Fix typo in t-dimode
[official-gcc.git] / gcc / ada / sem_type.adb
blob4419fb31bdac192ab6b52460977244a50a8ce603
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ T Y P E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Alloc;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Nlists; use Nlists;
35 with Errout; use Errout;
36 with Lib; use Lib;
37 with Namet; use Namet;
38 with Opt; use Opt;
39 with Output; use Output;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Ch6; use Sem_Ch6;
43 with Sem_Ch8; use Sem_Ch8;
44 with Sem_Ch12; use Sem_Ch12;
45 with Sem_Disp; use Sem_Disp;
46 with Sem_Dist; use Sem_Dist;
47 with Sem_Util; use Sem_Util;
48 with Stand; use Stand;
49 with Sinfo; use Sinfo;
50 with Sinfo.Nodes; use Sinfo.Nodes;
51 with Sinfo.Utils; use Sinfo.Utils;
52 with Snames; use Snames;
53 with Table;
54 with Treepr; use Treepr;
55 with Uintp; use Uintp;
57 with GNAT.HTable; use GNAT.HTable;
59 package body Sem_Type is
61 ---------------------
62 -- Data Structures --
63 ---------------------
65 -- The following data structures establish a mapping between nodes and
66 -- their interpretations. An overloaded node has an entry in Interp_Map,
67 -- which in turn contains a pointer into the All_Interp array. The
68 -- interpretations of a given node are contiguous in All_Interp. Each set
69 -- of interpretations is terminated with the marker No_Interp.
71 -- Interp_Map All_Interp
73 -- +-----+ +--------+
74 -- | | --->|interp1 |
75 -- |_____| | |interp2 |
76 -- |index|---------| |nointerp|
77 -- |-----| | |
78 -- | | | |
79 -- +-----+ +--------+
81 -- This scheme does not currently reclaim interpretations. In principle,
82 -- after a unit is compiled, all overloadings have been resolved, and the
83 -- candidate interpretations should be deleted. This should be easier
84 -- now than with the previous scheme???
86 package All_Interp is new Table.Table (
87 Table_Component_Type => Interp,
88 Table_Index_Type => Interp_Index,
89 Table_Low_Bound => 0,
90 Table_Initial => Alloc.All_Interp_Initial,
91 Table_Increment => Alloc.All_Interp_Increment,
92 Table_Name => "All_Interp");
94 Header_Max : constant := 3079;
95 -- The number of hash buckets; an arbitrary prime number
97 subtype Header_Num is Integer range 0 .. Header_Max - 1;
99 function Hash (N : Node_Id) return Header_Num;
100 -- A trivial hashing function for nodes, used to insert an overloaded
101 -- node into the Interp_Map table.
103 package Interp_Map is new Simple_HTable
104 (Header_Num => Header_Num,
105 Element => Interp_Index,
106 No_Element => -1,
107 Key => Node_Id,
108 Hash => Hash,
109 Equal => "=");
111 Last_Overloaded : Node_Id := Empty;
112 -- Overloaded node after initializing a new collection of intepretation
114 -------------------------------------
115 -- Handling of Overload Resolution --
116 -------------------------------------
118 -- Overload resolution uses two passes over the syntax tree of a complete
119 -- context. In the first, bottom-up pass, the types of actuals in calls
120 -- are used to resolve possibly overloaded subprogram and operator names.
121 -- In the second top-down pass, the type of the context (for example the
122 -- condition in a while statement) is used to resolve a possibly ambiguous
123 -- call, and the unique subprogram name in turn imposes a specific context
124 -- on each of its actuals.
126 -- Most expressions are in fact unambiguous, and the bottom-up pass is
127 -- sufficient to resolve most everything. To simplify the common case,
128 -- names and expressions carry a flag Is_Overloaded to indicate whether
129 -- they have more than one interpretation. If the flag is off, then each
130 -- name has already a unique meaning and type, and the bottom-up pass is
131 -- sufficient (and much simpler).
133 --------------------------
134 -- Operator Overloading --
135 --------------------------
137 -- The visibility of operators is handled differently from that of other
138 -- entities. We do not introduce explicit versions of primitive operators
139 -- for each type definition. As a result, there is only one entity
140 -- corresponding to predefined addition on all numeric types, etc. The
141 -- back end resolves predefined operators according to their type. The
142 -- visibility of primitive operations then reduces to the visibility of the
143 -- resulting type: (a + b) is a legal interpretation of some primitive
144 -- operator + if the type of the result (which must also be the type of a
145 -- and b) is directly visible (either immediately visible or use-visible).
147 -- User-defined operators are treated like other functions, but the
148 -- visibility of these user-defined operations must be special-cased
149 -- to determine whether they hide or are hidden by predefined operators.
150 -- The form P."+" (x, y) requires additional handling.
152 -- Concatenation is treated more conventionally: for every one-dimensional
153 -- array type we introduce a explicit concatenation operator. This is
154 -- necessary to handle the case of (element & element => array) which
155 -- cannot be handled conveniently if there is no explicit instance of
156 -- resulting type of the operation.
158 -----------------------
159 -- Local Subprograms --
160 -----------------------
162 procedure All_Overloads;
163 pragma Warnings (Off, All_Overloads);
164 -- Debugging procedure: list full contents of Overloads table
166 function Binary_Op_Interp_Has_Abstract_Op
167 (N : Node_Id;
168 E : Entity_Id) return Entity_Id;
169 -- Given the node and entity of a binary operator, determine whether the
170 -- actuals of E contain an abstract interpretation with regards to the
171 -- types of their corresponding formals. Return the abstract operation or
172 -- Empty.
174 function Function_Interp_Has_Abstract_Op
175 (N : Node_Id;
176 E : Entity_Id) return Entity_Id;
177 -- Given the node and entity of a function call, determine whether the
178 -- actuals of E contain an abstract interpretation with regards to the
179 -- types of their corresponding formals. Return the abstract operation or
180 -- Empty.
182 function Has_Abstract_Op
183 (N : Node_Id;
184 Typ : Entity_Id) return Entity_Id;
185 -- Subsidiary routine to Binary_Op_Interp_Has_Abstract_Op and Function_
186 -- Interp_Has_Abstract_Op. Determine whether an overloaded node has an
187 -- abstract interpretation which yields type Typ.
189 procedure New_Interps (N : Node_Id);
190 -- Initialize collection of interpretations for the given node, which is
191 -- either an overloaded entity, or an operation whose arguments have
192 -- multiple interpretations. Interpretations can be added to only one
193 -- node at a time.
195 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id;
196 -- If Typ_1 and Typ_2 are compatible, return the one that is not universal
197 -- or is not a "class" type (any_character, etc).
199 --------------------
200 -- Add_One_Interp --
201 --------------------
203 procedure Add_One_Interp
204 (N : Node_Id;
205 E : Entity_Id;
206 T : Entity_Id;
207 Opnd_Type : Entity_Id := Empty)
209 Vis_Type : Entity_Id;
211 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id);
212 -- Add one interpretation to an overloaded node. Add a new entry if
213 -- not hidden by previous one, and remove previous one if hidden by
214 -- new one.
216 function Is_Universal_Operation (Op : Entity_Id) return Boolean;
217 -- True if the entity is a predefined operator and the operands have
218 -- a universal Interpretation.
220 ---------------
221 -- Add_Entry --
222 ---------------
224 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id) is
225 Abstr_Op : Entity_Id := Empty;
226 I : Interp_Index;
227 It : Interp;
229 -- Start of processing for Add_Entry
231 begin
232 -- Find out whether the new entry references interpretations that
233 -- are abstract or disabled by abstract operators.
235 if Ada_Version >= Ada_2005 then
236 if Nkind (N) in N_Binary_Op then
237 Abstr_Op := Binary_Op_Interp_Has_Abstract_Op (N, Name);
238 elsif Nkind (N) = N_Function_Call then
239 Abstr_Op := Function_Interp_Has_Abstract_Op (N, Name);
240 end if;
241 end if;
243 Get_First_Interp (N, I, It);
244 while Present (It.Nam) loop
246 -- Avoid making duplicate entries in overloads
248 if Name = It.Nam
249 and then Base_Type (It.Typ) = Base_Type (T)
250 then
251 return;
253 -- A user-defined subprogram hides another declared at an outer
254 -- level, or one that is use-visible. So return if previous
255 -- definition hides new one (which is either in an outer
256 -- scope, or use-visible). Note that for functions use-visible
257 -- is the same as potentially use-visible. If new one hides
258 -- previous one, replace entry in table of interpretations.
259 -- If this is a universal operation, retain the operator in case
260 -- preference rule applies.
262 elsif ((Ekind (Name) in E_Function | E_Procedure
263 and then Ekind (Name) = Ekind (It.Nam))
264 or else (Ekind (Name) = E_Operator
265 and then Ekind (It.Nam) = E_Function))
266 and then Is_Immediately_Visible (It.Nam)
267 and then Type_Conformant (Name, It.Nam)
268 and then Base_Type (It.Typ) = Base_Type (T)
269 then
270 if Is_Universal_Operation (Name) then
271 exit;
273 -- If node is an operator symbol, we have no actuals with
274 -- which to check hiding, and this is done in full in the
275 -- caller (Analyze_Subprogram_Renaming) so we include the
276 -- predefined operator in any case.
278 elsif Nkind (N) = N_Operator_Symbol
279 or else
280 (Nkind (N) = N_Expanded_Name
281 and then Nkind (Selector_Name (N)) = N_Operator_Symbol)
282 then
283 exit;
285 elsif not In_Open_Scopes (Scope (Name))
286 or else Scope_Depth (Scope (Name)) <=
287 Scope_Depth (Scope (It.Nam))
288 then
289 -- If ambiguity within instance, and entity is not an
290 -- implicit operation, save for later disambiguation.
292 if Scope (Name) = Scope (It.Nam)
293 and then not Is_Inherited_Operation (Name)
294 and then In_Instance
295 then
296 exit;
297 else
298 return;
299 end if;
301 else
302 All_Interp.Table (I).Nam := Name;
303 return;
304 end if;
306 -- Otherwise keep going
308 else
309 Get_Next_Interp (I, It);
310 end if;
311 end loop;
313 All_Interp.Table (All_Interp.Last) := (Name, Typ, Abstr_Op);
314 All_Interp.Append (No_Interp);
315 end Add_Entry;
317 ----------------------------
318 -- Is_Universal_Operation --
319 ----------------------------
321 function Is_Universal_Operation (Op : Entity_Id) return Boolean is
322 Arg : Node_Id;
324 begin
325 if Ekind (Op) /= E_Operator then
326 return False;
328 elsif Nkind (N) in N_Binary_Op then
329 if Present (Universal_Interpretation (Left_Opnd (N)))
330 and then Present (Universal_Interpretation (Right_Opnd (N)))
331 then
332 return True;
333 elsif Nkind (N) in N_Op_Eq | N_Op_Ne
334 and then
335 (Is_Anonymous_Access_Type (Etype (Left_Opnd (N)))
336 or else Is_Anonymous_Access_Type (Etype (Right_Opnd (N))))
337 then
338 return True;
339 else
340 return False;
341 end if;
343 elsif Nkind (N) in N_Unary_Op then
344 return Present (Universal_Interpretation (Right_Opnd (N)));
346 elsif Nkind (N) = N_Function_Call then
347 Arg := First_Actual (N);
348 while Present (Arg) loop
349 if No (Universal_Interpretation (Arg)) then
350 return False;
351 end if;
353 Next_Actual (Arg);
354 end loop;
356 return True;
358 else
359 return False;
360 end if;
361 end Is_Universal_Operation;
363 -- Start of processing for Add_One_Interp
365 begin
366 -- If the interpretation is a predefined operator, verify that the
367 -- result type is visible, or that the entity has already been
368 -- resolved (case of an instantiation node that refers to a predefined
369 -- operation, or an internally generated operator node, or an operator
370 -- given as an expanded name). If the operator is a comparison or
371 -- equality, it is the type of the operand that matters to determine
372 -- whether the operator is visible. In an instance, the check is not
373 -- performed, given that the operator was visible in the generic.
375 if Ekind (E) = E_Operator then
376 if Present (Opnd_Type) then
377 Vis_Type := Opnd_Type;
378 else
379 Vis_Type := Base_Type (T);
380 end if;
382 if In_Open_Scopes (Scope (Vis_Type))
383 or else Is_Potentially_Use_Visible (Vis_Type)
384 or else In_Use (Vis_Type)
385 or else (In_Use (Scope (Vis_Type))
386 and then not Is_Hidden (Vis_Type))
387 or else Nkind (N) = N_Expanded_Name
388 or else (Nkind (N) in N_Op and then E = Entity (N))
389 or else (In_Instance or else In_Inlined_Body)
390 or else Is_Anonymous_Access_Type (Vis_Type)
391 then
392 null;
394 -- If the node is given in functional notation and the prefix
395 -- is an expanded name, then the operator is visible if the
396 -- prefix is the scope of the result type as well. If the
397 -- operator is (implicitly) defined in an extension of system,
398 -- it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
400 elsif Nkind (N) = N_Function_Call
401 and then Nkind (Name (N)) = N_Expanded_Name
402 and then (Entity (Prefix (Name (N))) = Scope (Base_Type (T))
403 or else Entity (Prefix (Name (N))) = Scope (Vis_Type)
404 or else Scope (Vis_Type) = System_Aux_Id)
405 then
406 null;
408 -- Save type for subsequent error message, in case no other
409 -- interpretation is found.
411 else
412 Candidate_Type := Vis_Type;
413 return;
414 end if;
416 -- In an instance, an abstract non-dispatching operation cannot be a
417 -- candidate interpretation, because it could not have been one in the
418 -- generic (it may be a spurious overloading in the instance).
420 elsif In_Instance
421 and then Is_Overloadable (E)
422 and then Is_Abstract_Subprogram (E)
423 and then not Is_Dispatching_Operation (E)
424 then
425 return;
427 -- An inherited interface operation that is implemented by some derived
428 -- type does not participate in overload resolution, only the
429 -- implementation operation does.
431 elsif Is_Hidden (E)
432 and then Is_Subprogram (E)
433 and then Present (Interface_Alias (E))
434 then
435 -- Ada 2005 (AI-251): If this primitive operation corresponds with
436 -- an immediate ancestor interface there is no need to add it to the
437 -- list of interpretations. The corresponding aliased primitive is
438 -- also in this list of primitive operations and will be used instead
439 -- because otherwise we have a dummy ambiguity between the two
440 -- subprograms which are in fact the same.
442 if not Is_Ancestor
443 (Find_Dispatching_Type (Interface_Alias (E)),
444 Find_Dispatching_Type (E))
445 then
446 Add_One_Interp (N, Interface_Alias (E), T);
448 -- Otherwise this is the first interpretation, N has type Any_Type
449 -- and we must place the new type on the node.
451 else
452 Set_Etype (N, T);
453 end if;
455 return;
457 -- Calling stubs for an RACW operation never participate in resolution,
458 -- they are executed only through dispatching calls.
460 elsif Is_RACW_Stub_Type_Operation (E) then
461 return;
462 end if;
464 -- If this is the first interpretation of N, N has type Any_Type.
465 -- In that case place the new type on the node. If one interpretation
466 -- already exists, indicate that the node is overloaded, and store
467 -- both the previous and the new interpretation in All_Interp. If
468 -- this is a later interpretation, just add it to the set.
470 if Etype (N) = Any_Type then
471 if Is_Type (E) then
472 Set_Etype (N, T);
474 else
475 -- Record both the operator or subprogram name, and its type
477 if Nkind (N) in N_Op or else Is_Entity_Name (N) then
478 Set_Entity (N, E);
479 end if;
481 Set_Etype (N, T);
482 end if;
484 -- Either there is no current interpretation in the table for any
485 -- node or the interpretation that is present is for a different
486 -- node. In both cases add a new interpretation to the table.
488 elsif No (Last_Overloaded)
489 or else
490 (Last_Overloaded /= N
491 and then not Is_Overloaded (N))
492 then
493 New_Interps (N);
495 if (Nkind (N) in N_Op or else Is_Entity_Name (N))
496 and then Present (Entity (N))
497 then
498 Add_Entry (Entity (N), Etype (N));
500 elsif Nkind (N) in N_Subprogram_Call
501 and then Is_Entity_Name (Name (N))
502 then
503 Add_Entry (Entity (Name (N)), Etype (N));
505 -- If this is an indirect call there will be no name associated
506 -- with the previous entry. To make diagnostics clearer, save
507 -- Subprogram_Type of first interpretation, so that the error will
508 -- point to the anonymous access to subprogram, not to the result
509 -- type of the call itself.
511 elsif (Nkind (N)) = N_Function_Call
512 and then Nkind (Name (N)) = N_Explicit_Dereference
513 and then Is_Overloaded (Name (N))
514 then
515 declare
516 It : Interp;
518 Itn : Interp_Index;
519 pragma Warnings (Off, Itn);
521 begin
522 Get_First_Interp (Name (N), Itn, It);
523 Add_Entry (It.Nam, Etype (N));
524 end;
526 else
527 -- Overloaded prefix in indexed or selected component, or call
528 -- whose name is an expression or another call.
530 Add_Entry (Etype (N), Etype (N));
531 end if;
533 Add_Entry (E, T);
535 else
536 Add_Entry (E, T);
537 end if;
538 end Add_One_Interp;
540 -------------------
541 -- All_Overloads --
542 -------------------
544 procedure All_Overloads is
545 begin
546 for J in All_Interp.First .. All_Interp.Last loop
548 if Present (All_Interp.Table (J).Nam) then
549 Write_Entity_Info (All_Interp.Table (J). Nam, " ");
550 else
551 Write_Str ("No Interp");
552 Write_Eol;
553 end if;
555 Write_Str ("=================");
556 Write_Eol;
557 end loop;
558 end All_Overloads;
560 --------------------------------------
561 -- Binary_Op_Interp_Has_Abstract_Op --
562 --------------------------------------
564 function Binary_Op_Interp_Has_Abstract_Op
565 (N : Node_Id;
566 E : Entity_Id) return Entity_Id
568 Abstr_Op : Entity_Id;
569 E_Left : constant Node_Id := First_Formal (E);
570 E_Right : constant Node_Id := Next_Formal (E_Left);
572 begin
573 Abstr_Op := Has_Abstract_Op (Left_Opnd (N), Etype (E_Left));
574 if Present (Abstr_Op) then
575 return Abstr_Op;
576 end if;
578 return Has_Abstract_Op (Right_Opnd (N), Etype (E_Right));
579 end Binary_Op_Interp_Has_Abstract_Op;
581 ---------------------
582 -- Collect_Interps --
583 ---------------------
585 procedure Collect_Interps (N : Node_Id) is
586 Ent : constant Entity_Id := Entity (N);
587 H : Entity_Id;
588 First_Interp : Interp_Index;
590 function Within_Instance (E : Entity_Id) return Boolean;
591 -- Within an instance there can be spurious ambiguities between a local
592 -- entity and one declared outside of the instance. This can only happen
593 -- for subprograms, because otherwise the local entity hides the outer
594 -- one. For an overloadable entity, this predicate determines whether it
595 -- is a candidate within the instance, or must be ignored.
597 ---------------------
598 -- Within_Instance --
599 ---------------------
601 function Within_Instance (E : Entity_Id) return Boolean is
602 Inst : Entity_Id;
603 Scop : Entity_Id;
605 begin
606 if not In_Instance then
607 return False;
608 end if;
610 Inst := Current_Scope;
611 while Present (Inst) and then not Is_Generic_Instance (Inst) loop
612 Inst := Scope (Inst);
613 end loop;
615 Scop := Scope (E);
616 while Present (Scop) and then Scop /= Standard_Standard loop
617 if Scop = Inst then
618 return True;
619 end if;
621 Scop := Scope (Scop);
622 end loop;
624 return False;
625 end Within_Instance;
627 -- Start of processing for Collect_Interps
629 begin
630 New_Interps (N);
632 -- Unconditionally add the entity that was initially matched
634 First_Interp := All_Interp.Last;
635 Add_One_Interp (N, Ent, Etype (N));
637 -- For expanded name, pick up all additional entities from the
638 -- same scope, since these are obviously also visible. Note that
639 -- these are not necessarily contiguous on the homonym chain.
641 if Nkind (N) = N_Expanded_Name then
642 H := Homonym (Ent);
643 while Present (H) loop
644 if Scope (H) = Scope (Entity (N)) then
645 Add_One_Interp (N, H, Etype (H));
646 end if;
648 H := Homonym (H);
649 end loop;
651 -- Case of direct name
653 else
654 -- First, search the homonym chain for directly visible entities
656 H := Current_Entity (Ent);
657 while Present (H) loop
658 exit when
659 not Is_Overloadable (H)
660 and then Is_Immediately_Visible (H);
662 if Is_Immediately_Visible (H) and then H /= Ent then
664 -- Only add interpretation if not hidden by an inner
665 -- immediately visible one.
667 for J in First_Interp .. All_Interp.Last - 1 loop
669 -- Current homograph is not hidden. Add to overloads
671 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
672 exit;
674 -- Homograph is hidden, unless it is a predefined operator
676 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
678 -- A homograph in the same scope can occur within an
679 -- instantiation, the resulting ambiguity has to be
680 -- resolved later. The homographs may both be local
681 -- functions or actuals, or may be declared at different
682 -- levels within the instance. The renaming of an actual
683 -- within the instance must not be included.
685 if Within_Instance (H)
686 and then H /= Renamed_Entity (Ent)
687 and then not Is_Inherited_Operation (H)
688 then
689 All_Interp.Table (All_Interp.Last) :=
690 (H, Etype (H), Empty);
691 All_Interp.Append (No_Interp);
692 goto Next_Homograph;
694 elsif Scope (H) /= Standard_Standard then
695 goto Next_Homograph;
696 end if;
697 end if;
698 end loop;
700 -- On exit, we know that current homograph is not hidden
702 Add_One_Interp (N, H, Etype (H));
704 if Debug_Flag_E then
705 Write_Str ("Add overloaded interpretation ");
706 Write_Int (Int (H));
707 Write_Eol;
708 end if;
709 end if;
711 <<Next_Homograph>>
712 H := Homonym (H);
713 end loop;
715 -- Scan list of homographs for use-visible entities only
717 H := Current_Entity (Ent);
719 while Present (H) loop
720 if Is_Potentially_Use_Visible (H)
721 and then H /= Ent
722 and then Is_Overloadable (H)
723 then
724 for J in First_Interp .. All_Interp.Last - 1 loop
726 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
727 exit;
729 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
730 goto Next_Use_Homograph;
731 end if;
732 end loop;
734 Add_One_Interp (N, H, Etype (H));
735 end if;
737 <<Next_Use_Homograph>>
738 H := Homonym (H);
739 end loop;
740 end if;
742 if All_Interp.Last = First_Interp + 1 then
744 -- The final interpretation is in fact not overloaded. Note that the
745 -- unique legal interpretation may or may not be the original one,
746 -- so we need to update N's entity and etype now, because once N
747 -- is marked as not overloaded it is also expected to carry the
748 -- proper interpretation.
750 Set_Is_Overloaded (N, False);
751 Set_Entity (N, All_Interp.Table (First_Interp).Nam);
752 Set_Etype (N, All_Interp.Table (First_Interp).Typ);
753 end if;
754 end Collect_Interps;
756 ------------
757 -- Covers --
758 ------------
760 function Covers (T1, T2 : Entity_Id) return Boolean is
761 BT1 : Entity_Id;
762 BT2 : Entity_Id;
764 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean;
765 -- In an instance the proper view may not always be correct for
766 -- private types, but private and full view are compatible. This
767 -- removes spurious errors from nested instantiations that involve,
768 -- among other things, types derived from private types.
770 function Real_Actual (T : Entity_Id) return Entity_Id;
771 -- If an actual in an inner instance is the formal of an enclosing
772 -- generic, the actual in the enclosing instance is the one that can
773 -- create an accidental ambiguity, and the check on compatibily of
774 -- generic actual types must use this enclosing actual.
776 ----------------------
777 -- Full_View_Covers --
778 ----------------------
780 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean is
781 begin
782 if Present (Full_View (Typ1))
783 and then Covers (Full_View (Typ1), Typ2)
784 then
785 return True;
787 elsif Present (Underlying_Full_View (Typ1))
788 and then Covers (Underlying_Full_View (Typ1), Typ2)
789 then
790 return True;
792 else
793 return False;
794 end if;
795 end Full_View_Covers;
797 -----------------
798 -- Real_Actual --
799 -----------------
801 function Real_Actual (T : Entity_Id) return Entity_Id is
802 Par : constant Node_Id := Parent (T);
803 RA : Entity_Id;
805 begin
806 -- Retrieve parent subtype from subtype declaration for actual
808 if Nkind (Par) = N_Subtype_Declaration
809 and then not Comes_From_Source (Par)
810 and then Is_Entity_Name (Subtype_Indication (Par))
811 then
812 RA := Entity (Subtype_Indication (Par));
814 if Is_Generic_Actual_Type (RA) then
815 return RA;
816 end if;
817 end if;
819 -- Otherwise actual is not the actual of an enclosing instance
821 return T;
822 end Real_Actual;
824 -- Start of processing for Covers
826 begin
827 -- If either operand is missing, then this is an error, but ignore it
828 -- and pretend we have a cover if errors already detected since this may
829 -- simply mean we have malformed trees or a semantic error upstream.
831 if No (T1) or else No (T2) then
832 if Total_Errors_Detected /= 0 then
833 return True;
834 else
835 raise Program_Error;
836 end if;
837 end if;
839 -- Trivial case: same types are always compatible
841 if T1 = T2 then
842 return True;
843 end if;
845 -- First check for Standard_Void_Type, which is special. Subsequent
846 -- processing in this routine assumes T1 and T2 are bona fide types;
847 -- Standard_Void_Type is a special entity that has some, but not all,
848 -- properties of types.
850 if T1 = Standard_Void_Type or else T2 = Standard_Void_Type then
851 return False;
852 end if;
854 BT1 := Base_Type (T1);
855 BT2 := Base_Type (T2);
857 -- Handle underlying view of records with unknown discriminants
858 -- using the original entity that motivated the construction of
859 -- this underlying record view (see Build_Derived_Private_Type).
861 if Is_Underlying_Record_View (BT1) then
862 BT1 := Underlying_Record_View (BT1);
863 end if;
865 if Is_Underlying_Record_View (BT2) then
866 BT2 := Underlying_Record_View (BT2);
867 end if;
869 -- Simplest case: types that have the same base type and are not generic
870 -- actuals are compatible. Generic actuals belong to their class but are
871 -- not compatible with other types of their class, and in particular
872 -- with other generic actuals. They are however compatible with their
873 -- own subtypes, and itypes with the same base are compatible as well.
874 -- Similarly, constrained subtypes obtained from expressions of an
875 -- unconstrained nominal type are compatible with the base type (may
876 -- lead to spurious ambiguities in obscure cases ???)
878 -- Generic actuals require special treatment to avoid spurious ambi-
879 -- guities in an instance, when two formal types are instantiated with
880 -- the same actual, so that different subprograms end up with the same
881 -- signature in the instance. If a generic actual is the actual of an
882 -- enclosing instance, it is that actual that we must compare: generic
883 -- actuals are only incompatible if they appear in the same instance.
885 if BT1 = BT2
886 or else BT1 = T2
887 or else BT2 = T1
888 then
889 if not Is_Generic_Actual_Type (T1)
890 or else
891 not Is_Generic_Actual_Type (T2)
892 then
893 return True;
895 -- Both T1 and T2 are generic actual types
897 else
898 declare
899 RT1 : constant Entity_Id := Real_Actual (T1);
900 RT2 : constant Entity_Id := Real_Actual (T2);
901 begin
902 return RT1 = RT2
903 or else Is_Itype (T1)
904 or else Is_Itype (T2)
905 or else Is_Constr_Subt_For_U_Nominal (T1)
906 or else Is_Constr_Subt_For_U_Nominal (T2)
907 or else Scope (RT1) /= Scope (RT2);
908 end;
909 end if;
911 -- Literals are compatible with types in a given "class"
913 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
914 or else (T2 = Universal_Real and then Is_Real_Type (T1))
915 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
916 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
917 or else (T2 = Any_Character and then Is_Character_Type (T1))
918 or else (T2 = Any_String and then Is_String_Type (T1))
919 or else (T2 = Any_Access and then Is_Access_Type (T1))
920 then
921 return True;
923 -- The context may be class wide, and a class-wide type is compatible
924 -- with any member of the class.
926 elsif Is_Class_Wide_Type (T1)
927 and then Is_Ancestor (Root_Type (T1), T2)
928 then
929 return True;
931 elsif Is_Class_Wide_Type (T1)
932 and then Is_Class_Wide_Type (T2)
933 and then Base_Type (Etype (T1)) = Base_Type (Etype (T2))
934 then
935 return True;
937 -- Ada 2005 (AI-345): A class-wide abstract interface type covers a
938 -- task_type or protected_type that implements the interface.
940 elsif Ada_Version >= Ada_2005
941 and then Is_Concurrent_Type (T2)
942 and then Is_Class_Wide_Type (T1)
943 and then Is_Interface (Etype (T1))
944 and then Interface_Present_In_Ancestor
945 (Typ => BT2, Iface => Etype (T1))
946 then
947 return True;
949 -- Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
950 -- object T2 implementing T1.
952 elsif Ada_Version >= Ada_2005
953 and then Is_Tagged_Type (T2)
954 and then Is_Class_Wide_Type (T1)
955 and then Is_Interface (Etype (T1))
956 then
957 if Interface_Present_In_Ancestor (Typ => T2,
958 Iface => Etype (T1))
959 then
960 return True;
961 end if;
963 declare
964 E : Entity_Id;
965 Elmt : Elmt_Id;
967 begin
968 if Is_Concurrent_Type (BT2) then
969 E := Corresponding_Record_Type (BT2);
970 else
971 E := BT2;
972 end if;
974 -- Ada 2005 (AI-251): A class-wide abstract interface type T1
975 -- covers an object T2 that implements a direct derivation of T1.
976 -- Note: test for presence of E is defense against previous error.
978 if No (E) then
979 Check_Error_Detected;
981 -- Here we have a corresponding record type
983 elsif Present (Interfaces (E)) then
984 Elmt := First_Elmt (Interfaces (E));
985 while Present (Elmt) loop
986 if Is_Ancestor (Etype (T1), Node (Elmt)) then
987 return True;
988 else
989 Next_Elmt (Elmt);
990 end if;
991 end loop;
992 end if;
994 -- We should also check the case in which T1 is an ancestor of
995 -- some implemented interface???
997 return False;
998 end;
1000 -- In a dispatching call, the formal is of some specific type, and the
1001 -- actual is of the corresponding class-wide type, including a subtype
1002 -- of the class-wide type.
1004 elsif Is_Class_Wide_Type (T2)
1005 and then
1006 (Class_Wide_Type (T1) = Class_Wide_Type (T2)
1007 or else Base_Type (Root_Type (T2)) = BT1)
1008 then
1009 return True;
1011 -- Some contexts require a class of types rather than a specific type.
1012 -- For example, conditions require any boolean type, fixed point
1013 -- attributes require some real type, etc. The built-in types Any_XXX
1014 -- represent these classes.
1016 elsif (T1 = Any_Integer and then Is_Integer_Type (T2))
1017 or else (T1 = Any_Boolean and then Is_Boolean_Type (T2))
1018 or else (T1 = Any_Real and then Is_Real_Type (T2))
1019 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
1020 or else (T1 = Any_Discrete and then Is_Discrete_Type (T2))
1021 then
1022 return True;
1024 -- An aggregate is compatible with an array or record type
1026 elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
1027 return True;
1029 -- In Ada_2022, an aggregate is compatible with the type that
1030 -- as the corresponding aspect.
1032 elsif Ada_Version >= Ada_2022
1033 and then T2 = Any_Composite
1034 and then Present (Find_Aspect (T1, Aspect_Aggregate))
1035 then
1036 return True;
1038 -- If the expected type is an anonymous access, the designated type must
1039 -- cover that of the expression. Use the base type for this check: even
1040 -- though access subtypes are rare in sources, they are generated for
1041 -- actuals in instantiations.
1043 elsif Ekind (BT1) = E_Anonymous_Access_Type
1044 and then Is_Access_Type (T2)
1045 and then Covers (Designated_Type (T1), Designated_Type (T2))
1046 then
1047 return True;
1049 -- Ada 2012 (AI05-0149): Allow an anonymous access type in the context
1050 -- of a named general access type. An implicit conversion will be
1051 -- applied. For the resolution, the designated types must match if
1052 -- untagged; further, if the designated type is tagged, the designated
1053 -- type of the anonymous access type shall be covered by the designated
1054 -- type of the named access type.
1056 elsif Ada_Version >= Ada_2012
1057 and then Ekind (BT1) = E_General_Access_Type
1058 and then Ekind (BT2) = E_Anonymous_Access_Type
1059 and then Covers (Designated_Type (T1), Designated_Type (T2))
1060 and then (Is_Class_Wide_Type (Designated_Type (T1)) >=
1061 Is_Class_Wide_Type (Designated_Type (T2)))
1062 then
1063 return True;
1065 -- An Access_To_Subprogram is compatible with itself, or with an
1066 -- anonymous type created for an attribute reference Access.
1068 elsif Ekind (BT1) in E_Access_Subprogram_Type
1069 | E_Access_Protected_Subprogram_Type
1070 and then Is_Access_Type (T2)
1071 and then (not Comes_From_Source (T1)
1072 or else not Comes_From_Source (T2))
1073 and then (Is_Overloadable (Designated_Type (T2))
1074 or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1075 and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1076 and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1077 then
1078 return True;
1080 -- Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
1081 -- with itself, or with an anonymous type created for an attribute
1082 -- reference Access.
1084 elsif Ekind (BT1) in E_Anonymous_Access_Subprogram_Type
1085 | E_Anonymous_Access_Protected_Subprogram_Type
1086 and then Is_Access_Type (T2)
1087 and then (not Comes_From_Source (T1)
1088 or else not Comes_From_Source (T2))
1089 and then (Is_Overloadable (Designated_Type (T2))
1090 or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1091 and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1092 and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1093 then
1094 return True;
1096 -- The context can be a remote access type, and the expression the
1097 -- corresponding source type declared in a categorized package, or
1098 -- vice versa.
1100 elsif Is_Record_Type (T1)
1101 and then (Is_Remote_Call_Interface (T1) or else Is_Remote_Types (T1))
1102 and then Present (Corresponding_Remote_Type (T1))
1103 then
1104 return Covers (Corresponding_Remote_Type (T1), T2);
1106 -- and conversely.
1108 elsif Is_Record_Type (T2)
1109 and then (Is_Remote_Call_Interface (T2) or else Is_Remote_Types (T2))
1110 and then Present (Corresponding_Remote_Type (T2))
1111 then
1112 return Covers (Corresponding_Remote_Type (T2), T1);
1114 -- Synchronized types are represented at run time by their corresponding
1115 -- record type. During expansion one is replaced with the other, but
1116 -- they are compatible views of the same type.
1118 elsif Is_Record_Type (T1)
1119 and then Is_Concurrent_Type (T2)
1120 and then Present (Corresponding_Record_Type (T2))
1121 then
1122 return Covers (T1, Corresponding_Record_Type (T2));
1124 elsif Is_Concurrent_Type (T1)
1125 and then Present (Corresponding_Record_Type (T1))
1126 and then Is_Record_Type (T2)
1127 then
1128 return Covers (Corresponding_Record_Type (T1), T2);
1130 -- During analysis, an attribute reference 'Access has a special type
1131 -- kind: Access_Attribute_Type, to be replaced eventually with the type
1132 -- imposed by context.
1134 elsif Ekind (T2) = E_Access_Attribute_Type
1135 and then Ekind (BT1) in E_General_Access_Type | E_Access_Type
1136 and then Covers (Designated_Type (T1), Designated_Type (T2))
1137 then
1138 -- If the target type is a RACW type while the source is an access
1139 -- attribute type, we are building a RACW that may be exported.
1141 if Is_Remote_Access_To_Class_Wide_Type (BT1) then
1142 Set_Has_RACW (Current_Sem_Unit);
1143 end if;
1145 return True;
1147 -- Ditto for allocators, which eventually resolve to the context type
1149 elsif Ekind (T2) = E_Allocator_Type and then Is_Access_Type (T1) then
1150 return Covers (Designated_Type (T1), Designated_Type (T2))
1151 or else
1152 (From_Limited_With (Designated_Type (T1))
1153 and then Covers (Designated_Type (T2), Designated_Type (T1)));
1155 -- A boolean operation on integer literals is compatible with modular
1156 -- context.
1158 elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
1159 return True;
1161 -- The actual type may be the result of a previous error
1163 elsif BT2 = Any_Type then
1164 return True;
1166 -- A Raise_Expressions is legal in any expression context
1168 elsif BT2 = Raise_Type then
1169 return True;
1171 -- A packed array type covers its corresponding non-packed type. This is
1172 -- not legitimate Ada, but allows the omission of a number of otherwise
1173 -- useless unchecked conversions, and since this can only arise in
1174 -- (known correct) expanded code, no harm is done.
1176 elsif Is_Packed_Array (T2)
1177 and then T1 = Packed_Array_Impl_Type (T2)
1178 then
1179 return True;
1181 -- Similarly an array type covers its corresponding packed array type
1183 elsif Is_Packed_Array (T1)
1184 and then T2 = Packed_Array_Impl_Type (T1)
1185 then
1186 return True;
1188 -- In instances, or with types exported from instantiations, check
1189 -- whether a partial and a full view match. Verify that types are
1190 -- legal, to prevent cascaded errors.
1192 elsif Is_Private_Type (T1)
1193 and then (In_Instance
1194 or else (Is_Type (T2) and then Is_Generic_Actual_Type (T2)))
1195 and then Full_View_Covers (T1, T2)
1196 then
1197 return True;
1199 elsif Is_Private_Type (T2)
1200 and then (In_Instance
1201 or else (Is_Type (T1) and then Is_Generic_Actual_Type (T1)))
1202 and then Full_View_Covers (T2, T1)
1203 then
1204 return True;
1206 -- In the expansion of inlined bodies, types are compatible if they
1207 -- are structurally equivalent.
1209 elsif In_Inlined_Body
1210 and then (Underlying_Type (T1) = Underlying_Type (T2)
1211 or else
1212 (Is_Access_Type (T1)
1213 and then Is_Access_Type (T2)
1214 and then Designated_Type (T1) = Designated_Type (T2))
1215 or else
1216 (T1 = Any_Access
1217 and then Is_Access_Type (Underlying_Type (T2)))
1218 or else
1219 (T2 = Any_Composite
1220 and then Is_Composite_Type (Underlying_Type (T1))))
1221 then
1222 return True;
1224 -- Ada 2005 (AI-50217): Additional branches to make the shadow entity
1225 -- obtained through a limited_with compatible with its real entity.
1227 elsif From_Limited_With (T1) then
1229 -- If the expected type is the nonlimited view of a type, the
1230 -- expression may have the limited view. If that one in turn is
1231 -- incomplete, get full view if available.
1233 return Has_Non_Limited_View (T1)
1234 and then Covers (Get_Full_View (Non_Limited_View (T1)), T2);
1236 elsif From_Limited_With (T2) then
1238 -- If units in the context have Limited_With clauses on each other,
1239 -- either type might have a limited view. Checks performed elsewhere
1240 -- verify that the context type is the nonlimited view.
1242 return Has_Non_Limited_View (T2)
1243 and then Covers (T1, Get_Full_View (Non_Limited_View (T2)));
1245 -- Ada 2005 (AI-412): Coverage for regular incomplete subtypes
1247 elsif Ekind (T1) = E_Incomplete_Subtype then
1248 return Covers (Full_View (Etype (T1)), T2);
1250 elsif Ekind (T2) = E_Incomplete_Subtype then
1251 return Covers (T1, Full_View (Etype (T2)));
1253 -- Ada 2005 (AI-423): Coverage of formal anonymous access types
1254 -- and actual anonymous access types in the context of generic
1255 -- instantiations. We have the following situation:
1257 -- generic
1258 -- type Formal is private;
1259 -- Formal_Obj : access Formal; -- T1
1260 -- package G is ...
1262 -- package P is
1263 -- type Actual is ...
1264 -- Actual_Obj : access Actual; -- T2
1265 -- package Instance is new G (Formal => Actual,
1266 -- Formal_Obj => Actual_Obj);
1268 elsif Ada_Version >= Ada_2005
1269 and then Is_Anonymous_Access_Type (T1)
1270 and then Is_Anonymous_Access_Type (T2)
1271 and then Is_Generic_Type (Directly_Designated_Type (T1))
1272 and then Get_Instance_Of (Directly_Designated_Type (T1)) =
1273 Directly_Designated_Type (T2)
1274 then
1275 return True;
1277 -- Otherwise, types are not compatible
1279 else
1280 return False;
1281 end if;
1282 end Covers;
1284 ------------------
1285 -- Disambiguate --
1286 ------------------
1288 function Disambiguate
1289 (N : Node_Id;
1290 I1, I2 : Interp_Index;
1291 Typ : Entity_Id) return Interp
1293 I : Interp_Index;
1294 It : Interp;
1295 It1, It2 : Interp;
1296 Nam1, Nam2 : Entity_Id;
1297 Predef_Subp : Entity_Id;
1298 User_Subp : Entity_Id;
1300 function Inherited_From_Actual (S : Entity_Id) return Boolean;
1301 -- Determine whether one of the candidates is an operation inherited by
1302 -- a type that is derived from an actual in an instantiation.
1304 function In_Same_Declaration_List
1305 (Typ : Entity_Id;
1306 Op_Decl : Entity_Id) return Boolean;
1307 -- AI05-0020: a spurious ambiguity may arise when equality on anonymous
1308 -- access types is declared on the partial view of a designated type, so
1309 -- that the type declaration and equality are not in the same list of
1310 -- declarations. This AI gives a preference rule for the user-defined
1311 -- operation. Same rule applies for arithmetic operations on private
1312 -- types completed with fixed-point types: the predefined operation is
1313 -- hidden; this is already handled properly in GNAT.
1315 function Is_Actual_Subprogram (S : Entity_Id) return Boolean;
1316 -- Determine whether a subprogram is an actual in an enclosing instance.
1317 -- An overloading between such a subprogram and one declared outside the
1318 -- instance is resolved in favor of the first, because it resolved in
1319 -- the generic. Within the instance the actual is represented by a
1320 -- constructed subprogram renaming.
1322 function Matches (Op : Node_Id; Func_Id : Entity_Id) return Boolean;
1323 -- Determine whether function Func_Id is an exact match for binary or
1324 -- unary operator Op.
1326 function Operand_Type return Entity_Id;
1327 -- Determine type of operand for an equality operation, to apply Ada
1328 -- 2005 rules to equality on anonymous access types.
1330 function Standard_Operator return Boolean;
1331 -- Check whether subprogram is predefined operator declared in Standard.
1332 -- It may given by an operator name, or by an expanded name whose prefix
1333 -- is Standard.
1335 function Remove_Conversions return Interp;
1336 -- Last chance for pathological cases involving comparisons on literals,
1337 -- and user overloadings of the same operator. Such pathologies have
1338 -- been removed from the ACVC, but still appear in two DEC tests, with
1339 -- the following notable quote from Ben Brosgol:
1341 -- [Note: I disclaim all credit/responsibility/blame for coming up with
1342 -- this example; Robert Dewar brought it to our attention, since it is
1343 -- apparently found in the ACVC 1.5. I did not attempt to find the
1344 -- reason in the Reference Manual that makes the example legal, since I
1345 -- was too nauseated by it to want to pursue it further.]
1347 -- Accordingly, this is not a fully recursive solution, but it handles
1348 -- DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
1349 -- pathology in the other direction with calls whose multiple overloaded
1350 -- actuals make them truly unresolvable.
1352 -- The new rules concerning abstract operations create additional need
1353 -- for special handling of expressions with universal operands, see
1354 -- comments to Has_Abstract_Interpretation below.
1356 function Is_User_Defined_Anonymous_Access_Equality
1357 (User_Subp, Predef_Subp : Entity_Id) return Boolean;
1358 -- Check for Ada 2005, AI-020: If the context involves an anonymous
1359 -- access operand, recognize a user-defined equality (User_Subp) with
1360 -- the proper signature, declared in the same declarative list as the
1361 -- type and not hiding a predefined equality Predef_Subp.
1363 ---------------------------
1364 -- Inherited_From_Actual --
1365 ---------------------------
1367 function Inherited_From_Actual (S : Entity_Id) return Boolean is
1368 Par : constant Node_Id := Parent (S);
1369 begin
1370 if Nkind (Par) /= N_Full_Type_Declaration
1371 or else Nkind (Type_Definition (Par)) /= N_Derived_Type_Definition
1372 then
1373 return False;
1374 else
1375 return Is_Entity_Name (Subtype_Indication (Type_Definition (Par)))
1376 and then
1377 Is_Generic_Actual_Type (
1378 Entity (Subtype_Indication (Type_Definition (Par))));
1379 end if;
1380 end Inherited_From_Actual;
1382 ------------------------------
1383 -- In_Same_Declaration_List --
1384 ------------------------------
1386 function In_Same_Declaration_List
1387 (Typ : Entity_Id;
1388 Op_Decl : Entity_Id) return Boolean
1390 Scop : constant Entity_Id := Scope (Typ);
1392 begin
1393 return In_Same_List (Parent (Typ), Op_Decl)
1394 or else
1395 (Is_Package_Or_Generic_Package (Scop)
1396 and then List_Containing (Op_Decl) =
1397 Visible_Declarations (Parent (Scop))
1398 and then List_Containing (Parent (Typ)) =
1399 Private_Declarations (Parent (Scop)));
1400 end In_Same_Declaration_List;
1402 --------------------------
1403 -- Is_Actual_Subprogram --
1404 --------------------------
1406 function Is_Actual_Subprogram (S : Entity_Id) return Boolean is
1407 begin
1408 return In_Open_Scopes (Scope (S))
1409 and then Nkind (Unit_Declaration_Node (S)) =
1410 N_Subprogram_Renaming_Declaration
1412 -- Determine if the renaming came from source or was generated as a
1413 -- a result of generic expansion since the actual is represented by
1414 -- a constructed subprogram renaming.
1416 and then not Comes_From_Source (Unit_Declaration_Node (S))
1418 and then
1419 (Is_Generic_Instance (Scope (S))
1420 or else Is_Wrapper_Package (Scope (S)));
1421 end Is_Actual_Subprogram;
1423 -------------
1424 -- Matches --
1425 -------------
1427 function Matches (Op : Node_Id; Func_Id : Entity_Id) return Boolean is
1428 function Matching_Types
1429 (Opnd_Typ : Entity_Id;
1430 Formal_Typ : Entity_Id) return Boolean;
1431 -- Determine whether operand type Opnd_Typ and formal parameter type
1432 -- Formal_Typ are either the same or compatible.
1434 --------------------
1435 -- Matching_Types --
1436 --------------------
1438 function Matching_Types
1439 (Opnd_Typ : Entity_Id;
1440 Formal_Typ : Entity_Id) return Boolean
1442 begin
1443 -- A direct match
1445 if Opnd_Typ = Formal_Typ then
1446 return True;
1448 -- Any integer type matches universal integer
1450 elsif Opnd_Typ = Universal_Integer
1451 and then Is_Integer_Type (Formal_Typ)
1452 then
1453 return True;
1455 -- Any floating point type matches universal real
1457 elsif Opnd_Typ = Universal_Real
1458 and then Is_Floating_Point_Type (Formal_Typ)
1459 then
1460 return True;
1462 -- The type of the formal parameter maps a generic actual type to
1463 -- a generic formal type. If the operand type is the type being
1464 -- mapped in an instance, then this is a match.
1466 elsif Is_Generic_Actual_Type (Formal_Typ)
1467 and then Etype (Formal_Typ) = Opnd_Typ
1468 then
1469 return True;
1471 -- Formal_Typ is a private view, or Opnd_Typ and Formal_Typ are
1472 -- compatible only on a base-type basis.
1474 else
1475 return False;
1476 end if;
1477 end Matching_Types;
1479 -- Local variables
1481 F1 : constant Entity_Id := First_Formal (Func_Id);
1482 F1_Typ : constant Entity_Id := Etype (F1);
1483 F2 : constant Entity_Id := Next_Formal (F1);
1484 F2_Typ : constant Entity_Id := Etype (F2);
1485 Lop_Typ : constant Entity_Id := Etype (Left_Opnd (Op));
1486 Rop_Typ : constant Entity_Id := Etype (Right_Opnd (Op));
1488 -- Start of processing for Matches
1490 begin
1491 if Lop_Typ = F1_Typ then
1492 return Matching_Types (Rop_Typ, F2_Typ);
1494 elsif Rop_Typ = F2_Typ then
1495 return Matching_Types (Lop_Typ, F1_Typ);
1497 -- Otherwise this is not a good match because each operand-formal
1498 -- pair is compatible only on base-type basis, which is not specific
1499 -- enough.
1501 else
1502 return False;
1503 end if;
1504 end Matches;
1506 ------------------
1507 -- Operand_Type --
1508 ------------------
1510 function Operand_Type return Entity_Id is
1511 Opnd : Node_Id;
1513 begin
1514 if Nkind (N) = N_Function_Call then
1515 Opnd := First_Actual (N);
1516 else
1517 Opnd := Left_Opnd (N);
1518 end if;
1520 return Etype (Opnd);
1521 end Operand_Type;
1523 ------------------------
1524 -- Remove_Conversions --
1525 ------------------------
1527 function Remove_Conversions return Interp is
1528 I : Interp_Index;
1529 It : Interp;
1530 It1 : Interp;
1531 F1 : Entity_Id;
1532 Act1 : Node_Id;
1533 Act2 : Node_Id;
1535 function Has_Abstract_Interpretation (N : Node_Id) return Boolean;
1536 -- If an operation has universal operands the universal operation
1537 -- is present among its interpretations. If there is an abstract
1538 -- interpretation for the operator, with a numeric result, this
1539 -- interpretation was already removed in sem_ch4, but the universal
1540 -- one is still visible. We must rescan the list of operators and
1541 -- remove the universal interpretation to resolve the ambiguity.
1543 ---------------------------------
1544 -- Has_Abstract_Interpretation --
1545 ---------------------------------
1547 function Has_Abstract_Interpretation (N : Node_Id) return Boolean is
1548 E : Entity_Id;
1550 begin
1551 if Nkind (N) not in N_Op
1552 or else Ada_Version < Ada_2005
1553 or else not Is_Overloaded (N)
1554 or else No (Universal_Interpretation (N))
1555 then
1556 return False;
1558 else
1559 E := Get_Name_Entity_Id (Chars (N));
1560 while Present (E) loop
1561 if Is_Overloadable (E)
1562 and then Is_Abstract_Subprogram (E)
1563 and then Is_Numeric_Type (Etype (E))
1564 then
1565 return True;
1566 else
1567 E := Homonym (E);
1568 end if;
1569 end loop;
1571 -- Finally, if an operand of the binary operator is itself
1572 -- an operator, recurse to see whether its own abstract
1573 -- interpretation is responsible for the spurious ambiguity.
1575 if Nkind (N) in N_Binary_Op then
1576 return Has_Abstract_Interpretation (Left_Opnd (N))
1577 or else Has_Abstract_Interpretation (Right_Opnd (N));
1579 elsif Nkind (N) in N_Unary_Op then
1580 return Has_Abstract_Interpretation (Right_Opnd (N));
1582 else
1583 return False;
1584 end if;
1585 end if;
1586 end Has_Abstract_Interpretation;
1588 -- Start of processing for Remove_Conversions
1590 begin
1591 It1 := No_Interp;
1593 Get_First_Interp (N, I, It);
1594 while Present (It.Typ) loop
1595 if not Is_Overloadable (It.Nam) then
1596 return No_Interp;
1597 end if;
1599 F1 := First_Formal (It.Nam);
1601 if No (F1) then
1602 return It1;
1604 else
1605 if Nkind (N) in N_Subprogram_Call then
1606 Act1 := First_Actual (N);
1608 if Present (Act1) then
1609 Act2 := Next_Actual (Act1);
1610 else
1611 Act2 := Empty;
1612 end if;
1614 elsif Nkind (N) in N_Unary_Op then
1615 Act1 := Right_Opnd (N);
1616 Act2 := Empty;
1618 elsif Nkind (N) in N_Binary_Op then
1619 Act1 := Left_Opnd (N);
1620 Act2 := Right_Opnd (N);
1622 -- Use the type of the second formal, so as to include
1623 -- exponentiation, where the exponent may be ambiguous and
1624 -- the result non-universal.
1626 Next_Formal (F1);
1628 else
1629 return It1;
1630 end if;
1632 if Nkind (Act1) in N_Op
1633 and then Is_Overloaded (Act1)
1634 and then
1635 (Nkind (Act1) in N_Unary_Op
1636 or else Nkind (Left_Opnd (Act1)) in
1637 N_Integer_Literal | N_Real_Literal)
1638 and then Nkind (Right_Opnd (Act1)) in
1639 N_Integer_Literal | N_Real_Literal
1640 and then Has_Compatible_Type (Act1, Standard_Boolean)
1641 and then Etype (F1) = Standard_Boolean
1642 then
1643 -- If the two candidates are the original ones, the
1644 -- ambiguity is real. Otherwise keep the original, further
1645 -- calls to Disambiguate will take care of others in the
1646 -- list of candidates.
1648 if It1 /= No_Interp then
1649 if It = Disambiguate.It1
1650 or else It = Disambiguate.It2
1651 then
1652 if It1 = Disambiguate.It1
1653 or else It1 = Disambiguate.It2
1654 then
1655 return No_Interp;
1656 else
1657 It1 := It;
1658 end if;
1659 end if;
1661 elsif Present (Act2)
1662 and then Nkind (Act2) in N_Op
1663 and then Is_Overloaded (Act2)
1664 and then Nkind (Right_Opnd (Act2)) in
1665 N_Integer_Literal | N_Real_Literal
1666 and then Has_Compatible_Type (Act2, Standard_Boolean)
1667 then
1668 -- The preference rule on the first actual is not
1669 -- sufficient to disambiguate.
1671 goto Next_Interp;
1673 else
1674 It1 := It;
1675 end if;
1677 elsif Is_Numeric_Type (Etype (F1))
1678 and then Has_Abstract_Interpretation (Act1)
1679 then
1680 -- Current interpretation is not the right one because it
1681 -- expects a numeric operand. Examine all the other ones.
1683 declare
1684 I : Interp_Index;
1685 It : Interp;
1687 begin
1688 Get_First_Interp (N, I, It);
1689 while Present (It.Typ) loop
1691 not Is_Numeric_Type (Etype (First_Formal (It.Nam)))
1692 then
1693 if No (Act2)
1694 or else not Has_Abstract_Interpretation (Act2)
1695 or else not
1696 Is_Numeric_Type
1697 (Etype (Next_Formal (First_Formal (It.Nam))))
1698 then
1699 return It;
1700 end if;
1701 end if;
1703 Get_Next_Interp (I, It);
1704 end loop;
1706 return No_Interp;
1707 end;
1708 end if;
1709 end if;
1711 <<Next_Interp>>
1712 Get_Next_Interp (I, It);
1713 end loop;
1715 -- After some error, a formal may have Any_Type and yield a spurious
1716 -- match. To avoid cascaded errors if possible, check for such a
1717 -- formal in either candidate.
1719 if Serious_Errors_Detected > 0 then
1720 declare
1721 Formal : Entity_Id;
1723 begin
1724 Formal := First_Formal (Nam1);
1725 while Present (Formal) loop
1726 if Etype (Formal) = Any_Type then
1727 return Disambiguate.It2;
1728 end if;
1730 Next_Formal (Formal);
1731 end loop;
1733 Formal := First_Formal (Nam2);
1734 while Present (Formal) loop
1735 if Etype (Formal) = Any_Type then
1736 return Disambiguate.It1;
1737 end if;
1739 Next_Formal (Formal);
1740 end loop;
1741 end;
1742 end if;
1744 return It1;
1745 end Remove_Conversions;
1747 -----------------------
1748 -- Standard_Operator --
1749 -----------------------
1751 function Standard_Operator return Boolean is
1752 Nam : Node_Id;
1754 begin
1755 if Nkind (N) in N_Op then
1756 return True;
1758 elsif Nkind (N) = N_Function_Call then
1759 Nam := Name (N);
1761 if Nkind (Nam) /= N_Expanded_Name then
1762 return True;
1763 else
1764 return Entity (Prefix (Nam)) = Standard_Standard;
1765 end if;
1766 else
1767 return False;
1768 end if;
1769 end Standard_Operator;
1771 -----------------------------------------------
1772 -- Is_User_Defined_Anonymous_Access_Equality --
1773 -----------------------------------------------
1775 function Is_User_Defined_Anonymous_Access_Equality
1776 (User_Subp, Predef_Subp : Entity_Id) return Boolean is
1777 begin
1778 return Present (User_Subp)
1780 -- Check for Ada 2005 and use of anonymous access
1782 and then Ada_Version >= Ada_2005
1783 and then Etype (User_Subp) = Standard_Boolean
1784 and then Is_Anonymous_Access_Type (Operand_Type)
1786 -- This check is only relevant if User_Subp is visible and not in
1787 -- an instance
1789 and then (In_Open_Scopes (Scope (User_Subp))
1790 or else Is_Potentially_Use_Visible (User_Subp))
1791 and then not In_Instance
1792 and then not Hides_Op (User_Subp, Predef_Subp)
1794 -- Is User_Subp declared in the same declarative list as the type?
1796 and then
1797 In_Same_Declaration_List
1798 (Designated_Type (Operand_Type),
1799 Unit_Declaration_Node (User_Subp));
1800 end Is_User_Defined_Anonymous_Access_Equality;
1802 -- Start of processing for Disambiguate
1804 begin
1805 -- Recover the two legal interpretations
1807 Get_First_Interp (N, I, It);
1808 while I /= I1 loop
1809 Get_Next_Interp (I, It);
1810 end loop;
1812 It1 := It;
1813 Nam1 := It.Nam;
1815 while I /= I2 loop
1816 Get_Next_Interp (I, It);
1817 end loop;
1819 It2 := It;
1820 Nam2 := It.Nam;
1822 -- Check whether one of the entities is an Ada 2005/2012/2022 and we
1823 -- are operating in an earlier mode, in which case we discard the Ada
1824 -- 2005/2012/2022 entity, so that we get proper Ada 95 overload
1825 -- resolution.
1827 if Ada_Version < Ada_2005 then
1828 if Is_Ada_2005_Only (Nam1)
1829 or else Is_Ada_2012_Only (Nam1)
1830 or else Is_Ada_2022_Only (Nam1)
1831 then
1832 return It2;
1834 elsif Is_Ada_2005_Only (Nam2)
1835 or else Is_Ada_2012_Only (Nam2)
1836 or else Is_Ada_2022_Only (Nam2)
1837 then
1838 return It1;
1839 end if;
1841 -- Check whether one of the entities is an Ada 2012/2022 entity and we
1842 -- are operating in Ada 2005 mode, in which case we discard the Ada 2012
1843 -- Ada 2022 entity, so that we get proper Ada 2005 overload resolution.
1845 elsif Ada_Version = Ada_2005 then
1846 if Is_Ada_2012_Only (Nam1) or else Is_Ada_2022_Only (Nam1) then
1847 return It2;
1848 elsif Is_Ada_2012_Only (Nam2) or else Is_Ada_2022_Only (Nam2) then
1849 return It1;
1850 end if;
1852 -- Ditto for Ada 2012 vs Ada 2022.
1854 elsif Ada_Version = Ada_2012 then
1855 if Is_Ada_2022_Only (Nam1) then
1856 return It2;
1857 elsif Is_Ada_2022_Only (Nam2) then
1858 return It1;
1859 end if;
1860 end if;
1862 -- If the context is universal, the predefined operator is preferred.
1863 -- This includes bounds in numeric type declarations, and expressions
1864 -- in type conversions. If no interpretation yields a universal type,
1865 -- then we must check whether the user-defined entity hides the prede-
1866 -- fined one.
1868 if Chars (Nam1) in Any_Operator_Name and then Standard_Operator then
1869 if Typ = Universal_Integer
1870 or else Typ = Universal_Real
1871 or else Typ = Any_Integer
1872 or else Typ = Any_Discrete
1873 or else Typ = Any_Real
1874 or else Typ = Any_Type
1875 then
1876 -- Find an interpretation that yields the universal type, or else
1877 -- a predefined operator that yields a predefined numeric type.
1879 declare
1880 Candidate : Interp := No_Interp;
1882 begin
1883 Get_First_Interp (N, I, It);
1884 while Present (It.Typ) loop
1885 if Is_Universal_Numeric_Type (It.Typ)
1886 and then (Typ = Any_Type or else Covers (Typ, It.Typ))
1887 then
1888 return It;
1890 elsif Is_Numeric_Type (It.Typ)
1891 and then Scope (It.Typ) = Standard_Standard
1892 and then Scope (It.Nam) = Standard_Standard
1893 and then Covers (Typ, It.Typ)
1894 then
1895 Candidate := It;
1896 end if;
1898 Get_Next_Interp (I, It);
1899 end loop;
1901 if Candidate /= No_Interp then
1902 return Candidate;
1903 end if;
1904 end;
1906 elsif Chars (Nam1) /= Name_Op_Not
1907 and then (Typ = Standard_Boolean or else Typ = Any_Boolean)
1908 then
1909 -- Equality or comparison operation. Choose predefined operator if
1910 -- arguments are universal. The node may be an operator, name, or
1911 -- a function call, so unpack arguments accordingly.
1913 declare
1914 Arg1, Arg2 : Node_Id;
1916 begin
1917 if Nkind (N) in N_Op then
1918 Arg1 := Left_Opnd (N);
1919 Arg2 := Right_Opnd (N);
1921 elsif Is_Entity_Name (N) then
1922 Arg1 := First_Entity (Entity (N));
1923 Arg2 := Next_Entity (Arg1);
1925 else
1926 Arg1 := First_Actual (N);
1927 Arg2 := Next_Actual (Arg1);
1928 end if;
1930 if Present (Arg2) then
1931 if Ekind (Nam1) = E_Operator then
1932 Predef_Subp := Nam1;
1933 User_Subp := Nam2;
1934 elsif Ekind (Nam2) = E_Operator then
1935 Predef_Subp := Nam2;
1936 User_Subp := Nam1;
1937 else
1938 Predef_Subp := Empty;
1939 User_Subp := Empty;
1940 end if;
1942 -- Take into account universal interpretation as well as
1943 -- universal_access equality, as long as AI05-0020 does not
1944 -- trigger.
1946 if (Present (Universal_Interpretation (Arg1))
1947 and then Universal_Interpretation (Arg2) =
1948 Universal_Interpretation (Arg1))
1949 or else
1950 (Nkind (N) in N_Op_Eq | N_Op_Ne
1951 and then (Is_Anonymous_Access_Type (Etype (Arg1))
1952 or else
1953 Is_Anonymous_Access_Type (Etype (Arg2)))
1954 and then not
1955 Is_User_Defined_Anonymous_Access_Equality
1956 (User_Subp, Predef_Subp))
1957 then
1958 Get_First_Interp (N, I, It);
1959 while Scope (It.Nam) /= Standard_Standard loop
1960 Get_Next_Interp (I, It);
1961 end loop;
1963 return It;
1964 end if;
1965 end if;
1966 end;
1967 end if;
1968 end if;
1970 -- If no universal interpretation, check whether user-defined operator
1971 -- hides predefined one, as well as other special cases. If the node
1972 -- is a range, then one or both bounds are ambiguous. Each will have
1973 -- to be disambiguated w.r.t. the context type. The type of the range
1974 -- itself is imposed by the context, so we can return either legal
1975 -- interpretation.
1977 if Ekind (Nam1) = E_Operator then
1978 Predef_Subp := Nam1;
1979 User_Subp := Nam2;
1981 elsif Ekind (Nam2) = E_Operator then
1982 Predef_Subp := Nam2;
1983 User_Subp := Nam1;
1985 elsif Nkind (N) = N_Range then
1986 return It1;
1988 -- Implement AI05-105: A renaming declaration with an access
1989 -- definition must resolve to an anonymous access type. This
1990 -- is a resolution rule and can be used to disambiguate.
1992 elsif Nkind (Parent (N)) = N_Object_Renaming_Declaration
1993 and then Present (Access_Definition (Parent (N)))
1994 then
1995 if Is_Anonymous_Access_Type (It1.Typ) then
1996 if Ekind (It2.Typ) = Ekind (It1.Typ) then
1998 -- True ambiguity
2000 return No_Interp;
2002 else
2003 return It1;
2004 end if;
2006 elsif Is_Anonymous_Access_Type (It2.Typ) then
2007 return It2;
2009 -- No legal interpretation
2011 else
2012 return No_Interp;
2013 end if;
2015 -- Two access attribute types may have been created for an expression
2016 -- with an implicit dereference, which is automatically overloaded.
2017 -- If both access attribute types designate the same object type,
2018 -- disambiguation if any will take place elsewhere, so keep any one of
2019 -- the interpretations.
2021 elsif Ekind (It1.Typ) = E_Access_Attribute_Type
2022 and then Ekind (It2.Typ) = E_Access_Attribute_Type
2023 and then Designated_Type (It1.Typ) = Designated_Type (It2.Typ)
2024 then
2025 return It1;
2027 -- If two user defined-subprograms are visible, it is a true ambiguity,
2028 -- unless one of them is an entry and the context is a conditional or
2029 -- timed entry call, or unless we are within an instance and this is
2030 -- results from two formals types with the same actual.
2032 else
2033 if Nkind (N) = N_Procedure_Call_Statement
2034 and then Nkind (Parent (N)) = N_Entry_Call_Alternative
2035 and then N = Entry_Call_Statement (Parent (N))
2036 then
2037 if Ekind (Nam2) = E_Entry then
2038 return It2;
2039 elsif Ekind (Nam1) = E_Entry then
2040 return It1;
2041 else
2042 return No_Interp;
2043 end if;
2045 -- If the ambiguity occurs within an instance, it is due to several
2046 -- formal types with the same actual. Look for an exact match between
2047 -- the types of the formals of the overloadable entities, and the
2048 -- actuals in the call, to recover the unambiguous match in the
2049 -- original generic.
2051 -- The ambiguity can also be due to an overloading between a formal
2052 -- subprogram and a subprogram declared outside the generic. If the
2053 -- node is overloaded, it did not resolve to the global entity in
2054 -- the generic, and we choose the formal subprogram.
2056 -- Finally, the ambiguity can be between an explicit subprogram and
2057 -- one inherited (with different defaults) from an actual. In this
2058 -- case the resolution was to the explicit declaration in the
2059 -- generic, and remains so in the instance.
2061 -- The same sort of disambiguation needed for calls is also required
2062 -- for the name given in a subprogram renaming, and that case is
2063 -- handled here as well. We test Comes_From_Source to exclude this
2064 -- treatment for implicit renamings created for formal subprograms.
2066 elsif In_Instance and then not In_Generic_Actual (N) then
2067 if Nkind (N) in N_Subprogram_Call
2068 or else
2069 (Nkind (N) in N_Has_Entity
2070 and then
2071 Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
2072 and then Comes_From_Source (Parent (N)))
2073 then
2074 declare
2075 Actual : Node_Id;
2076 Formal : Entity_Id;
2077 Renam : Entity_Id := Empty;
2078 Is_Act1 : constant Boolean := Is_Actual_Subprogram (Nam1);
2079 Is_Act2 : constant Boolean := Is_Actual_Subprogram (Nam2);
2081 begin
2082 if Is_Act1 and then not Is_Act2 then
2083 return It1;
2085 elsif Is_Act2 and then not Is_Act1 then
2086 return It2;
2088 elsif Inherited_From_Actual (Nam1)
2089 and then Comes_From_Source (Nam2)
2090 then
2091 return It2;
2093 elsif Inherited_From_Actual (Nam2)
2094 and then Comes_From_Source (Nam1)
2095 then
2096 return It1;
2097 end if;
2099 -- In the case of a renamed subprogram, pick up the entity
2100 -- of the renaming declaration so we can traverse its
2101 -- formal parameters.
2103 if Nkind (N) in N_Has_Entity then
2104 Renam := Defining_Unit_Name (Specification (Parent (N)));
2105 end if;
2107 if Present (Renam) then
2108 Actual := First_Formal (Renam);
2109 else
2110 Actual := First_Actual (N);
2111 end if;
2113 Formal := First_Formal (Nam1);
2114 while Present (Actual) loop
2115 if Etype (Actual) /= Etype (Formal) then
2116 return It2;
2117 end if;
2119 if Present (Renam) then
2120 Next_Formal (Actual);
2121 else
2122 Next_Actual (Actual);
2123 end if;
2125 Next_Formal (Formal);
2126 end loop;
2128 return It1;
2129 end;
2131 elsif Nkind (N) in N_Binary_Op then
2132 if Matches (N, Nam1) then
2133 return It1;
2134 else
2135 return It2;
2136 end if;
2138 elsif Nkind (N) in N_Unary_Op then
2139 if Etype (Right_Opnd (N)) = Etype (First_Formal (Nam1)) then
2140 return It1;
2141 else
2142 return It2;
2143 end if;
2145 else
2146 return Remove_Conversions;
2147 end if;
2148 else
2149 return Remove_Conversions;
2150 end if;
2151 end if;
2153 -- An implicit concatenation operator on a string type cannot be
2154 -- disambiguated from the predefined concatenation. This can only
2155 -- happen with concatenation of string literals.
2157 if Chars (User_Subp) = Name_Op_Concat
2158 and then Ekind (User_Subp) = E_Operator
2159 and then Is_String_Type (Etype (First_Formal (User_Subp)))
2160 then
2161 return No_Interp;
2163 -- If the user-defined operator is in an open scope, or in the scope
2164 -- of the resulting type, or given by an expanded name that names its
2165 -- scope, it hides the predefined operator for the type. Exponentiation
2166 -- has to be special-cased because the implicit operator does not have
2167 -- a symmetric signature, and may not be hidden by the explicit one.
2169 elsif (Nkind (N) = N_Function_Call
2170 and then Nkind (Name (N)) = N_Expanded_Name
2171 and then (Chars (Predef_Subp) /= Name_Op_Expon
2172 or else Hides_Op (User_Subp, Predef_Subp))
2173 and then Scope (User_Subp) = Entity (Prefix (Name (N))))
2174 or else Hides_Op (User_Subp, Predef_Subp)
2175 then
2176 if It1.Nam = User_Subp then
2177 return It1;
2178 else
2179 return It2;
2180 end if;
2182 -- Otherwise, the predefined operator has precedence, or if the user-
2183 -- defined operation is directly visible we have a true ambiguity.
2185 -- If this is a fixed-point multiplication and division in Ada 83 mode,
2186 -- exclude the universal_fixed operator, which often causes ambiguities
2187 -- in legacy code.
2189 -- Ditto in Ada 2012, where an ambiguity may arise for an operation
2190 -- on a partial view that is completed with a fixed point type. See
2191 -- AI05-0020 and AI05-0209. The ambiguity is resolved in favor of the
2192 -- user-defined type and subprogram, so that a client of the package
2193 -- has the same resolution as the body of the package.
2195 else
2196 if (In_Open_Scopes (Scope (User_Subp))
2197 or else Is_Potentially_Use_Visible (User_Subp))
2198 and then not In_Instance
2199 then
2200 if Is_Fixed_Point_Type (Typ)
2201 and then Chars (Nam1) in Name_Op_Multiply | Name_Op_Divide
2202 and then
2203 (Ada_Version = Ada_83
2204 or else (Ada_Version >= Ada_2012
2205 and then In_Same_Declaration_List
2206 (First_Subtype (Typ),
2207 Unit_Declaration_Node (User_Subp))))
2208 then
2209 if It2.Nam = Predef_Subp then
2210 return It1;
2211 else
2212 return It2;
2213 end if;
2215 -- Check for AI05-020
2217 elsif Chars (Nam1) in Name_Op_Eq | Name_Op_Ne
2218 and then Is_User_Defined_Anonymous_Access_Equality
2219 (User_Subp, Predef_Subp)
2220 then
2221 if It2.Nam = Predef_Subp then
2222 return It1;
2223 else
2224 return It2;
2225 end if;
2227 -- An immediately visible operator hides a use-visible user-
2228 -- defined operation. This disambiguation cannot take place
2229 -- earlier because the visibility of the predefined operator
2230 -- can only be established when operand types are known.
2232 elsif Ekind (User_Subp) = E_Function
2233 and then Ekind (Predef_Subp) = E_Operator
2234 and then Nkind (N) in N_Op
2235 and then not Is_Overloaded (Right_Opnd (N))
2236 and then
2237 Is_Immediately_Visible (Base_Type (Etype (Right_Opnd (N))))
2238 and then Is_Potentially_Use_Visible (User_Subp)
2239 then
2240 if It2.Nam = Predef_Subp then
2241 return It1;
2242 else
2243 return It2;
2244 end if;
2246 else
2247 return No_Interp;
2248 end if;
2250 elsif It1.Nam = Predef_Subp then
2251 return It1;
2253 else
2254 return It2;
2255 end if;
2256 end if;
2257 end Disambiguate;
2259 -------------------------
2260 -- Entity_Matches_Spec --
2261 -------------------------
2263 function Entity_Matches_Spec (Old_S, New_S : Entity_Id) return Boolean is
2264 begin
2265 -- Simple case: same entity kinds, type conformance is required. A
2266 -- parameterless function can also rename a literal.
2268 if Ekind (Old_S) = Ekind (New_S)
2269 or else (Ekind (New_S) = E_Function
2270 and then Ekind (Old_S) = E_Enumeration_Literal)
2271 then
2272 return Type_Conformant (New_S, Old_S);
2274 elsif Ekind (New_S) = E_Function and then Ekind (Old_S) = E_Operator then
2275 return Operator_Matches_Spec (Old_S, New_S);
2277 elsif Ekind (New_S) = E_Procedure and then Is_Entry (Old_S) then
2278 return Type_Conformant (New_S, Old_S);
2280 else
2281 return False;
2282 end if;
2283 end Entity_Matches_Spec;
2285 ----------------------
2286 -- Find_Unique_Type --
2287 ----------------------
2289 function Find_Unique_Type (L : Node_Id; R : Node_Id) return Entity_Id is
2290 T : constant Entity_Id := Etype (L);
2291 I : Interp_Index;
2292 It : Interp;
2293 TR : Entity_Id := Any_Type;
2295 begin
2296 if Is_Overloaded (R) then
2297 Get_First_Interp (R, I, It);
2298 while Present (It.Typ) loop
2299 if Covers (T, It.Typ) or else Covers (It.Typ, T) then
2301 -- If several interpretations are possible and L is universal,
2302 -- apply preference rule.
2304 if TR /= Any_Type then
2305 if Is_Universal_Numeric_Type (T)
2306 and then It.Typ = T
2307 then
2308 TR := It.Typ;
2309 end if;
2311 else
2312 TR := It.Typ;
2313 end if;
2314 end if;
2316 Get_Next_Interp (I, It);
2317 end loop;
2319 Set_Etype (R, TR);
2321 -- In the non-overloaded case, the Etype of R is already set correctly
2323 else
2324 null;
2325 end if;
2327 -- If one of the operands is Universal_Fixed, the type of the other
2328 -- operand provides the context.
2330 if Etype (R) = Universal_Fixed then
2331 return T;
2333 elsif T = Universal_Fixed then
2334 return Etype (R);
2336 -- If one operand is a raise_expression, use type of other operand
2338 elsif Nkind (L) = N_Raise_Expression then
2339 return Etype (R);
2341 else
2342 return Specific_Type (T, Etype (R));
2343 end if;
2344 end Find_Unique_Type;
2346 -------------------------------------
2347 -- Function_Interp_Has_Abstract_Op --
2348 -------------------------------------
2350 function Function_Interp_Has_Abstract_Op
2351 (N : Node_Id;
2352 E : Entity_Id) return Entity_Id
2354 Abstr_Op : Entity_Id;
2355 Act : Node_Id;
2356 Act_Parm : Node_Id;
2357 Form_Parm : Node_Id;
2359 begin
2360 -- Why is check on E needed below ???
2361 -- In any case this para needs comments ???
2363 if Is_Overloaded (N) and then Is_Overloadable (E) then
2364 Act_Parm := First_Actual (N);
2365 Form_Parm := First_Formal (E);
2366 while Present (Act_Parm) and then Present (Form_Parm) loop
2367 Act := Act_Parm;
2369 if Nkind (Act) = N_Parameter_Association then
2370 Act := Explicit_Actual_Parameter (Act);
2371 end if;
2373 Abstr_Op := Has_Abstract_Op (Act, Etype (Form_Parm));
2375 if Present (Abstr_Op) then
2376 return Abstr_Op;
2377 end if;
2379 Next_Actual (Act_Parm);
2380 Next_Formal (Form_Parm);
2381 end loop;
2382 end if;
2384 return Empty;
2385 end Function_Interp_Has_Abstract_Op;
2387 ----------------------
2388 -- Get_First_Interp --
2389 ----------------------
2391 procedure Get_First_Interp
2392 (N : Node_Id;
2393 I : out Interp_Index;
2394 It : out Interp)
2396 Int_Ind : Interp_Index;
2397 O_N : Node_Id;
2399 begin
2400 -- If a selected component is overloaded because the selector has
2401 -- multiple interpretations, the node is a call to a protected
2402 -- operation or an indirect call. Retrieve the interpretation from
2403 -- the selector name. The selected component may be overloaded as well
2404 -- if the prefix is overloaded. That case is unchanged.
2406 if Nkind (N) = N_Selected_Component
2407 and then Is_Overloaded (Selector_Name (N))
2408 then
2409 O_N := Selector_Name (N);
2410 else
2411 O_N := N;
2412 end if;
2414 Int_Ind := Interp_Map.Get (O_N);
2416 -- Procedure should never be called if the node has no interpretations
2418 if Int_Ind < 0 then
2419 raise Program_Error;
2420 end if;
2422 I := Int_Ind;
2423 It := All_Interp.Table (Int_Ind);
2424 end Get_First_Interp;
2426 ---------------------
2427 -- Get_Next_Interp --
2428 ---------------------
2430 procedure Get_Next_Interp (I : in out Interp_Index; It : out Interp) is
2431 begin
2432 I := I + 1;
2433 It := All_Interp.Table (I);
2434 end Get_Next_Interp;
2436 -------------------------
2437 -- Has_Compatible_Type --
2438 -------------------------
2440 function Has_Compatible_Type
2441 (N : Node_Id;
2442 Typ : Entity_Id;
2443 For_Comparison : Boolean := False) return Boolean
2445 I : Interp_Index;
2446 It : Interp;
2448 begin
2449 if N = Error then
2450 return False;
2451 end if;
2453 if Nkind (N) = N_Subtype_Indication or else not Is_Overloaded (N) then
2454 if Covers (Typ, Etype (N))
2456 -- Ada 2005 (AI-345): The context may be a synchronized interface.
2457 -- If the type is already frozen use the corresponding_record
2458 -- to check whether it is a proper descendant.
2460 or else
2461 (Is_Record_Type (Typ)
2462 and then Is_Concurrent_Type (Etype (N))
2463 and then Present (Corresponding_Record_Type (Etype (N)))
2464 and then Covers (Typ, Corresponding_Record_Type (Etype (N))))
2466 or else
2467 (Is_Concurrent_Type (Typ)
2468 and then Is_Record_Type (Etype (N))
2469 and then Present (Corresponding_Record_Type (Typ))
2470 and then Covers (Corresponding_Record_Type (Typ), Etype (N)))
2472 or else
2473 (Nkind (N) = N_Integer_Literal
2474 and then Present (Find_Aspect (Typ, Aspect_Integer_Literal)))
2476 or else
2477 (Nkind (N) = N_Real_Literal
2478 and then Present (Find_Aspect (Typ, Aspect_Real_Literal)))
2480 or else
2481 (Nkind (N) = N_String_Literal
2482 and then Present (Find_Aspect (Typ, Aspect_String_Literal)))
2484 or else
2485 (For_Comparison
2486 and then not Is_Tagged_Type (Typ)
2487 and then Ekind (Typ) /= E_Anonymous_Access_Type
2488 and then Covers (Etype (N), Typ))
2489 then
2490 return True;
2491 end if;
2493 -- Overloaded case
2495 else
2496 Get_First_Interp (N, I, It);
2497 while Present (It.Typ) loop
2498 if (Covers (Typ, It.Typ)
2499 and then
2500 (Scope (It.Nam) /= Standard_Standard
2501 or else not Is_Invisible_Operator (N, Base_Type (Typ))))
2503 -- Ada 2005 (AI-345)
2505 or else
2506 (Is_Record_Type (Typ)
2507 and then Is_Concurrent_Type (It.Typ)
2508 and then Present (Corresponding_Record_Type
2509 (Etype (It.Typ)))
2510 and then Covers (Typ, Corresponding_Record_Type
2511 (Etype (It.Typ))))
2513 or else
2514 (For_Comparison
2515 and then not Is_Tagged_Type (Typ)
2516 and then Ekind (Typ) /= E_Anonymous_Access_Type
2517 and then Covers (It.Typ, Typ))
2518 then
2519 return True;
2520 end if;
2522 Get_Next_Interp (I, It);
2523 end loop;
2524 end if;
2526 return False;
2527 end Has_Compatible_Type;
2529 ---------------------
2530 -- Has_Abstract_Op --
2531 ---------------------
2533 function Has_Abstract_Op
2534 (N : Node_Id;
2535 Typ : Entity_Id) return Entity_Id
2537 I : Interp_Index;
2538 It : Interp;
2540 begin
2541 if Is_Overloaded (N) then
2542 Get_First_Interp (N, I, It);
2543 while Present (It.Nam) loop
2544 if Present (It.Abstract_Op)
2545 and then Etype (It.Abstract_Op) = Typ
2546 then
2547 return It.Abstract_Op;
2548 end if;
2550 Get_Next_Interp (I, It);
2551 end loop;
2552 end if;
2554 return Empty;
2555 end Has_Abstract_Op;
2557 ----------
2558 -- Hash --
2559 ----------
2561 function Hash (N : Node_Id) return Header_Num is
2562 begin
2563 return Header_Num (N mod Header_Max);
2564 end Hash;
2566 --------------
2567 -- Hides_Op --
2568 --------------
2570 function Hides_Op (F : Entity_Id; Op : Entity_Id) return Boolean is
2571 Btyp : constant Entity_Id := Base_Type (Etype (First_Formal (F)));
2572 begin
2573 return Operator_Matches_Spec (Op, F)
2574 and then (In_Open_Scopes (Scope (F))
2575 or else Scope (F) = Scope (Btyp)
2576 or else (not In_Open_Scopes (Scope (Btyp))
2577 and then not In_Use (Btyp)
2578 and then not In_Use (Scope (Btyp))));
2579 end Hides_Op;
2581 ------------------------
2582 -- Init_Interp_Tables --
2583 ------------------------
2585 procedure Init_Interp_Tables is
2586 begin
2587 All_Interp.Init;
2588 Interp_Map.Reset;
2589 end Init_Interp_Tables;
2591 -----------------------------------
2592 -- Interface_Present_In_Ancestor --
2593 -----------------------------------
2595 function Interface_Present_In_Ancestor
2596 (Typ : Entity_Id;
2597 Iface : Entity_Id) return Boolean
2599 Target_Typ : Entity_Id;
2600 Iface_Typ : Entity_Id;
2602 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean;
2603 -- Returns True if Typ or some ancestor of Typ implements Iface
2605 -------------------------------
2606 -- Iface_Present_In_Ancestor --
2607 -------------------------------
2609 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean is
2610 E : Entity_Id;
2611 AI : Entity_Id;
2612 Elmt : Elmt_Id;
2614 begin
2615 if Typ = Iface_Typ then
2616 return True;
2617 end if;
2619 -- Handle private types
2621 if Present (Full_View (Typ))
2622 and then not Is_Concurrent_Type (Full_View (Typ))
2623 then
2624 E := Full_View (Typ);
2625 else
2626 E := Typ;
2627 end if;
2629 loop
2630 if Present (Interfaces (E))
2631 and then not Is_Empty_Elmt_List (Interfaces (E))
2632 then
2633 Elmt := First_Elmt (Interfaces (E));
2634 while Present (Elmt) loop
2635 AI := Node (Elmt);
2637 if AI = Iface_Typ or else Is_Ancestor (Iface_Typ, AI) then
2638 return True;
2639 end if;
2641 Next_Elmt (Elmt);
2642 end loop;
2643 end if;
2645 exit when Etype (E) = E
2647 -- Handle private types
2649 or else (Present (Full_View (Etype (E)))
2650 and then Full_View (Etype (E)) = E);
2652 -- Check if the current type is a direct derivation of the
2653 -- interface
2655 if Etype (E) = Iface_Typ then
2656 return True;
2657 end if;
2659 -- Climb to the immediate ancestor handling private types
2661 if Present (Full_View (Etype (E))) then
2662 E := Full_View (Etype (E));
2663 else
2664 E := Etype (E);
2665 end if;
2666 end loop;
2668 return False;
2669 end Iface_Present_In_Ancestor;
2671 -- Start of processing for Interface_Present_In_Ancestor
2673 begin
2674 -- Iface might be a class-wide subtype, so we have to apply Base_Type
2676 if Is_Class_Wide_Type (Iface) then
2677 Iface_Typ := Etype (Base_Type (Iface));
2678 else
2679 Iface_Typ := Iface;
2680 end if;
2682 -- Handle subtypes
2684 Iface_Typ := Base_Type (Iface_Typ);
2686 if Is_Access_Type (Typ) then
2687 Target_Typ := Etype (Directly_Designated_Type (Typ));
2688 else
2689 Target_Typ := Typ;
2690 end if;
2692 if Is_Concurrent_Record_Type (Target_Typ) then
2693 Target_Typ := Corresponding_Concurrent_Type (Target_Typ);
2694 end if;
2696 Target_Typ := Base_Type (Target_Typ);
2698 -- In case of concurrent types we can't use the Corresponding Record_Typ
2699 -- to look for the interface because it is built by the expander (and
2700 -- hence it is not always available). For this reason we traverse the
2701 -- list of interfaces (available in the parent of the concurrent type)
2703 if Is_Concurrent_Type (Target_Typ) then
2704 if Present (Interface_List (Parent (Target_Typ))) then
2705 declare
2706 AI : Node_Id;
2708 begin
2709 AI := First (Interface_List (Parent (Target_Typ)));
2711 -- The progenitor itself may be a subtype of an interface type.
2713 while Present (AI) loop
2714 if Etype (AI) = Iface_Typ
2715 or else Base_Type (Etype (AI)) = Iface_Typ
2716 then
2717 return True;
2719 elsif Present (Interfaces (Etype (AI)))
2720 and then Iface_Present_In_Ancestor (Etype (AI))
2721 then
2722 return True;
2723 end if;
2725 Next (AI);
2726 end loop;
2727 end;
2728 end if;
2730 return False;
2731 end if;
2733 if Is_Class_Wide_Type (Target_Typ) then
2734 Target_Typ := Etype (Target_Typ);
2735 end if;
2737 if Ekind (Target_Typ) = E_Incomplete_Type then
2739 -- We must have either a full view or a nonlimited view of the type
2740 -- to locate the list of ancestors.
2742 if Present (Full_View (Target_Typ)) then
2743 Target_Typ := Full_View (Target_Typ);
2744 else
2745 -- In a spec expression or in an expression function, the use of
2746 -- an incomplete type is legal; legality of the conversion will be
2747 -- checked at freeze point of related entity.
2749 if In_Spec_Expression then
2750 return True;
2752 else
2753 pragma Assert (Present (Non_Limited_View (Target_Typ)));
2754 Target_Typ := Non_Limited_View (Target_Typ);
2755 end if;
2756 end if;
2758 -- Protect the front end against previously detected errors
2760 if Ekind (Target_Typ) = E_Incomplete_Type then
2761 return False;
2762 end if;
2763 end if;
2765 return Iface_Present_In_Ancestor (Target_Typ);
2766 end Interface_Present_In_Ancestor;
2768 ---------------------
2769 -- Intersect_Types --
2770 ---------------------
2772 function Intersect_Types (L, R : Node_Id) return Entity_Id is
2773 Index : Interp_Index;
2774 It : Interp;
2775 Typ : Entity_Id;
2777 function Check_Right_Argument (T : Entity_Id) return Entity_Id;
2778 -- Find interpretation of right arg that has type compatible with T
2780 --------------------------
2781 -- Check_Right_Argument --
2782 --------------------------
2784 function Check_Right_Argument (T : Entity_Id) return Entity_Id is
2785 Index : Interp_Index;
2786 It : Interp;
2787 T2 : Entity_Id;
2789 begin
2790 if not Is_Overloaded (R) then
2791 return Specific_Type (T, Etype (R));
2793 else
2794 Get_First_Interp (R, Index, It);
2795 loop
2796 T2 := Specific_Type (T, It.Typ);
2798 if T2 /= Any_Type then
2799 return T2;
2800 end if;
2802 Get_Next_Interp (Index, It);
2803 exit when No (It.Typ);
2804 end loop;
2806 return Any_Type;
2807 end if;
2808 end Check_Right_Argument;
2810 -- Start of processing for Intersect_Types
2812 begin
2813 if Etype (L) = Any_Type or else Etype (R) = Any_Type then
2814 return Any_Type;
2815 end if;
2817 if not Is_Overloaded (L) then
2818 Typ := Check_Right_Argument (Etype (L));
2820 else
2821 Typ := Any_Type;
2822 Get_First_Interp (L, Index, It);
2823 while Present (It.Typ) loop
2824 Typ := Check_Right_Argument (It.Typ);
2825 exit when Typ /= Any_Type;
2826 Get_Next_Interp (Index, It);
2827 end loop;
2829 end if;
2831 -- If Typ is Any_Type, it means no compatible pair of types was found
2833 if Typ = Any_Type then
2834 if Nkind (Parent (L)) in N_Op then
2835 Error_Msg_N ("incompatible types for operator", Parent (L));
2837 elsif Nkind (Parent (L)) = N_Range then
2838 Error_Msg_N ("incompatible types given in constraint", Parent (L));
2840 -- Ada 2005 (AI-251): Complete the error notification
2842 elsif Is_Class_Wide_Type (Etype (R))
2843 and then Is_Interface (Etype (Class_Wide_Type (Etype (R))))
2844 then
2845 Error_Msg_NE ("(Ada 2005) does not implement interface }",
2846 L, Etype (Class_Wide_Type (Etype (R))));
2848 -- Specialize message if one operand is a limited view, a priori
2849 -- unrelated to all other types.
2851 elsif From_Limited_With (Etype (R)) then
2852 Error_Msg_NE ("limited view of& not compatible with context",
2853 R, Etype (R));
2855 elsif From_Limited_With (Etype (L)) then
2856 Error_Msg_NE ("limited view of& not compatible with context",
2857 L, Etype (L));
2858 else
2859 Error_Msg_N ("incompatible types", Parent (L));
2860 end if;
2861 end if;
2863 return Typ;
2864 end Intersect_Types;
2866 -----------------------
2867 -- In_Generic_Actual --
2868 -----------------------
2870 function In_Generic_Actual (Exp : Node_Id) return Boolean is
2871 Par : constant Node_Id := Parent (Exp);
2873 begin
2874 if No (Par) then
2875 return False;
2877 elsif Nkind (Par) in N_Declaration then
2878 return
2879 Nkind (Par) = N_Object_Declaration
2880 and then Present (Corresponding_Generic_Association (Par));
2882 elsif Nkind (Par) = N_Object_Renaming_Declaration then
2883 return Present (Corresponding_Generic_Association (Par));
2885 elsif Nkind (Par) in N_Statement_Other_Than_Procedure_Call then
2886 return False;
2888 else
2889 return In_Generic_Actual (Par);
2890 end if;
2891 end In_Generic_Actual;
2893 -----------------
2894 -- Is_Ancestor --
2895 -----------------
2897 function Is_Ancestor
2898 (T1 : Entity_Id;
2899 T2 : Entity_Id;
2900 Use_Full_View : Boolean := False) return Boolean
2902 BT1 : Entity_Id;
2903 BT2 : Entity_Id;
2904 Par : Entity_Id;
2906 begin
2907 BT1 := Base_Type (T1);
2908 BT2 := Base_Type (T2);
2910 -- Handle underlying view of records with unknown discriminants using
2911 -- the original entity that motivated the construction of this
2912 -- underlying record view (see Build_Derived_Private_Type).
2914 if Is_Underlying_Record_View (BT1) then
2915 BT1 := Underlying_Record_View (BT1);
2916 end if;
2918 if Is_Underlying_Record_View (BT2) then
2919 BT2 := Underlying_Record_View (BT2);
2920 end if;
2922 if BT1 = BT2 then
2923 return True;
2925 -- The predicate must look past privacy
2927 elsif Is_Private_Type (T1)
2928 and then Present (Full_View (T1))
2929 and then BT2 = Base_Type (Full_View (T1))
2930 then
2931 return True;
2933 elsif Is_Private_Type (T2)
2934 and then Present (Full_View (T2))
2935 and then BT1 = Base_Type (Full_View (T2))
2936 then
2937 return True;
2939 else
2940 -- Obtain the parent of the base type of T2 (use the full view if
2941 -- allowed).
2943 if Use_Full_View
2944 and then Is_Private_Type (BT2)
2945 and then Present (Full_View (BT2))
2946 then
2947 -- No climbing needed if its full view is the root type
2949 if Full_View (BT2) = Root_Type (Full_View (BT2)) then
2950 return False;
2951 end if;
2953 Par := Etype (Full_View (BT2));
2955 else
2956 Par := Etype (BT2);
2957 end if;
2959 loop
2960 -- If there was a error on the type declaration, do not recurse
2962 if Error_Posted (Par) then
2963 return False;
2965 elsif BT1 = Base_Type (Par)
2966 or else (Is_Private_Type (T1)
2967 and then Present (Full_View (T1))
2968 and then Base_Type (Par) = Base_Type (Full_View (T1)))
2969 then
2970 return True;
2972 elsif Is_Private_Type (Par)
2973 and then Present (Full_View (Par))
2974 and then Full_View (Par) = BT1
2975 then
2976 return True;
2978 -- Root type found
2980 elsif Par = Root_Type (Par) then
2981 return False;
2983 -- Continue climbing
2985 else
2986 -- Use the full-view of private types (if allowed). Guard
2987 -- against infinite loops when full view has same type as
2988 -- parent, as can happen with interface extensions.
2990 if Use_Full_View
2991 and then Is_Private_Type (Par)
2992 and then Present (Full_View (Par))
2993 and then Par /= Etype (Full_View (Par))
2994 then
2995 Par := Etype (Full_View (Par));
2996 else
2997 Par := Etype (Par);
2998 end if;
2999 end if;
3000 end loop;
3001 end if;
3002 end Is_Ancestor;
3004 ---------------------------
3005 -- Is_Invisible_Operator --
3006 ---------------------------
3008 function Is_Invisible_Operator
3009 (N : Node_Id;
3010 T : Entity_Id) return Boolean
3012 Orig_Node : constant Node_Id := Original_Node (N);
3014 begin
3015 if Nkind (N) not in N_Op then
3016 return False;
3018 elsif not Comes_From_Source (N) then
3019 return False;
3021 elsif No (Universal_Interpretation (Right_Opnd (N))) then
3022 return False;
3024 elsif Nkind (N) in N_Binary_Op
3025 and then No (Universal_Interpretation (Left_Opnd (N)))
3026 then
3027 return False;
3029 else
3030 return Is_Numeric_Type (T)
3031 and then not In_Open_Scopes (Scope (T))
3032 and then not Is_Potentially_Use_Visible (T)
3033 and then not In_Use (T)
3034 and then not In_Use (Scope (T))
3035 and then
3036 (Nkind (Orig_Node) /= N_Function_Call
3037 or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
3038 or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
3039 and then not In_Instance;
3040 end if;
3041 end Is_Invisible_Operator;
3043 --------------------
3044 -- Is_Progenitor --
3045 --------------------
3047 function Is_Progenitor
3048 (Iface : Entity_Id;
3049 Typ : Entity_Id) return Boolean
3051 begin
3052 return Implements_Interface (Typ, Iface, Exclude_Parents => True);
3053 end Is_Progenitor;
3055 -------------------
3056 -- Is_Subtype_Of --
3057 -------------------
3059 function Is_Subtype_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
3060 S : Entity_Id;
3062 begin
3063 S := Ancestor_Subtype (T1);
3064 while Present (S) loop
3065 if S = T2 then
3066 return True;
3067 else
3068 S := Ancestor_Subtype (S);
3069 end if;
3070 end loop;
3072 return False;
3073 end Is_Subtype_Of;
3075 ------------------
3076 -- List_Interps --
3077 ------------------
3079 procedure List_Interps (Nam : Node_Id; Err : Node_Id) is
3080 Index : Interp_Index;
3081 It : Interp;
3083 begin
3084 Get_First_Interp (Nam, Index, It);
3085 while Present (It.Nam) loop
3086 if Scope (It.Nam) = Standard_Standard
3087 and then Scope (It.Typ) /= Standard_Standard
3088 then
3089 Error_Msg_Sloc := Sloc (Parent (It.Typ));
3090 Error_Msg_NE ("\\& (inherited) declared#!", Err, It.Nam);
3092 else
3093 Error_Msg_Sloc := Sloc (It.Nam);
3094 Error_Msg_NE ("\\& declared#!", Err, It.Nam);
3095 end if;
3097 Get_Next_Interp (Index, It);
3098 end loop;
3099 end List_Interps;
3101 -----------------
3102 -- New_Interps --
3103 -----------------
3105 procedure New_Interps (N : Node_Id) is
3106 begin
3107 All_Interp.Append (No_Interp);
3109 -- Add or rewrite the existing node
3110 Last_Overloaded := N;
3111 Interp_Map.Set (N, All_Interp.Last);
3112 Set_Is_Overloaded (N, True);
3113 end New_Interps;
3115 ---------------------------
3116 -- Operator_Matches_Spec --
3117 ---------------------------
3119 function Operator_Matches_Spec (Op, New_S : Entity_Id) return Boolean is
3120 New_First_F : constant Entity_Id := First_Formal (New_S);
3121 Op_Name : constant Name_Id := Chars (Op);
3122 T : constant Entity_Id := Etype (New_S);
3123 New_F : Entity_Id;
3124 Num : Nat;
3125 Old_F : Entity_Id;
3126 T1 : Entity_Id;
3127 T2 : Entity_Id;
3129 begin
3130 -- To verify that a predefined operator matches a given signature, do a
3131 -- case analysis of the operator classes. Function can have one or two
3132 -- formals and must have the proper result type.
3134 New_F := New_First_F;
3135 Old_F := First_Formal (Op);
3136 Num := 0;
3137 while Present (New_F) and then Present (Old_F) loop
3138 Num := Num + 1;
3139 Next_Formal (New_F);
3140 Next_Formal (Old_F);
3141 end loop;
3143 -- Definite mismatch if different number of parameters
3145 if Present (Old_F) or else Present (New_F) then
3146 return False;
3148 -- Unary operators
3150 elsif Num = 1 then
3151 T1 := Etype (New_First_F);
3153 if Op_Name in Name_Op_Subtract | Name_Op_Add | Name_Op_Abs then
3154 return Base_Type (T1) = Base_Type (T)
3155 and then Is_Numeric_Type (T);
3157 elsif Op_Name = Name_Op_Not then
3158 return Base_Type (T1) = Base_Type (T)
3159 and then Valid_Boolean_Arg (Base_Type (T));
3161 else
3162 return False;
3163 end if;
3165 -- Binary operators
3167 else
3168 T1 := Etype (New_First_F);
3169 T2 := Etype (Next_Formal (New_First_F));
3171 if Op_Name in Name_Op_And | Name_Op_Or | Name_Op_Xor then
3172 return Base_Type (T1) = Base_Type (T2)
3173 and then Base_Type (T1) = Base_Type (T)
3174 and then Valid_Boolean_Arg (Base_Type (T));
3176 elsif Op_Name in Name_Op_Eq | Name_Op_Ne then
3177 return Base_Type (T1) = Base_Type (T2)
3178 and then not Is_Limited_Type (T1)
3179 and then Is_Boolean_Type (T);
3181 elsif Op_Name in Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge
3182 then
3183 return Base_Type (T1) = Base_Type (T2)
3184 and then Valid_Comparison_Arg (T1)
3185 and then Is_Boolean_Type (T);
3187 elsif Op_Name in Name_Op_Add | Name_Op_Subtract then
3188 return Base_Type (T1) = Base_Type (T2)
3189 and then Base_Type (T1) = Base_Type (T)
3190 and then Is_Numeric_Type (T);
3192 -- For division and multiplication, a user-defined function does not
3193 -- match the predefined universal_fixed operation, except in Ada 83.
3195 elsif Op_Name = Name_Op_Divide then
3196 return (Base_Type (T1) = Base_Type (T2)
3197 and then Base_Type (T1) = Base_Type (T)
3198 and then Is_Numeric_Type (T)
3199 and then (not Is_Fixed_Point_Type (T)
3200 or else Ada_Version = Ada_83))
3202 -- Mixed_Mode operations on fixed-point types
3204 or else (Base_Type (T1) = Base_Type (T)
3205 and then Base_Type (T2) = Base_Type (Standard_Integer)
3206 and then Is_Fixed_Point_Type (T))
3208 -- A user defined operator can also match (and hide) a mixed
3209 -- operation on universal literals.
3211 or else (Is_Integer_Type (T2)
3212 and then Is_Floating_Point_Type (T1)
3213 and then Base_Type (T1) = Base_Type (T));
3215 elsif Op_Name = Name_Op_Multiply then
3216 return (Base_Type (T1) = Base_Type (T2)
3217 and then Base_Type (T1) = Base_Type (T)
3218 and then Is_Numeric_Type (T)
3219 and then (not Is_Fixed_Point_Type (T)
3220 or else Ada_Version = Ada_83))
3222 -- Mixed_Mode operations on fixed-point types
3224 or else (Base_Type (T1) = Base_Type (T)
3225 and then Base_Type (T2) = Base_Type (Standard_Integer)
3226 and then Is_Fixed_Point_Type (T))
3228 or else (Base_Type (T2) = Base_Type (T)
3229 and then Base_Type (T1) = Base_Type (Standard_Integer)
3230 and then Is_Fixed_Point_Type (T))
3232 or else (Is_Integer_Type (T2)
3233 and then Is_Floating_Point_Type (T1)
3234 and then Base_Type (T1) = Base_Type (T))
3236 or else (Is_Integer_Type (T1)
3237 and then Is_Floating_Point_Type (T2)
3238 and then Base_Type (T2) = Base_Type (T));
3240 elsif Op_Name in Name_Op_Mod | Name_Op_Rem then
3241 return Base_Type (T1) = Base_Type (T2)
3242 and then Base_Type (T1) = Base_Type (T)
3243 and then Is_Integer_Type (T);
3245 elsif Op_Name = Name_Op_Expon then
3246 return Base_Type (T1) = Base_Type (T)
3247 and then Is_Numeric_Type (T)
3248 and then Base_Type (T2) = Base_Type (Standard_Integer);
3250 elsif Op_Name = Name_Op_Concat then
3251 return Is_Array_Type (T)
3252 and then (Base_Type (T) = Base_Type (Etype (Op)))
3253 and then (Base_Type (T1) = Base_Type (T)
3254 or else
3255 Base_Type (T1) = Base_Type (Component_Type (T)))
3256 and then (Base_Type (T2) = Base_Type (T)
3257 or else
3258 Base_Type (T2) = Base_Type (Component_Type (T)));
3260 else
3261 return False;
3262 end if;
3263 end if;
3264 end Operator_Matches_Spec;
3266 -------------------
3267 -- Remove_Interp --
3268 -------------------
3270 procedure Remove_Interp (I : in out Interp_Index) is
3271 II : Interp_Index;
3273 begin
3274 -- Find end of interp list and copy downward to erase the discarded one
3276 II := I + 1;
3277 while Present (All_Interp.Table (II).Typ) loop
3278 II := II + 1;
3279 end loop;
3281 for J in I + 1 .. II loop
3282 All_Interp.Table (J - 1) := All_Interp.Table (J);
3283 end loop;
3285 -- Back up interp index to insure that iterator will pick up next
3286 -- available interpretation.
3288 I := I - 1;
3289 end Remove_Interp;
3291 ------------------
3292 -- Save_Interps --
3293 ------------------
3295 procedure Save_Interps (Old_N : Node_Id; New_N : Node_Id) is
3296 Old_Ind : Interp_Index;
3297 O_N : Node_Id;
3299 begin
3300 if Is_Overloaded (Old_N) then
3301 Set_Is_Overloaded (New_N);
3303 if Nkind (Old_N) = N_Selected_Component
3304 and then Is_Overloaded (Selector_Name (Old_N))
3305 then
3306 O_N := Selector_Name (Old_N);
3307 else
3308 O_N := Old_N;
3309 end if;
3311 Old_Ind := Interp_Map.Get (O_N);
3312 pragma Assert (Old_Ind >= 0);
3314 New_Interps (New_N);
3315 Interp_Map.Set (New_N, Old_Ind);
3316 end if;
3317 end Save_Interps;
3319 -------------------
3320 -- Specific_Type --
3321 -------------------
3323 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id is
3324 T1 : constant Entity_Id := Available_View (Typ_1);
3325 T2 : constant Entity_Id := Available_View (Typ_2);
3326 B1 : constant Entity_Id := Base_Type (T1);
3327 B2 : constant Entity_Id := Base_Type (T2);
3329 function Is_Remote_Access (T : Entity_Id) return Boolean;
3330 -- Check whether T is the equivalent type of a remote access type.
3331 -- If distribution is enabled, T is a legal context for Null.
3333 ----------------------
3334 -- Is_Remote_Access --
3335 ----------------------
3337 function Is_Remote_Access (T : Entity_Id) return Boolean is
3338 begin
3339 return Is_Record_Type (T)
3340 and then (Is_Remote_Call_Interface (T)
3341 or else Is_Remote_Types (T))
3342 and then Present (Corresponding_Remote_Type (T))
3343 and then Is_Access_Type (Corresponding_Remote_Type (T));
3344 end Is_Remote_Access;
3346 -- Start of processing for Specific_Type
3348 begin
3349 if T1 = Any_Type or else T2 = Any_Type then
3350 return Any_Type;
3351 end if;
3353 if B1 = B2 then
3354 return B1;
3356 elsif (T1 = Universal_Integer and then Is_Integer_Type (T2))
3357 or else (T1 = Universal_Real and then Is_Real_Type (T2))
3358 or else (T1 = Universal_Fixed and then Is_Fixed_Point_Type (T2))
3359 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
3360 then
3361 return B2;
3363 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
3364 or else (T2 = Universal_Real and then Is_Real_Type (T1))
3365 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
3366 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
3367 then
3368 return B1;
3370 elsif T2 = Any_String and then Is_String_Type (T1) then
3371 return B1;
3373 elsif T1 = Any_String and then Is_String_Type (T2) then
3374 return B2;
3376 elsif T2 = Any_Character and then Is_Character_Type (T1) then
3377 return B1;
3379 elsif T1 = Any_Character and then Is_Character_Type (T2) then
3380 return B2;
3382 elsif T1 = Any_Access
3383 and then (Is_Access_Type (T2) or else Is_Remote_Access (T2))
3384 then
3385 return T2;
3387 elsif T2 = Any_Access
3388 and then (Is_Access_Type (T1) or else Is_Remote_Access (T1))
3389 then
3390 return T1;
3392 -- In an instance, the specific type may have a private view. Use full
3393 -- view to check legality.
3395 elsif T2 = Any_Access
3396 and then Is_Private_Type (T1)
3397 and then Present (Full_View (T1))
3398 and then Is_Access_Type (Full_View (T1))
3399 and then In_Instance
3400 then
3401 return T1;
3403 elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
3404 return T1;
3406 elsif T1 = Any_Composite and then Is_Aggregate_Type (T2) then
3407 return T2;
3409 elsif T1 = Any_Modular and then Is_Modular_Integer_Type (T2) then
3410 return T2;
3412 elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
3413 return T1;
3415 -- ----------------------------------------------------------
3416 -- Special cases for equality operators (all other predefined
3417 -- operators can never apply to tagged types)
3418 -- ----------------------------------------------------------
3420 -- Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
3421 -- interface
3423 elsif Is_Class_Wide_Type (T1)
3424 and then Is_Class_Wide_Type (T2)
3425 and then Is_Interface (Etype (T2))
3426 then
3427 return T1;
3429 -- Ada 2005 (AI-251): T1 is a concrete type that implements the
3430 -- class-wide interface T2
3432 elsif Is_Tagged_Type (T1)
3433 and then Is_Class_Wide_Type (T2)
3434 and then Is_Interface (Etype (T2))
3435 and then Interface_Present_In_Ancestor (Typ => T1,
3436 Iface => Etype (T2))
3437 then
3438 return T1;
3440 elsif Is_Class_Wide_Type (T1)
3441 and then Is_Ancestor (Root_Type (T1), T2)
3442 then
3443 return T1;
3445 elsif Is_Class_Wide_Type (T2)
3446 and then Is_Ancestor (Root_Type (T2), T1)
3447 then
3448 return T2;
3450 elsif Is_Access_Type (T1)
3451 and then Is_Access_Type (T2)
3452 and then Is_Class_Wide_Type (Designated_Type (T1))
3453 and then not Is_Class_Wide_Type (Designated_Type (T2))
3454 and then
3455 Is_Ancestor (Root_Type (Designated_Type (T1)), Designated_Type (T2))
3456 then
3457 return T1;
3459 elsif Is_Access_Type (T1)
3460 and then Is_Access_Type (T2)
3461 and then Is_Class_Wide_Type (Designated_Type (T2))
3462 and then not Is_Class_Wide_Type (Designated_Type (T1))
3463 and then
3464 Is_Ancestor (Root_Type (Designated_Type (T2)), Designated_Type (T1))
3465 then
3466 return T2;
3468 elsif Ekind (B1) in E_Access_Subprogram_Type
3469 | E_Access_Protected_Subprogram_Type
3470 and then Ekind (Designated_Type (B1)) /= E_Subprogram_Type
3471 and then Is_Access_Type (T2)
3472 then
3473 return T2;
3475 elsif Ekind (B2) in E_Access_Subprogram_Type
3476 | E_Access_Protected_Subprogram_Type
3477 and then Ekind (Designated_Type (B2)) /= E_Subprogram_Type
3478 and then Is_Access_Type (T1)
3479 then
3480 return T1;
3482 elsif Ekind (T1) in E_Allocator_Type | E_Access_Attribute_Type
3483 and then Is_Access_Type (T2)
3484 then
3485 return T2;
3487 elsif Ekind (T2) in E_Allocator_Type | E_Access_Attribute_Type
3488 and then Is_Access_Type (T1)
3489 then
3490 return T1;
3492 -- Ada 2005 (AI-230): Support the following operators:
3494 -- function "=" (L, R : universal_access) return Boolean;
3495 -- function "/=" (L, R : universal_access) return Boolean;
3497 -- Pool-specific access types (E_Access_Type) are not covered by these
3498 -- operators because of the legality rule of 4.5.2(9.2): "The operands
3499 -- of the equality operators for universal_access shall be convertible
3500 -- to one another (see 4.6)". For example, considering the type decla-
3501 -- ration "type P is access Integer" and an anonymous access to Integer,
3502 -- P is convertible to "access Integer" by 4.6 (24.11-24.15), but there
3503 -- is no rule in 4.6 that allows "access Integer" to be converted to P.
3504 -- Note that this does not preclude one operand to be a pool-specific
3505 -- access type, as a previous version of this code enforced.
3507 elsif Ada_Version >= Ada_2005 then
3508 if Is_Anonymous_Access_Type (T1)
3509 and then Is_Access_Type (T2)
3510 then
3511 return T1;
3513 elsif Is_Anonymous_Access_Type (T2)
3514 and then Is_Access_Type (T1)
3515 then
3516 return T2;
3517 end if;
3518 end if;
3520 -- If none of the above cases applies, types are not compatible
3522 return Any_Type;
3523 end Specific_Type;
3525 ---------------------
3526 -- Set_Abstract_Op --
3527 ---------------------
3529 procedure Set_Abstract_Op (I : Interp_Index; V : Entity_Id) is
3530 begin
3531 All_Interp.Table (I).Abstract_Op := V;
3532 end Set_Abstract_Op;
3534 -----------------------
3535 -- Valid_Boolean_Arg --
3536 -----------------------
3538 -- In addition to booleans and arrays of booleans, we must include
3539 -- aggregates as valid boolean arguments, because in the first pass of
3540 -- resolution their components are not examined. If it turns out not to be
3541 -- an aggregate of booleans, this will be diagnosed in Resolve.
3542 -- Any_Composite must be checked for prior to the array type checks because
3543 -- Any_Composite does not have any associated indexes.
3545 function Valid_Boolean_Arg (T : Entity_Id) return Boolean is
3546 begin
3547 if Is_Boolean_Type (T)
3548 or else Is_Modular_Integer_Type (T)
3549 or else T = Universal_Integer
3550 or else T = Any_Composite
3551 then
3552 return True;
3554 elsif Is_Array_Type (T)
3555 and then T /= Any_String
3556 and then Number_Dimensions (T) = 1
3557 and then Is_Boolean_Type (Component_Type (T))
3558 and then
3559 ((not Is_Private_Composite (T) and then not Is_Limited_Composite (T))
3560 or else In_Instance
3561 or else Available_Full_View_Of_Component (T))
3562 then
3563 return True;
3565 else
3566 return False;
3567 end if;
3568 end Valid_Boolean_Arg;
3570 --------------------------
3571 -- Valid_Comparison_Arg --
3572 --------------------------
3574 function Valid_Comparison_Arg (T : Entity_Id) return Boolean is
3575 begin
3577 if T = Any_Composite then
3578 return False;
3580 elsif Is_Discrete_Type (T)
3581 or else Is_Real_Type (T)
3582 then
3583 return True;
3585 elsif Is_Array_Type (T)
3586 and then Number_Dimensions (T) = 1
3587 and then Is_Discrete_Type (Component_Type (T))
3588 and then (not Is_Private_Composite (T) or else In_Instance)
3589 and then (not Is_Limited_Composite (T) or else In_Instance)
3590 then
3591 return True;
3593 elsif Is_Array_Type (T)
3594 and then Number_Dimensions (T) = 1
3595 and then Is_Discrete_Type (Component_Type (T))
3596 and then Available_Full_View_Of_Component (T)
3597 then
3598 return True;
3600 elsif Is_String_Type (T) then
3601 return True;
3602 else
3603 return False;
3604 end if;
3605 end Valid_Comparison_Arg;
3607 ------------------
3608 -- Write_Interp --
3609 ------------------
3611 procedure Write_Interp (It : Interp) is
3612 begin
3613 Write_Str ("Nam: ");
3614 Print_Tree_Node (It.Nam);
3615 Write_Str ("Typ: ");
3616 Print_Tree_Node (It.Typ);
3617 Write_Str ("Abstract_Op: ");
3618 Print_Tree_Node (It.Abstract_Op);
3619 end Write_Interp;
3621 ---------------------
3622 -- Write_Overloads --
3623 ---------------------
3625 procedure Write_Overloads (N : Node_Id) is
3626 I : Interp_Index;
3627 It : Interp;
3628 Nam : Entity_Id;
3630 begin
3631 Write_Str ("Overloads: ");
3632 Print_Node_Briefly (N);
3634 if not Is_Overloaded (N) then
3635 if Is_Entity_Name (N) then
3636 Write_Line ("Non-overloaded entity ");
3637 Write_Entity_Info (Entity (N), " ");
3638 end if;
3640 elsif Nkind (N) not in N_Has_Entity then
3641 Get_First_Interp (N, I, It);
3642 while Present (It.Nam) loop
3643 Write_Int (Int (It.Typ));
3644 Write_Str (" ");
3645 Write_Name (Chars (It.Typ));
3646 Write_Eol;
3647 Get_Next_Interp (I, It);
3648 end loop;
3650 else
3651 Get_First_Interp (N, I, It);
3652 Write_Line ("Overloaded entity ");
3653 Write_Line (" Name Type Abstract Op");
3654 Write_Line ("===============================================");
3655 Nam := It.Nam;
3657 while Present (Nam) loop
3658 Write_Int (Int (Nam));
3659 Write_Str (" ");
3660 Write_Name (Chars (Nam));
3661 Write_Str (" ");
3662 Write_Int (Int (It.Typ));
3663 Write_Str (" ");
3664 Write_Name (Chars (It.Typ));
3666 if Present (It.Abstract_Op) then
3667 Write_Str (" ");
3668 Write_Int (Int (It.Abstract_Op));
3669 Write_Str (" ");
3670 Write_Name (Chars (It.Abstract_Op));
3671 end if;
3673 Write_Eol;
3674 Get_Next_Interp (I, It);
3675 Nam := It.Nam;
3676 end loop;
3677 end if;
3678 end Write_Overloads;
3680 end Sem_Type;