In libobjc/: 2010-12-21 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blobd197bdd207ac471038024adf5e2836ff7b0bd20c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "domwalk.h"
38 static unsigned int tree_ssa_phiopt (void);
39 static unsigned int tree_ssa_phiopt_worker (bool);
40 static bool conditional_replacement (basic_block, basic_block,
41 edge, edge, gimple, tree, tree);
42 static bool value_replacement (basic_block, basic_block,
43 edge, edge, gimple, tree, tree);
44 static bool minmax_replacement (basic_block, basic_block,
45 edge, edge, gimple, tree, tree);
46 static bool abs_replacement (basic_block, basic_block,
47 edge, edge, gimple, tree, tree);
48 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
49 struct pointer_set_t *);
50 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
51 static struct pointer_set_t * get_non_trapping (void);
52 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
54 /* This pass tries to replaces an if-then-else block with an
55 assignment. We have four kinds of transformations. Some of these
56 transformations are also performed by the ifcvt RTL optimizer.
58 Conditional Replacement
59 -----------------------
61 This transformation, implemented in conditional_replacement,
62 replaces
64 bb0:
65 if (cond) goto bb2; else goto bb1;
66 bb1:
67 bb2:
68 x = PHI <0 (bb1), 1 (bb0), ...>;
70 with
72 bb0:
73 x' = cond;
74 goto bb2;
75 bb2:
76 x = PHI <x' (bb0), ...>;
78 We remove bb1 as it becomes unreachable. This occurs often due to
79 gimplification of conditionals.
81 Value Replacement
82 -----------------
84 This transformation, implemented in value_replacement, replaces
86 bb0:
87 if (a != b) goto bb2; else goto bb1;
88 bb1:
89 bb2:
90 x = PHI <a (bb1), b (bb0), ...>;
92 with
94 bb0:
95 bb2:
96 x = PHI <b (bb0), ...>;
98 This opportunity can sometimes occur as a result of other
99 optimizations.
101 ABS Replacement
102 ---------------
104 This transformation, implemented in abs_replacement, replaces
106 bb0:
107 if (a >= 0) goto bb2; else goto bb1;
108 bb1:
109 x = -a;
110 bb2:
111 x = PHI <x (bb1), a (bb0), ...>;
113 with
115 bb0:
116 x' = ABS_EXPR< a >;
117 bb2:
118 x = PHI <x' (bb0), ...>;
120 MIN/MAX Replacement
121 -------------------
123 This transformation, minmax_replacement replaces
125 bb0:
126 if (a <= b) goto bb2; else goto bb1;
127 bb1:
128 bb2:
129 x = PHI <b (bb1), a (bb0), ...>;
131 with
133 bb0:
134 x' = MIN_EXPR (a, b)
135 bb2:
136 x = PHI <x' (bb0), ...>;
138 A similar transformation is done for MAX_EXPR. */
140 static unsigned int
141 tree_ssa_phiopt (void)
143 return tree_ssa_phiopt_worker (false);
146 /* This pass tries to transform conditional stores into unconditional
147 ones, enabling further simplifications with the simpler then and else
148 blocks. In particular it replaces this:
150 bb0:
151 if (cond) goto bb2; else goto bb1;
152 bb1:
153 *p = RHS;
154 bb2:
156 with
158 bb0:
159 if (cond) goto bb1; else goto bb2;
160 bb1:
161 condtmp' = *p;
162 bb2:
163 condtmp = PHI <RHS, condtmp'>
164 *p = condtmp;
166 This transformation can only be done under several constraints,
167 documented below. It also replaces:
169 bb0:
170 if (cond) goto bb2; else goto bb1;
171 bb1:
172 *p = RHS1;
173 goto bb3;
174 bb2:
175 *p = RHS2;
176 bb3:
178 with
180 bb0:
181 if (cond) goto bb3; else goto bb1;
182 bb1:
183 bb3:
184 condtmp = PHI <RHS1, RHS2>
185 *p = condtmp; */
187 static unsigned int
188 tree_ssa_cs_elim (void)
190 return tree_ssa_phiopt_worker (true);
193 /* For conditional store replacement we need a temporary to
194 put the old contents of the memory in. */
195 static tree condstoretemp;
197 /* The core routine of conditional store replacement and normal
198 phi optimizations. Both share much of the infrastructure in how
199 to match applicable basic block patterns. DO_STORE_ELIM is true
200 when we want to do conditional store replacement, false otherwise. */
201 static unsigned int
202 tree_ssa_phiopt_worker (bool do_store_elim)
204 basic_block bb;
205 basic_block *bb_order;
206 unsigned n, i;
207 bool cfgchanged = false;
208 struct pointer_set_t *nontrap = 0;
210 if (do_store_elim)
212 condstoretemp = NULL_TREE;
213 /* Calculate the set of non-trapping memory accesses. */
214 nontrap = get_non_trapping ();
217 /* Search every basic block for COND_EXPR we may be able to optimize.
219 We walk the blocks in order that guarantees that a block with
220 a single predecessor is processed before the predecessor.
221 This ensures that we collapse inner ifs before visiting the
222 outer ones, and also that we do not try to visit a removed
223 block. */
224 bb_order = blocks_in_phiopt_order ();
225 n = n_basic_blocks - NUM_FIXED_BLOCKS;
227 for (i = 0; i < n; i++)
229 gimple cond_stmt, phi;
230 basic_block bb1, bb2;
231 edge e1, e2;
232 tree arg0, arg1;
234 bb = bb_order[i];
236 cond_stmt = last_stmt (bb);
237 /* Check to see if the last statement is a GIMPLE_COND. */
238 if (!cond_stmt
239 || gimple_code (cond_stmt) != GIMPLE_COND)
240 continue;
242 e1 = EDGE_SUCC (bb, 0);
243 bb1 = e1->dest;
244 e2 = EDGE_SUCC (bb, 1);
245 bb2 = e2->dest;
247 /* We cannot do the optimization on abnormal edges. */
248 if ((e1->flags & EDGE_ABNORMAL) != 0
249 || (e2->flags & EDGE_ABNORMAL) != 0)
250 continue;
252 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
253 if (EDGE_COUNT (bb1->succs) == 0
254 || bb2 == NULL
255 || EDGE_COUNT (bb2->succs) == 0)
256 continue;
258 /* Find the bb which is the fall through to the other. */
259 if (EDGE_SUCC (bb1, 0)->dest == bb2)
261 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
263 basic_block bb_tmp = bb1;
264 edge e_tmp = e1;
265 bb1 = bb2;
266 bb2 = bb_tmp;
267 e1 = e2;
268 e2 = e_tmp;
270 else if (do_store_elim
271 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
273 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
275 if (!single_succ_p (bb1)
276 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
277 || !single_succ_p (bb2)
278 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
279 || EDGE_COUNT (bb3->preds) != 2)
280 continue;
281 if (cond_if_else_store_replacement (bb1, bb2, bb3))
282 cfgchanged = true;
283 continue;
285 else
286 continue;
288 e1 = EDGE_SUCC (bb1, 0);
290 /* Make sure that bb1 is just a fall through. */
291 if (!single_succ_p (bb1)
292 || (e1->flags & EDGE_FALLTHRU) == 0)
293 continue;
295 /* Also make sure that bb1 only have one predecessor and that it
296 is bb. */
297 if (!single_pred_p (bb1)
298 || single_pred (bb1) != bb)
299 continue;
301 if (do_store_elim)
303 /* bb1 is the middle block, bb2 the join block, bb the split block,
304 e1 the fallthrough edge from bb1 to bb2. We can't do the
305 optimization if the join block has more than two predecessors. */
306 if (EDGE_COUNT (bb2->preds) > 2)
307 continue;
308 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
309 cfgchanged = true;
311 else
313 gimple_seq phis = phi_nodes (bb2);
315 /* Check to make sure that there is only one PHI node.
316 TODO: we could do it with more than one iff the other PHI nodes
317 have the same elements for these two edges. */
318 if (! gimple_seq_singleton_p (phis))
319 continue;
321 phi = gsi_stmt (gsi_start (phis));
322 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
323 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
325 /* Something is wrong if we cannot find the arguments in the PHI
326 node. */
327 gcc_assert (arg0 != NULL && arg1 != NULL);
329 /* Do the replacement of conditional if it can be done. */
330 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
331 cfgchanged = true;
332 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
333 cfgchanged = true;
334 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
335 cfgchanged = true;
336 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
337 cfgchanged = true;
341 free (bb_order);
343 if (do_store_elim)
344 pointer_set_destroy (nontrap);
345 /* If the CFG has changed, we should cleanup the CFG. */
346 if (cfgchanged && do_store_elim)
348 /* In cond-store replacement we have added some loads on edges
349 and new VOPS (as we moved the store, and created a load). */
350 gsi_commit_edge_inserts ();
351 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
353 else if (cfgchanged)
354 return TODO_cleanup_cfg;
355 return 0;
358 /* Returns the list of basic blocks in the function in an order that guarantees
359 that if a block X has just a single predecessor Y, then Y is after X in the
360 ordering. */
362 basic_block *
363 blocks_in_phiopt_order (void)
365 basic_block x, y;
366 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
367 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
368 unsigned np, i;
369 sbitmap visited = sbitmap_alloc (last_basic_block);
371 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
372 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
374 sbitmap_zero (visited);
376 MARK_VISITED (ENTRY_BLOCK_PTR);
377 FOR_EACH_BB (x)
379 if (VISITED_P (x))
380 continue;
382 /* Walk the predecessors of x as long as they have precisely one
383 predecessor and add them to the list, so that they get stored
384 after x. */
385 for (y = x, np = 1;
386 single_pred_p (y) && !VISITED_P (single_pred (y));
387 y = single_pred (y))
388 np++;
389 for (y = x, i = n - np;
390 single_pred_p (y) && !VISITED_P (single_pred (y));
391 y = single_pred (y), i++)
393 order[i] = y;
394 MARK_VISITED (y);
396 order[i] = y;
397 MARK_VISITED (y);
399 gcc_assert (i == n - 1);
400 n -= np;
403 sbitmap_free (visited);
404 gcc_assert (n == 0);
405 return order;
407 #undef MARK_VISITED
408 #undef VISITED_P
412 /* Return TRUE if block BB has no executable statements, otherwise return
413 FALSE. */
415 bool
416 empty_block_p (basic_block bb)
418 /* BB must have no executable statements. */
419 gimple_stmt_iterator gsi = gsi_after_labels (bb);
420 if (gsi_end_p (gsi))
421 return true;
422 if (is_gimple_debug (gsi_stmt (gsi)))
423 gsi_next_nondebug (&gsi);
424 return gsi_end_p (gsi);
427 /* Replace PHI node element whose edge is E in block BB with variable NEW.
428 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
429 is known to have two edges, one of which must reach BB). */
431 static void
432 replace_phi_edge_with_variable (basic_block cond_block,
433 edge e, gimple phi, tree new_tree)
435 basic_block bb = gimple_bb (phi);
436 basic_block block_to_remove;
437 gimple_stmt_iterator gsi;
439 /* Change the PHI argument to new. */
440 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
442 /* Remove the empty basic block. */
443 if (EDGE_SUCC (cond_block, 0)->dest == bb)
445 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
446 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
447 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
448 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
450 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
452 else
454 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
455 EDGE_SUCC (cond_block, 1)->flags
456 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
457 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
458 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
460 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
462 delete_basic_block (block_to_remove);
464 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
465 gsi = gsi_last_bb (cond_block);
466 gsi_remove (&gsi, true);
468 if (dump_file && (dump_flags & TDF_DETAILS))
469 fprintf (dump_file,
470 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
471 cond_block->index,
472 bb->index);
475 /* The function conditional_replacement does the main work of doing the
476 conditional replacement. Return true if the replacement is done.
477 Otherwise return false.
478 BB is the basic block where the replacement is going to be done on. ARG0
479 is argument 0 from PHI. Likewise for ARG1. */
481 static bool
482 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
483 edge e0, edge e1, gimple phi,
484 tree arg0, tree arg1)
486 tree result;
487 gimple stmt, new_stmt;
488 tree cond;
489 gimple_stmt_iterator gsi;
490 edge true_edge, false_edge;
491 tree new_var, new_var2;
493 /* FIXME: Gimplification of complex type is too hard for now. */
494 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
495 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
496 return false;
498 /* The PHI arguments have the constants 0 and 1, then convert
499 it to the conditional. */
500 if ((integer_zerop (arg0) && integer_onep (arg1))
501 || (integer_zerop (arg1) && integer_onep (arg0)))
503 else
504 return false;
506 if (!empty_block_p (middle_bb))
507 return false;
509 /* At this point we know we have a GIMPLE_COND with two successors.
510 One successor is BB, the other successor is an empty block which
511 falls through into BB.
513 There is a single PHI node at the join point (BB) and its arguments
514 are constants (0, 1).
516 So, given the condition COND, and the two PHI arguments, we can
517 rewrite this PHI into non-branching code:
519 dest = (COND) or dest = COND'
521 We use the condition as-is if the argument associated with the
522 true edge has the value one or the argument associated with the
523 false edge as the value zero. Note that those conditions are not
524 the same since only one of the outgoing edges from the GIMPLE_COND
525 will directly reach BB and thus be associated with an argument. */
527 stmt = last_stmt (cond_bb);
528 result = PHI_RESULT (phi);
530 /* To handle special cases like floating point comparison, it is easier and
531 less error-prone to build a tree and gimplify it on the fly though it is
532 less efficient. */
533 cond = fold_build2 (gimple_cond_code (stmt), boolean_type_node,
534 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
536 /* We need to know which is the true edge and which is the false
537 edge so that we know when to invert the condition below. */
538 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
539 if ((e0 == true_edge && integer_zerop (arg0))
540 || (e0 == false_edge && integer_onep (arg0))
541 || (e1 == true_edge && integer_zerop (arg1))
542 || (e1 == false_edge && integer_onep (arg1)))
543 cond = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
545 /* Insert our new statements at the end of conditional block before the
546 COND_STMT. */
547 gsi = gsi_for_stmt (stmt);
548 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
549 GSI_SAME_STMT);
551 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
553 source_location locus_0, locus_1;
555 new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
556 add_referenced_var (new_var2);
557 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
558 new_var, NULL);
559 new_var2 = make_ssa_name (new_var2, new_stmt);
560 gimple_assign_set_lhs (new_stmt, new_var2);
561 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
562 new_var = new_var2;
564 /* Set the locus to the first argument, unless is doesn't have one. */
565 locus_0 = gimple_phi_arg_location (phi, 0);
566 locus_1 = gimple_phi_arg_location (phi, 1);
567 if (locus_0 == UNKNOWN_LOCATION)
568 locus_0 = locus_1;
569 gimple_set_location (new_stmt, locus_0);
572 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
574 /* Note that we optimized this PHI. */
575 return true;
578 /* The function value_replacement does the main work of doing the value
579 replacement. Return true if the replacement is done. Otherwise return
580 false.
581 BB is the basic block where the replacement is going to be done on. ARG0
582 is argument 0 from the PHI. Likewise for ARG1. */
584 static bool
585 value_replacement (basic_block cond_bb, basic_block middle_bb,
586 edge e0, edge e1, gimple phi,
587 tree arg0, tree arg1)
589 gimple cond;
590 edge true_edge, false_edge;
591 enum tree_code code;
593 /* If the type says honor signed zeros we cannot do this
594 optimization. */
595 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
596 return false;
598 if (!empty_block_p (middle_bb))
599 return false;
601 cond = last_stmt (cond_bb);
602 code = gimple_cond_code (cond);
604 /* This transformation is only valid for equality comparisons. */
605 if (code != NE_EXPR && code != EQ_EXPR)
606 return false;
608 /* We need to know which is the true edge and which is the false
609 edge so that we know if have abs or negative abs. */
610 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
612 /* At this point we know we have a COND_EXPR with two successors.
613 One successor is BB, the other successor is an empty block which
614 falls through into BB.
616 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
618 There is a single PHI node at the join point (BB) with two arguments.
620 We now need to verify that the two arguments in the PHI node match
621 the two arguments to the equality comparison. */
623 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
624 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
625 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
626 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
628 edge e;
629 tree arg;
631 /* For NE_EXPR, we want to build an assignment result = arg where
632 arg is the PHI argument associated with the true edge. For
633 EQ_EXPR we want the PHI argument associated with the false edge. */
634 e = (code == NE_EXPR ? true_edge : false_edge);
636 /* Unfortunately, E may not reach BB (it may instead have gone to
637 OTHER_BLOCK). If that is the case, then we want the single outgoing
638 edge from OTHER_BLOCK which reaches BB and represents the desired
639 path from COND_BLOCK. */
640 if (e->dest == middle_bb)
641 e = single_succ_edge (e->dest);
643 /* Now we know the incoming edge to BB that has the argument for the
644 RHS of our new assignment statement. */
645 if (e0 == e)
646 arg = arg0;
647 else
648 arg = arg1;
650 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
652 /* Note that we optimized this PHI. */
653 return true;
655 return false;
658 /* The function minmax_replacement does the main work of doing the minmax
659 replacement. Return true if the replacement is done. Otherwise return
660 false.
661 BB is the basic block where the replacement is going to be done on. ARG0
662 is argument 0 from the PHI. Likewise for ARG1. */
664 static bool
665 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
666 edge e0, edge e1, gimple phi,
667 tree arg0, tree arg1)
669 tree result, type;
670 gimple cond, new_stmt;
671 edge true_edge, false_edge;
672 enum tree_code cmp, minmax, ass_code;
673 tree smaller, larger, arg_true, arg_false;
674 gimple_stmt_iterator gsi, gsi_from;
676 type = TREE_TYPE (PHI_RESULT (phi));
678 /* The optimization may be unsafe due to NaNs. */
679 if (HONOR_NANS (TYPE_MODE (type)))
680 return false;
682 cond = last_stmt (cond_bb);
683 cmp = gimple_cond_code (cond);
684 result = PHI_RESULT (phi);
686 /* This transformation is only valid for order comparisons. Record which
687 operand is smaller/larger if the result of the comparison is true. */
688 if (cmp == LT_EXPR || cmp == LE_EXPR)
690 smaller = gimple_cond_lhs (cond);
691 larger = gimple_cond_rhs (cond);
693 else if (cmp == GT_EXPR || cmp == GE_EXPR)
695 smaller = gimple_cond_rhs (cond);
696 larger = gimple_cond_lhs (cond);
698 else
699 return false;
701 /* We need to know which is the true edge and which is the false
702 edge so that we know if have abs or negative abs. */
703 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
705 /* Forward the edges over the middle basic block. */
706 if (true_edge->dest == middle_bb)
707 true_edge = EDGE_SUCC (true_edge->dest, 0);
708 if (false_edge->dest == middle_bb)
709 false_edge = EDGE_SUCC (false_edge->dest, 0);
711 if (true_edge == e0)
713 gcc_assert (false_edge == e1);
714 arg_true = arg0;
715 arg_false = arg1;
717 else
719 gcc_assert (false_edge == e0);
720 gcc_assert (true_edge == e1);
721 arg_true = arg1;
722 arg_false = arg0;
725 if (empty_block_p (middle_bb))
727 if (operand_equal_for_phi_arg_p (arg_true, smaller)
728 && operand_equal_for_phi_arg_p (arg_false, larger))
730 /* Case
732 if (smaller < larger)
733 rslt = smaller;
734 else
735 rslt = larger; */
736 minmax = MIN_EXPR;
738 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
739 && operand_equal_for_phi_arg_p (arg_true, larger))
740 minmax = MAX_EXPR;
741 else
742 return false;
744 else
746 /* Recognize the following case, assuming d <= u:
748 if (a <= u)
749 b = MAX (a, d);
750 x = PHI <b, u>
752 This is equivalent to
754 b = MAX (a, d);
755 x = MIN (b, u); */
757 gimple assign = last_and_only_stmt (middle_bb);
758 tree lhs, op0, op1, bound;
760 if (!assign
761 || gimple_code (assign) != GIMPLE_ASSIGN)
762 return false;
764 lhs = gimple_assign_lhs (assign);
765 ass_code = gimple_assign_rhs_code (assign);
766 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
767 return false;
768 op0 = gimple_assign_rhs1 (assign);
769 op1 = gimple_assign_rhs2 (assign);
771 if (true_edge->src == middle_bb)
773 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
774 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
775 return false;
777 if (operand_equal_for_phi_arg_p (arg_false, larger))
779 /* Case
781 if (smaller < larger)
783 r' = MAX_EXPR (smaller, bound)
785 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
786 if (ass_code != MAX_EXPR)
787 return false;
789 minmax = MIN_EXPR;
790 if (operand_equal_for_phi_arg_p (op0, smaller))
791 bound = op1;
792 else if (operand_equal_for_phi_arg_p (op1, smaller))
793 bound = op0;
794 else
795 return false;
797 /* We need BOUND <= LARGER. */
798 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
799 bound, larger)))
800 return false;
802 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
804 /* Case
806 if (smaller < larger)
808 r' = MIN_EXPR (larger, bound)
810 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
811 if (ass_code != MIN_EXPR)
812 return false;
814 minmax = MAX_EXPR;
815 if (operand_equal_for_phi_arg_p (op0, larger))
816 bound = op1;
817 else if (operand_equal_for_phi_arg_p (op1, larger))
818 bound = op0;
819 else
820 return false;
822 /* We need BOUND >= SMALLER. */
823 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
824 bound, smaller)))
825 return false;
827 else
828 return false;
830 else
832 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
833 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
834 return false;
836 if (operand_equal_for_phi_arg_p (arg_true, larger))
838 /* Case
840 if (smaller > larger)
842 r' = MIN_EXPR (smaller, bound)
844 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
845 if (ass_code != MIN_EXPR)
846 return false;
848 minmax = MAX_EXPR;
849 if (operand_equal_for_phi_arg_p (op0, smaller))
850 bound = op1;
851 else if (operand_equal_for_phi_arg_p (op1, smaller))
852 bound = op0;
853 else
854 return false;
856 /* We need BOUND >= LARGER. */
857 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
858 bound, larger)))
859 return false;
861 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
863 /* Case
865 if (smaller > larger)
867 r' = MAX_EXPR (larger, bound)
869 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
870 if (ass_code != MAX_EXPR)
871 return false;
873 minmax = MIN_EXPR;
874 if (operand_equal_for_phi_arg_p (op0, larger))
875 bound = op1;
876 else if (operand_equal_for_phi_arg_p (op1, larger))
877 bound = op0;
878 else
879 return false;
881 /* We need BOUND <= SMALLER. */
882 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
883 bound, smaller)))
884 return false;
886 else
887 return false;
890 /* Move the statement from the middle block. */
891 gsi = gsi_last_bb (cond_bb);
892 gsi_from = gsi_last_nondebug_bb (middle_bb);
893 gsi_move_before (&gsi_from, &gsi);
896 /* Emit the statement to compute min/max. */
897 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
898 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
899 gsi = gsi_last_bb (cond_bb);
900 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
902 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
903 return true;
906 /* The function absolute_replacement does the main work of doing the absolute
907 replacement. Return true if the replacement is done. Otherwise return
908 false.
909 bb is the basic block where the replacement is going to be done on. arg0
910 is argument 0 from the phi. Likewise for arg1. */
912 static bool
913 abs_replacement (basic_block cond_bb, basic_block middle_bb,
914 edge e0 ATTRIBUTE_UNUSED, edge e1,
915 gimple phi, tree arg0, tree arg1)
917 tree result;
918 gimple new_stmt, cond;
919 gimple_stmt_iterator gsi;
920 edge true_edge, false_edge;
921 gimple assign;
922 edge e;
923 tree rhs, lhs;
924 bool negate;
925 enum tree_code cond_code;
927 /* If the type says honor signed zeros we cannot do this
928 optimization. */
929 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
930 return false;
932 /* OTHER_BLOCK must have only one executable statement which must have the
933 form arg0 = -arg1 or arg1 = -arg0. */
935 assign = last_and_only_stmt (middle_bb);
936 /* If we did not find the proper negation assignment, then we can not
937 optimize. */
938 if (assign == NULL)
939 return false;
941 /* If we got here, then we have found the only executable statement
942 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
943 arg1 = -arg0, then we can not optimize. */
944 if (gimple_code (assign) != GIMPLE_ASSIGN)
945 return false;
947 lhs = gimple_assign_lhs (assign);
949 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
950 return false;
952 rhs = gimple_assign_rhs1 (assign);
954 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
955 if (!(lhs == arg0 && rhs == arg1)
956 && !(lhs == arg1 && rhs == arg0))
957 return false;
959 cond = last_stmt (cond_bb);
960 result = PHI_RESULT (phi);
962 /* Only relationals comparing arg[01] against zero are interesting. */
963 cond_code = gimple_cond_code (cond);
964 if (cond_code != GT_EXPR && cond_code != GE_EXPR
965 && cond_code != LT_EXPR && cond_code != LE_EXPR)
966 return false;
968 /* Make sure the conditional is arg[01] OP y. */
969 if (gimple_cond_lhs (cond) != rhs)
970 return false;
972 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
973 ? real_zerop (gimple_cond_rhs (cond))
974 : integer_zerop (gimple_cond_rhs (cond)))
976 else
977 return false;
979 /* We need to know which is the true edge and which is the false
980 edge so that we know if have abs or negative abs. */
981 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
983 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
984 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
985 the false edge goes to OTHER_BLOCK. */
986 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
987 e = true_edge;
988 else
989 e = false_edge;
991 if (e->dest == middle_bb)
992 negate = true;
993 else
994 negate = false;
996 result = duplicate_ssa_name (result, NULL);
998 if (negate)
1000 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
1001 add_referenced_var (tmp);
1002 lhs = make_ssa_name (tmp, NULL);
1004 else
1005 lhs = result;
1007 /* Build the modify expression with abs expression. */
1008 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1010 gsi = gsi_last_bb (cond_bb);
1011 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1013 if (negate)
1015 /* Get the right GSI. We want to insert after the recently
1016 added ABS_EXPR statement (which we know is the first statement
1017 in the block. */
1018 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1020 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1023 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1025 /* Note that we optimized this PHI. */
1026 return true;
1029 /* Auxiliary functions to determine the set of memory accesses which
1030 can't trap because they are preceded by accesses to the same memory
1031 portion. We do that for MEM_REFs, so we only need to track
1032 the SSA_NAME of the pointer indirectly referenced. The algorithm
1033 simply is a walk over all instructions in dominator order. When
1034 we see an MEM_REF we determine if we've already seen a same
1035 ref anywhere up to the root of the dominator tree. If we do the
1036 current access can't trap. If we don't see any dominating access
1037 the current access might trap, but might also make later accesses
1038 non-trapping, so we remember it. We need to be careful with loads
1039 or stores, for instance a load might not trap, while a store would,
1040 so if we see a dominating read access this doesn't mean that a later
1041 write access would not trap. Hence we also need to differentiate the
1042 type of access(es) seen.
1044 ??? We currently are very conservative and assume that a load might
1045 trap even if a store doesn't (write-only memory). This probably is
1046 overly conservative. */
1048 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1049 through it was seen, which would constitute a no-trap region for
1050 same accesses. */
1051 struct name_to_bb
1053 tree ssa_name;
1054 basic_block bb;
1055 unsigned store : 1;
1058 /* The hash table for remembering what we've seen. */
1059 static htab_t seen_ssa_names;
1061 /* The set of MEM_REFs which can't trap. */
1062 static struct pointer_set_t *nontrap_set;
1064 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1065 static hashval_t
1066 name_to_bb_hash (const void *p)
1068 const_tree n = ((const struct name_to_bb *)p)->ssa_name;
1069 return htab_hash_pointer (n) ^ ((const struct name_to_bb *)p)->store;
1072 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1073 it's enough to simply compare them for equality. */
1074 static int
1075 name_to_bb_eq (const void *p1, const void *p2)
1077 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1078 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1080 return n1->ssa_name == n2->ssa_name && n1->store == n2->store;
1083 /* We see the expression EXP in basic block BB. If it's an interesting
1084 expression (an MEM_REF through an SSA_NAME) possibly insert the
1085 expression into the set NONTRAP or the hash table of seen expressions.
1086 STORE is true if this expression is on the LHS, otherwise it's on
1087 the RHS. */
1088 static void
1089 add_or_mark_expr (basic_block bb, tree exp,
1090 struct pointer_set_t *nontrap, bool store)
1092 if (TREE_CODE (exp) == MEM_REF
1093 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
1095 tree name = TREE_OPERAND (exp, 0);
1096 struct name_to_bb map;
1097 void **slot;
1098 struct name_to_bb *n2bb;
1099 basic_block found_bb = 0;
1101 /* Try to find the last seen MEM_REF through the same
1102 SSA_NAME, which can trap. */
1103 map.ssa_name = name;
1104 map.bb = 0;
1105 map.store = store;
1106 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1107 n2bb = (struct name_to_bb *) *slot;
1108 if (n2bb)
1109 found_bb = n2bb->bb;
1111 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1112 (it's in a basic block on the path from us to the dominator root)
1113 then we can't trap. */
1114 if (found_bb && found_bb->aux == (void *)1)
1116 pointer_set_insert (nontrap, exp);
1118 else
1120 /* EXP might trap, so insert it into the hash table. */
1121 if (n2bb)
1123 n2bb->bb = bb;
1125 else
1127 n2bb = XNEW (struct name_to_bb);
1128 n2bb->ssa_name = name;
1129 n2bb->bb = bb;
1130 n2bb->store = store;
1131 *slot = n2bb;
1137 /* Called by walk_dominator_tree, when entering the block BB. */
1138 static void
1139 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1141 gimple_stmt_iterator gsi;
1142 /* Mark this BB as being on the path to dominator root. */
1143 bb->aux = (void*)1;
1145 /* And walk the statements in order. */
1146 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1148 gimple stmt = gsi_stmt (gsi);
1150 if (is_gimple_assign (stmt))
1152 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1153 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1154 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt)) > 1)
1155 add_or_mark_expr (bb, gimple_assign_rhs2 (stmt), nontrap_set,
1156 false);
1161 /* Called by walk_dominator_tree, when basic block BB is exited. */
1162 static void
1163 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1165 /* This BB isn't on the path to dominator root anymore. */
1166 bb->aux = NULL;
1169 /* This is the entry point of gathering non trapping memory accesses.
1170 It will do a dominator walk over the whole function, and it will
1171 make use of the bb->aux pointers. It returns a set of trees
1172 (the MEM_REFs itself) which can't trap. */
1173 static struct pointer_set_t *
1174 get_non_trapping (void)
1176 struct pointer_set_t *nontrap;
1177 struct dom_walk_data walk_data;
1179 nontrap = pointer_set_create ();
1180 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1181 free);
1182 /* We're going to do a dominator walk, so ensure that we have
1183 dominance information. */
1184 calculate_dominance_info (CDI_DOMINATORS);
1186 /* Setup callbacks for the generic dominator tree walker. */
1187 nontrap_set = nontrap;
1188 walk_data.dom_direction = CDI_DOMINATORS;
1189 walk_data.initialize_block_local_data = NULL;
1190 walk_data.before_dom_children = nt_init_block;
1191 walk_data.after_dom_children = nt_fini_block;
1192 walk_data.global_data = NULL;
1193 walk_data.block_local_data_size = 0;
1195 init_walk_dominator_tree (&walk_data);
1196 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1197 fini_walk_dominator_tree (&walk_data);
1198 htab_delete (seen_ssa_names);
1200 return nontrap;
1203 /* Do the main work of conditional store replacement. We already know
1204 that the recognized pattern looks like so:
1206 split:
1207 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1208 MIDDLE_BB:
1209 something
1210 fallthrough (edge E0)
1211 JOIN_BB:
1212 some more
1214 We check that MIDDLE_BB contains only one store, that that store
1215 doesn't trap (not via NOTRAP, but via checking if an access to the same
1216 memory location dominates us) and that the store has a "simple" RHS. */
1218 static bool
1219 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1220 edge e0, edge e1, struct pointer_set_t *nontrap)
1222 gimple assign = last_and_only_stmt (middle_bb);
1223 tree lhs, rhs, name;
1224 gimple newphi, new_stmt;
1225 gimple_stmt_iterator gsi;
1226 source_location locus;
1228 /* Check if middle_bb contains of only one store. */
1229 if (!assign
1230 || !gimple_assign_single_p (assign))
1231 return false;
1233 locus = gimple_location (assign);
1234 lhs = gimple_assign_lhs (assign);
1235 rhs = gimple_assign_rhs1 (assign);
1236 if (TREE_CODE (lhs) != MEM_REF
1237 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1238 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1239 return false;
1241 /* Prove that we can move the store down. We could also check
1242 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1243 whose value is not available readily, which we want to avoid. */
1244 if (!pointer_set_contains (nontrap, lhs))
1245 return false;
1247 /* Now we've checked the constraints, so do the transformation:
1248 1) Remove the single store. */
1249 gsi = gsi_for_stmt (assign);
1250 unlink_stmt_vdef (assign);
1251 gsi_remove (&gsi, true);
1252 release_defs (assign);
1254 /* 2) Create a temporary where we can store the old content
1255 of the memory touched by the store, if we need to. */
1256 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1258 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1259 get_var_ann (condstoretemp);
1261 add_referenced_var (condstoretemp);
1263 /* 3) Insert a load from the memory of the store to the temporary
1264 on the edge which did not contain the store. */
1265 lhs = unshare_expr (lhs);
1266 new_stmt = gimple_build_assign (condstoretemp, lhs);
1267 name = make_ssa_name (condstoretemp, new_stmt);
1268 gimple_assign_set_lhs (new_stmt, name);
1269 gimple_set_location (new_stmt, locus);
1270 gsi_insert_on_edge (e1, new_stmt);
1272 /* 4) Create a PHI node at the join block, with one argument
1273 holding the old RHS, and the other holding the temporary
1274 where we stored the old memory contents. */
1275 newphi = create_phi_node (condstoretemp, join_bb);
1276 add_phi_arg (newphi, rhs, e0, locus);
1277 add_phi_arg (newphi, name, e1, locus);
1279 lhs = unshare_expr (lhs);
1280 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1282 /* 5) Insert that PHI node. */
1283 gsi = gsi_after_labels (join_bb);
1284 if (gsi_end_p (gsi))
1286 gsi = gsi_last_bb (join_bb);
1287 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1289 else
1290 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1292 return true;
1295 /* Do the main work of conditional store replacement. We already know
1296 that the recognized pattern looks like so:
1298 split:
1299 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1300 THEN_BB:
1301 X = Y;
1302 goto JOIN_BB;
1303 ELSE_BB:
1304 X = Z;
1305 fallthrough (edge E0)
1306 JOIN_BB:
1307 some more
1309 We check that THEN_BB and ELSE_BB contain only one store
1310 that the stores have a "simple" RHS. */
1312 static bool
1313 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1314 basic_block join_bb)
1316 gimple then_assign = last_and_only_stmt (then_bb);
1317 gimple else_assign = last_and_only_stmt (else_bb);
1318 tree lhs_base, lhs, then_rhs, else_rhs;
1319 source_location then_locus, else_locus;
1320 gimple_stmt_iterator gsi;
1321 gimple newphi, new_stmt;
1323 /* Check if then_bb and else_bb contain only one store each. */
1324 if (then_assign == NULL
1325 || !gimple_assign_single_p (then_assign)
1326 || else_assign == NULL
1327 || !gimple_assign_single_p (else_assign))
1328 return false;
1330 lhs = gimple_assign_lhs (then_assign);
1331 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1332 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1333 return false;
1335 lhs_base = get_base_address (lhs);
1336 if (lhs_base == NULL_TREE
1337 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1338 return false;
1340 then_rhs = gimple_assign_rhs1 (then_assign);
1341 else_rhs = gimple_assign_rhs1 (else_assign);
1342 then_locus = gimple_location (then_assign);
1343 else_locus = gimple_location (else_assign);
1345 /* Now we've checked the constraints, so do the transformation:
1346 1) Remove the stores. */
1347 gsi = gsi_for_stmt (then_assign);
1348 unlink_stmt_vdef (then_assign);
1349 gsi_remove (&gsi, true);
1350 release_defs (then_assign);
1352 gsi = gsi_for_stmt (else_assign);
1353 unlink_stmt_vdef (else_assign);
1354 gsi_remove (&gsi, true);
1355 release_defs (else_assign);
1357 /* 2) Create a temporary where we can store the old content
1358 of the memory touched by the store, if we need to. */
1359 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1361 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1362 get_var_ann (condstoretemp);
1364 add_referenced_var (condstoretemp);
1366 /* 3) Create a PHI node at the join block, with one argument
1367 holding the old RHS, and the other holding the temporary
1368 where we stored the old memory contents. */
1369 newphi = create_phi_node (condstoretemp, join_bb);
1370 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1371 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1373 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1375 /* 4) Insert that PHI node. */
1376 gsi = gsi_after_labels (join_bb);
1377 if (gsi_end_p (gsi))
1379 gsi = gsi_last_bb (join_bb);
1380 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1382 else
1383 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1385 return true;
1388 /* Always do these optimizations if we have SSA
1389 trees to work on. */
1390 static bool
1391 gate_phiopt (void)
1393 return 1;
1396 struct gimple_opt_pass pass_phiopt =
1399 GIMPLE_PASS,
1400 "phiopt", /* name */
1401 gate_phiopt, /* gate */
1402 tree_ssa_phiopt, /* execute */
1403 NULL, /* sub */
1404 NULL, /* next */
1405 0, /* static_pass_number */
1406 TV_TREE_PHIOPT, /* tv_id */
1407 PROP_cfg | PROP_ssa, /* properties_required */
1408 0, /* properties_provided */
1409 0, /* properties_destroyed */
1410 0, /* todo_flags_start */
1411 TODO_dump_func
1412 | TODO_ggc_collect
1413 | TODO_verify_ssa
1414 | TODO_verify_flow
1415 | TODO_verify_stmts /* todo_flags_finish */
1419 static bool
1420 gate_cselim (void)
1422 return flag_tree_cselim;
1425 struct gimple_opt_pass pass_cselim =
1428 GIMPLE_PASS,
1429 "cselim", /* name */
1430 gate_cselim, /* gate */
1431 tree_ssa_cs_elim, /* execute */
1432 NULL, /* sub */
1433 NULL, /* next */
1434 0, /* static_pass_number */
1435 TV_TREE_PHIOPT, /* tv_id */
1436 PROP_cfg | PROP_ssa, /* properties_required */
1437 0, /* properties_provided */
1438 0, /* properties_destroyed */
1439 0, /* todo_flags_start */
1440 TODO_dump_func
1441 | TODO_ggc_collect
1442 | TODO_verify_ssa
1443 | TODO_verify_flow
1444 | TODO_verify_stmts /* todo_flags_finish */