Fix typo in t-dimode
[official-gcc.git] / gcc / ada / exp_pakd.adb
blob779dbb3ad306d7fffb41ee8eadefdafaf7273455
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ P A K D --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Einfo.Entities; use Einfo.Entities;
30 with Einfo.Utils; use Einfo.Utils;
31 with Errout; use Errout;
32 with Exp_Dbug; use Exp_Dbug;
33 with Exp_Util; use Exp_Util;
34 with Layout; use Layout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Ch3; use Sem_Ch3;
43 with Sem_Ch8; use Sem_Ch8;
44 with Sem_Ch13; use Sem_Ch13;
45 with Sem_Eval; use Sem_Eval;
46 with Sem_Res; use Sem_Res;
47 with Sem_Util; use Sem_Util;
48 with Sinfo; use Sinfo;
49 with Sinfo.Nodes; use Sinfo.Nodes;
50 with Sinfo.Utils; use Sinfo.Utils;
51 with Snames; use Snames;
52 with Stand; use Stand;
53 with Targparm; use Targparm;
54 with Tbuild; use Tbuild;
55 with Ttypes; use Ttypes;
56 with Uintp; use Uintp;
58 package body Exp_Pakd is
60 ---------------------------
61 -- Endian Considerations --
62 ---------------------------
64 -- As described in the specification, bit numbering in a packed array
65 -- is consistent with bit numbering in a record representation clause,
66 -- and hence dependent on the endianness of the machine:
68 -- For little-endian machines, element zero is at the right hand end
69 -- (low order end) of a bit field.
71 -- For big-endian machines, element zero is at the left hand end
72 -- (high order end) of a bit field.
74 -- The shifts that are used to right justify a field therefore differ in
75 -- the two cases. For the little-endian case, we can simply use the bit
76 -- number (i.e. the element number * element size) as the count for a right
77 -- shift. For the big-endian case, we have to subtract the shift count from
78 -- an appropriate constant to use in the right shift. We use rotates
79 -- instead of shifts (which is necessary in the store case to preserve
80 -- other fields), and we expect that the backend will be able to change the
81 -- right rotate into a left rotate, avoiding the subtract, if the machine
82 -- architecture provides such an instruction.
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Compute_Linear_Subscript
89 (Atyp : Entity_Id;
90 N : Node_Id;
91 Subscr : out Node_Id);
92 -- Given a constrained array type Atyp, and an indexed component node N
93 -- referencing an array object of this type, build an expression of type
94 -- Standard.Integer representing the zero-based linear subscript value.
95 -- This expression includes any required range checks.
97 function Compute_Number_Components
98 (N : Node_Id;
99 Typ : Entity_Id) return Node_Id;
100 -- Build an expression that multiplies the length of the dimensions of the
101 -- array, used to control array equality checks.
103 procedure Convert_To_PAT_Type (Aexp : Node_Id);
104 -- Given an expression of a packed array type, builds a corresponding
105 -- expression whose type is the implementation type used to represent
106 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
108 procedure Get_Base_And_Bit_Offset
109 (N : Node_Id;
110 Base : out Node_Id;
111 Offset : out Node_Id);
112 -- Given a node N for a name which involves a packed array reference,
113 -- return the base object of the reference and build an expression of
114 -- type Standard.Integer representing the zero-based offset in bits
115 -- from Base'Address to the first bit of the reference.
117 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean;
118 -- There are two versions of the Set routines, the ones used when the
119 -- object is known to be sufficiently well aligned given the number of
120 -- bits, and the ones used when the object is not known to be aligned.
121 -- This routine is used to determine which set to use. Obj is a reference
122 -- to the object, and Csiz is the component size of the packed array.
123 -- True is returned if the alignment of object is known to be sufficient,
124 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
125 -- 2 otherwise.
127 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id;
128 -- Build a left shift node, checking for the case of a shift count of zero
130 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id;
131 -- Build a right shift node, checking for the case of a shift count of zero
133 function RJ_Unchecked_Convert_To
134 (Typ : Entity_Id;
135 Expr : Node_Id) return Node_Id;
136 -- The packed array code does unchecked conversions which in some cases
137 -- may involve non-discrete types with differing sizes. The semantics of
138 -- such conversions is potentially endianness dependent, and the effect
139 -- we want here for such a conversion is to do the conversion in size as
140 -- though numeric items are involved, and we extend or truncate on the
141 -- left side. This happens naturally in the little-endian case, but in
142 -- the big endian case we can get left justification, when what we want
143 -- is right justification. This routine does the unchecked conversion in
144 -- a stepwise manner to ensure that it gives the expected result. Hence
145 -- the name (RJ = Right justified). The parameters Typ and Expr are as
146 -- for the case of a normal Unchecked_Convert_To call.
148 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id);
149 -- This routine is called in the Get and Set case for arrays that are
150 -- packed but not bit-packed, meaning that they have at least one
151 -- subscript that is of an enumeration type with a non-standard
152 -- representation. This routine modifies the given node to properly
153 -- reference the corresponding packed array type.
155 procedure Setup_Inline_Packed_Array_Reference
156 (N : Node_Id;
157 Atyp : Entity_Id;
158 Obj : in out Node_Id;
159 Cmask : out Uint;
160 Shift : out Node_Id);
161 -- This procedure performs common processing on the N_Indexed_Component
162 -- parameter given as N, whose prefix is a reference to a packed array.
163 -- This is used for the get and set when the component size is 1, 2, 4,
164 -- or for other component sizes when the packed array type is a modular
165 -- type (i.e. the cases that are handled with inline code).
167 -- On entry:
169 -- N is the N_Indexed_Component node for the packed array reference
171 -- Atyp is the constrained array type (the actual subtype has been
172 -- computed if necessary to obtain the constraints, but this is still
173 -- the original array type, not the Packed_Array_Impl_Type value).
175 -- Obj is the object which is to be indexed. It is always of type Atyp.
177 -- On return:
179 -- Obj is the object containing the desired bit field. It is of type
180 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
181 -- entire value, for the small static case, or the proper selected byte
182 -- from the array in the large or dynamic case. This node is analyzed
183 -- and resolved on return.
185 -- Shift is a node representing the shift count to be used in the
186 -- rotate right instruction that positions the field for access.
187 -- This node is analyzed and resolved on return.
189 -- Cmask is a mask corresponding to the width of the component field.
190 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
192 -- Note: in some cases the call to this routine may generate actions
193 -- (for handling multi-use references and the generation of the packed
194 -- array type on the fly). Such actions are inserted into the tree
195 -- directly using Insert_Action.
197 function Revert_Storage_Order (N : Node_Id) return Node_Id;
198 -- Perform appropriate justification and byte ordering adjustments for N,
199 -- an element of a packed array type, when both the component type and
200 -- the enclosing packed array type have reverse scalar storage order.
201 -- On little-endian targets, the value is left justified before byte
202 -- swapping. The Etype of the returned expression is an integer type of
203 -- an appropriate power-of-2 size.
205 --------------------------
206 -- Revert_Storage_Order --
207 --------------------------
209 function Revert_Storage_Order (N : Node_Id) return Node_Id is
210 Loc : constant Source_Ptr := Sloc (N);
211 T : constant Entity_Id := Etype (N);
212 T_Size : constant Uint := RM_Size (T);
214 Swap_RE : RE_Id;
215 Swap_F : Entity_Id;
216 Swap_T : Entity_Id;
217 -- Swapping function
219 Arg : Node_Id;
220 Adjusted : Node_Id;
221 Shift : Uint;
223 begin
224 if T_Size <= 8 then
226 -- Array component size is less than a byte: no swapping needed
228 Swap_F := Empty;
229 Swap_T := RTE (RE_Unsigned_8);
231 else
232 -- Select byte swapping function depending on array component size
234 if T_Size <= 16 then
235 Swap_RE := RE_Bswap_16;
237 elsif T_Size <= 32 then
238 Swap_RE := RE_Bswap_32;
240 elsif T_Size <= 64 then
241 Swap_RE := RE_Bswap_64;
243 else pragma Assert (T_Size <= 128);
244 Swap_RE := RE_Bswap_128;
245 end if;
247 Swap_F := RTE (Swap_RE);
248 Swap_T := Etype (Swap_F);
250 end if;
252 Shift := Esize (Swap_T) - T_Size;
254 Arg := RJ_Unchecked_Convert_To (Swap_T, N);
256 if not Bytes_Big_Endian and then Shift > Uint_0 then
257 Arg :=
258 Make_Op_Shift_Left (Loc,
259 Left_Opnd => Arg,
260 Right_Opnd => Make_Integer_Literal (Loc, Shift));
261 end if;
263 if Present (Swap_F) then
264 Adjusted :=
265 Make_Function_Call (Loc,
266 Name => New_Occurrence_Of (Swap_F, Loc),
267 Parameter_Associations => New_List (Arg));
268 else
269 Adjusted := Arg;
270 end if;
272 Set_Etype (Adjusted, Swap_T);
273 return Adjusted;
274 end Revert_Storage_Order;
276 ------------------------------
277 -- Compute_Linear_Subscript --
278 ------------------------------
280 procedure Compute_Linear_Subscript
281 (Atyp : Entity_Id;
282 N : Node_Id;
283 Subscr : out Node_Id)
285 Loc : constant Source_Ptr := Sloc (N);
286 Oldsub : Node_Id;
287 Newsub : Node_Id;
288 Indx : Node_Id;
289 Styp : Entity_Id;
291 begin
292 Subscr := Empty;
294 -- Loop through dimensions
296 Indx := First_Index (Atyp);
297 Oldsub := First (Expressions (N));
299 while Present (Indx) loop
300 Styp := Etype (Indx);
301 Newsub := Relocate_Node (Oldsub);
303 -- Get expression for the subscript value. First, if Do_Range_Check
304 -- is set on a subscript, then we must do a range check against the
305 -- original bounds (not the bounds of the packed array type). We do
306 -- this by introducing a subtype conversion.
308 if Do_Range_Check (Newsub)
309 and then Etype (Newsub) /= Styp
310 then
311 Newsub := Convert_To (Styp, Newsub);
312 end if;
314 -- Now evolve the expression for the subscript. First convert
315 -- the subscript to be zero based and of an integer type.
317 -- Case of integer type, where we just subtract to get lower bound
319 if Is_Integer_Type (Styp) then
321 -- If length of integer type is smaller than standard integer,
322 -- then we convert to integer first, then do the subtract
324 -- Integer (subscript) - Integer (Styp'First)
326 if Esize (Styp) < Standard_Integer_Size then
327 Newsub :=
328 Make_Op_Subtract (Loc,
329 Left_Opnd => Convert_To (Standard_Integer, Newsub),
330 Right_Opnd =>
331 Convert_To (Standard_Integer,
332 Make_Attribute_Reference (Loc,
333 Prefix => New_Occurrence_Of (Styp, Loc),
334 Attribute_Name => Name_First)));
336 -- For larger integer types, subtract first, then convert to
337 -- integer, this deals with strange long long integer bounds.
339 -- Integer (subscript - Styp'First)
341 else
342 Newsub :=
343 Convert_To (Standard_Integer,
344 Make_Op_Subtract (Loc,
345 Left_Opnd => Newsub,
346 Right_Opnd =>
347 Make_Attribute_Reference (Loc,
348 Prefix => New_Occurrence_Of (Styp, Loc),
349 Attribute_Name => Name_First)));
350 end if;
352 -- For the enumeration case, we have to use 'Pos to get the value
353 -- to work with before subtracting the lower bound.
355 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
357 -- This is not quite right for bizarre cases where the size of the
358 -- enumeration type is > Integer'Size bits due to rep clause ???
360 else
361 pragma Assert (Is_Enumeration_Type (Styp));
363 Newsub :=
364 Make_Op_Subtract (Loc,
365 Left_Opnd => Convert_To (Standard_Integer,
366 Make_Attribute_Reference (Loc,
367 Prefix => New_Occurrence_Of (Styp, Loc),
368 Attribute_Name => Name_Pos,
369 Expressions => New_List (Newsub))),
371 Right_Opnd =>
372 Convert_To (Standard_Integer,
373 Make_Attribute_Reference (Loc,
374 Prefix => New_Occurrence_Of (Styp, Loc),
375 Attribute_Name => Name_Pos,
376 Expressions => New_List (
377 Make_Attribute_Reference (Loc,
378 Prefix => New_Occurrence_Of (Styp, Loc),
379 Attribute_Name => Name_First)))));
380 end if;
382 Set_Paren_Count (Newsub, 1);
384 -- For the first subscript, we just copy that subscript value
386 if No (Subscr) then
387 Subscr := Newsub;
389 -- Otherwise, we must multiply what we already have by the current
390 -- stride and then add in the new value to the evolving subscript.
392 else
393 Subscr :=
394 Make_Op_Add (Loc,
395 Left_Opnd =>
396 Make_Op_Multiply (Loc,
397 Left_Opnd => Subscr,
398 Right_Opnd =>
399 Make_Attribute_Reference (Loc,
400 Attribute_Name => Name_Range_Length,
401 Prefix => New_Occurrence_Of (Styp, Loc))),
402 Right_Opnd => Newsub);
403 end if;
405 -- Move to next subscript
407 Next_Index (Indx);
408 Next (Oldsub);
409 end loop;
410 end Compute_Linear_Subscript;
412 -------------------------------
413 -- Compute_Number_Components --
414 -------------------------------
416 function Compute_Number_Components
417 (N : Node_Id;
418 Typ : Entity_Id) return Node_Id
420 Loc : constant Source_Ptr := Sloc (N);
421 Len_Expr : Node_Id;
423 begin
424 Len_Expr :=
425 Make_Attribute_Reference (Loc,
426 Attribute_Name => Name_Length,
427 Prefix => New_Occurrence_Of (Typ, Loc),
428 Expressions => New_List (Make_Integer_Literal (Loc, 1)));
430 for J in 2 .. Number_Dimensions (Typ) loop
431 Len_Expr :=
432 Make_Op_Multiply (Loc,
433 Left_Opnd => Len_Expr,
434 Right_Opnd =>
435 Make_Attribute_Reference (Loc,
436 Attribute_Name => Name_Length,
437 Prefix => New_Occurrence_Of (Typ, Loc),
438 Expressions => New_List (Make_Integer_Literal (Loc, J))));
439 end loop;
441 return Len_Expr;
442 end Compute_Number_Components;
444 -------------------------
445 -- Convert_To_PAT_Type --
446 -------------------------
448 -- The PAT is always obtained from the actual subtype
450 procedure Convert_To_PAT_Type (Aexp : Node_Id) is
451 Act_ST : Entity_Id;
453 begin
454 Convert_To_Actual_Subtype (Aexp);
455 Act_ST := Underlying_Type (Etype (Aexp));
456 Create_Packed_Array_Impl_Type (Act_ST);
458 -- Just replace the etype with the packed array type. This works because
459 -- the expression will not be further analyzed, and Gigi considers the
460 -- two types equivalent in any case.
462 -- This is not strictly the case ??? If the reference is an actual in
463 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
464 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
465 -- array reference, reanalysis can produce spurious type errors when the
466 -- PAT type is replaced again with the original type of the array. Same
467 -- for the case of a dereference. Ditto for function calls: expansion
468 -- may introduce additional actuals which will trigger errors if call is
469 -- reanalyzed. The following is correct and minimal, but the handling of
470 -- more complex packed expressions in actuals is confused. Probably the
471 -- problem only remains for actuals in calls.
473 Set_Etype (Aexp, Packed_Array_Impl_Type (Act_ST));
475 if Is_Entity_Name (Aexp)
476 or else
477 (Nkind (Aexp) = N_Indexed_Component
478 and then Is_Entity_Name (Prefix (Aexp)))
479 or else Nkind (Aexp) in N_Explicit_Dereference | N_Function_Call
480 then
481 Set_Analyzed (Aexp);
482 end if;
483 end Convert_To_PAT_Type;
485 -----------------------------------
486 -- Create_Packed_Array_Impl_Type --
487 -----------------------------------
489 procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id) is
490 Loc : constant Source_Ptr := Sloc (Typ);
491 Ctyp : constant Entity_Id := Component_Type (Typ);
492 Csize : constant Uint := Component_Size (Typ);
494 Ancest : Entity_Id;
495 PB_Type : Entity_Id;
496 PASize : Uint := No_Uint;
497 Decl : Node_Id;
498 PAT : Entity_Id;
499 Len_Expr : Node_Id;
500 Len_Bits : Uint;
501 Bits_U1 : Node_Id;
502 PAT_High : Node_Id;
503 Btyp : Entity_Id;
504 Lit : Node_Id;
506 procedure Install_PAT;
507 -- This procedure is called with Decl set to the declaration for the
508 -- packed array type. It creates the type and installs it as required.
510 procedure Set_PB_Type;
511 -- Set PB_Type to [Rev_]Packed_Bytes{1,2,4} as required by the alignment
512 -- and the scalar storage order requirements (see documentation in the
513 -- spec of this package).
515 -----------------
516 -- Install_PAT --
517 -----------------
519 procedure Install_PAT is
520 Pushed_Scope : Boolean := False;
522 begin
523 -- We do not want to put the declaration we have created in the tree
524 -- since it is often hard, and sometimes impossible to find a proper
525 -- place for it (the impossible case arises for a packed array type
526 -- with bounds depending on the discriminant, a declaration cannot
527 -- be put inside the record, and the reference to the discriminant
528 -- cannot be outside the record).
530 -- The solution is to analyze the declaration while temporarily
531 -- attached to the tree at an appropriate point, and then we install
532 -- the resulting type as an Itype in the packed array type field of
533 -- the original type, so that no explicit declaration is required.
535 -- Note: the packed type is created in the scope of its parent type.
536 -- There are at least some cases where the current scope is deeper,
537 -- and so when this is the case, we temporarily reset the scope
538 -- for the definition. This is clearly safe, since the first use
539 -- of the packed array type will be the implicit reference from
540 -- the corresponding unpacked type when it is elaborated.
542 if Is_Itype (Typ) then
543 Set_Parent (Decl, Associated_Node_For_Itype (Typ));
544 else
545 Set_Parent (Decl, Declaration_Node (Typ));
546 end if;
548 if Scope (Typ) /= Current_Scope then
549 Push_Scope (Scope (Typ));
550 Pushed_Scope := True;
551 end if;
553 Set_Is_Itype (PAT, True);
554 Set_Is_Packed_Array_Impl_Type (PAT, True);
555 Set_Packed_Array_Impl_Type (Typ, PAT);
556 Analyze (Decl, Suppress => All_Checks);
558 if Pushed_Scope then
559 Pop_Scope;
560 end if;
562 -- Set Esize and RM_Size to the actual size of the packed object
563 -- Do not reset RM_Size if already set, as happens in the case of
564 -- a modular type.
566 if Present (PASize) then
567 if not Known_Esize (PAT) then
568 Set_Esize (PAT, PASize);
569 end if;
571 if not Known_RM_Size (PAT) then
572 Set_RM_Size (PAT, PASize);
573 end if;
574 end if;
576 Adjust_Esize_Alignment (PAT);
578 -- Set remaining fields of packed array type
580 Reinit_Alignment (PAT);
581 Set_Parent (PAT, Empty);
582 Set_Associated_Node_For_Itype (PAT, Typ);
583 Set_Original_Array_Type (PAT, Typ);
585 -- Propagate representation aspects
587 Set_Is_Atomic (PAT, Is_Atomic (Typ));
588 Set_Is_Independent (PAT, Is_Independent (Typ));
589 Set_Is_Volatile (PAT, Is_Volatile (Typ));
590 Set_Is_Volatile_Full_Access (PAT, Is_Volatile_Full_Access (Typ));
591 Set_Treat_As_Volatile (PAT, Treat_As_Volatile (Typ));
593 -- We definitely do not want to delay freezing for packed array
594 -- types. This is of particular importance for the itypes that are
595 -- generated for record components depending on discriminants where
596 -- there is no place to put the freeze node.
598 Set_Has_Delayed_Freeze (PAT, False);
599 Set_Has_Delayed_Freeze (Etype (PAT), False);
601 -- If we did allocate a freeze node, then clear out the reference
602 -- since it is obsolete (should we delete the freeze node???)
604 Set_Freeze_Node (PAT, Empty);
605 Set_Freeze_Node (Etype (PAT), Empty);
606 end Install_PAT;
608 -----------------
609 -- Set_PB_Type --
610 -----------------
612 procedure Set_PB_Type is
613 begin
614 -- If the user has specified an explicit alignment for the
615 -- type or component, take it into account.
617 if Csize <= 2 or else Csize = 4 or else Csize mod 2 /= 0
618 or else (Known_Alignment (Typ) and then Alignment (Typ) = 1)
619 or else Component_Alignment (Typ) = Calign_Storage_Unit
620 then
621 if Reverse_Storage_Order (Typ) then
622 PB_Type := RTE (RE_Rev_Packed_Bytes1);
623 else
624 PB_Type := RTE (RE_Packed_Bytes1);
625 end if;
627 elsif Csize mod 4 /= 0
628 or else (Known_Alignment (Typ) and then Alignment (Typ) = 2)
629 then
630 if Reverse_Storage_Order (Typ) then
631 PB_Type := RTE (RE_Rev_Packed_Bytes2);
632 else
633 PB_Type := RTE (RE_Packed_Bytes2);
634 end if;
636 else
637 if Reverse_Storage_Order (Typ) then
638 PB_Type := RTE (RE_Rev_Packed_Bytes4);
639 else
640 PB_Type := RTE (RE_Packed_Bytes4);
641 end if;
642 end if;
644 -- The Rev_Packed_Bytes{1,2,4} types cannot be directly declared with
645 -- the reverse scalar storage order in System.Unsigned_Types because
646 -- their component type is aliased and the combination would then be
647 -- flagged as illegal by the compiler. Moreover changing the compiler
648 -- would not address the bootstrap path issue with earlier versions.
650 Set_Reverse_Storage_Order (PB_Type, Reverse_Storage_Order (Typ));
651 end Set_PB_Type;
653 -- Start of processing for Create_Packed_Array_Impl_Type
655 begin
656 -- If we already have a packed array type, nothing to do
658 if Present (Packed_Array_Impl_Type (Typ)) then
659 return;
660 end if;
662 -- If our immediate ancestor subtype is constrained, and it already
663 -- has a packed array type, then just share the same type, since the
664 -- bounds must be the same. If the ancestor is not an array type but
665 -- a private type, as can happen with multiple instantiations, create
666 -- a new packed type, to avoid privacy issues.
668 if Ekind (Typ) = E_Array_Subtype then
669 Ancest := Ancestor_Subtype (Typ);
671 if Present (Ancest)
672 and then Is_Array_Type (Ancest)
673 and then Is_Constrained (Ancest)
674 and then Present (Packed_Array_Impl_Type (Ancest))
675 then
676 Set_Packed_Array_Impl_Type (Typ, Packed_Array_Impl_Type (Ancest));
677 return;
678 end if;
679 end if;
681 -- We preset the result type size from the size of the original array
682 -- type, since this size clearly belongs to the packed array type. The
683 -- size of the conceptual unpacked type is always set to unknown.
685 if Known_RM_Size (Typ) then
686 PASize := RM_Size (Typ);
687 end if;
689 -- Case of an array where at least one index is of an enumeration
690 -- type with a non-standard representation, but the component size
691 -- is not appropriate for bit packing. This is the case where we
692 -- have Is_Packed set (we would never be in this unit otherwise),
693 -- but Is_Bit_Packed_Array is false.
695 -- Note that if the component size is appropriate for bit packing,
696 -- then the circuit for the computation of the subscript properly
697 -- deals with the non-standard enumeration type case by taking the
698 -- Pos anyway.
700 if not Is_Bit_Packed_Array (Typ) then
702 -- Here we build a declaration:
704 -- type tttP is array (index1, index2, ...) of component_type
706 -- where index1, index2, are the index types. These are the same
707 -- as the index types of the original array, except for the non-
708 -- standard representation enumeration type case, where we have
709 -- two subcases.
711 -- For the unconstrained array case, we use
713 -- Natural range <>
715 -- For the constrained case, we use
717 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
718 -- Enum_Type'Pos (Enum_Type'Last);
720 -- Note that tttP is created even if no index subtype is a non
721 -- standard enumeration, because we still need to remove padding
722 -- normally inserted for component alignment.
724 PAT :=
725 Make_Defining_Identifier (Loc,
726 Chars => New_External_Name (Chars (Typ), 'P'));
728 declare
729 Indexes : constant List_Id := New_List;
730 Indx : Node_Id;
731 Indx_Typ : Entity_Id;
732 Enum_Case : Boolean;
733 Typedef : Node_Id;
735 begin
736 Indx := First_Index (Typ);
738 while Present (Indx) loop
739 Indx_Typ := Etype (Indx);
741 Enum_Case := Is_Enumeration_Type (Indx_Typ)
742 and then Has_Non_Standard_Rep (Indx_Typ);
744 -- Unconstrained case
746 if not Is_Constrained (Typ) then
747 if Enum_Case then
748 Indx_Typ := Standard_Natural;
749 end if;
751 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
753 -- Constrained case
755 else
756 if not Enum_Case then
757 Append_To (Indexes, New_Occurrence_Of (Indx_Typ, Loc));
759 else
760 Append_To (Indexes,
761 Make_Subtype_Indication (Loc,
762 Subtype_Mark =>
763 New_Occurrence_Of (Standard_Natural, Loc),
764 Constraint =>
765 Make_Range_Constraint (Loc,
766 Range_Expression =>
767 Make_Range (Loc,
768 Low_Bound =>
769 Make_Attribute_Reference (Loc,
770 Prefix =>
771 New_Occurrence_Of (Indx_Typ, Loc),
772 Attribute_Name => Name_Pos,
773 Expressions => New_List (
774 Make_Attribute_Reference (Loc,
775 Prefix =>
776 New_Occurrence_Of (Indx_Typ, Loc),
777 Attribute_Name => Name_First))),
779 High_Bound =>
780 Make_Attribute_Reference (Loc,
781 Prefix =>
782 New_Occurrence_Of (Indx_Typ, Loc),
783 Attribute_Name => Name_Pos,
784 Expressions => New_List (
785 Make_Attribute_Reference (Loc,
786 Prefix =>
787 New_Occurrence_Of (Indx_Typ, Loc),
788 Attribute_Name => Name_Last)))))));
790 end if;
791 end if;
793 Next_Index (Indx);
794 end loop;
796 if not Is_Constrained (Typ) then
797 Typedef :=
798 Make_Unconstrained_Array_Definition (Loc,
799 Subtype_Marks => Indexes,
800 Component_Definition =>
801 Make_Component_Definition (Loc,
802 Aliased_Present => False,
803 Subtype_Indication =>
804 New_Occurrence_Of (Ctyp, Loc)));
806 else
807 Typedef :=
808 Make_Constrained_Array_Definition (Loc,
809 Discrete_Subtype_Definitions => Indexes,
810 Component_Definition =>
811 Make_Component_Definition (Loc,
812 Aliased_Present => False,
813 Subtype_Indication =>
814 New_Occurrence_Of (Ctyp, Loc)));
815 end if;
817 Decl :=
818 Make_Full_Type_Declaration (Loc,
819 Defining_Identifier => PAT,
820 Type_Definition => Typedef);
821 end;
823 Install_PAT;
825 -- Propagate the reverse storage order flag to the base type
827 Set_Reverse_Storage_Order (Etype (PAT), Reverse_Storage_Order (Typ));
828 return;
830 -- Case of bit-packing required for unconstrained array. We create
831 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
833 elsif not Is_Constrained (Typ) then
835 -- When generating standard DWARF (i.e when GNAT_Encodings is not
836 -- DWARF_GNAT_Encodings_All), the ___XP suffix will be stripped
837 -- by the back-end but generate it anyway to ease compiler debugging.
838 -- This will help to distinguish implementation types from original
839 -- packed arrays.
841 PAT :=
842 Make_Defining_Identifier (Loc,
843 Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
845 Set_PB_Type;
847 Decl :=
848 Make_Subtype_Declaration (Loc,
849 Defining_Identifier => PAT,
850 Subtype_Indication => New_Occurrence_Of (PB_Type, Loc));
852 Install_PAT;
853 return;
855 -- Remaining code is for the case of bit-packing for constrained array
857 -- The name of the packed array subtype is
859 -- ttt___XPsss
861 -- where sss is the component size in bits and ttt is the name of
862 -- the parent packed type.
864 else
865 PAT :=
866 Make_Defining_Identifier (Loc,
867 Chars => Make_Packed_Array_Impl_Type_Name (Typ, Csize));
869 -- Build an expression for the length of the array in bits.
870 -- This is the product of the length of each of the dimensions
872 Len_Expr := Compute_Number_Components (Typ, Typ);
874 -- Temporarily attach the length expression to the tree and analyze
875 -- and resolve it, so that we can test its value. We assume that the
876 -- total length fits in type Integer. This expression may involve
877 -- discriminants, so we treat it as a default/per-object expression.
879 Set_Parent (Len_Expr, Typ);
880 Preanalyze_Spec_Expression (Len_Expr, Standard_Long_Long_Integer);
882 -- Use a modular type if possible. We can do this if we have
883 -- static bounds, and the length is small enough, and the length
884 -- is not zero. We exclude the zero length case because the size
885 -- of things is always at least one, and the zero length object
886 -- would have an anomalous size.
888 if Compile_Time_Known_Value (Len_Expr) then
889 Len_Bits := Expr_Value (Len_Expr) * Csize;
891 -- Check for size known to be too large
893 if Len_Bits >
894 Uint_2 ** (Standard_Integer_Size - 1) * System_Storage_Unit
895 then
896 if System_Storage_Unit = 8 then
897 Error_Msg_N
898 ("packed array size cannot exceed " &
899 "Integer''Last bytes", Typ);
900 else
901 Error_Msg_N
902 ("packed array size cannot exceed " &
903 "Integer''Last storage units", Typ);
904 end if;
906 -- Reset length to arbitrary not too high value to continue
908 Len_Expr := Make_Integer_Literal (Loc, 65535);
909 Analyze_And_Resolve (Len_Expr, Standard_Long_Long_Integer);
910 end if;
912 -- We normally consider small enough to mean no larger than the
913 -- value of System_Max_Binary_Modulus_Power, checking that in the
914 -- case of values longer than word size, we have long shifts.
916 if Len_Bits > 0
917 and then
918 (Len_Bits <= System_Word_Size
919 or else (Len_Bits <= System_Max_Binary_Modulus_Power
920 and then Support_Long_Shifts_On_Target))
921 then
922 -- We can use the modular type, it has the form:
924 -- subtype tttPn is btyp
925 -- range 0 .. 2 ** ((Typ'Length (1)
926 -- * ... * Typ'Length (n)) * Csize) - 1;
928 -- The bounds are statically known, and btyp is one of the
929 -- unsigned types, depending on the length.
931 Btyp := Small_Integer_Type_For (Len_Bits, Uns => True);
932 Lit := Make_Integer_Literal (Loc, 2 ** Len_Bits - 1);
933 Set_Print_In_Hex (Lit);
935 Decl :=
936 Make_Subtype_Declaration (Loc,
937 Defining_Identifier => PAT,
938 Subtype_Indication =>
939 Make_Subtype_Indication (Loc,
940 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
942 Constraint =>
943 Make_Range_Constraint (Loc,
944 Range_Expression =>
945 Make_Range (Loc,
946 Low_Bound =>
947 Make_Integer_Literal (Loc, 0),
948 High_Bound => Lit))));
950 if Present (PASize) then
951 PASize := Len_Bits;
952 end if;
954 Install_PAT;
956 -- Propagate a given alignment to the modular type. This can
957 -- cause it to be under-aligned, but that's OK.
959 if Present (Alignment_Clause (Typ)) then
960 Set_Alignment (PAT, Alignment (Typ));
961 end if;
963 return;
964 end if;
965 end if;
967 -- Could not use a modular type, for all other cases, we build
968 -- a packed array subtype:
970 -- subtype tttPn is
971 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
973 -- Bits is the length of the array in bits
975 Set_PB_Type;
977 Bits_U1 :=
978 Make_Op_Add (Loc,
979 Left_Opnd =>
980 Make_Op_Multiply (Loc,
981 Left_Opnd =>
982 Make_Integer_Literal (Loc, Csize),
983 Right_Opnd => Len_Expr),
985 Right_Opnd =>
986 Make_Integer_Literal (Loc, 7));
988 Set_Paren_Count (Bits_U1, 1);
990 PAT_High :=
991 Make_Op_Subtract (Loc,
992 Left_Opnd =>
993 Make_Op_Divide (Loc,
994 Left_Opnd => Bits_U1,
995 Right_Opnd => Make_Integer_Literal (Loc, 8)),
996 Right_Opnd => Make_Integer_Literal (Loc, 1));
998 Decl :=
999 Make_Subtype_Declaration (Loc,
1000 Defining_Identifier => PAT,
1001 Subtype_Indication =>
1002 Make_Subtype_Indication (Loc,
1003 Subtype_Mark => New_Occurrence_Of (PB_Type, Loc),
1004 Constraint =>
1005 Make_Index_Or_Discriminant_Constraint (Loc,
1006 Constraints => New_List (
1007 Make_Range (Loc,
1008 Low_Bound =>
1009 Make_Integer_Literal (Loc, 0),
1010 High_Bound =>
1011 Convert_To (Standard_Integer, PAT_High))))));
1013 Install_PAT;
1015 -- Currently the code in this unit requires that packed arrays
1016 -- represented by non-modular arrays of bytes be on a byte
1017 -- boundary for bit sizes handled by System.Pack_nn units.
1018 -- That's because these units assume the array being accessed
1019 -- starts on a byte boundary.
1021 if Get_Id (UI_To_Int (Csize)) /= RE_Null then
1022 Set_Must_Be_On_Byte_Boundary (Typ);
1023 end if;
1024 end if;
1025 end Create_Packed_Array_Impl_Type;
1027 -----------------------------------
1028 -- Expand_Bit_Packed_Element_Set --
1029 -----------------------------------
1031 procedure Expand_Bit_Packed_Element_Set (N : Node_Id) is
1032 Loc : constant Source_Ptr := Sloc (N);
1033 Lhs : constant Node_Id := Name (N);
1035 Ass_OK : constant Boolean := Assignment_OK (Lhs);
1036 -- Used to preserve assignment OK status when assignment is rewritten
1038 Expr : Node_Id;
1040 Rhs : Node_Id := Expression (N);
1041 -- Initially Rhs is the right hand side value, it will be replaced
1042 -- later by an appropriate unchecked conversion for the assignment.
1044 Obj : Node_Id;
1045 Atyp : Entity_Id;
1046 PAT : Entity_Id;
1047 Ctyp : Entity_Id;
1048 Csiz : Int;
1049 Cmask : Uint;
1051 Shift : Node_Id;
1052 -- The expression for the shift value that is required
1054 Shift_Used : Boolean := False;
1055 -- Set True if Shift has been used in the generated code at least once,
1056 -- so that it must be duplicated if used again.
1058 New_Lhs : Node_Id;
1059 New_Rhs : Node_Id;
1061 Rhs_Val_Known : Boolean;
1062 Rhs_Val : Uint;
1063 -- If the value of the right hand side as an integer constant is
1064 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1065 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1066 -- the Rhs_Val is undefined.
1068 function Get_Shift return Node_Id;
1069 -- Function used to get the value of Shift, making sure that it
1070 -- gets duplicated if the function is called more than once.
1072 ---------------
1073 -- Get_Shift --
1074 ---------------
1076 function Get_Shift return Node_Id is
1077 begin
1078 -- If we used the shift value already, then duplicate it. We
1079 -- set a temporary parent in case actions have to be inserted.
1081 if Shift_Used then
1082 Set_Parent (Shift, N);
1083 return Duplicate_Subexpr_No_Checks (Shift);
1085 -- If first time, use Shift unchanged, and set flag for first use
1087 else
1088 Shift_Used := True;
1089 return Shift;
1090 end if;
1091 end Get_Shift;
1093 -- Start of processing for Expand_Bit_Packed_Element_Set
1095 begin
1096 pragma Assert (Is_Bit_Packed_Array (Etype (Prefix (Lhs))));
1098 Obj := Relocate_Node (Prefix (Lhs));
1099 Convert_To_Actual_Subtype (Obj);
1100 Atyp := Etype (Obj);
1101 PAT := Packed_Array_Impl_Type (Atyp);
1102 Ctyp := Component_Type (Atyp);
1103 Csiz := UI_To_Int (Component_Size (Atyp));
1105 -- We remove side effects, in case the rhs modifies the lhs, because we
1106 -- are about to transform the rhs into an expression that first READS
1107 -- the lhs, so we can do the necessary shifting and masking. Example:
1108 -- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1109 -- will be lost.
1111 Remove_Side_Effects (Rhs);
1113 -- We convert the right hand side to the proper subtype to ensure
1114 -- that an appropriate range check is made (since the normal range
1115 -- check from assignment will be lost in the transformations). This
1116 -- conversion is analyzed immediately so that subsequent processing
1117 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1119 -- If the right-hand side is a string literal, create a temporary for
1120 -- it, constant-folding is not ready to wrap the bit representation
1121 -- of a string literal.
1123 if Nkind (Rhs) = N_String_Literal then
1124 declare
1125 Decl : Node_Id;
1126 begin
1127 Decl :=
1128 Make_Object_Declaration (Loc,
1129 Defining_Identifier => Make_Temporary (Loc, 'T', Rhs),
1130 Object_Definition => New_Occurrence_Of (Ctyp, Loc),
1131 Expression => New_Copy_Tree (Rhs));
1133 Insert_Actions (N, New_List (Decl));
1134 Rhs := New_Occurrence_Of (Defining_Identifier (Decl), Loc);
1135 end;
1136 end if;
1138 Rhs := Convert_To (Ctyp, Rhs);
1139 Set_Parent (Rhs, N);
1141 -- If we are building the initialization procedure for a packed array,
1142 -- and Initialize_Scalars is enabled, each component assignment is an
1143 -- out-of-range value by design. Compile this value without checks,
1144 -- because a call to the array init_proc must not raise an exception.
1146 -- Condition is not consistent with description above, Within_Init_Proc
1147 -- is True also when we are building the IP for a record or protected
1148 -- type that has a packed array component???
1150 if Within_Init_Proc
1151 and then Initialize_Scalars
1152 then
1153 Analyze_And_Resolve (Rhs, Ctyp, Suppress => All_Checks);
1154 else
1155 Analyze_And_Resolve (Rhs, Ctyp);
1156 end if;
1158 -- If any of the indices has a nonstandard representation, introduce
1159 -- the proper Rep_To_Pos conversion, which in turn will generate index
1160 -- checks when needed. We do this on a copy of the index expression,
1161 -- rather that rewriting the LHS altogether.
1163 Expr := First (Expressions (Lhs));
1164 while Present (Expr) loop
1165 declare
1166 Expr_Typ : constant Entity_Id := Etype (Expr);
1167 Loc : constant Source_Ptr := Sloc (Expr);
1169 Expr_Copy : Node_Id;
1171 begin
1172 if Is_Enumeration_Type (Expr_Typ)
1173 and then Has_Non_Standard_Rep (Expr_Typ)
1174 then
1175 Expr_Copy :=
1176 Make_Attribute_Reference (Loc,
1177 Prefix => New_Occurrence_Of (Expr_Typ, Loc),
1178 Attribute_Name => Name_Pos,
1179 Expressions => New_List (Relocate_Node (Expr)));
1180 Set_Parent (Expr_Copy, N);
1181 Analyze_And_Resolve (Expr_Copy, Standard_Natural);
1182 end if;
1183 end;
1185 Next (Expr);
1186 end loop;
1188 -- Case of component size 1,2,4 or any component size for the modular
1189 -- case. These are the cases for which we can inline the code.
1191 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1192 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1193 then
1194 Setup_Inline_Packed_Array_Reference (Lhs, Atyp, Obj, Cmask, Shift);
1196 -- The statement to be generated is:
1198 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1200 -- or in the case of a freestanding Reverse_Storage_Order object,
1202 -- Obj := Swap (atyp!((Swap (Obj) and Mask1)
1203 -- or (shift_left (rhs, Shift))))
1205 -- where Mask1 is obtained by shifting Cmask left Shift bits
1206 -- and then complementing the result.
1208 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1210 -- the "or ..." is omitted if rhs is constant and all 0 bits
1212 -- rhs is converted to the appropriate type
1214 -- The result is converted back to the array type, since
1215 -- otherwise we lose knowledge of the packed nature.
1217 -- Determine if right side is all 0 bits or all 1 bits
1219 if Compile_Time_Known_Value (Rhs) then
1220 Rhs_Val := Expr_Rep_Value (Rhs);
1221 Rhs_Val_Known := True;
1223 -- The following test catches the case of an unchecked conversion of
1224 -- an integer literal. This results from optimizing aggregates of
1225 -- packed types.
1227 elsif Nkind (Rhs) = N_Unchecked_Type_Conversion
1228 and then Compile_Time_Known_Value (Expression (Rhs))
1229 then
1230 Rhs_Val := Expr_Rep_Value (Expression (Rhs));
1231 Rhs_Val_Known := True;
1233 else
1234 Rhs_Val := No_Uint;
1235 Rhs_Val_Known := False;
1236 end if;
1238 -- Some special checks for the case where the right hand value is
1239 -- known at compile time. Basically we have to take care of the
1240 -- implicit conversion to the subtype of the component object.
1242 if Rhs_Val_Known then
1244 -- If we have a biased component type then we must manually do the
1245 -- biasing, since we are taking responsibility in this case for
1246 -- constructing the exact bit pattern to be used.
1248 if Has_Biased_Representation (Ctyp) then
1249 Rhs_Val := Rhs_Val - Expr_Rep_Value (Type_Low_Bound (Ctyp));
1250 end if;
1252 -- For a negative value, we manually convert the two's complement
1253 -- value to a corresponding unsigned value, so that the proper
1254 -- field width is maintained. If we did not do this, we would
1255 -- get too many leading sign bits later on.
1257 if Rhs_Val < 0 then
1258 Rhs_Val := 2 ** UI_From_Int (Csiz) + Rhs_Val;
1259 end if;
1260 end if;
1262 -- Now create copies removing side effects. Note that in some complex
1263 -- cases, this may cause the fact that we have already set a packed
1264 -- array type on Obj to get lost. So we save the type of Obj, and
1265 -- make sure it is reset properly.
1267 declare
1268 T : constant Entity_Id := Etype (Obj);
1269 begin
1270 New_Lhs := Duplicate_Subexpr (Obj, Name_Req => True);
1271 New_Rhs := Duplicate_Subexpr_No_Checks (Obj);
1272 Set_Etype (Obj, T);
1273 Set_Etype (New_Lhs, T);
1274 Set_Etype (New_Rhs, T);
1275 end;
1277 -- First we deal with the "and"
1279 if not Rhs_Val_Known or else Rhs_Val /= Cmask then
1280 declare
1281 Mask1 : Node_Id;
1282 Lit : Node_Id;
1284 begin
1285 if Compile_Time_Known_Value (Shift) then
1286 Mask1 :=
1287 Make_Integer_Literal (Loc,
1288 Modulus (Etype (Obj)) - 1 -
1289 (Cmask * (2 ** Expr_Value (Get_Shift))));
1290 Set_Print_In_Hex (Mask1);
1292 else
1293 Lit := Make_Integer_Literal (Loc, Cmask);
1294 Set_Print_In_Hex (Lit);
1295 Mask1 :=
1296 Make_Op_Not (Loc,
1297 Right_Opnd => Make_Shift_Left (Lit, Get_Shift));
1298 end if;
1300 New_Rhs :=
1301 Make_Op_And (Loc,
1302 Left_Opnd => New_Rhs,
1303 Right_Opnd => Mask1);
1304 end;
1305 end if;
1307 -- Then deal with the "or"
1309 if not Rhs_Val_Known or else Rhs_Val /= 0 then
1310 declare
1311 Or_Rhs : Node_Id;
1313 procedure Fixup_Rhs;
1314 -- Adjust Rhs by bias if biased representation for components
1315 -- or remove extraneous high order sign bits if signed.
1317 procedure Fixup_Rhs is
1318 Etyp : constant Entity_Id := Etype (Rhs);
1320 begin
1321 -- For biased case, do the required biasing by simply
1322 -- converting to the biased subtype (the conversion
1323 -- will generate the required bias).
1325 if Has_Biased_Representation (Ctyp) then
1326 Rhs := Convert_To (Ctyp, Rhs);
1328 -- For a signed integer type that is not biased, generate
1329 -- a conversion to unsigned to strip high order sign bits.
1331 elsif Is_Signed_Integer_Type (Ctyp) then
1332 Rhs := Unchecked_Convert_To (RTE (Bits_Id (Csiz)), Rhs);
1333 end if;
1335 -- Set Etype, since it can be referenced before the node is
1336 -- completely analyzed.
1338 Set_Etype (Rhs, Etyp);
1340 -- We now need to do an unchecked conversion of the
1341 -- result to the target type, but it is important that
1342 -- this conversion be a right justified conversion and
1343 -- not a left justified conversion.
1345 Rhs := RJ_Unchecked_Convert_To (Etype (Obj), Rhs);
1346 end Fixup_Rhs;
1348 begin
1349 if Rhs_Val_Known
1350 and then Compile_Time_Known_Value (Get_Shift)
1351 then
1352 Or_Rhs :=
1353 Make_Integer_Literal (Loc,
1354 Rhs_Val * (2 ** Expr_Value (Get_Shift)));
1355 Set_Print_In_Hex (Or_Rhs);
1357 else
1358 -- We have to convert the right hand side to Etype (Obj).
1359 -- A special case arises if what we have now is a Val
1360 -- attribute reference whose expression type is Etype (Obj).
1361 -- This happens for assignments of fields from the same
1362 -- array. In this case we get the required right hand side
1363 -- by simply removing the inner attribute reference.
1365 if Nkind (Rhs) = N_Attribute_Reference
1366 and then Attribute_Name (Rhs) = Name_Val
1367 and then Etype (First (Expressions (Rhs))) = Etype (Obj)
1368 then
1369 Rhs := Relocate_Node (First (Expressions (Rhs)));
1370 Fixup_Rhs;
1372 -- If the value of the right hand side is a known integer
1373 -- value, then just replace it by an untyped constant,
1374 -- which will be properly retyped when we analyze and
1375 -- resolve the expression.
1377 elsif Rhs_Val_Known then
1379 -- Note that Rhs_Val has already been normalized to
1380 -- be an unsigned value with the proper number of bits.
1382 Rhs := Make_Integer_Literal (Loc, Rhs_Val);
1384 -- Otherwise we need an unchecked conversion
1386 else
1387 Fixup_Rhs;
1388 end if;
1390 Or_Rhs := Make_Shift_Left (Rhs, Get_Shift);
1391 end if;
1393 if Nkind (New_Rhs) = N_Op_And then
1394 Set_Paren_Count (New_Rhs, 1);
1395 Set_Etype (New_Rhs, Etype (Left_Opnd (New_Rhs)));
1396 end if;
1398 New_Rhs :=
1399 Make_Op_Or (Loc,
1400 Left_Opnd => New_Rhs,
1401 Right_Opnd => Or_Rhs);
1402 end;
1403 end if;
1405 -- Now do the rewrite
1407 Rewrite (N,
1408 Make_Assignment_Statement (Loc,
1409 Name => New_Lhs,
1410 Expression =>
1411 Unchecked_Convert_To (Etype (New_Lhs), New_Rhs)));
1412 Set_Assignment_OK (Name (N), Ass_OK);
1414 -- All other component sizes for non-modular case
1416 else
1417 -- We generate
1419 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1421 -- where Subscr is the computed linear subscript
1423 declare
1424 Bits_nn : constant Entity_Id := RTE (Bits_Id (Csiz));
1425 Set_nn : Entity_Id;
1426 Subscr : Node_Id;
1427 Atyp : Entity_Id;
1428 Rev_SSO : Node_Id;
1430 begin
1431 if No (Bits_nn) then
1433 -- Error, most likely High_Integrity_Mode restriction
1435 return;
1436 end if;
1438 -- Acquire proper Set entity. We use the aligned or unaligned
1439 -- case as appropriate.
1441 if Known_Aligned_Enough (Obj, Csiz) then
1442 Set_nn := RTE (Set_Id (Csiz));
1443 else
1444 Set_nn := RTE (SetU_Id (Csiz));
1445 end if;
1447 -- Now generate the set reference
1449 Obj := Relocate_Node (Prefix (Lhs));
1450 Convert_To_Actual_Subtype (Obj);
1451 Atyp := Etype (Obj);
1452 Compute_Linear_Subscript (Atyp, Lhs, Subscr);
1454 -- Set indication of whether the packed array has reverse SSO
1456 Rev_SSO :=
1457 New_Occurrence_Of
1458 (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1460 -- Below we must make the assumption that Obj is
1461 -- at least byte aligned, since otherwise its address
1462 -- cannot be taken. The assumption holds since the
1463 -- only arrays that can be misaligned are small packed
1464 -- arrays which are implemented as a modular type, and
1465 -- that is not the case here.
1467 Rewrite (N,
1468 Make_Procedure_Call_Statement (Loc,
1469 Name => New_Occurrence_Of (Set_nn, Loc),
1470 Parameter_Associations => New_List (
1471 Make_Attribute_Reference (Loc,
1472 Prefix => Obj,
1473 Attribute_Name => Name_Address),
1474 Subscr,
1475 Unchecked_Convert_To (Bits_nn, Convert_To (Ctyp, Rhs)),
1476 Rev_SSO)));
1478 end;
1479 end if;
1481 Analyze (N, Suppress => All_Checks);
1482 end Expand_Bit_Packed_Element_Set;
1484 -------------------------------------
1485 -- Expand_Packed_Address_Reference --
1486 -------------------------------------
1488 procedure Expand_Packed_Address_Reference (N : Node_Id) is
1489 Loc : constant Source_Ptr := Sloc (N);
1490 Base : Node_Id;
1491 Offset : Node_Id;
1493 begin
1494 -- We build an expression that has the form
1496 -- outer_object'Address
1497 -- + (linear-subscript * component_size for each array reference
1498 -- + field'Bit_Position for each record field
1499 -- + ...
1500 -- + ...) / Storage_Unit;
1502 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1504 Rewrite (N,
1505 Unchecked_Convert_To (RTE (RE_Address),
1506 Make_Op_Add (Loc,
1507 Left_Opnd =>
1508 Unchecked_Convert_To (RTE (RE_Integer_Address),
1509 Make_Attribute_Reference (Loc,
1510 Prefix => Base,
1511 Attribute_Name => Name_Address)),
1513 Right_Opnd =>
1514 Unchecked_Convert_To (RTE (RE_Integer_Address),
1515 Make_Op_Divide (Loc,
1516 Left_Opnd => Offset,
1517 Right_Opnd =>
1518 Make_Integer_Literal (Loc, System_Storage_Unit))))));
1520 Analyze_And_Resolve (N, RTE (RE_Address));
1521 end Expand_Packed_Address_Reference;
1523 ---------------------------------
1524 -- Expand_Packed_Bit_Reference --
1525 ---------------------------------
1527 procedure Expand_Packed_Bit_Reference (N : Node_Id) is
1528 Loc : constant Source_Ptr := Sloc (N);
1529 Base : Node_Id;
1530 Offset : Node_Id;
1532 begin
1533 -- We build an expression that has the form
1535 -- (linear-subscript * component_size for each array reference
1536 -- + field'Bit_Position for each record field
1537 -- + ...
1538 -- + ...) mod Storage_Unit;
1540 Get_Base_And_Bit_Offset (Prefix (N), Base, Offset);
1542 Rewrite (N,
1543 Unchecked_Convert_To (Standard_Natural,
1544 Make_Op_Mod (Loc,
1545 Left_Opnd => Offset,
1546 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
1548 Analyze_And_Resolve (N, Standard_Natural);
1549 end Expand_Packed_Bit_Reference;
1551 ------------------------------------
1552 -- Expand_Packed_Boolean_Operator --
1553 ------------------------------------
1555 -- This routine expands "a op b" for the packed cases
1557 procedure Expand_Packed_Boolean_Operator (N : Node_Id) is
1558 Loc : constant Source_Ptr := Sloc (N);
1559 Typ : constant Entity_Id := Etype (N);
1560 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1561 R : Node_Id := Relocate_Node (Right_Opnd (N));
1563 Ltyp : Entity_Id;
1564 Rtyp : Entity_Id;
1565 PAT : Entity_Id;
1567 begin
1568 Convert_To_Actual_Subtype (L);
1569 Convert_To_Actual_Subtype (R);
1571 Ensure_Defined (Etype (L), N);
1572 Ensure_Defined (Etype (R), N);
1574 Apply_Length_Check (R, Etype (L));
1576 Ltyp := Etype (L);
1577 Rtyp := Etype (R);
1579 -- Deal with silly case of XOR where the subcomponent has a range
1580 -- True .. True where an exception must be raised.
1582 if Nkind (N) = N_Op_Xor then
1583 R := Duplicate_Subexpr (R);
1584 Silly_Boolean_Array_Xor_Test (N, R, Rtyp);
1585 end if;
1587 -- Now that silliness is taken care of, get packed array type
1589 Convert_To_PAT_Type (L);
1590 Convert_To_PAT_Type (R);
1592 PAT := Etype (L);
1594 -- For the modular case, we expand a op b into
1596 -- rtyp!(pat!(a) op pat!(b))
1598 -- where rtyp is the Etype of the left operand. Note that we do not
1599 -- convert to the base type, since this would be unconstrained, and
1600 -- hence not have a corresponding packed array type set.
1602 -- Note that both operands must be modular for this code to be used
1604 if Is_Modular_Integer_Type (PAT)
1605 and then
1606 Is_Modular_Integer_Type (Etype (R))
1607 then
1608 declare
1609 P : Node_Id;
1611 begin
1612 if Nkind (N) = N_Op_And then
1613 P := Make_Op_And (Loc, L, R);
1615 elsif Nkind (N) = N_Op_Or then
1616 P := Make_Op_Or (Loc, L, R);
1618 else -- Nkind (N) = N_Op_Xor
1619 P := Make_Op_Xor (Loc, L, R);
1620 end if;
1622 Rewrite (N, Unchecked_Convert_To (Ltyp, P));
1623 end;
1625 -- For the array case, we insert the actions
1627 -- Result : Ltype;
1629 -- System.Bit_Ops.Bit_And/Or/Xor
1630 -- (Left'Address,
1631 -- Ltype'Length * Ltype'Component_Size;
1632 -- Right'Address,
1633 -- Rtype'Length * Rtype'Component_Size
1634 -- Result'Address);
1636 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1637 -- the second argument and fourth arguments are the lengths of the
1638 -- operands in bits. Then we replace the expression by a reference
1639 -- to Result.
1641 -- Note that if we are mixing a modular and array operand, everything
1642 -- works fine, since we ensure that the modular representation has the
1643 -- same physical layout as the array representation (that's what the
1644 -- left justified modular stuff in the big-endian case is about).
1646 else
1647 declare
1648 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
1649 E_Id : RE_Id;
1651 begin
1652 if Nkind (N) = N_Op_And then
1653 E_Id := RE_Bit_And;
1655 elsif Nkind (N) = N_Op_Or then
1656 E_Id := RE_Bit_Or;
1658 else -- Nkind (N) = N_Op_Xor
1659 E_Id := RE_Bit_Xor;
1660 end if;
1662 Insert_Actions (N, New_List (
1664 Make_Object_Declaration (Loc,
1665 Defining_Identifier => Result_Ent,
1666 Object_Definition => New_Occurrence_Of (Ltyp, Loc)),
1668 Make_Procedure_Call_Statement (Loc,
1669 Name => New_Occurrence_Of (RTE (E_Id), Loc),
1670 Parameter_Associations => New_List (
1672 Make_Byte_Aligned_Attribute_Reference (Loc,
1673 Prefix => L,
1674 Attribute_Name => Name_Address),
1676 Make_Op_Multiply (Loc,
1677 Left_Opnd =>
1678 Make_Attribute_Reference (Loc,
1679 Prefix =>
1680 New_Occurrence_Of
1681 (Etype (First_Index (Ltyp)), Loc),
1682 Attribute_Name => Name_Range_Length),
1684 Right_Opnd =>
1685 Make_Integer_Literal (Loc, Component_Size (Ltyp))),
1687 Make_Byte_Aligned_Attribute_Reference (Loc,
1688 Prefix => R,
1689 Attribute_Name => Name_Address),
1691 Make_Op_Multiply (Loc,
1692 Left_Opnd =>
1693 Make_Attribute_Reference (Loc,
1694 Prefix =>
1695 New_Occurrence_Of
1696 (Etype (First_Index (Rtyp)), Loc),
1697 Attribute_Name => Name_Range_Length),
1699 Right_Opnd =>
1700 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
1702 Make_Byte_Aligned_Attribute_Reference (Loc,
1703 Prefix => New_Occurrence_Of (Result_Ent, Loc),
1704 Attribute_Name => Name_Address)))));
1706 Rewrite (N,
1707 New_Occurrence_Of (Result_Ent, Loc));
1708 end;
1709 end if;
1711 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
1712 end Expand_Packed_Boolean_Operator;
1714 -------------------------------------
1715 -- Expand_Packed_Element_Reference --
1716 -------------------------------------
1718 procedure Expand_Packed_Element_Reference (N : Node_Id) is
1719 Loc : constant Source_Ptr := Sloc (N);
1720 Obj : Node_Id;
1721 Atyp : Entity_Id;
1722 PAT : Entity_Id;
1723 Ctyp : Entity_Id;
1724 Csiz : Int;
1725 Shift : Node_Id;
1726 Cmask : Uint;
1727 Lit : Node_Id;
1728 Arg : Node_Id;
1730 begin
1731 -- If the node is an actual in a call, the prefix has not been fully
1732 -- expanded, to account for the additional expansion for in-out actuals
1733 -- (see expand_actuals for details). If the prefix itself is a packed
1734 -- reference as well, we have to recurse to complete the transformation
1735 -- of the prefix.
1737 if Nkind (Prefix (N)) = N_Indexed_Component
1738 and then not Analyzed (Prefix (N))
1739 and then Is_Bit_Packed_Array (Etype (Prefix (Prefix (N))))
1740 then
1741 Expand_Packed_Element_Reference (Prefix (N));
1742 end if;
1744 -- The prefix may be rewritten below as a conversion. If it is a source
1745 -- entity generate reference to it now, to prevent spurious warnings
1746 -- about unused entities.
1748 if Is_Entity_Name (Prefix (N))
1749 and then Comes_From_Source (Prefix (N))
1750 then
1751 Generate_Reference (Entity (Prefix (N)), Prefix (N), 'r');
1752 end if;
1754 -- If not bit packed, we have the enumeration case, which is easily
1755 -- dealt with (just adjust the subscripts of the indexed component)
1757 -- Note: this leaves the result as an indexed component, which is
1758 -- still a variable, so can be used in the assignment case, as is
1759 -- required in the enumeration case.
1761 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
1762 Setup_Enumeration_Packed_Array_Reference (N);
1763 return;
1764 end if;
1766 -- Remaining processing is for the bit-packed case
1768 Obj := Relocate_Node (Prefix (N));
1769 Convert_To_Actual_Subtype (Obj);
1770 Atyp := Etype (Obj);
1771 PAT := Packed_Array_Impl_Type (Atyp);
1772 Ctyp := Component_Type (Atyp);
1773 Csiz := UI_To_Int (Component_Size (Atyp));
1775 -- Case of component size 1,2,4 or any component size for the modular
1776 -- case. These are the cases for which we can inline the code.
1778 if Csiz = 1 or else Csiz = 2 or else Csiz = 4
1779 or else (Present (PAT) and then Is_Modular_Integer_Type (PAT))
1780 then
1781 Setup_Inline_Packed_Array_Reference (N, Atyp, Obj, Cmask, Shift);
1782 Lit := Make_Integer_Literal (Loc, Cmask);
1783 Set_Print_In_Hex (Lit);
1785 -- We generate a shift right to position the field, followed by a
1786 -- masking operation to extract the bit field, and we finally do an
1787 -- unchecked conversion to convert the result to the required target.
1789 -- Note that the unchecked conversion automatically deals with the
1790 -- bias if we are dealing with a biased representation. What will
1791 -- happen is that we temporarily generate the biased representation,
1792 -- but almost immediately that will be converted to the original
1793 -- unbiased component type, and the bias will disappear.
1795 Arg :=
1796 Make_Op_And (Loc,
1797 Left_Opnd => Make_Shift_Right (Obj, Shift),
1798 Right_Opnd => Lit);
1799 Set_Etype (Arg, Ctyp);
1801 -- Component extraction is performed on a native endianness scalar
1802 -- value: if Atyp has reverse storage order, then it has been byte
1803 -- swapped, and if the component being extracted is itself of a
1804 -- composite type with reverse storage order, then we need to swap
1805 -- it back to its expected endianness after extraction.
1807 if Reverse_Storage_Order (Atyp)
1808 and then (Is_Record_Type (Ctyp) or else Is_Array_Type (Ctyp))
1809 and then Reverse_Storage_Order (Ctyp)
1810 then
1811 Arg := Revert_Storage_Order (Arg);
1812 end if;
1814 -- We needed to analyze this before we do the unchecked convert
1815 -- below, but we need it temporarily attached to the tree for
1816 -- this analysis (hence the temporary Set_Parent call).
1818 Set_Parent (Arg, Parent (N));
1819 Analyze_And_Resolve (Arg);
1821 Rewrite (N, RJ_Unchecked_Convert_To (Ctyp, Arg));
1823 -- All other component sizes for non-modular case
1825 else
1826 -- We generate
1828 -- Component_Type!(Get_nn (Arr'address, Subscr))
1830 -- where Subscr is the computed linear subscript
1832 declare
1833 Get_nn : Entity_Id;
1834 Subscr : Node_Id;
1835 Rev_SSO : constant Node_Id :=
1836 New_Occurrence_Of
1837 (Boolean_Literals (Reverse_Storage_Order (Atyp)), Loc);
1839 begin
1840 -- Acquire proper Get entity. We use the aligned or unaligned
1841 -- case as appropriate.
1843 if Known_Aligned_Enough (Obj, Csiz) then
1844 Get_nn := RTE (Get_Id (Csiz));
1845 else
1846 Get_nn := RTE (GetU_Id (Csiz));
1847 end if;
1849 -- Now generate the get reference
1851 Compute_Linear_Subscript (Atyp, N, Subscr);
1853 -- Below we make the assumption that Obj is at least byte
1854 -- aligned, since otherwise its address cannot be taken.
1855 -- The assumption holds since the only arrays that can be
1856 -- misaligned are small packed arrays which are implemented
1857 -- as a modular type, and that is not the case here.
1859 Rewrite (N,
1860 Unchecked_Convert_To (Ctyp,
1861 Make_Function_Call (Loc,
1862 Name => New_Occurrence_Of (Get_nn, Loc),
1863 Parameter_Associations => New_List (
1864 Make_Attribute_Reference (Loc,
1865 Prefix => Obj,
1866 Attribute_Name => Name_Address),
1867 Subscr,
1868 Rev_SSO))));
1869 end;
1870 end if;
1872 Analyze_And_Resolve (N, Ctyp, Suppress => All_Checks);
1873 end Expand_Packed_Element_Reference;
1875 ----------------------
1876 -- Expand_Packed_Eq --
1877 ----------------------
1879 -- Handles expansion of "=" on packed array types
1881 procedure Expand_Packed_Eq (N : Node_Id) is
1882 Loc : constant Source_Ptr := Sloc (N);
1883 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
1884 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
1886 LLexpr : Node_Id;
1887 RLexpr : Node_Id;
1889 Ltyp : Entity_Id;
1890 Rtyp : Entity_Id;
1891 PAT : Entity_Id;
1893 begin
1894 Convert_To_Actual_Subtype (L);
1895 Convert_To_Actual_Subtype (R);
1896 Ltyp := Underlying_Type (Etype (L));
1897 Rtyp := Underlying_Type (Etype (R));
1899 Convert_To_PAT_Type (L);
1900 Convert_To_PAT_Type (R);
1901 PAT := Etype (L);
1903 LLexpr :=
1904 Make_Op_Multiply (Loc,
1905 Left_Opnd => Compute_Number_Components (N, Ltyp),
1906 Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Ltyp)));
1908 RLexpr :=
1909 Make_Op_Multiply (Loc,
1910 Left_Opnd => Compute_Number_Components (N, Rtyp),
1911 Right_Opnd => Make_Integer_Literal (Loc, Component_Size (Rtyp)));
1913 -- For the modular case, we transform the comparison to:
1915 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
1917 -- where PAT is the packed array type. This works fine, since in the
1918 -- modular case we guarantee that the unused bits are always zeroes.
1919 -- We do have to compare the lengths because we could be comparing
1920 -- two different subtypes of the same base type. We can only do this
1921 -- if the PATs on both sides are the same.
1923 if Is_Modular_Integer_Type (PAT) and then PAT = Etype (R) then
1924 Rewrite (N,
1925 Make_And_Then (Loc,
1926 Left_Opnd =>
1927 Make_Op_Eq (Loc,
1928 Left_Opnd => LLexpr,
1929 Right_Opnd => RLexpr),
1931 Right_Opnd =>
1932 Make_Op_Eq (Loc,
1933 Left_Opnd => L,
1934 Right_Opnd => R)));
1936 -- For the non-modular case, we call a runtime routine
1938 -- System.Bit_Ops.Bit_Eq
1939 -- (L'Address, L_Length, R'Address, R_Length)
1941 -- where PAT is the packed array type, and the lengths are the lengths
1942 -- in bits of the original packed arrays. This routine takes care of
1943 -- not comparing the unused bits in the last byte.
1945 else
1946 Rewrite (N,
1947 Make_Function_Call (Loc,
1948 Name => New_Occurrence_Of (RTE (RE_Bit_Eq), Loc),
1949 Parameter_Associations => New_List (
1950 Make_Byte_Aligned_Attribute_Reference (Loc,
1951 Prefix => L,
1952 Attribute_Name => Name_Address),
1954 LLexpr,
1956 Make_Byte_Aligned_Attribute_Reference (Loc,
1957 Prefix => R,
1958 Attribute_Name => Name_Address),
1960 RLexpr)));
1961 end if;
1963 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
1964 end Expand_Packed_Eq;
1966 -----------------------
1967 -- Expand_Packed_Not --
1968 -----------------------
1970 -- Handles expansion of "not" on packed array types
1972 procedure Expand_Packed_Not (N : Node_Id) is
1973 Loc : constant Source_Ptr := Sloc (N);
1974 Typ : constant Entity_Id := Etype (N);
1975 Opnd : constant Node_Id := Relocate_Node (Right_Opnd (N));
1977 Rtyp : Entity_Id;
1978 PAT : Entity_Id;
1979 Lit : Node_Id;
1980 Size : Unat;
1982 begin
1983 Convert_To_Actual_Subtype (Opnd);
1984 Rtyp := Etype (Opnd);
1986 -- Deal with silly False..False and True..True subtype case
1988 Silly_Boolean_Array_Not_Test (N, Rtyp);
1990 -- Now that the silliness is taken care of, get packed array type
1992 Convert_To_PAT_Type (Opnd);
1993 PAT := Etype (Opnd);
1995 -- For the case where the packed array type is a modular type, "not A"
1996 -- expands simply into:
1998 -- Rtyp!(PAT!(A) xor Mask)
2000 -- where PAT is the packed array type, Mask is a mask of all 1 bits of
2001 -- length equal to the size of this packed type, and Rtyp is the actual
2002 -- actual subtype of the operand. Preserve old behavior in case size is
2003 -- not set.
2005 if Known_RM_Size (PAT) then
2006 Size := RM_Size (PAT);
2007 else
2008 Size := Uint_0;
2009 end if;
2010 Lit := Make_Integer_Literal (Loc, 2 ** Size - 1);
2011 Set_Print_In_Hex (Lit);
2013 if not Is_Array_Type (PAT) then
2014 Rewrite (N,
2015 Unchecked_Convert_To (Rtyp,
2016 Make_Op_Xor (Loc,
2017 Left_Opnd => Opnd,
2018 Right_Opnd => Lit)));
2020 -- For the array case, we insert the actions
2022 -- Result : Typ;
2024 -- System.Bit_Ops.Bit_Not
2025 -- (Opnd'Address,
2026 -- Typ'Length * Typ'Component_Size,
2027 -- Result'Address);
2029 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2030 -- is the length of the operand in bits. We then replace the expression
2031 -- with a reference to Result.
2033 else
2034 declare
2035 Result_Ent : constant Entity_Id := Make_Temporary (Loc, 'T');
2037 begin
2038 Insert_Actions (N, New_List (
2039 Make_Object_Declaration (Loc,
2040 Defining_Identifier => Result_Ent,
2041 Object_Definition => New_Occurrence_Of (Rtyp, Loc)),
2043 Make_Procedure_Call_Statement (Loc,
2044 Name => New_Occurrence_Of (RTE (RE_Bit_Not), Loc),
2045 Parameter_Associations => New_List (
2046 Make_Byte_Aligned_Attribute_Reference (Loc,
2047 Prefix => Opnd,
2048 Attribute_Name => Name_Address),
2050 Make_Op_Multiply (Loc,
2051 Left_Opnd =>
2052 Make_Attribute_Reference (Loc,
2053 Prefix =>
2054 New_Occurrence_Of
2055 (Etype (First_Index (Rtyp)), Loc),
2056 Attribute_Name => Name_Range_Length),
2058 Right_Opnd =>
2059 Make_Integer_Literal (Loc, Component_Size (Rtyp))),
2061 Make_Byte_Aligned_Attribute_Reference (Loc,
2062 Prefix => New_Occurrence_Of (Result_Ent, Loc),
2063 Attribute_Name => Name_Address)))));
2065 Rewrite (N, New_Occurrence_Of (Result_Ent, Loc));
2066 end;
2067 end if;
2069 Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
2070 end Expand_Packed_Not;
2072 -----------------------------
2073 -- Get_Base_And_Bit_Offset --
2074 -----------------------------
2076 procedure Get_Base_And_Bit_Offset
2077 (N : Node_Id;
2078 Base : out Node_Id;
2079 Offset : out Node_Id)
2081 Loc : Source_Ptr;
2082 Term : Node_Id;
2083 Atyp : Entity_Id;
2084 Subscr : Node_Id;
2086 begin
2087 Base := N;
2088 Offset := Empty;
2090 -- We build up an expression serially that has the form
2092 -- linear-subscript * component_size for each array reference
2093 -- + field'Bit_Position for each record field
2094 -- + ...
2096 loop
2097 Loc := Sloc (Base);
2099 if Nkind (Base) = N_Indexed_Component then
2100 Convert_To_Actual_Subtype (Prefix (Base));
2101 Atyp := Etype (Prefix (Base));
2102 Compute_Linear_Subscript (Atyp, Base, Subscr);
2104 Term :=
2105 Make_Op_Multiply (Loc,
2106 Left_Opnd => Subscr,
2107 Right_Opnd =>
2108 Make_Attribute_Reference (Loc,
2109 Prefix => New_Occurrence_Of (Atyp, Loc),
2110 Attribute_Name => Name_Component_Size));
2112 elsif Nkind (Base) = N_Selected_Component then
2113 Term :=
2114 Make_Attribute_Reference (Loc,
2115 Prefix => Selector_Name (Base),
2116 Attribute_Name => Name_Bit_Position);
2118 else
2119 return;
2120 end if;
2122 if No (Offset) then
2123 Offset := Term;
2125 else
2126 Offset :=
2127 Make_Op_Add (Loc,
2128 Left_Opnd => Offset,
2129 Right_Opnd => Term);
2130 end if;
2132 Base := Prefix (Base);
2133 end loop;
2134 end Get_Base_And_Bit_Offset;
2136 -------------------------------------
2137 -- Involves_Packed_Array_Reference --
2138 -------------------------------------
2140 function Involves_Packed_Array_Reference (N : Node_Id) return Boolean is
2141 begin
2142 if Nkind (N) = N_Indexed_Component
2143 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
2144 then
2145 return True;
2147 elsif Nkind (N) = N_Selected_Component then
2148 return Involves_Packed_Array_Reference (Prefix (N));
2150 else
2151 return False;
2152 end if;
2153 end Involves_Packed_Array_Reference;
2155 --------------------------
2156 -- Known_Aligned_Enough --
2157 --------------------------
2159 function Known_Aligned_Enough (Obj : Node_Id; Csiz : Nat) return Boolean is
2160 Typ : constant Entity_Id := Etype (Obj);
2162 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean;
2163 -- If the component is in a record that contains previous packed
2164 -- components, consider it unaligned because the back-end might
2165 -- choose to pack the rest of the record. Lead to less efficient code,
2166 -- but safer vis-a-vis of back-end choices.
2168 --------------------------------
2169 -- In_Partially_Packed_Record --
2170 --------------------------------
2172 function In_Partially_Packed_Record (Comp : Entity_Id) return Boolean is
2173 Rec_Type : constant Entity_Id := Scope (Comp);
2174 Prev_Comp : Entity_Id;
2176 begin
2177 Prev_Comp := First_Entity (Rec_Type);
2178 while Present (Prev_Comp) loop
2179 if Is_Packed (Etype (Prev_Comp)) then
2180 return True;
2182 elsif Prev_Comp = Comp then
2183 return False;
2184 end if;
2186 Next_Entity (Prev_Comp);
2187 end loop;
2189 return False;
2190 end In_Partially_Packed_Record;
2192 -- Start of processing for Known_Aligned_Enough
2194 begin
2195 -- Odd bit sizes don't need alignment anyway
2197 if Csiz mod 2 = 1 then
2198 return True;
2200 -- If we have a specified alignment, see if it is sufficient, if not
2201 -- then we can't possibly be aligned enough in any case.
2203 elsif Known_Alignment (Etype (Obj)) then
2204 -- Alignment required is 4 if size is a multiple of 4, and
2205 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2207 if Alignment (Etype (Obj)) < 4 - (Csiz mod 4) then
2208 return False;
2209 end if;
2210 end if;
2212 -- OK, alignment should be sufficient, if object is aligned
2214 -- If object is strictly aligned, then it is definitely aligned
2216 if Strict_Alignment (Typ) then
2217 return True;
2219 -- Case of subscripted array reference
2221 elsif Nkind (Obj) = N_Indexed_Component then
2223 -- If we have a pointer to an array, then this is definitely
2224 -- aligned, because pointers always point to aligned versions.
2226 if Is_Access_Type (Etype (Prefix (Obj))) then
2227 return True;
2229 -- Otherwise, go look at the prefix
2231 else
2232 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2233 end if;
2235 -- Case of record field
2237 elsif Nkind (Obj) = N_Selected_Component then
2239 -- What is significant here is whether the record type is packed
2241 if Is_Record_Type (Etype (Prefix (Obj)))
2242 and then Is_Packed (Etype (Prefix (Obj)))
2243 then
2244 return False;
2246 -- Or the component has a component clause which might cause
2247 -- the component to become unaligned (we can't tell if the
2248 -- backend is doing alignment computations).
2250 elsif Present (Component_Clause (Entity (Selector_Name (Obj)))) then
2251 return False;
2253 elsif In_Partially_Packed_Record (Entity (Selector_Name (Obj))) then
2254 return False;
2256 -- In all other cases, go look at prefix
2258 else
2259 return Known_Aligned_Enough (Prefix (Obj), Csiz);
2260 end if;
2262 elsif Nkind (Obj) = N_Type_Conversion then
2263 return Known_Aligned_Enough (Expression (Obj), Csiz);
2265 -- For a formal parameter, it is safer to assume that it is not
2266 -- aligned, because the formal may be unconstrained while the actual
2267 -- is constrained. In this situation, a small constrained packed
2268 -- array, represented in modular form, may be unaligned.
2270 elsif Is_Entity_Name (Obj) then
2271 return not Is_Formal (Entity (Obj));
2272 else
2274 -- If none of the above, must be aligned
2275 return True;
2276 end if;
2277 end Known_Aligned_Enough;
2279 ---------------------
2280 -- Make_Shift_Left --
2281 ---------------------
2283 function Make_Shift_Left (N : Node_Id; S : Node_Id) return Node_Id is
2284 Nod : Node_Id;
2286 begin
2287 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2288 return N;
2289 else
2290 Nod :=
2291 Make_Op_Shift_Left (Sloc (N),
2292 Left_Opnd => N,
2293 Right_Opnd => S);
2294 Set_Shift_Count_OK (Nod, True);
2295 return Nod;
2296 end if;
2297 end Make_Shift_Left;
2299 ----------------------
2300 -- Make_Shift_Right --
2301 ----------------------
2303 function Make_Shift_Right (N : Node_Id; S : Node_Id) return Node_Id is
2304 Nod : Node_Id;
2306 begin
2307 if Compile_Time_Known_Value (S) and then Expr_Value (S) = 0 then
2308 return N;
2309 else
2310 Nod :=
2311 Make_Op_Shift_Right (Sloc (N),
2312 Left_Opnd => N,
2313 Right_Opnd => S);
2314 Set_Shift_Count_OK (Nod, True);
2315 return Nod;
2316 end if;
2317 end Make_Shift_Right;
2319 -----------------------------
2320 -- RJ_Unchecked_Convert_To --
2321 -----------------------------
2323 function RJ_Unchecked_Convert_To
2324 (Typ : Entity_Id;
2325 Expr : Node_Id) return Node_Id
2327 Source_Typ : constant Entity_Id := Etype (Expr);
2328 Target_Typ : constant Entity_Id := Typ;
2330 Src : Node_Id := Expr;
2332 Source_Siz : Nat;
2333 Target_Siz : Nat;
2335 begin
2336 Source_Siz := UI_To_Int (RM_Size (Source_Typ));
2337 Target_Siz := UI_To_Int (RM_Size (Target_Typ));
2339 -- For a little-endian target type stored byte-swapped on a
2340 -- big-endian machine, do not mask to Target_Siz bits.
2342 if Bytes_Big_Endian
2343 and then (Is_Record_Type (Target_Typ)
2344 or else
2345 Is_Array_Type (Target_Typ))
2346 and then Reverse_Storage_Order (Target_Typ)
2347 then
2348 Source_Siz := Target_Siz;
2349 end if;
2351 -- First step, if the source type is not a discrete type, then we first
2352 -- convert to a modular type of the source length, since otherwise, on
2353 -- a big-endian machine, we get left-justification. We do it for little-
2354 -- endian machines as well, because there might be junk bits that are
2355 -- not cleared if the type is not numeric. This can be done only if the
2356 -- source siz is different from 0 (i.e. known), otherwise we must trust
2357 -- the type declarations (case of non-discrete components).
2359 if Source_Siz /= 0
2360 and then Source_Siz /= Target_Siz
2361 and then not Is_Discrete_Type (Source_Typ)
2362 then
2363 Src := Unchecked_Convert_To (RTE (Bits_Id (Source_Siz)), Src);
2364 end if;
2366 -- In the big endian case, if the lengths of the two types differ, then
2367 -- we must worry about possible left justification in the conversion,
2368 -- and avoiding that is what this is all about.
2370 if Bytes_Big_Endian and then Source_Siz /= Target_Siz then
2372 -- Next step. If the target is not a discrete type, then we first
2373 -- convert to a modular type of the target length, since otherwise,
2374 -- on a big-endian machine, we get left-justification.
2376 if not Is_Discrete_Type (Target_Typ) then
2377 Src := Unchecked_Convert_To (RTE (Bits_Id (Target_Siz)), Src);
2378 end if;
2379 end if;
2381 -- And now we can do the final conversion to the target type
2383 return Unchecked_Convert_To (Target_Typ, Src);
2384 end RJ_Unchecked_Convert_To;
2386 ----------------------------------------------
2387 -- Setup_Enumeration_Packed_Array_Reference --
2388 ----------------------------------------------
2390 -- All we have to do here is to find the subscripts that correspond to the
2391 -- index positions that have non-standard enumeration types and insert a
2392 -- Pos attribute to get the proper subscript value.
2394 -- Finally the prefix must be uncheck-converted to the corresponding packed
2395 -- array type.
2397 -- Note that the component type is unchanged, so we do not need to fiddle
2398 -- with the types (Gigi always automatically takes the packed array type if
2399 -- it is set, as it will be in this case).
2401 procedure Setup_Enumeration_Packed_Array_Reference (N : Node_Id) is
2402 Pfx : constant Node_Id := Prefix (N);
2403 Typ : constant Entity_Id := Etype (N);
2404 Exprs : constant List_Id := Expressions (N);
2405 Expr : Node_Id;
2407 begin
2408 -- If the array is unconstrained, then we replace the array reference
2409 -- with its actual subtype. This actual subtype will have a packed array
2410 -- type with appropriate bounds.
2412 if not Is_Constrained (Packed_Array_Impl_Type (Etype (Pfx))) then
2413 Convert_To_Actual_Subtype (Pfx);
2414 end if;
2416 Expr := First (Exprs);
2417 while Present (Expr) loop
2418 declare
2419 Loc : constant Source_Ptr := Sloc (Expr);
2420 Expr_Typ : constant Entity_Id := Etype (Expr);
2422 begin
2423 if Is_Enumeration_Type (Expr_Typ)
2424 and then Has_Non_Standard_Rep (Expr_Typ)
2425 then
2426 Rewrite (Expr,
2427 Make_Attribute_Reference (Loc,
2428 Prefix => New_Occurrence_Of (Expr_Typ, Loc),
2429 Attribute_Name => Name_Pos,
2430 Expressions => New_List (Relocate_Node (Expr))));
2431 Analyze_And_Resolve (Expr, Standard_Natural);
2432 end if;
2433 end;
2435 Next (Expr);
2436 end loop;
2438 Rewrite (N,
2439 Make_Indexed_Component (Sloc (N),
2440 Prefix =>
2441 Unchecked_Convert_To (Packed_Array_Impl_Type (Etype (Pfx)), Pfx),
2442 Expressions => Exprs));
2444 Analyze_And_Resolve (N, Typ);
2445 end Setup_Enumeration_Packed_Array_Reference;
2447 -----------------------------------------
2448 -- Setup_Inline_Packed_Array_Reference --
2449 -----------------------------------------
2451 procedure Setup_Inline_Packed_Array_Reference
2452 (N : Node_Id;
2453 Atyp : Entity_Id;
2454 Obj : in out Node_Id;
2455 Cmask : out Uint;
2456 Shift : out Node_Id)
2458 Loc : constant Source_Ptr := Sloc (N);
2459 PAT : Entity_Id;
2460 Otyp : Entity_Id;
2461 Csiz : Uint;
2462 Osiz : Uint;
2464 begin
2465 Csiz := Component_Size (Atyp);
2467 Convert_To_PAT_Type (Obj);
2468 PAT := Etype (Obj);
2470 Cmask := 2 ** Csiz - 1;
2472 if Is_Array_Type (PAT) then
2473 Otyp := Component_Type (PAT);
2474 Osiz := Component_Size (PAT);
2476 else
2477 Otyp := PAT;
2479 -- In the case where the PAT is a modular type, we want the actual
2480 -- size in bits of the modular value we use. This is neither the
2481 -- Object_Size nor the Value_Size, either of which may have been
2482 -- reset to strange values, but rather the minimum size. Note that
2483 -- since this is a modular type with full range, the issue of
2484 -- biased representation does not arise.
2486 Osiz := UI_From_Int (Minimum_Size (Otyp));
2487 end if;
2489 Compute_Linear_Subscript (Atyp, N, Shift);
2491 -- If the component size is not 1, then the subscript must be multiplied
2492 -- by the component size to get the shift count.
2494 if Csiz /= 1 then
2495 Shift :=
2496 Make_Op_Multiply (Loc,
2497 Left_Opnd => Make_Integer_Literal (Loc, Csiz),
2498 Right_Opnd => Shift);
2499 end if;
2501 -- If we have the array case, then this shift count must be broken down
2502 -- into a byte subscript, and a shift within the byte.
2504 if Is_Array_Type (PAT) then
2506 declare
2507 New_Shift : Node_Id;
2509 begin
2510 -- We must analyze shift, since we will duplicate it
2512 Set_Parent (Shift, N);
2513 Analyze_And_Resolve
2514 (Shift, Standard_Integer, Suppress => All_Checks);
2516 -- The shift count within the word is
2517 -- shift mod Osiz
2519 New_Shift :=
2520 Make_Op_Mod (Loc,
2521 Left_Opnd => Duplicate_Subexpr (Shift),
2522 Right_Opnd => Make_Integer_Literal (Loc, Osiz));
2524 -- The subscript to be used on the PAT array is
2525 -- shift / Osiz
2527 Obj :=
2528 Make_Indexed_Component (Loc,
2529 Prefix => Obj,
2530 Expressions => New_List (
2531 Make_Op_Divide (Loc,
2532 Left_Opnd => Duplicate_Subexpr (Shift),
2533 Right_Opnd => Make_Integer_Literal (Loc, Osiz))));
2535 Shift := New_Shift;
2536 end;
2538 -- For the modular integer case, the object to be manipulated is the
2539 -- entire array, so Obj is unchanged. Note that we will reset its type
2540 -- to PAT before returning to the caller.
2542 else
2543 null;
2544 end if;
2546 -- The one remaining step is to modify the shift count for the
2547 -- big-endian case. Consider the following example in a byte:
2549 -- xxxxxxxx bits of byte
2550 -- vvvvvvvv bits of value
2551 -- 33221100 little-endian numbering
2552 -- 00112233 big-endian numbering
2554 -- Here we have the case of 2-bit fields
2556 -- For the little-endian case, we already have the proper shift count
2557 -- set, e.g. for element 2, the shift count is 2*2 = 4.
2559 -- For the big endian case, we have to adjust the shift count, computing
2560 -- it as (N - F) - Shift, where N is the number of bits in an element of
2561 -- the array used to implement the packed array, F is the number of bits
2562 -- in a source array element, and Shift is the count so far computed.
2564 -- We also have to adjust if the storage order is reversed
2566 if Bytes_Big_Endian xor Reverse_Storage_Order (Base_Type (Atyp)) then
2567 Shift :=
2568 Make_Op_Subtract (Loc,
2569 Left_Opnd => Make_Integer_Literal (Loc, Osiz - Csiz),
2570 Right_Opnd => Shift);
2571 end if;
2573 Set_Parent (Shift, N);
2574 Set_Parent (Obj, N);
2575 Analyze_And_Resolve (Obj, Otyp, Suppress => All_Checks);
2576 Analyze_And_Resolve (Shift, Standard_Integer, Suppress => All_Checks);
2578 -- Make sure final type of object is the appropriate packed type
2580 Set_Etype (Obj, Otyp);
2582 end Setup_Inline_Packed_Array_Reference;
2584 end Exp_Pakd;