PR libgcj/18234
[official-gcc.git] / gcc / function.c
blob82776e7cd7a3491990f2ea4d355164442f1480d4
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 gcc_unreachable ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 lang_hooks.function.leave_nested (p);
292 /* Reset variables that have known state during rtx generation. */
293 virtuals_instantiated = 0;
294 generating_concat_p = 1;
297 void
298 pop_function_context (void)
300 pop_function_context_from (current_function_decl);
303 /* Clear out all parts of the state in F that can safely be discarded
304 after the function has been parsed, but not compiled, to let
305 garbage collection reclaim the memory. */
307 void
308 free_after_parsing (struct function *f)
310 /* f->expr->forced_labels is used by code generation. */
311 /* f->emit->regno_reg_rtx is used by code generation. */
312 /* f->varasm is used by code generation. */
313 /* f->eh->eh_return_stub_label is used by code generation. */
315 lang_hooks.function.final (f);
318 /* Clear out all parts of the state in F that can safely be discarded
319 after the function has been compiled, to let garbage collection
320 reclaim the memory. */
322 void
323 free_after_compilation (struct function *f)
325 f->eh = NULL;
326 f->expr = NULL;
327 f->emit = NULL;
328 f->varasm = NULL;
329 f->machine = NULL;
331 f->x_avail_temp_slots = NULL;
332 f->x_used_temp_slots = NULL;
333 f->arg_offset_rtx = NULL;
334 f->return_rtx = NULL;
335 f->internal_arg_pointer = NULL;
336 f->x_nonlocal_goto_handler_labels = NULL;
337 f->x_return_label = NULL;
338 f->x_naked_return_label = NULL;
339 f->x_stack_slot_list = NULL;
340 f->x_tail_recursion_reentry = NULL;
341 f->x_arg_pointer_save_area = NULL;
342 f->x_parm_birth_insn = NULL;
343 f->original_arg_vector = NULL;
344 f->original_decl_initial = NULL;
345 f->epilogue_delay_list = NULL;
348 /* Allocate fixed slots in the stack frame of the current function. */
350 /* Return size needed for stack frame based on slots so far allocated in
351 function F.
352 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
353 the caller may have to do that. */
355 HOST_WIDE_INT
356 get_func_frame_size (struct function *f)
358 #ifdef FRAME_GROWS_DOWNWARD
359 return -f->x_frame_offset;
360 #else
361 return f->x_frame_offset;
362 #endif
365 /* Return size needed for stack frame based on slots so far allocated.
366 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
367 the caller may have to do that. */
368 HOST_WIDE_INT
369 get_frame_size (void)
371 return get_func_frame_size (cfun);
374 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
375 with machine mode MODE.
377 ALIGN controls the amount of alignment for the address of the slot:
378 0 means according to MODE,
379 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
380 -2 means use BITS_PER_UNIT,
381 positive specifies alignment boundary in bits.
383 We do not round to stack_boundary here.
385 FUNCTION specifies the function to allocate in. */
387 static rtx
388 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
389 struct function *function)
391 rtx x, addr;
392 int bigend_correction = 0;
393 unsigned int alignment;
394 int frame_off, frame_alignment, frame_phase;
396 if (align == 0)
398 tree type;
400 if (mode == BLKmode)
401 alignment = BIGGEST_ALIGNMENT;
402 else
403 alignment = GET_MODE_ALIGNMENT (mode);
405 /* Allow the target to (possibly) increase the alignment of this
406 stack slot. */
407 type = lang_hooks.types.type_for_mode (mode, 0);
408 if (type)
409 alignment = LOCAL_ALIGNMENT (type, alignment);
411 alignment /= BITS_PER_UNIT;
413 else if (align == -1)
415 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
416 size = CEIL_ROUND (size, alignment);
418 else if (align == -2)
419 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
420 else
421 alignment = align / BITS_PER_UNIT;
423 #ifdef FRAME_GROWS_DOWNWARD
424 function->x_frame_offset -= size;
425 #endif
427 /* Ignore alignment we can't do with expected alignment of the boundary. */
428 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
429 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
431 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
432 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
434 /* Calculate how many bytes the start of local variables is off from
435 stack alignment. */
436 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
437 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
438 frame_phase = frame_off ? frame_alignment - frame_off : 0;
440 /* Round the frame offset to the specified alignment. The default is
441 to always honor requests to align the stack but a port may choose to
442 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
443 if (STACK_ALIGNMENT_NEEDED
444 || mode != BLKmode
445 || size != 0)
447 /* We must be careful here, since FRAME_OFFSET might be negative and
448 division with a negative dividend isn't as well defined as we might
449 like. So we instead assume that ALIGNMENT is a power of two and
450 use logical operations which are unambiguous. */
451 #ifdef FRAME_GROWS_DOWNWARD
452 function->x_frame_offset
453 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
454 (unsigned HOST_WIDE_INT) alignment)
455 + frame_phase);
456 #else
457 function->x_frame_offset
458 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
459 (unsigned HOST_WIDE_INT) alignment)
460 + frame_phase);
461 #endif
464 /* On a big-endian machine, if we are allocating more space than we will use,
465 use the least significant bytes of those that are allocated. */
466 if (BYTES_BIG_ENDIAN && mode != BLKmode)
467 bigend_correction = size - GET_MODE_SIZE (mode);
469 /* If we have already instantiated virtual registers, return the actual
470 address relative to the frame pointer. */
471 if (function == cfun && virtuals_instantiated)
472 addr = plus_constant (frame_pointer_rtx,
473 trunc_int_for_mode
474 (frame_offset + bigend_correction
475 + STARTING_FRAME_OFFSET, Pmode));
476 else
477 addr = plus_constant (virtual_stack_vars_rtx,
478 trunc_int_for_mode
479 (function->x_frame_offset + bigend_correction,
480 Pmode));
482 #ifndef FRAME_GROWS_DOWNWARD
483 function->x_frame_offset += size;
484 #endif
486 x = gen_rtx_MEM (mode, addr);
488 function->x_stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
491 return x;
494 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
495 current function. */
498 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
500 return assign_stack_local_1 (mode, size, align, cfun);
504 /* Removes temporary slot TEMP from LIST. */
506 static void
507 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
509 if (temp->next)
510 temp->next->prev = temp->prev;
511 if (temp->prev)
512 temp->prev->next = temp->next;
513 else
514 *list = temp->next;
516 temp->prev = temp->next = NULL;
519 /* Inserts temporary slot TEMP to LIST. */
521 static void
522 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
524 temp->next = *list;
525 if (*list)
526 (*list)->prev = temp;
527 temp->prev = NULL;
528 *list = temp;
531 /* Returns the list of used temp slots at LEVEL. */
533 static struct temp_slot **
534 temp_slots_at_level (int level)
537 if (!used_temp_slots)
538 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
540 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
541 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
543 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
546 /* Returns the maximal temporary slot level. */
548 static int
549 max_slot_level (void)
551 if (!used_temp_slots)
552 return -1;
554 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
557 /* Moves temporary slot TEMP to LEVEL. */
559 static void
560 move_slot_to_level (struct temp_slot *temp, int level)
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, temp_slots_at_level (level));
564 temp->level = level;
567 /* Make temporary slot TEMP available. */
569 static void
570 make_slot_available (struct temp_slot *temp)
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, &avail_temp_slots);
574 temp->in_use = 0;
575 temp->level = -1;
578 /* Allocate a temporary stack slot and record it for possible later
579 reuse.
581 MODE is the machine mode to be given to the returned rtx.
583 SIZE is the size in units of the space required. We do no rounding here
584 since assign_stack_local will do any required rounding.
586 KEEP is 1 if this slot is to be retained after a call to
587 free_temp_slots. Automatic variables for a block are allocated
588 with this flag. KEEP values of 2 or 3 were needed respectively
589 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
590 or for SAVE_EXPRs, but they are now unused and will abort.
592 TYPE is the type that will be used for the stack slot. */
595 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
596 tree type)
598 unsigned int align;
599 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
600 rtx slot;
602 /* If SIZE is -1 it means that somebody tried to allocate a temporary
603 of a variable size. */
604 gcc_assert (size != -1);
606 /* These are now unused. */
607 gcc_assert (keep <= 1);
609 if (mode == BLKmode)
610 align = BIGGEST_ALIGNMENT;
611 else
612 align = GET_MODE_ALIGNMENT (mode);
614 if (! type)
615 type = lang_hooks.types.type_for_mode (mode, 0);
617 if (type)
618 align = LOCAL_ALIGNMENT (type, align);
620 /* Try to find an available, already-allocated temporary of the proper
621 mode which meets the size and alignment requirements. Choose the
622 smallest one with the closest alignment. */
623 for (p = avail_temp_slots; p; p = p->next)
625 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
626 && objects_must_conflict_p (p->type, type)
627 && (best_p == 0 || best_p->size > p->size
628 || (best_p->size == p->size && best_p->align > p->align)))
630 if (p->align == align && p->size == size)
632 selected = p;
633 cut_slot_from_list (selected, &avail_temp_slots);
634 best_p = 0;
635 break;
637 best_p = p;
641 /* Make our best, if any, the one to use. */
642 if (best_p)
644 selected = best_p;
645 cut_slot_from_list (selected, &avail_temp_slots);
647 /* If there are enough aligned bytes left over, make them into a new
648 temp_slot so that the extra bytes don't get wasted. Do this only
649 for BLKmode slots, so that we can be sure of the alignment. */
650 if (GET_MODE (best_p->slot) == BLKmode)
652 int alignment = best_p->align / BITS_PER_UNIT;
653 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
655 if (best_p->size - rounded_size >= alignment)
657 p = ggc_alloc (sizeof (struct temp_slot));
658 p->in_use = p->addr_taken = 0;
659 p->size = best_p->size - rounded_size;
660 p->base_offset = best_p->base_offset + rounded_size;
661 p->full_size = best_p->full_size - rounded_size;
662 p->slot = gen_rtx_MEM (BLKmode,
663 plus_constant (XEXP (best_p->slot, 0),
664 rounded_size));
665 p->align = best_p->align;
666 p->address = 0;
667 p->type = best_p->type;
668 insert_slot_to_list (p, &avail_temp_slots);
670 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
671 stack_slot_list);
673 best_p->size = rounded_size;
674 best_p->full_size = rounded_size;
679 /* If we still didn't find one, make a new temporary. */
680 if (selected == 0)
682 HOST_WIDE_INT frame_offset_old = frame_offset;
684 p = ggc_alloc (sizeof (struct temp_slot));
686 /* We are passing an explicit alignment request to assign_stack_local.
687 One side effect of that is assign_stack_local will not round SIZE
688 to ensure the frame offset remains suitably aligned.
690 So for requests which depended on the rounding of SIZE, we go ahead
691 and round it now. We also make sure ALIGNMENT is at least
692 BIGGEST_ALIGNMENT. */
693 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
694 p->slot = assign_stack_local (mode,
695 (mode == BLKmode
696 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
697 : size),
698 align);
700 p->align = align;
702 /* The following slot size computation is necessary because we don't
703 know the actual size of the temporary slot until assign_stack_local
704 has performed all the frame alignment and size rounding for the
705 requested temporary. Note that extra space added for alignment
706 can be either above or below this stack slot depending on which
707 way the frame grows. We include the extra space if and only if it
708 is above this slot. */
709 #ifdef FRAME_GROWS_DOWNWARD
710 p->size = frame_offset_old - frame_offset;
711 #else
712 p->size = size;
713 #endif
715 /* Now define the fields used by combine_temp_slots. */
716 #ifdef FRAME_GROWS_DOWNWARD
717 p->base_offset = frame_offset;
718 p->full_size = frame_offset_old - frame_offset;
719 #else
720 p->base_offset = frame_offset_old;
721 p->full_size = frame_offset - frame_offset_old;
722 #endif
723 p->address = 0;
725 selected = p;
728 p = selected;
729 p->in_use = 1;
730 p->addr_taken = 0;
731 p->type = type;
732 p->level = temp_slot_level;
733 p->keep = keep;
735 pp = temp_slots_at_level (p->level);
736 insert_slot_to_list (p, pp);
738 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
739 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
742 /* If we know the alias set for the memory that will be used, use
743 it. If there's no TYPE, then we don't know anything about the
744 alias set for the memory. */
745 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
746 set_mem_align (slot, align);
748 /* If a type is specified, set the relevant flags. */
749 if (type != 0)
751 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
752 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
755 return slot;
758 /* Allocate a temporary stack slot and record it for possible later
759 reuse. First three arguments are same as in preceding function. */
762 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
764 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
767 /* Assign a temporary.
768 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
769 and so that should be used in error messages. In either case, we
770 allocate of the given type.
771 KEEP is as for assign_stack_temp.
772 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
773 it is 0 if a register is OK.
774 DONT_PROMOTE is 1 if we should not promote values in register
775 to wider modes. */
778 assign_temp (tree type_or_decl, int keep, int memory_required,
779 int dont_promote ATTRIBUTE_UNUSED)
781 tree type, decl;
782 enum machine_mode mode;
783 #ifdef PROMOTE_MODE
784 int unsignedp;
785 #endif
787 if (DECL_P (type_or_decl))
788 decl = type_or_decl, type = TREE_TYPE (decl);
789 else
790 decl = NULL, type = type_or_decl;
792 mode = TYPE_MODE (type);
793 #ifdef PROMOTE_MODE
794 unsignedp = TYPE_UNSIGNED (type);
795 #endif
797 if (mode == BLKmode || memory_required)
799 HOST_WIDE_INT size = int_size_in_bytes (type);
800 tree size_tree;
801 rtx tmp;
803 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
804 problems with allocating the stack space. */
805 if (size == 0)
806 size = 1;
808 /* Unfortunately, we don't yet know how to allocate variable-sized
809 temporaries. However, sometimes we have a fixed upper limit on
810 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
811 instead. This is the case for Chill variable-sized strings. */
812 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
813 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
814 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
815 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
817 /* If we still haven't been able to get a size, see if the language
818 can compute a maximum size. */
819 if (size == -1
820 && (size_tree = lang_hooks.types.max_size (type)) != 0
821 && host_integerp (size_tree, 1))
822 size = tree_low_cst (size_tree, 1);
824 /* The size of the temporary may be too large to fit into an integer. */
825 /* ??? Not sure this should happen except for user silliness, so limit
826 this to things that aren't compiler-generated temporaries. The
827 rest of the time we'll abort in assign_stack_temp_for_type. */
828 if (decl && size == -1
829 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
831 error ("%Jsize of variable %qD is too large", decl, decl);
832 size = 1;
835 tmp = assign_stack_temp_for_type (mode, size, keep, type);
836 return tmp;
839 #ifdef PROMOTE_MODE
840 if (! dont_promote)
841 mode = promote_mode (type, mode, &unsignedp, 0);
842 #endif
844 return gen_reg_rtx (mode);
847 /* Combine temporary stack slots which are adjacent on the stack.
849 This allows for better use of already allocated stack space. This is only
850 done for BLKmode slots because we can be sure that we won't have alignment
851 problems in this case. */
853 void
854 combine_temp_slots (void)
856 struct temp_slot *p, *q, *next, *next_q;
857 int num_slots;
859 /* We can't combine slots, because the information about which slot
860 is in which alias set will be lost. */
861 if (flag_strict_aliasing)
862 return;
864 /* If there are a lot of temp slots, don't do anything unless
865 high levels of optimization. */
866 if (! flag_expensive_optimizations)
867 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
868 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
869 return;
871 for (p = avail_temp_slots; p; p = next)
873 int delete_p = 0;
875 next = p->next;
877 if (GET_MODE (p->slot) != BLKmode)
878 continue;
880 for (q = p->next; q; q = next_q)
882 int delete_q = 0;
884 next_q = q->next;
886 if (GET_MODE (q->slot) != BLKmode)
887 continue;
889 if (p->base_offset + p->full_size == q->base_offset)
891 /* Q comes after P; combine Q into P. */
892 p->size += q->size;
893 p->full_size += q->full_size;
894 delete_q = 1;
896 else if (q->base_offset + q->full_size == p->base_offset)
898 /* P comes after Q; combine P into Q. */
899 q->size += p->size;
900 q->full_size += p->full_size;
901 delete_p = 1;
902 break;
904 if (delete_q)
905 cut_slot_from_list (q, &avail_temp_slots);
908 /* Either delete P or advance past it. */
909 if (delete_p)
910 cut_slot_from_list (p, &avail_temp_slots);
914 /* Find the temp slot corresponding to the object at address X. */
916 static struct temp_slot *
917 find_temp_slot_from_address (rtx x)
919 struct temp_slot *p;
920 rtx next;
921 int i;
923 for (i = max_slot_level (); i >= 0; i--)
924 for (p = *temp_slots_at_level (i); p; p = p->next)
926 if (XEXP (p->slot, 0) == x
927 || p->address == x
928 || (GET_CODE (x) == PLUS
929 && XEXP (x, 0) == virtual_stack_vars_rtx
930 && GET_CODE (XEXP (x, 1)) == CONST_INT
931 && INTVAL (XEXP (x, 1)) >= p->base_offset
932 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
933 return p;
935 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
936 for (next = p->address; next; next = XEXP (next, 1))
937 if (XEXP (next, 0) == x)
938 return p;
941 /* If we have a sum involving a register, see if it points to a temp
942 slot. */
943 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
944 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
945 return p;
946 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
947 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
948 return p;
950 return 0;
953 /* Indicate that NEW is an alternate way of referring to the temp slot
954 that previously was known by OLD. */
956 void
957 update_temp_slot_address (rtx old, rtx new)
959 struct temp_slot *p;
961 if (rtx_equal_p (old, new))
962 return;
964 p = find_temp_slot_from_address (old);
966 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
967 is a register, see if one operand of the PLUS is a temporary
968 location. If so, NEW points into it. Otherwise, if both OLD and
969 NEW are a PLUS and if there is a register in common between them.
970 If so, try a recursive call on those values. */
971 if (p == 0)
973 if (GET_CODE (old) != PLUS)
974 return;
976 if (REG_P (new))
978 update_temp_slot_address (XEXP (old, 0), new);
979 update_temp_slot_address (XEXP (old, 1), new);
980 return;
982 else if (GET_CODE (new) != PLUS)
983 return;
985 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
986 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
987 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
988 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
989 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
990 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
991 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
992 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
994 return;
997 /* Otherwise add an alias for the temp's address. */
998 else if (p->address == 0)
999 p->address = new;
1000 else
1002 if (GET_CODE (p->address) != EXPR_LIST)
1003 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1005 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1009 /* If X could be a reference to a temporary slot, mark the fact that its
1010 address was taken. */
1012 void
1013 mark_temp_addr_taken (rtx x)
1015 struct temp_slot *p;
1017 if (x == 0)
1018 return;
1020 /* If X is not in memory or is at a constant address, it cannot be in
1021 a temporary slot. */
1022 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1023 return;
1025 p = find_temp_slot_from_address (XEXP (x, 0));
1026 if (p != 0)
1027 p->addr_taken = 1;
1030 /* If X could be a reference to a temporary slot, mark that slot as
1031 belonging to the to one level higher than the current level. If X
1032 matched one of our slots, just mark that one. Otherwise, we can't
1033 easily predict which it is, so upgrade all of them. Kept slots
1034 need not be touched.
1036 This is called when an ({...}) construct occurs and a statement
1037 returns a value in memory. */
1039 void
1040 preserve_temp_slots (rtx x)
1042 struct temp_slot *p = 0, *next;
1044 /* If there is no result, we still might have some objects whose address
1045 were taken, so we need to make sure they stay around. */
1046 if (x == 0)
1048 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1050 next = p->next;
1052 if (p->addr_taken)
1053 move_slot_to_level (p, temp_slot_level - 1);
1056 return;
1059 /* If X is a register that is being used as a pointer, see if we have
1060 a temporary slot we know it points to. To be consistent with
1061 the code below, we really should preserve all non-kept slots
1062 if we can't find a match, but that seems to be much too costly. */
1063 if (REG_P (x) && REG_POINTER (x))
1064 p = find_temp_slot_from_address (x);
1066 /* If X is not in memory or is at a constant address, it cannot be in
1067 a temporary slot, but it can contain something whose address was
1068 taken. */
1069 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1071 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1073 next = p->next;
1075 if (p->addr_taken)
1076 move_slot_to_level (p, temp_slot_level - 1);
1079 return;
1082 /* First see if we can find a match. */
1083 if (p == 0)
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1086 if (p != 0)
1088 /* Move everything at our level whose address was taken to our new
1089 level in case we used its address. */
1090 struct temp_slot *q;
1092 if (p->level == temp_slot_level)
1094 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1096 next = q->next;
1098 if (p != q && q->addr_taken)
1099 move_slot_to_level (q, temp_slot_level - 1);
1102 move_slot_to_level (p, temp_slot_level - 1);
1103 p->addr_taken = 0;
1105 return;
1108 /* Otherwise, preserve all non-kept slots at this level. */
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 next = p->next;
1113 if (!p->keep)
1114 move_slot_to_level (p, temp_slot_level - 1);
1118 /* Free all temporaries used so far. This is normally called at the
1119 end of generating code for a statement. */
1121 void
1122 free_temp_slots (void)
1124 struct temp_slot *p, *next;
1126 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1128 next = p->next;
1130 if (!p->keep)
1131 make_slot_available (p);
1134 combine_temp_slots ();
1137 /* Push deeper into the nesting level for stack temporaries. */
1139 void
1140 push_temp_slots (void)
1142 temp_slot_level++;
1145 /* Pop a temporary nesting level. All slots in use in the current level
1146 are freed. */
1148 void
1149 pop_temp_slots (void)
1151 struct temp_slot *p, *next;
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1155 next = p->next;
1156 make_slot_available (p);
1159 combine_temp_slots ();
1161 temp_slot_level--;
1164 /* Initialize temporary slots. */
1166 void
1167 init_temp_slots (void)
1169 /* We have not allocated any temporaries yet. */
1170 avail_temp_slots = 0;
1171 used_temp_slots = 0;
1172 temp_slot_level = 0;
1175 /* These routines are responsible for converting virtual register references
1176 to the actual hard register references once RTL generation is complete.
1178 The following four variables are used for communication between the
1179 routines. They contain the offsets of the virtual registers from their
1180 respective hard registers. */
1182 static int in_arg_offset;
1183 static int var_offset;
1184 static int dynamic_offset;
1185 static int out_arg_offset;
1186 static int cfa_offset;
1188 /* In most machines, the stack pointer register is equivalent to the bottom
1189 of the stack. */
1191 #ifndef STACK_POINTER_OFFSET
1192 #define STACK_POINTER_OFFSET 0
1193 #endif
1195 /* If not defined, pick an appropriate default for the offset of dynamically
1196 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1197 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1199 #ifndef STACK_DYNAMIC_OFFSET
1201 /* The bottom of the stack points to the actual arguments. If
1202 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1203 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1204 stack space for register parameters is not pushed by the caller, but
1205 rather part of the fixed stack areas and hence not included in
1206 `current_function_outgoing_args_size'. Nevertheless, we must allow
1207 for it when allocating stack dynamic objects. */
1209 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1210 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1211 ((ACCUMULATE_OUTGOING_ARGS \
1212 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1213 + (STACK_POINTER_OFFSET)) \
1215 #else
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1218 + (STACK_POINTER_OFFSET))
1219 #endif
1220 #endif
1222 /* On most machines, the CFA coincides with the first incoming parm. */
1224 #ifndef ARG_POINTER_CFA_OFFSET
1225 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1226 #endif
1229 /* Pass through the INSNS of function FNDECL and convert virtual register
1230 references to hard register references. */
1232 void
1233 instantiate_virtual_regs (void)
1235 rtx insn;
1237 /* Compute the offsets to use for this function. */
1238 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1239 var_offset = STARTING_FRAME_OFFSET;
1240 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1241 out_arg_offset = STACK_POINTER_OFFSET;
1242 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1244 /* Scan all variables and parameters of this function. For each that is
1245 in memory, instantiate all virtual registers if the result is a valid
1246 address. If not, we do it later. That will handle most uses of virtual
1247 regs on many machines. */
1248 instantiate_decls (current_function_decl, 1);
1250 /* Initialize recognition, indicating that volatile is OK. */
1251 init_recog ();
1253 /* Scan through all the insns, instantiating every virtual register still
1254 present. */
1255 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1256 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1257 || GET_CODE (insn) == CALL_INSN)
1259 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1260 if (INSN_DELETED_P (insn))
1261 continue;
1262 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1263 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1264 if (GET_CODE (insn) == CALL_INSN)
1265 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1266 NULL_RTX, 0);
1268 /* Past this point all ASM statements should match. Verify that
1269 to avoid failures later in the compilation process. */
1270 if (asm_noperands (PATTERN (insn)) >= 0
1271 && ! check_asm_operands (PATTERN (insn)))
1272 instantiate_virtual_regs_lossage (insn);
1275 /* Now instantiate the remaining register equivalences for debugging info.
1276 These will not be valid addresses. */
1277 instantiate_decls (current_function_decl, 0);
1279 /* Indicate that, from now on, assign_stack_local should use
1280 frame_pointer_rtx. */
1281 virtuals_instantiated = 1;
1284 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1285 all virtual registers in their DECL_RTL's.
1287 If VALID_ONLY, do this only if the resulting address is still valid.
1288 Otherwise, always do it. */
1290 static void
1291 instantiate_decls (tree fndecl, int valid_only)
1293 tree decl;
1295 /* Process all parameters of the function. */
1296 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1298 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1299 HOST_WIDE_INT size_rtl;
1301 instantiate_decl (DECL_RTL (decl), size, valid_only);
1303 /* If the parameter was promoted, then the incoming RTL mode may be
1304 larger than the declared type size. We must use the larger of
1305 the two sizes. */
1306 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1307 size = MAX (size_rtl, size);
1308 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1311 /* Now process all variables defined in the function or its subblocks. */
1312 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1315 /* Subroutine of instantiate_decls: Process all decls in the given
1316 BLOCK node and all its subblocks. */
1318 static void
1319 instantiate_decls_1 (tree let, int valid_only)
1321 tree t;
1323 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1324 if (DECL_RTL_SET_P (t))
1325 instantiate_decl (DECL_RTL (t),
1326 int_size_in_bytes (TREE_TYPE (t)),
1327 valid_only);
1329 /* Process all subblocks. */
1330 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1331 instantiate_decls_1 (t, valid_only);
1334 /* Subroutine of the preceding procedures: Given RTL representing a
1335 decl and the size of the object, do any instantiation required.
1337 If VALID_ONLY is nonzero, it means that the RTL should only be
1338 changed if the new address is valid. */
1340 static void
1341 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1343 enum machine_mode mode;
1344 rtx addr;
1346 if (x == 0)
1347 return;
1349 /* If this is a CONCAT, recurse for the pieces. */
1350 if (GET_CODE (x) == CONCAT)
1352 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1353 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1354 return;
1357 /* If this is not a MEM, no need to do anything. Similarly if the
1358 address is a constant or a register that is not a virtual register. */
1359 if (!MEM_P (x))
1360 return;
1362 addr = XEXP (x, 0);
1363 if (CONSTANT_P (addr)
1364 || (REG_P (addr)
1365 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1366 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1367 return;
1369 /* If we should only do this if the address is valid, copy the address.
1370 We need to do this so we can undo any changes that might make the
1371 address invalid. This copy is unfortunate, but probably can't be
1372 avoided. */
1374 if (valid_only)
1375 addr = copy_rtx (addr);
1377 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1379 if (valid_only && size >= 0)
1381 unsigned HOST_WIDE_INT decl_size = size;
1383 /* Now verify that the resulting address is valid for every integer or
1384 floating-point mode up to and including SIZE bytes long. We do this
1385 since the object might be accessed in any mode and frame addresses
1386 are shared. */
1388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1389 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1390 mode = GET_MODE_WIDER_MODE (mode))
1391 if (! memory_address_p (mode, addr))
1392 return;
1394 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1395 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1396 mode = GET_MODE_WIDER_MODE (mode))
1397 if (! memory_address_p (mode, addr))
1398 return;
1401 /* Put back the address now that we have updated it and we either know
1402 it is valid or we don't care whether it is valid. */
1404 XEXP (x, 0) = addr;
1407 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1408 is a virtual register, return the equivalent hard register and set the
1409 offset indirectly through the pointer. Otherwise, return 0. */
1411 static rtx
1412 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1414 rtx new;
1415 HOST_WIDE_INT offset;
1417 if (x == virtual_incoming_args_rtx)
1418 new = arg_pointer_rtx, offset = in_arg_offset;
1419 else if (x == virtual_stack_vars_rtx)
1420 new = frame_pointer_rtx, offset = var_offset;
1421 else if (x == virtual_stack_dynamic_rtx)
1422 new = stack_pointer_rtx, offset = dynamic_offset;
1423 else if (x == virtual_outgoing_args_rtx)
1424 new = stack_pointer_rtx, offset = out_arg_offset;
1425 else if (x == virtual_cfa_rtx)
1426 new = arg_pointer_rtx, offset = cfa_offset;
1427 else
1428 return 0;
1430 *poffset = offset;
1431 return new;
1435 /* Called when instantiate_virtual_regs has failed to update the instruction.
1436 Usually this means that non-matching instruction has been emit, however for
1437 asm statements it may be the problem in the constraints. */
1438 static void
1439 instantiate_virtual_regs_lossage (rtx insn)
1441 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1442 error_for_asm (insn, "impossible constraint in %<asm%>");
1443 delete_insn (insn);
1445 /* Given a pointer to a piece of rtx and an optional pointer to the
1446 containing object, instantiate any virtual registers present in it.
1448 If EXTRA_INSNS, we always do the replacement and generate
1449 any extra insns before OBJECT. If it zero, we do nothing if replacement
1450 is not valid.
1452 Return 1 if we either had nothing to do or if we were able to do the
1453 needed replacement. Return 0 otherwise; we only return zero if
1454 EXTRA_INSNS is zero.
1456 We first try some simple transformations to avoid the creation of extra
1457 pseudos. */
1459 static int
1460 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1462 rtx x;
1463 RTX_CODE code;
1464 rtx new = 0;
1465 HOST_WIDE_INT offset = 0;
1466 rtx temp;
1467 rtx seq;
1468 int i, j;
1469 const char *fmt;
1471 /* Re-start here to avoid recursion in common cases. */
1472 restart:
1474 x = *loc;
1475 if (x == 0)
1476 return 1;
1478 /* We may have detected and deleted invalid asm statements. */
1479 if (object && INSN_P (object) && INSN_DELETED_P (object))
1480 return 1;
1482 code = GET_CODE (x);
1484 /* Check for some special cases. */
1485 switch (code)
1487 case CONST_INT:
1488 case CONST_DOUBLE:
1489 case CONST_VECTOR:
1490 case CONST:
1491 case SYMBOL_REF:
1492 case CODE_LABEL:
1493 case PC:
1494 case CC0:
1495 case ASM_INPUT:
1496 case ADDR_VEC:
1497 case ADDR_DIFF_VEC:
1498 case RETURN:
1499 return 1;
1501 case SET:
1502 /* We are allowed to set the virtual registers. This means that
1503 the actual register should receive the source minus the
1504 appropriate offset. This is used, for example, in the handling
1505 of non-local gotos. */
1506 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1508 rtx src = SET_SRC (x);
1510 /* We are setting the register, not using it, so the relevant
1511 offset is the negative of the offset to use were we using
1512 the register. */
1513 offset = - offset;
1514 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1516 /* The only valid sources here are PLUS or REG. Just do
1517 the simplest possible thing to handle them. */
1518 if (!REG_P (src) && GET_CODE (src) != PLUS)
1520 instantiate_virtual_regs_lossage (object);
1521 return 1;
1524 start_sequence ();
1525 if (!REG_P (src))
1526 temp = force_operand (src, NULL_RTX);
1527 else
1528 temp = src;
1529 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1530 seq = get_insns ();
1531 end_sequence ();
1533 emit_insn_before (seq, object);
1534 SET_DEST (x) = new;
1536 if (! validate_change (object, &SET_SRC (x), temp, 0)
1537 || ! extra_insns)
1538 instantiate_virtual_regs_lossage (object);
1540 return 1;
1543 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1544 loc = &SET_SRC (x);
1545 goto restart;
1547 case PLUS:
1548 /* Handle special case of virtual register plus constant. */
1549 if (CONSTANT_P (XEXP (x, 1)))
1551 rtx old, new_offset;
1553 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1554 if (GET_CODE (XEXP (x, 0)) == PLUS)
1556 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1558 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1559 extra_insns);
1560 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1562 else
1564 loc = &XEXP (x, 0);
1565 goto restart;
1569 #ifdef POINTERS_EXTEND_UNSIGNED
1570 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1571 we can commute the PLUS and SUBREG because pointers into the
1572 frame are well-behaved. */
1573 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1574 && GET_CODE (XEXP (x, 1)) == CONST_INT
1575 && 0 != (new
1576 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1577 &offset))
1578 && validate_change (object, loc,
1579 plus_constant (gen_lowpart (ptr_mode,
1580 new),
1581 offset
1582 + INTVAL (XEXP (x, 1))),
1584 return 1;
1585 #endif
1586 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1588 /* We know the second operand is a constant. Unless the
1589 first operand is a REG (which has been already checked),
1590 it needs to be checked. */
1591 if (!REG_P (XEXP (x, 0)))
1593 loc = &XEXP (x, 0);
1594 goto restart;
1596 return 1;
1599 new_offset = plus_constant (XEXP (x, 1), offset);
1601 /* If the new constant is zero, try to replace the sum with just
1602 the register. */
1603 if (new_offset == const0_rtx
1604 && validate_change (object, loc, new, 0))
1605 return 1;
1607 /* Next try to replace the register and new offset.
1608 There are two changes to validate here and we can't assume that
1609 in the case of old offset equals new just changing the register
1610 will yield a valid insn. In the interests of a little efficiency,
1611 however, we only call validate change once (we don't queue up the
1612 changes and then call apply_change_group). */
1614 old = XEXP (x, 0);
1615 if (offset == 0
1616 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1617 : (XEXP (x, 0) = new,
1618 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1620 if (! extra_insns)
1622 XEXP (x, 0) = old;
1623 return 0;
1626 /* Otherwise copy the new constant into a register and replace
1627 constant with that register. */
1628 temp = gen_reg_rtx (Pmode);
1629 XEXP (x, 0) = new;
1630 if (validate_change (object, &XEXP (x, 1), temp, 0))
1631 emit_insn_before (gen_move_insn (temp, new_offset), object);
1632 else
1634 /* If that didn't work, replace this expression with a
1635 register containing the sum. */
1637 XEXP (x, 0) = old;
1638 new = gen_rtx_PLUS (Pmode, new, new_offset);
1640 start_sequence ();
1641 temp = force_operand (new, NULL_RTX);
1642 seq = get_insns ();
1643 end_sequence ();
1645 emit_insn_before (seq, object);
1646 if (! validate_change (object, loc, temp, 0)
1647 && ! validate_replace_rtx (x, temp, object))
1649 instantiate_virtual_regs_lossage (object);
1650 return 1;
1655 return 1;
1658 /* Fall through to generic two-operand expression case. */
1659 case EXPR_LIST:
1660 case CALL:
1661 case COMPARE:
1662 case MINUS:
1663 case MULT:
1664 case DIV: case UDIV:
1665 case MOD: case UMOD:
1666 case AND: case IOR: case XOR:
1667 case ROTATERT: case ROTATE:
1668 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1669 case NE: case EQ:
1670 case GE: case GT: case GEU: case GTU:
1671 case LE: case LT: case LEU: case LTU:
1672 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1673 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1674 loc = &XEXP (x, 0);
1675 goto restart;
1677 case MEM:
1678 /* Most cases of MEM that convert to valid addresses have already been
1679 handled by our scan of decls. The only special handling we
1680 need here is to make a copy of the rtx to ensure it isn't being
1681 shared if we have to change it to a pseudo.
1683 If the rtx is a simple reference to an address via a virtual register,
1684 it can potentially be shared. In such cases, first try to make it
1685 a valid address, which can also be shared. Otherwise, copy it and
1686 proceed normally.
1688 First check for common cases that need no processing. These are
1689 usually due to instantiation already being done on a previous instance
1690 of a shared rtx. */
1692 temp = XEXP (x, 0);
1693 if (CONSTANT_ADDRESS_P (temp)
1694 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1695 || temp == arg_pointer_rtx
1696 #endif
1697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || temp == hard_frame_pointer_rtx
1699 #endif
1700 || temp == frame_pointer_rtx)
1701 return 1;
1703 if (GET_CODE (temp) == PLUS
1704 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1705 && (XEXP (temp, 0) == frame_pointer_rtx
1706 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1707 || XEXP (temp, 0) == hard_frame_pointer_rtx
1708 #endif
1709 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710 || XEXP (temp, 0) == arg_pointer_rtx
1711 #endif
1713 return 1;
1715 if (temp == virtual_stack_vars_rtx
1716 || temp == virtual_incoming_args_rtx
1717 || (GET_CODE (temp) == PLUS
1718 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1719 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1720 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1722 /* This MEM may be shared. If the substitution can be done without
1723 the need to generate new pseudos, we want to do it in place
1724 so all copies of the shared rtx benefit. The call below will
1725 only make substitutions if the resulting address is still
1726 valid.
1728 Note that we cannot pass X as the object in the recursive call
1729 since the insn being processed may not allow all valid
1730 addresses. However, if we were not passed on object, we can
1731 only modify X without copying it if X will have a valid
1732 address.
1734 ??? Also note that this can still lose if OBJECT is an insn that
1735 has less restrictions on an address that some other insn.
1736 In that case, we will modify the shared address. This case
1737 doesn't seem very likely, though. One case where this could
1738 happen is in the case of a USE or CLOBBER reference, but we
1739 take care of that below. */
1741 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1742 object ? object : x, 0))
1743 return 1;
1745 /* Otherwise make a copy and process that copy. We copy the entire
1746 RTL expression since it might be a PLUS which could also be
1747 shared. */
1748 *loc = x = copy_rtx (x);
1751 /* Fall through to generic unary operation case. */
1752 case PREFETCH:
1753 case SUBREG:
1754 case STRICT_LOW_PART:
1755 case NEG: case NOT:
1756 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1757 case SIGN_EXTEND: case ZERO_EXTEND:
1758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1759 case FLOAT: case FIX:
1760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1761 case ABS:
1762 case SQRT:
1763 case FFS:
1764 case CLZ: case CTZ:
1765 case POPCOUNT: case PARITY:
1766 /* These case either have just one operand or we know that we need not
1767 check the rest of the operands. */
1768 loc = &XEXP (x, 0);
1769 goto restart;
1771 case USE:
1772 case CLOBBER:
1773 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1774 go ahead and make the invalid one, but do it to a copy. For a REG,
1775 just make the recursive call, since there's no chance of a problem. */
1777 if ((MEM_P (XEXP (x, 0))
1778 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1780 || (REG_P (XEXP (x, 0))
1781 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1782 return 1;
1784 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1785 loc = &XEXP (x, 0);
1786 goto restart;
1788 case REG:
1789 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1790 in front of this insn and substitute the temporary. */
1791 if ((new = instantiate_new_reg (x, &offset)) != 0)
1793 temp = plus_constant (new, offset);
1794 if (!validate_change (object, loc, temp, 0))
1796 if (! extra_insns)
1797 return 0;
1799 start_sequence ();
1800 temp = force_operand (temp, NULL_RTX);
1801 seq = get_insns ();
1802 end_sequence ();
1804 emit_insn_before (seq, object);
1805 if (! validate_change (object, loc, temp, 0)
1806 && ! validate_replace_rtx (x, temp, object))
1807 instantiate_virtual_regs_lossage (object);
1811 return 1;
1813 default:
1814 break;
1817 /* Scan all subexpressions. */
1818 fmt = GET_RTX_FORMAT (code);
1819 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1820 if (*fmt == 'e')
1822 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1823 return 0;
1825 else if (*fmt == 'E')
1826 for (j = 0; j < XVECLEN (x, i); j++)
1827 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1828 extra_insns))
1829 return 0;
1831 return 1;
1834 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1835 This means a type for which function calls must pass an address to the
1836 function or get an address back from the function.
1837 EXP may be a type node or an expression (whose type is tested). */
1840 aggregate_value_p (tree exp, tree fntype)
1842 int i, regno, nregs;
1843 rtx reg;
1845 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1847 if (fntype)
1848 switch (TREE_CODE (fntype))
1850 case CALL_EXPR:
1851 fntype = get_callee_fndecl (fntype);
1852 fntype = fntype ? TREE_TYPE (fntype) : 0;
1853 break;
1854 case FUNCTION_DECL:
1855 fntype = TREE_TYPE (fntype);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870 /* If the front end has decided that this needs to be passed by
1871 reference, do so. */
1872 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1873 && DECL_BY_REFERENCE (exp))
1874 return 1;
1875 if (targetm.calls.return_in_memory (type, fntype))
1876 return 1;
1877 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1878 and thus can't be returned in registers. */
1879 if (TREE_ADDRESSABLE (type))
1880 return 1;
1881 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1882 return 1;
1883 /* Make sure we have suitable call-clobbered regs to return
1884 the value in; if not, we must return it in memory. */
1885 reg = hard_function_value (type, 0, 0);
1887 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1888 it is OK. */
1889 if (!REG_P (reg))
1890 return 0;
1892 regno = REGNO (reg);
1893 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1894 for (i = 0; i < nregs; i++)
1895 if (! call_used_regs[regno + i])
1896 return 1;
1897 return 0;
1900 /* Return true if we should assign DECL a pseudo register; false if it
1901 should live on the local stack. */
1903 bool
1904 use_register_for_decl (tree decl)
1906 /* Honor volatile. */
1907 if (TREE_SIDE_EFFECTS (decl))
1908 return false;
1910 /* Honor addressability. */
1911 if (TREE_ADDRESSABLE (decl))
1912 return false;
1914 /* Only register-like things go in registers. */
1915 if (DECL_MODE (decl) == BLKmode)
1916 return false;
1918 /* If -ffloat-store specified, don't put explicit float variables
1919 into registers. */
1920 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1921 propagates values across these stores, and it probably shouldn't. */
1922 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1923 return false;
1925 /* Compiler-generated temporaries can always go in registers. */
1926 if (DECL_ARTIFICIAL (decl))
1927 return true;
1929 #ifdef NON_SAVING_SETJMP
1930 /* Protect variables not declared "register" from setjmp. */
1931 if (NON_SAVING_SETJMP
1932 && current_function_calls_setjmp
1933 && !DECL_REGISTER (decl))
1934 return false;
1935 #endif
1937 return (optimize || DECL_REGISTER (decl));
1940 /* Return true if TYPE should be passed by invisible reference. */
1942 bool
1943 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1944 tree type, bool named_arg)
1946 if (type)
1948 /* If this type contains non-trivial constructors, then it is
1949 forbidden for the middle-end to create any new copies. */
1950 if (TREE_ADDRESSABLE (type))
1951 return true;
1953 /* GCC post 3.4 passes *all* variable sized types by reference. */
1954 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1955 return true;
1958 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1961 /* Return true if TYPE, which is passed by reference, should be callee
1962 copied instead of caller copied. */
1964 bool
1965 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1966 tree type, bool named_arg)
1968 if (type && TREE_ADDRESSABLE (type))
1969 return false;
1970 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1973 /* Structures to communicate between the subroutines of assign_parms.
1974 The first holds data persistent across all parameters, the second
1975 is cleared out for each parameter. */
1977 struct assign_parm_data_all
1979 CUMULATIVE_ARGS args_so_far;
1980 struct args_size stack_args_size;
1981 tree function_result_decl;
1982 tree orig_fnargs;
1983 rtx conversion_insns;
1984 HOST_WIDE_INT pretend_args_size;
1985 HOST_WIDE_INT extra_pretend_bytes;
1986 int reg_parm_stack_space;
1989 struct assign_parm_data_one
1991 tree nominal_type;
1992 tree passed_type;
1993 rtx entry_parm;
1994 rtx stack_parm;
1995 enum machine_mode nominal_mode;
1996 enum machine_mode passed_mode;
1997 enum machine_mode promoted_mode;
1998 struct locate_and_pad_arg_data locate;
1999 int partial;
2000 BOOL_BITFIELD named_arg : 1;
2001 BOOL_BITFIELD last_named : 1;
2002 BOOL_BITFIELD passed_pointer : 1;
2003 BOOL_BITFIELD on_stack : 1;
2004 BOOL_BITFIELD loaded_in_reg : 1;
2007 /* A subroutine of assign_parms. Initialize ALL. */
2009 static void
2010 assign_parms_initialize_all (struct assign_parm_data_all *all)
2012 tree fntype;
2014 memset (all, 0, sizeof (*all));
2016 fntype = TREE_TYPE (current_function_decl);
2018 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2019 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2020 #else
2021 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2022 current_function_decl, -1);
2023 #endif
2025 #ifdef REG_PARM_STACK_SPACE
2026 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2027 #endif
2030 /* If ARGS contains entries with complex types, split the entry into two
2031 entries of the component type. Return a new list of substitutions are
2032 needed, else the old list. */
2034 static tree
2035 split_complex_args (tree args)
2037 tree p;
2039 /* Before allocating memory, check for the common case of no complex. */
2040 for (p = args; p; p = TREE_CHAIN (p))
2042 tree type = TREE_TYPE (p);
2043 if (TREE_CODE (type) == COMPLEX_TYPE
2044 && targetm.calls.split_complex_arg (type))
2045 goto found;
2047 return args;
2049 found:
2050 args = copy_list (args);
2052 for (p = args; p; p = TREE_CHAIN (p))
2054 tree type = TREE_TYPE (p);
2055 if (TREE_CODE (type) == COMPLEX_TYPE
2056 && targetm.calls.split_complex_arg (type))
2058 tree decl;
2059 tree subtype = TREE_TYPE (type);
2061 /* Rewrite the PARM_DECL's type with its component. */
2062 TREE_TYPE (p) = subtype;
2063 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2064 DECL_MODE (p) = VOIDmode;
2065 DECL_SIZE (p) = NULL;
2066 DECL_SIZE_UNIT (p) = NULL;
2067 layout_decl (p, 0);
2069 /* Build a second synthetic decl. */
2070 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2071 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2072 layout_decl (decl, 0);
2074 /* Splice it in; skip the new decl. */
2075 TREE_CHAIN (decl) = TREE_CHAIN (p);
2076 TREE_CHAIN (p) = decl;
2077 p = decl;
2081 return args;
2084 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2085 the hidden struct return argument, and (abi willing) complex args.
2086 Return the new parameter list. */
2088 static tree
2089 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2091 tree fndecl = current_function_decl;
2092 tree fntype = TREE_TYPE (fndecl);
2093 tree fnargs = DECL_ARGUMENTS (fndecl);
2095 /* If struct value address is treated as the first argument, make it so. */
2096 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2097 && ! current_function_returns_pcc_struct
2098 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2100 tree type = build_pointer_type (TREE_TYPE (fntype));
2101 tree decl;
2103 decl = build_decl (PARM_DECL, NULL_TREE, type);
2104 DECL_ARG_TYPE (decl) = type;
2105 DECL_ARTIFICIAL (decl) = 1;
2107 TREE_CHAIN (decl) = fnargs;
2108 fnargs = decl;
2109 all->function_result_decl = decl;
2112 all->orig_fnargs = fnargs;
2114 /* If the target wants to split complex arguments into scalars, do so. */
2115 if (targetm.calls.split_complex_arg)
2116 fnargs = split_complex_args (fnargs);
2118 return fnargs;
2121 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2122 data for the parameter. Incorporate ABI specifics such as pass-by-
2123 reference and type promotion. */
2125 static void
2126 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2127 struct assign_parm_data_one *data)
2129 tree nominal_type, passed_type;
2130 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2132 memset (data, 0, sizeof (*data));
2134 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2135 if (current_function_stdarg)
2137 tree tem;
2138 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2139 if (DECL_NAME (tem))
2140 break;
2141 if (tem == 0)
2142 data->last_named = true;
2145 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2146 most machines, if this is a varargs/stdarg function, then we treat
2147 the last named arg as if it were anonymous too. */
2148 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2149 data->named_arg = 1;
2150 else
2151 data->named_arg = !data->last_named;
2153 nominal_type = TREE_TYPE (parm);
2154 passed_type = DECL_ARG_TYPE (parm);
2156 /* Look out for errors propagating this far. Also, if the parameter's
2157 type is void then its value doesn't matter. */
2158 if (TREE_TYPE (parm) == error_mark_node
2159 /* This can happen after weird syntax errors
2160 or if an enum type is defined among the parms. */
2161 || TREE_CODE (parm) != PARM_DECL
2162 || passed_type == NULL
2163 || VOID_TYPE_P (nominal_type))
2165 nominal_type = passed_type = void_type_node;
2166 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2167 goto egress;
2170 /* Find mode of arg as it is passed, and mode of arg as it should be
2171 during execution of this function. */
2172 passed_mode = TYPE_MODE (passed_type);
2173 nominal_mode = TYPE_MODE (nominal_type);
2175 /* If the parm is to be passed as a transparent union, use the type of
2176 the first field for the tests below. We have already verified that
2177 the modes are the same. */
2178 if (DECL_TRANSPARENT_UNION (parm)
2179 || (TREE_CODE (passed_type) == UNION_TYPE
2180 && TYPE_TRANSPARENT_UNION (passed_type)))
2181 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2183 /* See if this arg was passed by invisible reference. */
2184 if (pass_by_reference (&all->args_so_far, passed_mode,
2185 passed_type, data->named_arg))
2187 passed_type = nominal_type = build_pointer_type (passed_type);
2188 data->passed_pointer = true;
2189 passed_mode = nominal_mode = Pmode;
2192 /* Find mode as it is passed by the ABI. */
2193 promoted_mode = passed_mode;
2194 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2196 int unsignedp = TYPE_UNSIGNED (passed_type);
2197 promoted_mode = promote_mode (passed_type, promoted_mode,
2198 &unsignedp, 1);
2201 egress:
2202 data->nominal_type = nominal_type;
2203 data->passed_type = passed_type;
2204 data->nominal_mode = nominal_mode;
2205 data->passed_mode = passed_mode;
2206 data->promoted_mode = promoted_mode;
2209 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2211 static void
2212 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2213 struct assign_parm_data_one *data, bool no_rtl)
2215 int varargs_pretend_bytes = 0;
2217 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2218 data->promoted_mode,
2219 data->passed_type,
2220 &varargs_pretend_bytes, no_rtl);
2222 /* If the back-end has requested extra stack space, record how much is
2223 needed. Do not change pretend_args_size otherwise since it may be
2224 nonzero from an earlier partial argument. */
2225 if (varargs_pretend_bytes > 0)
2226 all->pretend_args_size = varargs_pretend_bytes;
2229 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2230 the incoming location of the current parameter. */
2232 static void
2233 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2234 struct assign_parm_data_one *data)
2236 HOST_WIDE_INT pretend_bytes = 0;
2237 rtx entry_parm;
2238 bool in_regs;
2240 if (data->promoted_mode == VOIDmode)
2242 data->entry_parm = data->stack_parm = const0_rtx;
2243 return;
2246 #ifdef FUNCTION_INCOMING_ARG
2247 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2248 data->passed_type, data->named_arg);
2249 #else
2250 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2251 data->passed_type, data->named_arg);
2252 #endif
2254 if (entry_parm == 0)
2255 data->promoted_mode = data->passed_mode;
2257 /* Determine parm's home in the stack, in case it arrives in the stack
2258 or we should pretend it did. Compute the stack position and rtx where
2259 the argument arrives and its size.
2261 There is one complexity here: If this was a parameter that would
2262 have been passed in registers, but wasn't only because it is
2263 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2264 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2265 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2266 as it was the previous time. */
2267 in_regs = entry_parm != 0;
2268 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2269 in_regs = true;
2270 #endif
2271 if (!in_regs && !data->named_arg)
2273 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2275 rtx tem;
2276 #ifdef FUNCTION_INCOMING_ARG
2277 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2278 data->passed_type, true);
2279 #else
2280 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2281 data->passed_type, true);
2282 #endif
2283 in_regs = tem != NULL;
2287 /* If this parameter was passed both in registers and in the stack, use
2288 the copy on the stack. */
2289 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2290 data->passed_type))
2291 entry_parm = 0;
2293 if (entry_parm)
2295 int partial;
2297 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2298 data->promoted_mode,
2299 data->passed_type,
2300 data->named_arg);
2301 data->partial = partial;
2303 /* The caller might already have allocated stack space for the
2304 register parameters. */
2305 if (partial != 0 && all->reg_parm_stack_space == 0)
2307 /* Part of this argument is passed in registers and part
2308 is passed on the stack. Ask the prologue code to extend
2309 the stack part so that we can recreate the full value.
2311 PRETEND_BYTES is the size of the registers we need to store.
2312 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2313 stack space that the prologue should allocate.
2315 Internally, gcc assumes that the argument pointer is aligned
2316 to STACK_BOUNDARY bits. This is used both for alignment
2317 optimizations (see init_emit) and to locate arguments that are
2318 aligned to more than PARM_BOUNDARY bits. We must preserve this
2319 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2320 a stack boundary. */
2322 /* We assume at most one partial arg, and it must be the first
2323 argument on the stack. */
2324 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2326 pretend_bytes = partial * UNITS_PER_WORD;
2327 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2329 /* We want to align relative to the actual stack pointer, so
2330 don't include this in the stack size until later. */
2331 all->extra_pretend_bytes = all->pretend_args_size;
2335 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2336 entry_parm ? data->partial : 0, current_function_decl,
2337 &all->stack_args_size, &data->locate);
2339 /* Adjust offsets to include the pretend args. */
2340 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2341 data->locate.slot_offset.constant += pretend_bytes;
2342 data->locate.offset.constant += pretend_bytes;
2344 data->entry_parm = entry_parm;
2347 /* A subroutine of assign_parms. If there is actually space on the stack
2348 for this parm, count it in stack_args_size and return true. */
2350 static bool
2351 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2352 struct assign_parm_data_one *data)
2354 /* Trivially true if we've no incoming register. */
2355 if (data->entry_parm == NULL)
2357 /* Also true if we're partially in registers and partially not,
2358 since we've arranged to drop the entire argument on the stack. */
2359 else if (data->partial != 0)
2361 /* Also true if the target says that it's passed in both registers
2362 and on the stack. */
2363 else if (GET_CODE (data->entry_parm) == PARALLEL
2364 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2366 /* Also true if the target says that there's stack allocated for
2367 all register parameters. */
2368 else if (all->reg_parm_stack_space > 0)
2370 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2371 else
2372 return false;
2374 all->stack_args_size.constant += data->locate.size.constant;
2375 if (data->locate.size.var)
2376 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2378 return true;
2381 /* A subroutine of assign_parms. Given that this parameter is allocated
2382 stack space by the ABI, find it. */
2384 static void
2385 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2387 rtx offset_rtx, stack_parm;
2388 unsigned int align, boundary;
2390 /* If we're passing this arg using a reg, make its stack home the
2391 aligned stack slot. */
2392 if (data->entry_parm)
2393 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2394 else
2395 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2397 stack_parm = current_function_internal_arg_pointer;
2398 if (offset_rtx != const0_rtx)
2399 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2400 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2402 set_mem_attributes (stack_parm, parm, 1);
2404 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2405 align = 0;
2407 /* If we're padding upward, we know that the alignment of the slot
2408 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2409 intentionally forcing upward padding. Otherwise we have to come
2410 up with a guess at the alignment based on OFFSET_RTX. */
2411 if (data->locate.where_pad == upward || data->entry_parm)
2412 align = boundary;
2413 else if (GET_CODE (offset_rtx) == CONST_INT)
2415 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2416 align = align & -align;
2418 if (align > 0)
2419 set_mem_align (stack_parm, align);
2421 if (data->entry_parm)
2422 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2424 data->stack_parm = stack_parm;
2427 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2428 always valid and contiguous. */
2430 static void
2431 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2433 rtx entry_parm = data->entry_parm;
2434 rtx stack_parm = data->stack_parm;
2436 /* If this parm was passed part in regs and part in memory, pretend it
2437 arrived entirely in memory by pushing the register-part onto the stack.
2438 In the special case of a DImode or DFmode that is split, we could put
2439 it together in a pseudoreg directly, but for now that's not worth
2440 bothering with. */
2441 if (data->partial != 0)
2443 /* Handle calls that pass values in multiple non-contiguous
2444 locations. The Irix 6 ABI has examples of this. */
2445 if (GET_CODE (entry_parm) == PARALLEL)
2446 emit_group_store (validize_mem (stack_parm), entry_parm,
2447 data->passed_type,
2448 int_size_in_bytes (data->passed_type));
2449 else
2450 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2451 data->partial);
2453 entry_parm = stack_parm;
2456 /* If we didn't decide this parm came in a register, by default it came
2457 on the stack. */
2458 else if (entry_parm == NULL)
2459 entry_parm = stack_parm;
2461 /* When an argument is passed in multiple locations, we can't make use
2462 of this information, but we can save some copying if the whole argument
2463 is passed in a single register. */
2464 else if (GET_CODE (entry_parm) == PARALLEL
2465 && data->nominal_mode != BLKmode
2466 && data->passed_mode != BLKmode)
2468 size_t i, len = XVECLEN (entry_parm, 0);
2470 for (i = 0; i < len; i++)
2471 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2472 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2473 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2474 == data->passed_mode)
2475 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2477 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2478 break;
2482 data->entry_parm = entry_parm;
2485 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2486 always valid and properly aligned. */
2489 static void
2490 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2492 rtx stack_parm = data->stack_parm;
2494 /* If we can't trust the parm stack slot to be aligned enough for its
2495 ultimate type, don't use that slot after entry. We'll make another
2496 stack slot, if we need one. */
2497 if (STRICT_ALIGNMENT && stack_parm
2498 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2499 stack_parm = NULL;
2501 /* If parm was passed in memory, and we need to convert it on entry,
2502 don't store it back in that same slot. */
2503 else if (data->entry_parm == stack_parm
2504 && data->nominal_mode != BLKmode
2505 && data->nominal_mode != data->passed_mode)
2506 stack_parm = NULL;
2508 data->stack_parm = stack_parm;
2511 /* A subroutine of assign_parms. Return true if the current parameter
2512 should be stored as a BLKmode in the current frame. */
2514 static bool
2515 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2517 if (data->nominal_mode == BLKmode)
2518 return true;
2519 if (GET_CODE (data->entry_parm) == PARALLEL)
2520 return true;
2522 #ifdef BLOCK_REG_PADDING
2523 /* Only assign_parm_setup_block knows how to deal with register arguments
2524 that are padded at the least significant end. */
2525 if (REG_P (data->entry_parm)
2526 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2527 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2528 == (BYTES_BIG_ENDIAN ? upward : downward)))
2529 return true;
2530 #endif
2532 return false;
2535 /* A subroutine of assign_parms. Arrange for the parameter to be
2536 present and valid in DATA->STACK_RTL. */
2538 static void
2539 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2541 rtx entry_parm = data->entry_parm;
2542 rtx stack_parm = data->stack_parm;
2544 /* If we've a non-block object that's nevertheless passed in parts,
2545 reconstitute it in register operations rather than on the stack. */
2546 if (GET_CODE (entry_parm) == PARALLEL
2547 && data->nominal_mode != BLKmode
2548 && XVECLEN (entry_parm, 0) > 1
2549 && use_register_for_decl (parm))
2551 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2553 /* For values returned in multiple registers, handle possible
2554 incompatible calls to emit_group_store.
2556 For example, the following would be invalid, and would have to
2557 be fixed by the conditional below:
2559 emit_group_store ((reg:SF), (parallel:DF))
2560 emit_group_store ((reg:SI), (parallel:DI))
2562 An example of this are doubles in e500 v2:
2563 (parallel:DF (expr_list (reg:SI) (const_int 0))
2564 (expr_list (reg:SI) (const_int 4))). */
2565 if (data->nominal_mode != data->passed_mode)
2567 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2568 emit_group_store (t, entry_parm, NULL_TREE,
2569 GET_MODE_SIZE (GET_MODE (entry_parm)));
2570 convert_move (parmreg, t, 0);
2572 else
2573 emit_group_store (parmreg, entry_parm, data->nominal_type,
2574 int_size_in_bytes (data->nominal_type));
2575 SET_DECL_RTL (parm, parmreg);
2576 return;
2579 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2580 calls that pass values in multiple non-contiguous locations. */
2581 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2583 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2584 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2585 rtx mem;
2587 /* Note that we will be storing an integral number of words.
2588 So we have to be careful to ensure that we allocate an
2589 integral number of words. We do this below in the
2590 assign_stack_local if space was not allocated in the argument
2591 list. If it was, this will not work if PARM_BOUNDARY is not
2592 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2593 if it becomes a problem. Exception is when BLKmode arrives
2594 with arguments not conforming to word_mode. */
2596 if (stack_parm == 0)
2598 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2599 data->stack_parm = stack_parm;
2600 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2601 set_mem_attributes (stack_parm, parm, 1);
2603 else if (GET_CODE (entry_parm) == PARALLEL)
2605 else
2606 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2608 mem = validize_mem (stack_parm);
2610 /* Handle values in multiple non-contiguous locations. */
2611 if (GET_CODE (entry_parm) == PARALLEL)
2612 emit_group_store (mem, entry_parm, data->passed_type, size);
2614 else if (size == 0)
2617 /* If SIZE is that of a mode no bigger than a word, just use
2618 that mode's store operation. */
2619 else if (size <= UNITS_PER_WORD)
2621 enum machine_mode mode
2622 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2624 if (mode != BLKmode
2625 #ifdef BLOCK_REG_PADDING
2626 && (size == UNITS_PER_WORD
2627 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2628 != (BYTES_BIG_ENDIAN ? upward : downward)))
2629 #endif
2632 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2633 emit_move_insn (change_address (mem, mode, 0), reg);
2636 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2637 machine must be aligned to the left before storing
2638 to memory. Note that the previous test doesn't
2639 handle all cases (e.g. SIZE == 3). */
2640 else if (size != UNITS_PER_WORD
2641 #ifdef BLOCK_REG_PADDING
2642 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2643 == downward)
2644 #else
2645 && BYTES_BIG_ENDIAN
2646 #endif
2649 rtx tem, x;
2650 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2651 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2653 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2654 build_int_cst (NULL_TREE, by),
2655 NULL_RTX, 1);
2656 tem = change_address (mem, word_mode, 0);
2657 emit_move_insn (tem, x);
2659 else
2660 move_block_from_reg (REGNO (data->entry_parm), mem,
2661 size_stored / UNITS_PER_WORD);
2663 else
2664 move_block_from_reg (REGNO (data->entry_parm), mem,
2665 size_stored / UNITS_PER_WORD);
2668 SET_DECL_RTL (parm, stack_parm);
2671 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2672 parameter. Get it there. Perform all ABI specified conversions. */
2674 static void
2675 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2676 struct assign_parm_data_one *data)
2678 rtx parmreg;
2679 enum machine_mode promoted_nominal_mode;
2680 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2681 bool did_conversion = false;
2683 /* Store the parm in a pseudoregister during the function, but we may
2684 need to do it in a wider mode. */
2686 promoted_nominal_mode
2687 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2689 parmreg = gen_reg_rtx (promoted_nominal_mode);
2691 if (!DECL_ARTIFICIAL (parm))
2692 mark_user_reg (parmreg);
2694 /* If this was an item that we received a pointer to,
2695 set DECL_RTL appropriately. */
2696 if (data->passed_pointer)
2698 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2699 set_mem_attributes (x, parm, 1);
2700 SET_DECL_RTL (parm, x);
2702 else
2703 SET_DECL_RTL (parm, parmreg);
2705 /* Copy the value into the register. */
2706 if (data->nominal_mode != data->passed_mode
2707 || promoted_nominal_mode != data->promoted_mode)
2709 int save_tree_used;
2711 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2712 mode, by the caller. We now have to convert it to
2713 NOMINAL_MODE, if different. However, PARMREG may be in
2714 a different mode than NOMINAL_MODE if it is being stored
2715 promoted.
2717 If ENTRY_PARM is a hard register, it might be in a register
2718 not valid for operating in its mode (e.g., an odd-numbered
2719 register for a DFmode). In that case, moves are the only
2720 thing valid, so we can't do a convert from there. This
2721 occurs when the calling sequence allow such misaligned
2722 usages.
2724 In addition, the conversion may involve a call, which could
2725 clobber parameters which haven't been copied to pseudo
2726 registers yet. Therefore, we must first copy the parm to
2727 a pseudo reg here, and save the conversion until after all
2728 parameters have been moved. */
2730 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2732 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2734 push_to_sequence (all->conversion_insns);
2735 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2737 if (GET_CODE (tempreg) == SUBREG
2738 && GET_MODE (tempreg) == data->nominal_mode
2739 && REG_P (SUBREG_REG (tempreg))
2740 && data->nominal_mode == data->passed_mode
2741 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2742 && GET_MODE_SIZE (GET_MODE (tempreg))
2743 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2745 /* The argument is already sign/zero extended, so note it
2746 into the subreg. */
2747 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2748 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2751 /* TREE_USED gets set erroneously during expand_assignment. */
2752 save_tree_used = TREE_USED (parm);
2753 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2754 TREE_USED (parm) = save_tree_used;
2755 all->conversion_insns = get_insns ();
2756 end_sequence ();
2758 did_conversion = true;
2760 else
2761 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2763 /* If we were passed a pointer but the actual value can safely live
2764 in a register, put it in one. */
2765 if (data->passed_pointer
2766 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2767 /* If by-reference argument was promoted, demote it. */
2768 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2769 || use_register_for_decl (parm)))
2771 /* We can't use nominal_mode, because it will have been set to
2772 Pmode above. We must use the actual mode of the parm. */
2773 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2774 mark_user_reg (parmreg);
2776 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2778 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2779 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2781 push_to_sequence (all->conversion_insns);
2782 emit_move_insn (tempreg, DECL_RTL (parm));
2783 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2784 emit_move_insn (parmreg, tempreg);
2785 all->conversion_insns = get_insns();
2786 end_sequence ();
2788 did_conversion = true;
2790 else
2791 emit_move_insn (parmreg, DECL_RTL (parm));
2793 SET_DECL_RTL (parm, parmreg);
2795 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2796 now the parm. */
2797 data->stack_parm = NULL;
2800 /* If we are passed an arg by reference and it is our responsibility
2801 to make a copy, do it now.
2802 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2803 original argument, so we must recreate them in the call to
2804 FUNCTION_ARG_CALLEE_COPIES. */
2805 /* ??? Later add code to handle the case that if the argument isn't
2806 modified, don't do the copy. */
2808 else if (data->passed_pointer)
2810 tree type = TREE_TYPE (data->passed_type);
2812 if (reference_callee_copied (&all->args_so_far, TYPE_MODE (type),
2813 type, data->named_arg))
2815 rtx copy;
2817 /* This sequence may involve a library call perhaps clobbering
2818 registers that haven't been copied to pseudos yet. */
2820 push_to_sequence (all->conversion_insns);
2822 if (!COMPLETE_TYPE_P (type)
2823 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2825 /* This is a variable sized object. */
2826 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2827 TYPE_ALIGN (type));
2828 copy = gen_rtx_MEM (BLKmode, copy);
2830 else
2831 copy = assign_stack_temp (TYPE_MODE (type),
2832 int_size_in_bytes (type), 1);
2833 set_mem_attributes (copy, parm, 1);
2835 store_expr (parm, copy, 0);
2836 emit_move_insn (parmreg, XEXP (copy, 0));
2837 all->conversion_insns = get_insns ();
2838 end_sequence ();
2840 did_conversion = true;
2844 /* Mark the register as eliminable if we did no conversion and it was
2845 copied from memory at a fixed offset, and the arg pointer was not
2846 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2847 offset formed an invalid address, such memory-equivalences as we
2848 make here would screw up life analysis for it. */
2849 if (data->nominal_mode == data->passed_mode
2850 && !did_conversion
2851 && data->stack_parm != 0
2852 && MEM_P (data->stack_parm)
2853 && data->locate.offset.var == 0
2854 && reg_mentioned_p (virtual_incoming_args_rtx,
2855 XEXP (data->stack_parm, 0)))
2857 rtx linsn = get_last_insn ();
2858 rtx sinsn, set;
2860 /* Mark complex types separately. */
2861 if (GET_CODE (parmreg) == CONCAT)
2863 enum machine_mode submode
2864 = GET_MODE_INNER (GET_MODE (parmreg));
2865 int regnor = REGNO (gen_realpart (submode, parmreg));
2866 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2867 rtx stackr = gen_realpart (submode, data->stack_parm);
2868 rtx stacki = gen_imagpart (submode, data->stack_parm);
2870 /* Scan backwards for the set of the real and
2871 imaginary parts. */
2872 for (sinsn = linsn; sinsn != 0;
2873 sinsn = prev_nonnote_insn (sinsn))
2875 set = single_set (sinsn);
2876 if (set == 0)
2877 continue;
2879 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2880 REG_NOTES (sinsn)
2881 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2882 REG_NOTES (sinsn));
2883 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2884 REG_NOTES (sinsn)
2885 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2886 REG_NOTES (sinsn));
2889 else if ((set = single_set (linsn)) != 0
2890 && SET_DEST (set) == parmreg)
2891 REG_NOTES (linsn)
2892 = gen_rtx_EXPR_LIST (REG_EQUIV,
2893 data->stack_parm, REG_NOTES (linsn));
2896 /* For pointer data type, suggest pointer register. */
2897 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2898 mark_reg_pointer (parmreg,
2899 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2902 /* A subroutine of assign_parms. Allocate stack space to hold the current
2903 parameter. Get it there. Perform all ABI specified conversions. */
2905 static void
2906 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2907 struct assign_parm_data_one *data)
2909 /* Value must be stored in the stack slot STACK_PARM during function
2910 execution. */
2912 if (data->promoted_mode != data->nominal_mode)
2914 /* Conversion is required. */
2915 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2917 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2919 push_to_sequence (all->conversion_insns);
2920 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2921 TYPE_UNSIGNED (TREE_TYPE (parm)));
2923 if (data->stack_parm)
2924 /* ??? This may need a big-endian conversion on sparc64. */
2925 data->stack_parm
2926 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2928 all->conversion_insns = get_insns ();
2929 end_sequence ();
2932 if (data->entry_parm != data->stack_parm)
2934 if (data->stack_parm == 0)
2936 data->stack_parm
2937 = assign_stack_local (GET_MODE (data->entry_parm),
2938 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2940 set_mem_attributes (data->stack_parm, parm, 1);
2943 if (data->promoted_mode != data->nominal_mode)
2945 push_to_sequence (all->conversion_insns);
2946 emit_move_insn (validize_mem (data->stack_parm),
2947 validize_mem (data->entry_parm));
2948 all->conversion_insns = get_insns ();
2949 end_sequence ();
2951 else
2952 emit_move_insn (validize_mem (data->stack_parm),
2953 validize_mem (data->entry_parm));
2956 SET_DECL_RTL (parm, data->stack_parm);
2959 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2960 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2962 static void
2963 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2965 tree parm;
2967 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2969 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2970 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2972 rtx tmp, real, imag;
2973 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2975 real = DECL_RTL (fnargs);
2976 imag = DECL_RTL (TREE_CHAIN (fnargs));
2977 if (inner != GET_MODE (real))
2979 real = gen_lowpart_SUBREG (inner, real);
2980 imag = gen_lowpart_SUBREG (inner, imag);
2982 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2983 SET_DECL_RTL (parm, tmp);
2985 real = DECL_INCOMING_RTL (fnargs);
2986 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2987 if (inner != GET_MODE (real))
2989 real = gen_lowpart_SUBREG (inner, real);
2990 imag = gen_lowpart_SUBREG (inner, imag);
2992 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2993 set_decl_incoming_rtl (parm, tmp);
2994 fnargs = TREE_CHAIN (fnargs);
2996 else
2998 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2999 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
3001 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3002 instead of the copy of decl, i.e. FNARGS. */
3003 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3004 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3007 fnargs = TREE_CHAIN (fnargs);
3011 /* Assign RTL expressions to the function's parameters. This may involve
3012 copying them into registers and using those registers as the DECL_RTL. */
3014 void
3015 assign_parms (tree fndecl)
3017 struct assign_parm_data_all all;
3018 tree fnargs, parm;
3019 rtx internal_arg_pointer;
3020 int varargs_setup = 0;
3022 /* If the reg that the virtual arg pointer will be translated into is
3023 not a fixed reg or is the stack pointer, make a copy of the virtual
3024 arg pointer, and address parms via the copy. The frame pointer is
3025 considered fixed even though it is not marked as such.
3027 The second time through, simply use ap to avoid generating rtx. */
3029 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3030 || ! (fixed_regs[ARG_POINTER_REGNUM]
3031 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3032 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3033 else
3034 internal_arg_pointer = virtual_incoming_args_rtx;
3035 current_function_internal_arg_pointer = internal_arg_pointer;
3037 assign_parms_initialize_all (&all);
3038 fnargs = assign_parms_augmented_arg_list (&all);
3040 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3042 struct assign_parm_data_one data;
3044 /* Extract the type of PARM; adjust it according to ABI. */
3045 assign_parm_find_data_types (&all, parm, &data);
3047 /* Early out for errors and void parameters. */
3048 if (data.passed_mode == VOIDmode)
3050 SET_DECL_RTL (parm, const0_rtx);
3051 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3052 continue;
3055 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3056 for the unnamed dummy argument following the last named argument.
3057 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3058 we only want to do this when we get to the actual last named
3059 argument, which will be the first time LAST_NAMED gets set. */
3060 if (data.last_named && !varargs_setup)
3062 varargs_setup = true;
3063 assign_parms_setup_varargs (&all, &data, false);
3066 /* Find out where the parameter arrives in this function. */
3067 assign_parm_find_entry_rtl (&all, &data);
3069 /* Find out where stack space for this parameter might be. */
3070 if (assign_parm_is_stack_parm (&all, &data))
3072 assign_parm_find_stack_rtl (parm, &data);
3073 assign_parm_adjust_entry_rtl (&data);
3076 /* Record permanently how this parm was passed. */
3077 set_decl_incoming_rtl (parm, data.entry_parm);
3079 /* Update info on where next arg arrives in registers. */
3080 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3081 data.passed_type, data.named_arg);
3083 assign_parm_adjust_stack_rtl (&data);
3085 if (assign_parm_setup_block_p (&data))
3086 assign_parm_setup_block (parm, &data);
3087 else if (data.passed_pointer || use_register_for_decl (parm))
3088 assign_parm_setup_reg (&all, parm, &data);
3089 else
3090 assign_parm_setup_stack (&all, parm, &data);
3093 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3094 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3096 /* Output all parameter conversion instructions (possibly including calls)
3097 now that all parameters have been copied out of hard registers. */
3098 emit_insn (all.conversion_insns);
3100 /* If we are receiving a struct value address as the first argument, set up
3101 the RTL for the function result. As this might require code to convert
3102 the transmitted address to Pmode, we do this here to ensure that possible
3103 preliminary conversions of the address have been emitted already. */
3104 if (all.function_result_decl)
3106 tree result = DECL_RESULT (current_function_decl);
3107 rtx addr = DECL_RTL (all.function_result_decl);
3108 rtx x;
3110 if (DECL_BY_REFERENCE (result))
3111 x = addr;
3112 else
3114 addr = convert_memory_address (Pmode, addr);
3115 x = gen_rtx_MEM (DECL_MODE (result), addr);
3116 set_mem_attributes (x, result, 1);
3118 SET_DECL_RTL (result, x);
3121 /* We have aligned all the args, so add space for the pretend args. */
3122 current_function_pretend_args_size = all.pretend_args_size;
3123 all.stack_args_size.constant += all.extra_pretend_bytes;
3124 current_function_args_size = all.stack_args_size.constant;
3126 /* Adjust function incoming argument size for alignment and
3127 minimum length. */
3129 #ifdef REG_PARM_STACK_SPACE
3130 current_function_args_size = MAX (current_function_args_size,
3131 REG_PARM_STACK_SPACE (fndecl));
3132 #endif
3134 current_function_args_size
3135 = ((current_function_args_size + STACK_BYTES - 1)
3136 / STACK_BYTES) * STACK_BYTES;
3138 #ifdef ARGS_GROW_DOWNWARD
3139 current_function_arg_offset_rtx
3140 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3141 : expand_expr (size_diffop (all.stack_args_size.var,
3142 size_int (-all.stack_args_size.constant)),
3143 NULL_RTX, VOIDmode, 0));
3144 #else
3145 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3146 #endif
3148 /* See how many bytes, if any, of its args a function should try to pop
3149 on return. */
3151 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3152 current_function_args_size);
3154 /* For stdarg.h function, save info about
3155 regs and stack space used by the named args. */
3157 current_function_args_info = all.args_so_far;
3159 /* Set the rtx used for the function return value. Put this in its
3160 own variable so any optimizers that need this information don't have
3161 to include tree.h. Do this here so it gets done when an inlined
3162 function gets output. */
3164 current_function_return_rtx
3165 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3166 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3168 /* If scalar return value was computed in a pseudo-reg, or was a named
3169 return value that got dumped to the stack, copy that to the hard
3170 return register. */
3171 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3173 tree decl_result = DECL_RESULT (fndecl);
3174 rtx decl_rtl = DECL_RTL (decl_result);
3176 if (REG_P (decl_rtl)
3177 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3178 : DECL_REGISTER (decl_result))
3180 rtx real_decl_rtl;
3182 #ifdef FUNCTION_OUTGOING_VALUE
3183 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3184 fndecl);
3185 #else
3186 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3187 fndecl);
3188 #endif
3189 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3190 /* The delay slot scheduler assumes that current_function_return_rtx
3191 holds the hard register containing the return value, not a
3192 temporary pseudo. */
3193 current_function_return_rtx = real_decl_rtl;
3198 /* Indicate whether REGNO is an incoming argument to the current function
3199 that was promoted to a wider mode. If so, return the RTX for the
3200 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3201 that REGNO is promoted from and whether the promotion was signed or
3202 unsigned. */
3205 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3207 tree arg;
3209 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3210 arg = TREE_CHAIN (arg))
3211 if (REG_P (DECL_INCOMING_RTL (arg))
3212 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3213 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3215 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3216 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3218 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3219 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3220 && mode != DECL_MODE (arg))
3222 *pmode = DECL_MODE (arg);
3223 *punsignedp = unsignedp;
3224 return DECL_INCOMING_RTL (arg);
3228 return 0;
3232 /* Compute the size and offset from the start of the stacked arguments for a
3233 parm passed in mode PASSED_MODE and with type TYPE.
3235 INITIAL_OFFSET_PTR points to the current offset into the stacked
3236 arguments.
3238 The starting offset and size for this parm are returned in
3239 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3240 nonzero, the offset is that of stack slot, which is returned in
3241 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3242 padding required from the initial offset ptr to the stack slot.
3244 IN_REGS is nonzero if the argument will be passed in registers. It will
3245 never be set if REG_PARM_STACK_SPACE is not defined.
3247 FNDECL is the function in which the argument was defined.
3249 There are two types of rounding that are done. The first, controlled by
3250 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3251 list to be aligned to the specific boundary (in bits). This rounding
3252 affects the initial and starting offsets, but not the argument size.
3254 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3255 optionally rounds the size of the parm to PARM_BOUNDARY. The
3256 initial offset is not affected by this rounding, while the size always
3257 is and the starting offset may be. */
3259 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3260 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3261 callers pass in the total size of args so far as
3262 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3264 void
3265 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3266 int partial, tree fndecl ATTRIBUTE_UNUSED,
3267 struct args_size *initial_offset_ptr,
3268 struct locate_and_pad_arg_data *locate)
3270 tree sizetree;
3271 enum direction where_pad;
3272 int boundary;
3273 int reg_parm_stack_space = 0;
3274 int part_size_in_regs;
3276 #ifdef REG_PARM_STACK_SPACE
3277 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3279 /* If we have found a stack parm before we reach the end of the
3280 area reserved for registers, skip that area. */
3281 if (! in_regs)
3283 if (reg_parm_stack_space > 0)
3285 if (initial_offset_ptr->var)
3287 initial_offset_ptr->var
3288 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3289 ssize_int (reg_parm_stack_space));
3290 initial_offset_ptr->constant = 0;
3292 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3293 initial_offset_ptr->constant = reg_parm_stack_space;
3296 #endif /* REG_PARM_STACK_SPACE */
3298 part_size_in_regs = 0;
3299 if (reg_parm_stack_space == 0)
3300 part_size_in_regs = ((partial * UNITS_PER_WORD)
3301 / (PARM_BOUNDARY / BITS_PER_UNIT)
3302 * (PARM_BOUNDARY / BITS_PER_UNIT));
3304 sizetree
3305 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3306 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3307 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3308 locate->where_pad = where_pad;
3310 #ifdef ARGS_GROW_DOWNWARD
3311 locate->slot_offset.constant = -initial_offset_ptr->constant;
3312 if (initial_offset_ptr->var)
3313 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3314 initial_offset_ptr->var);
3317 tree s2 = sizetree;
3318 if (where_pad != none
3319 && (!host_integerp (sizetree, 1)
3320 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3321 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3322 SUB_PARM_SIZE (locate->slot_offset, s2);
3325 locate->slot_offset.constant += part_size_in_regs;
3327 if (!in_regs
3328 #ifdef REG_PARM_STACK_SPACE
3329 || REG_PARM_STACK_SPACE (fndecl) > 0
3330 #endif
3332 pad_to_arg_alignment (&locate->slot_offset, boundary,
3333 &locate->alignment_pad);
3335 locate->size.constant = (-initial_offset_ptr->constant
3336 - locate->slot_offset.constant);
3337 if (initial_offset_ptr->var)
3338 locate->size.var = size_binop (MINUS_EXPR,
3339 size_binop (MINUS_EXPR,
3340 ssize_int (0),
3341 initial_offset_ptr->var),
3342 locate->slot_offset.var);
3344 /* Pad_below needs the pre-rounded size to know how much to pad
3345 below. */
3346 locate->offset = locate->slot_offset;
3347 if (where_pad == downward)
3348 pad_below (&locate->offset, passed_mode, sizetree);
3350 #else /* !ARGS_GROW_DOWNWARD */
3351 if (!in_regs
3352 #ifdef REG_PARM_STACK_SPACE
3353 || REG_PARM_STACK_SPACE (fndecl) > 0
3354 #endif
3356 pad_to_arg_alignment (initial_offset_ptr, boundary,
3357 &locate->alignment_pad);
3358 locate->slot_offset = *initial_offset_ptr;
3360 #ifdef PUSH_ROUNDING
3361 if (passed_mode != BLKmode)
3362 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3363 #endif
3365 /* Pad_below needs the pre-rounded size to know how much to pad below
3366 so this must be done before rounding up. */
3367 locate->offset = locate->slot_offset;
3368 if (where_pad == downward)
3369 pad_below (&locate->offset, passed_mode, sizetree);
3371 if (where_pad != none
3372 && (!host_integerp (sizetree, 1)
3373 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3374 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3376 ADD_PARM_SIZE (locate->size, sizetree);
3378 locate->size.constant -= part_size_in_regs;
3379 #endif /* ARGS_GROW_DOWNWARD */
3382 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3383 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3385 static void
3386 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3387 struct args_size *alignment_pad)
3389 tree save_var = NULL_TREE;
3390 HOST_WIDE_INT save_constant = 0;
3391 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3392 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3394 #ifdef SPARC_STACK_BOUNDARY_HACK
3395 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3396 higher than the real alignment of %sp. However, when it does this,
3397 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3398 This is a temporary hack while the sparc port is fixed. */
3399 if (SPARC_STACK_BOUNDARY_HACK)
3400 sp_offset = 0;
3401 #endif
3403 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3405 save_var = offset_ptr->var;
3406 save_constant = offset_ptr->constant;
3409 alignment_pad->var = NULL_TREE;
3410 alignment_pad->constant = 0;
3412 if (boundary > BITS_PER_UNIT)
3414 if (offset_ptr->var)
3416 tree sp_offset_tree = ssize_int (sp_offset);
3417 tree offset = size_binop (PLUS_EXPR,
3418 ARGS_SIZE_TREE (*offset_ptr),
3419 sp_offset_tree);
3420 #ifdef ARGS_GROW_DOWNWARD
3421 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3422 #else
3423 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3424 #endif
3426 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3427 /* ARGS_SIZE_TREE includes constant term. */
3428 offset_ptr->constant = 0;
3429 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3430 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3431 save_var);
3433 else
3435 offset_ptr->constant = -sp_offset +
3436 #ifdef ARGS_GROW_DOWNWARD
3437 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3438 #else
3439 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3440 #endif
3441 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3442 alignment_pad->constant = offset_ptr->constant - save_constant;
3447 static void
3448 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3450 if (passed_mode != BLKmode)
3452 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3453 offset_ptr->constant
3454 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3455 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3456 - GET_MODE_SIZE (passed_mode));
3458 else
3460 if (TREE_CODE (sizetree) != INTEGER_CST
3461 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3463 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3464 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3465 /* Add it in. */
3466 ADD_PARM_SIZE (*offset_ptr, s2);
3467 SUB_PARM_SIZE (*offset_ptr, sizetree);
3472 /* Walk the tree of blocks describing the binding levels within a function
3473 and warn about variables the might be killed by setjmp or vfork.
3474 This is done after calling flow_analysis and before global_alloc
3475 clobbers the pseudo-regs to hard regs. */
3477 void
3478 setjmp_vars_warning (tree block)
3480 tree decl, sub;
3482 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3484 if (TREE_CODE (decl) == VAR_DECL
3485 && DECL_RTL_SET_P (decl)
3486 && REG_P (DECL_RTL (decl))
3487 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3488 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3489 " or %<vfork%>",
3490 decl, decl);
3493 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3494 setjmp_vars_warning (sub);
3497 /* Do the appropriate part of setjmp_vars_warning
3498 but for arguments instead of local variables. */
3500 void
3501 setjmp_args_warning (void)
3503 tree decl;
3504 for (decl = DECL_ARGUMENTS (current_function_decl);
3505 decl; decl = TREE_CHAIN (decl))
3506 if (DECL_RTL (decl) != 0
3507 && REG_P (DECL_RTL (decl))
3508 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3509 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3510 decl, decl);
3514 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3515 and create duplicate blocks. */
3516 /* ??? Need an option to either create block fragments or to create
3517 abstract origin duplicates of a source block. It really depends
3518 on what optimization has been performed. */
3520 void
3521 reorder_blocks (void)
3523 tree block = DECL_INITIAL (current_function_decl);
3524 varray_type block_stack;
3526 if (block == NULL_TREE)
3527 return;
3529 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3531 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3532 clear_block_marks (block);
3534 /* Prune the old trees away, so that they don't get in the way. */
3535 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3536 BLOCK_CHAIN (block) = NULL_TREE;
3538 /* Recreate the block tree from the note nesting. */
3539 reorder_blocks_1 (get_insns (), block, &block_stack);
3540 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3542 /* Remove deleted blocks from the block fragment chains. */
3543 reorder_fix_fragments (block);
3546 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3548 void
3549 clear_block_marks (tree block)
3551 while (block)
3553 TREE_ASM_WRITTEN (block) = 0;
3554 clear_block_marks (BLOCK_SUBBLOCKS (block));
3555 block = BLOCK_CHAIN (block);
3559 static void
3560 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3562 rtx insn;
3564 for (insn = insns; insn; insn = NEXT_INSN (insn))
3566 if (NOTE_P (insn))
3568 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3570 tree block = NOTE_BLOCK (insn);
3572 /* If we have seen this block before, that means it now
3573 spans multiple address regions. Create a new fragment. */
3574 if (TREE_ASM_WRITTEN (block))
3576 tree new_block = copy_node (block);
3577 tree origin;
3579 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3580 ? BLOCK_FRAGMENT_ORIGIN (block)
3581 : block);
3582 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3583 BLOCK_FRAGMENT_CHAIN (new_block)
3584 = BLOCK_FRAGMENT_CHAIN (origin);
3585 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3587 NOTE_BLOCK (insn) = new_block;
3588 block = new_block;
3591 BLOCK_SUBBLOCKS (block) = 0;
3592 TREE_ASM_WRITTEN (block) = 1;
3593 /* When there's only one block for the entire function,
3594 current_block == block and we mustn't do this, it
3595 will cause infinite recursion. */
3596 if (block != current_block)
3598 BLOCK_SUPERCONTEXT (block) = current_block;
3599 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3600 BLOCK_SUBBLOCKS (current_block) = block;
3601 current_block = block;
3603 VARRAY_PUSH_TREE (*p_block_stack, block);
3605 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3607 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3608 VARRAY_POP (*p_block_stack);
3609 BLOCK_SUBBLOCKS (current_block)
3610 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3611 current_block = BLOCK_SUPERCONTEXT (current_block);
3617 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3618 appears in the block tree, select one of the fragments to become
3619 the new origin block. */
3621 static void
3622 reorder_fix_fragments (tree block)
3624 while (block)
3626 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3627 tree new_origin = NULL_TREE;
3629 if (dup_origin)
3631 if (! TREE_ASM_WRITTEN (dup_origin))
3633 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3635 /* Find the first of the remaining fragments. There must
3636 be at least one -- the current block. */
3637 while (! TREE_ASM_WRITTEN (new_origin))
3638 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3639 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3642 else if (! dup_origin)
3643 new_origin = block;
3645 /* Re-root the rest of the fragments to the new origin. In the
3646 case that DUP_ORIGIN was null, that means BLOCK was the origin
3647 of a chain of fragments and we want to remove those fragments
3648 that didn't make it to the output. */
3649 if (new_origin)
3651 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3652 tree chain = *pp;
3654 while (chain)
3656 if (TREE_ASM_WRITTEN (chain))
3658 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3659 *pp = chain;
3660 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3662 chain = BLOCK_FRAGMENT_CHAIN (chain);
3664 *pp = NULL_TREE;
3667 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3668 block = BLOCK_CHAIN (block);
3672 /* Reverse the order of elements in the chain T of blocks,
3673 and return the new head of the chain (old last element). */
3675 tree
3676 blocks_nreverse (tree t)
3678 tree prev = 0, decl, next;
3679 for (decl = t; decl; decl = next)
3681 next = BLOCK_CHAIN (decl);
3682 BLOCK_CHAIN (decl) = prev;
3683 prev = decl;
3685 return prev;
3688 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3689 non-NULL, list them all into VECTOR, in a depth-first preorder
3690 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3691 blocks. */
3693 static int
3694 all_blocks (tree block, tree *vector)
3696 int n_blocks = 0;
3698 while (block)
3700 TREE_ASM_WRITTEN (block) = 0;
3702 /* Record this block. */
3703 if (vector)
3704 vector[n_blocks] = block;
3706 ++n_blocks;
3708 /* Record the subblocks, and their subblocks... */
3709 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3710 vector ? vector + n_blocks : 0);
3711 block = BLOCK_CHAIN (block);
3714 return n_blocks;
3717 /* Return a vector containing all the blocks rooted at BLOCK. The
3718 number of elements in the vector is stored in N_BLOCKS_P. The
3719 vector is dynamically allocated; it is the caller's responsibility
3720 to call `free' on the pointer returned. */
3722 static tree *
3723 get_block_vector (tree block, int *n_blocks_p)
3725 tree *block_vector;
3727 *n_blocks_p = all_blocks (block, NULL);
3728 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3729 all_blocks (block, block_vector);
3731 return block_vector;
3734 static GTY(()) int next_block_index = 2;
3736 /* Set BLOCK_NUMBER for all the blocks in FN. */
3738 void
3739 number_blocks (tree fn)
3741 int i;
3742 int n_blocks;
3743 tree *block_vector;
3745 /* For SDB and XCOFF debugging output, we start numbering the blocks
3746 from 1 within each function, rather than keeping a running
3747 count. */
3748 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3749 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3750 next_block_index = 1;
3751 #endif
3753 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3755 /* The top-level BLOCK isn't numbered at all. */
3756 for (i = 1; i < n_blocks; ++i)
3757 /* We number the blocks from two. */
3758 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3760 free (block_vector);
3762 return;
3765 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3767 tree
3768 debug_find_var_in_block_tree (tree var, tree block)
3770 tree t;
3772 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3773 if (t == var)
3774 return block;
3776 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3778 tree ret = debug_find_var_in_block_tree (var, t);
3779 if (ret)
3780 return ret;
3783 return NULL_TREE;
3786 /* Allocate a function structure for FNDECL and set its contents
3787 to the defaults. */
3789 void
3790 allocate_struct_function (tree fndecl)
3792 tree result;
3793 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3795 cfun = ggc_alloc_cleared (sizeof (struct function));
3797 cfun->stack_alignment_needed = STACK_BOUNDARY;
3798 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3800 current_function_funcdef_no = funcdef_no++;
3802 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3804 init_eh_for_function ();
3806 lang_hooks.function.init (cfun);
3807 if (init_machine_status)
3808 cfun->machine = (*init_machine_status) ();
3810 if (fndecl == NULL)
3811 return;
3813 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3814 cfun->decl = fndecl;
3816 result = DECL_RESULT (fndecl);
3817 if (aggregate_value_p (result, fndecl))
3819 #ifdef PCC_STATIC_STRUCT_RETURN
3820 current_function_returns_pcc_struct = 1;
3821 #endif
3822 current_function_returns_struct = 1;
3825 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3827 current_function_stdarg
3828 = (fntype
3829 && TYPE_ARG_TYPES (fntype) != 0
3830 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3831 != void_type_node));
3834 /* Reset cfun, and other non-struct-function variables to defaults as
3835 appropriate for emitting rtl at the start of a function. */
3837 static void
3838 prepare_function_start (tree fndecl)
3840 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3841 cfun = DECL_STRUCT_FUNCTION (fndecl);
3842 else
3843 allocate_struct_function (fndecl);
3844 init_emit ();
3845 init_varasm_status (cfun);
3846 init_expr ();
3848 cse_not_expected = ! optimize;
3850 /* Caller save not needed yet. */
3851 caller_save_needed = 0;
3853 /* We haven't done register allocation yet. */
3854 reg_renumber = 0;
3856 /* Indicate that we have not instantiated virtual registers yet. */
3857 virtuals_instantiated = 0;
3859 /* Indicate that we want CONCATs now. */
3860 generating_concat_p = 1;
3862 /* Indicate we have no need of a frame pointer yet. */
3863 frame_pointer_needed = 0;
3866 /* Initialize the rtl expansion mechanism so that we can do simple things
3867 like generate sequences. This is used to provide a context during global
3868 initialization of some passes. */
3869 void
3870 init_dummy_function_start (void)
3872 prepare_function_start (NULL);
3875 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3876 and initialize static variables for generating RTL for the statements
3877 of the function. */
3879 void
3880 init_function_start (tree subr)
3882 prepare_function_start (subr);
3884 /* Prevent ever trying to delete the first instruction of a
3885 function. Also tell final how to output a linenum before the
3886 function prologue. Note linenums could be missing, e.g. when
3887 compiling a Java .class file. */
3888 if (! DECL_IS_BUILTIN (subr))
3889 emit_line_note (DECL_SOURCE_LOCATION (subr));
3891 /* Make sure first insn is a note even if we don't want linenums.
3892 This makes sure the first insn will never be deleted.
3893 Also, final expects a note to appear there. */
3894 emit_note (NOTE_INSN_DELETED);
3896 /* Warn if this value is an aggregate type,
3897 regardless of which calling convention we are using for it. */
3898 if (warn_aggregate_return
3899 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3900 warning ("function returns an aggregate");
3903 /* Make sure all values used by the optimization passes have sane
3904 defaults. */
3905 void
3906 init_function_for_compilation (void)
3908 reg_renumber = 0;
3910 /* No prologue/epilogue insns yet. */
3911 VARRAY_GROW (prologue, 0);
3912 VARRAY_GROW (epilogue, 0);
3913 VARRAY_GROW (sibcall_epilogue, 0);
3916 /* Expand a call to __main at the beginning of a possible main function. */
3918 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3919 #undef HAS_INIT_SECTION
3920 #define HAS_INIT_SECTION
3921 #endif
3923 void
3924 expand_main_function (void)
3926 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3927 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3929 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3930 rtx tmp, seq;
3932 start_sequence ();
3933 /* Forcibly align the stack. */
3934 #ifdef STACK_GROWS_DOWNWARD
3935 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3936 stack_pointer_rtx, 1, OPTAB_WIDEN);
3937 #else
3938 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3939 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3940 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3941 stack_pointer_rtx, 1, OPTAB_WIDEN);
3942 #endif
3943 if (tmp != stack_pointer_rtx)
3944 emit_move_insn (stack_pointer_rtx, tmp);
3946 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3947 tmp = force_reg (Pmode, const0_rtx);
3948 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3949 seq = get_insns ();
3950 end_sequence ();
3952 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3953 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3954 break;
3955 if (tmp)
3956 emit_insn_before (seq, tmp);
3957 else
3958 emit_insn (seq);
3960 #endif
3962 #ifndef HAS_INIT_SECTION
3963 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3964 #endif
3967 /* The PENDING_SIZES represent the sizes of variable-sized types.
3968 Create RTL for the various sizes now (using temporary variables),
3969 so that we can refer to the sizes from the RTL we are generating
3970 for the current function. The PENDING_SIZES are a TREE_LIST. The
3971 TREE_VALUE of each node is a SAVE_EXPR. */
3973 void
3974 expand_pending_sizes (tree pending_sizes)
3976 tree tem;
3978 /* Evaluate now the sizes of any types declared among the arguments. */
3979 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3980 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3983 /* Start the RTL for a new function, and set variables used for
3984 emitting RTL.
3985 SUBR is the FUNCTION_DECL node.
3986 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3987 the function's parameters, which must be run at any return statement. */
3989 void
3990 expand_function_start (tree subr)
3992 /* Make sure volatile mem refs aren't considered
3993 valid operands of arithmetic insns. */
3994 init_recog_no_volatile ();
3996 current_function_profile
3997 = (profile_flag
3998 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4000 current_function_limit_stack
4001 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4003 /* Make the label for return statements to jump to. Do not special
4004 case machines with special return instructions -- they will be
4005 handled later during jump, ifcvt, or epilogue creation. */
4006 return_label = gen_label_rtx ();
4008 /* Initialize rtx used to return the value. */
4009 /* Do this before assign_parms so that we copy the struct value address
4010 before any library calls that assign parms might generate. */
4012 /* Decide whether to return the value in memory or in a register. */
4013 if (aggregate_value_p (DECL_RESULT (subr), subr))
4015 /* Returning something that won't go in a register. */
4016 rtx value_address = 0;
4018 #ifdef PCC_STATIC_STRUCT_RETURN
4019 if (current_function_returns_pcc_struct)
4021 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4022 value_address = assemble_static_space (size);
4024 else
4025 #endif
4027 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4028 /* Expect to be passed the address of a place to store the value.
4029 If it is passed as an argument, assign_parms will take care of
4030 it. */
4031 if (sv)
4033 value_address = gen_reg_rtx (Pmode);
4034 emit_move_insn (value_address, sv);
4037 if (value_address)
4039 rtx x = value_address;
4040 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4042 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4043 set_mem_attributes (x, DECL_RESULT (subr), 1);
4045 SET_DECL_RTL (DECL_RESULT (subr), x);
4048 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4049 /* If return mode is void, this decl rtl should not be used. */
4050 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4051 else
4053 /* Compute the return values into a pseudo reg, which we will copy
4054 into the true return register after the cleanups are done. */
4056 /* In order to figure out what mode to use for the pseudo, we
4057 figure out what the mode of the eventual return register will
4058 actually be, and use that. */
4059 rtx hard_reg
4060 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4061 subr, 1);
4063 /* Structures that are returned in registers are not aggregate_value_p,
4064 so we may see a PARALLEL or a REG. */
4065 if (REG_P (hard_reg))
4066 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4067 else
4069 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4070 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4073 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4074 result to the real return register(s). */
4075 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4078 /* Initialize rtx for parameters and local variables.
4079 In some cases this requires emitting insns. */
4080 assign_parms (subr);
4082 /* If function gets a static chain arg, store it. */
4083 if (cfun->static_chain_decl)
4085 tree parm = cfun->static_chain_decl;
4086 rtx local = gen_reg_rtx (Pmode);
4088 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4089 SET_DECL_RTL (parm, local);
4090 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4092 emit_move_insn (local, static_chain_incoming_rtx);
4095 /* If the function receives a non-local goto, then store the
4096 bits we need to restore the frame pointer. */
4097 if (cfun->nonlocal_goto_save_area)
4099 tree t_save;
4100 rtx r_save;
4102 /* ??? We need to do this save early. Unfortunately here is
4103 before the frame variable gets declared. Help out... */
4104 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4106 t_save = build4 (ARRAY_REF, ptr_type_node,
4107 cfun->nonlocal_goto_save_area,
4108 integer_zero_node, NULL_TREE, NULL_TREE);
4109 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4110 r_save = convert_memory_address (Pmode, r_save);
4112 emit_move_insn (r_save, virtual_stack_vars_rtx);
4113 update_nonlocal_goto_save_area ();
4116 /* The following was moved from init_function_start.
4117 The move is supposed to make sdb output more accurate. */
4118 /* Indicate the beginning of the function body,
4119 as opposed to parm setup. */
4120 emit_note (NOTE_INSN_FUNCTION_BEG);
4122 if (!NOTE_P (get_last_insn ()))
4123 emit_note (NOTE_INSN_DELETED);
4124 parm_birth_insn = get_last_insn ();
4126 if (current_function_profile)
4128 #ifdef PROFILE_HOOK
4129 PROFILE_HOOK (current_function_funcdef_no);
4130 #endif
4133 /* After the display initializations is where the tail-recursion label
4134 should go, if we end up needing one. Ensure we have a NOTE here
4135 since some things (like trampolines) get placed before this. */
4136 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4138 /* Evaluate now the sizes of any types declared among the arguments. */
4139 expand_pending_sizes (nreverse (get_pending_sizes ()));
4141 /* Make sure there is a line number after the function entry setup code. */
4142 force_next_line_note ();
4145 /* Undo the effects of init_dummy_function_start. */
4146 void
4147 expand_dummy_function_end (void)
4149 /* End any sequences that failed to be closed due to syntax errors. */
4150 while (in_sequence_p ())
4151 end_sequence ();
4153 /* Outside function body, can't compute type's actual size
4154 until next function's body starts. */
4156 free_after_parsing (cfun);
4157 free_after_compilation (cfun);
4158 cfun = 0;
4161 /* Call DOIT for each hard register used as a return value from
4162 the current function. */
4164 void
4165 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4167 rtx outgoing = current_function_return_rtx;
4169 if (! outgoing)
4170 return;
4172 if (REG_P (outgoing))
4173 (*doit) (outgoing, arg);
4174 else if (GET_CODE (outgoing) == PARALLEL)
4176 int i;
4178 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4180 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4182 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4183 (*doit) (x, arg);
4188 static void
4189 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4191 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4194 void
4195 clobber_return_register (void)
4197 diddle_return_value (do_clobber_return_reg, NULL);
4199 /* In case we do use pseudo to return value, clobber it too. */
4200 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4202 tree decl_result = DECL_RESULT (current_function_decl);
4203 rtx decl_rtl = DECL_RTL (decl_result);
4204 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4206 do_clobber_return_reg (decl_rtl, NULL);
4211 static void
4212 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4214 emit_insn (gen_rtx_USE (VOIDmode, reg));
4217 void
4218 use_return_register (void)
4220 diddle_return_value (do_use_return_reg, NULL);
4223 /* Possibly warn about unused parameters. */
4224 void
4225 do_warn_unused_parameter (tree fn)
4227 tree decl;
4229 for (decl = DECL_ARGUMENTS (fn);
4230 decl; decl = TREE_CHAIN (decl))
4231 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4232 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4233 warning ("%Junused parameter %qD", decl, decl);
4236 static GTY(()) rtx initial_trampoline;
4238 /* Generate RTL for the end of the current function. */
4240 void
4241 expand_function_end (void)
4243 rtx clobber_after;
4245 /* If arg_pointer_save_area was referenced only from a nested
4246 function, we will not have initialized it yet. Do that now. */
4247 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4248 get_arg_pointer_save_area (cfun);
4250 /* If we are doing stack checking and this function makes calls,
4251 do a stack probe at the start of the function to ensure we have enough
4252 space for another stack frame. */
4253 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4255 rtx insn, seq;
4257 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4258 if (CALL_P (insn))
4260 start_sequence ();
4261 probe_stack_range (STACK_CHECK_PROTECT,
4262 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4263 seq = get_insns ();
4264 end_sequence ();
4265 emit_insn_before (seq, tail_recursion_reentry);
4266 break;
4270 /* Possibly warn about unused parameters.
4271 When frontend does unit-at-a-time, the warning is already
4272 issued at finalization time. */
4273 if (warn_unused_parameter
4274 && !lang_hooks.callgraph.expand_function)
4275 do_warn_unused_parameter (current_function_decl);
4277 /* End any sequences that failed to be closed due to syntax errors. */
4278 while (in_sequence_p ())
4279 end_sequence ();
4281 clear_pending_stack_adjust ();
4282 do_pending_stack_adjust ();
4284 /* @@@ This is a kludge. We want to ensure that instructions that
4285 may trap are not moved into the epilogue by scheduling, because
4286 we don't always emit unwind information for the epilogue.
4287 However, not all machine descriptions define a blockage insn, so
4288 emit an ASM_INPUT to act as one. */
4289 if (flag_non_call_exceptions)
4290 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4292 /* Mark the end of the function body.
4293 If control reaches this insn, the function can drop through
4294 without returning a value. */
4295 emit_note (NOTE_INSN_FUNCTION_END);
4297 /* Must mark the last line number note in the function, so that the test
4298 coverage code can avoid counting the last line twice. This just tells
4299 the code to ignore the immediately following line note, since there
4300 already exists a copy of this note somewhere above. This line number
4301 note is still needed for debugging though, so we can't delete it. */
4302 if (flag_test_coverage)
4303 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4305 /* Output a linenumber for the end of the function.
4306 SDB depends on this. */
4307 force_next_line_note ();
4308 emit_line_note (input_location);
4310 /* Before the return label (if any), clobber the return
4311 registers so that they are not propagated live to the rest of
4312 the function. This can only happen with functions that drop
4313 through; if there had been a return statement, there would
4314 have either been a return rtx, or a jump to the return label.
4316 We delay actual code generation after the current_function_value_rtx
4317 is computed. */
4318 clobber_after = get_last_insn ();
4320 /* Output the label for the actual return from the function,
4321 if one is expected. This happens either because a function epilogue
4322 is used instead of a return instruction, or because a return was done
4323 with a goto in order to run local cleanups, or because of pcc-style
4324 structure returning. */
4325 if (return_label)
4326 emit_label (return_label);
4328 /* Let except.c know where it should emit the call to unregister
4329 the function context for sjlj exceptions. */
4330 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4331 sjlj_emit_function_exit_after (get_last_insn ());
4333 /* If we had calls to alloca, and this machine needs
4334 an accurate stack pointer to exit the function,
4335 insert some code to save and restore the stack pointer. */
4336 if (! EXIT_IGNORE_STACK
4337 && current_function_calls_alloca)
4339 rtx tem = 0;
4341 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4342 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4345 /* If scalar return value was computed in a pseudo-reg, or was a named
4346 return value that got dumped to the stack, copy that to the hard
4347 return register. */
4348 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4350 tree decl_result = DECL_RESULT (current_function_decl);
4351 rtx decl_rtl = DECL_RTL (decl_result);
4353 if (REG_P (decl_rtl)
4354 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4355 : DECL_REGISTER (decl_result))
4357 rtx real_decl_rtl = current_function_return_rtx;
4359 /* This should be set in assign_parms. */
4360 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4362 /* If this is a BLKmode structure being returned in registers,
4363 then use the mode computed in expand_return. Note that if
4364 decl_rtl is memory, then its mode may have been changed,
4365 but that current_function_return_rtx has not. */
4366 if (GET_MODE (real_decl_rtl) == BLKmode)
4367 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4369 /* If a named return value dumped decl_return to memory, then
4370 we may need to re-do the PROMOTE_MODE signed/unsigned
4371 extension. */
4372 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4374 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4376 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4377 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4378 &unsignedp, 1);
4380 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4382 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4384 /* If expand_function_start has created a PARALLEL for decl_rtl,
4385 move the result to the real return registers. Otherwise, do
4386 a group load from decl_rtl for a named return. */
4387 if (GET_CODE (decl_rtl) == PARALLEL)
4388 emit_group_move (real_decl_rtl, decl_rtl);
4389 else
4390 emit_group_load (real_decl_rtl, decl_rtl,
4391 TREE_TYPE (decl_result),
4392 int_size_in_bytes (TREE_TYPE (decl_result)));
4394 else
4395 emit_move_insn (real_decl_rtl, decl_rtl);
4399 /* If returning a structure, arrange to return the address of the value
4400 in a place where debuggers expect to find it.
4402 If returning a structure PCC style,
4403 the caller also depends on this value.
4404 And current_function_returns_pcc_struct is not necessarily set. */
4405 if (current_function_returns_struct
4406 || current_function_returns_pcc_struct)
4408 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4409 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4410 rtx outgoing;
4412 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4413 type = TREE_TYPE (type);
4414 else
4415 value_address = XEXP (value_address, 0);
4417 #ifdef FUNCTION_OUTGOING_VALUE
4418 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4419 current_function_decl);
4420 #else
4421 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4422 current_function_decl);
4423 #endif
4425 /* Mark this as a function return value so integrate will delete the
4426 assignment and USE below when inlining this function. */
4427 REG_FUNCTION_VALUE_P (outgoing) = 1;
4429 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4430 value_address = convert_memory_address (GET_MODE (outgoing),
4431 value_address);
4433 emit_move_insn (outgoing, value_address);
4435 /* Show return register used to hold result (in this case the address
4436 of the result. */
4437 current_function_return_rtx = outgoing;
4440 /* If this is an implementation of throw, do what's necessary to
4441 communicate between __builtin_eh_return and the epilogue. */
4442 expand_eh_return ();
4444 /* Emit the actual code to clobber return register. */
4446 rtx seq;
4448 start_sequence ();
4449 clobber_return_register ();
4450 expand_naked_return ();
4451 seq = get_insns ();
4452 end_sequence ();
4454 emit_insn_after (seq, clobber_after);
4457 /* Output the label for the naked return from the function. */
4458 emit_label (naked_return_label);
4460 /* ??? This should no longer be necessary since stupid is no longer with
4461 us, but there are some parts of the compiler (eg reload_combine, and
4462 sh mach_dep_reorg) that still try and compute their own lifetime info
4463 instead of using the general framework. */
4464 use_return_register ();
4468 get_arg_pointer_save_area (struct function *f)
4470 rtx ret = f->x_arg_pointer_save_area;
4472 if (! ret)
4474 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4475 f->x_arg_pointer_save_area = ret;
4478 if (f == cfun && ! f->arg_pointer_save_area_init)
4480 rtx seq;
4482 /* Save the arg pointer at the beginning of the function. The
4483 generated stack slot may not be a valid memory address, so we
4484 have to check it and fix it if necessary. */
4485 start_sequence ();
4486 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4487 seq = get_insns ();
4488 end_sequence ();
4490 push_topmost_sequence ();
4491 emit_insn_after (seq, get_insns ());
4492 pop_topmost_sequence ();
4495 return ret;
4498 /* Extend a vector that records the INSN_UIDs of INSNS
4499 (a list of one or more insns). */
4501 static void
4502 record_insns (rtx insns, varray_type *vecp)
4504 int i, len;
4505 rtx tmp;
4507 tmp = insns;
4508 len = 0;
4509 while (tmp != NULL_RTX)
4511 len++;
4512 tmp = NEXT_INSN (tmp);
4515 i = VARRAY_SIZE (*vecp);
4516 VARRAY_GROW (*vecp, i + len);
4517 tmp = insns;
4518 while (tmp != NULL_RTX)
4520 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4521 i++;
4522 tmp = NEXT_INSN (tmp);
4526 /* Set the locator of the insn chain starting at INSN to LOC. */
4527 static void
4528 set_insn_locators (rtx insn, int loc)
4530 while (insn != NULL_RTX)
4532 if (INSN_P (insn))
4533 INSN_LOCATOR (insn) = loc;
4534 insn = NEXT_INSN (insn);
4538 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4539 be running after reorg, SEQUENCE rtl is possible. */
4541 static int
4542 contains (rtx insn, varray_type vec)
4544 int i, j;
4546 if (NONJUMP_INSN_P (insn)
4547 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4549 int count = 0;
4550 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4551 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4552 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4553 count++;
4554 return count;
4556 else
4558 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4559 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4560 return 1;
4562 return 0;
4566 prologue_epilogue_contains (rtx insn)
4568 if (contains (insn, prologue))
4569 return 1;
4570 if (contains (insn, epilogue))
4571 return 1;
4572 return 0;
4576 sibcall_epilogue_contains (rtx insn)
4578 if (sibcall_epilogue)
4579 return contains (insn, sibcall_epilogue);
4580 return 0;
4583 #ifdef HAVE_return
4584 /* Insert gen_return at the end of block BB. This also means updating
4585 block_for_insn appropriately. */
4587 static void
4588 emit_return_into_block (basic_block bb, rtx line_note)
4590 emit_jump_insn_after (gen_return (), BB_END (bb));
4591 if (line_note)
4592 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4594 #endif /* HAVE_return */
4596 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4598 /* These functions convert the epilogue into a variant that does not modify the
4599 stack pointer. This is used in cases where a function returns an object
4600 whose size is not known until it is computed. The called function leaves the
4601 object on the stack, leaves the stack depressed, and returns a pointer to
4602 the object.
4604 What we need to do is track all modifications and references to the stack
4605 pointer, deleting the modifications and changing the references to point to
4606 the location the stack pointer would have pointed to had the modifications
4607 taken place.
4609 These functions need to be portable so we need to make as few assumptions
4610 about the epilogue as we can. However, the epilogue basically contains
4611 three things: instructions to reset the stack pointer, instructions to
4612 reload registers, possibly including the frame pointer, and an
4613 instruction to return to the caller.
4615 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4616 We also make no attempt to validate the insns we make since if they are
4617 invalid, we probably can't do anything valid. The intent is that these
4618 routines get "smarter" as more and more machines start to use them and
4619 they try operating on different epilogues.
4621 We use the following structure to track what the part of the epilogue that
4622 we've already processed has done. We keep two copies of the SP equivalence,
4623 one for use during the insn we are processing and one for use in the next
4624 insn. The difference is because one part of a PARALLEL may adjust SP
4625 and the other may use it. */
4627 struct epi_info
4629 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4630 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4631 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4632 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4633 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4634 should be set to once we no longer need
4635 its value. */
4636 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4637 for registers. */
4640 static void handle_epilogue_set (rtx, struct epi_info *);
4641 static void update_epilogue_consts (rtx, rtx, void *);
4642 static void emit_equiv_load (struct epi_info *);
4644 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4645 no modifications to the stack pointer. Return the new list of insns. */
4647 static rtx
4648 keep_stack_depressed (rtx insns)
4650 int j;
4651 struct epi_info info;
4652 rtx insn, next;
4654 /* If the epilogue is just a single instruction, it must be OK as is. */
4655 if (NEXT_INSN (insns) == NULL_RTX)
4656 return insns;
4658 /* Otherwise, start a sequence, initialize the information we have, and
4659 process all the insns we were given. */
4660 start_sequence ();
4662 info.sp_equiv_reg = stack_pointer_rtx;
4663 info.sp_offset = 0;
4664 info.equiv_reg_src = 0;
4666 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4667 info.const_equiv[j] = 0;
4669 insn = insns;
4670 next = NULL_RTX;
4671 while (insn != NULL_RTX)
4673 next = NEXT_INSN (insn);
4675 if (!INSN_P (insn))
4677 add_insn (insn);
4678 insn = next;
4679 continue;
4682 /* If this insn references the register that SP is equivalent to and
4683 we have a pending load to that register, we must force out the load
4684 first and then indicate we no longer know what SP's equivalent is. */
4685 if (info.equiv_reg_src != 0
4686 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4688 emit_equiv_load (&info);
4689 info.sp_equiv_reg = 0;
4692 info.new_sp_equiv_reg = info.sp_equiv_reg;
4693 info.new_sp_offset = info.sp_offset;
4695 /* If this is a (RETURN) and the return address is on the stack,
4696 update the address and change to an indirect jump. */
4697 if (GET_CODE (PATTERN (insn)) == RETURN
4698 || (GET_CODE (PATTERN (insn)) == PARALLEL
4699 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4701 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4702 rtx base = 0;
4703 HOST_WIDE_INT offset = 0;
4704 rtx jump_insn, jump_set;
4706 /* If the return address is in a register, we can emit the insn
4707 unchanged. Otherwise, it must be a MEM and we see what the
4708 base register and offset are. In any case, we have to emit any
4709 pending load to the equivalent reg of SP, if any. */
4710 if (REG_P (retaddr))
4712 emit_equiv_load (&info);
4713 add_insn (insn);
4714 insn = next;
4715 continue;
4717 else
4719 rtx ret_ptr;
4720 gcc_assert (MEM_P (retaddr));
4722 ret_ptr = XEXP (retaddr, 0);
4724 if (REG_P (ret_ptr))
4726 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4727 offset = 0;
4729 else
4731 gcc_assert (GET_CODE (ret_ptr) == PLUS
4732 && REG_P (XEXP (ret_ptr, 0))
4733 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4734 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4735 offset = INTVAL (XEXP (ret_ptr, 1));
4739 /* If the base of the location containing the return pointer
4740 is SP, we must update it with the replacement address. Otherwise,
4741 just build the necessary MEM. */
4742 retaddr = plus_constant (base, offset);
4743 if (base == stack_pointer_rtx)
4744 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4745 plus_constant (info.sp_equiv_reg,
4746 info.sp_offset));
4748 retaddr = gen_rtx_MEM (Pmode, retaddr);
4750 /* If there is a pending load to the equivalent register for SP
4751 and we reference that register, we must load our address into
4752 a scratch register and then do that load. */
4753 if (info.equiv_reg_src
4754 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4756 unsigned int regno;
4757 rtx reg;
4759 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4760 if (HARD_REGNO_MODE_OK (regno, Pmode)
4761 && !fixed_regs[regno]
4762 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4763 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4764 regno)
4765 && !refers_to_regno_p (regno,
4766 regno + hard_regno_nregs[regno]
4767 [Pmode],
4768 info.equiv_reg_src, NULL)
4769 && info.const_equiv[regno] == 0)
4770 break;
4772 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4774 reg = gen_rtx_REG (Pmode, regno);
4775 emit_move_insn (reg, retaddr);
4776 retaddr = reg;
4779 emit_equiv_load (&info);
4780 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4782 /* Show the SET in the above insn is a RETURN. */
4783 jump_set = single_set (jump_insn);
4784 gcc_assert (jump_set);
4785 SET_IS_RETURN_P (jump_set) = 1;
4788 /* If SP is not mentioned in the pattern and its equivalent register, if
4789 any, is not modified, just emit it. Otherwise, if neither is set,
4790 replace the reference to SP and emit the insn. If none of those are
4791 true, handle each SET individually. */
4792 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4793 && (info.sp_equiv_reg == stack_pointer_rtx
4794 || !reg_set_p (info.sp_equiv_reg, insn)))
4795 add_insn (insn);
4796 else if (! reg_set_p (stack_pointer_rtx, insn)
4797 && (info.sp_equiv_reg == stack_pointer_rtx
4798 || !reg_set_p (info.sp_equiv_reg, insn)))
4800 int changed;
4802 changed = validate_replace_rtx (stack_pointer_rtx,
4803 plus_constant (info.sp_equiv_reg,
4804 info.sp_offset),
4805 insn);
4806 gcc_assert (changed);
4808 add_insn (insn);
4810 else if (GET_CODE (PATTERN (insn)) == SET)
4811 handle_epilogue_set (PATTERN (insn), &info);
4812 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4814 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4815 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4816 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4818 else
4819 add_insn (insn);
4821 info.sp_equiv_reg = info.new_sp_equiv_reg;
4822 info.sp_offset = info.new_sp_offset;
4824 /* Now update any constants this insn sets. */
4825 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4826 insn = next;
4829 insns = get_insns ();
4830 end_sequence ();
4831 return insns;
4834 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4835 structure that contains information about what we've seen so far. We
4836 process this SET by either updating that data or by emitting one or
4837 more insns. */
4839 static void
4840 handle_epilogue_set (rtx set, struct epi_info *p)
4842 /* First handle the case where we are setting SP. Record what it is being
4843 set from. If unknown, abort. */
4844 if (reg_set_p (stack_pointer_rtx, set))
4846 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4848 if (GET_CODE (SET_SRC (set)) == PLUS)
4850 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4851 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4852 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4853 else
4855 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4856 && (REGNO (XEXP (SET_SRC (set), 1))
4857 < FIRST_PSEUDO_REGISTER)
4858 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4859 p->new_sp_offset
4860 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4863 else
4864 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4866 /* If we are adjusting SP, we adjust from the old data. */
4867 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4869 p->new_sp_equiv_reg = p->sp_equiv_reg;
4870 p->new_sp_offset += p->sp_offset;
4873 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4875 return;
4878 /* Next handle the case where we are setting SP's equivalent register.
4879 If we already have a value to set it to, abort. We could update, but
4880 there seems little point in handling that case. Note that we have
4881 to allow for the case where we are setting the register set in
4882 the previous part of a PARALLEL inside a single insn. But use the
4883 old offset for any updates within this insn. We must allow for the case
4884 where the register is being set in a different (usually wider) mode than
4885 Pmode). */
4886 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4888 gcc_assert (!p->equiv_reg_src
4889 && REG_P (p->new_sp_equiv_reg)
4890 && REG_P (SET_DEST (set))
4891 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4892 <= BITS_PER_WORD)
4893 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4894 p->equiv_reg_src
4895 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4896 plus_constant (p->sp_equiv_reg,
4897 p->sp_offset));
4900 /* Otherwise, replace any references to SP in the insn to its new value
4901 and emit the insn. */
4902 else
4904 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4905 plus_constant (p->sp_equiv_reg,
4906 p->sp_offset));
4907 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4908 plus_constant (p->sp_equiv_reg,
4909 p->sp_offset));
4910 emit_insn (set);
4914 /* Update the tracking information for registers set to constants. */
4916 static void
4917 update_epilogue_consts (rtx dest, rtx x, void *data)
4919 struct epi_info *p = (struct epi_info *) data;
4920 rtx new;
4922 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4923 return;
4925 /* If we are either clobbering a register or doing a partial set,
4926 show we don't know the value. */
4927 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4928 p->const_equiv[REGNO (dest)] = 0;
4930 /* If we are setting it to a constant, record that constant. */
4931 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4932 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4934 /* If this is a binary operation between a register we have been tracking
4935 and a constant, see if we can compute a new constant value. */
4936 else if (ARITHMETIC_P (SET_SRC (x))
4937 && REG_P (XEXP (SET_SRC (x), 0))
4938 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4939 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4940 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4941 && 0 != (new = simplify_binary_operation
4942 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4943 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4944 XEXP (SET_SRC (x), 1)))
4945 && GET_CODE (new) == CONST_INT)
4946 p->const_equiv[REGNO (dest)] = new;
4948 /* Otherwise, we can't do anything with this value. */
4949 else
4950 p->const_equiv[REGNO (dest)] = 0;
4953 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4955 static void
4956 emit_equiv_load (struct epi_info *p)
4958 if (p->equiv_reg_src != 0)
4960 rtx dest = p->sp_equiv_reg;
4962 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4963 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4964 REGNO (p->sp_equiv_reg));
4966 emit_move_insn (dest, p->equiv_reg_src);
4967 p->equiv_reg_src = 0;
4970 #endif
4972 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4973 this into place with notes indicating where the prologue ends and where
4974 the epilogue begins. Update the basic block information when possible. */
4976 void
4977 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4979 int inserted = 0;
4980 edge e;
4981 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4982 rtx seq;
4983 #endif
4984 #ifdef HAVE_prologue
4985 rtx prologue_end = NULL_RTX;
4986 #endif
4987 #if defined (HAVE_epilogue) || defined(HAVE_return)
4988 rtx epilogue_end = NULL_RTX;
4989 #endif
4990 edge_iterator ei;
4992 #ifdef HAVE_prologue
4993 if (HAVE_prologue)
4995 start_sequence ();
4996 seq = gen_prologue ();
4997 emit_insn (seq);
4999 /* Retain a map of the prologue insns. */
5000 record_insns (seq, &prologue);
5001 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5003 seq = get_insns ();
5004 end_sequence ();
5005 set_insn_locators (seq, prologue_locator);
5007 /* Can't deal with multiple successors of the entry block
5008 at the moment. Function should always have at least one
5009 entry point. */
5010 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
5012 insert_insn_on_edge (seq, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
5013 inserted = 1;
5015 #endif
5017 /* If the exit block has no non-fake predecessors, we don't need
5018 an epilogue. */
5019 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5020 if ((e->flags & EDGE_FAKE) == 0)
5021 break;
5022 if (e == NULL)
5023 goto epilogue_done;
5025 #ifdef HAVE_return
5026 if (optimize && HAVE_return)
5028 /* If we're allowed to generate a simple return instruction,
5029 then by definition we don't need a full epilogue. Examine
5030 the block that falls through to EXIT. If it does not
5031 contain any code, examine its predecessors and try to
5032 emit (conditional) return instructions. */
5034 basic_block last;
5035 rtx label;
5037 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5038 if (e->flags & EDGE_FALLTHRU)
5039 break;
5040 if (e == NULL)
5041 goto epilogue_done;
5042 last = e->src;
5044 /* Verify that there are no active instructions in the last block. */
5045 label = BB_END (last);
5046 while (label && !LABEL_P (label))
5048 if (active_insn_p (label))
5049 break;
5050 label = PREV_INSN (label);
5053 if (BB_HEAD (last) == label && LABEL_P (label))
5055 edge_iterator ei2;
5056 rtx epilogue_line_note = NULL_RTX;
5058 /* Locate the line number associated with the closing brace,
5059 if we can find one. */
5060 for (seq = get_last_insn ();
5061 seq && ! active_insn_p (seq);
5062 seq = PREV_INSN (seq))
5063 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5065 epilogue_line_note = seq;
5066 break;
5069 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5071 basic_block bb = e->src;
5072 rtx jump;
5074 if (bb == ENTRY_BLOCK_PTR)
5076 ei_next (&ei2);
5077 continue;
5080 jump = BB_END (bb);
5081 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5083 ei_next (&ei2);
5084 continue;
5087 /* If we have an unconditional jump, we can replace that
5088 with a simple return instruction. */
5089 if (simplejump_p (jump))
5091 emit_return_into_block (bb, epilogue_line_note);
5092 delete_insn (jump);
5095 /* If we have a conditional jump, we can try to replace
5096 that with a conditional return instruction. */
5097 else if (condjump_p (jump))
5099 if (! redirect_jump (jump, 0, 0))
5101 ei_next (&ei2);
5102 continue;
5105 /* If this block has only one successor, it both jumps
5106 and falls through to the fallthru block, so we can't
5107 delete the edge. */
5108 if (EDGE_COUNT (bb->succs) == 1)
5110 ei_next (&ei2);
5111 continue;
5114 else
5116 ei_next (&ei2);
5117 continue;
5120 /* Fix up the CFG for the successful change we just made. */
5121 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5124 /* Emit a return insn for the exit fallthru block. Whether
5125 this is still reachable will be determined later. */
5127 emit_barrier_after (BB_END (last));
5128 emit_return_into_block (last, epilogue_line_note);
5129 epilogue_end = BB_END (last);
5130 EDGE_SUCC (last, 0)->flags &= ~EDGE_FALLTHRU;
5131 goto epilogue_done;
5134 #endif
5135 /* Find the edge that falls through to EXIT. Other edges may exist
5136 due to RETURN instructions, but those don't need epilogues.
5137 There really shouldn't be a mixture -- either all should have
5138 been converted or none, however... */
5140 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5141 if (e->flags & EDGE_FALLTHRU)
5142 break;
5143 if (e == NULL)
5144 goto epilogue_done;
5146 #ifdef HAVE_epilogue
5147 if (HAVE_epilogue)
5149 start_sequence ();
5150 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5152 seq = gen_epilogue ();
5154 #ifdef INCOMING_RETURN_ADDR_RTX
5155 /* If this function returns with the stack depressed and we can support
5156 it, massage the epilogue to actually do that. */
5157 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5158 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5159 seq = keep_stack_depressed (seq);
5160 #endif
5162 emit_jump_insn (seq);
5164 /* Retain a map of the epilogue insns. */
5165 record_insns (seq, &epilogue);
5166 set_insn_locators (seq, epilogue_locator);
5168 seq = get_insns ();
5169 end_sequence ();
5171 insert_insn_on_edge (seq, e);
5172 inserted = 1;
5174 else
5175 #endif
5177 basic_block cur_bb;
5179 if (! next_active_insn (BB_END (e->src)))
5180 goto epilogue_done;
5181 /* We have a fall-through edge to the exit block, the source is not
5182 at the end of the function, and there will be an assembler epilogue
5183 at the end of the function.
5184 We can't use force_nonfallthru here, because that would try to
5185 use return. Inserting a jump 'by hand' is extremely messy, so
5186 we take advantage of cfg_layout_finalize using
5187 fixup_fallthru_exit_predecessor. */
5188 cfg_layout_initialize (0);
5189 FOR_EACH_BB (cur_bb)
5190 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5191 cur_bb->rbi->next = cur_bb->next_bb;
5192 cfg_layout_finalize ();
5194 epilogue_done:
5196 if (inserted)
5197 commit_edge_insertions ();
5199 #ifdef HAVE_sibcall_epilogue
5200 /* Emit sibling epilogues before any sibling call sites. */
5201 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5203 basic_block bb = e->src;
5204 rtx insn = BB_END (bb);
5205 rtx i;
5206 rtx newinsn;
5208 if (!CALL_P (insn)
5209 || ! SIBLING_CALL_P (insn))
5211 ei_next (&ei);
5212 continue;
5215 start_sequence ();
5216 emit_insn (gen_sibcall_epilogue ());
5217 seq = get_insns ();
5218 end_sequence ();
5220 /* Retain a map of the epilogue insns. Used in life analysis to
5221 avoid getting rid of sibcall epilogue insns. Do this before we
5222 actually emit the sequence. */
5223 record_insns (seq, &sibcall_epilogue);
5224 set_insn_locators (seq, epilogue_locator);
5226 i = PREV_INSN (insn);
5227 newinsn = emit_insn_before (seq, insn);
5228 ei_next (&ei);
5230 #endif
5232 #ifdef HAVE_prologue
5233 /* This is probably all useless now that we use locators. */
5234 if (prologue_end)
5236 rtx insn, prev;
5238 /* GDB handles `break f' by setting a breakpoint on the first
5239 line note after the prologue. Which means (1) that if
5240 there are line number notes before where we inserted the
5241 prologue we should move them, and (2) we should generate a
5242 note before the end of the first basic block, if there isn't
5243 one already there.
5245 ??? This behavior is completely broken when dealing with
5246 multiple entry functions. We simply place the note always
5247 into first basic block and let alternate entry points
5248 to be missed.
5251 for (insn = prologue_end; insn; insn = prev)
5253 prev = PREV_INSN (insn);
5254 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5256 /* Note that we cannot reorder the first insn in the
5257 chain, since rest_of_compilation relies on that
5258 remaining constant. */
5259 if (prev == NULL)
5260 break;
5261 reorder_insns (insn, insn, prologue_end);
5265 /* Find the last line number note in the first block. */
5266 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5267 insn != prologue_end && insn;
5268 insn = PREV_INSN (insn))
5269 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5270 break;
5272 /* If we didn't find one, make a copy of the first line number
5273 we run across. */
5274 if (! insn)
5276 for (insn = next_active_insn (prologue_end);
5277 insn;
5278 insn = PREV_INSN (insn))
5279 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5281 emit_note_copy_after (insn, prologue_end);
5282 break;
5286 #endif
5287 #ifdef HAVE_epilogue
5288 if (epilogue_end)
5290 rtx insn, next;
5292 /* Similarly, move any line notes that appear after the epilogue.
5293 There is no need, however, to be quite so anal about the existence
5294 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5295 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5296 info generation. */
5297 for (insn = epilogue_end; insn; insn = next)
5299 next = NEXT_INSN (insn);
5300 if (NOTE_P (insn)
5301 && (NOTE_LINE_NUMBER (insn) > 0
5302 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5303 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5304 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5307 #endif
5310 /* Reposition the prologue-end and epilogue-begin notes after instruction
5311 scheduling and delayed branch scheduling. */
5313 void
5314 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5316 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5317 rtx insn, last, note;
5318 int len;
5320 if ((len = VARRAY_SIZE (prologue)) > 0)
5322 last = 0, note = 0;
5324 /* Scan from the beginning until we reach the last prologue insn.
5325 We apparently can't depend on basic_block_{head,end} after
5326 reorg has run. */
5327 for (insn = f; insn; insn = NEXT_INSN (insn))
5329 if (NOTE_P (insn))
5331 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5332 note = insn;
5334 else if (contains (insn, prologue))
5336 last = insn;
5337 if (--len == 0)
5338 break;
5342 if (last)
5344 /* Find the prologue-end note if we haven't already, and
5345 move it to just after the last prologue insn. */
5346 if (note == 0)
5348 for (note = last; (note = NEXT_INSN (note));)
5349 if (NOTE_P (note)
5350 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5351 break;
5354 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5355 if (LABEL_P (last))
5356 last = NEXT_INSN (last);
5357 reorder_insns (note, note, last);
5361 if ((len = VARRAY_SIZE (epilogue)) > 0)
5363 last = 0, note = 0;
5365 /* Scan from the end until we reach the first epilogue insn.
5366 We apparently can't depend on basic_block_{head,end} after
5367 reorg has run. */
5368 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5370 if (NOTE_P (insn))
5372 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5373 note = insn;
5375 else if (contains (insn, epilogue))
5377 last = insn;
5378 if (--len == 0)
5379 break;
5383 if (last)
5385 /* Find the epilogue-begin note if we haven't already, and
5386 move it to just before the first epilogue insn. */
5387 if (note == 0)
5389 for (note = insn; (note = PREV_INSN (note));)
5390 if (NOTE_P (note)
5391 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5392 break;
5395 if (PREV_INSN (last) != note)
5396 reorder_insns (note, note, PREV_INSN (last));
5399 #endif /* HAVE_prologue or HAVE_epilogue */
5402 /* Called once, at initialization, to initialize function.c. */
5404 void
5405 init_function_once (void)
5407 VARRAY_INT_INIT (prologue, 0, "prologue");
5408 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5409 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5412 /* Resets insn_block_boundaries array. */
5414 void
5415 reset_block_changes (void)
5417 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5418 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5421 /* Record the boundary for BLOCK. */
5422 void
5423 record_block_change (tree block)
5425 int i, n;
5426 tree last_block;
5428 if (!block)
5429 return;
5431 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5432 VARRAY_POP (cfun->ib_boundaries_block);
5433 n = get_max_uid ();
5434 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5435 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5437 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5440 /* Finishes record of boundaries. */
5441 void finalize_block_changes (void)
5443 record_block_change (DECL_INITIAL (current_function_decl));
5446 /* For INSN return the BLOCK it belongs to. */
5447 void
5448 check_block_change (rtx insn, tree *block)
5450 unsigned uid = INSN_UID (insn);
5452 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5453 return;
5455 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5458 /* Releases the ib_boundaries_block records. */
5459 void
5460 free_block_changes (void)
5462 cfun->ib_boundaries_block = NULL;
5465 /* Returns the name of the current function. */
5466 const char *
5467 current_function_name (void)
5469 return lang_hooks.decl_printable_name (cfun->decl, 2);
5472 #include "gt-function.h"