1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "tree-pass.h"
31 #include "stor-layout.h"
33 #include "dwarf2out.h"
34 #include "dwarf2asm.h"
35 #include "common/common-target.h"
37 #include "except.h" /* expand_builtin_dwarf_sp_column */
38 #include "expr.h" /* init_return_column_size */
39 #include "output.h" /* asm_out_file */
40 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
43 /* ??? Poison these here until it can be done generically. They've been
44 totally replaced in this file; make sure it stays that way. */
45 #undef DWARF2_UNWIND_INFO
46 #undef DWARF2_FRAME_INFO
47 #if (GCC_VERSION >= 3000)
48 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
51 #ifndef INCOMING_RETURN_ADDR_RTX
52 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
55 /* Maximum size (in bytes) of an artificially generated label. */
56 #define MAX_ARTIFICIAL_LABEL_BYTES 30
58 /* A collected description of an entire row of the abstract CFI table. */
59 struct GTY(()) dw_cfi_row
61 /* The expression that computes the CFA, expressed in two different ways.
62 The CFA member for the simple cases, and the full CFI expression for
63 the complex cases. The later will be a DW_CFA_cfa_expression. */
67 /* The expressions for any register column that is saved. */
71 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
72 struct GTY(()) reg_saved_in_data
{
78 /* Since we no longer have a proper CFG, we're going to create a facsimile
79 of one on the fly while processing the frame-related insns.
81 We create dw_trace_info structures for each extended basic block beginning
82 and ending at a "save point". Save points are labels, barriers, certain
83 notes, and of course the beginning and end of the function.
85 As we encounter control transfer insns, we propagate the "current"
86 row state across the edges to the starts of traces. When checking is
87 enabled, we validate that we propagate the same data from all sources.
89 All traces are members of the TRACE_INFO array, in the order in which
90 they appear in the instruction stream.
92 All save points are present in the TRACE_INDEX hash, mapping the insn
93 starting a trace to the dw_trace_info describing the trace. */
97 /* The insn that begins the trace. */
100 /* The row state at the beginning and end of the trace. */
101 dw_cfi_row
*beg_row
, *end_row
;
103 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
104 while scanning insns. However, the args_size value is irrelevant at
105 any point except can_throw_internal_p insns. Therefore the "delay"
106 sizes the values that must actually be emitted for this trace. */
107 HOST_WIDE_INT beg_true_args_size
, end_true_args_size
;
108 HOST_WIDE_INT beg_delay_args_size
, end_delay_args_size
;
110 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
113 /* The following variables contain data used in interpreting frame related
114 expressions. These are not part of the "real" row state as defined by
115 Dwarf, but it seems like they need to be propagated into a trace in case
116 frame related expressions have been sunk. */
117 /* ??? This seems fragile. These variables are fragments of a larger
118 expression. If we do not keep the entire expression together, we risk
119 not being able to put it together properly. Consider forcing targets
120 to generate self-contained expressions and dropping all of the magic
121 interpretation code in this file. Or at least refusing to shrink wrap
122 any frame related insn that doesn't contain a complete expression. */
124 /* The register used for saving registers to the stack, and its offset
126 dw_cfa_location cfa_store
;
128 /* A temporary register holding an integral value used in adjusting SP
129 or setting up the store_reg. The "offset" field holds the integer
130 value, not an offset. */
131 dw_cfa_location cfa_temp
;
133 /* A set of registers saved in other registers. This is the inverse of
134 the row->reg_save info, if the entry is a DW_CFA_register. This is
135 implemented as a flat array because it normally contains zero or 1
136 entry, depending on the target. IA-64 is the big spender here, using
137 a maximum of 5 entries. */
138 vec
<reg_saved_in_data
> regs_saved_in_regs
;
140 /* An identifier for this trace. Used only for debugging dumps. */
143 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
144 bool switch_sections
;
146 /* True if we've seen different values incoming to beg_true_args_size. */
147 bool args_size_undefined
;
151 /* Hashtable helpers. */
153 struct trace_info_hasher
: nofree_ptr_hash
<dw_trace_info
>
155 static inline hashval_t
hash (const dw_trace_info
*);
156 static inline bool equal (const dw_trace_info
*, const dw_trace_info
*);
160 trace_info_hasher::hash (const dw_trace_info
*ti
)
162 return INSN_UID (ti
->head
);
166 trace_info_hasher::equal (const dw_trace_info
*a
, const dw_trace_info
*b
)
168 return a
->head
== b
->head
;
172 /* The variables making up the pseudo-cfg, as described above. */
173 static vec
<dw_trace_info
> trace_info
;
174 static vec
<dw_trace_info
*> trace_work_list
;
175 static hash_table
<trace_info_hasher
> *trace_index
;
177 /* A vector of call frame insns for the CIE. */
180 /* The state of the first row of the FDE table, which includes the
181 state provided by the CIE. */
182 static GTY(()) dw_cfi_row
*cie_cfi_row
;
184 static GTY(()) reg_saved_in_data
*cie_return_save
;
186 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
188 /* The insn after which a new CFI note should be emitted. */
189 static rtx_insn
*add_cfi_insn
;
191 /* When non-null, add_cfi will add the CFI to this vector. */
192 static cfi_vec
*add_cfi_vec
;
194 /* The current instruction trace. */
195 static dw_trace_info
*cur_trace
;
197 /* The current, i.e. most recently generated, row of the CFI table. */
198 static dw_cfi_row
*cur_row
;
200 /* A copy of the current CFA, for use during the processing of a
202 static dw_cfa_location
*cur_cfa
;
204 /* We delay emitting a register save until either (a) we reach the end
205 of the prologue or (b) the register is clobbered. This clusters
206 register saves so that there are fewer pc advances. */
208 struct queued_reg_save
{
211 HOST_WIDE_INT cfa_offset
;
215 static vec
<queued_reg_save
> queued_reg_saves
;
217 /* True if any CFI directives were emitted at the current insn. */
218 static bool any_cfis_emitted
;
220 /* Short-hand for commonly used register numbers. */
221 static unsigned dw_stack_pointer_regnum
;
222 static unsigned dw_frame_pointer_regnum
;
224 /* Hook used by __throw. */
227 expand_builtin_dwarf_sp_column (void)
229 unsigned int dwarf_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
230 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum
, 1));
233 /* MEM is a memory reference for the register size table, each element of
234 which has mode MODE. Initialize column C as a return address column. */
237 init_return_column_size (machine_mode mode
, rtx mem
, unsigned int c
)
239 HOST_WIDE_INT offset
= c
* GET_MODE_SIZE (mode
);
240 HOST_WIDE_INT size
= GET_MODE_SIZE (Pmode
);
241 emit_move_insn (adjust_address (mem
, mode
, offset
),
242 gen_int_mode (size
, mode
));
245 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
246 init_one_dwarf_reg_size to communicate on what has been done by the
249 struct init_one_dwarf_reg_state
251 /* Whether the dwarf return column was initialized. */
252 bool wrote_return_column
;
254 /* For each hard register REGNO, whether init_one_dwarf_reg_size
255 was given REGNO to process already. */
256 bool processed_regno
[FIRST_PSEUDO_REGISTER
];
260 /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
261 initialize the dwarf register size table entry corresponding to register
262 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
263 use for the size entry to initialize, and INIT_STATE is the communication
264 datastructure conveying what we're doing to our caller. */
267 void init_one_dwarf_reg_size (int regno
, machine_mode regmode
,
268 rtx table
, machine_mode slotmode
,
269 init_one_dwarf_reg_state
*init_state
)
271 const unsigned int dnum
= DWARF_FRAME_REGNUM (regno
);
272 const unsigned int rnum
= DWARF2_FRAME_REG_OUT (dnum
, 1);
273 const unsigned int dcol
= DWARF_REG_TO_UNWIND_COLUMN (rnum
);
275 const HOST_WIDE_INT slotoffset
= dcol
* GET_MODE_SIZE (slotmode
);
276 const HOST_WIDE_INT regsize
= GET_MODE_SIZE (regmode
);
278 init_state
->processed_regno
[regno
] = true;
280 if (rnum
>= DWARF_FRAME_REGISTERS
)
283 if (dnum
== DWARF_FRAME_RETURN_COLUMN
)
285 if (regmode
== VOIDmode
)
287 init_state
->wrote_return_column
= true;
293 emit_move_insn (adjust_address (table
, slotmode
, slotoffset
),
294 gen_int_mode (regsize
, slotmode
));
297 /* Generate code to initialize the dwarf register size table located
298 at the provided ADDRESS. */
301 expand_builtin_init_dwarf_reg_sizes (tree address
)
304 machine_mode mode
= TYPE_MODE (char_type_node
);
305 rtx addr
= expand_normal (address
);
306 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
308 init_one_dwarf_reg_state init_state
;
310 memset ((char *)&init_state
, 0, sizeof (init_state
));
312 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
314 machine_mode save_mode
;
317 /* No point in processing a register multiple times. This could happen
318 with register spans, e.g. when a reg is first processed as a piece of
319 a span, then as a register on its own later on. */
321 if (init_state
.processed_regno
[i
])
324 save_mode
= targetm
.dwarf_frame_reg_mode (i
);
325 span
= targetm
.dwarf_register_span (gen_rtx_REG (save_mode
, i
));
328 init_one_dwarf_reg_size (i
, save_mode
, mem
, mode
, &init_state
);
331 for (int si
= 0; si
< XVECLEN (span
, 0); si
++)
333 rtx reg
= XVECEXP (span
, 0, si
);
335 init_one_dwarf_reg_size
336 (REGNO (reg
), GET_MODE (reg
), mem
, mode
, &init_state
);
341 if (!init_state
.wrote_return_column
)
342 init_return_column_size (mode
, mem
, DWARF_FRAME_RETURN_COLUMN
);
344 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
345 init_return_column_size (mode
, mem
, DWARF_ALT_FRAME_RETURN_COLUMN
);
348 targetm
.init_dwarf_reg_sizes_extra (address
);
352 static dw_trace_info
*
353 get_trace_info (rtx_insn
*insn
)
357 return trace_index
->find_with_hash (&dummy
, INSN_UID (insn
));
361 save_point_p (rtx_insn
*insn
)
363 /* Labels, except those that are really jump tables. */
365 return inside_basic_block_p (insn
);
367 /* We split traces at the prologue/epilogue notes because those
368 are points at which the unwind info is usually stable. This
369 makes it easier to find spots with identical unwind info so
370 that we can use remember/restore_state opcodes. */
372 switch (NOTE_KIND (insn
))
374 case NOTE_INSN_PROLOGUE_END
:
375 case NOTE_INSN_EPILOGUE_BEG
:
382 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
384 static inline HOST_WIDE_INT
385 div_data_align (HOST_WIDE_INT off
)
387 HOST_WIDE_INT r
= off
/ DWARF_CIE_DATA_ALIGNMENT
;
388 gcc_assert (r
* DWARF_CIE_DATA_ALIGNMENT
== off
);
392 /* Return true if we need a signed version of a given opcode
393 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
396 need_data_align_sf_opcode (HOST_WIDE_INT off
)
398 return DWARF_CIE_DATA_ALIGNMENT
< 0 ? off
> 0 : off
< 0;
401 /* Return a pointer to a newly allocated Call Frame Instruction. */
403 static inline dw_cfi_ref
406 dw_cfi_ref cfi
= ggc_alloc
<dw_cfi_node
> ();
408 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
409 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
414 /* Return a newly allocated CFI row, with no defined data. */
419 dw_cfi_row
*row
= ggc_cleared_alloc
<dw_cfi_row
> ();
421 row
->cfa
.reg
= INVALID_REGNUM
;
426 /* Return a copy of an existing CFI row. */
429 copy_cfi_row (dw_cfi_row
*src
)
431 dw_cfi_row
*dst
= ggc_alloc
<dw_cfi_row
> ();
434 dst
->reg_save
= vec_safe_copy (src
->reg_save
);
439 /* Generate a new label for the CFI info to refer to. */
442 dwarf2out_cfi_label (void)
444 int num
= dwarf2out_cfi_label_num
++;
447 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", num
);
449 return xstrdup (label
);
452 /* Add CFI either to the current insn stream or to a vector, or both. */
455 add_cfi (dw_cfi_ref cfi
)
457 any_cfis_emitted
= true;
459 if (add_cfi_insn
!= NULL
)
461 add_cfi_insn
= emit_note_after (NOTE_INSN_CFI
, add_cfi_insn
);
462 NOTE_CFI (add_cfi_insn
) = cfi
;
465 if (add_cfi_vec
!= NULL
)
466 vec_safe_push (*add_cfi_vec
, cfi
);
470 add_cfi_args_size (HOST_WIDE_INT size
)
472 dw_cfi_ref cfi
= new_cfi ();
474 /* While we can occasionally have args_size < 0 internally, this state
475 should not persist at a point we actually need an opcode. */
476 gcc_assert (size
>= 0);
478 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
479 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
485 add_cfi_restore (unsigned reg
)
487 dw_cfi_ref cfi
= new_cfi ();
489 cfi
->dw_cfi_opc
= (reg
& ~0x3f ? DW_CFA_restore_extended
: DW_CFA_restore
);
490 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
495 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
496 that the register column is no longer saved. */
499 update_row_reg_save (dw_cfi_row
*row
, unsigned column
, dw_cfi_ref cfi
)
501 if (vec_safe_length (row
->reg_save
) <= column
)
502 vec_safe_grow_cleared (row
->reg_save
, column
+ 1);
503 (*row
->reg_save
)[column
] = cfi
;
506 /* This function fills in aa dw_cfa_location structure from a dwarf location
507 descriptor sequence. */
510 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_node
*loc
)
512 struct dw_loc_descr_node
*ptr
;
514 cfa
->base_offset
= 0;
518 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
520 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
556 cfa
->reg
= op
- DW_OP_reg0
;
559 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
593 cfa
->reg
= op
- DW_OP_breg0
;
594 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
597 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
598 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
603 case DW_OP_plus_uconst
:
604 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
612 /* Find the previous value for the CFA, iteratively. CFI is the opcode
613 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
614 one level of remember/restore state processing. */
617 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
, dw_cfa_location
*remember
)
619 switch (cfi
->dw_cfi_opc
)
621 case DW_CFA_def_cfa_offset
:
622 case DW_CFA_def_cfa_offset_sf
:
623 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
625 case DW_CFA_def_cfa_register
:
626 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
629 case DW_CFA_def_cfa_sf
:
630 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
631 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
633 case DW_CFA_def_cfa_expression
:
634 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
637 case DW_CFA_remember_state
:
638 gcc_assert (!remember
->in_use
);
640 remember
->in_use
= 1;
642 case DW_CFA_restore_state
:
643 gcc_assert (remember
->in_use
);
645 remember
->in_use
= 0;
653 /* Determine if two dw_cfa_location structures define the same data. */
656 cfa_equal_p (const dw_cfa_location
*loc1
, const dw_cfa_location
*loc2
)
658 return (loc1
->reg
== loc2
->reg
659 && loc1
->offset
== loc2
->offset
660 && loc1
->indirect
== loc2
->indirect
661 && (loc1
->indirect
== 0
662 || loc1
->base_offset
== loc2
->base_offset
));
665 /* Determine if two CFI operands are identical. */
668 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t
, dw_cfi_oprnd
*a
, dw_cfi_oprnd
*b
)
672 case dw_cfi_oprnd_unused
:
674 case dw_cfi_oprnd_reg_num
:
675 return a
->dw_cfi_reg_num
== b
->dw_cfi_reg_num
;
676 case dw_cfi_oprnd_offset
:
677 return a
->dw_cfi_offset
== b
->dw_cfi_offset
;
678 case dw_cfi_oprnd_addr
:
679 return (a
->dw_cfi_addr
== b
->dw_cfi_addr
680 || strcmp (a
->dw_cfi_addr
, b
->dw_cfi_addr
) == 0);
681 case dw_cfi_oprnd_loc
:
682 return loc_descr_equal_p (a
->dw_cfi_loc
, b
->dw_cfi_loc
);
687 /* Determine if two CFI entries are identical. */
690 cfi_equal_p (dw_cfi_ref a
, dw_cfi_ref b
)
692 enum dwarf_call_frame_info opc
;
694 /* Make things easier for our callers, including missing operands. */
697 if (a
== NULL
|| b
== NULL
)
700 /* Obviously, the opcodes must match. */
702 if (opc
!= b
->dw_cfi_opc
)
705 /* Compare the two operands, re-using the type of the operands as
706 already exposed elsewhere. */
707 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc
),
708 &a
->dw_cfi_oprnd1
, &b
->dw_cfi_oprnd1
)
709 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc
),
710 &a
->dw_cfi_oprnd2
, &b
->dw_cfi_oprnd2
));
713 /* Determine if two CFI_ROW structures are identical. */
716 cfi_row_equal_p (dw_cfi_row
*a
, dw_cfi_row
*b
)
718 size_t i
, n_a
, n_b
, n_max
;
722 if (!cfi_equal_p (a
->cfa_cfi
, b
->cfa_cfi
))
725 else if (!cfa_equal_p (&a
->cfa
, &b
->cfa
))
728 n_a
= vec_safe_length (a
->reg_save
);
729 n_b
= vec_safe_length (b
->reg_save
);
730 n_max
= MAX (n_a
, n_b
);
732 for (i
= 0; i
< n_max
; ++i
)
734 dw_cfi_ref r_a
= NULL
, r_b
= NULL
;
737 r_a
= (*a
->reg_save
)[i
];
739 r_b
= (*b
->reg_save
)[i
];
741 if (!cfi_equal_p (r_a
, r_b
))
748 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
749 what opcode to emit. Returns the CFI opcode to effect the change, or
750 NULL if NEW_CFA == OLD_CFA. */
753 def_cfa_0 (dw_cfa_location
*old_cfa
, dw_cfa_location
*new_cfa
)
757 /* If nothing changed, no need to issue any call frame instructions. */
758 if (cfa_equal_p (old_cfa
, new_cfa
))
763 if (new_cfa
->reg
== old_cfa
->reg
&& !new_cfa
->indirect
&& !old_cfa
->indirect
)
765 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
766 the CFA register did not change but the offset did. The data
767 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
768 in the assembler via the .cfi_def_cfa_offset directive. */
769 if (new_cfa
->offset
< 0)
770 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset_sf
;
772 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
773 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= new_cfa
->offset
;
775 else if (new_cfa
->offset
== old_cfa
->offset
776 && old_cfa
->reg
!= INVALID_REGNUM
777 && !new_cfa
->indirect
778 && !old_cfa
->indirect
)
780 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
781 indicating the CFA register has changed to <register> but the
782 offset has not changed. */
783 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
784 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
786 else if (new_cfa
->indirect
== 0)
788 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
789 indicating the CFA register has changed to <register> with
790 the specified offset. The data factoring for DW_CFA_def_cfa_sf
791 happens in output_cfi, or in the assembler via the .cfi_def_cfa
793 if (new_cfa
->offset
< 0)
794 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_sf
;
796 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
797 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= new_cfa
->reg
;
798 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= new_cfa
->offset
;
802 /* Construct a DW_CFA_def_cfa_expression instruction to
803 calculate the CFA using a full location expression since no
804 register-offset pair is available. */
805 struct dw_loc_descr_node
*loc_list
;
807 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
808 loc_list
= build_cfa_loc (new_cfa
, 0);
809 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
815 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
818 def_cfa_1 (dw_cfa_location
*new_cfa
)
822 if (cur_trace
->cfa_store
.reg
== new_cfa
->reg
&& new_cfa
->indirect
== 0)
823 cur_trace
->cfa_store
.offset
= new_cfa
->offset
;
825 cfi
= def_cfa_0 (&cur_row
->cfa
, new_cfa
);
828 cur_row
->cfa
= *new_cfa
;
829 cur_row
->cfa_cfi
= (cfi
->dw_cfi_opc
== DW_CFA_def_cfa_expression
836 /* Add the CFI for saving a register. REG is the CFA column number.
837 If SREG is -1, the register is saved at OFFSET from the CFA;
838 otherwise it is saved in SREG. */
841 reg_save (unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
843 dw_fde_ref fde
= cfun
? cfun
->fde
: NULL
;
844 dw_cfi_ref cfi
= new_cfi ();
846 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
848 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
850 && fde
->stack_realign
851 && sreg
== INVALID_REGNUM
)
853 cfi
->dw_cfi_opc
= DW_CFA_expression
;
854 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
855 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
856 = build_cfa_aligned_loc (&cur_row
->cfa
, offset
,
857 fde
->stack_realignment
);
859 else if (sreg
== INVALID_REGNUM
)
861 if (need_data_align_sf_opcode (offset
))
862 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
863 else if (reg
& ~0x3f)
864 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
866 cfi
->dw_cfi_opc
= DW_CFA_offset
;
867 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
869 else if (sreg
== reg
)
871 /* While we could emit something like DW_CFA_same_value or
872 DW_CFA_restore, we never expect to see something like that
873 in a prologue. This is more likely to be a bug. A backend
874 can always bypass this by using REG_CFA_RESTORE directly. */
879 cfi
->dw_cfi_opc
= DW_CFA_register
;
880 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
884 update_row_reg_save (cur_row
, reg
, cfi
);
887 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
888 and adjust data structures to match. */
891 notice_args_size (rtx_insn
*insn
)
893 HOST_WIDE_INT args_size
, delta
;
896 note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL
);
900 args_size
= INTVAL (XEXP (note
, 0));
901 delta
= args_size
- cur_trace
->end_true_args_size
;
905 cur_trace
->end_true_args_size
= args_size
;
907 /* If the CFA is computed off the stack pointer, then we must adjust
908 the computation of the CFA as well. */
909 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
911 gcc_assert (!cur_cfa
->indirect
);
913 /* Convert a change in args_size (always a positive in the
914 direction of stack growth) to a change in stack pointer. */
915 if (!STACK_GROWS_DOWNWARD
)
918 cur_cfa
->offset
+= delta
;
922 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
923 data within the trace related to EH insns and args_size. */
926 notice_eh_throw (rtx_insn
*insn
)
928 HOST_WIDE_INT args_size
;
930 args_size
= cur_trace
->end_true_args_size
;
931 if (cur_trace
->eh_head
== NULL
)
933 cur_trace
->eh_head
= insn
;
934 cur_trace
->beg_delay_args_size
= args_size
;
935 cur_trace
->end_delay_args_size
= args_size
;
937 else if (cur_trace
->end_delay_args_size
!= args_size
)
939 cur_trace
->end_delay_args_size
= args_size
;
941 /* ??? If the CFA is the stack pointer, search backward for the last
942 CFI note and insert there. Given that the stack changed for the
943 args_size change, there *must* be such a note in between here and
945 add_cfi_args_size (args_size
);
949 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
950 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
951 used in places where rtl is prohibited. */
953 static inline unsigned
954 dwf_regno (const_rtx reg
)
956 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
957 return DWARF_FRAME_REGNUM (REGNO (reg
));
960 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
963 compare_reg_or_pc (rtx x
, rtx y
)
965 if (REG_P (x
) && REG_P (y
))
966 return REGNO (x
) == REGNO (y
);
970 /* Record SRC as being saved in DEST. DEST may be null to delete an
971 existing entry. SRC may be a register or PC_RTX. */
974 record_reg_saved_in_reg (rtx dest
, rtx src
)
976 reg_saved_in_data
*elt
;
979 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, elt
)
980 if (compare_reg_or_pc (elt
->orig_reg
, src
))
983 cur_trace
->regs_saved_in_regs
.unordered_remove (i
);
985 elt
->saved_in_reg
= dest
;
992 reg_saved_in_data e
= {src
, dest
};
993 cur_trace
->regs_saved_in_regs
.safe_push (e
);
996 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
997 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1000 queue_reg_save (rtx reg
, rtx sreg
, HOST_WIDE_INT offset
)
1003 queued_reg_save e
= {reg
, sreg
, offset
};
1006 /* Duplicates waste space, but it's also necessary to remove them
1007 for correctness, since the queue gets output in reverse order. */
1008 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1009 if (compare_reg_or_pc (q
->reg
, reg
))
1015 queued_reg_saves
.safe_push (e
);
1018 /* Output all the entries in QUEUED_REG_SAVES. */
1021 dwarf2out_flush_queued_reg_saves (void)
1026 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1028 unsigned int reg
, sreg
;
1030 record_reg_saved_in_reg (q
->saved_reg
, q
->reg
);
1032 if (q
->reg
== pc_rtx
)
1033 reg
= DWARF_FRAME_RETURN_COLUMN
;
1035 reg
= dwf_regno (q
->reg
);
1037 sreg
= dwf_regno (q
->saved_reg
);
1039 sreg
= INVALID_REGNUM
;
1040 reg_save (reg
, sreg
, q
->cfa_offset
);
1043 queued_reg_saves
.truncate (0);
1046 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1047 location for? Or, does it clobber a register which we've previously
1048 said that some other register is saved in, and for which we now
1049 have a new location for? */
1052 clobbers_queued_reg_save (const_rtx insn
)
1057 FOR_EACH_VEC_ELT (queued_reg_saves
, iq
, q
)
1060 reg_saved_in_data
*rir
;
1062 if (modified_in_p (q
->reg
, insn
))
1065 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, ir
, rir
)
1066 if (compare_reg_or_pc (q
->reg
, rir
->orig_reg
)
1067 && modified_in_p (rir
->saved_in_reg
, insn
))
1074 /* What register, if any, is currently saved in REG? */
1077 reg_saved_in (rtx reg
)
1079 unsigned int regn
= REGNO (reg
);
1081 reg_saved_in_data
*rir
;
1084 FOR_EACH_VEC_ELT (queued_reg_saves
, i
, q
)
1085 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1088 FOR_EACH_VEC_ELT (cur_trace
->regs_saved_in_regs
, i
, rir
)
1089 if (regn
== REGNO (rir
->saved_in_reg
))
1090 return rir
->orig_reg
;
1095 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1098 dwarf2out_frame_debug_def_cfa (rtx pat
)
1100 memset (cur_cfa
, 0, sizeof (*cur_cfa
));
1102 if (GET_CODE (pat
) == PLUS
)
1104 cur_cfa
->offset
= INTVAL (XEXP (pat
, 1));
1105 pat
= XEXP (pat
, 0);
1109 cur_cfa
->indirect
= 1;
1110 pat
= XEXP (pat
, 0);
1111 if (GET_CODE (pat
) == PLUS
)
1113 cur_cfa
->base_offset
= INTVAL (XEXP (pat
, 1));
1114 pat
= XEXP (pat
, 0);
1117 /* ??? If this fails, we could be calling into the _loc functions to
1118 define a full expression. So far no port does that. */
1119 gcc_assert (REG_P (pat
));
1120 cur_cfa
->reg
= dwf_regno (pat
);
1123 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1126 dwarf2out_frame_debug_adjust_cfa (rtx pat
)
1130 gcc_assert (GET_CODE (pat
) == SET
);
1131 dest
= XEXP (pat
, 0);
1132 src
= XEXP (pat
, 1);
1134 switch (GET_CODE (src
))
1137 gcc_assert (dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
);
1138 cur_cfa
->offset
-= INTVAL (XEXP (src
, 1));
1148 cur_cfa
->reg
= dwf_regno (dest
);
1149 gcc_assert (cur_cfa
->indirect
== 0);
1152 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1155 dwarf2out_frame_debug_cfa_offset (rtx set
)
1157 HOST_WIDE_INT offset
;
1158 rtx src
, addr
, span
;
1159 unsigned int sregno
;
1161 src
= XEXP (set
, 1);
1162 addr
= XEXP (set
, 0);
1163 gcc_assert (MEM_P (addr
));
1164 addr
= XEXP (addr
, 0);
1166 /* As documented, only consider extremely simple addresses. */
1167 switch (GET_CODE (addr
))
1170 gcc_assert (dwf_regno (addr
) == cur_cfa
->reg
);
1171 offset
= -cur_cfa
->offset
;
1174 gcc_assert (dwf_regno (XEXP (addr
, 0)) == cur_cfa
->reg
);
1175 offset
= INTVAL (XEXP (addr
, 1)) - cur_cfa
->offset
;
1184 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1188 span
= targetm
.dwarf_register_span (src
);
1189 sregno
= dwf_regno (src
);
1192 /* ??? We'd like to use queue_reg_save, but we need to come up with
1193 a different flushing heuristic for epilogues. */
1195 reg_save (sregno
, INVALID_REGNUM
, offset
);
1198 /* We have a PARALLEL describing where the contents of SRC live.
1199 Adjust the offset for each piece of the PARALLEL. */
1200 HOST_WIDE_INT span_offset
= offset
;
1202 gcc_assert (GET_CODE (span
) == PARALLEL
);
1204 const int par_len
= XVECLEN (span
, 0);
1205 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1207 rtx elem
= XVECEXP (span
, 0, par_index
);
1208 sregno
= dwf_regno (src
);
1209 reg_save (sregno
, INVALID_REGNUM
, span_offset
);
1210 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
1215 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1218 dwarf2out_frame_debug_cfa_register (rtx set
)
1221 unsigned sregno
, dregno
;
1223 src
= XEXP (set
, 1);
1224 dest
= XEXP (set
, 0);
1226 record_reg_saved_in_reg (dest
, src
);
1228 sregno
= DWARF_FRAME_RETURN_COLUMN
;
1230 sregno
= dwf_regno (src
);
1232 dregno
= dwf_regno (dest
);
1234 /* ??? We'd like to use queue_reg_save, but we need to come up with
1235 a different flushing heuristic for epilogues. */
1236 reg_save (sregno
, dregno
, 0);
1239 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1242 dwarf2out_frame_debug_cfa_expression (rtx set
)
1244 rtx src
, dest
, span
;
1245 dw_cfi_ref cfi
= new_cfi ();
1248 dest
= SET_DEST (set
);
1249 src
= SET_SRC (set
);
1251 gcc_assert (REG_P (src
));
1252 gcc_assert (MEM_P (dest
));
1254 span
= targetm
.dwarf_register_span (src
);
1257 regno
= dwf_regno (src
);
1259 cfi
->dw_cfi_opc
= DW_CFA_expression
;
1260 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= regno
;
1261 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
1262 = mem_loc_descriptor (XEXP (dest
, 0), get_address_mode (dest
),
1263 GET_MODE (dest
), VAR_INIT_STATUS_INITIALIZED
);
1265 /* ??? We'd like to use queue_reg_save, were the interface different,
1266 and, as above, we could manage flushing for epilogues. */
1268 update_row_reg_save (cur_row
, regno
, cfi
);
1271 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION
1275 dwarf2out_frame_debug_cfa_val_expression (rtx set
)
1277 rtx dest
= SET_DEST (set
);
1278 gcc_assert (REG_P (dest
));
1280 rtx span
= targetm
.dwarf_register_span (dest
);
1283 rtx src
= SET_SRC (set
);
1284 dw_cfi_ref cfi
= new_cfi ();
1285 cfi
->dw_cfi_opc
= DW_CFA_val_expression
;
1286 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= dwf_regno (dest
);
1287 cfi
->dw_cfi_oprnd2
.dw_cfi_loc
1288 = mem_loc_descriptor (src
, GET_MODE (src
),
1289 GET_MODE (dest
), VAR_INIT_STATUS_INITIALIZED
);
1291 update_row_reg_save (cur_row
, dwf_regno (dest
), cfi
);
1294 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1297 dwarf2out_frame_debug_cfa_restore (rtx reg
)
1299 gcc_assert (REG_P (reg
));
1301 rtx span
= targetm
.dwarf_register_span (reg
);
1304 unsigned int regno
= dwf_regno (reg
);
1305 add_cfi_restore (regno
);
1306 update_row_reg_save (cur_row
, regno
, NULL
);
1310 /* We have a PARALLEL describing where the contents of REG live.
1311 Restore the register for each piece of the PARALLEL. */
1312 gcc_assert (GET_CODE (span
) == PARALLEL
);
1314 const int par_len
= XVECLEN (span
, 0);
1315 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1317 reg
= XVECEXP (span
, 0, par_index
);
1318 gcc_assert (REG_P (reg
));
1319 unsigned int regno
= dwf_regno (reg
);
1320 add_cfi_restore (regno
);
1321 update_row_reg_save (cur_row
, regno
, NULL
);
1326 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1327 ??? Perhaps we should note in the CIE where windows are saved (instead of
1328 assuming 0(cfa)) and what registers are in the window. */
1331 dwarf2out_frame_debug_cfa_window_save (void)
1333 dw_cfi_ref cfi
= new_cfi ();
1335 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
1339 /* Record call frame debugging information for an expression EXPR,
1340 which either sets SP or FP (adjusting how we calculate the frame
1341 address) or saves a register to the stack or another register.
1342 LABEL indicates the address of EXPR.
1344 This function encodes a state machine mapping rtxes to actions on
1345 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1346 users need not read the source code.
1348 The High-Level Picture
1350 Changes in the register we use to calculate the CFA: Currently we
1351 assume that if you copy the CFA register into another register, we
1352 should take the other one as the new CFA register; this seems to
1353 work pretty well. If it's wrong for some target, it's simple
1354 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1356 Changes in the register we use for saving registers to the stack:
1357 This is usually SP, but not always. Again, we deduce that if you
1358 copy SP into another register (and SP is not the CFA register),
1359 then the new register is the one we will be using for register
1360 saves. This also seems to work.
1362 Register saves: There's not much guesswork about this one; if
1363 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1364 register save, and the register used to calculate the destination
1365 had better be the one we think we're using for this purpose.
1366 It's also assumed that a copy from a call-saved register to another
1367 register is saving that register if RTX_FRAME_RELATED_P is set on
1368 that instruction. If the copy is from a call-saved register to
1369 the *same* register, that means that the register is now the same
1370 value as in the caller.
1372 Except: If the register being saved is the CFA register, and the
1373 offset is nonzero, we are saving the CFA, so we assume we have to
1374 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1375 the intent is to save the value of SP from the previous frame.
1377 In addition, if a register has previously been saved to a different
1380 Invariants / Summaries of Rules
1382 cfa current rule for calculating the CFA. It usually
1383 consists of a register and an offset. This is
1384 actually stored in *cur_cfa, but abbreviated
1385 for the purposes of this documentation.
1386 cfa_store register used by prologue code to save things to the stack
1387 cfa_store.offset is the offset from the value of
1388 cfa_store.reg to the actual CFA
1389 cfa_temp register holding an integral value. cfa_temp.offset
1390 stores the value, which will be used to adjust the
1391 stack pointer. cfa_temp is also used like cfa_store,
1392 to track stores to the stack via fp or a temp reg.
1394 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1395 with cfa.reg as the first operand changes the cfa.reg and its
1396 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1399 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1400 expression yielding a constant. This sets cfa_temp.reg
1401 and cfa_temp.offset.
1403 Rule 5: Create a new register cfa_store used to save items to the
1406 Rules 10-14: Save a register to the stack. Define offset as the
1407 difference of the original location and cfa_store's
1408 location (or cfa_temp's location if cfa_temp is used).
1410 Rules 16-20: If AND operation happens on sp in prologue, we assume
1411 stack is realigned. We will use a group of DW_OP_XXX
1412 expressions to represent the location of the stored
1413 register instead of CFA+offset.
1417 "{a,b}" indicates a choice of a xor b.
1418 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1421 (set <reg1> <reg2>:cfa.reg)
1422 effects: cfa.reg = <reg1>
1423 cfa.offset unchanged
1424 cfa_temp.reg = <reg1>
1425 cfa_temp.offset = cfa.offset
1428 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1429 {<const_int>,<reg>:cfa_temp.reg}))
1430 effects: cfa.reg = sp if fp used
1431 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1432 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1433 if cfa_store.reg==sp
1436 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1437 effects: cfa.reg = fp
1438 cfa_offset += +/- <const_int>
1441 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1442 constraints: <reg1> != fp
1444 effects: cfa.reg = <reg1>
1445 cfa_temp.reg = <reg1>
1446 cfa_temp.offset = cfa.offset
1449 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1450 constraints: <reg1> != fp
1452 effects: cfa_store.reg = <reg1>
1453 cfa_store.offset = cfa.offset - cfa_temp.offset
1456 (set <reg> <const_int>)
1457 effects: cfa_temp.reg = <reg>
1458 cfa_temp.offset = <const_int>
1461 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1462 effects: cfa_temp.reg = <reg1>
1463 cfa_temp.offset |= <const_int>
1466 (set <reg> (high <exp>))
1470 (set <reg> (lo_sum <exp> <const_int>))
1471 effects: cfa_temp.reg = <reg>
1472 cfa_temp.offset = <const_int>
1475 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1476 effects: cfa_store.offset -= <const_int>
1477 cfa.offset = cfa_store.offset if cfa.reg == sp
1479 cfa.base_offset = -cfa_store.offset
1482 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1483 effects: cfa_store.offset += -/+ mode_size(mem)
1484 cfa.offset = cfa_store.offset if cfa.reg == sp
1486 cfa.base_offset = -cfa_store.offset
1489 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1492 effects: cfa.reg = <reg1>
1493 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1496 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1497 effects: cfa.reg = <reg1>
1498 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1501 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1502 effects: cfa.reg = <reg1>
1503 cfa.base_offset = -cfa_temp.offset
1504 cfa_temp.offset -= mode_size(mem)
1507 (set <reg> {unspec, unspec_volatile})
1508 effects: target-dependent
1511 (set sp (and: sp <const_int>))
1512 constraints: cfa_store.reg == sp
1513 effects: cfun->fde.stack_realign = 1
1514 cfa_store.offset = 0
1515 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1518 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1519 effects: cfa_store.offset += -/+ mode_size(mem)
1522 (set (mem ({pre_inc, pre_dec} sp)) fp)
1523 constraints: fde->stack_realign == 1
1524 effects: cfa_store.offset = 0
1525 cfa.reg != HARD_FRAME_POINTER_REGNUM
1528 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1529 constraints: fde->stack_realign == 1
1531 && cfa.indirect == 0
1532 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1533 effects: Use DW_CFA_def_cfa_expression to define cfa
1534 cfa.reg == fde->drap_reg */
1537 dwarf2out_frame_debug_expr (rtx expr
)
1539 rtx src
, dest
, span
;
1540 HOST_WIDE_INT offset
;
1543 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1544 the PARALLEL independently. The first element is always processed if
1545 it is a SET. This is for backward compatibility. Other elements
1546 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1547 flag is set in them. */
1548 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1551 int limit
= XVECLEN (expr
, 0);
1554 /* PARALLELs have strict read-modify-write semantics, so we
1555 ought to evaluate every rvalue before changing any lvalue.
1556 It's cumbersome to do that in general, but there's an
1557 easy approximation that is enough for all current users:
1558 handle register saves before register assignments. */
1559 if (GET_CODE (expr
) == PARALLEL
)
1560 for (par_index
= 0; par_index
< limit
; par_index
++)
1562 elem
= XVECEXP (expr
, 0, par_index
);
1563 if (GET_CODE (elem
) == SET
1564 && MEM_P (SET_DEST (elem
))
1565 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1566 dwarf2out_frame_debug_expr (elem
);
1569 for (par_index
= 0; par_index
< limit
; par_index
++)
1571 elem
= XVECEXP (expr
, 0, par_index
);
1572 if (GET_CODE (elem
) == SET
1573 && (!MEM_P (SET_DEST (elem
)) || GET_CODE (expr
) == SEQUENCE
)
1574 && (RTX_FRAME_RELATED_P (elem
) || par_index
== 0))
1575 dwarf2out_frame_debug_expr (elem
);
1580 gcc_assert (GET_CODE (expr
) == SET
);
1582 src
= SET_SRC (expr
);
1583 dest
= SET_DEST (expr
);
1587 rtx rsi
= reg_saved_in (src
);
1594 switch (GET_CODE (dest
))
1597 switch (GET_CODE (src
))
1599 /* Setting FP from SP. */
1601 if (cur_cfa
->reg
== dwf_regno (src
))
1604 /* Update the CFA rule wrt SP or FP. Make sure src is
1605 relative to the current CFA register.
1607 We used to require that dest be either SP or FP, but the
1608 ARM copies SP to a temporary register, and from there to
1609 FP. So we just rely on the backends to only set
1610 RTX_FRAME_RELATED_P on appropriate insns. */
1611 cur_cfa
->reg
= dwf_regno (dest
);
1612 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1613 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1617 /* Saving a register in a register. */
1618 gcc_assert (!fixed_regs
[REGNO (dest
)]
1619 /* For the SPARC and its register window. */
1620 || (dwf_regno (src
) == DWARF_FRAME_RETURN_COLUMN
));
1622 /* After stack is aligned, we can only save SP in FP
1623 if drap register is used. In this case, we have
1624 to restore stack pointer with the CFA value and we
1625 don't generate this DWARF information. */
1627 && fde
->stack_realign
1628 && REGNO (src
) == STACK_POINTER_REGNUM
)
1629 gcc_assert (REGNO (dest
) == HARD_FRAME_POINTER_REGNUM
1630 && fde
->drap_reg
!= INVALID_REGNUM
1631 && cur_cfa
->reg
!= dwf_regno (src
));
1633 queue_reg_save (src
, dest
, 0);
1640 if (dest
== stack_pointer_rtx
)
1644 switch (GET_CODE (XEXP (src
, 1)))
1647 offset
= INTVAL (XEXP (src
, 1));
1650 gcc_assert (dwf_regno (XEXP (src
, 1))
1651 == cur_trace
->cfa_temp
.reg
);
1652 offset
= cur_trace
->cfa_temp
.offset
;
1658 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1660 /* Restoring SP from FP in the epilogue. */
1661 gcc_assert (cur_cfa
->reg
== dw_frame_pointer_regnum
);
1662 cur_cfa
->reg
= dw_stack_pointer_regnum
;
1664 else if (GET_CODE (src
) == LO_SUM
)
1665 /* Assume we've set the source reg of the LO_SUM from sp. */
1668 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1670 if (GET_CODE (src
) != MINUS
)
1672 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1673 cur_cfa
->offset
+= offset
;
1674 if (cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
)
1675 cur_trace
->cfa_store
.offset
+= offset
;
1677 else if (dest
== hard_frame_pointer_rtx
)
1680 /* Either setting the FP from an offset of the SP,
1681 or adjusting the FP */
1682 gcc_assert (frame_pointer_needed
);
1684 gcc_assert (REG_P (XEXP (src
, 0))
1685 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1686 && CONST_INT_P (XEXP (src
, 1)));
1687 offset
= INTVAL (XEXP (src
, 1));
1688 if (GET_CODE (src
) != MINUS
)
1690 cur_cfa
->offset
+= offset
;
1691 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1695 gcc_assert (GET_CODE (src
) != MINUS
);
1698 if (REG_P (XEXP (src
, 0))
1699 && dwf_regno (XEXP (src
, 0)) == cur_cfa
->reg
1700 && CONST_INT_P (XEXP (src
, 1)))
1702 /* Setting a temporary CFA register that will be copied
1703 into the FP later on. */
1704 offset
= - INTVAL (XEXP (src
, 1));
1705 cur_cfa
->offset
+= offset
;
1706 cur_cfa
->reg
= dwf_regno (dest
);
1707 /* Or used to save regs to the stack. */
1708 cur_trace
->cfa_temp
.reg
= cur_cfa
->reg
;
1709 cur_trace
->cfa_temp
.offset
= cur_cfa
->offset
;
1713 else if (REG_P (XEXP (src
, 0))
1714 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1715 && XEXP (src
, 1) == stack_pointer_rtx
)
1717 /* Setting a scratch register that we will use instead
1718 of SP for saving registers to the stack. */
1719 gcc_assert (cur_cfa
->reg
== dw_stack_pointer_regnum
);
1720 cur_trace
->cfa_store
.reg
= dwf_regno (dest
);
1721 cur_trace
->cfa_store
.offset
1722 = cur_cfa
->offset
- cur_trace
->cfa_temp
.offset
;
1726 else if (GET_CODE (src
) == LO_SUM
1727 && CONST_INT_P (XEXP (src
, 1)))
1729 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1730 cur_trace
->cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1739 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1740 cur_trace
->cfa_temp
.offset
= INTVAL (src
);
1745 gcc_assert (REG_P (XEXP (src
, 0))
1746 && dwf_regno (XEXP (src
, 0)) == cur_trace
->cfa_temp
.reg
1747 && CONST_INT_P (XEXP (src
, 1)));
1749 cur_trace
->cfa_temp
.reg
= dwf_regno (dest
);
1750 cur_trace
->cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1753 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1754 which will fill in all of the bits. */
1761 case UNSPEC_VOLATILE
:
1762 /* All unspecs should be represented by REG_CFA_* notes. */
1768 /* If this AND operation happens on stack pointer in prologue,
1769 we assume the stack is realigned and we extract the
1771 if (fde
&& XEXP (src
, 0) == stack_pointer_rtx
)
1773 /* We interpret reg_save differently with stack_realign set.
1774 Thus we must flush whatever we have queued first. */
1775 dwarf2out_flush_queued_reg_saves ();
1777 gcc_assert (cur_trace
->cfa_store
.reg
1778 == dwf_regno (XEXP (src
, 0)));
1779 fde
->stack_realign
= 1;
1780 fde
->stack_realignment
= INTVAL (XEXP (src
, 1));
1781 cur_trace
->cfa_store
.offset
= 0;
1783 if (cur_cfa
->reg
!= dw_stack_pointer_regnum
1784 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1785 fde
->drap_reg
= cur_cfa
->reg
;
1796 /* Saving a register to the stack. Make sure dest is relative to the
1798 switch (GET_CODE (XEXP (dest
, 0)))
1804 /* We can't handle variable size modifications. */
1805 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1))
1807 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1809 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1810 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1812 cur_trace
->cfa_store
.offset
+= offset
;
1813 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1814 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1816 if (GET_CODE (XEXP (dest
, 0)) == POST_MODIFY
)
1817 offset
-= cur_trace
->cfa_store
.offset
;
1819 offset
= -cur_trace
->cfa_store
.offset
;
1826 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1827 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1830 gcc_assert ((REGNO (XEXP (XEXP (dest
, 0), 0))
1831 == STACK_POINTER_REGNUM
)
1832 && cur_trace
->cfa_store
.reg
== dw_stack_pointer_regnum
);
1834 cur_trace
->cfa_store
.offset
+= offset
;
1836 /* Rule 18: If stack is aligned, we will use FP as a
1837 reference to represent the address of the stored
1840 && fde
->stack_realign
1842 && REGNO (src
) == HARD_FRAME_POINTER_REGNUM
)
1844 gcc_assert (cur_cfa
->reg
!= dw_frame_pointer_regnum
);
1845 cur_trace
->cfa_store
.offset
= 0;
1848 if (cur_cfa
->reg
== dw_stack_pointer_regnum
)
1849 cur_cfa
->offset
= cur_trace
->cfa_store
.offset
;
1851 if (GET_CODE (XEXP (dest
, 0)) == POST_DEC
)
1852 offset
+= -cur_trace
->cfa_store
.offset
;
1854 offset
= -cur_trace
->cfa_store
.offset
;
1858 /* With an offset. */
1865 gcc_assert (CONST_INT_P (XEXP (XEXP (dest
, 0), 1))
1866 && REG_P (XEXP (XEXP (dest
, 0), 0)));
1867 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1868 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1871 regno
= dwf_regno (XEXP (XEXP (dest
, 0), 0));
1873 if (cur_cfa
->reg
== regno
)
1874 offset
-= cur_cfa
->offset
;
1875 else if (cur_trace
->cfa_store
.reg
== regno
)
1876 offset
-= cur_trace
->cfa_store
.offset
;
1879 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1880 offset
-= cur_trace
->cfa_temp
.offset
;
1886 /* Without an offset. */
1889 unsigned int regno
= dwf_regno (XEXP (dest
, 0));
1891 if (cur_cfa
->reg
== regno
)
1892 offset
= -cur_cfa
->offset
;
1893 else if (cur_trace
->cfa_store
.reg
== regno
)
1894 offset
= -cur_trace
->cfa_store
.offset
;
1897 gcc_assert (cur_trace
->cfa_temp
.reg
== regno
);
1898 offset
= -cur_trace
->cfa_temp
.offset
;
1905 gcc_assert (cur_trace
->cfa_temp
.reg
1906 == dwf_regno (XEXP (XEXP (dest
, 0), 0)));
1907 offset
= -cur_trace
->cfa_temp
.offset
;
1908 cur_trace
->cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1916 /* If the source operand of this MEM operation is a memory,
1917 we only care how much stack grew. */
1922 && REGNO (src
) != STACK_POINTER_REGNUM
1923 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1924 && dwf_regno (src
) == cur_cfa
->reg
)
1926 /* We're storing the current CFA reg into the stack. */
1928 if (cur_cfa
->offset
== 0)
1931 /* If stack is aligned, putting CFA reg into stack means
1932 we can no longer use reg + offset to represent CFA.
1933 Here we use DW_CFA_def_cfa_expression instead. The
1934 result of this expression equals to the original CFA
1937 && fde
->stack_realign
1938 && cur_cfa
->indirect
== 0
1939 && cur_cfa
->reg
!= dw_frame_pointer_regnum
)
1941 gcc_assert (fde
->drap_reg
== cur_cfa
->reg
);
1943 cur_cfa
->indirect
= 1;
1944 cur_cfa
->reg
= dw_frame_pointer_regnum
;
1945 cur_cfa
->base_offset
= offset
;
1946 cur_cfa
->offset
= 0;
1948 fde
->drap_reg_saved
= 1;
1952 /* If the source register is exactly the CFA, assume
1953 we're saving SP like any other register; this happens
1955 queue_reg_save (stack_pointer_rtx
, NULL_RTX
, offset
);
1960 /* Otherwise, we'll need to look in the stack to
1961 calculate the CFA. */
1962 rtx x
= XEXP (dest
, 0);
1966 gcc_assert (REG_P (x
));
1968 cur_cfa
->reg
= dwf_regno (x
);
1969 cur_cfa
->base_offset
= offset
;
1970 cur_cfa
->indirect
= 1;
1976 span
= targetm
.dwarf_register_span (src
);
1981 queue_reg_save (src
, NULL_RTX
, offset
);
1984 /* We have a PARALLEL describing where the contents of SRC live.
1985 Queue register saves for each piece of the PARALLEL. */
1986 HOST_WIDE_INT span_offset
= offset
;
1988 gcc_assert (GET_CODE (span
) == PARALLEL
);
1990 const int par_len
= XVECLEN (span
, 0);
1991 for (int par_index
= 0; par_index
< par_len
; par_index
++)
1993 rtx elem
= XVECEXP (span
, 0, par_index
);
1994 queue_reg_save (elem
, NULL_RTX
, span_offset
);
1995 span_offset
+= GET_MODE_SIZE (GET_MODE (elem
));
2005 /* Record call frame debugging information for INSN, which either sets
2006 SP or FP (adjusting how we calculate the frame address) or saves a
2007 register to the stack. */
2010 dwarf2out_frame_debug (rtx_insn
*insn
)
2013 bool handled_one
= false;
2015 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2016 switch (REG_NOTE_KIND (note
))
2018 case REG_FRAME_RELATED_EXPR
:
2019 pat
= XEXP (note
, 0);
2022 case REG_CFA_DEF_CFA
:
2023 dwarf2out_frame_debug_def_cfa (XEXP (note
, 0));
2027 case REG_CFA_ADJUST_CFA
:
2032 if (GET_CODE (n
) == PARALLEL
)
2033 n
= XVECEXP (n
, 0, 0);
2035 dwarf2out_frame_debug_adjust_cfa (n
);
2039 case REG_CFA_OFFSET
:
2042 n
= single_set (insn
);
2043 dwarf2out_frame_debug_cfa_offset (n
);
2047 case REG_CFA_REGISTER
:
2052 if (GET_CODE (n
) == PARALLEL
)
2053 n
= XVECEXP (n
, 0, 0);
2055 dwarf2out_frame_debug_cfa_register (n
);
2059 case REG_CFA_EXPRESSION
:
2060 case REG_CFA_VAL_EXPRESSION
:
2063 n
= single_set (insn
);
2065 if (REG_NOTE_KIND (note
) == REG_CFA_EXPRESSION
)
2066 dwarf2out_frame_debug_cfa_expression (n
);
2068 dwarf2out_frame_debug_cfa_val_expression (n
);
2073 case REG_CFA_RESTORE
:
2078 if (GET_CODE (n
) == PARALLEL
)
2079 n
= XVECEXP (n
, 0, 0);
2082 dwarf2out_frame_debug_cfa_restore (n
);
2086 case REG_CFA_SET_VDRAP
:
2090 dw_fde_ref fde
= cfun
->fde
;
2093 gcc_assert (fde
->vdrap_reg
== INVALID_REGNUM
);
2095 fde
->vdrap_reg
= dwf_regno (n
);
2101 case REG_CFA_WINDOW_SAVE
:
2102 dwarf2out_frame_debug_cfa_window_save ();
2106 case REG_CFA_FLUSH_QUEUE
:
2107 /* The actual flush happens elsewhere. */
2117 pat
= PATTERN (insn
);
2119 dwarf2out_frame_debug_expr (pat
);
2121 /* Check again. A parallel can save and update the same register.
2122 We could probably check just once, here, but this is safer than
2123 removing the check at the start of the function. */
2124 if (clobbers_queued_reg_save (pat
))
2125 dwarf2out_flush_queued_reg_saves ();
2129 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2132 change_cfi_row (dw_cfi_row
*old_row
, dw_cfi_row
*new_row
)
2134 size_t i
, n_old
, n_new
, n_max
;
2137 if (new_row
->cfa_cfi
&& !cfi_equal_p (old_row
->cfa_cfi
, new_row
->cfa_cfi
))
2138 add_cfi (new_row
->cfa_cfi
);
2141 cfi
= def_cfa_0 (&old_row
->cfa
, &new_row
->cfa
);
2146 n_old
= vec_safe_length (old_row
->reg_save
);
2147 n_new
= vec_safe_length (new_row
->reg_save
);
2148 n_max
= MAX (n_old
, n_new
);
2150 for (i
= 0; i
< n_max
; ++i
)
2152 dw_cfi_ref r_old
= NULL
, r_new
= NULL
;
2155 r_old
= (*old_row
->reg_save
)[i
];
2157 r_new
= (*new_row
->reg_save
)[i
];
2161 else if (r_new
== NULL
)
2162 add_cfi_restore (i
);
2163 else if (!cfi_equal_p (r_old
, r_new
))
2168 /* Examine CFI and return true if a cfi label and set_loc is needed
2169 beforehand. Even when generating CFI assembler instructions, we
2170 still have to add the cfi to the list so that lookup_cfa_1 works
2171 later on. When -g2 and above we even need to force emitting of
2172 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2173 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2174 and so don't use convert_cfa_to_fb_loc_list. */
2177 cfi_label_required_p (dw_cfi_ref cfi
)
2179 if (!dwarf2out_do_cfi_asm ())
2182 if (dwarf_version
== 2
2183 && debug_info_level
> DINFO_LEVEL_TERSE
2184 && (write_symbols
== DWARF2_DEBUG
2185 || write_symbols
== VMS_AND_DWARF2_DEBUG
))
2187 switch (cfi
->dw_cfi_opc
)
2189 case DW_CFA_def_cfa_offset
:
2190 case DW_CFA_def_cfa_offset_sf
:
2191 case DW_CFA_def_cfa_register
:
2192 case DW_CFA_def_cfa
:
2193 case DW_CFA_def_cfa_sf
:
2194 case DW_CFA_def_cfa_expression
:
2195 case DW_CFA_restore_state
:
2204 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2205 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2208 add_cfis_to_fde (void)
2210 dw_fde_ref fde
= cfun
->fde
;
2211 rtx_insn
*insn
, *next
;
2212 /* We always start with a function_begin label. */
2215 for (insn
= get_insns (); insn
; insn
= next
)
2217 next
= NEXT_INSN (insn
);
2219 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2221 fde
->dw_fde_switch_cfi_index
= vec_safe_length (fde
->dw_fde_cfi
);
2222 /* Don't attempt to advance_loc4 between labels
2223 in different sections. */
2227 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2229 bool required
= cfi_label_required_p (NOTE_CFI (insn
));
2231 if (NOTE_P (next
) && NOTE_KIND (next
) == NOTE_INSN_CFI
)
2233 required
|= cfi_label_required_p (NOTE_CFI (next
));
2234 next
= NEXT_INSN (next
);
2236 else if (active_insn_p (next
)
2237 || (NOTE_P (next
) && (NOTE_KIND (next
)
2238 == NOTE_INSN_SWITCH_TEXT_SECTIONS
)))
2241 next
= NEXT_INSN (next
);
2244 int num
= dwarf2out_cfi_label_num
;
2245 const char *label
= dwarf2out_cfi_label ();
2248 /* Set the location counter to the new label. */
2250 xcfi
->dw_cfi_opc
= (first
? DW_CFA_set_loc
2251 : DW_CFA_advance_loc4
);
2252 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
2253 vec_safe_push (fde
->dw_fde_cfi
, xcfi
);
2255 rtx_note
*tmp
= emit_note_before (NOTE_INSN_CFI_LABEL
, insn
);
2256 NOTE_LABEL_NUMBER (tmp
) = num
;
2261 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_CFI
)
2262 vec_safe_push (fde
->dw_fde_cfi
, NOTE_CFI (insn
));
2263 insn
= NEXT_INSN (insn
);
2265 while (insn
!= next
);
2271 static void dump_cfi_row (FILE *f
, dw_cfi_row
*row
);
2273 /* If LABEL is the start of a trace, then initialize the state of that
2274 trace from CUR_TRACE and CUR_ROW. */
2277 maybe_record_trace_start (rtx_insn
*start
, rtx_insn
*origin
)
2280 HOST_WIDE_INT args_size
;
2282 ti
= get_trace_info (start
);
2283 gcc_assert (ti
!= NULL
);
2287 fprintf (dump_file
, " saw edge from trace %u to %u (via %s %d)\n",
2288 cur_trace
->id
, ti
->id
,
2289 (origin
? rtx_name
[(int) GET_CODE (origin
)] : "fallthru"),
2290 (origin
? INSN_UID (origin
) : 0));
2293 args_size
= cur_trace
->end_true_args_size
;
2294 if (ti
->beg_row
== NULL
)
2296 /* This is the first time we've encountered this trace. Propagate
2297 state across the edge and push the trace onto the work list. */
2298 ti
->beg_row
= copy_cfi_row (cur_row
);
2299 ti
->beg_true_args_size
= args_size
;
2301 ti
->cfa_store
= cur_trace
->cfa_store
;
2302 ti
->cfa_temp
= cur_trace
->cfa_temp
;
2303 ti
->regs_saved_in_regs
= cur_trace
->regs_saved_in_regs
.copy ();
2305 trace_work_list
.safe_push (ti
);
2308 fprintf (dump_file
, "\tpush trace %u to worklist\n", ti
->id
);
2313 /* We ought to have the same state incoming to a given trace no
2314 matter how we arrive at the trace. Anything else means we've
2315 got some kind of optimization error. */
2317 if (!cfi_row_equal_p (cur_row
, ti
->beg_row
))
2321 fprintf (dump_file
, "Inconsistent CFI state!\n");
2322 fprintf (dump_file
, "SHOULD have:\n");
2323 dump_cfi_row (dump_file
, ti
->beg_row
);
2324 fprintf (dump_file
, "DO have:\n");
2325 dump_cfi_row (dump_file
, cur_row
);
2332 /* The args_size is allowed to conflict if it isn't actually used. */
2333 if (ti
->beg_true_args_size
!= args_size
)
2334 ti
->args_size_undefined
= true;
2338 /* Similarly, but handle the args_size and CFA reset across EH
2339 and non-local goto edges. */
2342 maybe_record_trace_start_abnormal (rtx_insn
*start
, rtx_insn
*origin
)
2344 HOST_WIDE_INT save_args_size
, delta
;
2345 dw_cfa_location save_cfa
;
2347 save_args_size
= cur_trace
->end_true_args_size
;
2348 if (save_args_size
== 0)
2350 maybe_record_trace_start (start
, origin
);
2354 delta
= -save_args_size
;
2355 cur_trace
->end_true_args_size
= 0;
2357 save_cfa
= cur_row
->cfa
;
2358 if (cur_row
->cfa
.reg
== dw_stack_pointer_regnum
)
2360 /* Convert a change in args_size (always a positive in the
2361 direction of stack growth) to a change in stack pointer. */
2362 if (!STACK_GROWS_DOWNWARD
)
2365 cur_row
->cfa
.offset
+= delta
;
2368 maybe_record_trace_start (start
, origin
);
2370 cur_trace
->end_true_args_size
= save_args_size
;
2371 cur_row
->cfa
= save_cfa
;
2374 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2375 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2378 create_trace_edges (rtx_insn
*insn
)
2385 rtx_jump_table_data
*table
;
2387 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
2390 if (tablejump_p (insn
, NULL
, &table
))
2392 rtvec vec
= table
->get_labels ();
2394 n
= GET_NUM_ELEM (vec
);
2395 for (i
= 0; i
< n
; ++i
)
2397 rtx_insn
*lab
= as_a
<rtx_insn
*> (XEXP (RTVEC_ELT (vec
, i
), 0));
2398 maybe_record_trace_start (lab
, insn
);
2401 else if (computed_jump_p (insn
))
2405 FOR_EACH_VEC_SAFE_ELT (forced_labels
, i
, temp
)
2406 maybe_record_trace_start (temp
, insn
);
2408 else if (returnjump_p (insn
))
2410 else if ((tmp
= extract_asm_operands (PATTERN (insn
))) != NULL
)
2412 n
= ASM_OPERANDS_LABEL_LENGTH (tmp
);
2413 for (i
= 0; i
< n
; ++i
)
2416 as_a
<rtx_insn
*> (XEXP (ASM_OPERANDS_LABEL (tmp
, i
), 0));
2417 maybe_record_trace_start (lab
, insn
);
2422 rtx_insn
*lab
= JUMP_LABEL_AS_INSN (insn
);
2423 gcc_assert (lab
!= NULL
);
2424 maybe_record_trace_start (lab
, insn
);
2427 else if (CALL_P (insn
))
2429 /* Sibling calls don't have edges inside this function. */
2430 if (SIBLING_CALL_P (insn
))
2433 /* Process non-local goto edges. */
2434 if (can_nonlocal_goto (insn
))
2435 for (rtx_insn_list
*lab
= nonlocal_goto_handler_labels
;
2438 maybe_record_trace_start_abnormal (lab
->insn (), insn
);
2440 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
2442 int i
, n
= seq
->len ();
2443 for (i
= 0; i
< n
; ++i
)
2444 create_trace_edges (seq
->insn (i
));
2448 /* Process EH edges. */
2449 if (CALL_P (insn
) || cfun
->can_throw_non_call_exceptions
)
2451 eh_landing_pad lp
= get_eh_landing_pad_from_rtx (insn
);
2453 maybe_record_trace_start_abnormal (lp
->landing_pad
, insn
);
2457 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2460 scan_insn_after (rtx_insn
*insn
)
2462 if (RTX_FRAME_RELATED_P (insn
))
2463 dwarf2out_frame_debug (insn
);
2464 notice_args_size (insn
);
2467 /* Scan the trace beginning at INSN and create the CFI notes for the
2468 instructions therein. */
2471 scan_trace (dw_trace_info
*trace
)
2473 rtx_insn
*prev
, *insn
= trace
->head
;
2474 dw_cfa_location this_cfa
;
2477 fprintf (dump_file
, "Processing trace %u : start at %s %d\n",
2478 trace
->id
, rtx_name
[(int) GET_CODE (insn
)],
2481 trace
->end_row
= copy_cfi_row (trace
->beg_row
);
2482 trace
->end_true_args_size
= trace
->beg_true_args_size
;
2485 cur_row
= trace
->end_row
;
2487 this_cfa
= cur_row
->cfa
;
2488 cur_cfa
= &this_cfa
;
2490 for (prev
= insn
, insn
= NEXT_INSN (insn
);
2492 prev
= insn
, insn
= NEXT_INSN (insn
))
2496 /* Do everything that happens "before" the insn. */
2497 add_cfi_insn
= prev
;
2499 /* Notice the end of a trace. */
2500 if (BARRIER_P (insn
))
2502 /* Don't bother saving the unneeded queued registers at all. */
2503 queued_reg_saves
.truncate (0);
2506 if (save_point_p (insn
))
2508 /* Propagate across fallthru edges. */
2509 dwarf2out_flush_queued_reg_saves ();
2510 maybe_record_trace_start (insn
, NULL
);
2514 if (DEBUG_INSN_P (insn
) || !inside_basic_block_p (insn
))
2517 /* Handle all changes to the row state. Sequences require special
2518 handling for the positioning of the notes. */
2519 if (rtx_sequence
*pat
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
2522 int i
, n
= pat
->len ();
2524 control
= pat
->insn (0);
2525 if (can_throw_internal (control
))
2526 notice_eh_throw (control
);
2527 dwarf2out_flush_queued_reg_saves ();
2529 if (JUMP_P (control
) && INSN_ANNULLED_BRANCH_P (control
))
2531 /* ??? Hopefully multiple delay slots are not annulled. */
2532 gcc_assert (n
== 2);
2533 gcc_assert (!RTX_FRAME_RELATED_P (control
));
2534 gcc_assert (!find_reg_note (control
, REG_ARGS_SIZE
, NULL
));
2536 elt
= pat
->insn (1);
2538 if (INSN_FROM_TARGET_P (elt
))
2540 HOST_WIDE_INT restore_args_size
;
2541 cfi_vec save_row_reg_save
;
2543 /* If ELT is an instruction from target of an annulled
2544 branch, the effects are for the target only and so
2545 the args_size and CFA along the current path
2546 shouldn't change. */
2547 add_cfi_insn
= NULL
;
2548 restore_args_size
= cur_trace
->end_true_args_size
;
2549 cur_cfa
= &cur_row
->cfa
;
2550 save_row_reg_save
= vec_safe_copy (cur_row
->reg_save
);
2552 scan_insn_after (elt
);
2554 /* ??? Should we instead save the entire row state? */
2555 gcc_assert (!queued_reg_saves
.length ());
2557 create_trace_edges (control
);
2559 cur_trace
->end_true_args_size
= restore_args_size
;
2560 cur_row
->cfa
= this_cfa
;
2561 cur_row
->reg_save
= save_row_reg_save
;
2562 cur_cfa
= &this_cfa
;
2566 /* If ELT is a annulled branch-taken instruction (i.e.
2567 executed only when branch is not taken), the args_size
2568 and CFA should not change through the jump. */
2569 create_trace_edges (control
);
2571 /* Update and continue with the trace. */
2572 add_cfi_insn
= insn
;
2573 scan_insn_after (elt
);
2574 def_cfa_1 (&this_cfa
);
2579 /* The insns in the delay slot should all be considered to happen
2580 "before" a call insn. Consider a call with a stack pointer
2581 adjustment in the delay slot. The backtrace from the callee
2582 should include the sp adjustment. Unfortunately, that leaves
2583 us with an unavoidable unwinding error exactly at the call insn
2584 itself. For jump insns we'd prefer to avoid this error by
2585 placing the notes after the sequence. */
2586 if (JUMP_P (control
))
2587 add_cfi_insn
= insn
;
2589 for (i
= 1; i
< n
; ++i
)
2591 elt
= pat
->insn (i
);
2592 scan_insn_after (elt
);
2595 /* Make sure any register saves are visible at the jump target. */
2596 dwarf2out_flush_queued_reg_saves ();
2597 any_cfis_emitted
= false;
2599 /* However, if there is some adjustment on the call itself, e.g.
2600 a call_pop, that action should be considered to happen after
2601 the call returns. */
2602 add_cfi_insn
= insn
;
2603 scan_insn_after (control
);
2607 /* Flush data before calls and jumps, and of course if necessary. */
2608 if (can_throw_internal (insn
))
2610 notice_eh_throw (insn
);
2611 dwarf2out_flush_queued_reg_saves ();
2613 else if (!NONJUMP_INSN_P (insn
)
2614 || clobbers_queued_reg_save (insn
)
2615 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2616 dwarf2out_flush_queued_reg_saves ();
2617 any_cfis_emitted
= false;
2619 add_cfi_insn
= insn
;
2620 scan_insn_after (insn
);
2624 /* Between frame-related-p and args_size we might have otherwise
2625 emitted two cfa adjustments. Do it now. */
2626 def_cfa_1 (&this_cfa
);
2628 /* Minimize the number of advances by emitting the entire queue
2629 once anything is emitted. */
2630 if (any_cfis_emitted
2631 || find_reg_note (insn
, REG_CFA_FLUSH_QUEUE
, NULL
))
2632 dwarf2out_flush_queued_reg_saves ();
2634 /* Note that a test for control_flow_insn_p does exactly the
2635 same tests as are done to actually create the edges. So
2636 always call the routine and let it not create edges for
2637 non-control-flow insns. */
2638 create_trace_edges (control
);
2641 add_cfi_insn
= NULL
;
2647 /* Scan the function and create the initial set of CFI notes. */
2650 create_cfi_notes (void)
2654 gcc_checking_assert (!queued_reg_saves
.exists ());
2655 gcc_checking_assert (!trace_work_list
.exists ());
2657 /* Always begin at the entry trace. */
2658 ti
= &trace_info
[0];
2661 while (!trace_work_list
.is_empty ())
2663 ti
= trace_work_list
.pop ();
2667 queued_reg_saves
.release ();
2668 trace_work_list
.release ();
2671 /* Return the insn before the first NOTE_INSN_CFI after START. */
2674 before_next_cfi_note (rtx_insn
*start
)
2676 rtx_insn
*prev
= start
;
2679 if (NOTE_P (start
) && NOTE_KIND (start
) == NOTE_INSN_CFI
)
2682 start
= NEXT_INSN (start
);
2687 /* Insert CFI notes between traces to properly change state between them. */
2690 connect_traces (void)
2692 unsigned i
, n
= trace_info
.length ();
2693 dw_trace_info
*prev_ti
, *ti
;
2695 /* ??? Ideally, we should have both queued and processed every trace.
2696 However the current representation of constant pools on various targets
2697 is indistinguishable from unreachable code. Assume for the moment that
2698 we can simply skip over such traces. */
2699 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2700 these are not "real" instructions, and should not be considered.
2701 This could be generically useful for tablejump data as well. */
2702 /* Remove all unprocessed traces from the list. */
2703 for (i
= n
- 1; i
> 0; --i
)
2705 ti
= &trace_info
[i
];
2706 if (ti
->beg_row
== NULL
)
2708 trace_info
.ordered_remove (i
);
2712 gcc_assert (ti
->end_row
!= NULL
);
2715 /* Work from the end back to the beginning. This lets us easily insert
2716 remember/restore_state notes in the correct order wrt other notes. */
2717 prev_ti
= &trace_info
[n
- 1];
2718 for (i
= n
- 1; i
> 0; --i
)
2720 dw_cfi_row
*old_row
;
2723 prev_ti
= &trace_info
[i
- 1];
2725 add_cfi_insn
= ti
->head
;
2727 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2728 for the portion of the function in the alternate text
2729 section. The row state at the very beginning of that
2730 new FDE will be exactly the row state from the CIE. */
2731 if (ti
->switch_sections
)
2732 old_row
= cie_cfi_row
;
2735 old_row
= prev_ti
->end_row
;
2736 /* If there's no change from the previous end state, fine. */
2737 if (cfi_row_equal_p (old_row
, ti
->beg_row
))
2739 /* Otherwise check for the common case of sharing state with
2740 the beginning of an epilogue, but not the end. Insert
2741 remember/restore opcodes in that case. */
2742 else if (cfi_row_equal_p (prev_ti
->beg_row
, ti
->beg_row
))
2746 /* Note that if we blindly insert the remember at the
2747 start of the trace, we can wind up increasing the
2748 size of the unwind info due to extra advance opcodes.
2749 Instead, put the remember immediately before the next
2750 state change. We know there must be one, because the
2751 state at the beginning and head of the trace differ. */
2752 add_cfi_insn
= before_next_cfi_note (prev_ti
->head
);
2754 cfi
->dw_cfi_opc
= DW_CFA_remember_state
;
2757 add_cfi_insn
= ti
->head
;
2759 cfi
->dw_cfi_opc
= DW_CFA_restore_state
;
2762 old_row
= prev_ti
->beg_row
;
2764 /* Otherwise, we'll simply change state from the previous end. */
2767 change_cfi_row (old_row
, ti
->beg_row
);
2769 if (dump_file
&& add_cfi_insn
!= ti
->head
)
2773 fprintf (dump_file
, "Fixup between trace %u and %u:\n",
2774 prev_ti
->id
, ti
->id
);
2779 note
= NEXT_INSN (note
);
2780 gcc_assert (NOTE_P (note
) && NOTE_KIND (note
) == NOTE_INSN_CFI
);
2781 output_cfi_directive (dump_file
, NOTE_CFI (note
));
2783 while (note
!= add_cfi_insn
);
2787 /* Connect args_size between traces that have can_throw_internal insns. */
2788 if (cfun
->eh
->lp_array
)
2790 HOST_WIDE_INT prev_args_size
= 0;
2792 for (i
= 0; i
< n
; ++i
)
2794 ti
= &trace_info
[i
];
2796 if (ti
->switch_sections
)
2798 if (ti
->eh_head
== NULL
)
2800 gcc_assert (!ti
->args_size_undefined
);
2802 if (ti
->beg_delay_args_size
!= prev_args_size
)
2804 /* ??? Search back to previous CFI note. */
2805 add_cfi_insn
= PREV_INSN (ti
->eh_head
);
2806 add_cfi_args_size (ti
->beg_delay_args_size
);
2809 prev_args_size
= ti
->end_delay_args_size
;
2814 /* Set up the pseudo-cfg of instruction traces, as described at the
2815 block comment at the top of the file. */
2818 create_pseudo_cfg (void)
2820 bool saw_barrier
, switch_sections
;
2825 /* The first trace begins at the start of the function,
2826 and begins with the CIE row state. */
2827 trace_info
.create (16);
2828 memset (&ti
, 0, sizeof (ti
));
2829 ti
.head
= get_insns ();
2830 ti
.beg_row
= cie_cfi_row
;
2831 ti
.cfa_store
= cie_cfi_row
->cfa
;
2832 ti
.cfa_temp
.reg
= INVALID_REGNUM
;
2833 trace_info
.quick_push (ti
);
2835 if (cie_return_save
)
2836 ti
.regs_saved_in_regs
.safe_push (*cie_return_save
);
2838 /* Walk all the insns, collecting start of trace locations. */
2839 saw_barrier
= false;
2840 switch_sections
= false;
2841 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2843 if (BARRIER_P (insn
))
2845 else if (NOTE_P (insn
)
2846 && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
2848 /* We should have just seen a barrier. */
2849 gcc_assert (saw_barrier
);
2850 switch_sections
= true;
2852 /* Watch out for save_point notes between basic blocks.
2853 In particular, a note after a barrier. Do not record these,
2854 delaying trace creation until the label. */
2855 else if (save_point_p (insn
)
2856 && (LABEL_P (insn
) || !saw_barrier
))
2858 memset (&ti
, 0, sizeof (ti
));
2860 ti
.switch_sections
= switch_sections
;
2861 ti
.id
= trace_info
.length ();
2862 trace_info
.safe_push (ti
);
2864 saw_barrier
= false;
2865 switch_sections
= false;
2869 /* Create the trace index after we've finished building trace_info,
2870 avoiding stale pointer problems due to reallocation. */
2872 = new hash_table
<trace_info_hasher
> (trace_info
.length ());
2874 FOR_EACH_VEC_ELT (trace_info
, i
, tp
)
2876 dw_trace_info
**slot
;
2879 fprintf (dump_file
, "Creating trace %u : start at %s %d%s\n", tp
->id
,
2880 rtx_name
[(int) GET_CODE (tp
->head
)], INSN_UID (tp
->head
),
2881 tp
->switch_sections
? " (section switch)" : "");
2883 slot
= trace_index
->find_slot_with_hash (tp
, INSN_UID (tp
->head
), INSERT
);
2884 gcc_assert (*slot
== NULL
);
2889 /* Record the initial position of the return address. RTL is
2890 INCOMING_RETURN_ADDR_RTX. */
2893 initial_return_save (rtx rtl
)
2895 unsigned int reg
= INVALID_REGNUM
;
2896 HOST_WIDE_INT offset
= 0;
2898 switch (GET_CODE (rtl
))
2901 /* RA is in a register. */
2902 reg
= dwf_regno (rtl
);
2906 /* RA is on the stack. */
2907 rtl
= XEXP (rtl
, 0);
2908 switch (GET_CODE (rtl
))
2911 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
2916 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2917 offset
= INTVAL (XEXP (rtl
, 1));
2921 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
2922 offset
= -INTVAL (XEXP (rtl
, 1));
2932 /* The return address is at some offset from any value we can
2933 actually load. For instance, on the SPARC it is in %i7+8. Just
2934 ignore the offset for now; it doesn't matter for unwinding frames. */
2935 gcc_assert (CONST_INT_P (XEXP (rtl
, 1)));
2936 initial_return_save (XEXP (rtl
, 0));
2943 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
2945 if (reg
!= INVALID_REGNUM
)
2946 record_reg_saved_in_reg (rtl
, pc_rtx
);
2947 reg_save (DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cur_row
->cfa
.offset
);
2952 create_cie_data (void)
2954 dw_cfa_location loc
;
2955 dw_trace_info cie_trace
;
2957 dw_stack_pointer_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
2959 memset (&cie_trace
, 0, sizeof (cie_trace
));
2960 cur_trace
= &cie_trace
;
2962 add_cfi_vec
= &cie_cfi_vec
;
2963 cie_cfi_row
= cur_row
= new_cfi_row ();
2965 /* On entry, the Canonical Frame Address is at SP. */
2966 memset (&loc
, 0, sizeof (loc
));
2967 loc
.reg
= dw_stack_pointer_regnum
;
2968 loc
.offset
= INCOMING_FRAME_SP_OFFSET
;
2971 if (targetm
.debug_unwind_info () == UI_DWARF2
2972 || targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
2974 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2976 /* For a few targets, we have the return address incoming into a
2977 register, but choose a different return column. This will result
2978 in a DW_CFA_register for the return, and an entry in
2979 regs_saved_in_regs to match. If the target later stores that
2980 return address register to the stack, we want to be able to emit
2981 the DW_CFA_offset against the return column, not the intermediate
2982 save register. Save the contents of regs_saved_in_regs so that
2983 we can re-initialize it at the start of each function. */
2984 switch (cie_trace
.regs_saved_in_regs
.length ())
2989 cie_return_save
= ggc_alloc
<reg_saved_in_data
> ();
2990 *cie_return_save
= cie_trace
.regs_saved_in_regs
[0];
2991 cie_trace
.regs_saved_in_regs
.release ();
3003 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
3004 state at each location within the function. These notes will be
3005 emitted during pass_final. */
3008 execute_dwarf2_frame (void)
3010 /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */
3011 dw_frame_pointer_regnum
= DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM
);
3013 /* The first time we're called, compute the incoming frame state. */
3014 if (cie_cfi_vec
== NULL
)
3017 dwarf2out_alloc_current_fde ();
3019 create_pseudo_cfg ();
3022 create_cfi_notes ();
3026 /* Free all the data we allocated. */
3031 FOR_EACH_VEC_ELT (trace_info
, i
, ti
)
3032 ti
->regs_saved_in_regs
.release ();
3034 trace_info
.release ();
3042 /* Convert a DWARF call frame info. operation to its string name */
3045 dwarf_cfi_name (unsigned int cfi_opc
)
3047 const char *name
= get_DW_CFA_name (cfi_opc
);
3052 return "DW_CFA_<unknown>";
3055 /* This routine will generate the correct assembly data for a location
3056 description based on a cfi entry with a complex address. */
3059 output_cfa_loc (dw_cfi_ref cfi
, int for_eh
)
3061 dw_loc_descr_ref loc
;
3064 if (cfi
->dw_cfi_opc
== DW_CFA_expression
3065 || cfi
->dw_cfi_opc
== DW_CFA_val_expression
)
3068 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3069 dw2_asm_output_data (1, r
, NULL
);
3070 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3073 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3075 /* Output the size of the block. */
3076 size
= size_of_locs (loc
);
3077 dw2_asm_output_data_uleb128 (size
, NULL
);
3079 /* Now output the operations themselves. */
3080 output_loc_sequence (loc
, for_eh
);
3083 /* Similar, but used for .cfi_escape. */
3086 output_cfa_loc_raw (dw_cfi_ref cfi
)
3088 dw_loc_descr_ref loc
;
3091 if (cfi
->dw_cfi_opc
== DW_CFA_expression
3092 || cfi
->dw_cfi_opc
== DW_CFA_val_expression
)
3095 DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3096 fprintf (asm_out_file
, "%#x,", r
);
3097 loc
= cfi
->dw_cfi_oprnd2
.dw_cfi_loc
;
3100 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3102 /* Output the size of the block. */
3103 size
= size_of_locs (loc
);
3104 dw2_asm_output_data_uleb128_raw (size
);
3105 fputc (',', asm_out_file
);
3107 /* Now output the operations themselves. */
3108 output_loc_sequence_raw (loc
);
3111 /* Output a Call Frame Information opcode and its operand(s). */
3114 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
3119 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
3120 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
3121 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
3122 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
3123 ((unsigned HOST_WIDE_INT
)
3124 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
));
3125 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
3127 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3128 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3129 "DW_CFA_offset, column %#lx", r
);
3130 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3131 dw2_asm_output_data_uleb128 (off
, NULL
);
3133 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
3135 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3136 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
3137 "DW_CFA_restore, column %#lx", r
);
3141 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
3142 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
3144 switch (cfi
->dw_cfi_opc
)
3146 case DW_CFA_set_loc
:
3148 dw2_asm_output_encoded_addr_rtx (
3149 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3150 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
3153 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
3154 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
3155 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3158 case DW_CFA_advance_loc1
:
3159 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3160 fde
->dw_fde_current_label
, NULL
);
3161 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3164 case DW_CFA_advance_loc2
:
3165 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3166 fde
->dw_fde_current_label
, NULL
);
3167 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3170 case DW_CFA_advance_loc4
:
3171 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3172 fde
->dw_fde_current_label
, NULL
);
3173 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3176 case DW_CFA_MIPS_advance_loc8
:
3177 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
3178 fde
->dw_fde_current_label
, NULL
);
3179 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
3182 case DW_CFA_offset_extended
:
3183 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3184 dw2_asm_output_data_uleb128 (r
, NULL
);
3185 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3186 dw2_asm_output_data_uleb128 (off
, NULL
);
3189 case DW_CFA_def_cfa
:
3190 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3191 dw2_asm_output_data_uleb128 (r
, NULL
);
3192 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
3195 case DW_CFA_offset_extended_sf
:
3196 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3197 dw2_asm_output_data_uleb128 (r
, NULL
);
3198 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3199 dw2_asm_output_data_sleb128 (off
, NULL
);
3202 case DW_CFA_def_cfa_sf
:
3203 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3204 dw2_asm_output_data_uleb128 (r
, NULL
);
3205 off
= div_data_align (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3206 dw2_asm_output_data_sleb128 (off
, NULL
);
3209 case DW_CFA_restore_extended
:
3210 case DW_CFA_undefined
:
3211 case DW_CFA_same_value
:
3212 case DW_CFA_def_cfa_register
:
3213 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3214 dw2_asm_output_data_uleb128 (r
, NULL
);
3217 case DW_CFA_register
:
3218 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
3219 dw2_asm_output_data_uleb128 (r
, NULL
);
3220 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
3221 dw2_asm_output_data_uleb128 (r
, NULL
);
3224 case DW_CFA_def_cfa_offset
:
3225 case DW_CFA_GNU_args_size
:
3226 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
3229 case DW_CFA_def_cfa_offset_sf
:
3230 off
= div_data_align (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3231 dw2_asm_output_data_sleb128 (off
, NULL
);
3234 case DW_CFA_GNU_window_save
:
3237 case DW_CFA_def_cfa_expression
:
3238 case DW_CFA_expression
:
3239 case DW_CFA_val_expression
:
3240 output_cfa_loc (cfi
, for_eh
);
3243 case DW_CFA_GNU_negative_offset_extended
:
3244 /* Obsoleted by DW_CFA_offset_extended_sf. */
3253 /* Similar, but do it via assembler directives instead. */
3256 output_cfi_directive (FILE *f
, dw_cfi_ref cfi
)
3258 unsigned long r
, r2
;
3260 switch (cfi
->dw_cfi_opc
)
3262 case DW_CFA_advance_loc
:
3263 case DW_CFA_advance_loc1
:
3264 case DW_CFA_advance_loc2
:
3265 case DW_CFA_advance_loc4
:
3266 case DW_CFA_MIPS_advance_loc8
:
3267 case DW_CFA_set_loc
:
3268 /* Should only be created in a code path not followed when emitting
3269 via directives. The assembler is going to take care of this for
3270 us. But this routines is also used for debugging dumps, so
3272 gcc_assert (f
!= asm_out_file
);
3273 fprintf (f
, "\t.cfi_advance_loc\n");
3277 case DW_CFA_offset_extended
:
3278 case DW_CFA_offset_extended_sf
:
3279 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3280 fprintf (f
, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC
"\n",
3281 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3284 case DW_CFA_restore
:
3285 case DW_CFA_restore_extended
:
3286 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3287 fprintf (f
, "\t.cfi_restore %lu\n", r
);
3290 case DW_CFA_undefined
:
3291 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3292 fprintf (f
, "\t.cfi_undefined %lu\n", r
);
3295 case DW_CFA_same_value
:
3296 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3297 fprintf (f
, "\t.cfi_same_value %lu\n", r
);
3300 case DW_CFA_def_cfa
:
3301 case DW_CFA_def_cfa_sf
:
3302 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3303 fprintf (f
, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC
"\n",
3304 r
, cfi
->dw_cfi_oprnd2
.dw_cfi_offset
);
3307 case DW_CFA_def_cfa_register
:
3308 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3309 fprintf (f
, "\t.cfi_def_cfa_register %lu\n", r
);
3312 case DW_CFA_register
:
3313 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, 1);
3314 r2
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, 1);
3315 fprintf (f
, "\t.cfi_register %lu, %lu\n", r
, r2
);
3318 case DW_CFA_def_cfa_offset
:
3319 case DW_CFA_def_cfa_offset_sf
:
3320 fprintf (f
, "\t.cfi_def_cfa_offset "
3321 HOST_WIDE_INT_PRINT_DEC
"\n",
3322 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3325 case DW_CFA_remember_state
:
3326 fprintf (f
, "\t.cfi_remember_state\n");
3328 case DW_CFA_restore_state
:
3329 fprintf (f
, "\t.cfi_restore_state\n");
3332 case DW_CFA_GNU_args_size
:
3333 if (f
== asm_out_file
)
3335 fprintf (f
, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size
);
3336 dw2_asm_output_data_uleb128_raw (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3338 fprintf (f
, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC
,
3339 ASM_COMMENT_START
, cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3344 fprintf (f
, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC
"\n",
3345 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
3349 case DW_CFA_GNU_window_save
:
3350 fprintf (f
, "\t.cfi_window_save\n");
3353 case DW_CFA_def_cfa_expression
:
3354 case DW_CFA_expression
:
3355 case DW_CFA_val_expression
:
3356 if (f
!= asm_out_file
)
3358 fprintf (f
, "\t.cfi_%scfa_%sexpression ...\n",
3359 cfi
->dw_cfi_opc
== DW_CFA_def_cfa_expression
? "def_" : "",
3360 cfi
->dw_cfi_opc
== DW_CFA_val_expression
? "val_" : "");
3363 fprintf (f
, "\t.cfi_escape %#x,", cfi
->dw_cfi_opc
);
3364 output_cfa_loc_raw (cfi
);
3374 dwarf2out_emit_cfi (dw_cfi_ref cfi
)
3376 if (dwarf2out_do_cfi_asm ())
3377 output_cfi_directive (asm_out_file
, cfi
);
3381 dump_cfi_row (FILE *f
, dw_cfi_row
*row
)
3389 dw_cfa_location dummy
;
3390 memset (&dummy
, 0, sizeof (dummy
));
3391 dummy
.reg
= INVALID_REGNUM
;
3392 cfi
= def_cfa_0 (&dummy
, &row
->cfa
);
3394 output_cfi_directive (f
, cfi
);
3396 FOR_EACH_VEC_SAFE_ELT (row
->reg_save
, i
, cfi
)
3398 output_cfi_directive (f
, cfi
);
3401 void debug_cfi_row (dw_cfi_row
*row
);
3404 debug_cfi_row (dw_cfi_row
*row
)
3406 dump_cfi_row (stderr
, row
);
3410 /* Save the result of dwarf2out_do_frame across PCH.
3411 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3412 static GTY(()) signed char saved_do_cfi_asm
= 0;
3414 /* Decide whether we want to emit frame unwind information for the current
3415 translation unit. */
3418 dwarf2out_do_frame (void)
3420 /* We want to emit correct CFA location expressions or lists, so we
3421 have to return true if we're going to output debug info, even if
3422 we're not going to output frame or unwind info. */
3423 if (write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3426 if (saved_do_cfi_asm
> 0)
3429 if (targetm
.debug_unwind_info () == UI_DWARF2
)
3432 if ((flag_unwind_tables
|| flag_exceptions
)
3433 && targetm_common
.except_unwind_info (&global_options
) == UI_DWARF2
)
3439 /* Decide whether to emit frame unwind via assembler directives. */
3442 dwarf2out_do_cfi_asm (void)
3446 if (saved_do_cfi_asm
!= 0)
3447 return saved_do_cfi_asm
> 0;
3449 /* Assume failure for a moment. */
3450 saved_do_cfi_asm
= -1;
3452 if (!flag_dwarf2_cfi_asm
|| !dwarf2out_do_frame ())
3454 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE
)
3457 /* Make sure the personality encoding is one the assembler can support.
3458 In particular, aligned addresses can't be handled. */
3459 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3460 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3462 enc
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3463 if ((enc
& 0x70) != 0 && (enc
& 0x70) != DW_EH_PE_pcrel
)
3466 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3467 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3468 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE
3469 && !flag_unwind_tables
&& !flag_exceptions
3470 && targetm_common
.except_unwind_info (&global_options
) != UI_DWARF2
)
3474 saved_do_cfi_asm
= 1;
3480 const pass_data pass_data_dwarf2_frame
=
3482 RTL_PASS
, /* type */
3483 "dwarf2", /* name */
3484 OPTGROUP_NONE
, /* optinfo_flags */
3485 TV_FINAL
, /* tv_id */
3486 0, /* properties_required */
3487 0, /* properties_provided */
3488 0, /* properties_destroyed */
3489 0, /* todo_flags_start */
3490 0, /* todo_flags_finish */
3493 class pass_dwarf2_frame
: public rtl_opt_pass
3496 pass_dwarf2_frame (gcc::context
*ctxt
)
3497 : rtl_opt_pass (pass_data_dwarf2_frame
, ctxt
)
3500 /* opt_pass methods: */
3501 virtual bool gate (function
*);
3502 virtual unsigned int execute (function
*) { return execute_dwarf2_frame (); }
3504 }; // class pass_dwarf2_frame
3507 pass_dwarf2_frame::gate (function
*)
3509 /* Targets which still implement the prologue in assembler text
3510 cannot use the generic dwarf2 unwinding. */
3511 if (!targetm
.have_prologue ())
3514 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3515 from the optimized shrink-wrapping annotations that we will compute.
3516 For now, only produce the CFI notes for dwarf2. */
3517 return dwarf2out_do_frame ();
3523 make_pass_dwarf2_frame (gcc::context
*ctxt
)
3525 return new pass_dwarf2_frame (ctxt
);
3528 #include "gt-dwarf2cfi.h"