* trans.c (gfc_finish_block, gfc_add_expr_to_block): Build statement
[official-gcc.git] / gcc / function.c
blob69866f9812da987b21af4b8085782b8b810369f2
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
65 #include "target.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
95 during rtl generation. If they are different register numbers, this is
96 always true. It may also be true if
97 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
98 generation. See fix_lexical_addr for details. */
100 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
101 #define NEED_SEPARATE_AP
102 #endif
104 /* Nonzero if function being compiled doesn't contain any calls
105 (ignoring the prologue and epilogue). This is set prior to
106 local register allocation and is valid for the remaining
107 compiler passes. */
108 int current_function_is_leaf;
110 /* Nonzero if function being compiled doesn't contain any instructions
111 that can throw an exception. This is set prior to final. */
113 int current_function_nothrow;
115 /* Nonzero if function being compiled doesn't modify the stack pointer
116 (ignoring the prologue and epilogue). This is only valid after
117 life_analysis has run. */
118 int current_function_sp_is_unchanging;
120 /* Nonzero if the function being compiled is a leaf function which only
121 uses leaf registers. This is valid after reload (specifically after
122 sched2) and is useful only if the port defines LEAF_REGISTERS. */
123 int current_function_uses_only_leaf_regs;
125 /* Nonzero once virtual register instantiation has been done.
126 assign_stack_local uses frame_pointer_rtx when this is nonzero.
127 calls.c:emit_library_call_value_1 uses it to set up
128 post-instantiation libcalls. */
129 int virtuals_instantiated;
131 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
132 static GTY(()) int funcdef_no;
134 /* These variables hold pointers to functions to create and destroy
135 target specific, per-function data structures. */
136 struct machine_function * (*init_machine_status) (void);
138 /* The currently compiled function. */
139 struct function *cfun = 0;
141 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
142 static GTY(()) varray_type prologue;
143 static GTY(()) varray_type epilogue;
145 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
146 in this function. */
147 static GTY(()) varray_type sibcall_epilogue;
149 /* In order to evaluate some expressions, such as function calls returning
150 structures in memory, we need to temporarily allocate stack locations.
151 We record each allocated temporary in the following structure.
153 Associated with each temporary slot is a nesting level. When we pop up
154 one level, all temporaries associated with the previous level are freed.
155 Normally, all temporaries are freed after the execution of the statement
156 in which they were created. However, if we are inside a ({...}) grouping,
157 the result may be in a temporary and hence must be preserved. If the
158 result could be in a temporary, we preserve it if we can determine which
159 one it is in. If we cannot determine which temporary may contain the
160 result, all temporaries are preserved. A temporary is preserved by
161 pretending it was allocated at the previous nesting level.
163 Automatic variables are also assigned temporary slots, at the nesting
164 level where they are defined. They are marked a "kept" so that
165 free_temp_slots will not free them. */
167 struct temp_slot GTY(())
169 /* Points to next temporary slot. */
170 struct temp_slot *next;
171 /* Points to previous temporary slot. */
172 struct temp_slot *prev;
174 /* The rtx to used to reference the slot. */
175 rtx slot;
176 /* The rtx used to represent the address if not the address of the
177 slot above. May be an EXPR_LIST if multiple addresses exist. */
178 rtx address;
179 /* The alignment (in bits) of the slot. */
180 unsigned int align;
181 /* The size, in units, of the slot. */
182 HOST_WIDE_INT size;
183 /* The type of the object in the slot, or zero if it doesn't correspond
184 to a type. We use this to determine whether a slot can be reused.
185 It can be reused if objects of the type of the new slot will always
186 conflict with objects of the type of the old slot. */
187 tree type;
188 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
189 tree rtl_expr;
190 /* Nonzero if this temporary is currently in use. */
191 char in_use;
192 /* Nonzero if this temporary has its address taken. */
193 char addr_taken;
194 /* Nesting level at which this slot is being used. */
195 int level;
196 /* Nonzero if this should survive a call to free_temp_slots. */
197 int keep;
198 /* The offset of the slot from the frame_pointer, including extra space
199 for alignment. This info is for combine_temp_slots. */
200 HOST_WIDE_INT base_offset;
201 /* The size of the slot, including extra space for alignment. This
202 info is for combine_temp_slots. */
203 HOST_WIDE_INT full_size;
206 /* This structure is used to record MEMs or pseudos used to replace VAR, any
207 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
208 maintain this list in case two operands of an insn were required to match;
209 in that case we must ensure we use the same replacement. */
211 struct fixup_replacement GTY(())
213 rtx old;
214 rtx new;
215 struct fixup_replacement *next;
218 struct insns_for_mem_entry
220 /* A MEM. */
221 rtx key;
222 /* These are the INSNs which reference the MEM. */
223 rtx insns;
226 /* Forward declarations. */
228 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
229 struct function *);
230 static struct temp_slot *find_temp_slot_from_address (rtx);
231 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
232 unsigned int, bool, bool, bool, htab_t);
233 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
234 htab_t);
235 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
236 static struct fixup_replacement
237 *find_fixup_replacement (struct fixup_replacement **, rtx);
238 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
239 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
240 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
241 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
242 struct fixup_replacement **, rtx);
243 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
244 static rtx walk_fixup_memory_subreg (rtx, rtx, rtx, enum machine_mode, int);
245 static rtx fixup_stack_1 (rtx, rtx);
246 static void optimize_bit_field (rtx, rtx, rtx *);
247 static void instantiate_decls (tree, int);
248 static void instantiate_decls_1 (tree, int);
249 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
250 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
251 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
252 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
253 static void pad_below (struct args_size *, enum machine_mode, tree);
254 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
255 static void reorder_blocks_1 (rtx, tree, varray_type *);
256 static void reorder_fix_fragments (tree);
257 static int all_blocks (tree, tree *);
258 static tree *get_block_vector (tree, int *);
259 extern tree debug_find_var_in_block_tree (tree, tree);
260 /* We always define `record_insns' even if it's not used so that we
261 can always export `prologue_epilogue_contains'. */
262 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
263 static int contains (rtx, varray_type);
264 #ifdef HAVE_return
265 static void emit_return_into_block (basic_block, rtx);
266 #endif
267 static void put_addressof_into_stack (rtx, htab_t);
268 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
269 static void purge_single_hard_subreg_set (rtx);
270 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
271 static rtx keep_stack_depressed (rtx);
272 #endif
273 static int is_addressof (rtx *, void *);
274 static hashval_t insns_for_mem_hash (const void *);
275 static int insns_for_mem_comp (const void *, const void *);
276 static int insns_for_mem_walk (rtx *, void *);
277 static void compute_insns_for_mem (rtx, rtx, htab_t);
278 static void prepare_function_start (tree);
279 static void do_clobber_return_reg (rtx, void *);
280 static void do_use_return_reg (rtx, void *);
281 static void instantiate_virtual_regs_lossage (rtx);
282 static tree split_complex_args (tree);
283 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
285 /* Pointer to chain of `struct function' for containing functions. */
286 struct function *outer_function_chain;
288 /* List of insns that were postponed by purge_addressof_1. */
289 static rtx postponed_insns;
291 /* Given a function decl for a containing function,
292 return the `struct function' for it. */
294 struct function *
295 find_function_data (tree decl)
297 struct function *p;
299 for (p = outer_function_chain; p; p = p->outer)
300 if (p->decl == decl)
301 return p;
303 abort ();
306 /* Save the current context for compilation of a nested function.
307 This is called from language-specific code. The caller should use
308 the enter_nested langhook to save any language-specific state,
309 since this function knows only about language-independent
310 variables. */
312 void
313 push_function_context_to (tree context)
315 struct function *p;
317 if (context)
319 if (context == current_function_decl)
320 cfun->contains_functions = 1;
321 else
323 struct function *containing = find_function_data (context);
324 containing->contains_functions = 1;
328 if (cfun == 0)
329 init_dummy_function_start ();
330 p = cfun;
332 p->outer = outer_function_chain;
333 outer_function_chain = p;
334 p->fixup_var_refs_queue = 0;
336 lang_hooks.function.enter_nested (p);
338 cfun = 0;
341 void
342 push_function_context (void)
344 push_function_context_to (current_function_decl);
347 /* Restore the last saved context, at the end of a nested function.
348 This function is called from language-specific code. */
350 void
351 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
353 struct function *p = outer_function_chain;
354 struct var_refs_queue *queue;
356 cfun = p;
357 outer_function_chain = p->outer;
359 current_function_decl = p->decl;
360 reg_renumber = 0;
362 restore_emit_status (p);
364 lang_hooks.function.leave_nested (p);
366 /* Finish doing put_var_into_stack for any of our variables which became
367 addressable during the nested function. If only one entry has to be
368 fixed up, just do that one. Otherwise, first make a list of MEMs that
369 are not to be unshared. */
370 if (p->fixup_var_refs_queue == 0)
372 else if (p->fixup_var_refs_queue->next == 0)
373 fixup_var_refs (p->fixup_var_refs_queue->modified,
374 p->fixup_var_refs_queue->promoted_mode,
375 p->fixup_var_refs_queue->unsignedp,
376 p->fixup_var_refs_queue->modified, 0);
377 else
379 rtx list = 0;
381 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
382 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
384 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
385 fixup_var_refs (queue->modified, queue->promoted_mode,
386 queue->unsignedp, list, 0);
390 p->fixup_var_refs_queue = 0;
392 /* Reset variables that have known state during rtx generation. */
393 rtx_equal_function_value_matters = 1;
394 virtuals_instantiated = 0;
395 generating_concat_p = 1;
398 void
399 pop_function_context (void)
401 pop_function_context_from (current_function_decl);
404 /* Clear out all parts of the state in F that can safely be discarded
405 after the function has been parsed, but not compiled, to let
406 garbage collection reclaim the memory. */
408 void
409 free_after_parsing (struct function *f)
411 /* f->expr->forced_labels is used by code generation. */
412 /* f->emit->regno_reg_rtx is used by code generation. */
413 /* f->varasm is used by code generation. */
414 /* f->eh->eh_return_stub_label is used by code generation. */
416 lang_hooks.function.final (f);
417 f->stmt = NULL;
420 /* Clear out all parts of the state in F that can safely be discarded
421 after the function has been compiled, to let garbage collection
422 reclaim the memory. */
424 void
425 free_after_compilation (struct function *f)
427 f->eh = NULL;
428 f->expr = NULL;
429 f->emit = NULL;
430 f->varasm = NULL;
431 f->machine = NULL;
433 f->x_avail_temp_slots = NULL;
434 f->x_used_temp_slots = NULL;
435 f->arg_offset_rtx = NULL;
436 f->return_rtx = NULL;
437 f->internal_arg_pointer = NULL;
438 f->x_nonlocal_goto_handler_labels = NULL;
439 f->x_cleanup_label = NULL;
440 f->x_return_label = NULL;
441 f->x_naked_return_label = NULL;
442 f->computed_goto_common_label = NULL;
443 f->computed_goto_common_reg = NULL;
444 f->x_save_expr_regs = NULL;
445 f->x_stack_slot_list = NULL;
446 f->x_rtl_expr_chain = NULL;
447 f->x_tail_recursion_reentry = NULL;
448 f->x_arg_pointer_save_area = NULL;
449 f->x_parm_birth_insn = NULL;
450 f->x_last_parm_insn = NULL;
451 f->x_parm_reg_stack_loc = NULL;
452 f->fixup_var_refs_queue = NULL;
453 f->original_arg_vector = NULL;
454 f->original_decl_initial = NULL;
455 f->inl_last_parm_insn = NULL;
456 f->epilogue_delay_list = NULL;
459 /* Allocate fixed slots in the stack frame of the current function. */
461 /* Return size needed for stack frame based on slots so far allocated in
462 function F.
463 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
464 the caller may have to do that. */
466 HOST_WIDE_INT
467 get_func_frame_size (struct function *f)
469 #ifdef FRAME_GROWS_DOWNWARD
470 return -f->x_frame_offset;
471 #else
472 return f->x_frame_offset;
473 #endif
476 /* Return size needed for stack frame based on slots so far allocated.
477 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
478 the caller may have to do that. */
479 HOST_WIDE_INT
480 get_frame_size (void)
482 return get_func_frame_size (cfun);
485 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
486 with machine mode MODE.
488 ALIGN controls the amount of alignment for the address of the slot:
489 0 means according to MODE,
490 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
491 -2 means use BITS_PER_UNIT,
492 positive specifies alignment boundary in bits.
494 We do not round to stack_boundary here.
496 FUNCTION specifies the function to allocate in. */
498 static rtx
499 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
500 struct function *function)
502 rtx x, addr;
503 int bigend_correction = 0;
504 int alignment;
505 int frame_off, frame_alignment, frame_phase;
507 if (align == 0)
509 tree type;
511 if (mode == BLKmode)
512 alignment = BIGGEST_ALIGNMENT;
513 else
514 alignment = GET_MODE_ALIGNMENT (mode);
516 /* Allow the target to (possibly) increase the alignment of this
517 stack slot. */
518 type = lang_hooks.types.type_for_mode (mode, 0);
519 if (type)
520 alignment = LOCAL_ALIGNMENT (type, alignment);
522 alignment /= BITS_PER_UNIT;
524 else if (align == -1)
526 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
527 size = CEIL_ROUND (size, alignment);
529 else if (align == -2)
530 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
531 else
532 alignment = align / BITS_PER_UNIT;
534 #ifdef FRAME_GROWS_DOWNWARD
535 function->x_frame_offset -= size;
536 #endif
538 /* Ignore alignment we can't do with expected alignment of the boundary. */
539 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
540 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
542 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
543 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
545 /* Calculate how many bytes the start of local variables is off from
546 stack alignment. */
547 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
548 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
549 frame_phase = frame_off ? frame_alignment - frame_off : 0;
551 /* Round the frame offset to the specified alignment. The default is
552 to always honor requests to align the stack but a port may choose to
553 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
554 if (STACK_ALIGNMENT_NEEDED
555 || mode != BLKmode
556 || size != 0)
558 /* We must be careful here, since FRAME_OFFSET might be negative and
559 division with a negative dividend isn't as well defined as we might
560 like. So we instead assume that ALIGNMENT is a power of two and
561 use logical operations which are unambiguous. */
562 #ifdef FRAME_GROWS_DOWNWARD
563 function->x_frame_offset
564 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
565 + frame_phase);
566 #else
567 function->x_frame_offset
568 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
569 + frame_phase);
570 #endif
573 /* On a big-endian machine, if we are allocating more space than we will use,
574 use the least significant bytes of those that are allocated. */
575 if (BYTES_BIG_ENDIAN && mode != BLKmode)
576 bigend_correction = size - GET_MODE_SIZE (mode);
578 /* If we have already instantiated virtual registers, return the actual
579 address relative to the frame pointer. */
580 if (function == cfun && virtuals_instantiated)
581 addr = plus_constant (frame_pointer_rtx,
582 trunc_int_for_mode
583 (frame_offset + bigend_correction
584 + STARTING_FRAME_OFFSET, Pmode));
585 else
586 addr = plus_constant (virtual_stack_vars_rtx,
587 trunc_int_for_mode
588 (function->x_frame_offset + bigend_correction,
589 Pmode));
591 #ifndef FRAME_GROWS_DOWNWARD
592 function->x_frame_offset += size;
593 #endif
595 x = gen_rtx_MEM (mode, addr);
597 function->x_stack_slot_list
598 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
600 return x;
603 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
604 current function. */
607 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
609 return assign_stack_local_1 (mode, size, align, cfun);
613 /* Removes temporary slot TEMP from LIST. */
615 static void
616 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
618 if (temp->next)
619 temp->next->prev = temp->prev;
620 if (temp->prev)
621 temp->prev->next = temp->next;
622 else
623 *list = temp->next;
625 temp->prev = temp->next = NULL;
628 /* Inserts temporary slot TEMP to LIST. */
630 static void
631 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
633 temp->next = *list;
634 if (*list)
635 (*list)->prev = temp;
636 temp->prev = NULL;
637 *list = temp;
640 /* Returns the list of used temp slots at LEVEL. */
642 static struct temp_slot **
643 temp_slots_at_level (int level)
645 level++;
647 if (!used_temp_slots)
648 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
650 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
651 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
653 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
656 /* Returns the maximal temporary slot level. */
658 static int
659 max_slot_level (void)
661 if (!used_temp_slots)
662 return -1;
664 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
667 /* Moves temporary slot TEMP to LEVEL. */
669 static void
670 move_slot_to_level (struct temp_slot *temp, int level)
672 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
673 insert_slot_to_list (temp, temp_slots_at_level (level));
674 temp->level = level;
677 /* Make temporary slot TEMP available. */
679 static void
680 make_slot_available (struct temp_slot *temp)
682 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
683 insert_slot_to_list (temp, &avail_temp_slots);
684 temp->in_use = 0;
685 temp->level = -1;
688 /* Allocate a temporary stack slot and record it for possible later
689 reuse.
691 MODE is the machine mode to be given to the returned rtx.
693 SIZE is the size in units of the space required. We do no rounding here
694 since assign_stack_local will do any required rounding.
696 KEEP is 1 if this slot is to be retained after a call to
697 free_temp_slots. Automatic variables for a block are allocated
698 with this flag. KEEP is 2 if we allocate a longer term temporary,
699 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
700 if we are to allocate something at an inner level to be treated as
701 a variable in the block (e.g., a SAVE_EXPR).
703 TYPE is the type that will be used for the stack slot. */
706 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
707 tree type)
709 unsigned int align;
710 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
711 rtx slot;
713 /* If SIZE is -1 it means that somebody tried to allocate a temporary
714 of a variable size. */
715 if (size == -1)
716 abort ();
718 if (mode == BLKmode)
719 align = BIGGEST_ALIGNMENT;
720 else
721 align = GET_MODE_ALIGNMENT (mode);
723 if (! type)
724 type = lang_hooks.types.type_for_mode (mode, 0);
726 if (type)
727 align = LOCAL_ALIGNMENT (type, align);
729 /* Try to find an available, already-allocated temporary of the proper
730 mode which meets the size and alignment requirements. Choose the
731 smallest one with the closest alignment. */
732 for (p = avail_temp_slots; p; p = p->next)
734 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
735 && objects_must_conflict_p (p->type, type)
736 && (best_p == 0 || best_p->size > p->size
737 || (best_p->size == p->size && best_p->align > p->align)))
739 if (p->align == align && p->size == size)
741 selected = p;
742 cut_slot_from_list (selected, &avail_temp_slots);
743 best_p = 0;
744 break;
746 best_p = p;
750 /* Make our best, if any, the one to use. */
751 if (best_p)
753 selected = best_p;
754 cut_slot_from_list (selected, &avail_temp_slots);
756 /* If there are enough aligned bytes left over, make them into a new
757 temp_slot so that the extra bytes don't get wasted. Do this only
758 for BLKmode slots, so that we can be sure of the alignment. */
759 if (GET_MODE (best_p->slot) == BLKmode)
761 int alignment = best_p->align / BITS_PER_UNIT;
762 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
764 if (best_p->size - rounded_size >= alignment)
766 p = ggc_alloc (sizeof (struct temp_slot));
767 p->in_use = p->addr_taken = 0;
768 p->size = best_p->size - rounded_size;
769 p->base_offset = best_p->base_offset + rounded_size;
770 p->full_size = best_p->full_size - rounded_size;
771 p->slot = gen_rtx_MEM (BLKmode,
772 plus_constant (XEXP (best_p->slot, 0),
773 rounded_size));
774 p->align = best_p->align;
775 p->address = 0;
776 p->rtl_expr = 0;
777 p->type = best_p->type;
778 insert_slot_to_list (p, &avail_temp_slots);
780 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
781 stack_slot_list);
783 best_p->size = rounded_size;
784 best_p->full_size = rounded_size;
789 /* If we still didn't find one, make a new temporary. */
790 if (selected == 0)
792 HOST_WIDE_INT frame_offset_old = frame_offset;
794 p = ggc_alloc (sizeof (struct temp_slot));
796 /* We are passing an explicit alignment request to assign_stack_local.
797 One side effect of that is assign_stack_local will not round SIZE
798 to ensure the frame offset remains suitably aligned.
800 So for requests which depended on the rounding of SIZE, we go ahead
801 and round it now. We also make sure ALIGNMENT is at least
802 BIGGEST_ALIGNMENT. */
803 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
804 abort ();
805 p->slot = assign_stack_local (mode,
806 (mode == BLKmode
807 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
808 : size),
809 align);
811 p->align = align;
813 /* The following slot size computation is necessary because we don't
814 know the actual size of the temporary slot until assign_stack_local
815 has performed all the frame alignment and size rounding for the
816 requested temporary. Note that extra space added for alignment
817 can be either above or below this stack slot depending on which
818 way the frame grows. We include the extra space if and only if it
819 is above this slot. */
820 #ifdef FRAME_GROWS_DOWNWARD
821 p->size = frame_offset_old - frame_offset;
822 #else
823 p->size = size;
824 #endif
826 /* Now define the fields used by combine_temp_slots. */
827 #ifdef FRAME_GROWS_DOWNWARD
828 p->base_offset = frame_offset;
829 p->full_size = frame_offset_old - frame_offset;
830 #else
831 p->base_offset = frame_offset_old;
832 p->full_size = frame_offset - frame_offset_old;
833 #endif
834 p->address = 0;
836 selected = p;
839 p = selected;
840 p->in_use = 1;
841 p->addr_taken = 0;
842 p->rtl_expr = seq_rtl_expr;
843 p->type = type;
845 if (keep == 2)
847 p->level = target_temp_slot_level;
848 p->keep = 1;
850 else if (keep == 3)
852 p->level = var_temp_slot_level;
853 p->keep = 0;
855 else
857 p->level = temp_slot_level;
858 p->keep = keep;
861 pp = temp_slots_at_level (p->level);
862 insert_slot_to_list (p, pp);
864 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
865 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
866 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
868 /* If we know the alias set for the memory that will be used, use
869 it. If there's no TYPE, then we don't know anything about the
870 alias set for the memory. */
871 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
872 set_mem_align (slot, align);
874 /* If a type is specified, set the relevant flags. */
875 if (type != 0)
877 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
878 && TYPE_READONLY (type));
879 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
880 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
883 return slot;
886 /* Allocate a temporary stack slot and record it for possible later
887 reuse. First three arguments are same as in preceding function. */
890 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
892 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
895 /* Assign a temporary.
896 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
897 and so that should be used in error messages. In either case, we
898 allocate of the given type.
899 KEEP is as for assign_stack_temp.
900 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
901 it is 0 if a register is OK.
902 DONT_PROMOTE is 1 if we should not promote values in register
903 to wider modes. */
906 assign_temp (tree type_or_decl, int keep, int memory_required,
907 int dont_promote ATTRIBUTE_UNUSED)
909 tree type, decl;
910 enum machine_mode mode;
911 #ifdef PROMOTE_MODE
912 int unsignedp;
913 #endif
915 if (DECL_P (type_or_decl))
916 decl = type_or_decl, type = TREE_TYPE (decl);
917 else
918 decl = NULL, type = type_or_decl;
920 mode = TYPE_MODE (type);
921 #ifdef PROMOTE_MODE
922 unsignedp = TYPE_UNSIGNED (type);
923 #endif
925 if (mode == BLKmode || memory_required)
927 HOST_WIDE_INT size = int_size_in_bytes (type);
928 rtx tmp;
930 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
931 problems with allocating the stack space. */
932 if (size == 0)
933 size = 1;
935 /* Unfortunately, we don't yet know how to allocate variable-sized
936 temporaries. However, sometimes we have a fixed upper limit on
937 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
938 instead. This is the case for Chill variable-sized strings. */
939 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
940 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
941 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
942 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
944 /* The size of the temporary may be too large to fit into an integer. */
945 /* ??? Not sure this should happen except for user silliness, so limit
946 this to things that aren't compiler-generated temporaries. The
947 rest of the time we'll abort in assign_stack_temp_for_type. */
948 if (decl && size == -1
949 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
951 error ("%Jsize of variable '%D' is too large", decl, decl);
952 size = 1;
955 tmp = assign_stack_temp_for_type (mode, size, keep, type);
956 return tmp;
959 #ifdef PROMOTE_MODE
960 if (! dont_promote)
961 mode = promote_mode (type, mode, &unsignedp, 0);
962 #endif
964 return gen_reg_rtx (mode);
967 /* Combine temporary stack slots which are adjacent on the stack.
969 This allows for better use of already allocated stack space. This is only
970 done for BLKmode slots because we can be sure that we won't have alignment
971 problems in this case. */
973 void
974 combine_temp_slots (void)
976 struct temp_slot *p, *q, *next, *next_q;
977 int num_slots;
979 /* We can't combine slots, because the information about which slot
980 is in which alias set will be lost. */
981 if (flag_strict_aliasing)
982 return;
984 /* If there are a lot of temp slots, don't do anything unless
985 high levels of optimization. */
986 if (! flag_expensive_optimizations)
987 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
988 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
989 return;
991 for (p = avail_temp_slots; p; p = next)
993 int delete_p = 0;
995 next = p->next;
997 if (GET_MODE (p->slot) != BLKmode)
998 continue;
1000 for (q = p->next; q; q = next_q)
1002 int delete_q = 0;
1004 next_q = q->next;
1006 if (GET_MODE (q->slot) != BLKmode)
1007 continue;
1009 if (p->base_offset + p->full_size == q->base_offset)
1011 /* Q comes after P; combine Q into P. */
1012 p->size += q->size;
1013 p->full_size += q->full_size;
1014 delete_q = 1;
1016 else if (q->base_offset + q->full_size == p->base_offset)
1018 /* P comes after Q; combine P into Q. */
1019 q->size += p->size;
1020 q->full_size += p->full_size;
1021 delete_p = 1;
1022 break;
1024 if (delete_q)
1025 cut_slot_from_list (q, &avail_temp_slots);
1028 /* Either delete P or advance past it. */
1029 if (delete_p)
1030 cut_slot_from_list (p, &avail_temp_slots);
1034 /* Find the temp slot corresponding to the object at address X. */
1036 static struct temp_slot *
1037 find_temp_slot_from_address (rtx x)
1039 struct temp_slot *p;
1040 rtx next;
1041 int i;
1043 for (i = max_slot_level (); i >= 0; i--)
1044 for (p = *temp_slots_at_level (i); p; p = p->next)
1046 if (XEXP (p->slot, 0) == x
1047 || p->address == x
1048 || (GET_CODE (x) == PLUS
1049 && XEXP (x, 0) == virtual_stack_vars_rtx
1050 && GET_CODE (XEXP (x, 1)) == CONST_INT
1051 && INTVAL (XEXP (x, 1)) >= p->base_offset
1052 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1053 return p;
1055 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1056 for (next = p->address; next; next = XEXP (next, 1))
1057 if (XEXP (next, 0) == x)
1058 return p;
1061 /* If we have a sum involving a register, see if it points to a temp
1062 slot. */
1063 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1064 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1065 return p;
1066 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1067 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1068 return p;
1070 return 0;
1073 /* Indicate that NEW is an alternate way of referring to the temp slot
1074 that previously was known by OLD. */
1076 void
1077 update_temp_slot_address (rtx old, rtx new)
1079 struct temp_slot *p;
1081 if (rtx_equal_p (old, new))
1082 return;
1084 p = find_temp_slot_from_address (old);
1086 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1087 is a register, see if one operand of the PLUS is a temporary
1088 location. If so, NEW points into it. Otherwise, if both OLD and
1089 NEW are a PLUS and if there is a register in common between them.
1090 If so, try a recursive call on those values. */
1091 if (p == 0)
1093 if (GET_CODE (old) != PLUS)
1094 return;
1096 if (GET_CODE (new) == REG)
1098 update_temp_slot_address (XEXP (old, 0), new);
1099 update_temp_slot_address (XEXP (old, 1), new);
1100 return;
1102 else if (GET_CODE (new) != PLUS)
1103 return;
1105 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1106 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1107 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1108 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1109 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1110 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1111 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1112 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1114 return;
1117 /* Otherwise add an alias for the temp's address. */
1118 else if (p->address == 0)
1119 p->address = new;
1120 else
1122 if (GET_CODE (p->address) != EXPR_LIST)
1123 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1125 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1129 /* If X could be a reference to a temporary slot, mark the fact that its
1130 address was taken. */
1132 void
1133 mark_temp_addr_taken (rtx x)
1135 struct temp_slot *p;
1137 if (x == 0)
1138 return;
1140 /* If X is not in memory or is at a constant address, it cannot be in
1141 a temporary slot. */
1142 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1143 return;
1145 p = find_temp_slot_from_address (XEXP (x, 0));
1146 if (p != 0)
1147 p->addr_taken = 1;
1150 /* If X could be a reference to a temporary slot, mark that slot as
1151 belonging to the to one level higher than the current level. If X
1152 matched one of our slots, just mark that one. Otherwise, we can't
1153 easily predict which it is, so upgrade all of them. Kept slots
1154 need not be touched.
1156 This is called when an ({...}) construct occurs and a statement
1157 returns a value in memory. */
1159 void
1160 preserve_temp_slots (rtx x)
1162 struct temp_slot *p = 0, *next;
1164 /* If there is no result, we still might have some objects whose address
1165 were taken, so we need to make sure they stay around. */
1166 if (x == 0)
1168 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1170 next = p->next;
1172 if (p->addr_taken)
1173 move_slot_to_level (p, temp_slot_level - 1);
1176 return;
1179 /* If X is a register that is being used as a pointer, see if we have
1180 a temporary slot we know it points to. To be consistent with
1181 the code below, we really should preserve all non-kept slots
1182 if we can't find a match, but that seems to be much too costly. */
1183 if (GET_CODE (x) == REG && REG_POINTER (x))
1184 p = find_temp_slot_from_address (x);
1186 /* If X is not in memory or is at a constant address, it cannot be in
1187 a temporary slot, but it can contain something whose address was
1188 taken. */
1189 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1191 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1193 next = p->next;
1195 if (p->addr_taken)
1196 move_slot_to_level (p, temp_slot_level - 1);
1199 return;
1202 /* First see if we can find a match. */
1203 if (p == 0)
1204 p = find_temp_slot_from_address (XEXP (x, 0));
1206 if (p != 0)
1208 /* Move everything at our level whose address was taken to our new
1209 level in case we used its address. */
1210 struct temp_slot *q;
1212 if (p->level == temp_slot_level)
1214 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1216 next = q->next;
1218 if (p != q && q->addr_taken)
1219 move_slot_to_level (q, temp_slot_level - 1);
1222 move_slot_to_level (p, temp_slot_level - 1);
1223 p->addr_taken = 0;
1225 return;
1228 /* Otherwise, preserve all non-kept slots at this level. */
1229 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1231 next = p->next;
1233 if (!p->keep)
1234 move_slot_to_level (p, temp_slot_level - 1);
1238 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1239 with that RTL_EXPR, promote it into a temporary slot at the present
1240 level so it will not be freed when we free slots made in the
1241 RTL_EXPR. */
1243 void
1244 preserve_rtl_expr_result (rtx x)
1246 struct temp_slot *p;
1248 /* If X is not in memory or is at a constant address, it cannot be in
1249 a temporary slot. */
1250 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1251 return;
1253 /* If we can find a match, move it to our level unless it is already at
1254 an upper level. */
1255 p = find_temp_slot_from_address (XEXP (x, 0));
1256 if (p != 0)
1258 move_slot_to_level (p, MIN (p->level, temp_slot_level));
1259 p->rtl_expr = 0;
1262 return;
1265 /* Free all temporaries used so far. This is normally called at the end
1266 of generating code for a statement. Don't free any temporaries
1267 currently in use for an RTL_EXPR that hasn't yet been emitted.
1268 We could eventually do better than this since it can be reused while
1269 generating the same RTL_EXPR, but this is complex and probably not
1270 worthwhile. */
1272 void
1273 free_temp_slots (void)
1275 struct temp_slot *p, *next;
1277 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1279 next = p->next;
1281 if (!p->keep && p->rtl_expr == 0)
1282 make_slot_available (p);
1285 combine_temp_slots ();
1288 /* Free all temporary slots used in T, an RTL_EXPR node. */
1290 void
1291 free_temps_for_rtl_expr (tree t)
1293 struct temp_slot *p, *next;
1295 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1297 next = p->next;
1299 if (p->rtl_expr == t)
1301 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1302 needs to be preserved. This can happen if a temporary in
1303 the RTL_EXPR was addressed; preserve_temp_slots will move
1304 the temporary into a higher level. */
1305 if (temp_slot_level <= p->level)
1306 make_slot_available (p);
1307 else
1308 p->rtl_expr = NULL_TREE;
1312 combine_temp_slots ();
1315 /* Push deeper into the nesting level for stack temporaries. */
1317 void
1318 push_temp_slots (void)
1320 temp_slot_level++;
1323 /* Pop a temporary nesting level. All slots in use in the current level
1324 are freed. */
1326 void
1327 pop_temp_slots (void)
1329 struct temp_slot *p, *next;
1331 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1333 next = p->next;
1335 if (p->rtl_expr == 0)
1336 make_slot_available (p);
1339 combine_temp_slots ();
1341 temp_slot_level--;
1344 /* Initialize temporary slots. */
1346 void
1347 init_temp_slots (void)
1349 /* We have not allocated any temporaries yet. */
1350 avail_temp_slots = 0;
1351 used_temp_slots = 0;
1352 temp_slot_level = 0;
1353 var_temp_slot_level = 0;
1354 target_temp_slot_level = 0;
1357 /* Retroactively move an auto variable from a register to a stack
1358 slot. This is done when an address-reference to the variable is
1359 seen. If RESCAN is true, all previously emitted instructions are
1360 examined and modified to handle the fact that DECL is now
1361 addressable. */
1363 void
1364 put_var_into_stack (tree decl, int rescan)
1366 rtx orig_reg, reg;
1367 enum machine_mode promoted_mode, decl_mode;
1368 struct function *function = 0;
1369 tree context;
1370 bool can_use_addressof_p;
1371 bool volatile_p = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1372 bool used_p = (TREE_USED (decl)
1373 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1375 context = decl_function_context (decl);
1377 /* Get the current rtl used for this object and its original mode. */
1378 orig_reg = reg = (TREE_CODE (decl) == SAVE_EXPR
1379 ? SAVE_EXPR_RTL (decl)
1380 : DECL_RTL_IF_SET (decl));
1382 /* No need to do anything if decl has no rtx yet
1383 since in that case caller is setting TREE_ADDRESSABLE
1384 and a stack slot will be assigned when the rtl is made. */
1385 if (reg == 0)
1386 return;
1388 /* Get the declared mode for this object. */
1389 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1390 : DECL_MODE (decl));
1391 /* Get the mode it's actually stored in. */
1392 promoted_mode = GET_MODE (reg);
1394 /* If this variable comes from an outer function, find that
1395 function's saved context. Don't use find_function_data here,
1396 because it might not be in any active function.
1397 FIXME: Is that really supposed to happen?
1398 It does in ObjC at least. */
1399 if (context != current_function_decl)
1400 for (function = outer_function_chain; function; function = function->outer)
1401 if (function->decl == context)
1402 break;
1404 /* If this is a variable-sized object or a structure passed by invisible
1405 reference, with a pseudo to address it, put that pseudo into the stack
1406 if the var is non-local. */
1407 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1408 && GET_CODE (reg) == MEM
1409 && GET_CODE (XEXP (reg, 0)) == REG
1410 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1412 orig_reg = reg = XEXP (reg, 0);
1413 decl_mode = promoted_mode = GET_MODE (reg);
1416 /* If this variable lives in the current function and we don't need to put it
1417 in the stack for the sake of setjmp or the non-locality, try to keep it in
1418 a register until we know we actually need the address. */
1419 can_use_addressof_p
1420 = (function == 0
1421 && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1422 && optimize > 0
1423 /* FIXME make it work for promoted modes too */
1424 && decl_mode == promoted_mode
1425 #ifdef NON_SAVING_SETJMP
1426 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1427 #endif
1430 /* If we can't use ADDRESSOF, make sure we see through one we already
1431 generated. */
1432 if (! can_use_addressof_p
1433 && GET_CODE (reg) == MEM
1434 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1435 reg = XEXP (XEXP (reg, 0), 0);
1437 /* Now we should have a value that resides in one or more pseudo regs. */
1439 if (GET_CODE (reg) == REG)
1441 if (can_use_addressof_p)
1442 gen_mem_addressof (reg, decl, rescan);
1443 else
1444 put_reg_into_stack (function, reg, TREE_TYPE (decl), decl_mode,
1445 0, volatile_p, used_p, false, 0);
1447 /* If this was previously a MEM but we've removed the ADDRESSOF,
1448 set this address into that MEM so we always use the same
1449 rtx for this variable. */
1450 if (orig_reg != reg && GET_CODE (orig_reg) == MEM)
1451 XEXP (orig_reg, 0) = XEXP (reg, 0);
1453 else if (GET_CODE (reg) == CONCAT)
1455 /* A CONCAT contains two pseudos; put them both in the stack.
1456 We do it so they end up consecutive.
1457 We fixup references to the parts only after we fixup references
1458 to the whole CONCAT, lest we do double fixups for the latter
1459 references. */
1460 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1461 tree part_type = lang_hooks.types.type_for_mode (part_mode, 0);
1462 rtx lopart = XEXP (reg, 0);
1463 rtx hipart = XEXP (reg, 1);
1464 #ifdef FRAME_GROWS_DOWNWARD
1465 /* Since part 0 should have a lower address, do it second. */
1466 put_reg_into_stack (function, hipart, part_type, part_mode,
1467 0, volatile_p, false, false, 0);
1468 put_reg_into_stack (function, lopart, part_type, part_mode,
1469 0, volatile_p, false, true, 0);
1470 #else
1471 put_reg_into_stack (function, lopart, part_type, part_mode,
1472 0, volatile_p, false, false, 0);
1473 put_reg_into_stack (function, hipart, part_type, part_mode,
1474 0, volatile_p, false, true, 0);
1475 #endif
1477 /* Change the CONCAT into a combined MEM for both parts. */
1478 PUT_CODE (reg, MEM);
1479 MEM_ATTRS (reg) = 0;
1481 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1482 already computed alias sets. Here we want to re-generate. */
1483 if (DECL_P (decl))
1484 SET_DECL_RTL (decl, NULL);
1485 set_mem_attributes (reg, decl, 1);
1486 if (DECL_P (decl))
1487 SET_DECL_RTL (decl, reg);
1489 /* The two parts are in memory order already.
1490 Use the lower parts address as ours. */
1491 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1492 /* Prevent sharing of rtl that might lose. */
1493 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1494 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1495 if (used_p && rescan)
1497 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1498 promoted_mode, 0);
1499 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1500 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1503 else
1504 return;
1507 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1508 into the stack frame of FUNCTION (0 means the current function).
1509 TYPE is the user-level data type of the value hold in the register.
1510 DECL_MODE is the machine mode of the user-level data type.
1511 ORIGINAL_REGNO must be set if the real regno is not visible in REG.
1512 VOLATILE_P is true if this is for a "volatile" decl.
1513 USED_P is true if this reg might have already been used in an insn.
1514 CONSECUTIVE_P is true if the stack slot assigned to reg must be
1515 consecutive with the previous stack slot. */
1517 static void
1518 put_reg_into_stack (struct function *function, rtx reg, tree type,
1519 enum machine_mode decl_mode, unsigned int original_regno,
1520 bool volatile_p, bool used_p, bool consecutive_p,
1521 htab_t ht)
1523 struct function *func = function ? function : cfun;
1524 enum machine_mode mode = GET_MODE (reg);
1525 unsigned int regno = original_regno;
1526 rtx new = 0;
1528 if (regno == 0)
1529 regno = REGNO (reg);
1531 if (regno < func->x_max_parm_reg)
1533 if (!func->x_parm_reg_stack_loc)
1534 abort ();
1535 new = func->x_parm_reg_stack_loc[regno];
1538 if (new == 0)
1539 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode),
1540 consecutive_p ? -2 : 0, func);
1542 PUT_CODE (reg, MEM);
1543 PUT_MODE (reg, decl_mode);
1544 XEXP (reg, 0) = XEXP (new, 0);
1545 MEM_ATTRS (reg) = 0;
1546 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1547 MEM_VOLATILE_P (reg) = volatile_p;
1549 /* If this is a memory ref that contains aggregate components,
1550 mark it as such for cse and loop optimize. If we are reusing a
1551 previously generated stack slot, then we need to copy the bit in
1552 case it was set for other reasons. For instance, it is set for
1553 __builtin_va_alist. */
1554 if (type)
1556 MEM_SET_IN_STRUCT_P (reg,
1557 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1558 set_mem_alias_set (reg, get_alias_set (type));
1561 if (used_p)
1562 schedule_fixup_var_refs (function, reg, type, mode, ht);
1565 /* Make sure that all refs to the variable, previously made
1566 when it was a register, are fixed up to be valid again.
1567 See function above for meaning of arguments. */
1569 static void
1570 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1571 enum machine_mode promoted_mode, htab_t ht)
1573 int unsigned_p = type ? TYPE_UNSIGNED (type) : 0;
1575 if (function != 0)
1577 struct var_refs_queue *temp;
1579 temp = ggc_alloc (sizeof (struct var_refs_queue));
1580 temp->modified = reg;
1581 temp->promoted_mode = promoted_mode;
1582 temp->unsignedp = unsigned_p;
1583 temp->next = function->fixup_var_refs_queue;
1584 function->fixup_var_refs_queue = temp;
1586 else
1587 /* Variable is local; fix it up now. */
1588 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1591 static void
1592 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1593 rtx may_share, htab_t ht)
1595 tree pending;
1596 rtx first_insn = get_insns ();
1597 struct sequence_stack *stack = seq_stack;
1598 tree rtl_exps = rtl_expr_chain;
1599 int save_volatile_ok = volatile_ok;
1601 /* If there's a hash table, it must record all uses of VAR. */
1602 if (ht)
1604 if (stack != 0)
1605 abort ();
1606 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1607 may_share);
1608 return;
1611 /* Volatile is valid in MEMs because all we're doing in changing the
1612 address inside. */
1613 volatile_ok = 1;
1614 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1615 stack == 0, may_share);
1617 /* Scan all pending sequences too. */
1618 for (; stack; stack = stack->next)
1620 push_to_full_sequence (stack->first, stack->last);
1621 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1622 stack->next != 0, may_share);
1623 /* Update remembered end of sequence
1624 in case we added an insn at the end. */
1625 stack->last = get_last_insn ();
1626 end_sequence ();
1629 /* Scan all waiting RTL_EXPRs too. */
1630 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1632 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1633 if (seq != const0_rtx && seq != 0)
1635 push_to_sequence (seq);
1636 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1637 may_share);
1638 end_sequence ();
1642 volatile_ok = save_volatile_ok;
1645 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1646 some part of an insn. Return a struct fixup_replacement whose OLD
1647 value is equal to X. Allocate a new structure if no such entry exists. */
1649 static struct fixup_replacement *
1650 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1652 struct fixup_replacement *p;
1654 /* See if we have already replaced this. */
1655 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1658 if (p == 0)
1660 p = xmalloc (sizeof (struct fixup_replacement));
1661 p->old = x;
1662 p->new = 0;
1663 p->next = *replacements;
1664 *replacements = p;
1667 return p;
1670 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1671 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1672 for the current function. MAY_SHARE is either a MEM that is not
1673 to be unshared or a list of them. */
1675 static void
1676 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1677 int unsignedp, int toplevel, rtx may_share)
1679 while (insn)
1681 /* fixup_var_refs_insn might modify insn, so save its next
1682 pointer now. */
1683 rtx next = NEXT_INSN (insn);
1685 if (INSN_P (insn))
1686 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1687 may_share);
1689 insn = next;
1693 /* Look up the insns which reference VAR in HT and fix them up. Other
1694 arguments are the same as fixup_var_refs_insns. */
1696 static void
1697 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1698 int unsignedp, rtx may_share)
1700 struct insns_for_mem_entry tmp;
1701 struct insns_for_mem_entry *ime;
1702 rtx insn_list;
1704 tmp.key = var;
1705 ime = htab_find (ht, &tmp);
1706 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1707 if (INSN_P (XEXP (insn_list, 0)))
1708 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1709 unsignedp, 1, may_share);
1713 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1714 the insn under examination, VAR is the variable to fix up
1715 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1716 TOPLEVEL is nonzero if this is the main insn chain for this
1717 function. */
1719 static void
1720 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1721 int unsignedp, int toplevel, rtx no_share)
1723 rtx call_dest = 0;
1724 rtx set, prev, prev_set;
1725 rtx note;
1727 /* Remember the notes in case we delete the insn. */
1728 note = REG_NOTES (insn);
1730 /* If this is a CLOBBER of VAR, delete it.
1732 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1733 and REG_RETVAL notes too. */
1734 if (GET_CODE (PATTERN (insn)) == CLOBBER
1735 && (XEXP (PATTERN (insn), 0) == var
1736 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1737 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1738 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1740 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1741 /* The REG_LIBCALL note will go away since we are going to
1742 turn INSN into a NOTE, so just delete the
1743 corresponding REG_RETVAL note. */
1744 remove_note (XEXP (note, 0),
1745 find_reg_note (XEXP (note, 0), REG_RETVAL,
1746 NULL_RTX));
1748 delete_insn (insn);
1751 /* The insn to load VAR from a home in the arglist
1752 is now a no-op. When we see it, just delete it.
1753 Similarly if this is storing VAR from a register from which
1754 it was loaded in the previous insn. This will occur
1755 when an ADDRESSOF was made for an arglist slot. */
1756 else if (toplevel
1757 && (set = single_set (insn)) != 0
1758 && SET_DEST (set) == var
1759 /* If this represents the result of an insn group,
1760 don't delete the insn. */
1761 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1762 && (rtx_equal_p (SET_SRC (set), var)
1763 || (GET_CODE (SET_SRC (set)) == REG
1764 && (prev = prev_nonnote_insn (insn)) != 0
1765 && (prev_set = single_set (prev)) != 0
1766 && SET_DEST (prev_set) == SET_SRC (set)
1767 && rtx_equal_p (SET_SRC (prev_set), var))))
1769 delete_insn (insn);
1771 else
1773 struct fixup_replacement *replacements = 0;
1774 rtx next_insn = NEXT_INSN (insn);
1776 if (SMALL_REGISTER_CLASSES)
1778 /* If the insn that copies the results of a CALL_INSN
1779 into a pseudo now references VAR, we have to use an
1780 intermediate pseudo since we want the life of the
1781 return value register to be only a single insn.
1783 If we don't use an intermediate pseudo, such things as
1784 address computations to make the address of VAR valid
1785 if it is not can be placed between the CALL_INSN and INSN.
1787 To make sure this doesn't happen, we record the destination
1788 of the CALL_INSN and see if the next insn uses both that
1789 and VAR. */
1791 if (call_dest != 0 && GET_CODE (insn) == INSN
1792 && reg_mentioned_p (var, PATTERN (insn))
1793 && reg_mentioned_p (call_dest, PATTERN (insn)))
1795 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1797 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1799 PATTERN (insn) = replace_rtx (PATTERN (insn),
1800 call_dest, temp);
1803 if (GET_CODE (insn) == CALL_INSN
1804 && GET_CODE (PATTERN (insn)) == SET)
1805 call_dest = SET_DEST (PATTERN (insn));
1806 else if (GET_CODE (insn) == CALL_INSN
1807 && GET_CODE (PATTERN (insn)) == PARALLEL
1808 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1809 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1810 else
1811 call_dest = 0;
1814 /* See if we have to do anything to INSN now that VAR is in
1815 memory. If it needs to be loaded into a pseudo, use a single
1816 pseudo for the entire insn in case there is a MATCH_DUP
1817 between two operands. We pass a pointer to the head of
1818 a list of struct fixup_replacements. If fixup_var_refs_1
1819 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1820 it will record them in this list.
1822 If it allocated a pseudo for any replacement, we copy into
1823 it here. */
1825 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1826 &replacements, no_share);
1828 /* If this is last_parm_insn, and any instructions were output
1829 after it to fix it up, then we must set last_parm_insn to
1830 the last such instruction emitted. */
1831 if (insn == last_parm_insn)
1832 last_parm_insn = PREV_INSN (next_insn);
1834 while (replacements)
1836 struct fixup_replacement *next;
1838 if (GET_CODE (replacements->new) == REG)
1840 rtx insert_before;
1841 rtx seq;
1843 /* OLD might be a (subreg (mem)). */
1844 if (GET_CODE (replacements->old) == SUBREG)
1845 replacements->old
1846 = fixup_memory_subreg (replacements->old, insn,
1847 promoted_mode, 0);
1848 else
1849 replacements->old
1850 = fixup_stack_1 (replacements->old, insn);
1852 insert_before = insn;
1854 /* If we are changing the mode, do a conversion.
1855 This might be wasteful, but combine.c will
1856 eliminate much of the waste. */
1858 if (GET_MODE (replacements->new)
1859 != GET_MODE (replacements->old))
1861 start_sequence ();
1862 convert_move (replacements->new,
1863 replacements->old, unsignedp);
1864 seq = get_insns ();
1865 end_sequence ();
1867 else
1868 seq = gen_move_insn (replacements->new,
1869 replacements->old);
1871 emit_insn_before (seq, insert_before);
1874 next = replacements->next;
1875 free (replacements);
1876 replacements = next;
1880 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1881 But don't touch other insns referred to by reg-notes;
1882 we will get them elsewhere. */
1883 while (note)
1885 if (GET_CODE (note) != INSN_LIST)
1886 XEXP (note, 0)
1887 = walk_fixup_memory_subreg (XEXP (note, 0), insn, var,
1888 promoted_mode, 1);
1889 note = XEXP (note, 1);
1893 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1894 See if the rtx expression at *LOC in INSN needs to be changed.
1896 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1897 contain a list of original rtx's and replacements. If we find that we need
1898 to modify this insn by replacing a memory reference with a pseudo or by
1899 making a new MEM to implement a SUBREG, we consult that list to see if
1900 we have already chosen a replacement. If none has already been allocated,
1901 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1902 or the SUBREG, as appropriate, to the pseudo. */
1904 static void
1905 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1906 struct fixup_replacement **replacements, rtx no_share)
1908 int i;
1909 rtx x = *loc;
1910 RTX_CODE code = GET_CODE (x);
1911 const char *fmt;
1912 rtx tem, tem1;
1913 struct fixup_replacement *replacement;
1915 switch (code)
1917 case ADDRESSOF:
1918 if (XEXP (x, 0) == var)
1920 /* Prevent sharing of rtl that might lose. */
1921 rtx sub = copy_rtx (XEXP (var, 0));
1923 if (! validate_change (insn, loc, sub, 0))
1925 rtx y = gen_reg_rtx (GET_MODE (sub));
1926 rtx seq, new_insn;
1928 /* We should be able to replace with a register or all is lost.
1929 Note that we can't use validate_change to verify this, since
1930 we're not caring for replacing all dups simultaneously. */
1931 if (! validate_replace_rtx (*loc, y, insn))
1932 abort ();
1934 /* Careful! First try to recognize a direct move of the
1935 value, mimicking how things are done in gen_reload wrt
1936 PLUS. Consider what happens when insn is a conditional
1937 move instruction and addsi3 clobbers flags. */
1939 start_sequence ();
1940 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1941 seq = get_insns ();
1942 end_sequence ();
1944 if (recog_memoized (new_insn) < 0)
1946 /* That failed. Fall back on force_operand and hope. */
1948 start_sequence ();
1949 sub = force_operand (sub, y);
1950 if (sub != y)
1951 emit_insn (gen_move_insn (y, sub));
1952 seq = get_insns ();
1953 end_sequence ();
1956 #ifdef HAVE_cc0
1957 /* Don't separate setter from user. */
1958 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1959 insn = PREV_INSN (insn);
1960 #endif
1962 emit_insn_before (seq, insn);
1965 return;
1967 case MEM:
1968 if (var == x)
1970 /* If we already have a replacement, use it. Otherwise,
1971 try to fix up this address in case it is invalid. */
1973 replacement = find_fixup_replacement (replacements, var);
1974 if (replacement->new)
1976 *loc = replacement->new;
1977 return;
1980 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1982 /* Unless we are forcing memory to register or we changed the mode,
1983 we can leave things the way they are if the insn is valid. */
1985 INSN_CODE (insn) = -1;
1986 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1987 && recog_memoized (insn) >= 0)
1988 return;
1990 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1991 return;
1994 /* If X contains VAR, we need to unshare it here so that we update
1995 each occurrence separately. But all identical MEMs in one insn
1996 must be replaced with the same rtx because of the possibility of
1997 MATCH_DUPs. */
1999 if (reg_mentioned_p (var, x))
2001 replacement = find_fixup_replacement (replacements, x);
2002 if (replacement->new == 0)
2003 replacement->new = copy_most_rtx (x, no_share);
2005 *loc = x = replacement->new;
2006 code = GET_CODE (x);
2008 break;
2010 case REG:
2011 case CC0:
2012 case PC:
2013 case CONST_INT:
2014 case CONST:
2015 case SYMBOL_REF:
2016 case LABEL_REF:
2017 case CONST_DOUBLE:
2018 case CONST_VECTOR:
2019 return;
2021 case SIGN_EXTRACT:
2022 case ZERO_EXTRACT:
2023 /* Note that in some cases those types of expressions are altered
2024 by optimize_bit_field, and do not survive to get here. */
2025 if (XEXP (x, 0) == var
2026 || (GET_CODE (XEXP (x, 0)) == SUBREG
2027 && SUBREG_REG (XEXP (x, 0)) == var))
2029 /* Get TEM as a valid MEM in the mode presently in the insn.
2031 We don't worry about the possibility of MATCH_DUP here; it
2032 is highly unlikely and would be tricky to handle. */
2034 tem = XEXP (x, 0);
2035 if (GET_CODE (tem) == SUBREG)
2037 if (GET_MODE_BITSIZE (GET_MODE (tem))
2038 > GET_MODE_BITSIZE (GET_MODE (var)))
2040 replacement = find_fixup_replacement (replacements, var);
2041 if (replacement->new == 0)
2042 replacement->new = gen_reg_rtx (GET_MODE (var));
2043 SUBREG_REG (tem) = replacement->new;
2045 /* The following code works only if we have a MEM, so we
2046 need to handle the subreg here. We directly substitute
2047 it assuming that a subreg must be OK here. We already
2048 scheduled a replacement to copy the mem into the
2049 subreg. */
2050 XEXP (x, 0) = tem;
2051 return;
2053 else
2054 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2056 else
2057 tem = fixup_stack_1 (tem, insn);
2059 /* Unless we want to load from memory, get TEM into the proper mode
2060 for an extract from memory. This can only be done if the
2061 extract is at a constant position and length. */
2063 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2064 && GET_CODE (XEXP (x, 2)) == CONST_INT
2065 && ! mode_dependent_address_p (XEXP (tem, 0))
2066 && ! MEM_VOLATILE_P (tem))
2068 enum machine_mode wanted_mode = VOIDmode;
2069 enum machine_mode is_mode = GET_MODE (tem);
2070 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2072 if (GET_CODE (x) == ZERO_EXTRACT)
2074 enum machine_mode new_mode
2075 = mode_for_extraction (EP_extzv, 1);
2076 if (new_mode != MAX_MACHINE_MODE)
2077 wanted_mode = new_mode;
2079 else if (GET_CODE (x) == SIGN_EXTRACT)
2081 enum machine_mode new_mode
2082 = mode_for_extraction (EP_extv, 1);
2083 if (new_mode != MAX_MACHINE_MODE)
2084 wanted_mode = new_mode;
2087 /* If we have a narrower mode, we can do something. */
2088 if (wanted_mode != VOIDmode
2089 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2091 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2092 rtx old_pos = XEXP (x, 2);
2093 rtx newmem;
2095 /* If the bytes and bits are counted differently, we
2096 must adjust the offset. */
2097 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2098 offset = (GET_MODE_SIZE (is_mode)
2099 - GET_MODE_SIZE (wanted_mode) - offset);
2101 pos %= GET_MODE_BITSIZE (wanted_mode);
2103 newmem = adjust_address_nv (tem, wanted_mode, offset);
2105 /* Make the change and see if the insn remains valid. */
2106 INSN_CODE (insn) = -1;
2107 XEXP (x, 0) = newmem;
2108 XEXP (x, 2) = GEN_INT (pos);
2110 if (recog_memoized (insn) >= 0)
2111 return;
2113 /* Otherwise, restore old position. XEXP (x, 0) will be
2114 restored later. */
2115 XEXP (x, 2) = old_pos;
2119 /* If we get here, the bitfield extract insn can't accept a memory
2120 reference. Copy the input into a register. */
2122 tem1 = gen_reg_rtx (GET_MODE (tem));
2123 emit_insn_before (gen_move_insn (tem1, tem), insn);
2124 XEXP (x, 0) = tem1;
2125 return;
2127 break;
2129 case SUBREG:
2130 if (SUBREG_REG (x) == var)
2132 /* If this is a special SUBREG made because VAR was promoted
2133 from a wider mode, replace it with VAR and call ourself
2134 recursively, this time saying that the object previously
2135 had its current mode (by virtue of the SUBREG). */
2137 if (SUBREG_PROMOTED_VAR_P (x))
2139 *loc = var;
2140 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2141 no_share);
2142 return;
2145 /* If this SUBREG makes VAR wider, it has become a paradoxical
2146 SUBREG with VAR in memory, but these aren't allowed at this
2147 stage of the compilation. So load VAR into a pseudo and take
2148 a SUBREG of that pseudo. */
2149 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2151 replacement = find_fixup_replacement (replacements, var);
2152 if (replacement->new == 0)
2153 replacement->new = gen_reg_rtx (promoted_mode);
2154 SUBREG_REG (x) = replacement->new;
2155 return;
2158 /* See if we have already found a replacement for this SUBREG.
2159 If so, use it. Otherwise, make a MEM and see if the insn
2160 is recognized. If not, or if we should force MEM into a register,
2161 make a pseudo for this SUBREG. */
2162 replacement = find_fixup_replacement (replacements, x);
2163 if (replacement->new)
2165 enum machine_mode mode = GET_MODE (x);
2166 *loc = replacement->new;
2168 /* Careful! We may have just replaced a SUBREG by a MEM, which
2169 means that the insn may have become invalid again. We can't
2170 in this case make a new replacement since we already have one
2171 and we must deal with MATCH_DUPs. */
2172 if (GET_CODE (replacement->new) == MEM)
2174 INSN_CODE (insn) = -1;
2175 if (recog_memoized (insn) >= 0)
2176 return;
2178 fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
2179 insn, replacements, no_share);
2182 return;
2185 replacement->new = *loc = fixup_memory_subreg (x, insn,
2186 promoted_mode, 0);
2188 INSN_CODE (insn) = -1;
2189 if (! flag_force_mem && recog_memoized (insn) >= 0)
2190 return;
2192 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2193 return;
2195 break;
2197 case SET:
2198 /* First do special simplification of bit-field references. */
2199 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2200 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2201 optimize_bit_field (x, insn, 0);
2202 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2203 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2204 optimize_bit_field (x, insn, 0);
2206 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2207 into a register and then store it back out. */
2208 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2209 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2210 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2211 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2212 > GET_MODE_SIZE (GET_MODE (var))))
2214 replacement = find_fixup_replacement (replacements, var);
2215 if (replacement->new == 0)
2216 replacement->new = gen_reg_rtx (GET_MODE (var));
2218 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2219 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2222 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2223 insn into a pseudo and store the low part of the pseudo into VAR. */
2224 if (GET_CODE (SET_DEST (x)) == SUBREG
2225 && SUBREG_REG (SET_DEST (x)) == var
2226 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2227 > GET_MODE_SIZE (GET_MODE (var))))
2229 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2230 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2231 tem)),
2232 insn);
2233 break;
2237 rtx dest = SET_DEST (x);
2238 rtx src = SET_SRC (x);
2239 rtx outerdest = dest;
2241 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2242 || GET_CODE (dest) == SIGN_EXTRACT
2243 || GET_CODE (dest) == ZERO_EXTRACT)
2244 dest = XEXP (dest, 0);
2246 if (GET_CODE (src) == SUBREG)
2247 src = SUBREG_REG (src);
2249 /* If VAR does not appear at the top level of the SET
2250 just scan the lower levels of the tree. */
2252 if (src != var && dest != var)
2253 break;
2255 /* We will need to rerecognize this insn. */
2256 INSN_CODE (insn) = -1;
2258 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2259 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2261 /* Since this case will return, ensure we fixup all the
2262 operands here. */
2263 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2264 insn, replacements, no_share);
2265 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2266 insn, replacements, no_share);
2267 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2268 insn, replacements, no_share);
2270 tem = XEXP (outerdest, 0);
2272 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2273 that may appear inside a ZERO_EXTRACT.
2274 This was legitimate when the MEM was a REG. */
2275 if (GET_CODE (tem) == SUBREG
2276 && SUBREG_REG (tem) == var)
2277 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2278 else
2279 tem = fixup_stack_1 (tem, insn);
2281 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2282 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2283 && ! mode_dependent_address_p (XEXP (tem, 0))
2284 && ! MEM_VOLATILE_P (tem))
2286 enum machine_mode wanted_mode;
2287 enum machine_mode is_mode = GET_MODE (tem);
2288 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2290 wanted_mode = mode_for_extraction (EP_insv, 0);
2292 /* If we have a narrower mode, we can do something. */
2293 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2295 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2296 rtx old_pos = XEXP (outerdest, 2);
2297 rtx newmem;
2299 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2300 offset = (GET_MODE_SIZE (is_mode)
2301 - GET_MODE_SIZE (wanted_mode) - offset);
2303 pos %= GET_MODE_BITSIZE (wanted_mode);
2305 newmem = adjust_address_nv (tem, wanted_mode, offset);
2307 /* Make the change and see if the insn remains valid. */
2308 INSN_CODE (insn) = -1;
2309 XEXP (outerdest, 0) = newmem;
2310 XEXP (outerdest, 2) = GEN_INT (pos);
2312 if (recog_memoized (insn) >= 0)
2313 return;
2315 /* Otherwise, restore old position. XEXP (x, 0) will be
2316 restored later. */
2317 XEXP (outerdest, 2) = old_pos;
2321 /* If we get here, the bit-field store doesn't allow memory
2322 or isn't located at a constant position. Load the value into
2323 a register, do the store, and put it back into memory. */
2325 tem1 = gen_reg_rtx (GET_MODE (tem));
2326 emit_insn_before (gen_move_insn (tem1, tem), insn);
2327 emit_insn_after (gen_move_insn (tem, tem1), insn);
2328 XEXP (outerdest, 0) = tem1;
2329 return;
2332 /* STRICT_LOW_PART is a no-op on memory references
2333 and it can cause combinations to be unrecognizable,
2334 so eliminate it. */
2336 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2337 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2339 /* A valid insn to copy VAR into or out of a register
2340 must be left alone, to avoid an infinite loop here.
2341 If the reference to VAR is by a subreg, fix that up,
2342 since SUBREG is not valid for a memref.
2343 Also fix up the address of the stack slot.
2345 Note that we must not try to recognize the insn until
2346 after we know that we have valid addresses and no
2347 (subreg (mem ...) ...) constructs, since these interfere
2348 with determining the validity of the insn. */
2350 if ((SET_SRC (x) == var
2351 || (GET_CODE (SET_SRC (x)) == SUBREG
2352 && SUBREG_REG (SET_SRC (x)) == var))
2353 && (GET_CODE (SET_DEST (x)) == REG
2354 || (GET_CODE (SET_DEST (x)) == SUBREG
2355 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2356 && GET_MODE (var) == promoted_mode
2357 && x == single_set (insn))
2359 rtx pat, last;
2361 if (GET_CODE (SET_SRC (x)) == SUBREG
2362 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2363 > GET_MODE_SIZE (GET_MODE (var))))
2365 /* This (subreg VAR) is now a paradoxical subreg. We need
2366 to replace VAR instead of the subreg. */
2367 replacement = find_fixup_replacement (replacements, var);
2368 if (replacement->new == NULL_RTX)
2369 replacement->new = gen_reg_rtx (GET_MODE (var));
2370 SUBREG_REG (SET_SRC (x)) = replacement->new;
2372 else
2374 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2375 if (replacement->new)
2376 SET_SRC (x) = replacement->new;
2377 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2378 SET_SRC (x) = replacement->new
2379 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2381 else
2382 SET_SRC (x) = replacement->new
2383 = fixup_stack_1 (SET_SRC (x), insn);
2386 if (recog_memoized (insn) >= 0)
2387 return;
2389 /* INSN is not valid, but we know that we want to
2390 copy SET_SRC (x) to SET_DEST (x) in some way. So
2391 we generate the move and see whether it requires more
2392 than one insn. If it does, we emit those insns and
2393 delete INSN. Otherwise, we can just replace the pattern
2394 of INSN; we have already verified above that INSN has
2395 no other function that to do X. */
2397 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2398 if (NEXT_INSN (pat) != NULL_RTX)
2400 last = emit_insn_before (pat, insn);
2402 /* INSN might have REG_RETVAL or other important notes, so
2403 we need to store the pattern of the last insn in the
2404 sequence into INSN similarly to the normal case. LAST
2405 should not have REG_NOTES, but we allow them if INSN has
2406 no REG_NOTES. */
2407 if (REG_NOTES (last) && REG_NOTES (insn))
2408 abort ();
2409 if (REG_NOTES (last))
2410 REG_NOTES (insn) = REG_NOTES (last);
2411 PATTERN (insn) = PATTERN (last);
2413 delete_insn (last);
2415 else
2416 PATTERN (insn) = PATTERN (pat);
2418 return;
2421 if ((SET_DEST (x) == var
2422 || (GET_CODE (SET_DEST (x)) == SUBREG
2423 && SUBREG_REG (SET_DEST (x)) == var))
2424 && (GET_CODE (SET_SRC (x)) == REG
2425 || (GET_CODE (SET_SRC (x)) == SUBREG
2426 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2427 && GET_MODE (var) == promoted_mode
2428 && x == single_set (insn))
2430 rtx pat, last;
2432 if (GET_CODE (SET_DEST (x)) == SUBREG)
2433 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2434 promoted_mode, 0);
2435 else
2436 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2438 if (recog_memoized (insn) >= 0)
2439 return;
2441 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2442 if (NEXT_INSN (pat) != NULL_RTX)
2444 last = emit_insn_before (pat, insn);
2446 /* INSN might have REG_RETVAL or other important notes, so
2447 we need to store the pattern of the last insn in the
2448 sequence into INSN similarly to the normal case. LAST
2449 should not have REG_NOTES, but we allow them if INSN has
2450 no REG_NOTES. */
2451 if (REG_NOTES (last) && REG_NOTES (insn))
2452 abort ();
2453 if (REG_NOTES (last))
2454 REG_NOTES (insn) = REG_NOTES (last);
2455 PATTERN (insn) = PATTERN (last);
2457 delete_insn (last);
2459 else
2460 PATTERN (insn) = PATTERN (pat);
2462 return;
2465 /* Otherwise, storing into VAR must be handled specially
2466 by storing into a temporary and copying that into VAR
2467 with a new insn after this one. Note that this case
2468 will be used when storing into a promoted scalar since
2469 the insn will now have different modes on the input
2470 and output and hence will be invalid (except for the case
2471 of setting it to a constant, which does not need any
2472 change if it is valid). We generate extra code in that case,
2473 but combine.c will eliminate it. */
2475 if (dest == var)
2477 rtx temp;
2478 rtx fixeddest = SET_DEST (x);
2479 enum machine_mode temp_mode;
2481 /* STRICT_LOW_PART can be discarded, around a MEM. */
2482 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2483 fixeddest = XEXP (fixeddest, 0);
2484 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2485 if (GET_CODE (fixeddest) == SUBREG)
2487 fixeddest = fixup_memory_subreg (fixeddest, insn,
2488 promoted_mode, 0);
2489 temp_mode = GET_MODE (fixeddest);
2491 else
2493 fixeddest = fixup_stack_1 (fixeddest, insn);
2494 temp_mode = promoted_mode;
2497 temp = gen_reg_rtx (temp_mode);
2499 emit_insn_after (gen_move_insn (fixeddest,
2500 gen_lowpart (GET_MODE (fixeddest),
2501 temp)),
2502 insn);
2504 SET_DEST (x) = temp;
2508 default:
2509 break;
2512 /* Nothing special about this RTX; fix its operands. */
2514 fmt = GET_RTX_FORMAT (code);
2515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2517 if (fmt[i] == 'e')
2518 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2519 no_share);
2520 else if (fmt[i] == 'E')
2522 int j;
2523 for (j = 0; j < XVECLEN (x, i); j++)
2524 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2525 insn, replacements, no_share);
2530 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2531 The REG was placed on the stack, so X now has the form (SUBREG:m1
2532 (MEM:m2 ...)).
2534 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2535 must be emitted to compute NEWADDR, put them before INSN.
2537 UNCRITICAL nonzero means accept paradoxical subregs.
2538 This is used for subregs found inside REG_NOTES. */
2540 static rtx
2541 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2543 int offset;
2544 rtx mem = SUBREG_REG (x);
2545 rtx addr = XEXP (mem, 0);
2546 enum machine_mode mode = GET_MODE (x);
2547 rtx result, seq;
2549 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2550 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2551 abort ();
2553 offset = SUBREG_BYTE (x);
2554 if (BYTES_BIG_ENDIAN)
2555 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2556 the offset so that it points to the right location within the
2557 MEM. */
2558 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2560 if (!flag_force_addr
2561 && memory_address_p (mode, plus_constant (addr, offset)))
2562 /* Shortcut if no insns need be emitted. */
2563 return adjust_address (mem, mode, offset);
2565 start_sequence ();
2566 result = adjust_address (mem, mode, offset);
2567 seq = get_insns ();
2568 end_sequence ();
2570 emit_insn_before (seq, insn);
2571 return result;
2574 /* Do fixup_memory_subreg on all (SUBREG (VAR) ...) contained in X.
2575 VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
2576 Replace subexpressions of X in place.
2577 If X itself is a (SUBREG (VAR) ...), return the replacement expression.
2578 Otherwise return X, with its contents possibly altered.
2580 INSN and UNCRITICAL are as for fixup_memory_subreg. */
2582 static rtx
2583 walk_fixup_memory_subreg (rtx x, rtx insn, rtx var,
2584 enum machine_mode promoted_mode, int uncritical)
2586 enum rtx_code code;
2587 const char *fmt;
2588 int i;
2590 if (x == 0)
2591 return 0;
2593 code = GET_CODE (x);
2595 if (code == SUBREG && SUBREG_REG (x) == var)
2596 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2598 /* Nothing special about this RTX; fix its operands. */
2600 fmt = GET_RTX_FORMAT (code);
2601 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2603 if (fmt[i] == 'e')
2604 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, var,
2605 promoted_mode, uncritical);
2606 else if (fmt[i] == 'E')
2608 int j;
2609 for (j = 0; j < XVECLEN (x, i); j++)
2610 XVECEXP (x, i, j)
2611 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, var,
2612 promoted_mode, uncritical);
2615 return x;
2618 /* For each memory ref within X, if it refers to a stack slot
2619 with an out of range displacement, put the address in a temp register
2620 (emitting new insns before INSN to load these registers)
2621 and alter the memory ref to use that register.
2622 Replace each such MEM rtx with a copy, to avoid clobberage. */
2624 static rtx
2625 fixup_stack_1 (rtx x, rtx insn)
2627 int i;
2628 RTX_CODE code = GET_CODE (x);
2629 const char *fmt;
2631 if (code == MEM)
2633 rtx ad = XEXP (x, 0);
2634 /* If we have address of a stack slot but it's not valid
2635 (displacement is too large), compute the sum in a register. */
2636 if (GET_CODE (ad) == PLUS
2637 && GET_CODE (XEXP (ad, 0)) == REG
2638 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2639 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2640 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2641 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2642 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2643 #endif
2644 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2645 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2646 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2647 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2649 rtx temp, seq;
2650 if (memory_address_p (GET_MODE (x), ad))
2651 return x;
2653 start_sequence ();
2654 temp = copy_to_reg (ad);
2655 seq = get_insns ();
2656 end_sequence ();
2657 emit_insn_before (seq, insn);
2658 return replace_equiv_address (x, temp);
2660 return x;
2663 fmt = GET_RTX_FORMAT (code);
2664 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2666 if (fmt[i] == 'e')
2667 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2668 else if (fmt[i] == 'E')
2670 int j;
2671 for (j = 0; j < XVECLEN (x, i); j++)
2672 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2675 return x;
2678 /* Optimization: a bit-field instruction whose field
2679 happens to be a byte or halfword in memory
2680 can be changed to a move instruction.
2682 We call here when INSN is an insn to examine or store into a bit-field.
2683 BODY is the SET-rtx to be altered.
2685 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2686 (Currently this is called only from function.c, and EQUIV_MEM
2687 is always 0.) */
2689 static void
2690 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2692 rtx bitfield;
2693 int destflag;
2694 rtx seq = 0;
2695 enum machine_mode mode;
2697 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2698 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2699 bitfield = SET_DEST (body), destflag = 1;
2700 else
2701 bitfield = SET_SRC (body), destflag = 0;
2703 /* First check that the field being stored has constant size and position
2704 and is in fact a byte or halfword suitably aligned. */
2706 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2707 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2708 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2709 != BLKmode)
2710 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2712 rtx memref = 0;
2714 /* Now check that the containing word is memory, not a register,
2715 and that it is safe to change the machine mode. */
2717 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2718 memref = XEXP (bitfield, 0);
2719 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2720 && equiv_mem != 0)
2721 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2722 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2723 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2724 memref = SUBREG_REG (XEXP (bitfield, 0));
2725 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2726 && equiv_mem != 0
2727 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2728 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2730 if (memref
2731 && ! mode_dependent_address_p (XEXP (memref, 0))
2732 && ! MEM_VOLATILE_P (memref))
2734 /* Now adjust the address, first for any subreg'ing
2735 that we are now getting rid of,
2736 and then for which byte of the word is wanted. */
2738 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2739 rtx insns;
2741 /* Adjust OFFSET to count bits from low-address byte. */
2742 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2743 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2744 - offset - INTVAL (XEXP (bitfield, 1)));
2746 /* Adjust OFFSET to count bytes from low-address byte. */
2747 offset /= BITS_PER_UNIT;
2748 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2750 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2751 / UNITS_PER_WORD) * UNITS_PER_WORD;
2752 if (BYTES_BIG_ENDIAN)
2753 offset -= (MIN (UNITS_PER_WORD,
2754 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2755 - MIN (UNITS_PER_WORD,
2756 GET_MODE_SIZE (GET_MODE (memref))));
2759 start_sequence ();
2760 memref = adjust_address (memref, mode, offset);
2761 insns = get_insns ();
2762 end_sequence ();
2763 emit_insn_before (insns, insn);
2765 /* Store this memory reference where
2766 we found the bit field reference. */
2768 if (destflag)
2770 validate_change (insn, &SET_DEST (body), memref, 1);
2771 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2773 rtx src = SET_SRC (body);
2774 while (GET_CODE (src) == SUBREG
2775 && SUBREG_BYTE (src) == 0)
2776 src = SUBREG_REG (src);
2777 if (GET_MODE (src) != GET_MODE (memref))
2778 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2779 validate_change (insn, &SET_SRC (body), src, 1);
2781 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2782 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2783 /* This shouldn't happen because anything that didn't have
2784 one of these modes should have got converted explicitly
2785 and then referenced through a subreg.
2786 This is so because the original bit-field was
2787 handled by agg_mode and so its tree structure had
2788 the same mode that memref now has. */
2789 abort ();
2791 else
2793 rtx dest = SET_DEST (body);
2795 while (GET_CODE (dest) == SUBREG
2796 && SUBREG_BYTE (dest) == 0
2797 && (GET_MODE_CLASS (GET_MODE (dest))
2798 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2799 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2800 <= UNITS_PER_WORD))
2801 dest = SUBREG_REG (dest);
2803 validate_change (insn, &SET_DEST (body), dest, 1);
2805 if (GET_MODE (dest) == GET_MODE (memref))
2806 validate_change (insn, &SET_SRC (body), memref, 1);
2807 else
2809 /* Convert the mem ref to the destination mode. */
2810 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2812 start_sequence ();
2813 convert_move (newreg, memref,
2814 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2815 seq = get_insns ();
2816 end_sequence ();
2818 validate_change (insn, &SET_SRC (body), newreg, 1);
2822 /* See if we can convert this extraction or insertion into
2823 a simple move insn. We might not be able to do so if this
2824 was, for example, part of a PARALLEL.
2826 If we succeed, write out any needed conversions. If we fail,
2827 it is hard to guess why we failed, so don't do anything
2828 special; just let the optimization be suppressed. */
2830 if (apply_change_group () && seq)
2831 emit_insn_before (seq, insn);
2836 /* These routines are responsible for converting virtual register references
2837 to the actual hard register references once RTL generation is complete.
2839 The following four variables are used for communication between the
2840 routines. They contain the offsets of the virtual registers from their
2841 respective hard registers. */
2843 static int in_arg_offset;
2844 static int var_offset;
2845 static int dynamic_offset;
2846 static int out_arg_offset;
2847 static int cfa_offset;
2849 /* In most machines, the stack pointer register is equivalent to the bottom
2850 of the stack. */
2852 #ifndef STACK_POINTER_OFFSET
2853 #define STACK_POINTER_OFFSET 0
2854 #endif
2856 /* If not defined, pick an appropriate default for the offset of dynamically
2857 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2858 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2860 #ifndef STACK_DYNAMIC_OFFSET
2862 /* The bottom of the stack points to the actual arguments. If
2863 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2864 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2865 stack space for register parameters is not pushed by the caller, but
2866 rather part of the fixed stack areas and hence not included in
2867 `current_function_outgoing_args_size'. Nevertheless, we must allow
2868 for it when allocating stack dynamic objects. */
2870 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2871 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2872 ((ACCUMULATE_OUTGOING_ARGS \
2873 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2874 + (STACK_POINTER_OFFSET)) \
2876 #else
2877 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2878 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2879 + (STACK_POINTER_OFFSET))
2880 #endif
2881 #endif
2883 /* On most machines, the CFA coincides with the first incoming parm. */
2885 #ifndef ARG_POINTER_CFA_OFFSET
2886 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2887 #endif
2889 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2890 had its address taken. DECL is the decl or SAVE_EXPR for the
2891 object stored in the register, for later use if we do need to force
2892 REG into the stack. REG is overwritten by the MEM like in
2893 put_reg_into_stack. RESCAN is true if previously emitted
2894 instructions must be rescanned and modified now that the REG has
2895 been transformed. */
2898 gen_mem_addressof (rtx reg, tree decl, int rescan)
2900 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2901 REGNO (reg), decl);
2903 /* Calculate this before we start messing with decl's RTL. */
2904 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2906 /* If the original REG was a user-variable, then so is the REG whose
2907 address is being taken. Likewise for unchanging. */
2908 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2909 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2911 PUT_CODE (reg, MEM);
2912 MEM_VOLATILE_P (reg) = 0;
2913 MEM_ATTRS (reg) = 0;
2914 XEXP (reg, 0) = r;
2916 if (decl)
2918 tree type = TREE_TYPE (decl);
2919 enum machine_mode decl_mode
2920 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2921 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2922 : DECL_RTL_IF_SET (decl));
2924 PUT_MODE (reg, decl_mode);
2926 /* Clear DECL_RTL momentarily so functions below will work
2927 properly, then set it again. */
2928 if (DECL_P (decl) && decl_rtl == reg)
2929 SET_DECL_RTL (decl, 0);
2931 set_mem_attributes (reg, decl, 1);
2932 set_mem_alias_set (reg, set);
2934 if (DECL_P (decl) && decl_rtl == reg)
2935 SET_DECL_RTL (decl, reg);
2937 if (rescan
2938 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2939 fixup_var_refs (reg, GET_MODE (reg), TYPE_UNSIGNED (type), reg, 0);
2941 else if (rescan)
2943 /* This can only happen during reload. Clear the same flag bits as
2944 reload. */
2945 RTX_UNCHANGING_P (reg) = 0;
2946 MEM_IN_STRUCT_P (reg) = 0;
2947 MEM_SCALAR_P (reg) = 0;
2949 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2952 return reg;
2955 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2957 void
2958 flush_addressof (tree decl)
2960 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2961 && DECL_RTL (decl) != 0
2962 && GET_CODE (DECL_RTL (decl)) == MEM
2963 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2964 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2965 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2968 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2970 static void
2971 put_addressof_into_stack (rtx r, htab_t ht)
2973 tree decl, type;
2974 bool volatile_p, used_p;
2976 rtx reg = XEXP (r, 0);
2978 if (GET_CODE (reg) != REG)
2979 abort ();
2981 decl = ADDRESSOF_DECL (r);
2982 if (decl)
2984 type = TREE_TYPE (decl);
2985 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2986 && TREE_THIS_VOLATILE (decl));
2987 used_p = (TREE_USED (decl)
2988 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2990 else
2992 type = NULL_TREE;
2993 volatile_p = false;
2994 used_p = true;
2997 put_reg_into_stack (0, reg, type, GET_MODE (reg), ADDRESSOF_REGNO (r),
2998 volatile_p, used_p, false, ht);
3001 /* List of replacements made below in purge_addressof_1 when creating
3002 bitfield insertions. */
3003 static rtx purge_bitfield_addressof_replacements;
3005 /* List of replacements made below in purge_addressof_1 for patterns
3006 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
3007 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
3008 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
3009 enough in complex cases, e.g. when some field values can be
3010 extracted by usage MEM with narrower mode. */
3011 static rtx purge_addressof_replacements;
3013 /* Helper function for purge_addressof. See if the rtx expression at *LOC
3014 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
3015 the stack. If the function returns FALSE then the replacement could not
3016 be made. If MAY_POSTPONE is true and we would not put the addressof
3017 to stack, postpone processing of the insn. */
3019 static bool
3020 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
3021 htab_t ht)
3023 rtx x;
3024 RTX_CODE code;
3025 int i, j;
3026 const char *fmt;
3027 bool result = true;
3028 bool libcall = false;
3030 /* Re-start here to avoid recursion in common cases. */
3031 restart:
3033 x = *loc;
3034 if (x == 0)
3035 return true;
3037 /* Is this a libcall? */
3038 if (!insn)
3039 libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
3041 code = GET_CODE (x);
3043 /* If we don't return in any of the cases below, we will recurse inside
3044 the RTX, which will normally result in any ADDRESSOF being forced into
3045 memory. */
3046 if (code == SET)
3048 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
3049 may_postpone, ht);
3050 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
3051 may_postpone, ht);
3052 return result;
3054 else if (code == ADDRESSOF)
3056 rtx sub, insns;
3058 if (GET_CODE (XEXP (x, 0)) != MEM)
3059 put_addressof_into_stack (x, ht);
3061 /* We must create a copy of the rtx because it was created by
3062 overwriting a REG rtx which is always shared. */
3063 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3064 if (validate_change (insn, loc, sub, 0)
3065 || validate_replace_rtx (x, sub, insn))
3066 return true;
3068 start_sequence ();
3070 /* If SUB is a hard or virtual register, try it as a pseudo-register.
3071 Otherwise, perhaps SUB is an expression, so generate code to compute
3072 it. */
3073 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
3074 sub = copy_to_reg (sub);
3075 else
3076 sub = force_operand (sub, NULL_RTX);
3078 if (! validate_change (insn, loc, sub, 0)
3079 && ! validate_replace_rtx (x, sub, insn))
3080 abort ();
3082 insns = get_insns ();
3083 end_sequence ();
3084 emit_insn_before (insns, insn);
3085 return true;
3088 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3090 rtx sub = XEXP (XEXP (x, 0), 0);
3092 if (GET_CODE (sub) == MEM)
3093 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3094 else if (GET_CODE (sub) == REG
3095 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3097 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3099 int size_x, size_sub;
3101 if (may_postpone)
3103 /* Postpone for now, so that we do not emit bitfield arithmetics
3104 unless there is some benefit from it. */
3105 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3106 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3107 return true;
3110 if (!insn)
3112 /* When processing REG_NOTES look at the list of
3113 replacements done on the insn to find the register that X
3114 was replaced by. */
3115 rtx tem;
3117 for (tem = purge_bitfield_addressof_replacements;
3118 tem != NULL_RTX;
3119 tem = XEXP (XEXP (tem, 1), 1))
3120 if (rtx_equal_p (x, XEXP (tem, 0)))
3122 *loc = XEXP (XEXP (tem, 1), 0);
3123 return true;
3126 /* See comment for purge_addressof_replacements. */
3127 for (tem = purge_addressof_replacements;
3128 tem != NULL_RTX;
3129 tem = XEXP (XEXP (tem, 1), 1))
3130 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3132 rtx z = XEXP (XEXP (tem, 1), 0);
3134 if (GET_MODE (x) == GET_MODE (z)
3135 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3136 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3137 abort ();
3139 /* It can happen that the note may speak of things
3140 in a wider (or just different) mode than the
3141 code did. This is especially true of
3142 REG_RETVAL. */
3144 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3145 z = SUBREG_REG (z);
3147 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3148 && (GET_MODE_SIZE (GET_MODE (x))
3149 > GET_MODE_SIZE (GET_MODE (z))))
3151 /* This can occur as a result in invalid
3152 pointer casts, e.g. float f; ...
3153 *(long long int *)&f.
3154 ??? We could emit a warning here, but
3155 without a line number that wouldn't be
3156 very helpful. */
3157 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3159 else
3160 z = gen_lowpart (GET_MODE (x), z);
3162 *loc = z;
3163 return true;
3166 /* When we are processing the REG_NOTES of the last instruction
3167 of a libcall, there will be typically no replacements
3168 for that insn; the replacements happened before, piecemeal
3169 fashion. OTOH we are not interested in the details of
3170 this for the REG_EQUAL note, we want to know the big picture,
3171 which can be succinctly described with a simple SUBREG.
3172 Note that removing the REG_EQUAL note is not an option
3173 on the last insn of a libcall, so we must do a replacement. */
3175 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3176 we got
3177 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3178 [0 S8 A32]), which can be expressed with a simple
3179 same-size subreg */
3180 if ((GET_MODE_SIZE (GET_MODE (x))
3181 <= GET_MODE_SIZE (GET_MODE (sub)))
3182 /* Again, invalid pointer casts (as in
3183 compile/990203-1.c) can require paradoxical
3184 subregs. */
3185 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3186 && (GET_MODE_SIZE (GET_MODE (x))
3187 > GET_MODE_SIZE (GET_MODE (sub)))
3188 && libcall))
3190 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3191 return true;
3193 /* ??? Are there other cases we should handle? */
3195 /* Sometimes we may not be able to find the replacement. For
3196 example when the original insn was a MEM in a wider mode,
3197 and the note is part of a sign extension of a narrowed
3198 version of that MEM. Gcc testcase compile/990829-1.c can
3199 generate an example of this situation. Rather than complain
3200 we return false, which will prompt our caller to remove the
3201 offending note. */
3202 return false;
3205 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3206 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3208 /* Do not frob unchanging MEMs. If a later reference forces the
3209 pseudo to the stack, we can wind up with multiple writes to
3210 an unchanging memory, which is invalid. */
3211 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3214 /* Don't even consider working with paradoxical subregs,
3215 or the moral equivalent seen here. */
3216 else if (size_x <= size_sub
3217 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3219 /* Do a bitfield insertion to mirror what would happen
3220 in memory. */
3222 rtx val, seq;
3224 if (store)
3226 rtx p = PREV_INSN (insn);
3228 start_sequence ();
3229 val = gen_reg_rtx (GET_MODE (x));
3230 if (! validate_change (insn, loc, val, 0))
3232 /* Discard the current sequence and put the
3233 ADDRESSOF on stack. */
3234 end_sequence ();
3235 goto give_up;
3237 seq = get_insns ();
3238 end_sequence ();
3239 emit_insn_before (seq, insn);
3240 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3241 insn, ht);
3243 start_sequence ();
3244 store_bit_field (sub, size_x, 0, GET_MODE (x),
3245 val, GET_MODE_SIZE (GET_MODE (sub)));
3247 /* Make sure to unshare any shared rtl that store_bit_field
3248 might have created. */
3249 unshare_all_rtl_again (get_insns ());
3251 seq = get_insns ();
3252 end_sequence ();
3253 p = emit_insn_after (seq, insn);
3254 if (NEXT_INSN (insn))
3255 compute_insns_for_mem (NEXT_INSN (insn),
3256 p ? NEXT_INSN (p) : NULL_RTX,
3257 ht);
3259 else
3261 rtx p = PREV_INSN (insn);
3263 start_sequence ();
3264 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3265 GET_MODE (x), GET_MODE (x),
3266 GET_MODE_SIZE (GET_MODE (sub)));
3268 if (! validate_change (insn, loc, val, 0))
3270 /* Discard the current sequence and put the
3271 ADDRESSOF on stack. */
3272 end_sequence ();
3273 goto give_up;
3276 seq = get_insns ();
3277 end_sequence ();
3278 emit_insn_before (seq, insn);
3279 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3280 insn, ht);
3283 /* Remember the replacement so that the same one can be done
3284 on the REG_NOTES. */
3285 purge_bitfield_addressof_replacements
3286 = gen_rtx_EXPR_LIST (VOIDmode, x,
3287 gen_rtx_EXPR_LIST
3288 (VOIDmode, val,
3289 purge_bitfield_addressof_replacements));
3291 /* We replaced with a reg -- all done. */
3292 return true;
3296 else if (validate_change (insn, loc, sub, 0))
3298 /* Remember the replacement so that the same one can be done
3299 on the REG_NOTES. */
3300 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3302 rtx tem;
3304 for (tem = purge_addressof_replacements;
3305 tem != NULL_RTX;
3306 tem = XEXP (XEXP (tem, 1), 1))
3307 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3309 XEXP (XEXP (tem, 1), 0) = sub;
3310 return true;
3312 purge_addressof_replacements
3313 = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
3314 gen_rtx_EXPR_LIST (VOIDmode, sub,
3315 purge_addressof_replacements));
3316 return true;
3318 goto restart;
3322 give_up:
3323 /* Scan all subexpressions. */
3324 fmt = GET_RTX_FORMAT (code);
3325 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3327 if (*fmt == 'e')
3328 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3329 may_postpone, ht);
3330 else if (*fmt == 'E')
3331 for (j = 0; j < XVECLEN (x, i); j++)
3332 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3333 may_postpone, ht);
3336 return result;
3339 /* Return a hash value for K, a REG. */
3341 static hashval_t
3342 insns_for_mem_hash (const void *k)
3344 /* Use the address of the key for the hash value. */
3345 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3346 return htab_hash_pointer (m->key);
3349 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3351 static int
3352 insns_for_mem_comp (const void *k1, const void *k2)
3354 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3355 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3356 return m1->key == m2->key;
3359 struct insns_for_mem_walk_info
3361 /* The hash table that we are using to record which INSNs use which
3362 MEMs. */
3363 htab_t ht;
3365 /* The INSN we are currently processing. */
3366 rtx insn;
3368 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3369 to find the insns that use the REGs in the ADDRESSOFs. */
3370 int pass;
3373 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3374 that might be used in an ADDRESSOF expression, record this INSN in
3375 the hash table given by DATA (which is really a pointer to an
3376 insns_for_mem_walk_info structure). */
3378 static int
3379 insns_for_mem_walk (rtx *r, void *data)
3381 struct insns_for_mem_walk_info *ifmwi
3382 = (struct insns_for_mem_walk_info *) data;
3383 struct insns_for_mem_entry tmp;
3384 tmp.insns = NULL_RTX;
3386 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3387 && GET_CODE (XEXP (*r, 0)) == REG)
3389 void **e;
3390 tmp.key = XEXP (*r, 0);
3391 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3392 if (*e == NULL)
3394 *e = ggc_alloc (sizeof (tmp));
3395 memcpy (*e, &tmp, sizeof (tmp));
3398 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3400 struct insns_for_mem_entry *ifme;
3401 tmp.key = *r;
3402 ifme = htab_find (ifmwi->ht, &tmp);
3404 /* If we have not already recorded this INSN, do so now. Since
3405 we process the INSNs in order, we know that if we have
3406 recorded it it must be at the front of the list. */
3407 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3408 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3409 ifme->insns);
3412 return 0;
3415 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3416 which REGs in HT. */
3418 static void
3419 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3421 rtx insn;
3422 struct insns_for_mem_walk_info ifmwi;
3423 ifmwi.ht = ht;
3425 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3426 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3427 if (INSN_P (insn))
3429 ifmwi.insn = insn;
3430 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3434 /* Helper function for purge_addressof called through for_each_rtx.
3435 Returns true iff the rtl is an ADDRESSOF. */
3437 static int
3438 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3440 return GET_CODE (*rtl) == ADDRESSOF;
3443 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3444 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3445 stack. */
3447 void
3448 purge_addressof (rtx insns)
3450 rtx insn, tmp;
3451 htab_t ht;
3453 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3454 requires a fixup pass over the instruction stream to correct
3455 INSNs that depended on the REG being a REG, and not a MEM. But,
3456 these fixup passes are slow. Furthermore, most MEMs are not
3457 mentioned in very many instructions. So, we speed up the process
3458 by pre-calculating which REGs occur in which INSNs; that allows
3459 us to perform the fixup passes much more quickly. */
3460 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3461 compute_insns_for_mem (insns, NULL_RTX, ht);
3463 postponed_insns = NULL;
3465 for (insn = insns; insn; insn = NEXT_INSN (insn))
3466 if (INSN_P (insn))
3468 if (! purge_addressof_1 (&PATTERN (insn), insn,
3469 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3470 /* If we could not replace the ADDRESSOFs in the insn,
3471 something is wrong. */
3472 abort ();
3474 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3476 /* If we could not replace the ADDRESSOFs in the insn's notes,
3477 we can just remove the offending notes instead. */
3478 rtx note;
3480 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3482 /* If we find a REG_RETVAL note then the insn is a libcall.
3483 Such insns must have REG_EQUAL notes as well, in order
3484 for later passes of the compiler to work. So it is not
3485 safe to delete the notes here, and instead we abort. */
3486 if (REG_NOTE_KIND (note) == REG_RETVAL)
3487 abort ();
3488 if (for_each_rtx (&note, is_addressof, NULL))
3489 remove_note (insn, note);
3494 /* Process the postponed insns. */
3495 while (postponed_insns)
3497 insn = XEXP (postponed_insns, 0);
3498 tmp = postponed_insns;
3499 postponed_insns = XEXP (postponed_insns, 1);
3500 free_INSN_LIST_node (tmp);
3502 if (! purge_addressof_1 (&PATTERN (insn), insn,
3503 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3504 abort ();
3507 /* Clean up. */
3508 purge_bitfield_addressof_replacements = 0;
3509 purge_addressof_replacements = 0;
3511 /* REGs are shared. purge_addressof will destructively replace a REG
3512 with a MEM, which creates shared MEMs.
3514 Unfortunately, the children of put_reg_into_stack assume that MEMs
3515 referring to the same stack slot are shared (fixup_var_refs and
3516 the associated hash table code).
3518 So, we have to do another unsharing pass after we have flushed any
3519 REGs that had their address taken into the stack.
3521 It may be worth tracking whether or not we converted any REGs into
3522 MEMs to avoid this overhead when it is not needed. */
3523 unshare_all_rtl_again (get_insns ());
3526 /* Convert a SET of a hard subreg to a set of the appropriate hard
3527 register. A subroutine of purge_hard_subreg_sets. */
3529 static void
3530 purge_single_hard_subreg_set (rtx pattern)
3532 rtx reg = SET_DEST (pattern);
3533 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3534 int offset = 0;
3536 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3537 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3539 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3540 GET_MODE (SUBREG_REG (reg)),
3541 SUBREG_BYTE (reg),
3542 GET_MODE (reg));
3543 reg = SUBREG_REG (reg);
3547 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3549 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3550 SET_DEST (pattern) = reg;
3554 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3555 only such SETs that we expect to see are those left in because
3556 integrate can't handle sets of parts of a return value register.
3558 We don't use alter_subreg because we only want to eliminate subregs
3559 of hard registers. */
3561 void
3562 purge_hard_subreg_sets (rtx insn)
3564 for (; insn; insn = NEXT_INSN (insn))
3566 if (INSN_P (insn))
3568 rtx pattern = PATTERN (insn);
3569 switch (GET_CODE (pattern))
3571 case SET:
3572 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3573 purge_single_hard_subreg_set (pattern);
3574 break;
3575 case PARALLEL:
3577 int j;
3578 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3580 rtx inner_pattern = XVECEXP (pattern, 0, j);
3581 if (GET_CODE (inner_pattern) == SET
3582 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3583 purge_single_hard_subreg_set (inner_pattern);
3586 break;
3587 default:
3588 break;
3594 /* Pass through the INSNS of function FNDECL and convert virtual register
3595 references to hard register references. */
3597 void
3598 instantiate_virtual_regs (tree fndecl, rtx insns)
3600 rtx insn;
3601 unsigned int i;
3603 /* Compute the offsets to use for this function. */
3604 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3605 var_offset = STARTING_FRAME_OFFSET;
3606 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3607 out_arg_offset = STACK_POINTER_OFFSET;
3608 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3610 /* Scan all variables and parameters of this function. For each that is
3611 in memory, instantiate all virtual registers if the result is a valid
3612 address. If not, we do it later. That will handle most uses of virtual
3613 regs on many machines. */
3614 instantiate_decls (fndecl, 1);
3616 /* Initialize recognition, indicating that volatile is OK. */
3617 init_recog ();
3619 /* Scan through all the insns, instantiating every virtual register still
3620 present. */
3621 for (insn = insns; insn; insn = NEXT_INSN (insn))
3622 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3623 || GET_CODE (insn) == CALL_INSN)
3625 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3626 if (INSN_DELETED_P (insn))
3627 continue;
3628 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3629 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3630 if (GET_CODE (insn) == CALL_INSN)
3631 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3632 NULL_RTX, 0);
3634 /* Past this point all ASM statements should match. Verify that
3635 to avoid failures later in the compilation process. */
3636 if (asm_noperands (PATTERN (insn)) >= 0
3637 && ! check_asm_operands (PATTERN (insn)))
3638 instantiate_virtual_regs_lossage (insn);
3641 /* Instantiate the stack slots for the parm registers, for later use in
3642 addressof elimination. */
3643 for (i = 0; i < max_parm_reg; ++i)
3644 if (parm_reg_stack_loc[i])
3645 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3647 /* Now instantiate the remaining register equivalences for debugging info.
3648 These will not be valid addresses. */
3649 instantiate_decls (fndecl, 0);
3651 /* Indicate that, from now on, assign_stack_local should use
3652 frame_pointer_rtx. */
3653 virtuals_instantiated = 1;
3656 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3657 all virtual registers in their DECL_RTL's.
3659 If VALID_ONLY, do this only if the resulting address is still valid.
3660 Otherwise, always do it. */
3662 static void
3663 instantiate_decls (tree fndecl, int valid_only)
3665 tree decl;
3667 /* Process all parameters of the function. */
3668 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3670 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3671 HOST_WIDE_INT size_rtl;
3673 instantiate_decl (DECL_RTL (decl), size, valid_only);
3675 /* If the parameter was promoted, then the incoming RTL mode may be
3676 larger than the declared type size. We must use the larger of
3677 the two sizes. */
3678 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3679 size = MAX (size_rtl, size);
3680 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3683 /* Now process all variables defined in the function or its subblocks. */
3684 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3687 /* Subroutine of instantiate_decls: Process all decls in the given
3688 BLOCK node and all its subblocks. */
3690 static void
3691 instantiate_decls_1 (tree let, int valid_only)
3693 tree t;
3695 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3696 if (DECL_RTL_SET_P (t))
3697 instantiate_decl (DECL_RTL (t),
3698 int_size_in_bytes (TREE_TYPE (t)),
3699 valid_only);
3701 /* Process all subblocks. */
3702 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3703 instantiate_decls_1 (t, valid_only);
3706 /* Subroutine of the preceding procedures: Given RTL representing a
3707 decl and the size of the object, do any instantiation required.
3709 If VALID_ONLY is nonzero, it means that the RTL should only be
3710 changed if the new address is valid. */
3712 static void
3713 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3715 enum machine_mode mode;
3716 rtx addr;
3718 /* If this is not a MEM, no need to do anything. Similarly if the
3719 address is a constant or a register that is not a virtual register. */
3721 if (x == 0 || GET_CODE (x) != MEM)
3722 return;
3724 addr = XEXP (x, 0);
3725 if (CONSTANT_P (addr)
3726 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3727 || (GET_CODE (addr) == REG
3728 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3729 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3730 return;
3732 /* If we should only do this if the address is valid, copy the address.
3733 We need to do this so we can undo any changes that might make the
3734 address invalid. This copy is unfortunate, but probably can't be
3735 avoided. */
3737 if (valid_only)
3738 addr = copy_rtx (addr);
3740 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3742 if (valid_only && size >= 0)
3744 unsigned HOST_WIDE_INT decl_size = size;
3746 /* Now verify that the resulting address is valid for every integer or
3747 floating-point mode up to and including SIZE bytes long. We do this
3748 since the object might be accessed in any mode and frame addresses
3749 are shared. */
3751 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3752 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3753 mode = GET_MODE_WIDER_MODE (mode))
3754 if (! memory_address_p (mode, addr))
3755 return;
3757 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3758 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3759 mode = GET_MODE_WIDER_MODE (mode))
3760 if (! memory_address_p (mode, addr))
3761 return;
3764 /* Put back the address now that we have updated it and we either know
3765 it is valid or we don't care whether it is valid. */
3767 XEXP (x, 0) = addr;
3770 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3771 is a virtual register, return the equivalent hard register and set the
3772 offset indirectly through the pointer. Otherwise, return 0. */
3774 static rtx
3775 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3777 rtx new;
3778 HOST_WIDE_INT offset;
3780 if (x == virtual_incoming_args_rtx)
3781 new = arg_pointer_rtx, offset = in_arg_offset;
3782 else if (x == virtual_stack_vars_rtx)
3783 new = frame_pointer_rtx, offset = var_offset;
3784 else if (x == virtual_stack_dynamic_rtx)
3785 new = stack_pointer_rtx, offset = dynamic_offset;
3786 else if (x == virtual_outgoing_args_rtx)
3787 new = stack_pointer_rtx, offset = out_arg_offset;
3788 else if (x == virtual_cfa_rtx)
3789 new = arg_pointer_rtx, offset = cfa_offset;
3790 else
3791 return 0;
3793 *poffset = offset;
3794 return new;
3798 /* Called when instantiate_virtual_regs has failed to update the instruction.
3799 Usually this means that non-matching instruction has been emit, however for
3800 asm statements it may be the problem in the constraints. */
3801 static void
3802 instantiate_virtual_regs_lossage (rtx insn)
3804 if (asm_noperands (PATTERN (insn)) >= 0)
3806 error_for_asm (insn, "impossible constraint in `asm'");
3807 delete_insn (insn);
3809 else
3810 abort ();
3812 /* Given a pointer to a piece of rtx and an optional pointer to the
3813 containing object, instantiate any virtual registers present in it.
3815 If EXTRA_INSNS, we always do the replacement and generate
3816 any extra insns before OBJECT. If it zero, we do nothing if replacement
3817 is not valid.
3819 Return 1 if we either had nothing to do or if we were able to do the
3820 needed replacement. Return 0 otherwise; we only return zero if
3821 EXTRA_INSNS is zero.
3823 We first try some simple transformations to avoid the creation of extra
3824 pseudos. */
3826 static int
3827 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3829 rtx x;
3830 RTX_CODE code;
3831 rtx new = 0;
3832 HOST_WIDE_INT offset = 0;
3833 rtx temp;
3834 rtx seq;
3835 int i, j;
3836 const char *fmt;
3838 /* Re-start here to avoid recursion in common cases. */
3839 restart:
3841 x = *loc;
3842 if (x == 0)
3843 return 1;
3845 /* We may have detected and deleted invalid asm statements. */
3846 if (object && INSN_P (object) && INSN_DELETED_P (object))
3847 return 1;
3849 code = GET_CODE (x);
3851 /* Check for some special cases. */
3852 switch (code)
3854 case CONST_INT:
3855 case CONST_DOUBLE:
3856 case CONST_VECTOR:
3857 case CONST:
3858 case SYMBOL_REF:
3859 case CODE_LABEL:
3860 case PC:
3861 case CC0:
3862 case ASM_INPUT:
3863 case ADDR_VEC:
3864 case ADDR_DIFF_VEC:
3865 case RETURN:
3866 return 1;
3868 case SET:
3869 /* We are allowed to set the virtual registers. This means that
3870 the actual register should receive the source minus the
3871 appropriate offset. This is used, for example, in the handling
3872 of non-local gotos. */
3873 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3875 rtx src = SET_SRC (x);
3877 /* We are setting the register, not using it, so the relevant
3878 offset is the negative of the offset to use were we using
3879 the register. */
3880 offset = - offset;
3881 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3883 /* The only valid sources here are PLUS or REG. Just do
3884 the simplest possible thing to handle them. */
3885 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3887 instantiate_virtual_regs_lossage (object);
3888 return 1;
3891 start_sequence ();
3892 if (GET_CODE (src) != REG)
3893 temp = force_operand (src, NULL_RTX);
3894 else
3895 temp = src;
3896 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3897 seq = get_insns ();
3898 end_sequence ();
3900 emit_insn_before (seq, object);
3901 SET_DEST (x) = new;
3903 if (! validate_change (object, &SET_SRC (x), temp, 0)
3904 || ! extra_insns)
3905 instantiate_virtual_regs_lossage (object);
3907 return 1;
3910 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3911 loc = &SET_SRC (x);
3912 goto restart;
3914 case PLUS:
3915 /* Handle special case of virtual register plus constant. */
3916 if (CONSTANT_P (XEXP (x, 1)))
3918 rtx old, new_offset;
3920 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3921 if (GET_CODE (XEXP (x, 0)) == PLUS)
3923 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3925 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3926 extra_insns);
3927 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3929 else
3931 loc = &XEXP (x, 0);
3932 goto restart;
3936 #ifdef POINTERS_EXTEND_UNSIGNED
3937 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3938 we can commute the PLUS and SUBREG because pointers into the
3939 frame are well-behaved. */
3940 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3941 && GET_CODE (XEXP (x, 1)) == CONST_INT
3942 && 0 != (new
3943 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3944 &offset))
3945 && validate_change (object, loc,
3946 plus_constant (gen_lowpart (ptr_mode,
3947 new),
3948 offset
3949 + INTVAL (XEXP (x, 1))),
3951 return 1;
3952 #endif
3953 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3955 /* We know the second operand is a constant. Unless the
3956 first operand is a REG (which has been already checked),
3957 it needs to be checked. */
3958 if (GET_CODE (XEXP (x, 0)) != REG)
3960 loc = &XEXP (x, 0);
3961 goto restart;
3963 return 1;
3966 new_offset = plus_constant (XEXP (x, 1), offset);
3968 /* If the new constant is zero, try to replace the sum with just
3969 the register. */
3970 if (new_offset == const0_rtx
3971 && validate_change (object, loc, new, 0))
3972 return 1;
3974 /* Next try to replace the register and new offset.
3975 There are two changes to validate here and we can't assume that
3976 in the case of old offset equals new just changing the register
3977 will yield a valid insn. In the interests of a little efficiency,
3978 however, we only call validate change once (we don't queue up the
3979 changes and then call apply_change_group). */
3981 old = XEXP (x, 0);
3982 if (offset == 0
3983 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3984 : (XEXP (x, 0) = new,
3985 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3987 if (! extra_insns)
3989 XEXP (x, 0) = old;
3990 return 0;
3993 /* Otherwise copy the new constant into a register and replace
3994 constant with that register. */
3995 temp = gen_reg_rtx (Pmode);
3996 XEXP (x, 0) = new;
3997 if (validate_change (object, &XEXP (x, 1), temp, 0))
3998 emit_insn_before (gen_move_insn (temp, new_offset), object);
3999 else
4001 /* If that didn't work, replace this expression with a
4002 register containing the sum. */
4004 XEXP (x, 0) = old;
4005 new = gen_rtx_PLUS (Pmode, new, new_offset);
4007 start_sequence ();
4008 temp = force_operand (new, NULL_RTX);
4009 seq = get_insns ();
4010 end_sequence ();
4012 emit_insn_before (seq, object);
4013 if (! validate_change (object, loc, temp, 0)
4014 && ! validate_replace_rtx (x, temp, object))
4016 instantiate_virtual_regs_lossage (object);
4017 return 1;
4022 return 1;
4025 /* Fall through to generic two-operand expression case. */
4026 case EXPR_LIST:
4027 case CALL:
4028 case COMPARE:
4029 case MINUS:
4030 case MULT:
4031 case DIV: case UDIV:
4032 case MOD: case UMOD:
4033 case AND: case IOR: case XOR:
4034 case ROTATERT: case ROTATE:
4035 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
4036 case NE: case EQ:
4037 case GE: case GT: case GEU: case GTU:
4038 case LE: case LT: case LEU: case LTU:
4039 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
4040 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
4041 loc = &XEXP (x, 0);
4042 goto restart;
4044 case MEM:
4045 /* Most cases of MEM that convert to valid addresses have already been
4046 handled by our scan of decls. The only special handling we
4047 need here is to make a copy of the rtx to ensure it isn't being
4048 shared if we have to change it to a pseudo.
4050 If the rtx is a simple reference to an address via a virtual register,
4051 it can potentially be shared. In such cases, first try to make it
4052 a valid address, which can also be shared. Otherwise, copy it and
4053 proceed normally.
4055 First check for common cases that need no processing. These are
4056 usually due to instantiation already being done on a previous instance
4057 of a shared rtx. */
4059 temp = XEXP (x, 0);
4060 if (CONSTANT_ADDRESS_P (temp)
4061 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4062 || temp == arg_pointer_rtx
4063 #endif
4064 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4065 || temp == hard_frame_pointer_rtx
4066 #endif
4067 || temp == frame_pointer_rtx)
4068 return 1;
4070 if (GET_CODE (temp) == PLUS
4071 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4072 && (XEXP (temp, 0) == frame_pointer_rtx
4073 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4074 || XEXP (temp, 0) == hard_frame_pointer_rtx
4075 #endif
4076 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4077 || XEXP (temp, 0) == arg_pointer_rtx
4078 #endif
4080 return 1;
4082 if (temp == virtual_stack_vars_rtx
4083 || temp == virtual_incoming_args_rtx
4084 || (GET_CODE (temp) == PLUS
4085 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4086 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4087 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4089 /* This MEM may be shared. If the substitution can be done without
4090 the need to generate new pseudos, we want to do it in place
4091 so all copies of the shared rtx benefit. The call below will
4092 only make substitutions if the resulting address is still
4093 valid.
4095 Note that we cannot pass X as the object in the recursive call
4096 since the insn being processed may not allow all valid
4097 addresses. However, if we were not passed on object, we can
4098 only modify X without copying it if X will have a valid
4099 address.
4101 ??? Also note that this can still lose if OBJECT is an insn that
4102 has less restrictions on an address that some other insn.
4103 In that case, we will modify the shared address. This case
4104 doesn't seem very likely, though. One case where this could
4105 happen is in the case of a USE or CLOBBER reference, but we
4106 take care of that below. */
4108 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4109 object ? object : x, 0))
4110 return 1;
4112 /* Otherwise make a copy and process that copy. We copy the entire
4113 RTL expression since it might be a PLUS which could also be
4114 shared. */
4115 *loc = x = copy_rtx (x);
4118 /* Fall through to generic unary operation case. */
4119 case PREFETCH:
4120 case SUBREG:
4121 case STRICT_LOW_PART:
4122 case NEG: case NOT:
4123 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4124 case SIGN_EXTEND: case ZERO_EXTEND:
4125 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4126 case FLOAT: case FIX:
4127 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4128 case ABS:
4129 case SQRT:
4130 case FFS:
4131 case CLZ: case CTZ:
4132 case POPCOUNT: case PARITY:
4133 /* These case either have just one operand or we know that we need not
4134 check the rest of the operands. */
4135 loc = &XEXP (x, 0);
4136 goto restart;
4138 case USE:
4139 case CLOBBER:
4140 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4141 go ahead and make the invalid one, but do it to a copy. For a REG,
4142 just make the recursive call, since there's no chance of a problem. */
4144 if ((GET_CODE (XEXP (x, 0)) == MEM
4145 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4147 || (GET_CODE (XEXP (x, 0)) == REG
4148 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4149 return 1;
4151 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4152 loc = &XEXP (x, 0);
4153 goto restart;
4155 case REG:
4156 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4157 in front of this insn and substitute the temporary. */
4158 if ((new = instantiate_new_reg (x, &offset)) != 0)
4160 temp = plus_constant (new, offset);
4161 if (!validate_change (object, loc, temp, 0))
4163 if (! extra_insns)
4164 return 0;
4166 start_sequence ();
4167 temp = force_operand (temp, NULL_RTX);
4168 seq = get_insns ();
4169 end_sequence ();
4171 emit_insn_before (seq, object);
4172 if (! validate_change (object, loc, temp, 0)
4173 && ! validate_replace_rtx (x, temp, object))
4174 instantiate_virtual_regs_lossage (object);
4178 return 1;
4180 case ADDRESSOF:
4181 if (GET_CODE (XEXP (x, 0)) == REG)
4182 return 1;
4184 else if (GET_CODE (XEXP (x, 0)) == MEM)
4186 /* If we have a (addressof (mem ..)), do any instantiation inside
4187 since we know we'll be making the inside valid when we finally
4188 remove the ADDRESSOF. */
4189 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4190 return 1;
4192 break;
4194 default:
4195 break;
4198 /* Scan all subexpressions. */
4199 fmt = GET_RTX_FORMAT (code);
4200 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4201 if (*fmt == 'e')
4203 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4204 return 0;
4206 else if (*fmt == 'E')
4207 for (j = 0; j < XVECLEN (x, i); j++)
4208 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4209 extra_insns))
4210 return 0;
4212 return 1;
4215 /* Return the first insn following those generated by `assign_parms'. */
4218 get_first_nonparm_insn (void)
4220 if (last_parm_insn)
4221 return NEXT_INSN (last_parm_insn);
4222 return get_insns ();
4225 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4226 This means a type for which function calls must pass an address to the
4227 function or get an address back from the function.
4228 EXP may be a type node or an expression (whose type is tested). */
4231 aggregate_value_p (tree exp, tree fntype)
4233 int i, regno, nregs;
4234 rtx reg;
4236 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4238 if (fntype)
4239 switch (TREE_CODE (fntype))
4241 case CALL_EXPR:
4242 fntype = get_callee_fndecl (fntype);
4243 fntype = fntype ? TREE_TYPE (fntype) : 0;
4244 break;
4245 case FUNCTION_DECL:
4246 fntype = TREE_TYPE (fntype);
4247 break;
4248 case FUNCTION_TYPE:
4249 case METHOD_TYPE:
4250 break;
4251 case IDENTIFIER_NODE:
4252 fntype = 0;
4253 break;
4254 default:
4255 /* We don't expect other rtl types here. */
4256 abort();
4259 if (TREE_CODE (type) == VOID_TYPE)
4260 return 0;
4261 if (targetm.calls.return_in_memory (type, fntype))
4262 return 1;
4263 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4264 and thus can't be returned in registers. */
4265 if (TREE_ADDRESSABLE (type))
4266 return 1;
4267 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4268 return 1;
4269 /* Make sure we have suitable call-clobbered regs to return
4270 the value in; if not, we must return it in memory. */
4271 reg = hard_function_value (type, 0, 0);
4273 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4274 it is OK. */
4275 if (GET_CODE (reg) != REG)
4276 return 0;
4278 regno = REGNO (reg);
4279 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
4280 for (i = 0; i < nregs; i++)
4281 if (! call_used_regs[regno + i])
4282 return 1;
4283 return 0;
4286 /* Assign RTL expressions to the function's parameters.
4287 This may involve copying them into registers and using
4288 those registers as the RTL for them. */
4290 void
4291 assign_parms (tree fndecl)
4293 tree parm;
4294 CUMULATIVE_ARGS args_so_far;
4295 /* Total space needed so far for args on the stack,
4296 given as a constant and a tree-expression. */
4297 struct args_size stack_args_size;
4298 HOST_WIDE_INT extra_pretend_bytes = 0;
4299 tree fntype = TREE_TYPE (fndecl);
4300 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4301 /* This is used for the arg pointer when referring to stack args. */
4302 rtx internal_arg_pointer;
4303 /* This is a dummy PARM_DECL that we used for the function result if
4304 the function returns a structure. */
4305 tree function_result_decl = 0;
4306 int varargs_setup = 0;
4307 int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
4308 rtx conversion_insns = 0;
4310 /* Nonzero if function takes extra anonymous args.
4311 This means the last named arg must be on the stack
4312 right before the anonymous ones. */
4313 int stdarg = current_function_stdarg;
4315 /* If the reg that the virtual arg pointer will be translated into is
4316 not a fixed reg or is the stack pointer, make a copy of the virtual
4317 arg pointer, and address parms via the copy. The frame pointer is
4318 considered fixed even though it is not marked as such.
4320 The second time through, simply use ap to avoid generating rtx. */
4322 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4323 || ! (fixed_regs[ARG_POINTER_REGNUM]
4324 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4325 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4326 else
4327 internal_arg_pointer = virtual_incoming_args_rtx;
4328 current_function_internal_arg_pointer = internal_arg_pointer;
4330 stack_args_size.constant = 0;
4331 stack_args_size.var = 0;
4333 /* If struct value address is treated as the first argument, make it so. */
4334 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
4335 && ! current_function_returns_pcc_struct
4336 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
4338 tree type = build_pointer_type (TREE_TYPE (fntype));
4340 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4342 DECL_ARG_TYPE (function_result_decl) = type;
4343 TREE_CHAIN (function_result_decl) = fnargs;
4344 fnargs = function_result_decl;
4347 orig_fnargs = fnargs;
4349 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4350 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4352 /* If the target wants to split complex arguments into scalars, do so. */
4353 if (targetm.calls.split_complex_arg)
4354 fnargs = split_complex_args (fnargs);
4356 #ifdef REG_PARM_STACK_SPACE
4357 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4358 #endif
4360 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4361 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4362 #else
4363 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl, -1);
4364 #endif
4366 /* We haven't yet found an argument that we must push and pretend the
4367 caller did. */
4368 current_function_pretend_args_size = 0;
4370 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4372 rtx entry_parm;
4373 rtx stack_parm;
4374 enum machine_mode promoted_mode, passed_mode;
4375 enum machine_mode nominal_mode, promoted_nominal_mode;
4376 int unsignedp;
4377 struct locate_and_pad_arg_data locate;
4378 int passed_pointer = 0;
4379 int did_conversion = 0;
4380 tree passed_type = DECL_ARG_TYPE (parm);
4381 tree nominal_type = TREE_TYPE (parm);
4382 int last_named = 0, named_arg;
4383 int in_regs;
4384 int partial = 0;
4385 int pretend_bytes = 0;
4386 int loaded_in_reg = 0;
4388 /* Set LAST_NAMED if this is last named arg before last
4389 anonymous args. */
4390 if (stdarg)
4392 tree tem;
4394 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4395 if (DECL_NAME (tem))
4396 break;
4398 if (tem == 0)
4399 last_named = 1;
4401 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4402 most machines, if this is a varargs/stdarg function, then we treat
4403 the last named arg as if it were anonymous too. */
4404 named_arg = (targetm.calls.strict_argument_naming (&args_so_far)
4405 ? 1 : !last_named);
4407 if (TREE_TYPE (parm) == error_mark_node
4408 /* This can happen after weird syntax errors
4409 or if an enum type is defined among the parms. */
4410 || TREE_CODE (parm) != PARM_DECL
4411 || passed_type == NULL)
4413 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4414 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4415 TREE_USED (parm) = 1;
4416 continue;
4419 /* Find mode of arg as it is passed, and mode of arg
4420 as it should be during execution of this function. */
4421 passed_mode = TYPE_MODE (passed_type);
4422 nominal_mode = TYPE_MODE (nominal_type);
4424 /* If the parm's mode is VOID, its value doesn't matter,
4425 and avoid the usual things like emit_move_insn that could crash. */
4426 if (nominal_mode == VOIDmode)
4428 SET_DECL_RTL (parm, const0_rtx);
4429 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4430 continue;
4433 /* If the parm is to be passed as a transparent union, use the
4434 type of the first field for the tests below. We have already
4435 verified that the modes are the same. */
4436 if (DECL_TRANSPARENT_UNION (parm)
4437 || (TREE_CODE (passed_type) == UNION_TYPE
4438 && TYPE_TRANSPARENT_UNION (passed_type)))
4439 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4441 /* See if this arg was passed by invisible reference. It is if
4442 it is an object whose size depends on the contents of the
4443 object itself or if the machine requires these objects be passed
4444 that way. */
4446 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4447 || TREE_ADDRESSABLE (passed_type)
4448 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4449 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4450 passed_type, named_arg)
4451 #endif
4454 passed_type = nominal_type = build_pointer_type (passed_type);
4455 passed_pointer = 1;
4456 passed_mode = nominal_mode = Pmode;
4458 /* See if the frontend wants to pass this by invisible reference. */
4459 else if (passed_type != nominal_type
4460 && POINTER_TYPE_P (passed_type)
4461 && TREE_TYPE (passed_type) == nominal_type)
4463 nominal_type = passed_type;
4464 passed_pointer = 1;
4465 passed_mode = nominal_mode = Pmode;
4468 promoted_mode = passed_mode;
4470 if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
4472 /* Compute the mode in which the arg is actually extended to. */
4473 unsignedp = TYPE_UNSIGNED (passed_type);
4474 promoted_mode = promote_mode (passed_type, promoted_mode,
4475 &unsignedp, 1);
4478 /* Let machine desc say which reg (if any) the parm arrives in.
4479 0 means it arrives on the stack. */
4480 #ifdef FUNCTION_INCOMING_ARG
4481 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4482 passed_type, named_arg);
4483 #else
4484 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4485 passed_type, named_arg);
4486 #endif
4488 if (entry_parm == 0)
4489 promoted_mode = passed_mode;
4491 /* If this is the last named parameter, do any required setup for
4492 varargs or stdargs. We need to know about the case of this being an
4493 addressable type, in which case we skip the registers it
4494 would have arrived in.
4496 For stdargs, LAST_NAMED will be set for two parameters, the one that
4497 is actually the last named, and the dummy parameter. We only
4498 want to do this action once.
4500 Also, indicate when RTL generation is to be suppressed. */
4501 if (last_named && !varargs_setup)
4503 int varargs_pretend_bytes = 0;
4504 targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
4505 passed_type,
4506 &varargs_pretend_bytes, 0);
4507 varargs_setup = 1;
4509 /* If the back-end has requested extra stack space, record how
4510 much is needed. Do not change pretend_args_size otherwise
4511 since it may be nonzero from an earlier partial argument. */
4512 if (varargs_pretend_bytes > 0)
4513 current_function_pretend_args_size = varargs_pretend_bytes;
4516 /* Determine parm's home in the stack,
4517 in case it arrives in the stack or we should pretend it did.
4519 Compute the stack position and rtx where the argument arrives
4520 and its size.
4522 There is one complexity here: If this was a parameter that would
4523 have been passed in registers, but wasn't only because it is
4524 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4525 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4526 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4527 0 as it was the previous time. */
4528 in_regs = entry_parm != 0;
4529 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4530 in_regs = 1;
4531 #endif
4532 if (!in_regs && !named_arg)
4534 int pretend_named =
4535 targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
4536 if (pretend_named)
4538 #ifdef FUNCTION_INCOMING_ARG
4539 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4540 passed_type,
4541 pretend_named) != 0;
4542 #else
4543 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4544 passed_type,
4545 pretend_named) != 0;
4546 #endif
4550 /* If this parameter was passed both in registers and in the stack,
4551 use the copy on the stack. */
4552 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4553 entry_parm = 0;
4555 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4556 if (entry_parm)
4558 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4559 passed_type, named_arg);
4560 if (partial
4561 /* The caller might already have allocated stack space
4562 for the register parameters. */
4563 && reg_parm_stack_space == 0)
4565 /* Part of this argument is passed in registers and part
4566 is passed on the stack. Ask the prologue code to extend
4567 the stack part so that we can recreate the full value.
4569 PRETEND_BYTES is the size of the registers we need to store.
4570 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
4571 stack space that the prologue should allocate.
4573 Internally, gcc assumes that the argument pointer is
4574 aligned to STACK_BOUNDARY bits. This is used both for
4575 alignment optimizations (see init_emit) and to locate
4576 arguments that are aligned to more than PARM_BOUNDARY
4577 bits. We must preserve this invariant by rounding
4578 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
4579 boundary. */
4581 /* We assume at most one partial arg, and it must be the first
4582 argument on the stack. */
4583 if (extra_pretend_bytes || current_function_pretend_args_size)
4584 abort ();
4586 pretend_bytes = partial * UNITS_PER_WORD;
4587 current_function_pretend_args_size
4588 = CEIL_ROUND (pretend_bytes, STACK_BYTES);
4590 /* We want to align relative to the actual stack pointer, so
4591 don't include this in the stack size until later. */
4592 extra_pretend_bytes = current_function_pretend_args_size;
4595 #endif
4597 memset (&locate, 0, sizeof (locate));
4598 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4599 entry_parm ? partial : 0, fndecl,
4600 &stack_args_size, &locate);
4601 /* Adjust offsets to include the pretend args. */
4602 locate.slot_offset.constant += extra_pretend_bytes - pretend_bytes;
4603 locate.offset.constant += extra_pretend_bytes - pretend_bytes;
4606 rtx offset_rtx;
4608 /* If we're passing this arg using a reg, make its stack home
4609 the aligned stack slot. */
4610 if (entry_parm)
4611 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4612 else
4613 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4615 if (offset_rtx == const0_rtx)
4616 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4617 else
4618 stack_parm = gen_rtx_MEM (promoted_mode,
4619 gen_rtx_PLUS (Pmode,
4620 internal_arg_pointer,
4621 offset_rtx));
4623 set_mem_attributes (stack_parm, parm, 1);
4624 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4625 set_mem_align (stack_parm, PARM_BOUNDARY);
4627 /* Set also REG_ATTRS if parameter was passed in a register. */
4628 if (entry_parm)
4629 set_reg_attrs_for_parm (entry_parm, stack_parm);
4632 /* If this parm was passed part in regs and part in memory,
4633 pretend it arrived entirely in memory
4634 by pushing the register-part onto the stack.
4636 In the special case of a DImode or DFmode that is split,
4637 we could put it together in a pseudoreg directly,
4638 but for now that's not worth bothering with. */
4640 if (partial)
4642 /* Handle calls that pass values in multiple non-contiguous
4643 locations. The Irix 6 ABI has examples of this. */
4644 if (GET_CODE (entry_parm) == PARALLEL)
4645 emit_group_store (validize_mem (stack_parm), entry_parm,
4646 TREE_TYPE (parm),
4647 int_size_in_bytes (TREE_TYPE (parm)));
4649 else
4650 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4651 partial);
4653 entry_parm = stack_parm;
4656 /* If we didn't decide this parm came in a register,
4657 by default it came on the stack. */
4658 if (entry_parm == 0)
4659 entry_parm = stack_parm;
4661 /* Record permanently how this parm was passed. */
4662 set_decl_incoming_rtl (parm, entry_parm);
4664 /* If there is actually space on the stack for this parm,
4665 count it in stack_args_size; otherwise set stack_parm to 0
4666 to indicate there is no preallocated stack slot for the parm. */
4668 if (entry_parm == stack_parm
4669 || (GET_CODE (entry_parm) == PARALLEL
4670 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4671 #if defined (REG_PARM_STACK_SPACE)
4672 /* On some machines, even if a parm value arrives in a register
4673 there is still an (uninitialized) stack slot allocated
4674 for it. */
4675 || REG_PARM_STACK_SPACE (fndecl) > 0
4676 #endif
4679 stack_args_size.constant += locate.size.constant;
4680 if (locate.size.var)
4681 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4683 else
4684 /* No stack slot was pushed for this parm. */
4685 stack_parm = 0;
4687 /* Update info on where next arg arrives in registers. */
4689 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4690 passed_type, named_arg);
4692 /* If we can't trust the parm stack slot to be aligned enough
4693 for its ultimate type, don't use that slot after entry.
4694 We'll make another stack slot, if we need one. */
4696 unsigned int thisparm_boundary
4697 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4699 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4700 stack_parm = 0;
4703 /* If parm was passed in memory, and we need to convert it on entry,
4704 don't store it back in that same slot. */
4705 if (entry_parm == stack_parm
4706 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4707 stack_parm = 0;
4709 /* When an argument is passed in multiple locations, we can't
4710 make use of this information, but we can save some copying if
4711 the whole argument is passed in a single register. */
4712 if (GET_CODE (entry_parm) == PARALLEL
4713 && nominal_mode != BLKmode && passed_mode != BLKmode)
4715 int i, len = XVECLEN (entry_parm, 0);
4717 for (i = 0; i < len; i++)
4718 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4719 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4720 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4721 == passed_mode)
4722 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4724 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4725 set_decl_incoming_rtl (parm, entry_parm);
4726 break;
4730 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4731 in the mode in which it arrives.
4732 STACK_PARM is an RTX for a stack slot where the parameter can live
4733 during the function (in case we want to put it there).
4734 STACK_PARM is 0 if no stack slot was pushed for it.
4736 Now output code if necessary to convert ENTRY_PARM to
4737 the type in which this function declares it,
4738 and store that result in an appropriate place,
4739 which may be a pseudo reg, may be STACK_PARM,
4740 or may be a local stack slot if STACK_PARM is 0.
4742 Set DECL_RTL to that place. */
4744 if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode
4745 && XVECLEN (entry_parm, 0) > 1)
4747 /* Reconstitute objects the size of a register or larger using
4748 register operations instead of the stack. */
4749 rtx parmreg = gen_reg_rtx (nominal_mode);
4751 if (REG_P (parmreg))
4753 unsigned int regno = REGNO (parmreg);
4755 emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
4756 int_size_in_bytes (TREE_TYPE (parm)));
4757 SET_DECL_RTL (parm, parmreg);
4758 loaded_in_reg = 1;
4760 if (regno >= max_parm_reg)
4762 rtx *new;
4763 int old_max_parm_reg = max_parm_reg;
4765 /* It's slow to expand this one register at a time,
4766 but it's also rare and we need max_parm_reg to be
4767 precisely correct. */
4768 max_parm_reg = regno + 1;
4769 new = ggc_realloc (parm_reg_stack_loc,
4770 max_parm_reg * sizeof (rtx));
4771 memset (new + old_max_parm_reg, 0,
4772 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4773 parm_reg_stack_loc = new;
4774 parm_reg_stack_loc[regno] = stack_parm;
4779 if (nominal_mode == BLKmode
4780 #ifdef BLOCK_REG_PADDING
4781 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4782 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4783 #endif
4784 || GET_CODE (entry_parm) == PARALLEL)
4786 /* If a BLKmode arrives in registers, copy it to a stack slot.
4787 Handle calls that pass values in multiple non-contiguous
4788 locations. The Irix 6 ABI has examples of this. */
4789 if (GET_CODE (entry_parm) == REG
4790 || (GET_CODE (entry_parm) == PARALLEL
4791 && (!loaded_in_reg || !optimize)))
4793 int size = int_size_in_bytes (TREE_TYPE (parm));
4794 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4795 rtx mem;
4797 /* Note that we will be storing an integral number of words.
4798 So we have to be careful to ensure that we allocate an
4799 integral number of words. We do this below in the
4800 assign_stack_local if space was not allocated in the argument
4801 list. If it was, this will not work if PARM_BOUNDARY is not
4802 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4803 if it becomes a problem. Exception is when BLKmode arrives
4804 with arguments not conforming to word_mode. */
4806 if (stack_parm == 0)
4808 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4809 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4810 set_mem_attributes (stack_parm, parm, 1);
4812 else if (GET_CODE (entry_parm) == PARALLEL
4813 && GET_MODE(entry_parm) == BLKmode)
4815 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4816 abort ();
4818 mem = validize_mem (stack_parm);
4820 /* Handle calls that pass values in multiple non-contiguous
4821 locations. The Irix 6 ABI has examples of this. */
4822 if (GET_CODE (entry_parm) == PARALLEL)
4823 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4825 else if (size == 0)
4828 /* If SIZE is that of a mode no bigger than a word, just use
4829 that mode's store operation. */
4830 else if (size <= UNITS_PER_WORD)
4832 enum machine_mode mode
4833 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4835 if (mode != BLKmode
4836 #ifdef BLOCK_REG_PADDING
4837 && (size == UNITS_PER_WORD
4838 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4839 != (BYTES_BIG_ENDIAN ? upward : downward)))
4840 #endif
4843 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4844 emit_move_insn (change_address (mem, mode, 0), reg);
4847 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4848 machine must be aligned to the left before storing
4849 to memory. Note that the previous test doesn't
4850 handle all cases (e.g. SIZE == 3). */
4851 else if (size != UNITS_PER_WORD
4852 #ifdef BLOCK_REG_PADDING
4853 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4854 == downward)
4855 #else
4856 && BYTES_BIG_ENDIAN
4857 #endif
4860 rtx tem, x;
4861 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4862 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4864 x = expand_binop (word_mode, ashl_optab, reg,
4865 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4866 tem = change_address (mem, word_mode, 0);
4867 emit_move_insn (tem, x);
4869 else
4870 move_block_from_reg (REGNO (entry_parm), mem,
4871 size_stored / UNITS_PER_WORD);
4873 else
4874 move_block_from_reg (REGNO (entry_parm), mem,
4875 size_stored / UNITS_PER_WORD);
4877 /* If parm is already bound to register pair, don't change
4878 this binding. */
4879 if (! DECL_RTL_SET_P (parm))
4880 SET_DECL_RTL (parm, stack_parm);
4882 else if (! ((! optimize
4883 && ! DECL_REGISTER (parm))
4884 || TREE_SIDE_EFFECTS (parm)
4885 /* If -ffloat-store specified, don't put explicit
4886 float variables into registers. */
4887 || (flag_float_store
4888 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4889 /* Always assign pseudo to structure return or item passed
4890 by invisible reference. */
4891 || passed_pointer || parm == function_result_decl)
4893 /* Store the parm in a pseudoregister during the function, but we
4894 may need to do it in a wider mode. */
4896 rtx parmreg;
4897 unsigned int regno, regnoi = 0, regnor = 0;
4899 unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
4901 promoted_nominal_mode
4902 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4904 parmreg = gen_reg_rtx (promoted_nominal_mode);
4905 mark_user_reg (parmreg);
4907 /* If this was an item that we received a pointer to, set DECL_RTL
4908 appropriately. */
4909 if (passed_pointer)
4911 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4912 parmreg);
4913 set_mem_attributes (x, parm, 1);
4914 SET_DECL_RTL (parm, x);
4916 else
4918 SET_DECL_RTL (parm, parmreg);
4919 maybe_set_unchanging (DECL_RTL (parm), parm);
4922 /* Copy the value into the register. */
4923 if (nominal_mode != passed_mode
4924 || promoted_nominal_mode != promoted_mode)
4926 int save_tree_used;
4927 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4928 mode, by the caller. We now have to convert it to
4929 NOMINAL_MODE, if different. However, PARMREG may be in
4930 a different mode than NOMINAL_MODE if it is being stored
4931 promoted.
4933 If ENTRY_PARM is a hard register, it might be in a register
4934 not valid for operating in its mode (e.g., an odd-numbered
4935 register for a DFmode). In that case, moves are the only
4936 thing valid, so we can't do a convert from there. This
4937 occurs when the calling sequence allow such misaligned
4938 usages.
4940 In addition, the conversion may involve a call, which could
4941 clobber parameters which haven't been copied to pseudo
4942 registers yet. Therefore, we must first copy the parm to
4943 a pseudo reg here, and save the conversion until after all
4944 parameters have been moved. */
4946 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4948 emit_move_insn (tempreg, validize_mem (entry_parm));
4950 push_to_sequence (conversion_insns);
4951 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4953 if (GET_CODE (tempreg) == SUBREG
4954 && GET_MODE (tempreg) == nominal_mode
4955 && GET_CODE (SUBREG_REG (tempreg)) == REG
4956 && nominal_mode == passed_mode
4957 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4958 && GET_MODE_SIZE (GET_MODE (tempreg))
4959 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4961 /* The argument is already sign/zero extended, so note it
4962 into the subreg. */
4963 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4964 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4967 /* TREE_USED gets set erroneously during expand_assignment. */
4968 save_tree_used = TREE_USED (parm);
4969 expand_assignment (parm,
4970 make_tree (nominal_type, tempreg), 0);
4971 TREE_USED (parm) = save_tree_used;
4972 conversion_insns = get_insns ();
4973 did_conversion = 1;
4974 end_sequence ();
4976 else
4977 emit_move_insn (parmreg, validize_mem (entry_parm));
4979 /* If we were passed a pointer but the actual value
4980 can safely live in a register, put it in one. */
4981 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4982 /* If by-reference argument was promoted, demote it. */
4983 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4984 || ! ((! optimize
4985 && ! DECL_REGISTER (parm))
4986 || TREE_SIDE_EFFECTS (parm)
4987 /* If -ffloat-store specified, don't put explicit
4988 float variables into registers. */
4989 || (flag_float_store
4990 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4992 /* We can't use nominal_mode, because it will have been set to
4993 Pmode above. We must use the actual mode of the parm. */
4994 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4995 mark_user_reg (parmreg);
4996 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4998 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4999 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
5000 push_to_sequence (conversion_insns);
5001 emit_move_insn (tempreg, DECL_RTL (parm));
5002 SET_DECL_RTL (parm,
5003 convert_to_mode (GET_MODE (parmreg),
5004 tempreg,
5005 unsigned_p));
5006 emit_move_insn (parmreg, DECL_RTL (parm));
5007 conversion_insns = get_insns();
5008 did_conversion = 1;
5009 end_sequence ();
5011 else
5012 emit_move_insn (parmreg, DECL_RTL (parm));
5013 SET_DECL_RTL (parm, parmreg);
5014 /* STACK_PARM is the pointer, not the parm, and PARMREG is
5015 now the parm. */
5016 stack_parm = 0;
5018 #ifdef FUNCTION_ARG_CALLEE_COPIES
5019 /* If we are passed an arg by reference and it is our responsibility
5020 to make a copy, do it now.
5021 PASSED_TYPE and PASSED mode now refer to the pointer, not the
5022 original argument, so we must recreate them in the call to
5023 FUNCTION_ARG_CALLEE_COPIES. */
5024 /* ??? Later add code to handle the case that if the argument isn't
5025 modified, don't do the copy. */
5027 else if (passed_pointer
5028 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
5029 TYPE_MODE (TREE_TYPE (passed_type)),
5030 TREE_TYPE (passed_type),
5031 named_arg)
5032 && ! TREE_ADDRESSABLE (TREE_TYPE (passed_type)))
5034 rtx copy;
5035 tree type = TREE_TYPE (passed_type);
5037 /* This sequence may involve a library call perhaps clobbering
5038 registers that haven't been copied to pseudos yet. */
5040 push_to_sequence (conversion_insns);
5042 if (!COMPLETE_TYPE_P (type)
5043 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5044 /* This is a variable sized object. */
5045 copy = gen_rtx_MEM (BLKmode,
5046 allocate_dynamic_stack_space
5047 (expr_size (parm), NULL_RTX,
5048 TYPE_ALIGN (type)));
5049 else
5050 copy = assign_stack_temp (TYPE_MODE (type),
5051 int_size_in_bytes (type), 1);
5052 set_mem_attributes (copy, parm, 1);
5054 store_expr (parm, copy, 0);
5055 emit_move_insn (parmreg, XEXP (copy, 0));
5056 conversion_insns = get_insns ();
5057 did_conversion = 1;
5058 end_sequence ();
5060 #endif /* FUNCTION_ARG_CALLEE_COPIES */
5062 /* In any case, record the parm's desired stack location
5063 in case we later discover it must live in the stack.
5065 If it is a COMPLEX value, store the stack location for both
5066 halves. */
5068 if (GET_CODE (parmreg) == CONCAT)
5069 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
5070 else
5071 regno = REGNO (parmreg);
5073 if (regno >= max_parm_reg)
5075 rtx *new;
5076 int old_max_parm_reg = max_parm_reg;
5078 /* It's slow to expand this one register at a time,
5079 but it's also rare and we need max_parm_reg to be
5080 precisely correct. */
5081 max_parm_reg = regno + 1;
5082 new = ggc_realloc (parm_reg_stack_loc,
5083 max_parm_reg * sizeof (rtx));
5084 memset (new + old_max_parm_reg, 0,
5085 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5086 parm_reg_stack_loc = new;
5089 if (GET_CODE (parmreg) == CONCAT)
5091 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5093 regnor = REGNO (gen_realpart (submode, parmreg));
5094 regnoi = REGNO (gen_imagpart (submode, parmreg));
5096 if (stack_parm != 0)
5098 parm_reg_stack_loc[regnor]
5099 = gen_realpart (submode, stack_parm);
5100 parm_reg_stack_loc[regnoi]
5101 = gen_imagpart (submode, stack_parm);
5103 else
5105 parm_reg_stack_loc[regnor] = 0;
5106 parm_reg_stack_loc[regnoi] = 0;
5109 else
5110 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5112 /* Mark the register as eliminable if we did no conversion
5113 and it was copied from memory at a fixed offset,
5114 and the arg pointer was not copied to a pseudo-reg.
5115 If the arg pointer is a pseudo reg or the offset formed
5116 an invalid address, such memory-equivalences
5117 as we make here would screw up life analysis for it. */
5118 if (nominal_mode == passed_mode
5119 && ! did_conversion
5120 && stack_parm != 0
5121 && GET_CODE (stack_parm) == MEM
5122 && locate.offset.var == 0
5123 && reg_mentioned_p (virtual_incoming_args_rtx,
5124 XEXP (stack_parm, 0)))
5126 rtx linsn = get_last_insn ();
5127 rtx sinsn, set;
5129 /* Mark complex types separately. */
5130 if (GET_CODE (parmreg) == CONCAT)
5131 /* Scan backwards for the set of the real and
5132 imaginary parts. */
5133 for (sinsn = linsn; sinsn != 0;
5134 sinsn = prev_nonnote_insn (sinsn))
5136 set = single_set (sinsn);
5137 if (set != 0
5138 && SET_DEST (set) == regno_reg_rtx [regnoi])
5139 REG_NOTES (sinsn)
5140 = gen_rtx_EXPR_LIST (REG_EQUIV,
5141 parm_reg_stack_loc[regnoi],
5142 REG_NOTES (sinsn));
5143 else if (set != 0
5144 && SET_DEST (set) == regno_reg_rtx [regnor])
5145 REG_NOTES (sinsn)
5146 = gen_rtx_EXPR_LIST (REG_EQUIV,
5147 parm_reg_stack_loc[regnor],
5148 REG_NOTES (sinsn));
5150 else if ((set = single_set (linsn)) != 0
5151 && SET_DEST (set) == parmreg)
5152 REG_NOTES (linsn)
5153 = gen_rtx_EXPR_LIST (REG_EQUIV,
5154 stack_parm, REG_NOTES (linsn));
5157 /* For pointer data type, suggest pointer register. */
5158 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5159 mark_reg_pointer (parmreg,
5160 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5162 /* If something wants our address, try to use ADDRESSOF. */
5163 if (TREE_ADDRESSABLE (parm))
5165 /* If we end up putting something into the stack,
5166 fixup_var_refs_insns will need to make a pass over
5167 all the instructions. It looks through the pending
5168 sequences -- but it can't see the ones in the
5169 CONVERSION_INSNS, if they're not on the sequence
5170 stack. So, we go back to that sequence, just so that
5171 the fixups will happen. */
5172 push_to_sequence (conversion_insns);
5173 put_var_into_stack (parm, /*rescan=*/true);
5174 conversion_insns = get_insns ();
5175 end_sequence ();
5178 else
5180 /* Value must be stored in the stack slot STACK_PARM
5181 during function execution. */
5183 if (promoted_mode != nominal_mode)
5185 /* Conversion is required. */
5186 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5188 emit_move_insn (tempreg, validize_mem (entry_parm));
5190 push_to_sequence (conversion_insns);
5191 entry_parm = convert_to_mode (nominal_mode, tempreg,
5192 TYPE_UNSIGNED (TREE_TYPE (parm)));
5193 if (stack_parm)
5194 /* ??? This may need a big-endian conversion on sparc64. */
5195 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5197 conversion_insns = get_insns ();
5198 did_conversion = 1;
5199 end_sequence ();
5202 if (entry_parm != stack_parm)
5204 if (stack_parm == 0)
5206 stack_parm
5207 = assign_stack_local (GET_MODE (entry_parm),
5208 GET_MODE_SIZE (GET_MODE (entry_parm)),
5210 set_mem_attributes (stack_parm, parm, 1);
5213 if (promoted_mode != nominal_mode)
5215 push_to_sequence (conversion_insns);
5216 emit_move_insn (validize_mem (stack_parm),
5217 validize_mem (entry_parm));
5218 conversion_insns = get_insns ();
5219 end_sequence ();
5221 else
5222 emit_move_insn (validize_mem (stack_parm),
5223 validize_mem (entry_parm));
5226 SET_DECL_RTL (parm, stack_parm);
5230 if (targetm.calls.split_complex_arg && fnargs != orig_fnargs)
5232 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5234 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
5235 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
5237 rtx tmp, real, imag;
5238 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
5240 real = DECL_RTL (fnargs);
5241 imag = DECL_RTL (TREE_CHAIN (fnargs));
5242 if (inner != GET_MODE (real))
5244 real = gen_lowpart_SUBREG (inner, real);
5245 imag = gen_lowpart_SUBREG (inner, imag);
5247 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
5248 SET_DECL_RTL (parm, tmp);
5250 real = DECL_INCOMING_RTL (fnargs);
5251 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
5252 if (inner != GET_MODE (real))
5254 real = gen_lowpart_SUBREG (inner, real);
5255 imag = gen_lowpart_SUBREG (inner, imag);
5257 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
5258 set_decl_incoming_rtl (parm, tmp);
5259 fnargs = TREE_CHAIN (fnargs);
5261 else
5263 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5264 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
5266 /* Set MEM_EXPR to the original decl, i.e. to PARM,
5267 instead of the copy of decl, i.e. FNARGS. */
5268 if (DECL_INCOMING_RTL (parm)
5269 && GET_CODE (DECL_INCOMING_RTL (parm)) == MEM)
5270 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
5272 fnargs = TREE_CHAIN (fnargs);
5276 /* Output all parameter conversion instructions (possibly including calls)
5277 now that all parameters have been copied out of hard registers. */
5278 emit_insn (conversion_insns);
5280 /* If we are receiving a struct value address as the first argument, set up
5281 the RTL for the function result. As this might require code to convert
5282 the transmitted address to Pmode, we do this here to ensure that possible
5283 preliminary conversions of the address have been emitted already. */
5284 if (function_result_decl)
5286 tree result = DECL_RESULT (fndecl);
5287 rtx addr = DECL_RTL (function_result_decl);
5288 rtx x;
5290 addr = convert_memory_address (Pmode, addr);
5291 x = gen_rtx_MEM (DECL_MODE (result), addr);
5292 set_mem_attributes (x, result, 1);
5293 SET_DECL_RTL (result, x);
5296 last_parm_insn = get_last_insn ();
5298 /* We have aligned all the args, so add space for the pretend args. */
5299 stack_args_size.constant += extra_pretend_bytes;
5300 current_function_args_size = stack_args_size.constant;
5302 /* Adjust function incoming argument size for alignment and
5303 minimum length. */
5305 #ifdef REG_PARM_STACK_SPACE
5306 current_function_args_size = MAX (current_function_args_size,
5307 REG_PARM_STACK_SPACE (fndecl));
5308 #endif
5310 current_function_args_size
5311 = ((current_function_args_size + STACK_BYTES - 1)
5312 / STACK_BYTES) * STACK_BYTES;
5314 #ifdef ARGS_GROW_DOWNWARD
5315 current_function_arg_offset_rtx
5316 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5317 : expand_expr (size_diffop (stack_args_size.var,
5318 size_int (-stack_args_size.constant)),
5319 NULL_RTX, VOIDmode, 0));
5320 #else
5321 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5322 #endif
5324 /* See how many bytes, if any, of its args a function should try to pop
5325 on return. */
5327 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5328 current_function_args_size);
5330 /* For stdarg.h function, save info about
5331 regs and stack space used by the named args. */
5333 current_function_args_info = args_so_far;
5335 /* Set the rtx used for the function return value. Put this in its
5336 own variable so any optimizers that need this information don't have
5337 to include tree.h. Do this here so it gets done when an inlined
5338 function gets output. */
5340 current_function_return_rtx
5341 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5342 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5344 /* If scalar return value was computed in a pseudo-reg, or was a named
5345 return value that got dumped to the stack, copy that to the hard
5346 return register. */
5347 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5349 tree decl_result = DECL_RESULT (fndecl);
5350 rtx decl_rtl = DECL_RTL (decl_result);
5352 if (REG_P (decl_rtl)
5353 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5354 : DECL_REGISTER (decl_result))
5356 rtx real_decl_rtl;
5358 #ifdef FUNCTION_OUTGOING_VALUE
5359 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5360 fndecl);
5361 #else
5362 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5363 fndecl);
5364 #endif
5365 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5366 /* The delay slot scheduler assumes that current_function_return_rtx
5367 holds the hard register containing the return value, not a
5368 temporary pseudo. */
5369 current_function_return_rtx = real_decl_rtl;
5374 /* If ARGS contains entries with complex types, split the entry into two
5375 entries of the component type. Return a new list of substitutions are
5376 needed, else the old list. */
5378 static tree
5379 split_complex_args (tree args)
5381 tree p;
5383 /* Before allocating memory, check for the common case of no complex. */
5384 for (p = args; p; p = TREE_CHAIN (p))
5386 tree type = TREE_TYPE (p);
5387 if (TREE_CODE (type) == COMPLEX_TYPE
5388 && targetm.calls.split_complex_arg (type))
5389 goto found;
5391 return args;
5393 found:
5394 args = copy_list (args);
5396 for (p = args; p; p = TREE_CHAIN (p))
5398 tree type = TREE_TYPE (p);
5399 if (TREE_CODE (type) == COMPLEX_TYPE
5400 && targetm.calls.split_complex_arg (type))
5402 tree decl;
5403 tree subtype = TREE_TYPE (type);
5405 /* Rewrite the PARM_DECL's type with its component. */
5406 TREE_TYPE (p) = subtype;
5407 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5408 DECL_MODE (p) = VOIDmode;
5409 DECL_SIZE (p) = NULL;
5410 DECL_SIZE_UNIT (p) = NULL;
5411 layout_decl (p, 0);
5413 /* Build a second synthetic decl. */
5414 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5415 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5416 layout_decl (decl, 0);
5418 /* Splice it in; skip the new decl. */
5419 TREE_CHAIN (decl) = TREE_CHAIN (p);
5420 TREE_CHAIN (p) = decl;
5421 p = decl;
5425 return args;
5428 /* Indicate whether REGNO is an incoming argument to the current function
5429 that was promoted to a wider mode. If so, return the RTX for the
5430 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5431 that REGNO is promoted from and whether the promotion was signed or
5432 unsigned. */
5435 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5437 tree arg;
5439 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5440 arg = TREE_CHAIN (arg))
5441 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5442 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5443 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5445 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5446 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
5448 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5449 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5450 && mode != DECL_MODE (arg))
5452 *pmode = DECL_MODE (arg);
5453 *punsignedp = unsignedp;
5454 return DECL_INCOMING_RTL (arg);
5458 return 0;
5462 /* Compute the size and offset from the start of the stacked arguments for a
5463 parm passed in mode PASSED_MODE and with type TYPE.
5465 INITIAL_OFFSET_PTR points to the current offset into the stacked
5466 arguments.
5468 The starting offset and size for this parm are returned in
5469 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5470 nonzero, the offset is that of stack slot, which is returned in
5471 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5472 padding required from the initial offset ptr to the stack slot.
5474 IN_REGS is nonzero if the argument will be passed in registers. It will
5475 never be set if REG_PARM_STACK_SPACE is not defined.
5477 FNDECL is the function in which the argument was defined.
5479 There are two types of rounding that are done. The first, controlled by
5480 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5481 list to be aligned to the specific boundary (in bits). This rounding
5482 affects the initial and starting offsets, but not the argument size.
5484 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5485 optionally rounds the size of the parm to PARM_BOUNDARY. The
5486 initial offset is not affected by this rounding, while the size always
5487 is and the starting offset may be. */
5489 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5490 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5491 callers pass in the total size of args so far as
5492 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5494 void
5495 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5496 int partial, tree fndecl ATTRIBUTE_UNUSED,
5497 struct args_size *initial_offset_ptr,
5498 struct locate_and_pad_arg_data *locate)
5500 tree sizetree;
5501 enum direction where_pad;
5502 int boundary;
5503 int reg_parm_stack_space = 0;
5504 int part_size_in_regs;
5506 #ifdef REG_PARM_STACK_SPACE
5507 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5509 /* If we have found a stack parm before we reach the end of the
5510 area reserved for registers, skip that area. */
5511 if (! in_regs)
5513 if (reg_parm_stack_space > 0)
5515 if (initial_offset_ptr->var)
5517 initial_offset_ptr->var
5518 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5519 ssize_int (reg_parm_stack_space));
5520 initial_offset_ptr->constant = 0;
5522 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5523 initial_offset_ptr->constant = reg_parm_stack_space;
5526 #endif /* REG_PARM_STACK_SPACE */
5528 part_size_in_regs = 0;
5529 if (reg_parm_stack_space == 0)
5530 part_size_in_regs = ((partial * UNITS_PER_WORD)
5531 / (PARM_BOUNDARY / BITS_PER_UNIT)
5532 * (PARM_BOUNDARY / BITS_PER_UNIT));
5534 sizetree
5535 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5536 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5537 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5538 locate->where_pad = where_pad;
5540 #ifdef ARGS_GROW_DOWNWARD
5541 locate->slot_offset.constant = -initial_offset_ptr->constant;
5542 if (initial_offset_ptr->var)
5543 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5544 initial_offset_ptr->var);
5547 tree s2 = sizetree;
5548 if (where_pad != none
5549 && (!host_integerp (sizetree, 1)
5550 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5551 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5552 SUB_PARM_SIZE (locate->slot_offset, s2);
5555 locate->slot_offset.constant += part_size_in_regs;
5557 if (!in_regs
5558 #ifdef REG_PARM_STACK_SPACE
5559 || REG_PARM_STACK_SPACE (fndecl) > 0
5560 #endif
5562 pad_to_arg_alignment (&locate->slot_offset, boundary,
5563 &locate->alignment_pad);
5565 locate->size.constant = (-initial_offset_ptr->constant
5566 - locate->slot_offset.constant);
5567 if (initial_offset_ptr->var)
5568 locate->size.var = size_binop (MINUS_EXPR,
5569 size_binop (MINUS_EXPR,
5570 ssize_int (0),
5571 initial_offset_ptr->var),
5572 locate->slot_offset.var);
5574 /* Pad_below needs the pre-rounded size to know how much to pad
5575 below. */
5576 locate->offset = locate->slot_offset;
5577 if (where_pad == downward)
5578 pad_below (&locate->offset, passed_mode, sizetree);
5580 #else /* !ARGS_GROW_DOWNWARD */
5581 if (!in_regs
5582 #ifdef REG_PARM_STACK_SPACE
5583 || REG_PARM_STACK_SPACE (fndecl) > 0
5584 #endif
5586 pad_to_arg_alignment (initial_offset_ptr, boundary,
5587 &locate->alignment_pad);
5588 locate->slot_offset = *initial_offset_ptr;
5590 #ifdef PUSH_ROUNDING
5591 if (passed_mode != BLKmode)
5592 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5593 #endif
5595 /* Pad_below needs the pre-rounded size to know how much to pad below
5596 so this must be done before rounding up. */
5597 locate->offset = locate->slot_offset;
5598 if (where_pad == downward)
5599 pad_below (&locate->offset, passed_mode, sizetree);
5601 if (where_pad != none
5602 && (!host_integerp (sizetree, 1)
5603 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5604 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5606 ADD_PARM_SIZE (locate->size, sizetree);
5608 locate->size.constant -= part_size_in_regs;
5609 #endif /* ARGS_GROW_DOWNWARD */
5612 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5613 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5615 static void
5616 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5617 struct args_size *alignment_pad)
5619 tree save_var = NULL_TREE;
5620 HOST_WIDE_INT save_constant = 0;
5621 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5622 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
5624 #ifdef SPARC_STACK_BOUNDARY_HACK
5625 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
5626 higher than the real alignment of %sp. However, when it does this,
5627 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
5628 This is a temporary hack while the sparc port is fixed. */
5629 if (SPARC_STACK_BOUNDARY_HACK)
5630 sp_offset = 0;
5631 #endif
5633 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5635 save_var = offset_ptr->var;
5636 save_constant = offset_ptr->constant;
5639 alignment_pad->var = NULL_TREE;
5640 alignment_pad->constant = 0;
5642 if (boundary > BITS_PER_UNIT)
5644 if (offset_ptr->var)
5646 tree sp_offset_tree = ssize_int (sp_offset);
5647 tree offset = size_binop (PLUS_EXPR,
5648 ARGS_SIZE_TREE (*offset_ptr),
5649 sp_offset_tree);
5650 #ifdef ARGS_GROW_DOWNWARD
5651 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
5652 #else
5653 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
5654 #endif
5656 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
5657 /* ARGS_SIZE_TREE includes constant term. */
5658 offset_ptr->constant = 0;
5659 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5660 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5661 save_var);
5663 else
5665 offset_ptr->constant = -sp_offset +
5666 #ifdef ARGS_GROW_DOWNWARD
5667 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5668 #else
5669 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5670 #endif
5671 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5672 alignment_pad->constant = offset_ptr->constant - save_constant;
5677 static void
5678 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5680 if (passed_mode != BLKmode)
5682 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5683 offset_ptr->constant
5684 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5685 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5686 - GET_MODE_SIZE (passed_mode));
5688 else
5690 if (TREE_CODE (sizetree) != INTEGER_CST
5691 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5693 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5694 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5695 /* Add it in. */
5696 ADD_PARM_SIZE (*offset_ptr, s2);
5697 SUB_PARM_SIZE (*offset_ptr, sizetree);
5702 /* Walk the tree of blocks describing the binding levels within a function
5703 and warn about variables the might be killed by setjmp or vfork.
5704 This is done after calling flow_analysis and before global_alloc
5705 clobbers the pseudo-regs to hard regs. */
5707 void
5708 setjmp_vars_warning (tree block)
5710 tree decl, sub;
5712 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5714 if (TREE_CODE (decl) == VAR_DECL
5715 && DECL_RTL_SET_P (decl)
5716 && GET_CODE (DECL_RTL (decl)) == REG
5717 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5718 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
5719 decl, decl);
5722 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5723 setjmp_vars_warning (sub);
5726 /* Do the appropriate part of setjmp_vars_warning
5727 but for arguments instead of local variables. */
5729 void
5730 setjmp_args_warning (void)
5732 tree decl;
5733 for (decl = DECL_ARGUMENTS (current_function_decl);
5734 decl; decl = TREE_CHAIN (decl))
5735 if (DECL_RTL (decl) != 0
5736 && GET_CODE (DECL_RTL (decl)) == REG
5737 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5738 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
5739 decl, decl);
5742 /* If this function call setjmp, put all vars into the stack
5743 unless they were declared `register'. */
5745 void
5746 setjmp_protect (tree block)
5748 tree decl, sub;
5749 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5750 if ((TREE_CODE (decl) == VAR_DECL
5751 || TREE_CODE (decl) == PARM_DECL)
5752 && DECL_RTL (decl) != 0
5753 && (GET_CODE (DECL_RTL (decl)) == REG
5754 || (GET_CODE (DECL_RTL (decl)) == MEM
5755 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5756 /* If this variable came from an inline function, it must be
5757 that its life doesn't overlap the setjmp. If there was a
5758 setjmp in the function, it would already be in memory. We
5759 must exclude such variable because their DECL_RTL might be
5760 set to strange things such as virtual_stack_vars_rtx. */
5761 && ! DECL_FROM_INLINE (decl)
5762 && (
5763 #ifdef NON_SAVING_SETJMP
5764 /* If longjmp doesn't restore the registers,
5765 don't put anything in them. */
5766 NON_SAVING_SETJMP
5768 #endif
5769 ! DECL_REGISTER (decl)))
5770 put_var_into_stack (decl, /*rescan=*/true);
5771 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5772 setjmp_protect (sub);
5775 /* Like the previous function, but for args instead of local variables. */
5777 void
5778 setjmp_protect_args (void)
5780 tree decl;
5781 for (decl = DECL_ARGUMENTS (current_function_decl);
5782 decl; decl = TREE_CHAIN (decl))
5783 if ((TREE_CODE (decl) == VAR_DECL
5784 || TREE_CODE (decl) == PARM_DECL)
5785 && DECL_RTL (decl) != 0
5786 && (GET_CODE (DECL_RTL (decl)) == REG
5787 || (GET_CODE (DECL_RTL (decl)) == MEM
5788 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5789 && (
5790 /* If longjmp doesn't restore the registers,
5791 don't put anything in them. */
5792 #ifdef NON_SAVING_SETJMP
5793 NON_SAVING_SETJMP
5795 #endif
5796 ! DECL_REGISTER (decl)))
5797 put_var_into_stack (decl, /*rescan=*/true);
5800 /* Convert a stack slot address ADDR for variable VAR
5801 (from a containing function)
5802 into an address valid in this function (using a static chain). */
5805 fix_lexical_addr (rtx addr, tree var)
5807 rtx basereg;
5808 HOST_WIDE_INT displacement;
5809 tree context = decl_function_context (var);
5810 struct function *fp;
5811 rtx base = 0;
5813 /* If this is the present function, we need not do anything. */
5814 if (context == current_function_decl)
5815 return addr;
5817 fp = find_function_data (context);
5819 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5820 addr = XEXP (XEXP (addr, 0), 0);
5822 /* Decode given address as base reg plus displacement. */
5823 if (GET_CODE (addr) == REG)
5824 basereg = addr, displacement = 0;
5825 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5826 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5827 else
5828 abort ();
5830 if (base == 0)
5831 abort ();
5833 /* Use same offset, relative to appropriate static chain or argument
5834 pointer. */
5835 return plus_constant (base, displacement);
5838 /* Put all this function's BLOCK nodes including those that are chained
5839 onto the first block into a vector, and return it.
5840 Also store in each NOTE for the beginning or end of a block
5841 the index of that block in the vector.
5842 The arguments are BLOCK, the chain of top-level blocks of the function,
5843 and INSNS, the insn chain of the function. */
5845 void
5846 identify_blocks (void)
5848 int n_blocks;
5849 tree *block_vector, *last_block_vector;
5850 tree *block_stack;
5851 tree block = DECL_INITIAL (current_function_decl);
5853 if (block == 0)
5854 return;
5856 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5857 depth-first order. */
5858 block_vector = get_block_vector (block, &n_blocks);
5859 block_stack = xmalloc (n_blocks * sizeof (tree));
5861 last_block_vector = identify_blocks_1 (get_insns (),
5862 block_vector + 1,
5863 block_vector + n_blocks,
5864 block_stack);
5866 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5867 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5868 if (0 && last_block_vector != block_vector + n_blocks)
5869 abort ();
5871 free (block_vector);
5872 free (block_stack);
5875 /* Subroutine of identify_blocks. Do the block substitution on the
5876 insn chain beginning with INSNS.
5878 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5879 BLOCK_VECTOR is incremented for each block seen. */
5881 static tree *
5882 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
5883 tree *orig_block_stack)
5885 rtx insn;
5886 tree *block_stack = orig_block_stack;
5888 for (insn = insns; insn; insn = NEXT_INSN (insn))
5890 if (GET_CODE (insn) == NOTE)
5892 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5894 tree b;
5896 /* If there are more block notes than BLOCKs, something
5897 is badly wrong. */
5898 if (block_vector == end_block_vector)
5899 abort ();
5901 b = *block_vector++;
5902 NOTE_BLOCK (insn) = b;
5903 *block_stack++ = b;
5905 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5907 /* If there are more NOTE_INSN_BLOCK_ENDs than
5908 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5909 if (block_stack == orig_block_stack)
5910 abort ();
5912 NOTE_BLOCK (insn) = *--block_stack;
5917 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5918 something is badly wrong. */
5919 if (block_stack != orig_block_stack)
5920 abort ();
5922 return block_vector;
5925 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5926 and create duplicate blocks. */
5927 /* ??? Need an option to either create block fragments or to create
5928 abstract origin duplicates of a source block. It really depends
5929 on what optimization has been performed. */
5931 void
5932 reorder_blocks (void)
5934 tree block = DECL_INITIAL (current_function_decl);
5935 varray_type block_stack;
5937 if (block == NULL_TREE)
5938 return;
5940 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5942 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5943 clear_block_marks (block);
5945 /* Prune the old trees away, so that they don't get in the way. */
5946 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5947 BLOCK_CHAIN (block) = NULL_TREE;
5949 /* Recreate the block tree from the note nesting. */
5950 reorder_blocks_1 (get_insns (), block, &block_stack);
5951 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5953 /* Remove deleted blocks from the block fragment chains. */
5954 reorder_fix_fragments (block);
5957 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5959 void
5960 clear_block_marks (tree block)
5962 while (block)
5964 TREE_ASM_WRITTEN (block) = 0;
5965 clear_block_marks (BLOCK_SUBBLOCKS (block));
5966 block = BLOCK_CHAIN (block);
5970 static void
5971 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
5973 rtx insn;
5975 for (insn = insns; insn; insn = NEXT_INSN (insn))
5977 if (GET_CODE (insn) == NOTE)
5979 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5981 tree block = NOTE_BLOCK (insn);
5983 /* If we have seen this block before, that means it now
5984 spans multiple address regions. Create a new fragment. */
5985 if (TREE_ASM_WRITTEN (block))
5987 tree new_block = copy_node (block);
5988 tree origin;
5990 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5991 ? BLOCK_FRAGMENT_ORIGIN (block)
5992 : block);
5993 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
5994 BLOCK_FRAGMENT_CHAIN (new_block)
5995 = BLOCK_FRAGMENT_CHAIN (origin);
5996 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
5998 NOTE_BLOCK (insn) = new_block;
5999 block = new_block;
6002 BLOCK_SUBBLOCKS (block) = 0;
6003 TREE_ASM_WRITTEN (block) = 1;
6004 /* When there's only one block for the entire function,
6005 current_block == block and we mustn't do this, it
6006 will cause infinite recursion. */
6007 if (block != current_block)
6009 BLOCK_SUPERCONTEXT (block) = current_block;
6010 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6011 BLOCK_SUBBLOCKS (current_block) = block;
6012 current_block = block;
6014 VARRAY_PUSH_TREE (*p_block_stack, block);
6016 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6018 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6019 VARRAY_POP (*p_block_stack);
6020 BLOCK_SUBBLOCKS (current_block)
6021 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6022 current_block = BLOCK_SUPERCONTEXT (current_block);
6028 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6029 appears in the block tree, select one of the fragments to become
6030 the new origin block. */
6032 static void
6033 reorder_fix_fragments (tree block)
6035 while (block)
6037 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6038 tree new_origin = NULL_TREE;
6040 if (dup_origin)
6042 if (! TREE_ASM_WRITTEN (dup_origin))
6044 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6046 /* Find the first of the remaining fragments. There must
6047 be at least one -- the current block. */
6048 while (! TREE_ASM_WRITTEN (new_origin))
6049 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6050 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6053 else if (! dup_origin)
6054 new_origin = block;
6056 /* Re-root the rest of the fragments to the new origin. In the
6057 case that DUP_ORIGIN was null, that means BLOCK was the origin
6058 of a chain of fragments and we want to remove those fragments
6059 that didn't make it to the output. */
6060 if (new_origin)
6062 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6063 tree chain = *pp;
6065 while (chain)
6067 if (TREE_ASM_WRITTEN (chain))
6069 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6070 *pp = chain;
6071 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6073 chain = BLOCK_FRAGMENT_CHAIN (chain);
6075 *pp = NULL_TREE;
6078 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6079 block = BLOCK_CHAIN (block);
6083 /* Reverse the order of elements in the chain T of blocks,
6084 and return the new head of the chain (old last element). */
6086 tree
6087 blocks_nreverse (tree t)
6089 tree prev = 0, decl, next;
6090 for (decl = t; decl; decl = next)
6092 next = BLOCK_CHAIN (decl);
6093 BLOCK_CHAIN (decl) = prev;
6094 prev = decl;
6096 return prev;
6099 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6100 non-NULL, list them all into VECTOR, in a depth-first preorder
6101 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6102 blocks. */
6104 static int
6105 all_blocks (tree block, tree *vector)
6107 int n_blocks = 0;
6109 while (block)
6111 TREE_ASM_WRITTEN (block) = 0;
6113 /* Record this block. */
6114 if (vector)
6115 vector[n_blocks] = block;
6117 ++n_blocks;
6119 /* Record the subblocks, and their subblocks... */
6120 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6121 vector ? vector + n_blocks : 0);
6122 block = BLOCK_CHAIN (block);
6125 return n_blocks;
6128 /* Return a vector containing all the blocks rooted at BLOCK. The
6129 number of elements in the vector is stored in N_BLOCKS_P. The
6130 vector is dynamically allocated; it is the caller's responsibility
6131 to call `free' on the pointer returned. */
6133 static tree *
6134 get_block_vector (tree block, int *n_blocks_p)
6136 tree *block_vector;
6138 *n_blocks_p = all_blocks (block, NULL);
6139 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6140 all_blocks (block, block_vector);
6142 return block_vector;
6145 static GTY(()) int next_block_index = 2;
6147 /* Set BLOCK_NUMBER for all the blocks in FN. */
6149 void
6150 number_blocks (tree fn)
6152 int i;
6153 int n_blocks;
6154 tree *block_vector;
6156 /* For SDB and XCOFF debugging output, we start numbering the blocks
6157 from 1 within each function, rather than keeping a running
6158 count. */
6159 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6160 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6161 next_block_index = 1;
6162 #endif
6164 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6166 /* The top-level BLOCK isn't numbered at all. */
6167 for (i = 1; i < n_blocks; ++i)
6168 /* We number the blocks from two. */
6169 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6171 free (block_vector);
6173 return;
6176 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6178 tree
6179 debug_find_var_in_block_tree (tree var, tree block)
6181 tree t;
6183 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6184 if (t == var)
6185 return block;
6187 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6189 tree ret = debug_find_var_in_block_tree (var, t);
6190 if (ret)
6191 return ret;
6194 return NULL_TREE;
6197 /* Allocate a function structure for FNDECL and set its contents
6198 to the defaults. */
6200 void
6201 allocate_struct_function (tree fndecl)
6203 tree result;
6204 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
6206 cfun = ggc_alloc_cleared (sizeof (struct function));
6208 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6210 cfun->stack_alignment_needed = STACK_BOUNDARY;
6211 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6213 current_function_funcdef_no = funcdef_no++;
6215 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6217 init_stmt_for_function ();
6218 init_eh_for_function ();
6220 lang_hooks.function.init (cfun);
6221 if (init_machine_status)
6222 cfun->machine = (*init_machine_status) ();
6224 if (fndecl == NULL)
6225 return;
6227 DECL_STRUCT_FUNCTION (fndecl) = cfun;
6228 cfun->decl = fndecl;
6230 result = DECL_RESULT (fndecl);
6231 if (aggregate_value_p (result, fndecl))
6233 #ifdef PCC_STATIC_STRUCT_RETURN
6234 current_function_returns_pcc_struct = 1;
6235 #endif
6236 current_function_returns_struct = 1;
6239 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6241 current_function_stdarg
6242 = (fntype
6243 && TYPE_ARG_TYPES (fntype) != 0
6244 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
6245 != void_type_node));
6248 /* Reset cfun, and other non-struct-function variables to defaults as
6249 appropriate for emitting rtl at the start of a function. */
6251 static void
6252 prepare_function_start (tree fndecl)
6254 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
6255 cfun = DECL_STRUCT_FUNCTION (fndecl);
6256 else
6257 allocate_struct_function (fndecl);
6258 init_emit ();
6259 init_varasm_status (cfun);
6260 init_expr ();
6262 cse_not_expected = ! optimize;
6264 /* Caller save not needed yet. */
6265 caller_save_needed = 0;
6267 /* We haven't done register allocation yet. */
6268 reg_renumber = 0;
6270 /* Indicate that we need to distinguish between the return value of the
6271 present function and the return value of a function being called. */
6272 rtx_equal_function_value_matters = 1;
6274 /* Indicate that we have not instantiated virtual registers yet. */
6275 virtuals_instantiated = 0;
6277 /* Indicate that we want CONCATs now. */
6278 generating_concat_p = 1;
6280 /* Indicate we have no need of a frame pointer yet. */
6281 frame_pointer_needed = 0;
6284 /* Initialize the rtl expansion mechanism so that we can do simple things
6285 like generate sequences. This is used to provide a context during global
6286 initialization of some passes. */
6287 void
6288 init_dummy_function_start (void)
6290 prepare_function_start (NULL);
6293 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6294 and initialize static variables for generating RTL for the statements
6295 of the function. */
6297 void
6298 init_function_start (tree subr)
6300 prepare_function_start (subr);
6302 /* Within function body, compute a type's size as soon it is laid out. */
6303 immediate_size_expand++;
6305 /* Prevent ever trying to delete the first instruction of a
6306 function. Also tell final how to output a linenum before the
6307 function prologue. Note linenums could be missing, e.g. when
6308 compiling a Java .class file. */
6309 if (DECL_SOURCE_LINE (subr))
6310 emit_line_note (DECL_SOURCE_LOCATION (subr));
6312 /* Make sure first insn is a note even if we don't want linenums.
6313 This makes sure the first insn will never be deleted.
6314 Also, final expects a note to appear there. */
6315 emit_note (NOTE_INSN_DELETED);
6317 /* Warn if this value is an aggregate type,
6318 regardless of which calling convention we are using for it. */
6319 if (warn_aggregate_return
6320 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6321 warning ("function returns an aggregate");
6324 /* Make sure all values used by the optimization passes have sane
6325 defaults. */
6326 void
6327 init_function_for_compilation (void)
6329 reg_renumber = 0;
6331 /* No prologue/epilogue insns yet. */
6332 VARRAY_GROW (prologue, 0);
6333 VARRAY_GROW (epilogue, 0);
6334 VARRAY_GROW (sibcall_epilogue, 0);
6337 /* Expand a call to __main at the beginning of a possible main function. */
6339 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6340 #undef HAS_INIT_SECTION
6341 #define HAS_INIT_SECTION
6342 #endif
6344 void
6345 expand_main_function (void)
6347 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6348 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6350 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6351 rtx tmp, seq;
6353 start_sequence ();
6354 /* Forcibly align the stack. */
6355 #ifdef STACK_GROWS_DOWNWARD
6356 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6357 stack_pointer_rtx, 1, OPTAB_WIDEN);
6358 #else
6359 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6360 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6361 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6362 stack_pointer_rtx, 1, OPTAB_WIDEN);
6363 #endif
6364 if (tmp != stack_pointer_rtx)
6365 emit_move_insn (stack_pointer_rtx, tmp);
6367 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6368 tmp = force_reg (Pmode, const0_rtx);
6369 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6370 seq = get_insns ();
6371 end_sequence ();
6373 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6374 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6375 break;
6376 if (tmp)
6377 emit_insn_before (seq, tmp);
6378 else
6379 emit_insn (seq);
6381 #endif
6383 #ifndef HAS_INIT_SECTION
6384 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6385 #endif
6388 /* The PENDING_SIZES represent the sizes of variable-sized types.
6389 Create RTL for the various sizes now (using temporary variables),
6390 so that we can refer to the sizes from the RTL we are generating
6391 for the current function. The PENDING_SIZES are a TREE_LIST. The
6392 TREE_VALUE of each node is a SAVE_EXPR. */
6394 void
6395 expand_pending_sizes (tree pending_sizes)
6397 tree tem;
6399 /* Evaluate now the sizes of any types declared among the arguments. */
6400 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6402 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6403 /* Flush the queue in case this parameter declaration has
6404 side-effects. */
6405 emit_queue ();
6409 /* Start the RTL for a new function, and set variables used for
6410 emitting RTL.
6411 SUBR is the FUNCTION_DECL node.
6412 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6413 the function's parameters, which must be run at any return statement. */
6415 void
6416 expand_function_start (tree subr, int parms_have_cleanups)
6418 /* Make sure volatile mem refs aren't considered
6419 valid operands of arithmetic insns. */
6420 init_recog_no_volatile ();
6422 current_function_profile
6423 = (profile_flag
6424 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6426 current_function_limit_stack
6427 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6429 /* If the parameters of this function need cleaning up, get a label
6430 for the beginning of the code which executes those cleanups. This must
6431 be done before doing anything with return_label. */
6432 if (parms_have_cleanups)
6433 cleanup_label = gen_label_rtx ();
6434 else
6435 cleanup_label = 0;
6437 /* Make the label for return statements to jump to. Do not special
6438 case machines with special return instructions -- they will be
6439 handled later during jump, ifcvt, or epilogue creation. */
6440 return_label = gen_label_rtx ();
6442 /* Initialize rtx used to return the value. */
6443 /* Do this before assign_parms so that we copy the struct value address
6444 before any library calls that assign parms might generate. */
6446 /* Decide whether to return the value in memory or in a register. */
6447 if (aggregate_value_p (DECL_RESULT (subr), subr))
6449 /* Returning something that won't go in a register. */
6450 rtx value_address = 0;
6452 #ifdef PCC_STATIC_STRUCT_RETURN
6453 if (current_function_returns_pcc_struct)
6455 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6456 value_address = assemble_static_space (size);
6458 else
6459 #endif
6461 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6462 /* Expect to be passed the address of a place to store the value.
6463 If it is passed as an argument, assign_parms will take care of
6464 it. */
6465 if (sv)
6467 value_address = gen_reg_rtx (Pmode);
6468 emit_move_insn (value_address, sv);
6471 if (value_address)
6473 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6474 set_mem_attributes (x, DECL_RESULT (subr), 1);
6475 SET_DECL_RTL (DECL_RESULT (subr), x);
6478 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6479 /* If return mode is void, this decl rtl should not be used. */
6480 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6481 else
6483 /* Compute the return values into a pseudo reg, which we will copy
6484 into the true return register after the cleanups are done. */
6486 /* In order to figure out what mode to use for the pseudo, we
6487 figure out what the mode of the eventual return register will
6488 actually be, and use that. */
6489 rtx hard_reg
6490 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6491 subr, 1);
6493 /* Structures that are returned in registers are not aggregate_value_p,
6494 so we may see a PARALLEL or a REG. */
6495 if (REG_P (hard_reg))
6496 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6497 else if (GET_CODE (hard_reg) == PARALLEL)
6498 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6499 else
6500 abort ();
6502 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6503 result to the real return register(s). */
6504 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6507 /* Initialize rtx for parameters and local variables.
6508 In some cases this requires emitting insns. */
6509 assign_parms (subr);
6511 /* If function gets a static chain arg, store it. */
6512 if (cfun->static_chain_decl)
6514 tree parm = cfun->static_chain_decl;
6515 rtx local = gen_reg_rtx (Pmode);
6517 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
6518 SET_DECL_RTL (parm, local);
6519 maybe_set_unchanging (local, parm);
6520 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
6522 emit_move_insn (local, static_chain_incoming_rtx);
6525 /* If the function receives a non-local goto, then store the
6526 bits we need to restore the frame pointer. */
6527 if (cfun->nonlocal_goto_save_area)
6529 tree t_save;
6530 rtx r_save;
6532 /* ??? We need to do this save early. Unfortunately here is
6533 before the frame variable gets declared. Help out... */
6534 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
6536 t_save = build (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
6537 integer_zero_node);
6538 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
6540 emit_move_insn (r_save, virtual_stack_vars_rtx);
6541 update_nonlocal_goto_save_area ();
6544 /* The following was moved from init_function_start.
6545 The move is supposed to make sdb output more accurate. */
6546 /* Indicate the beginning of the function body,
6547 as opposed to parm setup. */
6548 emit_note (NOTE_INSN_FUNCTION_BEG);
6550 if (GET_CODE (get_last_insn ()) != NOTE)
6551 emit_note (NOTE_INSN_DELETED);
6552 parm_birth_insn = get_last_insn ();
6554 if (current_function_profile)
6556 #ifdef PROFILE_HOOK
6557 PROFILE_HOOK (current_function_funcdef_no);
6558 #endif
6561 /* After the display initializations is where the tail-recursion label
6562 should go, if we end up needing one. Ensure we have a NOTE here
6563 since some things (like trampolines) get placed before this. */
6564 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6566 /* Evaluate now the sizes of any types declared among the arguments. */
6567 expand_pending_sizes (nreverse (get_pending_sizes ()));
6569 /* Make sure there is a line number after the function entry setup code. */
6570 force_next_line_note ();
6573 /* Undo the effects of init_dummy_function_start. */
6574 void
6575 expand_dummy_function_end (void)
6577 /* End any sequences that failed to be closed due to syntax errors. */
6578 while (in_sequence_p ())
6579 end_sequence ();
6581 /* Outside function body, can't compute type's actual size
6582 until next function's body starts. */
6584 free_after_parsing (cfun);
6585 free_after_compilation (cfun);
6586 cfun = 0;
6589 /* Call DOIT for each hard register used as a return value from
6590 the current function. */
6592 void
6593 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6595 rtx outgoing = current_function_return_rtx;
6597 if (! outgoing)
6598 return;
6600 if (GET_CODE (outgoing) == REG)
6601 (*doit) (outgoing, arg);
6602 else if (GET_CODE (outgoing) == PARALLEL)
6604 int i;
6606 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6608 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6610 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6611 (*doit) (x, arg);
6616 static void
6617 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6619 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6622 void
6623 clobber_return_register (void)
6625 diddle_return_value (do_clobber_return_reg, NULL);
6627 /* In case we do use pseudo to return value, clobber it too. */
6628 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6630 tree decl_result = DECL_RESULT (current_function_decl);
6631 rtx decl_rtl = DECL_RTL (decl_result);
6632 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6634 do_clobber_return_reg (decl_rtl, NULL);
6639 static void
6640 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6642 emit_insn (gen_rtx_USE (VOIDmode, reg));
6645 void
6646 use_return_register (void)
6648 diddle_return_value (do_use_return_reg, NULL);
6651 /* Possibly warn about unused parameters. */
6652 void
6653 do_warn_unused_parameter (tree fn)
6655 tree decl;
6657 for (decl = DECL_ARGUMENTS (fn);
6658 decl; decl = TREE_CHAIN (decl))
6659 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6660 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
6661 warning ("%Junused parameter '%D'", decl, decl);
6664 static GTY(()) rtx initial_trampoline;
6666 /* Generate RTL for the end of the current function. */
6668 void
6669 expand_function_end (void)
6671 rtx clobber_after;
6673 finish_expr_for_function ();
6675 /* If arg_pointer_save_area was referenced only from a nested
6676 function, we will not have initialized it yet. Do that now. */
6677 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6678 get_arg_pointer_save_area (cfun);
6680 #ifdef NON_SAVING_SETJMP
6681 /* Don't put any variables in registers if we call setjmp
6682 on a machine that fails to restore the registers. */
6683 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6685 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6686 setjmp_protect (DECL_INITIAL (current_function_decl));
6688 setjmp_protect_args ();
6690 #endif
6692 /* If we are doing stack checking and this function makes calls,
6693 do a stack probe at the start of the function to ensure we have enough
6694 space for another stack frame. */
6695 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6697 rtx insn, seq;
6699 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6700 if (GET_CODE (insn) == CALL_INSN)
6702 start_sequence ();
6703 probe_stack_range (STACK_CHECK_PROTECT,
6704 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6705 seq = get_insns ();
6706 end_sequence ();
6707 emit_insn_before (seq, tail_recursion_reentry);
6708 break;
6712 /* Possibly warn about unused parameters.
6713 When frontend does unit-at-a-time, the warning is already
6714 issued at finalization time. */
6715 if (warn_unused_parameter
6716 && !lang_hooks.callgraph.expand_function)
6717 do_warn_unused_parameter (current_function_decl);
6719 /* End any sequences that failed to be closed due to syntax errors. */
6720 while (in_sequence_p ())
6721 end_sequence ();
6723 /* Outside function body, can't compute type's actual size
6724 until next function's body starts. */
6725 immediate_size_expand--;
6727 clear_pending_stack_adjust ();
6728 do_pending_stack_adjust ();
6730 /* @@@ This is a kludge. We want to ensure that instructions that
6731 may trap are not moved into the epilogue by scheduling, because
6732 we don't always emit unwind information for the epilogue.
6733 However, not all machine descriptions define a blockage insn, so
6734 emit an ASM_INPUT to act as one. */
6735 if (flag_non_call_exceptions)
6736 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
6738 /* Mark the end of the function body.
6739 If control reaches this insn, the function can drop through
6740 without returning a value. */
6741 emit_note (NOTE_INSN_FUNCTION_END);
6743 /* Must mark the last line number note in the function, so that the test
6744 coverage code can avoid counting the last line twice. This just tells
6745 the code to ignore the immediately following line note, since there
6746 already exists a copy of this note somewhere above. This line number
6747 note is still needed for debugging though, so we can't delete it. */
6748 if (flag_test_coverage)
6749 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
6751 /* Output a linenumber for the end of the function.
6752 SDB depends on this. */
6753 force_next_line_note ();
6754 emit_line_note (input_location);
6756 /* Before the return label (if any), clobber the return
6757 registers so that they are not propagated live to the rest of
6758 the function. This can only happen with functions that drop
6759 through; if there had been a return statement, there would
6760 have either been a return rtx, or a jump to the return label.
6762 We delay actual code generation after the current_function_value_rtx
6763 is computed. */
6764 clobber_after = get_last_insn ();
6766 /* Output the label for the actual return from the function,
6767 if one is expected. This happens either because a function epilogue
6768 is used instead of a return instruction, or because a return was done
6769 with a goto in order to run local cleanups, or because of pcc-style
6770 structure returning. */
6771 if (return_label)
6772 emit_label (return_label);
6774 /* Let except.c know where it should emit the call to unregister
6775 the function context for sjlj exceptions. */
6776 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6777 sjlj_emit_function_exit_after (get_last_insn ());
6779 /* If we had calls to alloca, and this machine needs
6780 an accurate stack pointer to exit the function,
6781 insert some code to save and restore the stack pointer. */
6782 if (! EXIT_IGNORE_STACK
6783 && current_function_calls_alloca)
6785 rtx tem = 0;
6787 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6788 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6791 /* If scalar return value was computed in a pseudo-reg, or was a named
6792 return value that got dumped to the stack, copy that to the hard
6793 return register. */
6794 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6796 tree decl_result = DECL_RESULT (current_function_decl);
6797 rtx decl_rtl = DECL_RTL (decl_result);
6799 if (REG_P (decl_rtl)
6800 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6801 : DECL_REGISTER (decl_result))
6803 rtx real_decl_rtl = current_function_return_rtx;
6805 /* This should be set in assign_parms. */
6806 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
6807 abort ();
6809 /* If this is a BLKmode structure being returned in registers,
6810 then use the mode computed in expand_return. Note that if
6811 decl_rtl is memory, then its mode may have been changed,
6812 but that current_function_return_rtx has not. */
6813 if (GET_MODE (real_decl_rtl) == BLKmode)
6814 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
6816 /* If a named return value dumped decl_return to memory, then
6817 we may need to re-do the PROMOTE_MODE signed/unsigned
6818 extension. */
6819 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6821 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
6823 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
6824 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6825 &unsignedp, 1);
6827 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6829 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6831 /* If expand_function_start has created a PARALLEL for decl_rtl,
6832 move the result to the real return registers. Otherwise, do
6833 a group load from decl_rtl for a named return. */
6834 if (GET_CODE (decl_rtl) == PARALLEL)
6835 emit_group_move (real_decl_rtl, decl_rtl);
6836 else
6837 emit_group_load (real_decl_rtl, decl_rtl,
6838 TREE_TYPE (decl_result),
6839 int_size_in_bytes (TREE_TYPE (decl_result)));
6841 else
6842 emit_move_insn (real_decl_rtl, decl_rtl);
6846 /* If returning a structure, arrange to return the address of the value
6847 in a place where debuggers expect to find it.
6849 If returning a structure PCC style,
6850 the caller also depends on this value.
6851 And current_function_returns_pcc_struct is not necessarily set. */
6852 if (current_function_returns_struct
6853 || current_function_returns_pcc_struct)
6855 rtx value_address
6856 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6857 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6858 #ifdef FUNCTION_OUTGOING_VALUE
6859 rtx outgoing
6860 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6861 current_function_decl);
6862 #else
6863 rtx outgoing
6864 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6865 #endif
6867 /* Mark this as a function return value so integrate will delete the
6868 assignment and USE below when inlining this function. */
6869 REG_FUNCTION_VALUE_P (outgoing) = 1;
6871 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6872 value_address = convert_memory_address (GET_MODE (outgoing),
6873 value_address);
6875 emit_move_insn (outgoing, value_address);
6877 /* Show return register used to hold result (in this case the address
6878 of the result. */
6879 current_function_return_rtx = outgoing;
6882 /* If this is an implementation of throw, do what's necessary to
6883 communicate between __builtin_eh_return and the epilogue. */
6884 expand_eh_return ();
6886 /* Emit the actual code to clobber return register. */
6888 rtx seq, after;
6890 start_sequence ();
6891 clobber_return_register ();
6892 seq = get_insns ();
6893 end_sequence ();
6895 after = emit_insn_after (seq, clobber_after);
6898 /* Output the label for the naked return from the function, if one is
6899 expected. This is currently used only by __builtin_return. */
6900 if (naked_return_label)
6901 emit_label (naked_return_label);
6903 /* ??? This should no longer be necessary since stupid is no longer with
6904 us, but there are some parts of the compiler (eg reload_combine, and
6905 sh mach_dep_reorg) that still try and compute their own lifetime info
6906 instead of using the general framework. */
6907 use_return_register ();
6909 /* Fix up any gotos that jumped out to the outermost
6910 binding level of the function.
6911 Must follow emitting RETURN_LABEL. */
6913 /* If you have any cleanups to do at this point,
6914 and they need to create temporary variables,
6915 then you will lose. */
6916 expand_fixups (get_insns ());
6920 get_arg_pointer_save_area (struct function *f)
6922 rtx ret = f->x_arg_pointer_save_area;
6924 if (! ret)
6926 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
6927 f->x_arg_pointer_save_area = ret;
6930 if (f == cfun && ! f->arg_pointer_save_area_init)
6932 rtx seq;
6934 /* Save the arg pointer at the beginning of the function. The
6935 generated stack slot may not be a valid memory address, so we
6936 have to check it and fix it if necessary. */
6937 start_sequence ();
6938 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
6939 seq = get_insns ();
6940 end_sequence ();
6942 push_topmost_sequence ();
6943 emit_insn_after (seq, get_insns ());
6944 pop_topmost_sequence ();
6947 return ret;
6950 /* Extend a vector that records the INSN_UIDs of INSNS
6951 (a list of one or more insns). */
6953 static void
6954 record_insns (rtx insns, varray_type *vecp)
6956 int i, len;
6957 rtx tmp;
6959 tmp = insns;
6960 len = 0;
6961 while (tmp != NULL_RTX)
6963 len++;
6964 tmp = NEXT_INSN (tmp);
6967 i = VARRAY_SIZE (*vecp);
6968 VARRAY_GROW (*vecp, i + len);
6969 tmp = insns;
6970 while (tmp != NULL_RTX)
6972 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
6973 i++;
6974 tmp = NEXT_INSN (tmp);
6978 /* Set the locator of the insn chain starting at INSN to LOC. */
6979 static void
6980 set_insn_locators (rtx insn, int loc)
6982 while (insn != NULL_RTX)
6984 if (INSN_P (insn))
6985 INSN_LOCATOR (insn) = loc;
6986 insn = NEXT_INSN (insn);
6990 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
6991 be running after reorg, SEQUENCE rtl is possible. */
6993 static int
6994 contains (rtx insn, varray_type vec)
6996 int i, j;
6998 if (GET_CODE (insn) == INSN
6999 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7001 int count = 0;
7002 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7003 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7004 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7005 count++;
7006 return count;
7008 else
7010 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7011 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7012 return 1;
7014 return 0;
7018 prologue_epilogue_contains (rtx insn)
7020 if (contains (insn, prologue))
7021 return 1;
7022 if (contains (insn, epilogue))
7023 return 1;
7024 return 0;
7028 sibcall_epilogue_contains (rtx insn)
7030 if (sibcall_epilogue)
7031 return contains (insn, sibcall_epilogue);
7032 return 0;
7035 #ifdef HAVE_return
7036 /* Insert gen_return at the end of block BB. This also means updating
7037 block_for_insn appropriately. */
7039 static void
7040 emit_return_into_block (basic_block bb, rtx line_note)
7042 emit_jump_insn_after (gen_return (), BB_END (bb));
7043 if (line_note)
7044 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
7046 #endif /* HAVE_return */
7048 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7050 /* These functions convert the epilogue into a variant that does not modify the
7051 stack pointer. This is used in cases where a function returns an object
7052 whose size is not known until it is computed. The called function leaves the
7053 object on the stack, leaves the stack depressed, and returns a pointer to
7054 the object.
7056 What we need to do is track all modifications and references to the stack
7057 pointer, deleting the modifications and changing the references to point to
7058 the location the stack pointer would have pointed to had the modifications
7059 taken place.
7061 These functions need to be portable so we need to make as few assumptions
7062 about the epilogue as we can. However, the epilogue basically contains
7063 three things: instructions to reset the stack pointer, instructions to
7064 reload registers, possibly including the frame pointer, and an
7065 instruction to return to the caller.
7067 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7068 We also make no attempt to validate the insns we make since if they are
7069 invalid, we probably can't do anything valid. The intent is that these
7070 routines get "smarter" as more and more machines start to use them and
7071 they try operating on different epilogues.
7073 We use the following structure to track what the part of the epilogue that
7074 we've already processed has done. We keep two copies of the SP equivalence,
7075 one for use during the insn we are processing and one for use in the next
7076 insn. The difference is because one part of a PARALLEL may adjust SP
7077 and the other may use it. */
7079 struct epi_info
7081 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7082 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7083 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7084 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7085 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7086 should be set to once we no longer need
7087 its value. */
7088 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
7089 for registers. */
7092 static void handle_epilogue_set (rtx, struct epi_info *);
7093 static void update_epilogue_consts (rtx, rtx, void *);
7094 static void emit_equiv_load (struct epi_info *);
7096 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7097 no modifications to the stack pointer. Return the new list of insns. */
7099 static rtx
7100 keep_stack_depressed (rtx insns)
7102 int j;
7103 struct epi_info info;
7104 rtx insn, next;
7106 /* If the epilogue is just a single instruction, it must be OK as is. */
7107 if (NEXT_INSN (insns) == NULL_RTX)
7108 return insns;
7110 /* Otherwise, start a sequence, initialize the information we have, and
7111 process all the insns we were given. */
7112 start_sequence ();
7114 info.sp_equiv_reg = stack_pointer_rtx;
7115 info.sp_offset = 0;
7116 info.equiv_reg_src = 0;
7118 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
7119 info.const_equiv[j] = 0;
7121 insn = insns;
7122 next = NULL_RTX;
7123 while (insn != NULL_RTX)
7125 next = NEXT_INSN (insn);
7127 if (!INSN_P (insn))
7129 add_insn (insn);
7130 insn = next;
7131 continue;
7134 /* If this insn references the register that SP is equivalent to and
7135 we have a pending load to that register, we must force out the load
7136 first and then indicate we no longer know what SP's equivalent is. */
7137 if (info.equiv_reg_src != 0
7138 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7140 emit_equiv_load (&info);
7141 info.sp_equiv_reg = 0;
7144 info.new_sp_equiv_reg = info.sp_equiv_reg;
7145 info.new_sp_offset = info.sp_offset;
7147 /* If this is a (RETURN) and the return address is on the stack,
7148 update the address and change to an indirect jump. */
7149 if (GET_CODE (PATTERN (insn)) == RETURN
7150 || (GET_CODE (PATTERN (insn)) == PARALLEL
7151 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7153 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7154 rtx base = 0;
7155 HOST_WIDE_INT offset = 0;
7156 rtx jump_insn, jump_set;
7158 /* If the return address is in a register, we can emit the insn
7159 unchanged. Otherwise, it must be a MEM and we see what the
7160 base register and offset are. In any case, we have to emit any
7161 pending load to the equivalent reg of SP, if any. */
7162 if (GET_CODE (retaddr) == REG)
7164 emit_equiv_load (&info);
7165 add_insn (insn);
7166 insn = next;
7167 continue;
7169 else if (GET_CODE (retaddr) == MEM
7170 && GET_CODE (XEXP (retaddr, 0)) == REG)
7171 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7172 else if (GET_CODE (retaddr) == MEM
7173 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7174 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7175 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7177 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7178 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7180 else
7181 abort ();
7183 /* If the base of the location containing the return pointer
7184 is SP, we must update it with the replacement address. Otherwise,
7185 just build the necessary MEM. */
7186 retaddr = plus_constant (base, offset);
7187 if (base == stack_pointer_rtx)
7188 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7189 plus_constant (info.sp_equiv_reg,
7190 info.sp_offset));
7192 retaddr = gen_rtx_MEM (Pmode, retaddr);
7194 /* If there is a pending load to the equivalent register for SP
7195 and we reference that register, we must load our address into
7196 a scratch register and then do that load. */
7197 if (info.equiv_reg_src
7198 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7200 unsigned int regno;
7201 rtx reg;
7203 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7204 if (HARD_REGNO_MODE_OK (regno, Pmode)
7205 && !fixed_regs[regno]
7206 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7207 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7208 regno)
7209 && !refers_to_regno_p (regno,
7210 regno + hard_regno_nregs[regno]
7211 [Pmode],
7212 info.equiv_reg_src, NULL)
7213 && info.const_equiv[regno] == 0)
7214 break;
7216 if (regno == FIRST_PSEUDO_REGISTER)
7217 abort ();
7219 reg = gen_rtx_REG (Pmode, regno);
7220 emit_move_insn (reg, retaddr);
7221 retaddr = reg;
7224 emit_equiv_load (&info);
7225 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7227 /* Show the SET in the above insn is a RETURN. */
7228 jump_set = single_set (jump_insn);
7229 if (jump_set == 0)
7230 abort ();
7231 else
7232 SET_IS_RETURN_P (jump_set) = 1;
7235 /* If SP is not mentioned in the pattern and its equivalent register, if
7236 any, is not modified, just emit it. Otherwise, if neither is set,
7237 replace the reference to SP and emit the insn. If none of those are
7238 true, handle each SET individually. */
7239 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7240 && (info.sp_equiv_reg == stack_pointer_rtx
7241 || !reg_set_p (info.sp_equiv_reg, insn)))
7242 add_insn (insn);
7243 else if (! reg_set_p (stack_pointer_rtx, insn)
7244 && (info.sp_equiv_reg == stack_pointer_rtx
7245 || !reg_set_p (info.sp_equiv_reg, insn)))
7247 if (! validate_replace_rtx (stack_pointer_rtx,
7248 plus_constant (info.sp_equiv_reg,
7249 info.sp_offset),
7250 insn))
7251 abort ();
7253 add_insn (insn);
7255 else if (GET_CODE (PATTERN (insn)) == SET)
7256 handle_epilogue_set (PATTERN (insn), &info);
7257 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7259 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7260 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7261 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7263 else
7264 add_insn (insn);
7266 info.sp_equiv_reg = info.new_sp_equiv_reg;
7267 info.sp_offset = info.new_sp_offset;
7269 /* Now update any constants this insn sets. */
7270 note_stores (PATTERN (insn), update_epilogue_consts, &info);
7271 insn = next;
7274 insns = get_insns ();
7275 end_sequence ();
7276 return insns;
7279 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7280 structure that contains information about what we've seen so far. We
7281 process this SET by either updating that data or by emitting one or
7282 more insns. */
7284 static void
7285 handle_epilogue_set (rtx set, struct epi_info *p)
7287 /* First handle the case where we are setting SP. Record what it is being
7288 set from. If unknown, abort. */
7289 if (reg_set_p (stack_pointer_rtx, set))
7291 if (SET_DEST (set) != stack_pointer_rtx)
7292 abort ();
7294 if (GET_CODE (SET_SRC (set)) == PLUS)
7296 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7297 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7298 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7299 else if (GET_CODE (XEXP (SET_SRC (set), 1)) == REG
7300 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
7301 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
7302 p->new_sp_offset
7303 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
7304 else
7305 abort ();
7307 else
7308 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7310 /* If we are adjusting SP, we adjust from the old data. */
7311 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7313 p->new_sp_equiv_reg = p->sp_equiv_reg;
7314 p->new_sp_offset += p->sp_offset;
7317 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7318 abort ();
7320 return;
7323 /* Next handle the case where we are setting SP's equivalent register.
7324 If we already have a value to set it to, abort. We could update, but
7325 there seems little point in handling that case. Note that we have
7326 to allow for the case where we are setting the register set in
7327 the previous part of a PARALLEL inside a single insn. But use the
7328 old offset for any updates within this insn. We must allow for the case
7329 where the register is being set in a different (usually wider) mode than
7330 Pmode). */
7331 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7333 if (p->equiv_reg_src != 0
7334 || GET_CODE (p->new_sp_equiv_reg) != REG
7335 || GET_CODE (SET_DEST (set)) != REG
7336 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
7337 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
7338 abort ();
7339 else
7340 p->equiv_reg_src
7341 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7342 plus_constant (p->sp_equiv_reg,
7343 p->sp_offset));
7346 /* Otherwise, replace any references to SP in the insn to its new value
7347 and emit the insn. */
7348 else
7350 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7351 plus_constant (p->sp_equiv_reg,
7352 p->sp_offset));
7353 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7354 plus_constant (p->sp_equiv_reg,
7355 p->sp_offset));
7356 emit_insn (set);
7360 /* Update the tracking information for registers set to constants. */
7362 static void
7363 update_epilogue_consts (rtx dest, rtx x, void *data)
7365 struct epi_info *p = (struct epi_info *) data;
7366 rtx new;
7368 if (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
7369 return;
7371 /* If we are either clobbering a register or doing a partial set,
7372 show we don't know the value. */
7373 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
7374 p->const_equiv[REGNO (dest)] = 0;
7376 /* If we are setting it to a constant, record that constant. */
7377 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
7378 p->const_equiv[REGNO (dest)] = SET_SRC (x);
7380 /* If this is a binary operation between a register we have been tracking
7381 and a constant, see if we can compute a new constant value. */
7382 else if (ARITHMETIC_P (SET_SRC (x))
7383 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
7384 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
7385 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
7386 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
7387 && 0 != (new = simplify_binary_operation
7388 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
7389 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
7390 XEXP (SET_SRC (x), 1)))
7391 && GET_CODE (new) == CONST_INT)
7392 p->const_equiv[REGNO (dest)] = new;
7394 /* Otherwise, we can't do anything with this value. */
7395 else
7396 p->const_equiv[REGNO (dest)] = 0;
7399 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7401 static void
7402 emit_equiv_load (struct epi_info *p)
7404 if (p->equiv_reg_src != 0)
7406 rtx dest = p->sp_equiv_reg;
7408 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
7409 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
7410 REGNO (p->sp_equiv_reg));
7412 emit_move_insn (dest, p->equiv_reg_src);
7413 p->equiv_reg_src = 0;
7416 #endif
7418 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7419 this into place with notes indicating where the prologue ends and where
7420 the epilogue begins. Update the basic block information when possible. */
7422 void
7423 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7425 int inserted = 0;
7426 edge e;
7427 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7428 rtx seq;
7429 #endif
7430 #ifdef HAVE_prologue
7431 rtx prologue_end = NULL_RTX;
7432 #endif
7433 #if defined (HAVE_epilogue) || defined(HAVE_return)
7434 rtx epilogue_end = NULL_RTX;
7435 #endif
7437 #ifdef HAVE_prologue
7438 if (HAVE_prologue)
7440 start_sequence ();
7441 seq = gen_prologue ();
7442 emit_insn (seq);
7444 /* Retain a map of the prologue insns. */
7445 record_insns (seq, &prologue);
7446 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7448 seq = get_insns ();
7449 end_sequence ();
7450 set_insn_locators (seq, prologue_locator);
7452 /* Can't deal with multiple successors of the entry block
7453 at the moment. Function should always have at least one
7454 entry point. */
7455 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7456 abort ();
7458 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7459 inserted = 1;
7461 #endif
7463 /* If the exit block has no non-fake predecessors, we don't need
7464 an epilogue. */
7465 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7466 if ((e->flags & EDGE_FAKE) == 0)
7467 break;
7468 if (e == NULL)
7469 goto epilogue_done;
7471 #ifdef HAVE_return
7472 if (optimize && HAVE_return)
7474 /* If we're allowed to generate a simple return instruction,
7475 then by definition we don't need a full epilogue. Examine
7476 the block that falls through to EXIT. If it does not
7477 contain any code, examine its predecessors and try to
7478 emit (conditional) return instructions. */
7480 basic_block last;
7481 edge e_next;
7482 rtx label;
7484 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7485 if (e->flags & EDGE_FALLTHRU)
7486 break;
7487 if (e == NULL)
7488 goto epilogue_done;
7489 last = e->src;
7491 /* Verify that there are no active instructions in the last block. */
7492 label = BB_END (last);
7493 while (label && GET_CODE (label) != CODE_LABEL)
7495 if (active_insn_p (label))
7496 break;
7497 label = PREV_INSN (label);
7500 if (BB_HEAD (last) == label && GET_CODE (label) == CODE_LABEL)
7502 rtx epilogue_line_note = NULL_RTX;
7504 /* Locate the line number associated with the closing brace,
7505 if we can find one. */
7506 for (seq = get_last_insn ();
7507 seq && ! active_insn_p (seq);
7508 seq = PREV_INSN (seq))
7509 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7511 epilogue_line_note = seq;
7512 break;
7515 for (e = last->pred; e; e = e_next)
7517 basic_block bb = e->src;
7518 rtx jump;
7520 e_next = e->pred_next;
7521 if (bb == ENTRY_BLOCK_PTR)
7522 continue;
7524 jump = BB_END (bb);
7525 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7526 continue;
7528 /* If we have an unconditional jump, we can replace that
7529 with a simple return instruction. */
7530 if (simplejump_p (jump))
7532 emit_return_into_block (bb, epilogue_line_note);
7533 delete_insn (jump);
7536 /* If we have a conditional jump, we can try to replace
7537 that with a conditional return instruction. */
7538 else if (condjump_p (jump))
7540 if (! redirect_jump (jump, 0, 0))
7541 continue;
7543 /* If this block has only one successor, it both jumps
7544 and falls through to the fallthru block, so we can't
7545 delete the edge. */
7546 if (bb->succ->succ_next == NULL)
7547 continue;
7549 else
7550 continue;
7552 /* Fix up the CFG for the successful change we just made. */
7553 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7556 /* Emit a return insn for the exit fallthru block. Whether
7557 this is still reachable will be determined later. */
7559 emit_barrier_after (BB_END (last));
7560 emit_return_into_block (last, epilogue_line_note);
7561 epilogue_end = BB_END (last);
7562 last->succ->flags &= ~EDGE_FALLTHRU;
7563 goto epilogue_done;
7566 #endif
7567 #ifdef HAVE_epilogue
7568 if (HAVE_epilogue)
7570 /* Find the edge that falls through to EXIT. Other edges may exist
7571 due to RETURN instructions, but those don't need epilogues.
7572 There really shouldn't be a mixture -- either all should have
7573 been converted or none, however... */
7575 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7576 if (e->flags & EDGE_FALLTHRU)
7577 break;
7578 if (e == NULL)
7579 goto epilogue_done;
7581 start_sequence ();
7582 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7584 seq = gen_epilogue ();
7586 #ifdef INCOMING_RETURN_ADDR_RTX
7587 /* If this function returns with the stack depressed and we can support
7588 it, massage the epilogue to actually do that. */
7589 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7590 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7591 seq = keep_stack_depressed (seq);
7592 #endif
7594 emit_jump_insn (seq);
7596 /* Retain a map of the epilogue insns. */
7597 record_insns (seq, &epilogue);
7598 set_insn_locators (seq, epilogue_locator);
7600 seq = get_insns ();
7601 end_sequence ();
7603 insert_insn_on_edge (seq, e);
7604 inserted = 1;
7606 #endif
7607 epilogue_done:
7609 if (inserted)
7610 commit_edge_insertions ();
7612 #ifdef HAVE_sibcall_epilogue
7613 /* Emit sibling epilogues before any sibling call sites. */
7614 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7616 basic_block bb = e->src;
7617 rtx insn = BB_END (bb);
7618 rtx i;
7619 rtx newinsn;
7621 if (GET_CODE (insn) != CALL_INSN
7622 || ! SIBLING_CALL_P (insn))
7623 continue;
7625 start_sequence ();
7626 emit_insn (gen_sibcall_epilogue ());
7627 seq = get_insns ();
7628 end_sequence ();
7630 /* Retain a map of the epilogue insns. Used in life analysis to
7631 avoid getting rid of sibcall epilogue insns. Do this before we
7632 actually emit the sequence. */
7633 record_insns (seq, &sibcall_epilogue);
7634 set_insn_locators (seq, epilogue_locator);
7636 i = PREV_INSN (insn);
7637 newinsn = emit_insn_before (seq, insn);
7639 #endif
7641 #ifdef HAVE_prologue
7642 /* This is probably all useless now that we use locators. */
7643 if (prologue_end)
7645 rtx insn, prev;
7647 /* GDB handles `break f' by setting a breakpoint on the first
7648 line note after the prologue. Which means (1) that if
7649 there are line number notes before where we inserted the
7650 prologue we should move them, and (2) we should generate a
7651 note before the end of the first basic block, if there isn't
7652 one already there.
7654 ??? This behavior is completely broken when dealing with
7655 multiple entry functions. We simply place the note always
7656 into first basic block and let alternate entry points
7657 to be missed.
7660 for (insn = prologue_end; insn; insn = prev)
7662 prev = PREV_INSN (insn);
7663 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7665 /* Note that we cannot reorder the first insn in the
7666 chain, since rest_of_compilation relies on that
7667 remaining constant. */
7668 if (prev == NULL)
7669 break;
7670 reorder_insns (insn, insn, prologue_end);
7674 /* Find the last line number note in the first block. */
7675 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
7676 insn != prologue_end && insn;
7677 insn = PREV_INSN (insn))
7678 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7679 break;
7681 /* If we didn't find one, make a copy of the first line number
7682 we run across. */
7683 if (! insn)
7685 for (insn = next_active_insn (prologue_end);
7686 insn;
7687 insn = PREV_INSN (insn))
7688 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7690 emit_note_copy_after (insn, prologue_end);
7691 break;
7695 #endif
7696 #ifdef HAVE_epilogue
7697 if (epilogue_end)
7699 rtx insn, next;
7701 /* Similarly, move any line notes that appear after the epilogue.
7702 There is no need, however, to be quite so anal about the existence
7703 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
7704 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
7705 info generation. */
7706 for (insn = epilogue_end; insn; insn = next)
7708 next = NEXT_INSN (insn);
7709 if (GET_CODE (insn) == NOTE
7710 && (NOTE_LINE_NUMBER (insn) > 0
7711 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
7712 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
7713 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7716 #endif
7719 /* Reposition the prologue-end and epilogue-begin notes after instruction
7720 scheduling and delayed branch scheduling. */
7722 void
7723 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7725 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7726 rtx insn, last, note;
7727 int len;
7729 if ((len = VARRAY_SIZE (prologue)) > 0)
7731 last = 0, note = 0;
7733 /* Scan from the beginning until we reach the last prologue insn.
7734 We apparently can't depend on basic_block_{head,end} after
7735 reorg has run. */
7736 for (insn = f; insn; insn = NEXT_INSN (insn))
7738 if (GET_CODE (insn) == NOTE)
7740 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7741 note = insn;
7743 else if (contains (insn, prologue))
7745 last = insn;
7746 if (--len == 0)
7747 break;
7751 if (last)
7753 /* Find the prologue-end note if we haven't already, and
7754 move it to just after the last prologue insn. */
7755 if (note == 0)
7757 for (note = last; (note = NEXT_INSN (note));)
7758 if (GET_CODE (note) == NOTE
7759 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7760 break;
7763 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7764 if (GET_CODE (last) == CODE_LABEL)
7765 last = NEXT_INSN (last);
7766 reorder_insns (note, note, last);
7770 if ((len = VARRAY_SIZE (epilogue)) > 0)
7772 last = 0, note = 0;
7774 /* Scan from the end until we reach the first epilogue insn.
7775 We apparently can't depend on basic_block_{head,end} after
7776 reorg has run. */
7777 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7779 if (GET_CODE (insn) == NOTE)
7781 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7782 note = insn;
7784 else if (contains (insn, epilogue))
7786 last = insn;
7787 if (--len == 0)
7788 break;
7792 if (last)
7794 /* Find the epilogue-begin note if we haven't already, and
7795 move it to just before the first epilogue insn. */
7796 if (note == 0)
7798 for (note = insn; (note = PREV_INSN (note));)
7799 if (GET_CODE (note) == NOTE
7800 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7801 break;
7804 if (PREV_INSN (last) != note)
7805 reorder_insns (note, note, PREV_INSN (last));
7808 #endif /* HAVE_prologue or HAVE_epilogue */
7811 /* Called once, at initialization, to initialize function.c. */
7813 void
7814 init_function_once (void)
7816 VARRAY_INT_INIT (prologue, 0, "prologue");
7817 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7818 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7821 /* Resets insn_block_boundaries array. */
7823 void
7824 reset_block_changes (void)
7826 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
7827 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
7830 /* Record the boundary for BLOCK. */
7831 void
7832 record_block_change (tree block)
7834 int i, n;
7835 tree last_block;
7837 if (!block)
7838 return;
7840 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
7841 VARRAY_POP (cfun->ib_boundaries_block);
7842 n = get_max_uid ();
7843 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
7844 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
7846 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
7849 /* Finishes record of boundaries. */
7850 void finalize_block_changes (void)
7852 record_block_change (DECL_INITIAL (current_function_decl));
7855 /* For INSN return the BLOCK it belongs to. */
7856 void
7857 check_block_change (rtx insn, tree *block)
7859 unsigned uid = INSN_UID (insn);
7861 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
7862 return;
7864 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
7867 /* Releases the ib_boundaries_block records. */
7868 void
7869 free_block_changes (void)
7871 cfun->ib_boundaries_block = NULL;
7874 /* Returns the name of the current function. */
7875 const char *
7876 current_function_name (void)
7878 return lang_hooks.decl_printable_name (cfun->decl, 2);
7881 #include "gt-function.h"