by considering the
430 utilization of various units. */
431 static int
432 res_MII (ddg_ptr g)
434 if (targetm.sched.sms_res_mii)
435 return targetm.sched.sms_res_mii (g);
437 return ((g->num_nodes - g->num_debug) / issue_rate);
441 /* A vector that contains the sched data for each ps_insn. */
442 static vec<node_sched_params> node_sched_param_vec;
444 /* Allocate sched_params for each node and initialize it. */
445 static void
446 set_node_sched_params (ddg_ptr g)
448 node_sched_param_vec.truncate (0);
449 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
452 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
453 static void
454 extend_node_sched_params (partial_schedule_ptr ps)
456 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
457 + ps->reg_moves.length ());
460 /* Update the sched_params (time, row and stage) for node U using the II,
461 the CYCLE of U and MIN_CYCLE.
462 We're not simply taking the following
463 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
464 because the stages may not be aligned on cycle 0. */
465 static void
466 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
468 int sc_until_cycle_zero;
469 int stage;
471 SCHED_TIME (u) = cycle;
472 SCHED_ROW (u) = SMODULO (cycle, ii);
474 /* The calculation of stage count is done adding the number
475 of stages before cycle zero and after cycle zero. */
476 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
478 if (SCHED_TIME (u) < 0)
480 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
483 else
485 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
486 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
490 static void
491 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
493 int i;
495 if (! file)
496 return;
497 for (i = 0; i < num_nodes; i++)
499 node_sched_params_ptr nsp = SCHED_PARAMS (i);
501 fprintf (file, "Node = %d; INSN = %d\n", i,
502 INSN_UID (ps_rtl_insn (ps, i)));
503 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
504 fprintf (file, " time = %d:\n", nsp->time);
505 fprintf (file, " stage = %d:\n", nsp->stage);
509 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
510 static void
511 set_columns_for_row (partial_schedule_ptr ps, int row)
513 ps_insn_ptr cur_insn;
514 int column;
516 column = 0;
517 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
518 SCHED_COLUMN (cur_insn->id) = column++;
521 /* Set SCHED_COLUMN for each instruction in PS. */
522 static void
523 set_columns_for_ps (partial_schedule_ptr ps)
525 int row;
527 for (row = 0; row < ps->ii; row++)
528 set_columns_for_row (ps, row);
531 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
532 Its single predecessor has already been scheduled, as has its
533 ddg node successors. (The move may have also another move as its
534 successor, in which case that successor will be scheduled later.)
536 The move is part of a chain that satisfies register dependencies
537 between a producing ddg node and various consuming ddg nodes.
538 If some of these dependencies have a distance of 1 (meaning that
539 the use is upward-exposed) then DISTANCE1_USES is nonnull and
540 contains the set of uses with distance-1 dependencies.
541 DISTANCE1_USES is null otherwise.
543 MUST_FOLLOW is a scratch bitmap that is big enough to hold
544 all current ps_insn ids.
546 Return true on success. */
547 static bool
548 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
549 sbitmap distance1_uses, sbitmap must_follow)
551 unsigned int u;
552 int this_time, this_distance, this_start, this_end, this_latency;
553 int start, end, c, ii;
554 sbitmap_iterator sbi;
555 ps_reg_move_info *move;
556 rtx_insn *this_insn;
557 ps_insn_ptr psi;
559 move = ps_reg_move (ps, i_reg_move);
560 ii = ps->ii;
561 if (dump_file)
563 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
564 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
565 PS_MIN_CYCLE (ps));
566 print_rtl_single (dump_file, move->insn);
567 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
568 fprintf (dump_file, "=========== =========== =====\n");
571 start = INT_MIN;
572 end = INT_MAX;
574 /* For dependencies of distance 1 between a producer ddg node A
575 and consumer ddg node B, we have a chain of dependencies:
577 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
579 where Mi is the ith move. For dependencies of distance 0 between
580 a producer ddg node A and consumer ddg node C, we have a chain of
581 dependencies:
583 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
585 where Mi' occupies the same position as Mi but occurs a stage later.
586 We can only schedule each move once, so if we have both types of
587 chain, we model the second as:
589 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
591 First handle the dependencies between the previously-scheduled
592 predecessor and the move. */
593 this_insn = ps_rtl_insn (ps, move->def);
594 this_latency = insn_latency (this_insn, move->insn);
595 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
596 this_time = SCHED_TIME (move->def) - this_distance * ii;
597 this_start = this_time + this_latency;
598 this_end = this_time + ii;
599 if (dump_file)
600 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
601 this_start, this_end, SCHED_TIME (move->def),
602 INSN_UID (this_insn), this_latency, this_distance,
603 INSN_UID (move->insn));
605 if (start < this_start)
606 start = this_start;
607 if (end > this_end)
608 end = this_end;
610 /* Handle the dependencies between the move and previously-scheduled
611 successors. */
612 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
614 this_insn = ps_rtl_insn (ps, u);
615 this_latency = insn_latency (move->insn, this_insn);
616 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
617 this_distance = -1;
618 else
619 this_distance = 0;
620 this_time = SCHED_TIME (u) + this_distance * ii;
621 this_start = this_time - ii;
622 this_end = this_time - this_latency;
623 if (dump_file)
624 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
625 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
626 this_latency, this_distance, INSN_UID (this_insn));
628 if (start < this_start)
629 start = this_start;
630 if (end > this_end)
631 end = this_end;
634 if (dump_file)
636 fprintf (dump_file, "----------- ----------- -----\n");
637 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
640 bitmap_clear (must_follow);
641 bitmap_set_bit (must_follow, move->def);
643 start = MAX (start, end - (ii - 1));
644 for (c = end; c >= start; c--)
646 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
647 move->uses, must_follow);
648 if (psi)
650 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
651 if (dump_file)
652 fprintf (dump_file, "\nScheduled register move INSN %d at"
653 " time %d, row %d\n\n", INSN_UID (move->insn), c,
654 SCHED_ROW (i_reg_move));
655 return true;
659 if (dump_file)
660 fprintf (dump_file, "\nNo available slot\n\n");
662 return false;
666 Breaking intra-loop register anti-dependences:
667 Each intra-loop register anti-dependence implies a cross-iteration true
668 dependence of distance 1. Therefore, we can remove such false dependencies
669 and figure out if the partial schedule broke them by checking if (for a
670 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
671 if so generate a register move. The number of such moves is equal to:
672 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
673 nreg_moves = ----------------------------------- + 1 - { dependence.
674 ii { 1 if not.
676 static bool
677 schedule_reg_moves (partial_schedule_ptr ps)
679 ddg_ptr g = ps->g;
680 int ii = ps->ii;
681 int i;
683 for (i = 0; i < g->num_nodes; i++)
685 ddg_node_ptr u = &g->nodes[i];
686 ddg_edge_ptr e;
687 int nreg_moves = 0, i_reg_move;
688 rtx prev_reg, old_reg;
689 int first_move;
690 int distances[2];
691 sbitmap must_follow;
692 sbitmap distance1_uses;
693 rtx set = single_set (u->insn);
695 /* Skip instructions that do not set a register. */
696 if ((set && !REG_P (SET_DEST (set))))
697 continue;
699 /* Compute the number of reg_moves needed for u, by looking at life
700 ranges started at u (excluding self-loops). */
701 distances[0] = distances[1] = false;
702 for (e = u->out; e; e = e->next_out)
703 if (e->type == TRUE_DEP && e->dest != e->src)
705 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
706 - SCHED_TIME (e->src->cuid)) / ii;
708 if (e->distance == 1)
709 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
710 - SCHED_TIME (e->src->cuid) + ii) / ii;
712 /* If dest precedes src in the schedule of the kernel, then dest
713 will read before src writes and we can save one reg_copy. */
714 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
715 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
716 nreg_moves4e--;
718 if (nreg_moves4e >= 1)
720 /* !single_set instructions are not supported yet and
721 thus we do not except to encounter them in the loop
722 except from the doloop part. For the latter case
723 we assume no regmoves are generated as the doloop
724 instructions are tied to the branch with an edge. */
725 gcc_assert (set);
726 /* If the instruction contains auto-inc register then
727 validate that the regmov is being generated for the
728 target regsiter rather then the inc'ed register. */
729 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
732 if (nreg_moves4e)
734 gcc_assert (e->distance < 2);
735 distances[e->distance] = true;
737 nreg_moves = MAX (nreg_moves, nreg_moves4e);
740 if (nreg_moves == 0)
741 continue;
743 /* Create NREG_MOVES register moves. */
744 first_move = ps->reg_moves.length ();
745 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
746 extend_node_sched_params (ps);
748 /* Record the moves associated with this node. */
749 first_move += ps->g->num_nodes;
751 /* Generate each move. */
752 old_reg = prev_reg = SET_DEST (single_set (u->insn));
753 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
755 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
757 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
758 move->uses = sbitmap_alloc (first_move + nreg_moves);
759 move->old_reg = old_reg;
760 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
761 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
762 move->insn = as_a <rtx_insn *> (gen_move_insn (move->new_reg,
763 copy_rtx (prev_reg)));
764 bitmap_clear (move->uses);
766 prev_reg = move->new_reg;
769 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
771 if (distance1_uses)
772 bitmap_clear (distance1_uses);
774 /* Every use of the register defined by node may require a different
775 copy of this register, depending on the time the use is scheduled.
776 Record which uses require which move results. */
777 for (e = u->out; e; e = e->next_out)
778 if (e->type == TRUE_DEP && e->dest != e->src)
780 int dest_copy = (SCHED_TIME (e->dest->cuid)
781 - SCHED_TIME (e->src->cuid)) / ii;
783 if (e->distance == 1)
784 dest_copy = (SCHED_TIME (e->dest->cuid)
785 - SCHED_TIME (e->src->cuid) + ii) / ii;
787 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
788 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
789 dest_copy--;
791 if (dest_copy)
793 ps_reg_move_info *move;
795 move = ps_reg_move (ps, first_move + dest_copy - 1);
796 bitmap_set_bit (move->uses, e->dest->cuid);
797 if (e->distance == 1)
798 bitmap_set_bit (distance1_uses, e->dest->cuid);
802 must_follow = sbitmap_alloc (first_move + nreg_moves);
803 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
804 if (!schedule_reg_move (ps, first_move + i_reg_move,
805 distance1_uses, must_follow))
806 break;
807 sbitmap_free (must_follow);
808 if (distance1_uses)
809 sbitmap_free (distance1_uses);
810 if (i_reg_move < nreg_moves)
811 return false;
813 return true;
816 /* Emit the moves associatied with PS. Apply the substitutions
817 associated with them. */
818 static void
819 apply_reg_moves (partial_schedule_ptr ps)
821 ps_reg_move_info *move;
822 int i;
824 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
826 unsigned int i_use;
827 sbitmap_iterator sbi;
829 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
831 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
832 df_insn_rescan (ps->g->nodes[i_use].insn);
837 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
838 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
839 will move to cycle zero. */
840 static void
841 reset_sched_times (partial_schedule_ptr ps, int amount)
843 int row;
844 int ii = ps->ii;
845 ps_insn_ptr crr_insn;
847 for (row = 0; row < ii; row++)
848 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
850 int u = crr_insn->id;
851 int normalized_time = SCHED_TIME (u) - amount;
852 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
854 if (dump_file)
856 /* Print the scheduling times after the rotation. */
857 rtx_insn *insn = ps_rtl_insn (ps, u);
859 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
860 "crr_insn->cycle=%d, min_cycle=%d", u,
861 INSN_UID (insn), normalized_time, new_min_cycle);
862 if (JUMP_P (insn))
863 fprintf (dump_file, " (branch)");
864 fprintf (dump_file, "\n");
867 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
868 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
870 crr_insn->cycle = normalized_time;
871 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
875 /* Permute the insns according to their order in PS, from row 0 to
876 row ii-1, and position them right before LAST. This schedules
877 the insns of the loop kernel. */
878 static void
879 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
881 int ii = ps->ii;
882 int row;
883 ps_insn_ptr ps_ij;
885 for (row = 0; row < ii ; row++)
886 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
888 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
890 if (PREV_INSN (last) != insn)
892 if (ps_ij->id < ps->g->num_nodes)
893 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
894 PREV_INSN (last));
895 else
896 add_insn_before (insn, last, NULL);
901 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
902 respectively only if cycle C falls on the border of the scheduling
903 window boundaries marked by START and END cycles. STEP is the
904 direction of the window. */
905 static inline void
906 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
907 sbitmap *tmp_precede, sbitmap must_precede, int c,
908 int start, int end, int step)
910 *tmp_precede = NULL;
911 *tmp_follow = NULL;
913 if (c == start)
915 if (step == 1)
916 *tmp_precede = must_precede;
917 else /* step == -1. */
918 *tmp_follow = must_follow;
920 if (c == end - step)
922 if (step == 1)
923 *tmp_follow = must_follow;
924 else /* step == -1. */
925 *tmp_precede = must_precede;
930 /* Return True if the branch can be moved to row ii-1 while
931 normalizing the partial schedule PS to start from cycle zero and thus
932 optimize the SC. Otherwise return False. */
933 static bool
934 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
936 int amount = PS_MIN_CYCLE (ps);
937 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
938 int start, end, step;
939 int ii = ps->ii;
940 bool ok = false;
941 int stage_count, stage_count_curr;
943 /* Compare the SC after normalization and SC after bringing the branch
944 to row ii-1. If they are equal just bail out. */
945 stage_count = calculate_stage_count (ps, amount);
946 stage_count_curr =
947 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
949 if (stage_count == stage_count_curr)
951 if (dump_file)
952 fprintf (dump_file, "SMS SC already optimized.\n");
954 ok = false;
955 goto clear;
958 if (dump_file)
960 fprintf (dump_file, "SMS Trying to optimize branch location\n");
961 fprintf (dump_file, "SMS partial schedule before trial:\n");
962 print_partial_schedule (ps, dump_file);
965 /* First, normalize the partial scheduling. */
966 reset_sched_times (ps, amount);
967 rotate_partial_schedule (ps, amount);
968 if (dump_file)
970 fprintf (dump_file,
971 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
972 ii, stage_count);
973 print_partial_schedule (ps, dump_file);
976 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
978 ok = true;
979 goto clear;
982 bitmap_ones (sched_nodes);
984 /* Calculate the new placement of the branch. It should be in row
985 ii-1 and fall into it's scheduling window. */
986 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
987 &step, &end) == 0)
989 bool success;
990 ps_insn_ptr next_ps_i;
991 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
992 int row = SMODULO (branch_cycle, ps->ii);
993 int num_splits = 0;
994 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
995 int c;
997 if (dump_file)
998 fprintf (dump_file, "\nTrying to schedule node %d "
999 "INSN = %d in (%d .. %d) step %d\n",
1000 g->closing_branch->cuid,
1001 (INSN_UID (g->closing_branch->insn)), start, end, step);
1003 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1004 if (step == 1)
1006 c = start + ii - SMODULO (start, ii) - 1;
1007 gcc_assert (c >= start);
1008 if (c >= end)
1010 ok = false;
1011 if (dump_file)
1012 fprintf (dump_file,
1013 "SMS failed to schedule branch at cycle: %d\n", c);
1014 goto clear;
1017 else
1019 c = start - SMODULO (start, ii) - 1;
1020 gcc_assert (c <= start);
1022 if (c <= end)
1024 if (dump_file)
1025 fprintf (dump_file,
1026 "SMS failed to schedule branch at cycle: %d\n", c);
1027 ok = false;
1028 goto clear;
1032 must_precede = sbitmap_alloc (g->num_nodes);
1033 must_follow = sbitmap_alloc (g->num_nodes);
1035 /* Try to schedule the branch is it's new cycle. */
1036 calculate_must_precede_follow (g->closing_branch, start, end,
1037 step, ii, sched_nodes,
1038 must_precede, must_follow);
1040 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1041 must_precede, c, start, end, step);
1043 /* Find the element in the partial schedule related to the closing
1044 branch so we can remove it from it's current cycle. */
1045 for (next_ps_i = ps->rows[row];
1046 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1047 if (next_ps_i->id == g->closing_branch->cuid)
1048 break;
1050 remove_node_from_ps (ps, next_ps_i);
1051 success =
1052 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1053 sched_nodes, &num_splits,
1054 tmp_precede, tmp_follow);
1055 gcc_assert (num_splits == 0);
1056 if (!success)
1058 if (dump_file)
1059 fprintf (dump_file,
1060 "SMS failed to schedule branch at cycle: %d, "
1061 "bringing it back to cycle %d\n", c, branch_cycle);
1063 /* The branch was failed to be placed in row ii - 1.
1064 Put it back in it's original place in the partial
1065 schedualing. */
1066 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1067 must_precede, branch_cycle, start, end,
1068 step);
1069 success =
1070 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1071 branch_cycle, sched_nodes,
1072 &num_splits, tmp_precede,
1073 tmp_follow);
1074 gcc_assert (success && (num_splits == 0));
1075 ok = false;
1077 else
1079 /* The branch is placed in row ii - 1. */
1080 if (dump_file)
1081 fprintf (dump_file,
1082 "SMS success in moving branch to cycle %d\n", c);
1084 update_node_sched_params (g->closing_branch->cuid, ii, c,
1085 PS_MIN_CYCLE (ps));
1086 ok = true;
1089 free (must_precede);
1090 free (must_follow);
1093 clear:
1094 free (sched_nodes);
1095 return ok;
1098 static void
1099 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1100 int to_stage, rtx count_reg)
1102 int row;
1103 ps_insn_ptr ps_ij;
1105 for (row = 0; row < ps->ii; row++)
1106 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1108 int u = ps_ij->id;
1109 int first_u, last_u;
1110 rtx_insn *u_insn;
1112 /* Do not duplicate any insn which refers to count_reg as it
1113 belongs to the control part.
1114 The closing branch is scheduled as well and thus should
1115 be ignored.
1116 TODO: This should be done by analyzing the control part of
1117 the loop. */
1118 u_insn = ps_rtl_insn (ps, u);
1119 if (reg_mentioned_p (count_reg, u_insn)
1120 || JUMP_P (u_insn))
1121 continue;
1123 first_u = SCHED_STAGE (u);
1124 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1125 if (from_stage <= last_u && to_stage >= first_u)
1127 if (u < ps->g->num_nodes)
1128 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1129 else
1130 emit_insn (copy_rtx (PATTERN (u_insn)));
1136 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1137 static void
1138 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1139 rtx count_reg, rtx count_init)
1141 int i;
1142 int last_stage = PS_STAGE_COUNT (ps) - 1;
1143 edge e;
1145 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1146 start_sequence ();
1148 if (!count_init)
1150 /* Generate instructions at the beginning of the prolog to
1151 adjust the loop count by STAGE_COUNT. If loop count is constant
1152 (count_init), this constant is adjusted by STAGE_COUNT in
1153 generate_prolog_epilog function. */
1154 rtx sub_reg = NULL_RTX;
1156 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1157 gen_int_mode (last_stage,
1158 GET_MODE (count_reg)),
1159 count_reg, 1, OPTAB_DIRECT);
1160 gcc_assert (REG_P (sub_reg));
1161 if (REGNO (sub_reg) != REGNO (count_reg))
1162 emit_move_insn (count_reg, sub_reg);
1165 for (i = 0; i < last_stage; i++)
1166 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1168 /* Put the prolog on the entry edge. */
1169 e = loop_preheader_edge (loop);
1170 split_edge_and_insert (e, get_insns ());
1171 if (!flag_resched_modulo_sched)
1172 e->dest->flags |= BB_DISABLE_SCHEDULE;
1174 end_sequence ();
1176 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1177 start_sequence ();
1179 for (i = 0; i < last_stage; i++)
1180 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1182 /* Put the epilogue on the exit edge. */
1183 gcc_assert (single_exit (loop));
1184 e = single_exit (loop);
1185 split_edge_and_insert (e, get_insns ());
1186 if (!flag_resched_modulo_sched)
1187 e->dest->flags |= BB_DISABLE_SCHEDULE;
1189 end_sequence ();
1192 /* Mark LOOP as software pipelined so the later
1193 scheduling passes don't touch it. */
1194 static void
1195 mark_loop_unsched (struct loop *loop)
1197 unsigned i;
1198 basic_block *bbs = get_loop_body (loop);
1200 for (i = 0; i < loop->num_nodes; i++)
1201 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1203 free (bbs);
1206 /* Return true if all the BBs of the loop are empty except the
1207 loop header. */
1208 static bool
1209 loop_single_full_bb_p (struct loop *loop)
1211 unsigned i;
1212 basic_block *bbs = get_loop_body (loop);
1214 for (i = 0; i < loop->num_nodes ; i++)
1216 rtx_insn *head, *tail;
1217 bool empty_bb = true;
1219 if (bbs[i] == loop->header)
1220 continue;
1222 /* Make sure that basic blocks other than the header
1223 have only notes labels or jumps. */
1224 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1225 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1227 if (NOTE_P (head) || LABEL_P (head)
1228 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1229 continue;
1230 empty_bb = false;
1231 break;
1234 if (! empty_bb)
1236 free (bbs);
1237 return false;
1240 free (bbs);
1241 return true;
1244 /* Dump file:line from INSN's location info to dump_file. */
1246 static void
1247 dump_insn_location (rtx_insn *insn)
1249 if (dump_file && INSN_HAS_LOCATION (insn))
1251 expanded_location xloc = insn_location (insn);
1252 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1256 /* A simple loop from SMS point of view; it is a loop that is composed of
1257 either a single basic block or two BBs - a header and a latch. */
1258 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1259 && (EDGE_COUNT (loop->latch->preds) == 1) \
1260 && (EDGE_COUNT (loop->latch->succs) == 1))
1262 /* Return true if the loop is in its canonical form and false if not.
1263 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1264 static bool
1265 loop_canon_p (struct loop *loop)
1268 if (loop->inner || !loop_outer (loop))
1270 if (dump_file)
1271 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1272 return false;
1275 if (!single_exit (loop))
1277 if (dump_file)
1279 rtx_insn *insn = BB_END (loop->header);
1281 fprintf (dump_file, "SMS loop many exits");
1282 dump_insn_location (insn);
1283 fprintf (dump_file, "\n");
1285 return false;
1288 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1290 if (dump_file)
1292 rtx_insn *insn = BB_END (loop->header);
1294 fprintf (dump_file, "SMS loop many BBs.");
1295 dump_insn_location (insn);
1296 fprintf (dump_file, "\n");
1298 return false;
1301 return true;
1304 /* If there are more than one entry for the loop,
1305 make it one by splitting the first entry edge and
1306 redirecting the others to the new BB. */
1307 static void
1308 canon_loop (struct loop *loop)
1310 edge e;
1311 edge_iterator i;
1313 /* Avoid annoying special cases of edges going to exit
1314 block. */
1315 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1316 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1317 split_edge (e);
1319 if (loop->latch == loop->header
1320 || EDGE_COUNT (loop->latch->succs) > 1)
1322 FOR_EACH_EDGE (e, i, loop->header->preds)
1323 if (e->src == loop->latch)
1324 break;
1325 split_edge (e);
1329 /* Setup infos. */
1330 static void
1331 setup_sched_infos (void)
1333 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1334 sizeof (sms_common_sched_info));
1335 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1336 common_sched_info = &sms_common_sched_info;
1338 sched_deps_info = &sms_sched_deps_info;
1339 current_sched_info = &sms_sched_info;
1342 /* Probability in % that the sms-ed loop rolls enough so that optimized
1343 version may be entered. Just a guess. */
1344 #define PROB_SMS_ENOUGH_ITERATIONS 80
1346 /* Used to calculate the upper bound of ii. */
1347 #define MAXII_FACTOR 2
1349 /* Main entry point, perform SMS scheduling on the loops of the function
1350 that consist of single basic blocks. */
1351 static void
1352 sms_schedule (void)
1354 rtx_insn *insn;
1355 ddg_ptr *g_arr, g;
1356 int * node_order;
1357 int maxii, max_asap;
1358 partial_schedule_ptr ps;
1359 basic_block bb = NULL;
1360 struct loop *loop;
1361 basic_block condition_bb = NULL;
1362 edge latch_edge;
1363 gcov_type trip_count = 0;
1365 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1366 | LOOPS_HAVE_RECORDED_EXITS);
1367 if (number_of_loops (cfun) <= 1)
1369 loop_optimizer_finalize ();
1370 return; /* There are no loops to schedule. */
1373 /* Initialize issue_rate. */
1374 if (targetm.sched.issue_rate)
1376 int temp = reload_completed;
1378 reload_completed = 1;
1379 issue_rate = targetm.sched.issue_rate ();
1380 reload_completed = temp;
1382 else
1383 issue_rate = 1;
1385 /* Initialize the scheduler. */
1386 setup_sched_infos ();
1387 haifa_sched_init ();
1389 /* Allocate memory to hold the DDG array one entry for each loop.
1390 We use loop->num as index into this array. */
1391 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1393 if (dump_file)
1395 fprintf (dump_file, "\n\nSMS analysis phase\n");
1396 fprintf (dump_file, "===================\n\n");
1399 /* Build DDGs for all the relevant loops and hold them in G_ARR
1400 indexed by the loop index. */
1401 FOR_EACH_LOOP (loop, 0)
1403 rtx_insn *head, *tail;
1404 rtx count_reg;
1406 /* For debugging. */
1407 if (dbg_cnt (sms_sched_loop) == false)
1409 if (dump_file)
1410 fprintf (dump_file, "SMS reached max limit... \n");
1412 break;
1415 if (dump_file)
1417 rtx_insn *insn = BB_END (loop->header);
1419 fprintf (dump_file, "SMS loop num: %d", loop->num);
1420 dump_insn_location (insn);
1421 fprintf (dump_file, "\n");
1424 if (! loop_canon_p (loop))
1425 continue;
1427 if (! loop_single_full_bb_p (loop))
1429 if (dump_file)
1430 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1431 continue;
1434 bb = loop->header;
1436 get_ebb_head_tail (bb, bb, &head, &tail);
1437 latch_edge = loop_latch_edge (loop);
1438 gcc_assert (single_exit (loop));
1439 if (single_exit (loop)->count)
1440 trip_count = latch_edge->count / single_exit (loop)->count;
1442 /* Perform SMS only on loops that their average count is above threshold. */
1444 if ( latch_edge->count
1445 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1447 if (dump_file)
1449 dump_insn_location (tail);
1450 fprintf (dump_file, "\nSMS single-bb-loop\n");
1451 if (profile_info && flag_branch_probabilities)
1453 fprintf (dump_file, "SMS loop-count ");
1454 fprintf (dump_file, "%"PRId64,
1455 (int64_t) bb->count);
1456 fprintf (dump_file, "\n");
1457 fprintf (dump_file, "SMS trip-count ");
1458 fprintf (dump_file, "%"PRId64,
1459 (int64_t) trip_count);
1460 fprintf (dump_file, "\n");
1461 fprintf (dump_file, "SMS profile-sum-max ");
1462 fprintf (dump_file, "%"PRId64,
1463 (int64_t) profile_info->sum_max);
1464 fprintf (dump_file, "\n");
1467 continue;
1470 /* Make sure this is a doloop. */
1471 if ( !(count_reg = doloop_register_get (head, tail)))
1473 if (dump_file)
1474 fprintf (dump_file, "SMS doloop_register_get failed\n");
1475 continue;
1478 /* Don't handle BBs with calls or barriers
1479 or !single_set with the exception of instructions that include
1480 count_reg---these instructions are part of the control part
1481 that do-loop recognizes.
1482 ??? Should handle insns defining subregs. */
1483 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1485 rtx set;
1487 if (CALL_P (insn)
1488 || BARRIER_P (insn)
1489 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1490 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1491 && !reg_mentioned_p (count_reg, insn))
1492 || (INSN_P (insn) && (set = single_set (insn))
1493 && GET_CODE (SET_DEST (set)) == SUBREG))
1494 break;
1497 if (insn != NEXT_INSN (tail))
1499 if (dump_file)
1501 if (CALL_P (insn))
1502 fprintf (dump_file, "SMS loop-with-call\n");
1503 else if (BARRIER_P (insn))
1504 fprintf (dump_file, "SMS loop-with-barrier\n");
1505 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1506 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1507 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1508 else
1509 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1510 print_rtl_single (dump_file, insn);
1513 continue;
1516 /* Always schedule the closing branch with the rest of the
1517 instructions. The branch is rotated to be in row ii-1 at the
1518 end of the scheduling procedure to make sure it's the last
1519 instruction in the iteration. */
1520 if (! (g = create_ddg (bb, 1)))
1522 if (dump_file)
1523 fprintf (dump_file, "SMS create_ddg failed\n");
1524 continue;
1527 g_arr[loop->num] = g;
1528 if (dump_file)
1529 fprintf (dump_file, "...OK\n");
1532 if (dump_file)
1534 fprintf (dump_file, "\nSMS transformation phase\n");
1535 fprintf (dump_file, "=========================\n\n");
1538 /* We don't want to perform SMS on new loops - created by versioning. */
1539 FOR_EACH_LOOP (loop, 0)
1541 rtx_insn *head, *tail;
1542 rtx count_reg, count_init;
1543 int mii, rec_mii, stage_count, min_cycle;
1544 int64_t loop_count = 0;
1545 bool opt_sc_p;
1547 if (! (g = g_arr[loop->num]))
1548 continue;
1550 if (dump_file)
1552 rtx_insn *insn = BB_END (loop->header);
1554 fprintf (dump_file, "SMS loop num: %d", loop->num);
1555 dump_insn_location (insn);
1556 fprintf (dump_file, "\n");
1558 print_ddg (dump_file, g);
1561 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1563 latch_edge = loop_latch_edge (loop);
1564 gcc_assert (single_exit (loop));
1565 if (single_exit (loop)->count)
1566 trip_count = latch_edge->count / single_exit (loop)->count;
1568 if (dump_file)
1570 dump_insn_location (tail);
1571 fprintf (dump_file, "\nSMS single-bb-loop\n");
1572 if (profile_info && flag_branch_probabilities)
1574 fprintf (dump_file, "SMS loop-count ");
1575 fprintf (dump_file, "%"PRId64,
1576 (int64_t) bb->count);
1577 fprintf (dump_file, "\n");
1578 fprintf (dump_file, "SMS profile-sum-max ");
1579 fprintf (dump_file, "%"PRId64,
1580 (int64_t) profile_info->sum_max);
1581 fprintf (dump_file, "\n");
1583 fprintf (dump_file, "SMS doloop\n");
1584 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1585 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1586 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1590 /* In case of th loop have doloop register it gets special
1591 handling. */
1592 count_init = NULL_RTX;
1593 if ((count_reg = doloop_register_get (head, tail)))
1595 basic_block pre_header;
1597 pre_header = loop_preheader_edge (loop)->src;
1598 count_init = const_iteration_count (count_reg, pre_header,
1599 &loop_count);
1601 gcc_assert (count_reg);
1603 if (dump_file && count_init)
1605 fprintf (dump_file, "SMS const-doloop ");
1606 fprintf (dump_file, "%"PRId64,
1607 loop_count);
1608 fprintf (dump_file, "\n");
1611 node_order = XNEWVEC (int, g->num_nodes);
1613 mii = 1; /* Need to pass some estimate of mii. */
1614 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1615 mii = MAX (res_MII (g), rec_mii);
1616 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1618 if (dump_file)
1619 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1620 rec_mii, mii, maxii);
1622 for (;;)
1624 set_node_sched_params (g);
1626 stage_count = 0;
1627 opt_sc_p = false;
1628 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1630 if (ps)
1632 /* Try to achieve optimized SC by normalizing the partial
1633 schedule (having the cycles start from cycle zero).
1634 The branch location must be placed in row ii-1 in the
1635 final scheduling. If failed, shift all instructions to
1636 position the branch in row ii-1. */
1637 opt_sc_p = optimize_sc (ps, g);
1638 if (opt_sc_p)
1639 stage_count = calculate_stage_count (ps, 0);
1640 else
1642 /* Bring the branch to cycle ii-1. */
1643 int amount = (SCHED_TIME (g->closing_branch->cuid)
1644 - (ps->ii - 1));
1646 if (dump_file)
1647 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1649 stage_count = calculate_stage_count (ps, amount);
1652 gcc_assert (stage_count >= 1);
1655 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1656 1 means that there is no interleaving between iterations thus
1657 we let the scheduling passes do the job in this case. */
1658 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1659 || (count_init && (loop_count <= stage_count))
1660 || (flag_branch_probabilities && (trip_count <= stage_count)))
1662 if (dump_file)
1664 fprintf (dump_file, "SMS failed... \n");
1665 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1666 " loop-count=", stage_count);
1667 fprintf (dump_file, "%"PRId64, loop_count);
1668 fprintf (dump_file, ", trip-count=");
1669 fprintf (dump_file, "%"PRId64, trip_count);
1670 fprintf (dump_file, ")\n");
1672 break;
1675 if (!opt_sc_p)
1677 /* Rotate the partial schedule to have the branch in row ii-1. */
1678 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1680 reset_sched_times (ps, amount);
1681 rotate_partial_schedule (ps, amount);
1684 set_columns_for_ps (ps);
1686 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1687 if (!schedule_reg_moves (ps))
1689 mii = ps->ii + 1;
1690 free_partial_schedule (ps);
1691 continue;
1694 /* Moves that handle incoming values might have been added
1695 to a new first stage. Bump the stage count if so.
1697 ??? Perhaps we could consider rotating the schedule here
1698 instead? */
1699 if (PS_MIN_CYCLE (ps) < min_cycle)
1701 reset_sched_times (ps, 0);
1702 stage_count++;
1705 /* The stage count should now be correct without rotation. */
1706 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1707 PS_STAGE_COUNT (ps) = stage_count;
1709 canon_loop (loop);
1711 if (dump_file)
1713 dump_insn_location (tail);
1714 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1715 ps->ii, stage_count);
1716 print_partial_schedule (ps, dump_file);
1719 /* case the BCT count is not known , Do loop-versioning */
1720 if (count_reg && ! count_init)
1722 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1723 gen_int_mode (stage_count,
1724 GET_MODE (count_reg)));
1725 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1726 * REG_BR_PROB_BASE) / 100;
1728 loop_version (loop, comp_rtx, &condition_bb,
1729 prob, prob, REG_BR_PROB_BASE - prob,
1730 true);
1733 /* Set new iteration count of loop kernel. */
1734 if (count_reg && count_init)
1735 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1736 - stage_count + 1);
1738 /* Now apply the scheduled kernel to the RTL of the loop. */
1739 permute_partial_schedule (ps, g->closing_branch->first_note);
1741 /* Mark this loop as software pipelined so the later
1742 scheduling passes don't touch it. */
1743 if (! flag_resched_modulo_sched)
1744 mark_loop_unsched (loop);
1746 /* The life-info is not valid any more. */
1747 df_set_bb_dirty (g->bb);
1749 apply_reg_moves (ps);
1750 if (dump_file)
1751 print_node_sched_params (dump_file, g->num_nodes, ps);
1752 /* Generate prolog and epilog. */
1753 generate_prolog_epilog (ps, loop, count_reg, count_init);
1754 break;
1757 free_partial_schedule (ps);
1758 node_sched_param_vec.release ();
1759 free (node_order);
1760 free_ddg (g);
1763 free (g_arr);
1765 /* Release scheduler data, needed until now because of DFA. */
1766 haifa_sched_finish ();
1767 loop_optimizer_finalize ();
1770 /* The SMS scheduling algorithm itself
1771 -----------------------------------
1772 Input: 'O' an ordered list of insns of a loop.
1773 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1775 'Q' is the empty Set
1776 'PS' is the partial schedule; it holds the currently scheduled nodes with
1777 their cycle/slot.
1778 'PSP' previously scheduled predecessors.
1779 'PSS' previously scheduled successors.
1780 't(u)' the cycle where u is scheduled.
1781 'l(u)' is the latency of u.
1782 'd(v,u)' is the dependence distance from v to u.
1783 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1784 the node ordering phase.
1785 'check_hardware_resources_conflicts(u, PS, c)'
1786 run a trace around cycle/slot through DFA model
1787 to check resource conflicts involving instruction u
1788 at cycle c given the partial schedule PS.
1789 'add_to_partial_schedule_at_time(u, PS, c)'
1790 Add the node/instruction u to the partial schedule
1791 PS at time c.
1792 'calculate_register_pressure(PS)'
1793 Given a schedule of instructions, calculate the register
1794 pressure it implies. One implementation could be the
1795 maximum number of overlapping live ranges.
1796 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1797 registers available in the hardware.
1799 1. II = MII.
1800 2. PS = empty list
1801 3. for each node u in O in pre-computed order
1802 4. if (PSP(u) != Q && PSS(u) == Q) then
1803 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1804 6. start = Early_start; end = Early_start + II - 1; step = 1
1805 11. else if (PSP(u) == Q && PSS(u) != Q) then
1806 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1807 13. start = Late_start; end = Late_start - II + 1; step = -1
1808 14. else if (PSP(u) != Q && PSS(u) != Q) then
1809 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1810 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1811 17. start = Early_start;
1812 18. end = min(Early_start + II - 1 , Late_start);
1813 19. step = 1
1814 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1815 21. start = ASAP(u); end = start + II - 1; step = 1
1816 22. endif
1818 23. success = false
1819 24. for (c = start ; c != end ; c += step)
1820 25. if check_hardware_resources_conflicts(u, PS, c) then
1821 26. add_to_partial_schedule_at_time(u, PS, c)
1822 27. success = true
1823 28. break
1824 29. endif
1825 30. endfor
1826 31. if (success == false) then
1827 32. II = II + 1
1828 33. if (II > maxII) then
1829 34. finish - failed to schedule
1830 35. endif
1831 36. goto 2.
1832 37. endif
1833 38. endfor
1834 39. if (calculate_register_pressure(PS) > maxRP) then
1835 40. goto 32.
1836 41. endif
1837 42. compute epilogue & prologue
1838 43. finish - succeeded to schedule
1840 ??? The algorithm restricts the scheduling window to II cycles.
1841 In rare cases, it may be better to allow windows of II+1 cycles.
1842 The window would then start and end on the same row, but with
1843 different "must precede" and "must follow" requirements. */
1845 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1846 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1847 set to 0 to save compile time. */
1848 #define DFA_HISTORY SMS_DFA_HISTORY
1850 /* A threshold for the number of repeated unsuccessful attempts to insert
1851 an empty row, before we flush the partial schedule and start over. */
1852 #define MAX_SPLIT_NUM 10
1853 /* Given the partial schedule PS, this function calculates and returns the
1854 cycles in which we can schedule the node with the given index I.
1855 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1856 noticed that there are several cases in which we fail to SMS the loop
1857 because the sched window of a node is empty due to tight data-deps. In
1858 such cases we want to unschedule some of the predecessors/successors
1859 until we get non-empty scheduling window. It returns -1 if the
1860 scheduling window is empty and zero otherwise. */
1862 static int
1863 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1864 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1865 int *end_p)
1867 int start, step, end;
1868 int early_start, late_start;
1869 ddg_edge_ptr e;
1870 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1871 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1872 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1873 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1874 int psp_not_empty;
1875 int pss_not_empty;
1876 int count_preds;
1877 int count_succs;
1879 /* 1. compute sched window for u (start, end, step). */
1880 bitmap_clear (psp);
1881 bitmap_clear (pss);
1882 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1883 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1885 /* We first compute a forward range (start <= end), then decide whether
1886 to reverse it. */
1887 early_start = INT_MIN;
1888 late_start = INT_MAX;
1889 start = INT_MIN;
1890 end = INT_MAX;
1891 step = 1;
1893 count_preds = 0;
1894 count_succs = 0;
1896 if (dump_file && (psp_not_empty || pss_not_empty))
1898 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1899 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1900 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1901 "start", "early start", "late start", "end", "time");
1902 fprintf (dump_file, "=========== =========== =========== ==========="
1903 " =====\n");
1905 /* Calculate early_start and limit end. Both bounds are inclusive. */
1906 if (psp_not_empty)
1907 for (e = u_node->in; e != 0; e = e->next_in)
1909 int v = e->src->cuid;
1911 if (bitmap_bit_p (sched_nodes, v))
1913 int p_st = SCHED_TIME (v);
1914 int earliest = p_st + e->latency - (e->distance * ii);
1915 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1917 if (dump_file)
1919 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1920 "", earliest, "", latest, p_st);
1921 print_ddg_edge (dump_file, e);
1922 fprintf (dump_file, "\n");
1925 early_start = MAX (early_start, earliest);
1926 end = MIN (end, latest);
1928 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1929 count_preds++;
1933 /* Calculate late_start and limit start. Both bounds are inclusive. */
1934 if (pss_not_empty)
1935 for (e = u_node->out; e != 0; e = e->next_out)
1937 int v = e->dest->cuid;
1939 if (bitmap_bit_p (sched_nodes, v))
1941 int s_st = SCHED_TIME (v);
1942 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1943 int latest = s_st - e->latency + (e->distance * ii);
1945 if (dump_file)
1947 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1948 earliest, "", latest, "", s_st);
1949 print_ddg_edge (dump_file, e);
1950 fprintf (dump_file, "\n");
1953 start = MAX (start, earliest);
1954 late_start = MIN (late_start, latest);
1956 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1957 count_succs++;
1961 if (dump_file && (psp_not_empty || pss_not_empty))
1963 fprintf (dump_file, "----------- ----------- ----------- -----------"
1964 " -----\n");
1965 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1966 start, early_start, late_start, end, "",
1967 "(max, max, min, min)");
1970 /* Get a target scheduling window no bigger than ii. */
1971 if (early_start == INT_MIN && late_start == INT_MAX)
1972 early_start = NODE_ASAP (u_node);
1973 else if (early_start == INT_MIN)
1974 early_start = late_start - (ii - 1);
1975 late_start = MIN (late_start, early_start + (ii - 1));
1977 /* Apply memory dependence limits. */
1978 start = MAX (start, early_start);
1979 end = MIN (end, late_start);
1981 if (dump_file && (psp_not_empty || pss_not_empty))
1982 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1983 "", start, end, "", "");
1985 /* If there are at least as many successors as predecessors, schedule the
1986 node close to its successors. */
1987 if (pss_not_empty && count_succs >= count_preds)
1989 int tmp = end;
1990 end = start;
1991 start = tmp;
1992 step = -1;
1995 /* Now that we've finalized the window, make END an exclusive rather
1996 than an inclusive bound. */
1997 end += step;
1999 *start_p = start;
2000 *step_p = step;
2001 *end_p = end;
2002 sbitmap_free (psp);
2003 sbitmap_free (pss);
2005 if ((start >= end && step == 1) || (start <= end && step == -1))
2007 if (dump_file)
2008 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2009 start, end, step);
2010 return -1;
2013 return 0;
2016 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2017 node currently been scheduled. At the end of the calculation
2018 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2019 U_NODE which are (1) already scheduled in the first/last row of
2020 U_NODE's scheduling window, (2) whose dependence inequality with U
2021 becomes an equality when U is scheduled in this same row, and (3)
2022 whose dependence latency is zero.
2024 The first and last rows are calculated using the following parameters:
2025 START/END rows - The cycles that begins/ends the traversal on the window;
2026 searching for an empty cycle to schedule U_NODE.
2027 STEP - The direction in which we traverse the window.
2028 II - The initiation interval. */
2030 static void
2031 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2032 int step, int ii, sbitmap sched_nodes,
2033 sbitmap must_precede, sbitmap must_follow)
2035 ddg_edge_ptr e;
2036 int first_cycle_in_window, last_cycle_in_window;
2038 gcc_assert (must_precede && must_follow);
2040 /* Consider the following scheduling window:
2041 {first_cycle_in_window, first_cycle_in_window+1, ...,
2042 last_cycle_in_window}. If step is 1 then the following will be
2043 the order we traverse the window: {start=first_cycle_in_window,
2044 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2045 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2046 end=first_cycle_in_window-1} if step is -1. */
2047 first_cycle_in_window = (step == 1) ? start : end - step;
2048 last_cycle_in_window = (step == 1) ? end - step : start;
2050 bitmap_clear (must_precede);
2051 bitmap_clear (must_follow);
2053 if (dump_file)
2054 fprintf (dump_file, "\nmust_precede: ");
2056 /* Instead of checking if:
2057 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2058 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2059 first_cycle_in_window)
2060 && e->latency == 0
2061 we use the fact that latency is non-negative:
2062 SCHED_TIME (e->src) - (e->distance * ii) <=
2063 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2064 first_cycle_in_window
2065 and check only if
2066 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2067 for (e = u_node->in; e != 0; e = e->next_in)
2068 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2069 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2070 first_cycle_in_window))
2072 if (dump_file)
2073 fprintf (dump_file, "%d ", e->src->cuid);
2075 bitmap_set_bit (must_precede, e->src->cuid);
2078 if (dump_file)
2079 fprintf (dump_file, "\nmust_follow: ");
2081 /* Instead of checking if:
2082 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2083 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2084 last_cycle_in_window)
2085 && e->latency == 0
2086 we use the fact that latency is non-negative:
2087 SCHED_TIME (e->dest) + (e->distance * ii) >=
2088 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2089 last_cycle_in_window
2090 and check only if
2091 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2092 for (e = u_node->out; e != 0; e = e->next_out)
2093 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2094 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2095 last_cycle_in_window))
2097 if (dump_file)
2098 fprintf (dump_file, "%d ", e->dest->cuid);
2100 bitmap_set_bit (must_follow, e->dest->cuid);
2103 if (dump_file)
2104 fprintf (dump_file, "\n");
2107 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2108 parameters to decide if that's possible:
2109 PS - The partial schedule.
2110 U - The serial number of U_NODE.
2111 NUM_SPLITS - The number of row splits made so far.
2112 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2113 the first row of the scheduling window)
2114 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2115 last row of the scheduling window) */
2117 static bool
2118 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2119 int u, int cycle, sbitmap sched_nodes,
2120 int *num_splits, sbitmap must_precede,
2121 sbitmap must_follow)
2123 ps_insn_ptr psi;
2124 bool success = 0;
2126 verify_partial_schedule (ps, sched_nodes);
2127 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2128 if (psi)
2130 SCHED_TIME (u) = cycle;
2131 bitmap_set_bit (sched_nodes, u);
2132 success = 1;
2133 *num_splits = 0;
2134 if (dump_file)
2135 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2139 return success;
2142 /* This function implements the scheduling algorithm for SMS according to the
2143 above algorithm. */
2144 static partial_schedule_ptr
2145 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2147 int ii = mii;
2148 int i, c, success, num_splits = 0;
2149 int flush_and_start_over = true;
2150 int num_nodes = g->num_nodes;
2151 int start, end, step; /* Place together into one struct? */
2152 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2153 sbitmap must_precede = sbitmap_alloc (num_nodes);
2154 sbitmap must_follow = sbitmap_alloc (num_nodes);
2155 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2157 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2159 bitmap_ones (tobe_scheduled);
2160 bitmap_clear (sched_nodes);
2162 while (flush_and_start_over && (ii < maxii))
2165 if (dump_file)
2166 fprintf (dump_file, "Starting with ii=%d\n", ii);
2167 flush_and_start_over = false;
2168 bitmap_clear (sched_nodes);
2170 for (i = 0; i < num_nodes; i++)
2172 int u = nodes_order[i];
2173 ddg_node_ptr u_node = &ps->g->nodes[u];
2174 rtx insn = u_node->insn;
2176 if (!NONDEBUG_INSN_P (insn))
2178 bitmap_clear_bit (tobe_scheduled, u);
2179 continue;
2182 if (bitmap_bit_p (sched_nodes, u))
2183 continue;
2185 /* Try to get non-empty scheduling window. */
2186 success = 0;
2187 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2188 &step, &end) == 0)
2190 if (dump_file)
2191 fprintf (dump_file, "\nTrying to schedule node %d "
2192 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2193 (g->nodes[u].insn)), start, end, step);
2195 gcc_assert ((step > 0 && start < end)
2196 || (step < 0 && start > end));
2198 calculate_must_precede_follow (u_node, start, end, step, ii,
2199 sched_nodes, must_precede,
2200 must_follow);
2202 for (c = start; c != end; c += step)
2204 sbitmap tmp_precede, tmp_follow;
2206 set_must_precede_follow (&tmp_follow, must_follow,
2207 &tmp_precede, must_precede,
2208 c, start, end, step);
2209 success =
2210 try_scheduling_node_in_cycle (ps, u, c,
2211 sched_nodes,
2212 &num_splits, tmp_precede,
2213 tmp_follow);
2214 if (success)
2215 break;
2218 verify_partial_schedule (ps, sched_nodes);
2220 if (!success)
2222 int split_row;
2224 if (ii++ == maxii)
2225 break;
2227 if (num_splits >= MAX_SPLIT_NUM)
2229 num_splits = 0;
2230 flush_and_start_over = true;
2231 verify_partial_schedule (ps, sched_nodes);
2232 reset_partial_schedule (ps, ii);
2233 verify_partial_schedule (ps, sched_nodes);
2234 break;
2237 num_splits++;
2238 /* The scheduling window is exclusive of 'end'
2239 whereas compute_split_window() expects an inclusive,
2240 ordered range. */
2241 if (step == 1)
2242 split_row = compute_split_row (sched_nodes, start, end - 1,
2243 ps->ii, u_node);
2244 else
2245 split_row = compute_split_row (sched_nodes, end + 1, start,
2246 ps->ii, u_node);
2248 ps_insert_empty_row (ps, split_row, sched_nodes);
2249 i--; /* Go back and retry node i. */
2251 if (dump_file)
2252 fprintf (dump_file, "num_splits=%d\n", num_splits);
2255 /* ??? If (success), check register pressure estimates. */
2256 } /* Continue with next node. */
2257 } /* While flush_and_start_over. */
2258 if (ii >= maxii)
2260 free_partial_schedule (ps);
2261 ps = NULL;
2263 else
2264 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2266 sbitmap_free (sched_nodes);
2267 sbitmap_free (must_precede);
2268 sbitmap_free (must_follow);
2269 sbitmap_free (tobe_scheduled);
2271 return ps;
2274 /* This function inserts a new empty row into PS at the position
2275 according to SPLITROW, keeping all already scheduled instructions
2276 intact and updating their SCHED_TIME and cycle accordingly. */
2277 static void
2278 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2279 sbitmap sched_nodes)
2281 ps_insn_ptr crr_insn;
2282 ps_insn_ptr *rows_new;
2283 int ii = ps->ii;
2284 int new_ii = ii + 1;
2285 int row;
2286 int *rows_length_new;
2288 verify_partial_schedule (ps, sched_nodes);
2290 /* We normalize sched_time and rotate ps to have only non-negative sched
2291 times, for simplicity of updating cycles after inserting new row. */
2292 split_row -= ps->min_cycle;
2293 split_row = SMODULO (split_row, ii);
2294 if (dump_file)
2295 fprintf (dump_file, "split_row=%d\n", split_row);
2297 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2298 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2300 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2301 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2302 for (row = 0; row < split_row; row++)
2304 rows_new[row] = ps->rows[row];
2305 rows_length_new[row] = ps->rows_length[row];
2306 ps->rows[row] = NULL;
2307 for (crr_insn = rows_new[row];
2308 crr_insn; crr_insn = crr_insn->next_in_row)
2310 int u = crr_insn->id;
2311 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2313 SCHED_TIME (u) = new_time;
2314 crr_insn->cycle = new_time;
2315 SCHED_ROW (u) = new_time % new_ii;
2316 SCHED_STAGE (u) = new_time / new_ii;
2321 rows_new[split_row] = NULL;
2323 for (row = split_row; row < ii; row++)
2325 rows_new[row + 1] = ps->rows[row];
2326 rows_length_new[row + 1] = ps->rows_length[row];
2327 ps->rows[row] = NULL;
2328 for (crr_insn = rows_new[row + 1];
2329 crr_insn; crr_insn = crr_insn->next_in_row)
2331 int u = crr_insn->id;
2332 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2334 SCHED_TIME (u) = new_time;
2335 crr_insn->cycle = new_time;
2336 SCHED_ROW (u) = new_time % new_ii;
2337 SCHED_STAGE (u) = new_time / new_ii;
2341 /* Updating ps. */
2342 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2343 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2344 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2345 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2346 free (ps->rows);
2347 ps->rows = rows_new;
2348 free (ps->rows_length);
2349 ps->rows_length = rows_length_new;
2350 ps->ii = new_ii;
2351 gcc_assert (ps->min_cycle >= 0);
2353 verify_partial_schedule (ps, sched_nodes);
2355 if (dump_file)
2356 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2357 ps->max_cycle);
2360 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2361 UP which are the boundaries of it's scheduling window; compute using
2362 SCHED_NODES and II a row in the partial schedule that can be split
2363 which will separate a critical predecessor from a critical successor
2364 thereby expanding the window, and return it. */
2365 static int
2366 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2367 ddg_node_ptr u_node)
2369 ddg_edge_ptr e;
2370 int lower = INT_MIN, upper = INT_MAX;
2371 int crit_pred = -1;
2372 int crit_succ = -1;
2373 int crit_cycle;
2375 for (e = u_node->in; e != 0; e = e->next_in)
2377 int v = e->src->cuid;
2379 if (bitmap_bit_p (sched_nodes, v)
2380 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2381 if (SCHED_TIME (v) > lower)
2383 crit_pred = v;
2384 lower = SCHED_TIME (v);
2388 if (crit_pred >= 0)
2390 crit_cycle = SCHED_TIME (crit_pred) + 1;
2391 return SMODULO (crit_cycle, ii);
2394 for (e = u_node->out; e != 0; e = e->next_out)
2396 int v = e->dest->cuid;
2398 if (bitmap_bit_p (sched_nodes, v)
2399 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2400 if (SCHED_TIME (v) < upper)
2402 crit_succ = v;
2403 upper = SCHED_TIME (v);
2407 if (crit_succ >= 0)
2409 crit_cycle = SCHED_TIME (crit_succ);
2410 return SMODULO (crit_cycle, ii);
2413 if (dump_file)
2414 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2416 return SMODULO ((low + up + 1) / 2, ii);
2419 static void
2420 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2422 int row;
2423 ps_insn_ptr crr_insn;
2425 for (row = 0; row < ps->ii; row++)
2427 int length = 0;
2429 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2431 int u = crr_insn->id;
2433 length++;
2434 gcc_assert (bitmap_bit_p (sched_nodes, u));
2435 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2436 popcount (sched_nodes) == number of insns in ps. */
2437 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2438 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2441 gcc_assert (ps->rows_length[row] == length);
2446 /* This page implements the algorithm for ordering the nodes of a DDG
2447 for modulo scheduling, activated through the
2448 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2450 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2451 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2452 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2453 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2454 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2455 #define DEPTH(x) (ASAP ((x)))
2457 typedef struct node_order_params * nopa;
2459 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2460 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2461 static nopa calculate_order_params (ddg_ptr, int, int *);
2462 static int find_max_asap (ddg_ptr, sbitmap);
2463 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2464 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2466 enum sms_direction {BOTTOMUP, TOPDOWN};
2468 struct node_order_params
2470 int asap;
2471 int alap;
2472 int height;
2475 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2476 static void
2477 check_nodes_order (int *node_order, int num_nodes)
2479 int i;
2480 sbitmap tmp = sbitmap_alloc (num_nodes);
2482 bitmap_clear (tmp);
2484 if (dump_file)
2485 fprintf (dump_file, "SMS final nodes order: \n");
2487 for (i = 0; i < num_nodes; i++)
2489 int u = node_order[i];
2491 if (dump_file)
2492 fprintf (dump_file, "%d ", u);
2493 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2495 bitmap_set_bit (tmp, u);
2498 if (dump_file)
2499 fprintf (dump_file, "\n");
2501 sbitmap_free (tmp);
2504 /* Order the nodes of G for scheduling and pass the result in
2505 NODE_ORDER. Also set aux.count of each node to ASAP.
2506 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2507 static int
2508 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2510 int i;
2511 int rec_mii = 0;
2512 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2514 nopa nops = calculate_order_params (g, mii, pmax_asap);
2516 if (dump_file)
2517 print_sccs (dump_file, sccs, g);
2519 order_nodes_of_sccs (sccs, node_order);
2521 if (sccs->num_sccs > 0)
2522 /* First SCC has the largest recurrence_length. */
2523 rec_mii = sccs->sccs[0]->recurrence_length;
2525 /* Save ASAP before destroying node_order_params. */
2526 for (i = 0; i < g->num_nodes; i++)
2528 ddg_node_ptr v = &g->nodes[i];
2529 v->aux.count = ASAP (v);
2532 free (nops);
2533 free_ddg_all_sccs (sccs);
2534 check_nodes_order (node_order, g->num_nodes);
2536 return rec_mii;
2539 static void
2540 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2542 int i, pos = 0;
2543 ddg_ptr g = all_sccs->ddg;
2544 int num_nodes = g->num_nodes;
2545 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2546 sbitmap on_path = sbitmap_alloc (num_nodes);
2547 sbitmap tmp = sbitmap_alloc (num_nodes);
2548 sbitmap ones = sbitmap_alloc (num_nodes);
2550 bitmap_clear (prev_sccs);
2551 bitmap_ones (ones);
2553 /* Perform the node ordering starting from the SCC with the highest recMII.
2554 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2555 for (i = 0; i < all_sccs->num_sccs; i++)
2557 ddg_scc_ptr scc = all_sccs->sccs[i];
2559 /* Add nodes on paths from previous SCCs to the current SCC. */
2560 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2561 bitmap_ior (tmp, scc->nodes, on_path);
2563 /* Add nodes on paths from the current SCC to previous SCCs. */
2564 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2565 bitmap_ior (tmp, tmp, on_path);
2567 /* Remove nodes of previous SCCs from current extended SCC. */
2568 bitmap_and_compl (tmp, tmp, prev_sccs);
2570 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2571 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2574 /* Handle the remaining nodes that do not belong to any scc. Each call
2575 to order_nodes_in_scc handles a single connected component. */
2576 while (pos < g->num_nodes)
2578 bitmap_and_compl (tmp, ones, prev_sccs);
2579 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2581 sbitmap_free (prev_sccs);
2582 sbitmap_free (on_path);
2583 sbitmap_free (tmp);
2584 sbitmap_free (ones);
2587 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2588 static struct node_order_params *
2589 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2591 int u;
2592 int max_asap;
2593 int num_nodes = g->num_nodes;
2594 ddg_edge_ptr e;
2595 /* Allocate a place to hold ordering params for each node in the DDG. */
2596 nopa node_order_params_arr;
2598 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2599 node_order_params_arr = (nopa) xcalloc (num_nodes,
2600 sizeof (struct node_order_params));
2602 /* Set the aux pointer of each node to point to its order_params structure. */
2603 for (u = 0; u < num_nodes; u++)
2604 g->nodes[u].aux.info = &node_order_params_arr[u];
2606 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2607 calculate ASAP, ALAP, mobility, distance, and height for each node
2608 in the dependence (direct acyclic) graph. */
2610 /* We assume that the nodes in the array are in topological order. */
2612 max_asap = 0;
2613 for (u = 0; u < num_nodes; u++)
2615 ddg_node_ptr u_node = &g->nodes[u];
2617 ASAP (u_node) = 0;
2618 for (e = u_node->in; e; e = e->next_in)
2619 if (e->distance == 0)
2620 ASAP (u_node) = MAX (ASAP (u_node),
2621 ASAP (e->src) + e->latency);
2622 max_asap = MAX (max_asap, ASAP (u_node));
2625 for (u = num_nodes - 1; u > -1; u--)
2627 ddg_node_ptr u_node = &g->nodes[u];
2629 ALAP (u_node) = max_asap;
2630 HEIGHT (u_node) = 0;
2631 for (e = u_node->out; e; e = e->next_out)
2632 if (e->distance == 0)
2634 ALAP (u_node) = MIN (ALAP (u_node),
2635 ALAP (e->dest) - e->latency);
2636 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2637 HEIGHT (e->dest) + e->latency);
2640 if (dump_file)
2642 fprintf (dump_file, "\nOrder params\n");
2643 for (u = 0; u < num_nodes; u++)
2645 ddg_node_ptr u_node = &g->nodes[u];
2647 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2648 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2652 *pmax_asap = max_asap;
2653 return node_order_params_arr;
2656 static int
2657 find_max_asap (ddg_ptr g, sbitmap nodes)
2659 unsigned int u = 0;
2660 int max_asap = -1;
2661 int result = -1;
2662 sbitmap_iterator sbi;
2664 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2666 ddg_node_ptr u_node = &g->nodes[u];
2668 if (max_asap < ASAP (u_node))
2670 max_asap = ASAP (u_node);
2671 result = u;
2674 return result;
2677 static int
2678 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2680 unsigned int u = 0;
2681 int max_hv = -1;
2682 int min_mob = INT_MAX;
2683 int result = -1;
2684 sbitmap_iterator sbi;
2686 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2688 ddg_node_ptr u_node = &g->nodes[u];
2690 if (max_hv < HEIGHT (u_node))
2692 max_hv = HEIGHT (u_node);
2693 min_mob = MOB (u_node);
2694 result = u;
2696 else if ((max_hv == HEIGHT (u_node))
2697 && (min_mob > MOB (u_node)))
2699 min_mob = MOB (u_node);
2700 result = u;
2703 return result;
2706 static int
2707 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2709 unsigned int u = 0;
2710 int max_dv = -1;
2711 int min_mob = INT_MAX;
2712 int result = -1;
2713 sbitmap_iterator sbi;
2715 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2717 ddg_node_ptr u_node = &g->nodes[u];
2719 if (max_dv < DEPTH (u_node))
2721 max_dv = DEPTH (u_node);
2722 min_mob = MOB (u_node);
2723 result = u;
2725 else if ((max_dv == DEPTH (u_node))
2726 && (min_mob > MOB (u_node)))
2728 min_mob = MOB (u_node);
2729 result = u;
2732 return result;
2735 /* Places the nodes of SCC into the NODE_ORDER array starting
2736 at position POS, according to the SMS ordering algorithm.
2737 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2738 the NODE_ORDER array, starting from position zero. */
2739 static int
2740 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2741 int * node_order, int pos)
2743 enum sms_direction dir;
2744 int num_nodes = g->num_nodes;
2745 sbitmap workset = sbitmap_alloc (num_nodes);
2746 sbitmap tmp = sbitmap_alloc (num_nodes);
2747 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2748 sbitmap predecessors = sbitmap_alloc (num_nodes);
2749 sbitmap successors = sbitmap_alloc (num_nodes);
2751 bitmap_clear (predecessors);
2752 find_predecessors (predecessors, g, nodes_ordered);
2754 bitmap_clear (successors);
2755 find_successors (successors, g, nodes_ordered);
2757 bitmap_clear (tmp);
2758 if (bitmap_and (tmp, predecessors, scc))
2760 bitmap_copy (workset, tmp);
2761 dir = BOTTOMUP;
2763 else if (bitmap_and (tmp, successors, scc))
2765 bitmap_copy (workset, tmp);
2766 dir = TOPDOWN;
2768 else
2770 int u;
2772 bitmap_clear (workset);
2773 if ((u = find_max_asap (g, scc)) >= 0)
2774 bitmap_set_bit (workset, u);
2775 dir = BOTTOMUP;
2778 bitmap_clear (zero_bitmap);
2779 while (!bitmap_equal_p (workset, zero_bitmap))
2781 int v;
2782 ddg_node_ptr v_node;
2783 sbitmap v_node_preds;
2784 sbitmap v_node_succs;
2786 if (dir == TOPDOWN)
2788 while (!bitmap_equal_p (workset, zero_bitmap))
2790 v = find_max_hv_min_mob (g, workset);
2791 v_node = &g->nodes[v];
2792 node_order[pos++] = v;
2793 v_node_succs = NODE_SUCCESSORS (v_node);
2794 bitmap_and (tmp, v_node_succs, scc);
2796 /* Don't consider the already ordered successors again. */
2797 bitmap_and_compl (tmp, tmp, nodes_ordered);
2798 bitmap_ior (workset, workset, tmp);
2799 bitmap_clear_bit (workset, v);
2800 bitmap_set_bit (nodes_ordered, v);
2802 dir = BOTTOMUP;
2803 bitmap_clear (predecessors);
2804 find_predecessors (predecessors, g, nodes_ordered);
2805 bitmap_and (workset, predecessors, scc);
2807 else
2809 while (!bitmap_equal_p (workset, zero_bitmap))
2811 v = find_max_dv_min_mob (g, workset);
2812 v_node = &g->nodes[v];
2813 node_order[pos++] = v;
2814 v_node_preds = NODE_PREDECESSORS (v_node);
2815 bitmap_and (tmp, v_node_preds, scc);
2817 /* Don't consider the already ordered predecessors again. */
2818 bitmap_and_compl (tmp, tmp, nodes_ordered);
2819 bitmap_ior (workset, workset, tmp);
2820 bitmap_clear_bit (workset, v);
2821 bitmap_set_bit (nodes_ordered, v);
2823 dir = TOPDOWN;
2824 bitmap_clear (successors);
2825 find_successors (successors, g, nodes_ordered);
2826 bitmap_and (workset, successors, scc);
2829 sbitmap_free (tmp);
2830 sbitmap_free (workset);
2831 sbitmap_free (zero_bitmap);
2832 sbitmap_free (predecessors);
2833 sbitmap_free (successors);
2834 return pos;
2838 /* This page contains functions for manipulating partial-schedules during
2839 modulo scheduling. */
2841 /* Create a partial schedule and allocate a memory to hold II rows. */
2843 static partial_schedule_ptr
2844 create_partial_schedule (int ii, ddg_ptr g, int history)
2846 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2847 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2848 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2849 ps->reg_moves.create (0);
2850 ps->ii = ii;
2851 ps->history = history;
2852 ps->min_cycle = INT_MAX;
2853 ps->max_cycle = INT_MIN;
2854 ps->g = g;
2856 return ps;
2859 /* Free the PS_INSNs in rows array of the given partial schedule.
2860 ??? Consider caching the PS_INSN's. */
2861 static void
2862 free_ps_insns (partial_schedule_ptr ps)
2864 int i;
2866 for (i = 0; i < ps->ii; i++)
2868 while (ps->rows[i])
2870 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2872 free (ps->rows[i]);
2873 ps->rows[i] = ps_insn;
2875 ps->rows[i] = NULL;
2879 /* Free all the memory allocated to the partial schedule. */
2881 static void
2882 free_partial_schedule (partial_schedule_ptr ps)
2884 ps_reg_move_info *move;
2885 unsigned int i;
2887 if (!ps)
2888 return;
2890 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2891 sbitmap_free (move->uses);
2892 ps->reg_moves.release ();
2894 free_ps_insns (ps);
2895 free (ps->rows);
2896 free (ps->rows_length);
2897 free (ps);
2900 /* Clear the rows array with its PS_INSNs, and create a new one with
2901 NEW_II rows. */
2903 static void
2904 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2906 if (!ps)
2907 return;
2908 free_ps_insns (ps);
2909 if (new_ii == ps->ii)
2910 return;
2911 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2912 * sizeof (ps_insn_ptr));
2913 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2914 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2915 memset (ps->rows_length, 0, new_ii * sizeof (int));
2916 ps->ii = new_ii;
2917 ps->min_cycle = INT_MAX;
2918 ps->max_cycle = INT_MIN;
2921 /* Prints the partial schedule as an ii rows array, for each rows
2922 print the ids of the insns in it. */
2923 void
2924 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2926 int i;
2928 for (i = 0; i < ps->ii; i++)
2930 ps_insn_ptr ps_i = ps->rows[i];
2932 fprintf (dump, "\n[ROW %d ]: ", i);
2933 while (ps_i)
2935 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2937 if (JUMP_P (insn))
2938 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2939 else
2940 fprintf (dump, "%d, ", INSN_UID (insn));
2942 ps_i = ps_i->next_in_row;
2947 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2948 static ps_insn_ptr
2949 create_ps_insn (int id, int cycle)
2951 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2953 ps_i->id = id;
2954 ps_i->next_in_row = NULL;
2955 ps_i->prev_in_row = NULL;
2956 ps_i->cycle = cycle;
2958 return ps_i;
2962 /* Removes the given PS_INSN from the partial schedule. */
2963 static void
2964 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2966 int row;
2968 gcc_assert (ps && ps_i);
2970 row = SMODULO (ps_i->cycle, ps->ii);
2971 if (! ps_i->prev_in_row)
2973 gcc_assert (ps_i == ps->rows[row]);
2974 ps->rows[row] = ps_i->next_in_row;
2975 if (ps->rows[row])
2976 ps->rows[row]->prev_in_row = NULL;
2978 else
2980 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2981 if (ps_i->next_in_row)
2982 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2985 ps->rows_length[row] -= 1;
2986 free (ps_i);
2987 return;
2990 /* Unlike what literature describes for modulo scheduling (which focuses
2991 on VLIW machines) the order of the instructions inside a cycle is
2992 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2993 where the current instruction should go relative to the already
2994 scheduled instructions in the given cycle. Go over these
2995 instructions and find the first possible column to put it in. */
2996 static bool
2997 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2998 sbitmap must_precede, sbitmap must_follow)
3000 ps_insn_ptr next_ps_i;
3001 ps_insn_ptr first_must_follow = NULL;
3002 ps_insn_ptr last_must_precede = NULL;
3003 ps_insn_ptr last_in_row = NULL;
3004 int row;
3006 if (! ps_i)
3007 return false;
3009 row = SMODULO (ps_i->cycle, ps->ii);
3011 /* Find the first must follow and the last must precede
3012 and insert the node immediately after the must precede
3013 but make sure that it there is no must follow after it. */
3014 for (next_ps_i = ps->rows[row];
3015 next_ps_i;
3016 next_ps_i = next_ps_i->next_in_row)
3018 if (must_follow
3019 && bitmap_bit_p (must_follow, next_ps_i->id)
3020 && ! first_must_follow)
3021 first_must_follow = next_ps_i;
3022 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3024 /* If we have already met a node that must follow, then
3025 there is no possible column. */
3026 if (first_must_follow)
3027 return false;
3028 else
3029 last_must_precede = next_ps_i;
3031 /* The closing branch must be the last in the row. */
3032 if (must_precede
3033 && bitmap_bit_p (must_precede, next_ps_i->id)
3034 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3035 return false;
3037 last_in_row = next_ps_i;
3040 /* The closing branch is scheduled as well. Make sure there is no
3041 dependent instruction after it as the branch should be the last
3042 instruction in the row. */
3043 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3045 if (first_must_follow)
3046 return false;
3047 if (last_in_row)
3049 /* Make the branch the last in the row. New instructions
3050 will be inserted at the beginning of the row or after the
3051 last must_precede instruction thus the branch is guaranteed
3052 to remain the last instruction in the row. */
3053 last_in_row->next_in_row = ps_i;
3054 ps_i->prev_in_row = last_in_row;
3055 ps_i->next_in_row = NULL;
3057 else
3058 ps->rows[row] = ps_i;
3059 return true;
3062 /* Now insert the node after INSERT_AFTER_PSI. */
3064 if (! last_must_precede)
3066 ps_i->next_in_row = ps->rows[row];
3067 ps_i->prev_in_row = NULL;
3068 if (ps_i->next_in_row)
3069 ps_i->next_in_row->prev_in_row = ps_i;
3070 ps->rows[row] = ps_i;
3072 else
3074 ps_i->next_in_row = last_must_precede->next_in_row;
3075 last_must_precede->next_in_row = ps_i;
3076 ps_i->prev_in_row = last_must_precede;
3077 if (ps_i->next_in_row)
3078 ps_i->next_in_row->prev_in_row = ps_i;
3081 return true;
3084 /* Advances the PS_INSN one column in its current row; returns false
3085 in failure and true in success. Bit N is set in MUST_FOLLOW if
3086 the node with cuid N must be come after the node pointed to by
3087 PS_I when scheduled in the same cycle. */
3088 static int
3089 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3090 sbitmap must_follow)
3092 ps_insn_ptr prev, next;
3093 int row;
3095 if (!ps || !ps_i)
3096 return false;
3098 row = SMODULO (ps_i->cycle, ps->ii);
3100 if (! ps_i->next_in_row)
3101 return false;
3103 /* Check if next_in_row is dependent on ps_i, both having same sched
3104 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3105 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3106 return false;
3108 /* Advance PS_I over its next_in_row in the doubly linked list. */
3109 prev = ps_i->prev_in_row;
3110 next = ps_i->next_in_row;
3112 if (ps_i == ps->rows[row])
3113 ps->rows[row] = next;
3115 ps_i->next_in_row = next->next_in_row;
3117 if (next->next_in_row)
3118 next->next_in_row->prev_in_row = ps_i;
3120 next->next_in_row = ps_i;
3121 ps_i->prev_in_row = next;
3123 next->prev_in_row = prev;
3124 if (prev)
3125 prev->next_in_row = next;
3127 return true;
3130 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3131 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3132 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3133 before/after (respectively) the node pointed to by PS_I when scheduled
3134 in the same cycle. */
3135 static ps_insn_ptr
3136 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3137 sbitmap must_precede, sbitmap must_follow)
3139 ps_insn_ptr ps_i;
3140 int row = SMODULO (cycle, ps->ii);
3142 if (ps->rows_length[row] >= issue_rate)
3143 return NULL;
3145 ps_i = create_ps_insn (id, cycle);
3147 /* Finds and inserts PS_I according to MUST_FOLLOW and
3148 MUST_PRECEDE. */
3149 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3151 free (ps_i);
3152 return NULL;
3155 ps->rows_length[row] += 1;
3156 return ps_i;
3159 /* Advance time one cycle. Assumes DFA is being used. */
3160 static void
3161 advance_one_cycle (void)
3163 if (targetm.sched.dfa_pre_cycle_insn)
3164 state_transition (curr_state,
3165 targetm.sched.dfa_pre_cycle_insn ());
3167 state_transition (curr_state, NULL);
3169 if (targetm.sched.dfa_post_cycle_insn)
3170 state_transition (curr_state,
3171 targetm.sched.dfa_post_cycle_insn ());
3176 /* Checks if PS has resource conflicts according to DFA, starting from
3177 FROM cycle to TO cycle; returns true if there are conflicts and false
3178 if there are no conflicts. Assumes DFA is being used. */
3179 static int
3180 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3182 int cycle;
3184 state_reset (curr_state);
3186 for (cycle = from; cycle <= to; cycle++)
3188 ps_insn_ptr crr_insn;
3189 /* Holds the remaining issue slots in the current row. */
3190 int can_issue_more = issue_rate;
3192 /* Walk through the DFA for the current row. */
3193 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3194 crr_insn;
3195 crr_insn = crr_insn->next_in_row)
3197 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3199 if (!NONDEBUG_INSN_P (insn))
3200 continue;
3202 /* Check if there is room for the current insn. */
3203 if (!can_issue_more || state_dead_lock_p (curr_state))
3204 return true;
3206 /* Update the DFA state and return with failure if the DFA found
3207 resource conflicts. */
3208 if (state_transition (curr_state, insn) >= 0)
3209 return true;
3211 if (targetm.sched.variable_issue)
3212 can_issue_more =
3213 targetm.sched.variable_issue (sched_dump, sched_verbose,
3214 insn, can_issue_more);
3215 /* A naked CLOBBER or USE generates no instruction, so don't
3216 let them consume issue slots. */
3217 else if (GET_CODE (PATTERN (insn)) != USE
3218 && GET_CODE (PATTERN (insn)) != CLOBBER)
3219 can_issue_more--;
3222 /* Advance the DFA to the next cycle. */
3223 advance_one_cycle ();
3225 return false;
3228 /* Checks if the given node causes resource conflicts when added to PS at
3229 cycle C. If not the node is added to PS and returned; otherwise zero
3230 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3231 cuid N must be come before/after (respectively) the node pointed to by
3232 PS_I when scheduled in the same cycle. */
3233 ps_insn_ptr
3234 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3235 int c, sbitmap must_precede,
3236 sbitmap must_follow)
3238 int has_conflicts = 0;
3239 ps_insn_ptr ps_i;
3241 /* First add the node to the PS, if this succeeds check for
3242 conflicts, trying different issue slots in the same row. */
3243 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3244 return NULL; /* Failed to insert the node at the given cycle. */
3246 has_conflicts = ps_has_conflicts (ps, c, c)
3247 || (ps->history > 0
3248 && ps_has_conflicts (ps,
3249 c - ps->history,
3250 c + ps->history));
3252 /* Try different issue slots to find one that the given node can be
3253 scheduled in without conflicts. */
3254 while (has_conflicts)
3256 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3257 break;
3258 has_conflicts = ps_has_conflicts (ps, c, c)
3259 || (ps->history > 0
3260 && ps_has_conflicts (ps,
3261 c - ps->history,
3262 c + ps->history));
3265 if (has_conflicts)
3267 remove_node_from_ps (ps, ps_i);
3268 return NULL;
3271 ps->min_cycle = MIN (ps->min_cycle, c);
3272 ps->max_cycle = MAX (ps->max_cycle, c);
3273 return ps_i;
3276 /* Calculate the stage count of the partial schedule PS. The calculation
3277 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3279 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3281 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3282 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3283 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3285 /* The calculation of stage count is done adding the number of stages
3286 before cycle zero and after cycle zero. */
3287 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3289 return stage_count;
3292 /* Rotate the rows of PS such that insns scheduled at time
3293 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3294 void
3295 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3297 int i, row, backward_rotates;
3298 int last_row = ps->ii - 1;
3300 if (start_cycle == 0)
3301 return;
3303 backward_rotates = SMODULO (start_cycle, ps->ii);
3305 /* Revisit later and optimize this into a single loop. */
3306 for (i = 0; i < backward_rotates; i++)
3308 ps_insn_ptr first_row = ps->rows[0];
3309 int first_row_length = ps->rows_length[0];
3311 for (row = 0; row < last_row; row++)
3313 ps->rows[row] = ps->rows[row + 1];
3314 ps->rows_length[row] = ps->rows_length[row + 1];
3317 ps->rows[last_row] = first_row;
3318 ps->rows_length[last_row] = first_row_length;
3321 ps->max_cycle -= start_cycle;
3322 ps->min_cycle -= start_cycle;
3325 #endif /* INSN_SCHEDULING */
3327 /* Run instruction scheduler. */
3328 /* Perform SMS module scheduling. */
3330 namespace {
3332 const pass_data pass_data_sms =
3334 RTL_PASS, /* type */
3335 "sms", /* name */
3336 OPTGROUP_NONE, /* optinfo_flags */
3337 TV_SMS, /* tv_id */
3338 0, /* properties_required */
3339 0, /* properties_provided */
3340 0, /* properties_destroyed */
3341 0, /* todo_flags_start */
3342 TODO_df_finish, /* todo_flags_finish */
3345 class pass_sms : public rtl_opt_pass
3347 public:
3348 pass_sms (gcc::context *ctxt)
3349 : rtl_opt_pass (pass_data_sms, ctxt)
3352 /* opt_pass methods: */
3353 virtual bool gate (function *)
3355 return (optimize > 0 && flag_modulo_sched);
3358 virtual unsigned int execute (function *);
3360 }; // class pass_sms
3362 unsigned int
3363 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3365 #ifdef INSN_SCHEDULING
3366 basic_block bb;
3368 /* Collect loop information to be used in SMS. */
3369 cfg_layout_initialize (0);
3370 sms_schedule ();
3372 /* Update the life information, because we add pseudos. */
3373 max_regno = max_reg_num ();
3375 /* Finalize layout changes. */
3376 FOR_EACH_BB_FN (bb, fun)
3377 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3378 bb->aux = bb->next_bb;
3379 free_dominance_info (CDI_DOMINATORS);
3380 cfg_layout_finalize ();
3381 #endif /* INSN_SCHEDULING */
3382 return 0;
3385 } // anon namespace
3387 rtl_opt_pass *
3388 make_pass_sms (gcc::context *ctxt)
3390 return new pass_sms (ctxt);