* gcc.pot: Regenerate.
[official-gcc.git] / gcc / tree-vectorizer.h
blob6f59af64163540d9af4720bd928da9c3726229e5
1 /* Vectorizer
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef struct _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
30 /* Used for naming of new temporaries. */
31 enum vect_var_kind {
32 vect_simple_var,
33 vect_pointer_var,
34 vect_scalar_var,
35 vect_mask_var
38 /* Defines type of operation. */
39 enum operation_type {
40 unary_op = 1,
41 binary_op,
42 ternary_op
45 /* Define type of available alignment support. */
46 enum dr_alignment_support {
47 dr_unaligned_unsupported,
48 dr_unaligned_supported,
49 dr_explicit_realign,
50 dr_explicit_realign_optimized,
51 dr_aligned
54 /* Define type of def-use cross-iteration cycle. */
55 enum vect_def_type {
56 vect_uninitialized_def = 0,
57 vect_constant_def = 1,
58 vect_external_def,
59 vect_internal_def,
60 vect_induction_def,
61 vect_reduction_def,
62 vect_double_reduction_def,
63 vect_nested_cycle,
64 vect_unknown_def_type
67 /* Define type of reduction. */
68 enum vect_reduction_type {
69 TREE_CODE_REDUCTION,
70 COND_REDUCTION,
71 INTEGER_INDUC_COND_REDUCTION,
72 CONST_COND_REDUCTION,
74 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
75 to implement:
77 for (int i = 0; i < VF; ++i)
78 res = cond[i] ? val[i] : res; */
79 EXTRACT_LAST_REDUCTION,
81 /* Use a folding reduction within the loop to implement:
83 for (int i = 0; i < VF; ++i)
84 res = res OP val[i];
86 (with no reassocation). */
87 FOLD_LEFT_REDUCTION
90 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
91 || ((D) == vect_double_reduction_def) \
92 || ((D) == vect_nested_cycle))
94 /* Structure to encapsulate information about a group of like
95 instructions to be presented to the target cost model. */
96 struct stmt_info_for_cost {
97 int count;
98 enum vect_cost_for_stmt kind;
99 enum vect_cost_model_location where;
100 stmt_vec_info stmt_info;
101 int misalign;
104 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
106 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
107 known alignment for that base. */
108 typedef hash_map<tree_operand_hash,
109 innermost_loop_behavior *> vec_base_alignments;
111 /************************************************************************
113 ************************************************************************/
114 typedef struct _slp_tree *slp_tree;
116 /* A computation tree of an SLP instance. Each node corresponds to a group of
117 stmts to be packed in a SIMD stmt. */
118 struct _slp_tree {
119 /* Nodes that contain def-stmts of this node statements operands. */
120 vec<slp_tree> children;
121 /* A group of scalar stmts to be vectorized together. */
122 vec<stmt_vec_info> stmts;
123 /* Load permutation relative to the stores, NULL if there is no
124 permutation. */
125 vec<unsigned> load_permutation;
126 /* Vectorized stmt/s. */
127 vec<stmt_vec_info> vec_stmts;
128 /* Number of vector stmts that are created to replace the group of scalar
129 stmts. It is calculated during the transformation phase as the number of
130 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
131 divided by vector size. */
132 unsigned int vec_stmts_size;
133 /* Reference count in the SLP graph. */
134 unsigned int refcnt;
135 /* Whether the scalar computations use two different operators. */
136 bool two_operators;
137 /* The DEF type of this node. */
138 enum vect_def_type def_type;
142 /* SLP instance is a sequence of stmts in a loop that can be packed into
143 SIMD stmts. */
144 typedef struct _slp_instance {
145 /* The root of SLP tree. */
146 slp_tree root;
148 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
149 unsigned int group_size;
151 /* The unrolling factor required to vectorized this SLP instance. */
152 poly_uint64 unrolling_factor;
154 /* The group of nodes that contain loads of this SLP instance. */
155 vec<slp_tree> loads;
157 /* The SLP node containing the reduction PHIs. */
158 slp_tree reduc_phis;
159 } *slp_instance;
162 /* Access Functions. */
163 #define SLP_INSTANCE_TREE(S) (S)->root
164 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
165 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
166 #define SLP_INSTANCE_LOADS(S) (S)->loads
168 #define SLP_TREE_CHILDREN(S) (S)->children
169 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
170 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
171 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
172 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
173 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
174 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
178 /* Describes two objects whose addresses must be unequal for the vectorized
179 loop to be valid. */
180 typedef std::pair<tree, tree> vec_object_pair;
182 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
183 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
184 struct vec_lower_bound {
185 vec_lower_bound () {}
186 vec_lower_bound (tree e, bool u, poly_uint64 m)
187 : expr (e), unsigned_p (u), min_value (m) {}
189 tree expr;
190 bool unsigned_p;
191 poly_uint64 min_value;
194 /* Vectorizer state shared between different analyses like vector sizes
195 of the same CFG region. */
196 struct vec_info_shared {
197 vec_info_shared();
198 ~vec_info_shared();
200 void save_datarefs();
201 void check_datarefs();
203 /* All data references. Freed by free_data_refs, so not an auto_vec. */
204 vec<data_reference_p> datarefs;
205 vec<data_reference> datarefs_copy;
207 /* The loop nest in which the data dependences are computed. */
208 auto_vec<loop_p> loop_nest;
210 /* All data dependences. Freed by free_dependence_relations, so not
211 an auto_vec. */
212 vec<ddr_p> ddrs;
215 /* Vectorizer state common between loop and basic-block vectorization. */
216 struct vec_info {
217 enum vec_kind { bb, loop };
219 vec_info (vec_kind, void *, vec_info_shared *);
220 ~vec_info ();
222 stmt_vec_info add_stmt (gimple *);
223 stmt_vec_info lookup_stmt (gimple *);
224 stmt_vec_info lookup_def (tree);
225 stmt_vec_info lookup_single_use (tree);
226 struct dr_vec_info *lookup_dr (data_reference *);
227 void move_dr (stmt_vec_info, stmt_vec_info);
228 void remove_stmt (stmt_vec_info);
229 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
231 /* The type of vectorization. */
232 vec_kind kind;
234 /* Shared vectorizer state. */
235 vec_info_shared *shared;
237 /* The mapping of GIMPLE UID to stmt_vec_info. */
238 vec<stmt_vec_info> stmt_vec_infos;
240 /* All SLP instances. */
241 auto_vec<slp_instance> slp_instances;
243 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
244 known alignment for that base. */
245 vec_base_alignments base_alignments;
247 /* All interleaving chains of stores, represented by the first
248 stmt in the chain. */
249 auto_vec<stmt_vec_info> grouped_stores;
251 /* Cost data used by the target cost model. */
252 void *target_cost_data;
254 private:
255 stmt_vec_info new_stmt_vec_info (gimple *stmt);
256 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
257 void free_stmt_vec_infos ();
258 void free_stmt_vec_info (stmt_vec_info);
261 struct _loop_vec_info;
262 struct _bb_vec_info;
264 template<>
265 template<>
266 inline bool
267 is_a_helper <_loop_vec_info *>::test (vec_info *i)
269 return i->kind == vec_info::loop;
272 template<>
273 template<>
274 inline bool
275 is_a_helper <_bb_vec_info *>::test (vec_info *i)
277 return i->kind == vec_info::bb;
281 /* In general, we can divide the vector statements in a vectorized loop
282 into related groups ("rgroups") and say that for each rgroup there is
283 some nS such that the rgroup operates on nS values from one scalar
284 iteration followed by nS values from the next. That is, if VF is the
285 vectorization factor of the loop, the rgroup operates on a sequence:
287 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
289 where (i,j) represents a scalar value with index j in a scalar
290 iteration with index i.
292 [ We use the term "rgroup" to emphasise that this grouping isn't
293 necessarily the same as the grouping of statements used elsewhere.
294 For example, if we implement a group of scalar loads using gather
295 loads, we'll use a separate gather load for each scalar load, and
296 thus each gather load will belong to its own rgroup. ]
298 In general this sequence will occupy nV vectors concatenated
299 together. If these vectors have nL lanes each, the total number
300 of scalar values N is given by:
302 N = nS * VF = nV * nL
304 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
305 are compile-time constants but VF and nL can be variable (if the target
306 supports variable-length vectors).
308 In classical vectorization, each iteration of the vector loop would
309 handle exactly VF iterations of the original scalar loop. However,
310 in a fully-masked loop, a particular iteration of the vector loop
311 might handle fewer than VF iterations of the scalar loop. The vector
312 lanes that correspond to iterations of the scalar loop are said to be
313 "active" and the other lanes are said to be "inactive".
315 In a fully-masked loop, many rgroups need to be masked to ensure that
316 they have no effect for the inactive lanes. Each such rgroup needs a
317 sequence of booleans in the same order as above, but with each (i,j)
318 replaced by a boolean that indicates whether iteration i is active.
319 This sequence occupies nV vector masks that again have nL lanes each.
320 Thus the mask sequence as a whole consists of VF independent booleans
321 that are each repeated nS times.
323 We make the simplifying assumption that if a sequence of nV masks is
324 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
325 VIEW_CONVERTing it. This holds for all current targets that support
326 fully-masked loops. For example, suppose the scalar loop is:
328 float *f;
329 double *d;
330 for (int i = 0; i < n; ++i)
332 f[i * 2 + 0] += 1.0f;
333 f[i * 2 + 1] += 2.0f;
334 d[i] += 3.0;
337 and suppose that vectors have 256 bits. The vectorized f accesses
338 will belong to one rgroup and the vectorized d access to another:
340 f rgroup: nS = 2, nV = 1, nL = 8
341 d rgroup: nS = 1, nV = 1, nL = 4
342 VF = 4
344 [ In this simple example the rgroups do correspond to the normal
345 SLP grouping scheme. ]
347 If only the first three lanes are active, the masks we need are:
349 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
350 d rgroup: 1 | 1 | 1 | 0
352 Here we can use a mask calculated for f's rgroup for d's, but not
353 vice versa.
355 Thus for each value of nV, it is enough to provide nV masks, with the
356 mask being calculated based on the highest nL (or, equivalently, based
357 on the highest nS) required by any rgroup with that nV. We therefore
358 represent the entire collection of masks as a two-level table, with the
359 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
360 the second being indexed by the mask index 0 <= i < nV. */
362 /* The masks needed by rgroups with nV vectors, according to the
363 description above. */
364 struct rgroup_masks {
365 /* The largest nS for all rgroups that use these masks. */
366 unsigned int max_nscalars_per_iter;
368 /* The type of mask to use, based on the highest nS recorded above. */
369 tree mask_type;
371 /* A vector of nV masks, in iteration order. */
372 vec<tree> masks;
375 typedef auto_vec<rgroup_masks> vec_loop_masks;
377 /*-----------------------------------------------------------------*/
378 /* Info on vectorized loops. */
379 /*-----------------------------------------------------------------*/
380 typedef struct _loop_vec_info : public vec_info {
381 _loop_vec_info (struct loop *, vec_info_shared *);
382 ~_loop_vec_info ();
384 /* The loop to which this info struct refers to. */
385 struct loop *loop;
387 /* The loop basic blocks. */
388 basic_block *bbs;
390 /* Number of latch executions. */
391 tree num_itersm1;
392 /* Number of iterations. */
393 tree num_iters;
394 /* Number of iterations of the original loop. */
395 tree num_iters_unchanged;
396 /* Condition under which this loop is analyzed and versioned. */
397 tree num_iters_assumptions;
399 /* Threshold of number of iterations below which vectorzation will not be
400 performed. It is calculated from MIN_PROFITABLE_ITERS and
401 PARAM_MIN_VECT_LOOP_BOUND. */
402 unsigned int th;
404 /* When applying loop versioning, the vector form should only be used
405 if the number of scalar iterations is >= this value, on top of all
406 the other requirements. Ignored when loop versioning is not being
407 used. */
408 poly_uint64 versioning_threshold;
410 /* Unrolling factor */
411 poly_uint64 vectorization_factor;
413 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
414 if there is no particular limit. */
415 unsigned HOST_WIDE_INT max_vectorization_factor;
417 /* The masks that a fully-masked loop should use to avoid operating
418 on inactive scalars. */
419 vec_loop_masks masks;
421 /* If we are using a loop mask to align memory addresses, this variable
422 contains the number of vector elements that we should skip in the
423 first iteration of the vector loop (i.e. the number of leading
424 elements that should be false in the first mask). */
425 tree mask_skip_niters;
427 /* Type of the variables to use in the WHILE_ULT call for fully-masked
428 loops. */
429 tree mask_compare_type;
431 /* Unknown DRs according to which loop was peeled. */
432 struct dr_vec_info *unaligned_dr;
434 /* peeling_for_alignment indicates whether peeling for alignment will take
435 place, and what the peeling factor should be:
436 peeling_for_alignment = X means:
437 If X=0: Peeling for alignment will not be applied.
438 If X>0: Peel first X iterations.
439 If X=-1: Generate a runtime test to calculate the number of iterations
440 to be peeled, using the dataref recorded in the field
441 unaligned_dr. */
442 int peeling_for_alignment;
444 /* The mask used to check the alignment of pointers or arrays. */
445 int ptr_mask;
447 /* Data Dependence Relations defining address ranges that are candidates
448 for a run-time aliasing check. */
449 auto_vec<ddr_p> may_alias_ddrs;
451 /* Data Dependence Relations defining address ranges together with segment
452 lengths from which the run-time aliasing check is built. */
453 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
455 /* Check that the addresses of each pair of objects is unequal. */
456 auto_vec<vec_object_pair> check_unequal_addrs;
458 /* List of values that are required to be nonzero. This is used to check
459 whether things like "x[i * n] += 1;" are safe and eventually gets added
460 to the checks for lower bounds below. */
461 auto_vec<tree> check_nonzero;
463 /* List of values that need to be checked for a minimum value. */
464 auto_vec<vec_lower_bound> lower_bounds;
466 /* Statements in the loop that have data references that are candidates for a
467 runtime (loop versioning) misalignment check. */
468 auto_vec<stmt_vec_info> may_misalign_stmts;
470 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
471 auto_vec<stmt_vec_info> reductions;
473 /* All reduction chains in the loop, represented by the first
474 stmt in the chain. */
475 auto_vec<stmt_vec_info> reduction_chains;
477 /* Cost vector for a single scalar iteration. */
478 auto_vec<stmt_info_for_cost> scalar_cost_vec;
480 /* Map of IV base/step expressions to inserted name in the preheader. */
481 hash_map<tree_operand_hash, tree> *ivexpr_map;
483 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
484 applied to the loop, i.e., no unrolling is needed, this is 1. */
485 poly_uint64 slp_unrolling_factor;
487 /* Cost of a single scalar iteration. */
488 int single_scalar_iteration_cost;
490 /* Is the loop vectorizable? */
491 bool vectorizable;
493 /* Records whether we still have the option of using a fully-masked loop. */
494 bool can_fully_mask_p;
496 /* True if have decided to use a fully-masked loop. */
497 bool fully_masked_p;
499 /* When we have grouped data accesses with gaps, we may introduce invalid
500 memory accesses. We peel the last iteration of the loop to prevent
501 this. */
502 bool peeling_for_gaps;
504 /* When the number of iterations is not a multiple of the vector size
505 we need to peel off iterations at the end to form an epilogue loop. */
506 bool peeling_for_niter;
508 /* Reductions are canonicalized so that the last operand is the reduction
509 operand. If this places a constant into RHS1, this decanonicalizes
510 GIMPLE for other phases, so we must track when this has occurred and
511 fix it up. */
512 bool operands_swapped;
514 /* True if there are no loop carried data dependencies in the loop.
515 If loop->safelen <= 1, then this is always true, either the loop
516 didn't have any loop carried data dependencies, or the loop is being
517 vectorized guarded with some runtime alias checks, or couldn't
518 be vectorized at all, but then this field shouldn't be used.
519 For loop->safelen >= 2, the user has asserted that there are no
520 backward dependencies, but there still could be loop carried forward
521 dependencies in such loops. This flag will be false if normal
522 vectorizer data dependency analysis would fail or require versioning
523 for alias, but because of loop->safelen >= 2 it has been vectorized
524 even without versioning for alias. E.g. in:
525 #pragma omp simd
526 for (int i = 0; i < m; i++)
527 a[i] = a[i + k] * c;
528 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
529 DTRT even for k > 0 && k < m, but without safelen we would not
530 vectorize this, so this field would be false. */
531 bool no_data_dependencies;
533 /* Mark loops having masked stores. */
534 bool has_mask_store;
536 /* If if-conversion versioned this loop before conversion, this is the
537 loop version without if-conversion. */
538 struct loop *scalar_loop;
540 /* For loops being epilogues of already vectorized loops
541 this points to the original vectorized loop. Otherwise NULL. */
542 _loop_vec_info *orig_loop_info;
544 } *loop_vec_info;
546 /* Access Functions. */
547 #define LOOP_VINFO_LOOP(L) (L)->loop
548 #define LOOP_VINFO_BBS(L) (L)->bbs
549 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
550 #define LOOP_VINFO_NITERS(L) (L)->num_iters
551 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
552 prologue peeling retain total unchanged scalar loop iterations for
553 cost model. */
554 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
555 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
556 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
557 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
558 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
559 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
560 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
561 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
562 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
563 #define LOOP_VINFO_MASKS(L) (L)->masks
564 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
565 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
566 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
567 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
568 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
569 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
570 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
571 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
572 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
573 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
574 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
575 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
576 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
577 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
578 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
579 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
580 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
581 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
582 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
583 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
584 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
585 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
586 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
587 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
588 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
589 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
590 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
591 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
592 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
593 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
595 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
596 ((L)->may_misalign_stmts.length () > 0)
597 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
598 ((L)->comp_alias_ddrs.length () > 0 \
599 || (L)->check_unequal_addrs.length () > 0 \
600 || (L)->lower_bounds.length () > 0)
601 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
602 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
603 #define LOOP_REQUIRES_VERSIONING(L) \
604 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
605 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
606 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
608 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
609 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
611 #define LOOP_VINFO_EPILOGUE_P(L) \
612 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
614 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
615 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
617 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
618 value signifies success, and a NULL value signifies failure, supporting
619 propagating an opt_problem * describing the failure back up the call
620 stack. */
621 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
623 static inline loop_vec_info
624 loop_vec_info_for_loop (struct loop *loop)
626 return (loop_vec_info) loop->aux;
629 typedef struct _bb_vec_info : public vec_info
631 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
632 ~_bb_vec_info ();
634 basic_block bb;
635 gimple_stmt_iterator region_begin;
636 gimple_stmt_iterator region_end;
637 } *bb_vec_info;
639 #define BB_VINFO_BB(B) (B)->bb
640 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
641 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
642 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
643 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
644 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
646 static inline bb_vec_info
647 vec_info_for_bb (basic_block bb)
649 return (bb_vec_info) bb->aux;
652 /*-----------------------------------------------------------------*/
653 /* Info on vectorized defs. */
654 /*-----------------------------------------------------------------*/
655 enum stmt_vec_info_type {
656 undef_vec_info_type = 0,
657 load_vec_info_type,
658 store_vec_info_type,
659 shift_vec_info_type,
660 op_vec_info_type,
661 call_vec_info_type,
662 call_simd_clone_vec_info_type,
663 assignment_vec_info_type,
664 condition_vec_info_type,
665 comparison_vec_info_type,
666 reduc_vec_info_type,
667 induc_vec_info_type,
668 type_promotion_vec_info_type,
669 type_demotion_vec_info_type,
670 type_conversion_vec_info_type,
671 loop_exit_ctrl_vec_info_type
674 /* Indicates whether/how a variable is used in the scope of loop/basic
675 block. */
676 enum vect_relevant {
677 vect_unused_in_scope = 0,
679 /* The def is only used outside the loop. */
680 vect_used_only_live,
681 /* The def is in the inner loop, and the use is in the outer loop, and the
682 use is a reduction stmt. */
683 vect_used_in_outer_by_reduction,
684 /* The def is in the inner loop, and the use is in the outer loop (and is
685 not part of reduction). */
686 vect_used_in_outer,
688 /* defs that feed computations that end up (only) in a reduction. These
689 defs may be used by non-reduction stmts, but eventually, any
690 computations/values that are affected by these defs are used to compute
691 a reduction (i.e. don't get stored to memory, for example). We use this
692 to identify computations that we can change the order in which they are
693 computed. */
694 vect_used_by_reduction,
696 vect_used_in_scope
699 /* The type of vectorization that can be applied to the stmt: regular loop-based
700 vectorization; pure SLP - the stmt is a part of SLP instances and does not
701 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
702 a part of SLP instance and also must be loop-based vectorized, since it has
703 uses outside SLP sequences.
705 In the loop context the meanings of pure and hybrid SLP are slightly
706 different. By saying that pure SLP is applied to the loop, we mean that we
707 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
708 vectorized without doing any conceptual unrolling, cause we don't pack
709 together stmts from different iterations, only within a single iteration.
710 Loop hybrid SLP means that we exploit both intra-iteration and
711 inter-iteration parallelism (e.g., number of elements in the vector is 4
712 and the slp-group-size is 2, in which case we don't have enough parallelism
713 within an iteration, so we obtain the rest of the parallelism from subsequent
714 iterations by unrolling the loop by 2). */
715 enum slp_vect_type {
716 loop_vect = 0,
717 pure_slp,
718 hybrid
721 /* Says whether a statement is a load, a store of a vectorized statement
722 result, or a store of an invariant value. */
723 enum vec_load_store_type {
724 VLS_LOAD,
725 VLS_STORE,
726 VLS_STORE_INVARIANT
729 /* Describes how we're going to vectorize an individual load or store,
730 or a group of loads or stores. */
731 enum vect_memory_access_type {
732 /* An access to an invariant address. This is used only for loads. */
733 VMAT_INVARIANT,
735 /* A simple contiguous access. */
736 VMAT_CONTIGUOUS,
738 /* A contiguous access that goes down in memory rather than up,
739 with no additional permutation. This is used only for stores
740 of invariants. */
741 VMAT_CONTIGUOUS_DOWN,
743 /* A simple contiguous access in which the elements need to be permuted
744 after loading or before storing. Only used for loop vectorization;
745 SLP uses separate permutes. */
746 VMAT_CONTIGUOUS_PERMUTE,
748 /* A simple contiguous access in which the elements need to be reversed
749 after loading or before storing. */
750 VMAT_CONTIGUOUS_REVERSE,
752 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
753 VMAT_LOAD_STORE_LANES,
755 /* An access in which each scalar element is loaded or stored
756 individually. */
757 VMAT_ELEMENTWISE,
759 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
760 SLP accesses. Each unrolled iteration uses a contiguous load
761 or store for the whole group, but the groups from separate iterations
762 are combined in the same way as for VMAT_ELEMENTWISE. */
763 VMAT_STRIDED_SLP,
765 /* The access uses gather loads or scatter stores. */
766 VMAT_GATHER_SCATTER
769 struct dr_vec_info {
770 /* The data reference itself. */
771 data_reference *dr;
772 /* The statement that contains the data reference. */
773 stmt_vec_info stmt;
774 /* The misalignment in bytes of the reference, or -1 if not known. */
775 int misalignment;
776 /* The byte alignment that we'd ideally like the reference to have,
777 and the value that misalignment is measured against. */
778 poly_uint64 target_alignment;
779 /* If true the alignment of base_decl needs to be increased. */
780 bool base_misaligned;
781 tree base_decl;
784 typedef struct data_reference *dr_p;
786 struct _stmt_vec_info {
788 enum stmt_vec_info_type type;
790 /* Indicates whether this stmts is part of a computation whose result is
791 used outside the loop. */
792 bool live;
794 /* Stmt is part of some pattern (computation idiom) */
795 bool in_pattern_p;
797 /* True if the statement was created during pattern recognition as
798 part of the replacement for RELATED_STMT. This implies that the
799 statement isn't part of any basic block, although for convenience
800 its gimple_bb is the same as for RELATED_STMT. */
801 bool pattern_stmt_p;
803 /* Is this statement vectorizable or should it be skipped in (partial)
804 vectorization. */
805 bool vectorizable;
807 /* The stmt to which this info struct refers to. */
808 gimple *stmt;
810 /* The vec_info with respect to which STMT is vectorized. */
811 vec_info *vinfo;
813 /* The vector type to be used for the LHS of this statement. */
814 tree vectype;
816 /* The vectorized version of the stmt. */
817 stmt_vec_info vectorized_stmt;
820 /* The following is relevant only for stmts that contain a non-scalar
821 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
822 at most one such data-ref. */
824 dr_vec_info dr_aux;
826 /* Information about the data-ref relative to this loop
827 nest (the loop that is being considered for vectorization). */
828 innermost_loop_behavior dr_wrt_vec_loop;
830 /* For loop PHI nodes, the base and evolution part of it. This makes sure
831 this information is still available in vect_update_ivs_after_vectorizer
832 where we may not be able to re-analyze the PHI nodes evolution as
833 peeling for the prologue loop can make it unanalyzable. The evolution
834 part is still correct after peeling, but the base may have changed from
835 the version here. */
836 tree loop_phi_evolution_base_unchanged;
837 tree loop_phi_evolution_part;
839 /* Used for various bookkeeping purposes, generally holding a pointer to
840 some other stmt S that is in some way "related" to this stmt.
841 Current use of this field is:
842 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
843 true): S is the "pattern stmt" that represents (and replaces) the
844 sequence of stmts that constitutes the pattern. Similarly, the
845 related_stmt of the "pattern stmt" points back to this stmt (which is
846 the last stmt in the original sequence of stmts that constitutes the
847 pattern). */
848 stmt_vec_info related_stmt;
850 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
851 The sequence is attached to the original statement rather than the
852 pattern statement. */
853 gimple_seq pattern_def_seq;
855 /* List of datarefs that are known to have the same alignment as the dataref
856 of this stmt. */
857 vec<dr_p> same_align_refs;
859 /* Selected SIMD clone's function info. First vector element
860 is SIMD clone's function decl, followed by a pair of trees (base + step)
861 for linear arguments (pair of NULLs for other arguments). */
862 vec<tree> simd_clone_info;
864 /* Classify the def of this stmt. */
865 enum vect_def_type def_type;
867 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
868 enum slp_vect_type slp_type;
870 /* Interleaving and reduction chains info. */
871 /* First element in the group. */
872 stmt_vec_info first_element;
873 /* Pointer to the next element in the group. */
874 stmt_vec_info next_element;
875 /* The size of the group. */
876 unsigned int size;
877 /* For stores, number of stores from this group seen. We vectorize the last
878 one. */
879 unsigned int store_count;
880 /* For loads only, the gap from the previous load. For consecutive loads, GAP
881 is 1. */
882 unsigned int gap;
884 /* The minimum negative dependence distance this stmt participates in
885 or zero if none. */
886 unsigned int min_neg_dist;
888 /* Not all stmts in the loop need to be vectorized. e.g, the increment
889 of the loop induction variable and computation of array indexes. relevant
890 indicates whether the stmt needs to be vectorized. */
891 enum vect_relevant relevant;
893 /* For loads if this is a gather, for stores if this is a scatter. */
894 bool gather_scatter_p;
896 /* True if this is an access with loop-invariant stride. */
897 bool strided_p;
899 /* For both loads and stores. */
900 bool simd_lane_access_p;
902 /* Classifies how the load or store is going to be implemented
903 for loop vectorization. */
904 vect_memory_access_type memory_access_type;
906 /* For reduction loops, this is the type of reduction. */
907 enum vect_reduction_type v_reduc_type;
909 /* For CONST_COND_REDUCTION, record the reduc code. */
910 enum tree_code const_cond_reduc_code;
912 /* On a reduction PHI the reduction type as detected by
913 vect_force_simple_reduction. */
914 enum vect_reduction_type reduc_type;
916 /* On a reduction PHI the def returned by vect_force_simple_reduction.
917 On the def returned by vect_force_simple_reduction the
918 corresponding PHI. */
919 stmt_vec_info reduc_def;
921 /* The number of scalar stmt references from active SLP instances. */
922 unsigned int num_slp_uses;
924 /* If nonzero, the lhs of the statement could be truncated to this
925 many bits without affecting any users of the result. */
926 unsigned int min_output_precision;
928 /* If nonzero, all non-boolean input operands have the same precision,
929 and they could each be truncated to this many bits without changing
930 the result. */
931 unsigned int min_input_precision;
933 /* If OPERATION_BITS is nonzero, the statement could be performed on
934 an integer with the sign and number of bits given by OPERATION_SIGN
935 and OPERATION_BITS without changing the result. */
936 unsigned int operation_precision;
937 signop operation_sign;
940 /* Information about a gather/scatter call. */
941 struct gather_scatter_info {
942 /* The internal function to use for the gather/scatter operation,
943 or IFN_LAST if a built-in function should be used instead. */
944 internal_fn ifn;
946 /* The FUNCTION_DECL for the built-in gather/scatter function,
947 or null if an internal function should be used instead. */
948 tree decl;
950 /* The loop-invariant base value. */
951 tree base;
953 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
954 tree offset;
956 /* Each offset element should be multiplied by this amount before
957 being added to the base. */
958 int scale;
960 /* The definition type for the vectorized offset. */
961 enum vect_def_type offset_dt;
963 /* The type of the vectorized offset. */
964 tree offset_vectype;
966 /* The type of the scalar elements after loading or before storing. */
967 tree element_type;
969 /* The type of the scalar elements being loaded or stored. */
970 tree memory_type;
973 /* Access Functions. */
974 #define STMT_VINFO_TYPE(S) (S)->type
975 #define STMT_VINFO_STMT(S) (S)->stmt
976 inline loop_vec_info
977 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
979 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
980 return loop_vinfo;
981 return NULL;
983 inline bb_vec_info
984 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
986 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
987 return bb_vinfo;
988 return NULL;
990 #define STMT_VINFO_RELEVANT(S) (S)->relevant
991 #define STMT_VINFO_LIVE_P(S) (S)->live
992 #define STMT_VINFO_VECTYPE(S) (S)->vectype
993 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
994 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
995 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
996 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
997 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
998 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
999 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1000 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
1001 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1003 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1004 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1005 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1006 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1007 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1008 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1009 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1010 (S)->dr_wrt_vec_loop.base_misalignment
1011 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1012 (S)->dr_wrt_vec_loop.offset_alignment
1013 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1014 (S)->dr_wrt_vec_loop.step_alignment
1016 #define STMT_VINFO_DR_INFO(S) \
1017 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1019 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1020 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1021 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1022 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1023 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1024 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1025 #define STMT_VINFO_GROUPED_ACCESS(S) \
1026 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1027 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1028 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1029 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1030 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1031 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1032 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1034 #define DR_GROUP_FIRST_ELEMENT(S) \
1035 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1036 #define DR_GROUP_NEXT_ELEMENT(S) \
1037 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1038 #define DR_GROUP_SIZE(S) \
1039 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1040 #define DR_GROUP_STORE_COUNT(S) \
1041 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1042 #define DR_GROUP_GAP(S) \
1043 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1045 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1046 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1047 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1048 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1049 #define REDUC_GROUP_SIZE(S) \
1050 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1052 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1054 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1055 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1056 #define STMT_SLP_TYPE(S) (S)->slp_type
1058 #define VECT_MAX_COST 1000
1060 /* The maximum number of intermediate steps required in multi-step type
1061 conversion. */
1062 #define MAX_INTERM_CVT_STEPS 3
1064 #define MAX_VECTORIZATION_FACTOR INT_MAX
1066 /* Nonzero if TYPE represents a (scalar) boolean type or type
1067 in the middle-end compatible with it (unsigned precision 1 integral
1068 types). Used to determine which types should be vectorized as
1069 VECTOR_BOOLEAN_TYPE_P. */
1071 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1072 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1073 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1074 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1075 && TYPE_PRECISION (TYPE) == 1 \
1076 && TYPE_UNSIGNED (TYPE)))
1078 static inline bool
1079 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1081 return (loop->inner
1082 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1085 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1086 pattern. */
1088 static inline bool
1089 is_pattern_stmt_p (stmt_vec_info stmt_info)
1091 return stmt_info->pattern_stmt_p;
1094 /* If STMT_INFO is a pattern statement, return the statement that it
1095 replaces, otherwise return STMT_INFO itself. */
1097 inline stmt_vec_info
1098 vect_orig_stmt (stmt_vec_info stmt_info)
1100 if (is_pattern_stmt_p (stmt_info))
1101 return STMT_VINFO_RELATED_STMT (stmt_info);
1102 return stmt_info;
1105 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1107 static inline stmt_vec_info
1108 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1110 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1111 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1112 return stmt1_info;
1113 else
1114 return stmt2_info;
1117 /* If STMT_INFO has been replaced by a pattern statement, return the
1118 replacement statement, otherwise return STMT_INFO itself. */
1120 inline stmt_vec_info
1121 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1123 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1124 return STMT_VINFO_RELATED_STMT (stmt_info);
1125 return stmt_info;
1128 /* Return true if BB is a loop header. */
1130 static inline bool
1131 is_loop_header_bb_p (basic_block bb)
1133 if (bb == (bb->loop_father)->header)
1134 return true;
1135 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1136 return false;
1139 /* Return pow2 (X). */
1141 static inline int
1142 vect_pow2 (int x)
1144 int i, res = 1;
1146 for (i = 0; i < x; i++)
1147 res *= 2;
1149 return res;
1152 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1154 static inline int
1155 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1156 tree vectype, int misalign)
1158 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1159 vectype, misalign);
1162 /* Get cost by calling cost target builtin. */
1164 static inline
1165 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1167 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1170 /* Alias targetm.vectorize.init_cost. */
1172 static inline void *
1173 init_cost (struct loop *loop_info)
1175 return targetm.vectorize.init_cost (loop_info);
1178 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1179 stmt_vec_info, int, unsigned,
1180 enum vect_cost_model_location);
1182 /* Alias targetm.vectorize.add_stmt_cost. */
1184 static inline unsigned
1185 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1186 stmt_vec_info stmt_info, int misalign,
1187 enum vect_cost_model_location where)
1189 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1190 stmt_info, misalign, where);
1191 if (dump_file && (dump_flags & TDF_DETAILS))
1192 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1193 cost, where);
1194 return cost;
1197 /* Alias targetm.vectorize.finish_cost. */
1199 static inline void
1200 finish_cost (void *data, unsigned *prologue_cost,
1201 unsigned *body_cost, unsigned *epilogue_cost)
1203 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1206 /* Alias targetm.vectorize.destroy_cost_data. */
1208 static inline void
1209 destroy_cost_data (void *data)
1211 targetm.vectorize.destroy_cost_data (data);
1214 inline void
1215 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1217 stmt_info_for_cost *cost;
1218 unsigned i;
1219 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1220 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1221 cost->misalign, cost->where);
1224 /*-----------------------------------------------------------------*/
1225 /* Info on data references alignment. */
1226 /*-----------------------------------------------------------------*/
1227 #define DR_MISALIGNMENT_UNKNOWN (-1)
1228 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1230 inline void
1231 set_dr_misalignment (dr_vec_info *dr_info, int val)
1233 dr_info->misalignment = val;
1236 inline int
1237 dr_misalignment (dr_vec_info *dr_info)
1239 int misalign = dr_info->misalignment;
1240 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1241 return misalign;
1244 /* Reflects actual alignment of first access in the vectorized loop,
1245 taking into account peeling/versioning if applied. */
1246 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1247 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1249 /* Only defined once DR_MISALIGNMENT is defined. */
1250 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1252 /* Return true if data access DR_INFO is aligned to its target alignment
1253 (which may be less than a full vector). */
1255 static inline bool
1256 aligned_access_p (dr_vec_info *dr_info)
1258 return (DR_MISALIGNMENT (dr_info) == 0);
1261 /* Return TRUE if the alignment of the data access is known, and FALSE
1262 otherwise. */
1264 static inline bool
1265 known_alignment_for_access_p (dr_vec_info *dr_info)
1267 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1270 /* Return the minimum alignment in bytes that the vectorized version
1271 of DR_INFO is guaranteed to have. */
1273 static inline unsigned int
1274 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1276 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1277 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1278 if (DR_MISALIGNMENT (dr_info) == 0)
1279 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1280 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1283 /* Return the behavior of DR_INFO with respect to the vectorization context
1284 (which for outer loop vectorization might not be the behavior recorded
1285 in DR_INFO itself). */
1287 static inline innermost_loop_behavior *
1288 vect_dr_behavior (dr_vec_info *dr_info)
1290 stmt_vec_info stmt_info = dr_info->stmt;
1291 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1292 if (loop_vinfo == NULL
1293 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1294 return &DR_INNERMOST (dr_info->dr);
1295 else
1296 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1299 /* Return true if the vect cost model is unlimited. */
1300 static inline bool
1301 unlimited_cost_model (loop_p loop)
1303 if (loop != NULL && loop->force_vectorize
1304 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1305 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1306 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1309 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1310 if the first iteration should use a partial mask in order to achieve
1311 alignment. */
1313 static inline bool
1314 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1316 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1317 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1320 /* Return the number of vectors of type VECTYPE that are needed to get
1321 NUNITS elements. NUNITS should be based on the vectorization factor,
1322 so it is always a known multiple of the number of elements in VECTYPE. */
1324 static inline unsigned int
1325 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1327 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1330 /* Return the number of copies needed for loop vectorization when
1331 a statement operates on vectors of type VECTYPE. This is the
1332 vectorization factor divided by the number of elements in
1333 VECTYPE and is always known at compile time. */
1335 static inline unsigned int
1336 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1338 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1341 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1342 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1343 if we haven't yet recorded any vector types. */
1345 static inline void
1346 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1348 /* All unit counts have the form current_vector_size * X for some
1349 rational X, so two unit sizes must have a common multiple.
1350 Everything is a multiple of the initial value of 1. */
1351 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1352 *max_nunits = force_common_multiple (*max_nunits, nunits);
1355 /* Return the vectorization factor that should be used for costing
1356 purposes while vectorizing the loop described by LOOP_VINFO.
1357 Pick a reasonable estimate if the vectorization factor isn't
1358 known at compile time. */
1360 static inline unsigned int
1361 vect_vf_for_cost (loop_vec_info loop_vinfo)
1363 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1366 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1367 Pick a reasonable estimate if the exact number isn't known at
1368 compile time. */
1370 static inline unsigned int
1371 vect_nunits_for_cost (tree vec_type)
1373 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1376 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1378 static inline unsigned HOST_WIDE_INT
1379 vect_max_vf (loop_vec_info loop_vinfo)
1381 unsigned HOST_WIDE_INT vf;
1382 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1383 return vf;
1384 return MAX_VECTORIZATION_FACTOR;
1387 /* Return the size of the value accessed by unvectorized data reference
1388 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1389 for the associated gimple statement, since that guarantees that DR_INFO
1390 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1391 here includes things like V1SI, which can be vectorized in the same way
1392 as a plain SI.) */
1394 inline unsigned int
1395 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1397 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1400 /* Source location + hotness information. */
1401 extern dump_user_location_t vect_location;
1403 /* A macro for calling:
1404 dump_begin_scope (MSG, vect_location);
1405 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1406 and then calling
1407 dump_end_scope ();
1408 once the object goes out of scope, thus capturing the nesting of
1409 the scopes.
1411 These scopes affect dump messages within them: dump messages at the
1412 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1413 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1415 #define DUMP_VECT_SCOPE(MSG) \
1416 AUTO_DUMP_SCOPE (MSG, vect_location)
1418 /* A sentinel class for ensuring that the "vect_location" global gets
1419 reset at the end of a scope.
1421 The "vect_location" global is used during dumping and contains a
1422 location_t, which could contain references to a tree block via the
1423 ad-hoc data. This data is used for tracking inlining information,
1424 but it's not a GC root; it's simply assumed that such locations never
1425 get accessed if the blocks are optimized away.
1427 Hence we need to ensure that such locations are purged at the end
1428 of any operations using them (e.g. via this class). */
1430 class auto_purge_vect_location
1432 public:
1433 ~auto_purge_vect_location ();
1436 /*-----------------------------------------------------------------*/
1437 /* Function prototypes. */
1438 /*-----------------------------------------------------------------*/
1440 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1441 in tree-vect-loop-manip.c. */
1442 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1443 tree, tree, tree, bool);
1444 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1445 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1446 struct loop *, edge);
1447 struct loop *vect_loop_versioning (loop_vec_info, unsigned int, bool,
1448 poly_uint64);
1449 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1450 tree *, tree *, tree *, int, bool, bool);
1451 extern void vect_prepare_for_masked_peels (loop_vec_info);
1452 extern dump_user_location_t find_loop_location (struct loop *);
1453 extern bool vect_can_advance_ivs_p (loop_vec_info);
1455 /* In tree-vect-stmts.c. */
1456 extern poly_uint64 current_vector_size;
1457 extern tree get_vectype_for_scalar_type (tree);
1458 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1459 extern tree get_mask_type_for_scalar_type (tree);
1460 extern tree get_same_sized_vectype (tree, tree);
1461 extern bool vect_get_loop_mask_type (loop_vec_info);
1462 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1463 stmt_vec_info * = NULL, gimple ** = NULL);
1464 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1465 tree *, stmt_vec_info * = NULL,
1466 gimple ** = NULL);
1467 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1468 tree, tree, enum tree_code *,
1469 enum tree_code *, int *,
1470 vec<tree> *);
1471 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1472 enum tree_code *,
1473 int *, vec<tree> *);
1474 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1475 enum vect_cost_for_stmt, stmt_vec_info,
1476 int, enum vect_cost_model_location);
1477 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1478 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1479 gimple_stmt_iterator *);
1480 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info);
1481 extern tree vect_get_store_rhs (stmt_vec_info);
1482 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1483 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1484 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1485 vec<tree> *, slp_tree);
1486 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1487 vec<tree> *, vec<tree> *);
1488 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1489 gimple_stmt_iterator *);
1490 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1491 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1492 slp_tree, slp_instance);
1493 extern void vect_remove_stores (stmt_vec_info);
1494 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1495 slp_instance, stmt_vector_for_cost *);
1496 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1497 stmt_vec_info *, bool, slp_tree,
1498 stmt_vector_for_cost *);
1499 extern bool vectorizable_shift (stmt_vec_info, gimple_stmt_iterator *,
1500 stmt_vec_info *, slp_tree,
1501 stmt_vector_for_cost *);
1502 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1503 unsigned int *, unsigned int *,
1504 stmt_vector_for_cost *,
1505 stmt_vector_for_cost *, bool);
1506 extern void vect_get_store_cost (stmt_vec_info, int,
1507 unsigned int *, stmt_vector_for_cost *);
1508 extern bool vect_supportable_shift (enum tree_code, tree);
1509 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1510 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1511 extern void optimize_mask_stores (struct loop*);
1512 extern gcall *vect_gen_while (tree, tree, tree);
1513 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1514 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1515 tree *);
1516 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info);
1518 /* In tree-vect-data-refs.c. */
1519 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1520 extern enum dr_alignment_support vect_supportable_dr_alignment
1521 (dr_vec_info *, bool);
1522 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1523 HOST_WIDE_INT *);
1524 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1525 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1526 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1527 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1528 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1529 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1530 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1531 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1532 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1533 signop, int, internal_fn *, tree *);
1534 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1535 gather_scatter_info *);
1536 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1537 vec<data_reference_p> *);
1538 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *);
1539 extern void vect_record_base_alignments (vec_info *);
1540 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1541 tree *, gimple_stmt_iterator *,
1542 gimple **, bool,
1543 tree = NULL_TREE, tree = NULL_TREE);
1544 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1545 stmt_vec_info, tree);
1546 extern void vect_copy_ref_info (tree, tree);
1547 extern tree vect_create_destination_var (tree, tree);
1548 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1549 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1550 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1551 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1552 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1553 gimple_stmt_iterator *, vec<tree> *);
1554 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1555 tree *, enum dr_alignment_support, tree,
1556 struct loop **);
1557 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1558 gimple_stmt_iterator *);
1559 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1560 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1561 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1562 const char * = NULL);
1563 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1564 tree, tree = NULL_TREE);
1566 /* In tree-vect-loop.c. */
1567 /* FORNOW: Used in tree-parloops.c. */
1568 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1569 bool *, bool);
1570 /* Used in gimple-loop-interchange.c. */
1571 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1572 enum tree_code);
1573 /* Drive for loop analysis stage. */
1574 extern opt_loop_vec_info vect_analyze_loop (struct loop *,
1575 loop_vec_info,
1576 vec_info_shared *);
1577 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1578 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1579 tree *, bool);
1580 extern tree vect_halve_mask_nunits (tree);
1581 extern tree vect_double_mask_nunits (tree);
1582 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1583 unsigned int, tree);
1584 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1585 unsigned int, tree, unsigned int);
1587 /* Drive for loop transformation stage. */
1588 extern struct loop *vect_transform_loop (loop_vec_info);
1589 extern opt_loop_vec_info vect_analyze_loop_form (struct loop *,
1590 vec_info_shared *);
1591 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1592 slp_tree, int, stmt_vec_info *,
1593 stmt_vector_for_cost *);
1594 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1595 stmt_vec_info *, slp_tree, slp_instance,
1596 stmt_vector_for_cost *);
1597 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1598 stmt_vec_info *, slp_tree,
1599 stmt_vector_for_cost *);
1600 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1601 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1602 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1603 stmt_vector_for_cost *,
1604 stmt_vector_for_cost *,
1605 stmt_vector_for_cost *);
1606 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1608 /* In tree-vect-slp.c. */
1609 extern void vect_free_slp_instance (slp_instance, bool);
1610 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1611 gimple_stmt_iterator *, poly_uint64,
1612 slp_instance, bool, unsigned *);
1613 extern bool vect_slp_analyze_operations (vec_info *);
1614 extern void vect_schedule_slp (vec_info *);
1615 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1616 extern bool vect_make_slp_decision (loop_vec_info);
1617 extern void vect_detect_hybrid_slp (loop_vec_info);
1618 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1619 extern bool vect_slp_bb (basic_block);
1620 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1621 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1622 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1623 unsigned int * = NULL,
1624 tree * = NULL, tree * = NULL);
1625 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1626 unsigned int, vec<tree> &);
1627 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1629 /* In tree-vect-patterns.c. */
1630 /* Pattern recognition functions.
1631 Additional pattern recognition functions can (and will) be added
1632 in the future. */
1633 void vect_pattern_recog (vec_info *);
1635 /* In tree-vectorizer.c. */
1636 unsigned vectorize_loops (void);
1637 void vect_free_loop_info_assumptions (struct loop *);
1639 #endif /* GCC_TREE_VECTORIZER_H */