* cse.c (cse_insn): Fix loop to stop at VOIDmode.
[official-gcc.git] / gcc / cp / search.c
blob4f36e643268aee9f04c5ef22fd008fe44ff0db71
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6 Contributed by Michael Tiemann (tiemann@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "target.h"
39 static int is_subobject_of_p (tree, tree);
40 static tree dfs_lookup_base (tree, void *);
41 static tree dfs_dcast_hint_pre (tree, void *);
42 static tree dfs_dcast_hint_post (tree, void *);
43 static tree dfs_debug_mark (tree, void *);
44 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
45 tree (*post_fn) (tree, void *), void *data);
46 static void dfs_unmark_r (tree);
47 static int check_hidden_convs (tree, int, int, tree, tree, tree);
48 static tree split_conversions (tree, tree, tree, tree);
49 static int lookup_conversions_r (tree, int, int,
50 tree, tree, tree, tree, tree *, tree *);
51 static int look_for_overrides_r (tree, tree);
52 static tree lookup_field_r (tree, void *);
53 static tree dfs_accessible_post (tree, void *);
54 static tree dfs_walk_once_accessible_r (tree, bool, bool,
55 tree (*pre_fn) (tree, void *),
56 tree (*post_fn) (tree, void *),
57 void *data);
58 static tree dfs_walk_once_accessible (tree, bool,
59 tree (*pre_fn) (tree, void *),
60 tree (*post_fn) (tree, void *),
61 void *data);
62 static tree dfs_access_in_type (tree, void *);
63 static access_kind access_in_type (tree, tree);
64 static int protected_accessible_p (tree, tree, tree);
65 static int friend_accessible_p (tree, tree, tree);
66 static int template_self_reference_p (tree, tree);
67 static tree dfs_get_pure_virtuals (tree, void *);
70 /* Variables for gathering statistics. */
71 #ifdef GATHER_STATISTICS
72 static int n_fields_searched;
73 static int n_calls_lookup_field, n_calls_lookup_field_1;
74 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
75 static int n_calls_get_base_type;
76 static int n_outer_fields_searched;
77 static int n_contexts_saved;
78 #endif /* GATHER_STATISTICS */
81 /* Data for lookup_base and its workers. */
83 struct lookup_base_data_s
85 tree t; /* type being searched. */
86 tree base; /* The base type we're looking for. */
87 tree binfo; /* Found binfo. */
88 bool via_virtual; /* Found via a virtual path. */
89 bool ambiguous; /* Found multiply ambiguous */
90 bool repeated_base; /* Whether there are repeated bases in the
91 hierarchy. */
92 bool want_any; /* Whether we want any matching binfo. */
95 /* Worker function for lookup_base. See if we've found the desired
96 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
98 static tree
99 dfs_lookup_base (tree binfo, void *data_)
101 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
103 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
105 if (!data->binfo)
107 data->binfo = binfo;
108 data->via_virtual
109 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
111 if (!data->repeated_base)
112 /* If there are no repeated bases, we can stop now. */
113 return binfo;
115 if (data->want_any && !data->via_virtual)
116 /* If this is a non-virtual base, then we can't do
117 better. */
118 return binfo;
120 return dfs_skip_bases;
122 else
124 gcc_assert (binfo != data->binfo);
126 /* We've found more than one matching binfo. */
127 if (!data->want_any)
129 /* This is immediately ambiguous. */
130 data->binfo = NULL_TREE;
131 data->ambiguous = true;
132 return error_mark_node;
135 /* Prefer one via a non-virtual path. */
136 if (!binfo_via_virtual (binfo, data->t))
138 data->binfo = binfo;
139 data->via_virtual = false;
140 return binfo;
143 /* There must be repeated bases, otherwise we'd have stopped
144 on the first base we found. */
145 return dfs_skip_bases;
149 return NULL_TREE;
152 /* Returns true if type BASE is accessible in T. (BASE is known to be
153 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
154 true, consider any special access of the current scope, or access
155 bestowed by friendship. */
157 bool
158 accessible_base_p (tree t, tree base, bool consider_local_p)
160 tree decl;
162 /* [class.access.base]
164 A base class is said to be accessible if an invented public
165 member of the base class is accessible.
167 If BASE is a non-proper base, this condition is trivially
168 true. */
169 if (same_type_p (t, base))
170 return true;
171 /* Rather than inventing a public member, we use the implicit
172 public typedef created in the scope of every class. */
173 decl = TYPE_FIELDS (base);
174 while (!DECL_SELF_REFERENCE_P (decl))
175 decl = TREE_CHAIN (decl);
176 while (ANON_AGGR_TYPE_P (t))
177 t = TYPE_CONTEXT (t);
178 return accessible_p (t, decl, consider_local_p);
181 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
182 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
183 non-NULL, fill with information about what kind of base we
184 discovered.
186 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
187 not set in ACCESS, then an error is issued and error_mark_node is
188 returned. If the ba_quiet bit is set, then no error is issued and
189 NULL_TREE is returned. */
191 tree
192 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
194 tree binfo;
195 tree t_binfo;
196 base_kind bk;
198 if (t == error_mark_node || base == error_mark_node)
200 if (kind_ptr)
201 *kind_ptr = bk_not_base;
202 return error_mark_node;
204 gcc_assert (TYPE_P (base));
206 if (!TYPE_P (t))
208 t_binfo = t;
209 t = BINFO_TYPE (t);
211 else
213 t = complete_type (TYPE_MAIN_VARIANT (t));
214 t_binfo = TYPE_BINFO (t);
217 base = complete_type (TYPE_MAIN_VARIANT (base));
219 if (t_binfo)
221 struct lookup_base_data_s data;
223 data.t = t;
224 data.base = base;
225 data.binfo = NULL_TREE;
226 data.ambiguous = data.via_virtual = false;
227 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
228 data.want_any = access == ba_any;
230 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
231 binfo = data.binfo;
233 if (!binfo)
234 bk = data.ambiguous ? bk_ambig : bk_not_base;
235 else if (binfo == t_binfo)
236 bk = bk_same_type;
237 else if (data.via_virtual)
238 bk = bk_via_virtual;
239 else
240 bk = bk_proper_base;
242 else
244 binfo = NULL_TREE;
245 bk = bk_not_base;
248 /* Check that the base is unambiguous and accessible. */
249 if (access != ba_any)
250 switch (bk)
252 case bk_not_base:
253 break;
255 case bk_ambig:
256 if (!(access & ba_quiet))
258 error ("%qT is an ambiguous base of %qT", base, t);
259 binfo = error_mark_node;
261 break;
263 default:
264 if ((access & ba_check_bit)
265 /* If BASE is incomplete, then BASE and TYPE are probably
266 the same, in which case BASE is accessible. If they
267 are not the same, then TYPE is invalid. In that case,
268 there's no need to issue another error here, and
269 there's no implicit typedef to use in the code that
270 follows, so we skip the check. */
271 && COMPLETE_TYPE_P (base)
272 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
274 if (!(access & ba_quiet))
276 error ("%qT is an inaccessible base of %qT", base, t);
277 binfo = error_mark_node;
279 else
280 binfo = NULL_TREE;
281 bk = bk_inaccessible;
283 break;
286 if (kind_ptr)
287 *kind_ptr = bk;
289 return binfo;
292 /* Data for dcast_base_hint walker. */
294 struct dcast_data_s
296 tree subtype; /* The base type we're looking for. */
297 int virt_depth; /* Number of virtual bases encountered from most
298 derived. */
299 tree offset; /* Best hint offset discovered so far. */
300 bool repeated_base; /* Whether there are repeated bases in the
301 hierarchy. */
304 /* Worker for dcast_base_hint. Search for the base type being cast
305 from. */
307 static tree
308 dfs_dcast_hint_pre (tree binfo, void *data_)
310 struct dcast_data_s *data = (struct dcast_data_s *) data_;
312 if (BINFO_VIRTUAL_P (binfo))
313 data->virt_depth++;
315 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
317 if (data->virt_depth)
319 data->offset = ssize_int (-1);
320 return data->offset;
322 if (data->offset)
323 data->offset = ssize_int (-3);
324 else
325 data->offset = BINFO_OFFSET (binfo);
327 return data->repeated_base ? dfs_skip_bases : data->offset;
330 return NULL_TREE;
333 /* Worker for dcast_base_hint. Track the virtual depth. */
335 static tree
336 dfs_dcast_hint_post (tree binfo, void *data_)
338 struct dcast_data_s *data = (struct dcast_data_s *) data_;
340 if (BINFO_VIRTUAL_P (binfo))
341 data->virt_depth--;
343 return NULL_TREE;
346 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
347 started from is related to the required TARGET type, in order to optimize
348 the inheritance graph search. This information is independent of the
349 current context, and ignores private paths, hence get_base_distance is
350 inappropriate. Return a TREE specifying the base offset, BOFF.
351 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
352 and there are no public virtual SUBTYPE bases.
353 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
354 BOFF == -2, SUBTYPE is not a public base.
355 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
357 tree
358 dcast_base_hint (tree subtype, tree target)
360 struct dcast_data_s data;
362 data.subtype = subtype;
363 data.virt_depth = 0;
364 data.offset = NULL_TREE;
365 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
367 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
368 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
369 return data.offset ? data.offset : ssize_int (-2);
372 /* Search for a member with name NAME in a multiple inheritance
373 lattice specified by TYPE. If it does not exist, return NULL_TREE.
374 If the member is ambiguously referenced, return `error_mark_node'.
375 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
376 true, type declarations are preferred. */
378 /* Do a 1-level search for NAME as a member of TYPE. The caller must
379 figure out whether it can access this field. (Since it is only one
380 level, this is reasonable.) */
382 tree
383 lookup_field_1 (tree type, tree name, bool want_type)
385 tree field;
387 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
388 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
389 || TREE_CODE (type) == TYPENAME_TYPE)
390 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
391 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
392 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
393 the code often worked even when we treated the index as a list
394 of fields!)
395 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
396 return NULL_TREE;
398 if (TYPE_NAME (type)
399 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
400 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
402 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
403 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
404 int i;
406 while (lo < hi)
408 i = (lo + hi) / 2;
410 #ifdef GATHER_STATISTICS
411 n_fields_searched++;
412 #endif /* GATHER_STATISTICS */
414 if (DECL_NAME (fields[i]) > name)
415 hi = i;
416 else if (DECL_NAME (fields[i]) < name)
417 lo = i + 1;
418 else
420 field = NULL_TREE;
422 /* We might have a nested class and a field with the
423 same name; we sorted them appropriately via
424 field_decl_cmp, so just look for the first or last
425 field with this name. */
426 if (want_type)
429 field = fields[i--];
430 while (i >= lo && DECL_NAME (fields[i]) == name);
431 if (TREE_CODE (field) != TYPE_DECL
432 && !DECL_CLASS_TEMPLATE_P (field))
433 field = NULL_TREE;
435 else
438 field = fields[i++];
439 while (i < hi && DECL_NAME (fields[i]) == name);
441 return field;
444 return NULL_TREE;
447 field = TYPE_FIELDS (type);
449 #ifdef GATHER_STATISTICS
450 n_calls_lookup_field_1++;
451 #endif /* GATHER_STATISTICS */
452 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
454 #ifdef GATHER_STATISTICS
455 n_fields_searched++;
456 #endif /* GATHER_STATISTICS */
457 gcc_assert (DECL_P (field));
458 if (DECL_NAME (field) == NULL_TREE
459 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
461 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
462 if (temp)
463 return temp;
465 if (TREE_CODE (field) == USING_DECL)
467 /* We generally treat class-scope using-declarations as
468 ARM-style access specifications, because support for the
469 ISO semantics has not been implemented. So, in general,
470 there's no reason to return a USING_DECL, and the rest of
471 the compiler cannot handle that. Once the class is
472 defined, USING_DECLs are purged from TYPE_FIELDS; see
473 handle_using_decl. However, we make special efforts to
474 make using-declarations in class templates and class
475 template partial specializations work correctly. */
476 if (!DECL_DEPENDENT_P (field))
477 continue;
480 if (DECL_NAME (field) == name
481 && (!want_type
482 || TREE_CODE (field) == TYPE_DECL
483 || DECL_CLASS_TEMPLATE_P (field)))
484 return field;
486 /* Not found. */
487 if (name == vptr_identifier)
489 /* Give the user what s/he thinks s/he wants. */
490 if (TYPE_POLYMORPHIC_P (type))
491 return TYPE_VFIELD (type);
493 return NULL_TREE;
496 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
497 NAMESPACE_DECL corresponding to the innermost non-block scope. */
499 tree
500 current_scope (void)
502 /* There are a number of cases we need to be aware of here:
503 current_class_type current_function_decl
504 global NULL NULL
505 fn-local NULL SET
506 class-local SET NULL
507 class->fn SET SET
508 fn->class SET SET
510 Those last two make life interesting. If we're in a function which is
511 itself inside a class, we need decls to go into the fn's decls (our
512 second case below). But if we're in a class and the class itself is
513 inside a function, we need decls to go into the decls for the class. To
514 achieve this last goal, we must see if, when both current_class_ptr and
515 current_function_decl are set, the class was declared inside that
516 function. If so, we know to put the decls into the class's scope. */
517 if (current_function_decl && current_class_type
518 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
519 && same_type_p (DECL_CONTEXT (current_function_decl),
520 current_class_type))
521 || (DECL_FRIEND_CONTEXT (current_function_decl)
522 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
523 current_class_type))))
524 return current_function_decl;
525 if (current_class_type)
526 return current_class_type;
527 if (current_function_decl)
528 return current_function_decl;
529 return current_namespace;
532 /* Returns nonzero if we are currently in a function scope. Note
533 that this function returns zero if we are within a local class, but
534 not within a member function body of the local class. */
537 at_function_scope_p (void)
539 tree cs = current_scope ();
540 return cs && TREE_CODE (cs) == FUNCTION_DECL;
543 /* Returns true if the innermost active scope is a class scope. */
545 bool
546 at_class_scope_p (void)
548 tree cs = current_scope ();
549 return cs && TYPE_P (cs);
552 /* Returns true if the innermost active scope is a namespace scope. */
554 bool
555 at_namespace_scope_p (void)
557 tree cs = current_scope ();
558 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
561 /* Return the scope of DECL, as appropriate when doing name-lookup. */
563 tree
564 context_for_name_lookup (tree decl)
566 /* [class.union]
568 For the purposes of name lookup, after the anonymous union
569 definition, the members of the anonymous union are considered to
570 have been defined in the scope in which the anonymous union is
571 declared. */
572 tree context = DECL_CONTEXT (decl);
574 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
575 context = TYPE_CONTEXT (context);
576 if (!context)
577 context = global_namespace;
579 return context;
582 /* The accessibility routines use BINFO_ACCESS for scratch space
583 during the computation of the accessibility of some declaration. */
585 #define BINFO_ACCESS(NODE) \
586 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
588 /* Set the access associated with NODE to ACCESS. */
590 #define SET_BINFO_ACCESS(NODE, ACCESS) \
591 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
592 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
594 /* Called from access_in_type via dfs_walk. Calculate the access to
595 DATA (which is really a DECL) in BINFO. */
597 static tree
598 dfs_access_in_type (tree binfo, void *data)
600 tree decl = (tree) data;
601 tree type = BINFO_TYPE (binfo);
602 access_kind access = ak_none;
604 if (context_for_name_lookup (decl) == type)
606 /* If we have descended to the scope of DECL, just note the
607 appropriate access. */
608 if (TREE_PRIVATE (decl))
609 access = ak_private;
610 else if (TREE_PROTECTED (decl))
611 access = ak_protected;
612 else
613 access = ak_public;
615 else
617 /* First, check for an access-declaration that gives us more
618 access to the DECL. The CONST_DECL for an enumeration
619 constant will not have DECL_LANG_SPECIFIC, and thus no
620 DECL_ACCESS. */
621 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
623 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
625 if (decl_access)
627 decl_access = TREE_VALUE (decl_access);
629 if (decl_access == access_public_node)
630 access = ak_public;
631 else if (decl_access == access_protected_node)
632 access = ak_protected;
633 else if (decl_access == access_private_node)
634 access = ak_private;
635 else
636 gcc_unreachable ();
640 if (!access)
642 int i;
643 tree base_binfo;
644 VEC(tree,gc) *accesses;
646 /* Otherwise, scan our baseclasses, and pick the most favorable
647 access. */
648 accesses = BINFO_BASE_ACCESSES (binfo);
649 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
651 tree base_access = VEC_index (tree, accesses, i);
652 access_kind base_access_now = BINFO_ACCESS (base_binfo);
654 if (base_access_now == ak_none || base_access_now == ak_private)
655 /* If it was not accessible in the base, or only
656 accessible as a private member, we can't access it
657 all. */
658 base_access_now = ak_none;
659 else if (base_access == access_protected_node)
660 /* Public and protected members in the base become
661 protected here. */
662 base_access_now = ak_protected;
663 else if (base_access == access_private_node)
664 /* Public and protected members in the base become
665 private here. */
666 base_access_now = ak_private;
668 /* See if the new access, via this base, gives more
669 access than our previous best access. */
670 if (base_access_now != ak_none
671 && (access == ak_none || base_access_now < access))
673 access = base_access_now;
675 /* If the new access is public, we can't do better. */
676 if (access == ak_public)
677 break;
683 /* Note the access to DECL in TYPE. */
684 SET_BINFO_ACCESS (binfo, access);
686 return NULL_TREE;
689 /* Return the access to DECL in TYPE. */
691 static access_kind
692 access_in_type (tree type, tree decl)
694 tree binfo = TYPE_BINFO (type);
696 /* We must take into account
698 [class.paths]
700 If a name can be reached by several paths through a multiple
701 inheritance graph, the access is that of the path that gives
702 most access.
704 The algorithm we use is to make a post-order depth-first traversal
705 of the base-class hierarchy. As we come up the tree, we annotate
706 each node with the most lenient access. */
707 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
709 return BINFO_ACCESS (binfo);
712 /* Returns nonzero if it is OK to access DECL through an object
713 indicated by BINFO in the context of DERIVED. */
715 static int
716 protected_accessible_p (tree decl, tree derived, tree binfo)
718 access_kind access;
720 /* We're checking this clause from [class.access.base]
722 m as a member of N is protected, and the reference occurs in a
723 member or friend of class N, or in a member or friend of a
724 class P derived from N, where m as a member of P is public, private
725 or protected.
727 Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
729 /* If DERIVED isn't derived from N, then it can't be a P. */
730 if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
731 return 0;
733 access = access_in_type (derived, decl);
735 /* If m is inaccessible in DERIVED, then it's not a P. */
736 if (access == ak_none)
737 return 0;
739 /* [class.protected]
741 When a friend or a member function of a derived class references
742 a protected nonstatic member of a base class, an access check
743 applies in addition to those described earlier in clause
744 _class.access_) Except when forming a pointer to member
745 (_expr.unary.op_), the access must be through a pointer to,
746 reference to, or object of the derived class itself (or any class
747 derived from that class) (_expr.ref_). If the access is to form
748 a pointer to member, the nested-name-specifier shall name the
749 derived class (or any class derived from that class). */
750 if (DECL_NONSTATIC_MEMBER_P (decl))
752 /* We can tell through what the reference is occurring by
753 chasing BINFO up to the root. */
754 tree t = binfo;
755 while (BINFO_INHERITANCE_CHAIN (t))
756 t = BINFO_INHERITANCE_CHAIN (t);
758 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
759 return 0;
762 return 1;
765 /* Returns nonzero if SCOPE is a friend of a type which would be able
766 to access DECL through the object indicated by BINFO. */
768 static int
769 friend_accessible_p (tree scope, tree decl, tree binfo)
771 tree befriending_classes;
772 tree t;
774 if (!scope)
775 return 0;
777 if (TREE_CODE (scope) == FUNCTION_DECL
778 || DECL_FUNCTION_TEMPLATE_P (scope))
779 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
780 else if (TYPE_P (scope))
781 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
782 else
783 return 0;
785 for (t = befriending_classes; t; t = TREE_CHAIN (t))
786 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
787 return 1;
789 /* Nested classes have the same access as their enclosing types, as
790 per DR 45 (this is a change from the standard). */
791 if (TYPE_P (scope))
792 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
793 if (protected_accessible_p (decl, t, binfo))
794 return 1;
796 if (TREE_CODE (scope) == FUNCTION_DECL
797 || DECL_FUNCTION_TEMPLATE_P (scope))
799 /* Perhaps this SCOPE is a member of a class which is a
800 friend. */
801 if (DECL_CLASS_SCOPE_P (scope)
802 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
803 return 1;
805 /* Or an instantiation of something which is a friend. */
806 if (DECL_TEMPLATE_INFO (scope))
808 int ret;
809 /* Increment processing_template_decl to make sure that
810 dependent_type_p works correctly. */
811 ++processing_template_decl;
812 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
813 --processing_template_decl;
814 return ret;
818 return 0;
821 /* Called via dfs_walk_once_accessible from accessible_p */
823 static tree
824 dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
826 if (BINFO_ACCESS (binfo) != ak_none)
828 tree scope = current_scope ();
829 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
830 && is_friend (BINFO_TYPE (binfo), scope))
831 return binfo;
834 return NULL_TREE;
837 /* DECL is a declaration from a base class of TYPE, which was the
838 class used to name DECL. Return nonzero if, in the current
839 context, DECL is accessible. If TYPE is actually a BINFO node,
840 then we can tell in what context the access is occurring by looking
841 at the most derived class along the path indicated by BINFO. If
842 CONSIDER_LOCAL is true, do consider special access the current
843 scope or friendship thereof we might have. */
846 accessible_p (tree type, tree decl, bool consider_local_p)
848 tree binfo;
849 tree scope;
850 access_kind access;
852 /* Nonzero if it's OK to access DECL if it has protected
853 accessibility in TYPE. */
854 int protected_ok = 0;
856 /* If this declaration is in a block or namespace scope, there's no
857 access control. */
858 if (!TYPE_P (context_for_name_lookup (decl)))
859 return 1;
861 /* There is no need to perform access checks inside a thunk. */
862 scope = current_scope ();
863 if (scope && DECL_THUNK_P (scope))
864 return 1;
866 /* In a template declaration, we cannot be sure whether the
867 particular specialization that is instantiated will be a friend
868 or not. Therefore, all access checks are deferred until
869 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
870 parameter list for a template (because we may see dependent types
871 in default arguments for template parameters), and access
872 checking should be performed in the outermost parameter list. */
873 if (processing_template_decl
874 && (!processing_template_parmlist || processing_template_decl > 1))
875 return 1;
877 if (!TYPE_P (type))
879 binfo = type;
880 type = BINFO_TYPE (type);
882 else
883 binfo = TYPE_BINFO (type);
885 /* [class.access.base]
887 A member m is accessible when named in class N if
889 --m as a member of N is public, or
891 --m as a member of N is private, and the reference occurs in a
892 member or friend of class N, or
894 --m as a member of N is protected, and the reference occurs in a
895 member or friend of class N, or in a member or friend of a
896 class P derived from N, where m as a member of P is private or
897 protected, or
899 --there exists a base class B of N that is accessible at the point
900 of reference, and m is accessible when named in class B.
902 We walk the base class hierarchy, checking these conditions. */
904 if (consider_local_p)
906 /* Figure out where the reference is occurring. Check to see if
907 DECL is private or protected in this scope, since that will
908 determine whether protected access is allowed. */
909 if (current_class_type)
910 protected_ok = protected_accessible_p (decl,
911 current_class_type, binfo);
913 /* Now, loop through the classes of which we are a friend. */
914 if (!protected_ok)
915 protected_ok = friend_accessible_p (scope, decl, binfo);
918 /* Standardize the binfo that access_in_type will use. We don't
919 need to know what path was chosen from this point onwards. */
920 binfo = TYPE_BINFO (type);
922 /* Compute the accessibility of DECL in the class hierarchy
923 dominated by type. */
924 access = access_in_type (type, decl);
925 if (access == ak_public
926 || (access == ak_protected && protected_ok))
927 return 1;
929 if (!consider_local_p)
930 return 0;
932 /* Walk the hierarchy again, looking for a base class that allows
933 access. */
934 return dfs_walk_once_accessible (binfo, /*friends=*/true,
935 NULL, dfs_accessible_post, NULL)
936 != NULL_TREE;
939 struct lookup_field_info {
940 /* The type in which we're looking. */
941 tree type;
942 /* The name of the field for which we're looking. */
943 tree name;
944 /* If non-NULL, the current result of the lookup. */
945 tree rval;
946 /* The path to RVAL. */
947 tree rval_binfo;
948 /* If non-NULL, the lookup was ambiguous, and this is a list of the
949 candidates. */
950 tree ambiguous;
951 /* If nonzero, we are looking for types, not data members. */
952 int want_type;
953 /* If something went wrong, a message indicating what. */
954 const char *errstr;
957 /* Within the scope of a template class, you can refer to the to the
958 current specialization with the name of the template itself. For
959 example:
961 template <typename T> struct S { S* sp; }
963 Returns nonzero if DECL is such a declaration in a class TYPE. */
965 static int
966 template_self_reference_p (tree type, tree decl)
968 return (CLASSTYPE_USE_TEMPLATE (type)
969 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
970 && TREE_CODE (decl) == TYPE_DECL
971 && DECL_ARTIFICIAL (decl)
972 && DECL_NAME (decl) == constructor_name (type));
975 /* Nonzero for a class member means that it is shared between all objects
976 of that class.
978 [class.member.lookup]:If the resulting set of declarations are not all
979 from sub-objects of the same type, or the set has a nonstatic member
980 and includes members from distinct sub-objects, there is an ambiguity
981 and the program is ill-formed.
983 This function checks that T contains no nonstatic members. */
986 shared_member_p (tree t)
988 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
989 || TREE_CODE (t) == CONST_DECL)
990 return 1;
991 if (is_overloaded_fn (t))
993 for (; t; t = OVL_NEXT (t))
995 tree fn = OVL_CURRENT (t);
996 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
997 return 0;
999 return 1;
1001 return 0;
1004 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1005 found as a base class and sub-object of the object denoted by
1006 BINFO. */
1008 static int
1009 is_subobject_of_p (tree parent, tree binfo)
1011 tree probe;
1013 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1015 if (probe == binfo)
1016 return 1;
1017 if (BINFO_VIRTUAL_P (probe))
1018 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1019 != NULL_TREE);
1021 return 0;
1024 /* DATA is really a struct lookup_field_info. Look for a field with
1025 the name indicated there in BINFO. If this function returns a
1026 non-NULL value it is the result of the lookup. Called from
1027 lookup_field via breadth_first_search. */
1029 static tree
1030 lookup_field_r (tree binfo, void *data)
1032 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1033 tree type = BINFO_TYPE (binfo);
1034 tree nval = NULL_TREE;
1036 /* If this is a dependent base, don't look in it. */
1037 if (BINFO_DEPENDENT_BASE_P (binfo))
1038 return NULL_TREE;
1040 /* If this base class is hidden by the best-known value so far, we
1041 don't need to look. */
1042 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1043 && !BINFO_VIRTUAL_P (binfo))
1044 return dfs_skip_bases;
1046 /* First, look for a function. There can't be a function and a data
1047 member with the same name, and if there's a function and a type
1048 with the same name, the type is hidden by the function. */
1049 if (!lfi->want_type)
1051 int idx = lookup_fnfields_1 (type, lfi->name);
1052 if (idx >= 0)
1053 nval = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), idx);
1056 if (!nval)
1057 /* Look for a data member or type. */
1058 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1060 /* If there is no declaration with the indicated name in this type,
1061 then there's nothing to do. */
1062 if (!nval)
1063 goto done;
1065 /* If we're looking up a type (as with an elaborated type specifier)
1066 we ignore all non-types we find. */
1067 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1068 && !DECL_CLASS_TEMPLATE_P (nval))
1070 if (lfi->name == TYPE_IDENTIFIER (type))
1072 /* If the aggregate has no user defined constructors, we allow
1073 it to have fields with the same name as the enclosing type.
1074 If we are looking for that name, find the corresponding
1075 TYPE_DECL. */
1076 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1077 if (DECL_NAME (nval) == lfi->name
1078 && TREE_CODE (nval) == TYPE_DECL)
1079 break;
1081 else
1082 nval = NULL_TREE;
1083 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1085 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1086 lfi->name);
1087 if (e != NULL)
1088 nval = TYPE_MAIN_DECL (e->type);
1089 else
1090 goto done;
1094 /* You must name a template base class with a template-id. */
1095 if (!same_type_p (type, lfi->type)
1096 && template_self_reference_p (type, nval))
1097 goto done;
1099 /* If the lookup already found a match, and the new value doesn't
1100 hide the old one, we might have an ambiguity. */
1101 if (lfi->rval_binfo
1102 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1105 if (nval == lfi->rval && shared_member_p (nval))
1106 /* The two things are really the same. */
1108 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1109 /* The previous value hides the new one. */
1111 else
1113 /* We have a real ambiguity. We keep a chain of all the
1114 candidates. */
1115 if (!lfi->ambiguous && lfi->rval)
1117 /* This is the first time we noticed an ambiguity. Add
1118 what we previously thought was a reasonable candidate
1119 to the list. */
1120 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1121 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1124 /* Add the new value. */
1125 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1126 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1127 lfi->errstr = "request for member %qD is ambiguous";
1130 else
1132 lfi->rval = nval;
1133 lfi->rval_binfo = binfo;
1136 done:
1137 /* Don't look for constructors or destructors in base classes. */
1138 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1139 return dfs_skip_bases;
1140 return NULL_TREE;
1143 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1144 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1145 FUNCTIONS, and OPTYPE respectively. */
1147 tree
1148 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1150 tree baselink;
1152 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1153 || TREE_CODE (functions) == TEMPLATE_DECL
1154 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1155 || TREE_CODE (functions) == OVERLOAD);
1156 gcc_assert (!optype || TYPE_P (optype));
1157 gcc_assert (TREE_TYPE (functions));
1159 baselink = make_node (BASELINK);
1160 TREE_TYPE (baselink) = TREE_TYPE (functions);
1161 BASELINK_BINFO (baselink) = binfo;
1162 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1163 BASELINK_FUNCTIONS (baselink) = functions;
1164 BASELINK_OPTYPE (baselink) = optype;
1166 return baselink;
1169 /* Look for a member named NAME in an inheritance lattice dominated by
1170 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1171 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1172 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1173 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1174 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1175 TREE_VALUEs are the list of ambiguous candidates.
1177 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1179 If nothing can be found return NULL_TREE and do not issue an error. */
1181 tree
1182 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1184 tree rval, rval_binfo = NULL_TREE;
1185 tree type = NULL_TREE, basetype_path = NULL_TREE;
1186 struct lookup_field_info lfi;
1188 /* rval_binfo is the binfo associated with the found member, note,
1189 this can be set with useful information, even when rval is not
1190 set, because it must deal with ALL members, not just non-function
1191 members. It is used for ambiguity checking and the hidden
1192 checks. Whereas rval is only set if a proper (not hidden)
1193 non-function member is found. */
1195 const char *errstr = 0;
1197 if (name == error_mark_node)
1198 return NULL_TREE;
1200 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1202 if (TREE_CODE (xbasetype) == TREE_BINFO)
1204 type = BINFO_TYPE (xbasetype);
1205 basetype_path = xbasetype;
1207 else
1209 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1210 return NULL_TREE;
1211 type = xbasetype;
1212 xbasetype = NULL_TREE;
1215 type = complete_type (type);
1216 if (!basetype_path)
1217 basetype_path = TYPE_BINFO (type);
1219 if (!basetype_path)
1220 return NULL_TREE;
1222 #ifdef GATHER_STATISTICS
1223 n_calls_lookup_field++;
1224 #endif /* GATHER_STATISTICS */
1226 memset (&lfi, 0, sizeof (lfi));
1227 lfi.type = type;
1228 lfi.name = name;
1229 lfi.want_type = want_type;
1230 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1231 rval = lfi.rval;
1232 rval_binfo = lfi.rval_binfo;
1233 if (rval_binfo)
1234 type = BINFO_TYPE (rval_binfo);
1235 errstr = lfi.errstr;
1237 /* If we are not interested in ambiguities, don't report them;
1238 just return NULL_TREE. */
1239 if (!protect && lfi.ambiguous)
1240 return NULL_TREE;
1242 if (protect == 2)
1244 if (lfi.ambiguous)
1245 return lfi.ambiguous;
1246 else
1247 protect = 0;
1250 /* [class.access]
1252 In the case of overloaded function names, access control is
1253 applied to the function selected by overloaded resolution.
1255 We cannot check here, even if RVAL is only a single non-static
1256 member function, since we do not know what the "this" pointer
1257 will be. For:
1259 class A { protected: void f(); };
1260 class B : public A {
1261 void g(A *p) {
1262 f(); // OK
1263 p->f(); // Not OK.
1267 only the first call to "f" is valid. However, if the function is
1268 static, we can check. */
1269 if (rval && protect
1270 && !really_overloaded_fn (rval)
1271 && !(TREE_CODE (rval) == FUNCTION_DECL
1272 && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
1273 perform_or_defer_access_check (basetype_path, rval, rval);
1275 if (errstr && protect)
1277 error (errstr, name, type);
1278 if (lfi.ambiguous)
1279 print_candidates (lfi.ambiguous);
1280 rval = error_mark_node;
1283 if (rval && is_overloaded_fn (rval))
1284 rval = build_baselink (rval_binfo, basetype_path, rval,
1285 (IDENTIFIER_TYPENAME_P (name)
1286 ? TREE_TYPE (name): NULL_TREE));
1287 return rval;
1290 /* Like lookup_member, except that if we find a function member we
1291 return NULL_TREE. */
1293 tree
1294 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1296 tree rval = lookup_member (xbasetype, name, protect, want_type);
1298 /* Ignore functions, but propagate the ambiguity list. */
1299 if (!error_operand_p (rval)
1300 && (rval && BASELINK_P (rval)))
1301 return NULL_TREE;
1303 return rval;
1306 /* Like lookup_member, except that if we find a non-function member we
1307 return NULL_TREE. */
1309 tree
1310 lookup_fnfields (tree xbasetype, tree name, int protect)
1312 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1314 /* Ignore non-functions, but propagate the ambiguity list. */
1315 if (!error_operand_p (rval)
1316 && (rval && !BASELINK_P (rval)))
1317 return NULL_TREE;
1319 return rval;
1322 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1323 corresponding to "operator TYPE ()", or -1 if there is no such
1324 operator. Only CLASS_TYPE itself is searched; this routine does
1325 not scan the base classes of CLASS_TYPE. */
1327 static int
1328 lookup_conversion_operator (tree class_type, tree type)
1330 int tpl_slot = -1;
1332 if (TYPE_HAS_CONVERSION (class_type))
1334 int i;
1335 tree fn;
1336 VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1338 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1339 VEC_iterate (tree, methods, i, fn); ++i)
1341 /* All the conversion operators come near the beginning of
1342 the class. Therefore, if FN is not a conversion
1343 operator, there is no matching conversion operator in
1344 CLASS_TYPE. */
1345 fn = OVL_CURRENT (fn);
1346 if (!DECL_CONV_FN_P (fn))
1347 break;
1349 if (TREE_CODE (fn) == TEMPLATE_DECL)
1350 /* All the templated conversion functions are on the same
1351 slot, so remember it. */
1352 tpl_slot = i;
1353 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1354 return i;
1358 return tpl_slot;
1361 /* TYPE is a class type. Return the index of the fields within
1362 the method vector with name NAME, or -1 is no such field exists. */
1365 lookup_fnfields_1 (tree type, tree name)
1367 VEC(tree,gc) *method_vec;
1368 tree fn;
1369 tree tmp;
1370 size_t i;
1372 if (!CLASS_TYPE_P (type))
1373 return -1;
1375 if (COMPLETE_TYPE_P (type))
1377 if ((name == ctor_identifier
1378 || name == base_ctor_identifier
1379 || name == complete_ctor_identifier))
1381 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1382 lazily_declare_fn (sfk_constructor, type);
1383 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1384 lazily_declare_fn (sfk_copy_constructor, type);
1386 else if (name == ansi_assopname(NOP_EXPR)
1387 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type))
1388 lazily_declare_fn (sfk_assignment_operator, type);
1389 else if ((name == dtor_identifier
1390 || name == base_dtor_identifier
1391 || name == complete_dtor_identifier
1392 || name == deleting_dtor_identifier)
1393 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1394 lazily_declare_fn (sfk_destructor, type);
1397 method_vec = CLASSTYPE_METHOD_VEC (type);
1398 if (!method_vec)
1399 return -1;
1401 #ifdef GATHER_STATISTICS
1402 n_calls_lookup_fnfields_1++;
1403 #endif /* GATHER_STATISTICS */
1405 /* Constructors are first... */
1406 if (name == ctor_identifier)
1408 fn = CLASSTYPE_CONSTRUCTORS (type);
1409 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1411 /* and destructors are second. */
1412 if (name == dtor_identifier)
1414 fn = CLASSTYPE_DESTRUCTORS (type);
1415 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1417 if (IDENTIFIER_TYPENAME_P (name))
1418 return lookup_conversion_operator (type, TREE_TYPE (name));
1420 /* Skip the conversion operators. */
1421 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1422 VEC_iterate (tree, method_vec, i, fn);
1423 ++i)
1424 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1425 break;
1427 /* If the type is complete, use binary search. */
1428 if (COMPLETE_TYPE_P (type))
1430 int lo;
1431 int hi;
1433 lo = i;
1434 hi = VEC_length (tree, method_vec);
1435 while (lo < hi)
1437 i = (lo + hi) / 2;
1439 #ifdef GATHER_STATISTICS
1440 n_outer_fields_searched++;
1441 #endif /* GATHER_STATISTICS */
1443 tmp = VEC_index (tree, method_vec, i);
1444 tmp = DECL_NAME (OVL_CURRENT (tmp));
1445 if (tmp > name)
1446 hi = i;
1447 else if (tmp < name)
1448 lo = i + 1;
1449 else
1450 return i;
1453 else
1454 for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1456 #ifdef GATHER_STATISTICS
1457 n_outer_fields_searched++;
1458 #endif /* GATHER_STATISTICS */
1459 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1460 return i;
1463 return -1;
1466 /* Like lookup_fnfields_1, except that the name is extracted from
1467 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1470 class_method_index_for_fn (tree class_type, tree function)
1472 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1473 || DECL_FUNCTION_TEMPLATE_P (function));
1475 return lookup_fnfields_1 (class_type,
1476 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1477 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1478 DECL_NAME (function));
1482 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1483 the class or namespace used to qualify the name. CONTEXT_CLASS is
1484 the class corresponding to the object in which DECL will be used.
1485 Return a possibly modified version of DECL that takes into account
1486 the CONTEXT_CLASS.
1488 In particular, consider an expression like `B::m' in the context of
1489 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1490 then the most derived class indicated by the BASELINK_BINFO will be
1491 `B', not `D'. This function makes that adjustment. */
1493 tree
1494 adjust_result_of_qualified_name_lookup (tree decl,
1495 tree qualifying_scope,
1496 tree context_class)
1498 if (context_class && context_class != error_mark_node
1499 && CLASS_TYPE_P (context_class)
1500 && CLASS_TYPE_P (qualifying_scope)
1501 && DERIVED_FROM_P (qualifying_scope, context_class)
1502 && BASELINK_P (decl))
1504 tree base;
1506 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1507 Because we do not yet know which function will be chosen by
1508 overload resolution, we cannot yet check either accessibility
1509 or ambiguity -- in either case, the choice of a static member
1510 function might make the usage valid. */
1511 base = lookup_base (context_class, qualifying_scope,
1512 ba_unique | ba_quiet, NULL);
1513 if (base)
1515 BASELINK_ACCESS_BINFO (decl) = base;
1516 BASELINK_BINFO (decl)
1517 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1518 ba_unique | ba_quiet,
1519 NULL);
1523 return decl;
1527 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1528 PRE_FN is called in preorder, while POST_FN is called in postorder.
1529 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1530 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1531 that value is immediately returned and the walk is terminated. One
1532 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1533 POST_FN are passed the binfo to examine and the caller's DATA
1534 value. All paths are walked, thus virtual and morally virtual
1535 binfos can be multiply walked. */
1537 tree
1538 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1539 tree (*post_fn) (tree, void *), void *data)
1541 tree rval;
1542 unsigned ix;
1543 tree base_binfo;
1545 /* Call the pre-order walking function. */
1546 if (pre_fn)
1548 rval = pre_fn (binfo, data);
1549 if (rval)
1551 if (rval == dfs_skip_bases)
1552 goto skip_bases;
1553 return rval;
1557 /* Find the next child binfo to walk. */
1558 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1560 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1561 if (rval)
1562 return rval;
1565 skip_bases:
1566 /* Call the post-order walking function. */
1567 if (post_fn)
1569 rval = post_fn (binfo, data);
1570 gcc_assert (rval != dfs_skip_bases);
1571 return rval;
1574 return NULL_TREE;
1577 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1578 that binfos are walked at most once. */
1580 static tree
1581 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1582 tree (*post_fn) (tree, void *), void *data)
1584 tree rval;
1585 unsigned ix;
1586 tree base_binfo;
1588 /* Call the pre-order walking function. */
1589 if (pre_fn)
1591 rval = pre_fn (binfo, data);
1592 if (rval)
1594 if (rval == dfs_skip_bases)
1595 goto skip_bases;
1597 return rval;
1601 /* Find the next child binfo to walk. */
1602 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1604 if (BINFO_VIRTUAL_P (base_binfo))
1606 if (BINFO_MARKED (base_binfo))
1607 continue;
1608 BINFO_MARKED (base_binfo) = 1;
1611 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1612 if (rval)
1613 return rval;
1616 skip_bases:
1617 /* Call the post-order walking function. */
1618 if (post_fn)
1620 rval = post_fn (binfo, data);
1621 gcc_assert (rval != dfs_skip_bases);
1622 return rval;
1625 return NULL_TREE;
1628 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1629 BINFO. */
1631 static void
1632 dfs_unmark_r (tree binfo)
1634 unsigned ix;
1635 tree base_binfo;
1637 /* Process the basetypes. */
1638 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1640 if (BINFO_VIRTUAL_P (base_binfo))
1642 if (!BINFO_MARKED (base_binfo))
1643 continue;
1644 BINFO_MARKED (base_binfo) = 0;
1646 /* Only walk, if it can contain more virtual bases. */
1647 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1648 dfs_unmark_r (base_binfo);
1652 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1653 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1654 For diamond shaped hierarchies we must mark the virtual bases, to
1655 avoid multiple walks. */
1657 tree
1658 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1659 tree (*post_fn) (tree, void *), void *data)
1661 static int active = 0; /* We must not be called recursively. */
1662 tree rval;
1664 gcc_assert (pre_fn || post_fn);
1665 gcc_assert (!active);
1666 active++;
1668 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1669 /* We are not diamond shaped, and therefore cannot encounter the
1670 same binfo twice. */
1671 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1672 else
1674 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1675 if (!BINFO_INHERITANCE_CHAIN (binfo))
1677 /* We are at the top of the hierarchy, and can use the
1678 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1679 bases. */
1680 VEC(tree,gc) *vbases;
1681 unsigned ix;
1682 tree base_binfo;
1684 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1685 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1686 BINFO_MARKED (base_binfo) = 0;
1688 else
1689 dfs_unmark_r (binfo);
1692 active--;
1694 return rval;
1697 /* Worker function for dfs_walk_once_accessible. Behaves like
1698 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1699 access given by the current context should be considered, (b) ONCE
1700 indicates whether bases should be marked during traversal. */
1702 static tree
1703 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1704 tree (*pre_fn) (tree, void *),
1705 tree (*post_fn) (tree, void *), void *data)
1707 tree rval = NULL_TREE;
1708 unsigned ix;
1709 tree base_binfo;
1711 /* Call the pre-order walking function. */
1712 if (pre_fn)
1714 rval = pre_fn (binfo, data);
1715 if (rval)
1717 if (rval == dfs_skip_bases)
1718 goto skip_bases;
1720 return rval;
1724 /* Find the next child binfo to walk. */
1725 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1727 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1729 if (mark && BINFO_MARKED (base_binfo))
1730 continue;
1732 /* If the base is inherited via private or protected
1733 inheritance, then we can't see it, unless we are a friend of
1734 the current binfo. */
1735 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1737 tree scope;
1738 if (!friends_p)
1739 continue;
1740 scope = current_scope ();
1741 if (!scope
1742 || TREE_CODE (scope) == NAMESPACE_DECL
1743 || !is_friend (BINFO_TYPE (binfo), scope))
1744 continue;
1747 if (mark)
1748 BINFO_MARKED (base_binfo) = 1;
1750 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1751 pre_fn, post_fn, data);
1752 if (rval)
1753 return rval;
1756 skip_bases:
1757 /* Call the post-order walking function. */
1758 if (post_fn)
1760 rval = post_fn (binfo, data);
1761 gcc_assert (rval != dfs_skip_bases);
1762 return rval;
1765 return NULL_TREE;
1768 /* Like dfs_walk_once except that only accessible bases are walked.
1769 FRIENDS_P indicates whether friendship of the local context
1770 should be considered when determining accessibility. */
1772 static tree
1773 dfs_walk_once_accessible (tree binfo, bool friends_p,
1774 tree (*pre_fn) (tree, void *),
1775 tree (*post_fn) (tree, void *), void *data)
1777 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1778 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1779 pre_fn, post_fn, data);
1781 if (diamond_shaped)
1783 if (!BINFO_INHERITANCE_CHAIN (binfo))
1785 /* We are at the top of the hierarchy, and can use the
1786 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1787 bases. */
1788 VEC(tree,gc) *vbases;
1789 unsigned ix;
1790 tree base_binfo;
1792 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1793 VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1794 BINFO_MARKED (base_binfo) = 0;
1796 else
1797 dfs_unmark_r (binfo);
1799 return rval;
1802 /* Check that virtual overrider OVERRIDER is acceptable for base function
1803 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1805 static int
1806 check_final_overrider (tree overrider, tree basefn)
1808 tree over_type = TREE_TYPE (overrider);
1809 tree base_type = TREE_TYPE (basefn);
1810 tree over_return = TREE_TYPE (over_type);
1811 tree base_return = TREE_TYPE (base_type);
1812 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1813 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1814 int fail = 0;
1816 if (DECL_INVALID_OVERRIDER_P (overrider))
1817 return 0;
1819 if (same_type_p (base_return, over_return))
1820 /* OK */;
1821 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1822 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1823 && POINTER_TYPE_P (base_return)))
1825 /* Potentially covariant. */
1826 unsigned base_quals, over_quals;
1828 fail = !POINTER_TYPE_P (base_return);
1829 if (!fail)
1831 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1833 base_return = TREE_TYPE (base_return);
1834 over_return = TREE_TYPE (over_return);
1836 base_quals = cp_type_quals (base_return);
1837 over_quals = cp_type_quals (over_return);
1839 if ((base_quals & over_quals) != over_quals)
1840 fail = 1;
1842 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1844 tree binfo = lookup_base (over_return, base_return,
1845 ba_check | ba_quiet, NULL);
1847 if (!binfo)
1848 fail = 1;
1850 else if (!pedantic
1851 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1852 /* GNU extension, allow trivial pointer conversions such as
1853 converting to void *, or qualification conversion. */
1855 /* can_convert will permit user defined conversion from a
1856 (reference to) class type. We must reject them. */
1857 over_return = non_reference (TREE_TYPE (over_type));
1858 if (CLASS_TYPE_P (over_return))
1859 fail = 2;
1860 else
1862 warning (0, "deprecated covariant return type for %q+#D",
1863 overrider);
1864 warning (0, " overriding %q+#D", basefn);
1867 else
1868 fail = 2;
1870 else
1871 fail = 2;
1872 if (!fail)
1873 /* OK */;
1874 else
1876 if (fail == 1)
1878 error ("invalid covariant return type for %q+#D", overrider);
1879 error (" overriding %q+#D", basefn);
1881 else
1883 error ("conflicting return type specified for %q+#D", overrider);
1884 error (" overriding %q+#D", basefn);
1886 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1887 return 0;
1890 /* Check throw specifier is at least as strict. */
1891 if (!comp_except_specs (base_throw, over_throw, 0))
1893 error ("looser throw specifier for %q+#F", overrider);
1894 error (" overriding %q+#F", basefn);
1895 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1896 return 0;
1899 /* Check for conflicting type attributes. */
1900 if (!targetm.comp_type_attributes (over_type, base_type))
1902 error ("conflicting type attributes specified for %q+#D", overrider);
1903 error (" overriding %q+#D", basefn);
1904 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1905 return 0;
1908 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
1910 if (DECL_DELETED_FN (overrider))
1912 error ("deleted function %q+D", overrider);
1913 error ("overriding non-deleted function %q+D", basefn);
1915 else
1917 error ("non-deleted function %q+D", overrider);
1918 error ("overriding deleted function %q+D", basefn);
1920 return 0;
1922 return 1;
1925 /* Given a class TYPE, and a function decl FNDECL, look for
1926 virtual functions in TYPE's hierarchy which FNDECL overrides.
1927 We do not look in TYPE itself, only its bases.
1929 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1930 find that it overrides anything.
1932 We check that every function which is overridden, is correctly
1933 overridden. */
1936 look_for_overrides (tree type, tree fndecl)
1938 tree binfo = TYPE_BINFO (type);
1939 tree base_binfo;
1940 int ix;
1941 int found = 0;
1943 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1945 tree basetype = BINFO_TYPE (base_binfo);
1947 if (TYPE_POLYMORPHIC_P (basetype))
1948 found += look_for_overrides_r (basetype, fndecl);
1950 return found;
1953 /* Look in TYPE for virtual functions with the same signature as
1954 FNDECL. */
1956 tree
1957 look_for_overrides_here (tree type, tree fndecl)
1959 int ix;
1961 /* If there are no methods in TYPE (meaning that only implicitly
1962 declared methods will ever be provided for TYPE), then there are
1963 no virtual functions. */
1964 if (!CLASSTYPE_METHOD_VEC (type))
1965 return NULL_TREE;
1967 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1968 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1969 else
1970 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1971 if (ix >= 0)
1973 tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1975 for (; fns; fns = OVL_NEXT (fns))
1977 tree fn = OVL_CURRENT (fns);
1979 if (!DECL_VIRTUAL_P (fn))
1980 /* Not a virtual. */;
1981 else if (DECL_CONTEXT (fn) != type)
1982 /* Introduced with a using declaration. */;
1983 else if (DECL_STATIC_FUNCTION_P (fndecl))
1985 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1986 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1987 if (compparms (TREE_CHAIN (btypes), dtypes))
1988 return fn;
1990 else if (same_signature_p (fndecl, fn))
1991 return fn;
1994 return NULL_TREE;
1997 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1998 TYPE itself and its bases. */
2000 static int
2001 look_for_overrides_r (tree type, tree fndecl)
2003 tree fn = look_for_overrides_here (type, fndecl);
2004 if (fn)
2006 if (DECL_STATIC_FUNCTION_P (fndecl))
2008 /* A static member function cannot match an inherited
2009 virtual member function. */
2010 error ("%q+#D cannot be declared", fndecl);
2011 error (" since %q+#D declared in base class", fn);
2013 else
2015 /* It's definitely virtual, even if not explicitly set. */
2016 DECL_VIRTUAL_P (fndecl) = 1;
2017 check_final_overrider (fndecl, fn);
2019 return 1;
2022 /* We failed to find one declared in this class. Look in its bases. */
2023 return look_for_overrides (type, fndecl);
2026 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2028 static tree
2029 dfs_get_pure_virtuals (tree binfo, void *data)
2031 tree type = (tree) data;
2033 /* We're not interested in primary base classes; the derived class
2034 of which they are a primary base will contain the information we
2035 need. */
2036 if (!BINFO_PRIMARY_P (binfo))
2038 tree virtuals;
2040 for (virtuals = BINFO_VIRTUALS (binfo);
2041 virtuals;
2042 virtuals = TREE_CHAIN (virtuals))
2043 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2044 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2045 BV_FN (virtuals));
2048 return NULL_TREE;
2051 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2053 void
2054 get_pure_virtuals (tree type)
2056 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2057 is going to be overridden. */
2058 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2059 /* Now, run through all the bases which are not primary bases, and
2060 collect the pure virtual functions. We look at the vtable in
2061 each class to determine what pure virtual functions are present.
2062 (A primary base is not interesting because the derived class of
2063 which it is a primary base will contain vtable entries for the
2064 pure virtuals in the base class. */
2065 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2068 /* Debug info for C++ classes can get very large; try to avoid
2069 emitting it everywhere.
2071 Note that this optimization wins even when the target supports
2072 BINCL (if only slightly), and reduces the amount of work for the
2073 linker. */
2075 void
2076 maybe_suppress_debug_info (tree t)
2078 if (write_symbols == NO_DEBUG)
2079 return;
2081 /* We might have set this earlier in cp_finish_decl. */
2082 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2084 /* Always emit the information for each class every time. */
2085 if (flag_emit_class_debug_always)
2086 return;
2088 /* If we already know how we're handling this class, handle debug info
2089 the same way. */
2090 if (CLASSTYPE_INTERFACE_KNOWN (t))
2092 if (CLASSTYPE_INTERFACE_ONLY (t))
2093 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2094 /* else don't set it. */
2096 /* If the class has a vtable, write out the debug info along with
2097 the vtable. */
2098 else if (TYPE_CONTAINS_VPTR_P (t))
2099 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2101 /* Otherwise, just emit the debug info normally. */
2104 /* Note that we want debugging information for a base class of a class
2105 whose vtable is being emitted. Normally, this would happen because
2106 calling the constructor for a derived class implies calling the
2107 constructors for all bases, which involve initializing the
2108 appropriate vptr with the vtable for the base class; but in the
2109 presence of optimization, this initialization may be optimized
2110 away, so we tell finish_vtable_vardecl that we want the debugging
2111 information anyway. */
2113 static tree
2114 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2116 tree t = BINFO_TYPE (binfo);
2118 if (CLASSTYPE_DEBUG_REQUESTED (t))
2119 return dfs_skip_bases;
2121 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2123 return NULL_TREE;
2126 /* Write out the debugging information for TYPE, whose vtable is being
2127 emitted. Also walk through our bases and note that we want to
2128 write out information for them. This avoids the problem of not
2129 writing any debug info for intermediate basetypes whose
2130 constructors, and thus the references to their vtables, and thus
2131 the vtables themselves, were optimized away. */
2133 void
2134 note_debug_info_needed (tree type)
2136 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2138 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2139 rest_of_type_compilation (type, toplevel_bindings_p ());
2142 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2145 void
2146 print_search_statistics (void)
2148 #ifdef GATHER_STATISTICS
2149 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2150 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2151 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2152 n_outer_fields_searched, n_calls_lookup_fnfields);
2153 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2154 #else /* GATHER_STATISTICS */
2155 fprintf (stderr, "no search statistics\n");
2156 #endif /* GATHER_STATISTICS */
2159 void
2160 reinit_search_statistics (void)
2162 #ifdef GATHER_STATISTICS
2163 n_fields_searched = 0;
2164 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2165 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2166 n_calls_get_base_type = 0;
2167 n_outer_fields_searched = 0;
2168 n_contexts_saved = 0;
2169 #endif /* GATHER_STATISTICS */
2172 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2173 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2174 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2175 bases have been encountered already in the tree walk. PARENT_CONVS
2176 is the list of lists of conversion functions that could hide CONV
2177 and OTHER_CONVS is the list of lists of conversion functions that
2178 could hide or be hidden by CONV, should virtualness be involved in
2179 the hierarchy. Merely checking the conversion op's name is not
2180 enough because two conversion operators to the same type can have
2181 different names. Return nonzero if we are visible. */
2183 static int
2184 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2185 tree to_type, tree parent_convs, tree other_convs)
2187 tree level, probe;
2189 /* See if we are hidden by a parent conversion. */
2190 for (level = parent_convs; level; level = TREE_CHAIN (level))
2191 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2192 if (same_type_p (to_type, TREE_TYPE (probe)))
2193 return 0;
2195 if (virtual_depth || virtualness)
2197 /* In a virtual hierarchy, we could be hidden, or could hide a
2198 conversion function on the other_convs list. */
2199 for (level = other_convs; level; level = TREE_CHAIN (level))
2201 int we_hide_them;
2202 int they_hide_us;
2203 tree *prev, other;
2205 if (!(virtual_depth || TREE_STATIC (level)))
2206 /* Neither is morally virtual, so cannot hide each other. */
2207 continue;
2209 if (!TREE_VALUE (level))
2210 /* They evaporated away already. */
2211 continue;
2213 they_hide_us = (virtual_depth
2214 && original_binfo (binfo, TREE_PURPOSE (level)));
2215 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2216 && original_binfo (TREE_PURPOSE (level), binfo));
2218 if (!(we_hide_them || they_hide_us))
2219 /* Neither is within the other, so no hiding can occur. */
2220 continue;
2222 for (prev = &TREE_VALUE (level), other = *prev; other;)
2224 if (same_type_p (to_type, TREE_TYPE (other)))
2226 if (they_hide_us)
2227 /* We are hidden. */
2228 return 0;
2230 if (we_hide_them)
2232 /* We hide the other one. */
2233 other = TREE_CHAIN (other);
2234 *prev = other;
2235 continue;
2238 prev = &TREE_CHAIN (other);
2239 other = *prev;
2243 return 1;
2246 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2247 of conversion functions, the first slot will be for the current
2248 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2249 of conversion functions from children of the current binfo,
2250 concatenated with conversions from elsewhere in the hierarchy --
2251 that list begins with OTHER_CONVS. Return a single list of lists
2252 containing only conversions from the current binfo and its
2253 children. */
2255 static tree
2256 split_conversions (tree my_convs, tree parent_convs,
2257 tree child_convs, tree other_convs)
2259 tree t;
2260 tree prev;
2262 /* Remove the original other_convs portion from child_convs. */
2263 for (prev = NULL, t = child_convs;
2264 t != other_convs; prev = t, t = TREE_CHAIN (t))
2265 continue;
2267 if (prev)
2268 TREE_CHAIN (prev) = NULL_TREE;
2269 else
2270 child_convs = NULL_TREE;
2272 /* Attach the child convs to any we had at this level. */
2273 if (my_convs)
2275 my_convs = parent_convs;
2276 TREE_CHAIN (my_convs) = child_convs;
2278 else
2279 my_convs = child_convs;
2281 return my_convs;
2284 /* Worker for lookup_conversions. Lookup conversion functions in
2285 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2286 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2287 encountered virtual bases already in the tree walk. PARENT_CONVS &
2288 PARENT_TPL_CONVS are lists of list of conversions within parent
2289 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2290 elsewhere in the tree. Return the conversions found within this
2291 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2292 encountered virtualness. We keep template and non-template
2293 conversions separate, to avoid unnecessary type comparisons.
2295 The located conversion functions are held in lists of lists. The
2296 TREE_VALUE of the outer list is the list of conversion functions
2297 found in a particular binfo. The TREE_PURPOSE of both the outer
2298 and inner lists is the binfo at which those conversions were
2299 found. TREE_STATIC is set for those lists within of morally
2300 virtual binfos. The TREE_VALUE of the inner list is the conversion
2301 function or overload itself. The TREE_TYPE of each inner list node
2302 is the converted-to type. */
2304 static int
2305 lookup_conversions_r (tree binfo,
2306 int virtual_depth, int virtualness,
2307 tree parent_convs, tree parent_tpl_convs,
2308 tree other_convs, tree other_tpl_convs,
2309 tree *convs, tree *tpl_convs)
2311 int my_virtualness = 0;
2312 tree my_convs = NULL_TREE;
2313 tree my_tpl_convs = NULL_TREE;
2314 tree child_convs = NULL_TREE;
2315 tree child_tpl_convs = NULL_TREE;
2316 unsigned i;
2317 tree base_binfo;
2318 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2319 tree conv;
2321 /* If we have no conversion operators, then don't look. */
2322 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2324 *convs = *tpl_convs = NULL_TREE;
2326 return 0;
2329 if (BINFO_VIRTUAL_P (binfo))
2330 virtual_depth++;
2332 /* First, locate the unhidden ones at this level. */
2333 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2334 VEC_iterate (tree, method_vec, i, conv);
2335 ++i)
2337 tree cur = OVL_CURRENT (conv);
2339 if (!DECL_CONV_FN_P (cur))
2340 break;
2342 if (TREE_CODE (cur) == TEMPLATE_DECL)
2344 /* Only template conversions can be overloaded, and we must
2345 flatten them out and check each one individually. */
2346 tree tpls;
2348 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2350 tree tpl = OVL_CURRENT (tpls);
2351 tree type = DECL_CONV_FN_TYPE (tpl);
2353 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2354 type, parent_tpl_convs, other_tpl_convs))
2356 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2357 TREE_TYPE (my_tpl_convs) = type;
2358 if (virtual_depth)
2360 TREE_STATIC (my_tpl_convs) = 1;
2361 my_virtualness = 1;
2366 else
2368 tree name = DECL_NAME (cur);
2370 if (!IDENTIFIER_MARKED (name))
2372 tree type = DECL_CONV_FN_TYPE (cur);
2374 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2375 type, parent_convs, other_convs))
2377 my_convs = tree_cons (binfo, conv, my_convs);
2378 TREE_TYPE (my_convs) = type;
2379 if (virtual_depth)
2381 TREE_STATIC (my_convs) = 1;
2382 my_virtualness = 1;
2384 IDENTIFIER_MARKED (name) = 1;
2390 if (my_convs)
2392 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2393 if (virtual_depth)
2394 TREE_STATIC (parent_convs) = 1;
2397 if (my_tpl_convs)
2399 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2400 if (virtual_depth)
2401 TREE_STATIC (parent_tpl_convs) = 1;
2404 child_convs = other_convs;
2405 child_tpl_convs = other_tpl_convs;
2407 /* Now iterate over each base, looking for more conversions. */
2408 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2410 tree base_convs, base_tpl_convs;
2411 unsigned base_virtualness;
2413 base_virtualness = lookup_conversions_r (base_binfo,
2414 virtual_depth, virtualness,
2415 parent_convs, parent_tpl_convs,
2416 child_convs, child_tpl_convs,
2417 &base_convs, &base_tpl_convs);
2418 if (base_virtualness)
2419 my_virtualness = virtualness = 1;
2420 child_convs = chainon (base_convs, child_convs);
2421 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2424 /* Unmark the conversions found at this level */
2425 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2426 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2428 *convs = split_conversions (my_convs, parent_convs,
2429 child_convs, other_convs);
2430 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2431 child_tpl_convs, other_tpl_convs);
2433 return my_virtualness;
2436 /* Return a TREE_LIST containing all the non-hidden user-defined
2437 conversion functions for TYPE (and its base-classes). The
2438 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2439 function. The TREE_PURPOSE is the BINFO from which the conversion
2440 functions in this node were selected. This function is effectively
2441 performing a set of member lookups as lookup_fnfield does, but
2442 using the type being converted to as the unique key, rather than the
2443 field name. */
2445 tree
2446 lookup_conversions (tree type)
2448 tree convs, tpl_convs;
2449 tree list = NULL_TREE;
2451 complete_type (type);
2452 if (!TYPE_BINFO (type))
2453 return NULL_TREE;
2455 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2456 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2457 &convs, &tpl_convs);
2459 /* Flatten the list-of-lists */
2460 for (; convs; convs = TREE_CHAIN (convs))
2462 tree probe, next;
2464 for (probe = TREE_VALUE (convs); probe; probe = next)
2466 next = TREE_CHAIN (probe);
2468 TREE_CHAIN (probe) = list;
2469 list = probe;
2473 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2475 tree probe, next;
2477 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2479 next = TREE_CHAIN (probe);
2481 TREE_CHAIN (probe) = list;
2482 list = probe;
2486 return list;
2489 /* Returns the binfo of the first direct or indirect virtual base derived
2490 from BINFO, or NULL if binfo is not via virtual. */
2492 tree
2493 binfo_from_vbase (tree binfo)
2495 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2497 if (BINFO_VIRTUAL_P (binfo))
2498 return binfo;
2500 return NULL_TREE;
2503 /* Returns the binfo of the first direct or indirect virtual base derived
2504 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2505 via virtual. */
2507 tree
2508 binfo_via_virtual (tree binfo, tree limit)
2510 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2511 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2512 return NULL_TREE;
2514 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2515 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2517 if (BINFO_VIRTUAL_P (binfo))
2518 return binfo;
2520 return NULL_TREE;
2523 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2524 Find the equivalent binfo within whatever graph HERE is located.
2525 This is the inverse of original_binfo. */
2527 tree
2528 copied_binfo (tree binfo, tree here)
2530 tree result = NULL_TREE;
2532 if (BINFO_VIRTUAL_P (binfo))
2534 tree t;
2536 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2537 t = BINFO_INHERITANCE_CHAIN (t))
2538 continue;
2540 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2542 else if (BINFO_INHERITANCE_CHAIN (binfo))
2544 tree cbinfo;
2545 tree base_binfo;
2546 int ix;
2548 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2549 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2550 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2552 result = base_binfo;
2553 break;
2556 else
2558 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2559 result = here;
2562 gcc_assert (result);
2563 return result;
2566 tree
2567 binfo_for_vbase (tree base, tree t)
2569 unsigned ix;
2570 tree binfo;
2571 VEC(tree,gc) *vbases;
2573 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2574 VEC_iterate (tree, vbases, ix, binfo); ix++)
2575 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2576 return binfo;
2577 return NULL;
2580 /* BINFO is some base binfo of HERE, within some other
2581 hierarchy. Return the equivalent binfo, but in the hierarchy
2582 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2583 is not a base binfo of HERE, returns NULL_TREE. */
2585 tree
2586 original_binfo (tree binfo, tree here)
2588 tree result = NULL;
2590 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2591 result = here;
2592 else if (BINFO_VIRTUAL_P (binfo))
2593 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2594 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2595 : NULL_TREE);
2596 else if (BINFO_INHERITANCE_CHAIN (binfo))
2598 tree base_binfos;
2600 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2601 if (base_binfos)
2603 int ix;
2604 tree base_binfo;
2606 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2607 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2608 BINFO_TYPE (binfo)))
2610 result = base_binfo;
2611 break;
2616 return result;