[PATCH 2/2] S/390: Implement "target" attribute.
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob0d82d36af9340ffc7bed8878aa8be9e81016bcf8
1 /* Loop invariant motion.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "tree-affine.h"
43 #include "tree-ssa-propagate.h"
44 #include "trans-mem.h"
45 #include "gimple-fold.h"
46 #include "tree-scalar-evolution.h"
48 /* TODO: Support for predicated code motion. I.e.
50 while (1)
52 if (cond)
54 a = inv;
55 something;
59 Where COND and INV are invariants, but evaluating INV may trap or be
60 invalid from some other reason if !COND. This may be transformed to
62 if (cond)
63 a = inv;
64 while (1)
66 if (cond)
67 something;
68 } */
70 /* The auxiliary data kept for each statement. */
72 struct lim_aux_data
74 struct loop *max_loop; /* The outermost loop in that the statement
75 is invariant. */
77 struct loop *tgt_loop; /* The loop out of that we want to move the
78 invariant. */
80 struct loop *always_executed_in;
81 /* The outermost loop for that we are sure
82 the statement is executed if the loop
83 is entered. */
85 unsigned cost; /* Cost of the computation performed by the
86 statement. */
88 vec<gimple *> depends; /* Vector of statements that must be also
89 hoisted out of the loop when this statement
90 is hoisted; i.e. those that define the
91 operands of the statement and are inside of
92 the MAX_LOOP loop. */
95 /* Maps statements to their lim_aux_data. */
97 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
99 /* Description of a memory reference location. */
101 struct mem_ref_loc
103 tree *ref; /* The reference itself. */
104 gimple *stmt; /* The statement in that it occurs. */
108 /* Description of a memory reference. */
110 struct im_mem_ref
112 unsigned id; /* ID assigned to the memory reference
113 (its index in memory_accesses.refs_list) */
114 hashval_t hash; /* Its hash value. */
116 /* The memory access itself and associated caching of alias-oracle
117 query meta-data. */
118 ao_ref mem;
120 bitmap stored; /* The set of loops in that this memory location
121 is stored to. */
122 vec<mem_ref_loc> accesses_in_loop;
123 /* The locations of the accesses. Vector
124 indexed by the loop number. */
126 /* The following sets are computed on demand. We keep both set and
127 its complement, so that we know whether the information was
128 already computed or not. */
129 bitmap_head indep_loop; /* The set of loops in that the memory
130 reference is independent, meaning:
131 If it is stored in the loop, this store
132 is independent on all other loads and
133 stores.
134 If it is only loaded, then it is independent
135 on all stores in the loop. */
136 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
139 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
140 to record (in)dependence against stores in the loop and its subloops, the
141 second to record (in)dependence against all references in the loop
142 and its subloops. */
143 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
145 /* Mem_ref hashtable helpers. */
147 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
149 typedef tree_node *compare_type;
150 static inline hashval_t hash (const im_mem_ref *);
151 static inline bool equal (const im_mem_ref *, const tree_node *);
154 /* A hash function for struct im_mem_ref object OBJ. */
156 inline hashval_t
157 mem_ref_hasher::hash (const im_mem_ref *mem)
159 return mem->hash;
162 /* An equality function for struct im_mem_ref object MEM1 with
163 memory reference OBJ2. */
165 inline bool
166 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
168 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
172 /* Description of memory accesses in loops. */
174 static struct
176 /* The hash table of memory references accessed in loops. */
177 hash_table<mem_ref_hasher> *refs;
179 /* The list of memory references. */
180 vec<im_mem_ref *> refs_list;
182 /* The set of memory references accessed in each loop. */
183 vec<bitmap_head> refs_in_loop;
185 /* The set of memory references stored in each loop. */
186 vec<bitmap_head> refs_stored_in_loop;
188 /* The set of memory references stored in each loop, including subloops . */
189 vec<bitmap_head> all_refs_stored_in_loop;
191 /* Cache for expanding memory addresses. */
192 hash_map<tree, name_expansion *> *ttae_cache;
193 } memory_accesses;
195 /* Obstack for the bitmaps in the above data structures. */
196 static bitmap_obstack lim_bitmap_obstack;
197 static obstack mem_ref_obstack;
199 static bool ref_indep_loop_p (struct loop *, im_mem_ref *);
201 /* Minimum cost of an expensive expression. */
202 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
204 /* The outermost loop for which execution of the header guarantees that the
205 block will be executed. */
206 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
207 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
209 /* ID of the shared unanalyzable mem. */
210 #define UNANALYZABLE_MEM_ID 0
212 /* Whether the reference was analyzable. */
213 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
215 static struct lim_aux_data *
216 init_lim_data (gimple *stmt)
218 lim_aux_data *p = XCNEW (struct lim_aux_data);
219 lim_aux_data_map->put (stmt, p);
221 return p;
224 static struct lim_aux_data *
225 get_lim_data (gimple *stmt)
227 lim_aux_data **p = lim_aux_data_map->get (stmt);
228 if (!p)
229 return NULL;
231 return *p;
234 /* Releases the memory occupied by DATA. */
236 static void
237 free_lim_aux_data (struct lim_aux_data *data)
239 data->depends.release ();
240 free (data);
243 static void
244 clear_lim_data (gimple *stmt)
246 lim_aux_data **p = lim_aux_data_map->get (stmt);
247 if (!p)
248 return;
250 free_lim_aux_data (*p);
251 *p = NULL;
255 /* The possibilities of statement movement. */
256 enum move_pos
258 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
259 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
260 become executed -- memory accesses, ... */
261 MOVE_POSSIBLE /* Unlimited movement. */
265 /* If it is possible to hoist the statement STMT unconditionally,
266 returns MOVE_POSSIBLE.
267 If it is possible to hoist the statement STMT, but we must avoid making
268 it executed if it would not be executed in the original program (e.g.
269 because it may trap), return MOVE_PRESERVE_EXECUTION.
270 Otherwise return MOVE_IMPOSSIBLE. */
272 enum move_pos
273 movement_possibility (gimple *stmt)
275 tree lhs;
276 enum move_pos ret = MOVE_POSSIBLE;
278 if (flag_unswitch_loops
279 && gimple_code (stmt) == GIMPLE_COND)
281 /* If we perform unswitching, force the operands of the invariant
282 condition to be moved out of the loop. */
283 return MOVE_POSSIBLE;
286 if (gimple_code (stmt) == GIMPLE_PHI
287 && gimple_phi_num_args (stmt) <= 2
288 && !virtual_operand_p (gimple_phi_result (stmt))
289 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
290 return MOVE_POSSIBLE;
292 if (gimple_get_lhs (stmt) == NULL_TREE)
293 return MOVE_IMPOSSIBLE;
295 if (gimple_vdef (stmt))
296 return MOVE_IMPOSSIBLE;
298 if (stmt_ends_bb_p (stmt)
299 || gimple_has_volatile_ops (stmt)
300 || gimple_has_side_effects (stmt)
301 || stmt_could_throw_p (stmt))
302 return MOVE_IMPOSSIBLE;
304 if (is_gimple_call (stmt))
306 /* While pure or const call is guaranteed to have no side effects, we
307 cannot move it arbitrarily. Consider code like
309 char *s = something ();
311 while (1)
313 if (s)
314 t = strlen (s);
315 else
316 t = 0;
319 Here the strlen call cannot be moved out of the loop, even though
320 s is invariant. In addition to possibly creating a call with
321 invalid arguments, moving out a function call that is not executed
322 may cause performance regressions in case the call is costly and
323 not executed at all. */
324 ret = MOVE_PRESERVE_EXECUTION;
325 lhs = gimple_call_lhs (stmt);
327 else if (is_gimple_assign (stmt))
328 lhs = gimple_assign_lhs (stmt);
329 else
330 return MOVE_IMPOSSIBLE;
332 if (TREE_CODE (lhs) == SSA_NAME
333 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
334 return MOVE_IMPOSSIBLE;
336 if (TREE_CODE (lhs) != SSA_NAME
337 || gimple_could_trap_p (stmt))
338 return MOVE_PRESERVE_EXECUTION;
340 /* Non local loads in a transaction cannot be hoisted out. Well,
341 unless the load happens on every path out of the loop, but we
342 don't take this into account yet. */
343 if (flag_tm
344 && gimple_in_transaction (stmt)
345 && gimple_assign_single_p (stmt))
347 tree rhs = gimple_assign_rhs1 (stmt);
348 if (DECL_P (rhs) && is_global_var (rhs))
350 if (dump_file)
352 fprintf (dump_file, "Cannot hoist conditional load of ");
353 print_generic_expr (dump_file, rhs, TDF_SLIM);
354 fprintf (dump_file, " because it is in a transaction.\n");
356 return MOVE_IMPOSSIBLE;
360 return ret;
363 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
364 loop to that we could move the expression using DEF if it did not have
365 other operands, i.e. the outermost loop enclosing LOOP in that the value
366 of DEF is invariant. */
368 static struct loop *
369 outermost_invariant_loop (tree def, struct loop *loop)
371 gimple *def_stmt;
372 basic_block def_bb;
373 struct loop *max_loop;
374 struct lim_aux_data *lim_data;
376 if (!def)
377 return superloop_at_depth (loop, 1);
379 if (TREE_CODE (def) != SSA_NAME)
381 gcc_assert (is_gimple_min_invariant (def));
382 return superloop_at_depth (loop, 1);
385 def_stmt = SSA_NAME_DEF_STMT (def);
386 def_bb = gimple_bb (def_stmt);
387 if (!def_bb)
388 return superloop_at_depth (loop, 1);
390 max_loop = find_common_loop (loop, def_bb->loop_father);
392 lim_data = get_lim_data (def_stmt);
393 if (lim_data != NULL && lim_data->max_loop != NULL)
394 max_loop = find_common_loop (max_loop,
395 loop_outer (lim_data->max_loop));
396 if (max_loop == loop)
397 return NULL;
398 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
400 return max_loop;
403 /* DATA is a structure containing information associated with a statement
404 inside LOOP. DEF is one of the operands of this statement.
406 Find the outermost loop enclosing LOOP in that value of DEF is invariant
407 and record this in DATA->max_loop field. If DEF itself is defined inside
408 this loop as well (i.e. we need to hoist it out of the loop if we want
409 to hoist the statement represented by DATA), record the statement in that
410 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
411 add the cost of the computation of DEF to the DATA->cost.
413 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
415 static bool
416 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
417 bool add_cost)
419 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
420 basic_block def_bb = gimple_bb (def_stmt);
421 struct loop *max_loop;
422 struct lim_aux_data *def_data;
424 if (!def_bb)
425 return true;
427 max_loop = outermost_invariant_loop (def, loop);
428 if (!max_loop)
429 return false;
431 if (flow_loop_nested_p (data->max_loop, max_loop))
432 data->max_loop = max_loop;
434 def_data = get_lim_data (def_stmt);
435 if (!def_data)
436 return true;
438 if (add_cost
439 /* Only add the cost if the statement defining DEF is inside LOOP,
440 i.e. if it is likely that by moving the invariants dependent
441 on it, we will be able to avoid creating a new register for
442 it (since it will be only used in these dependent invariants). */
443 && def_bb->loop_father == loop)
444 data->cost += def_data->cost;
446 data->depends.safe_push (def_stmt);
448 return true;
451 /* Returns an estimate for a cost of statement STMT. The values here
452 are just ad-hoc constants, similar to costs for inlining. */
454 static unsigned
455 stmt_cost (gimple *stmt)
457 /* Always try to create possibilities for unswitching. */
458 if (gimple_code (stmt) == GIMPLE_COND
459 || gimple_code (stmt) == GIMPLE_PHI)
460 return LIM_EXPENSIVE;
462 /* We should be hoisting calls if possible. */
463 if (is_gimple_call (stmt))
465 tree fndecl;
467 /* Unless the call is a builtin_constant_p; this always folds to a
468 constant, so moving it is useless. */
469 fndecl = gimple_call_fndecl (stmt);
470 if (fndecl
471 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
472 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
473 return 0;
475 return LIM_EXPENSIVE;
478 /* Hoisting memory references out should almost surely be a win. */
479 if (gimple_references_memory_p (stmt))
480 return LIM_EXPENSIVE;
482 if (gimple_code (stmt) != GIMPLE_ASSIGN)
483 return 1;
485 switch (gimple_assign_rhs_code (stmt))
487 case MULT_EXPR:
488 case WIDEN_MULT_EXPR:
489 case WIDEN_MULT_PLUS_EXPR:
490 case WIDEN_MULT_MINUS_EXPR:
491 case DOT_PROD_EXPR:
492 case FMA_EXPR:
493 case TRUNC_DIV_EXPR:
494 case CEIL_DIV_EXPR:
495 case FLOOR_DIV_EXPR:
496 case ROUND_DIV_EXPR:
497 case EXACT_DIV_EXPR:
498 case CEIL_MOD_EXPR:
499 case FLOOR_MOD_EXPR:
500 case ROUND_MOD_EXPR:
501 case TRUNC_MOD_EXPR:
502 case RDIV_EXPR:
503 /* Division and multiplication are usually expensive. */
504 return LIM_EXPENSIVE;
506 case LSHIFT_EXPR:
507 case RSHIFT_EXPR:
508 case WIDEN_LSHIFT_EXPR:
509 case LROTATE_EXPR:
510 case RROTATE_EXPR:
511 /* Shifts and rotates are usually expensive. */
512 return LIM_EXPENSIVE;
514 case CONSTRUCTOR:
515 /* Make vector construction cost proportional to the number
516 of elements. */
517 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
519 case SSA_NAME:
520 case PAREN_EXPR:
521 /* Whether or not something is wrapped inside a PAREN_EXPR
522 should not change move cost. Nor should an intermediate
523 unpropagated SSA name copy. */
524 return 0;
526 default:
527 return 1;
531 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
532 REF is independent. If REF is not independent in LOOP, NULL is returned
533 instead. */
535 static struct loop *
536 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
538 struct loop *aloop;
540 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
541 return NULL;
543 for (aloop = outer;
544 aloop != loop;
545 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
546 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
547 && ref_indep_loop_p (aloop, ref))
548 return aloop;
550 if (ref_indep_loop_p (loop, ref))
551 return loop;
552 else
553 return NULL;
556 /* If there is a simple load or store to a memory reference in STMT, returns
557 the location of the memory reference, and sets IS_STORE according to whether
558 it is a store or load. Otherwise, returns NULL. */
560 static tree *
561 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
563 tree *lhs, *rhs;
565 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
566 if (!gimple_assign_single_p (stmt))
567 return NULL;
569 lhs = gimple_assign_lhs_ptr (stmt);
570 rhs = gimple_assign_rhs1_ptr (stmt);
572 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
574 *is_store = false;
575 return rhs;
577 else if (gimple_vdef (stmt)
578 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
580 *is_store = true;
581 return lhs;
583 else
584 return NULL;
587 /* Returns the memory reference contained in STMT. */
589 static im_mem_ref *
590 mem_ref_in_stmt (gimple *stmt)
592 bool store;
593 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
594 hashval_t hash;
595 im_mem_ref *ref;
597 if (!mem)
598 return NULL;
599 gcc_assert (!store);
601 hash = iterative_hash_expr (*mem, 0);
602 ref = memory_accesses.refs->find_with_hash (*mem, hash);
604 gcc_assert (ref != NULL);
605 return ref;
608 /* From a controlling predicate in DOM determine the arguments from
609 the PHI node PHI that are chosen if the predicate evaluates to
610 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
611 they are non-NULL. Returns true if the arguments can be determined,
612 else return false. */
614 static bool
615 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
616 tree *true_arg_p, tree *false_arg_p)
618 edge te, fe;
619 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
620 &te, &fe))
621 return false;
623 if (true_arg_p)
624 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
625 if (false_arg_p)
626 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
628 return true;
631 /* Determine the outermost loop to that it is possible to hoist a statement
632 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
633 the outermost loop in that the value computed by STMT is invariant.
634 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
635 we preserve the fact whether STMT is executed. It also fills other related
636 information to LIM_DATA (STMT).
638 The function returns false if STMT cannot be hoisted outside of the loop it
639 is defined in, and true otherwise. */
641 static bool
642 determine_max_movement (gimple *stmt, bool must_preserve_exec)
644 basic_block bb = gimple_bb (stmt);
645 struct loop *loop = bb->loop_father;
646 struct loop *level;
647 struct lim_aux_data *lim_data = get_lim_data (stmt);
648 tree val;
649 ssa_op_iter iter;
651 if (must_preserve_exec)
652 level = ALWAYS_EXECUTED_IN (bb);
653 else
654 level = superloop_at_depth (loop, 1);
655 lim_data->max_loop = level;
657 if (gphi *phi = dyn_cast <gphi *> (stmt))
659 use_operand_p use_p;
660 unsigned min_cost = UINT_MAX;
661 unsigned total_cost = 0;
662 struct lim_aux_data *def_data;
664 /* We will end up promoting dependencies to be unconditionally
665 evaluated. For this reason the PHI cost (and thus the
666 cost we remove from the loop by doing the invariant motion)
667 is that of the cheapest PHI argument dependency chain. */
668 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
670 val = USE_FROM_PTR (use_p);
672 if (TREE_CODE (val) != SSA_NAME)
674 /* Assign const 1 to constants. */
675 min_cost = MIN (min_cost, 1);
676 total_cost += 1;
677 continue;
679 if (!add_dependency (val, lim_data, loop, false))
680 return false;
682 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
683 if (gimple_bb (def_stmt)
684 && gimple_bb (def_stmt)->loop_father == loop)
686 def_data = get_lim_data (def_stmt);
687 if (def_data)
689 min_cost = MIN (min_cost, def_data->cost);
690 total_cost += def_data->cost;
695 min_cost = MIN (min_cost, total_cost);
696 lim_data->cost += min_cost;
698 if (gimple_phi_num_args (phi) > 1)
700 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
701 gimple *cond;
702 if (gsi_end_p (gsi_last_bb (dom)))
703 return false;
704 cond = gsi_stmt (gsi_last_bb (dom));
705 if (gimple_code (cond) != GIMPLE_COND)
706 return false;
707 /* Verify that this is an extended form of a diamond and
708 the PHI arguments are completely controlled by the
709 predicate in DOM. */
710 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
711 return false;
713 /* Fold in dependencies and cost of the condition. */
714 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
716 if (!add_dependency (val, lim_data, loop, false))
717 return false;
718 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
719 if (def_data)
720 total_cost += def_data->cost;
723 /* We want to avoid unconditionally executing very expensive
724 operations. As costs for our dependencies cannot be
725 negative just claim we are not invariand for this case.
726 We also are not sure whether the control-flow inside the
727 loop will vanish. */
728 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
729 && !(min_cost != 0
730 && total_cost / min_cost <= 2))
731 return false;
733 /* Assume that the control-flow in the loop will vanish.
734 ??? We should verify this and not artificially increase
735 the cost if that is not the case. */
736 lim_data->cost += stmt_cost (stmt);
739 return true;
741 else
742 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
743 if (!add_dependency (val, lim_data, loop, true))
744 return false;
746 if (gimple_vuse (stmt))
748 im_mem_ref *ref = mem_ref_in_stmt (stmt);
750 if (ref)
752 lim_data->max_loop
753 = outermost_indep_loop (lim_data->max_loop, loop, ref);
754 if (!lim_data->max_loop)
755 return false;
757 else
759 if ((val = gimple_vuse (stmt)) != NULL_TREE)
761 if (!add_dependency (val, lim_data, loop, false))
762 return false;
767 lim_data->cost += stmt_cost (stmt);
769 return true;
772 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
773 and that one of the operands of this statement is computed by STMT.
774 Ensure that STMT (together with all the statements that define its
775 operands) is hoisted at least out of the loop LEVEL. */
777 static void
778 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
780 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
781 struct lim_aux_data *lim_data;
782 gimple *dep_stmt;
783 unsigned i;
785 stmt_loop = find_common_loop (orig_loop, stmt_loop);
786 lim_data = get_lim_data (stmt);
787 if (lim_data != NULL && lim_data->tgt_loop != NULL)
788 stmt_loop = find_common_loop (stmt_loop,
789 loop_outer (lim_data->tgt_loop));
790 if (flow_loop_nested_p (stmt_loop, level))
791 return;
793 gcc_assert (level == lim_data->max_loop
794 || flow_loop_nested_p (lim_data->max_loop, level));
796 lim_data->tgt_loop = level;
797 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
798 set_level (dep_stmt, orig_loop, level);
801 /* Determines an outermost loop from that we want to hoist the statement STMT.
802 For now we chose the outermost possible loop. TODO -- use profiling
803 information to set it more sanely. */
805 static void
806 set_profitable_level (gimple *stmt)
808 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
811 /* Returns true if STMT is a call that has side effects. */
813 static bool
814 nonpure_call_p (gimple *stmt)
816 if (gimple_code (stmt) != GIMPLE_CALL)
817 return false;
819 return gimple_has_side_effects (stmt);
822 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
824 static gimple *
825 rewrite_reciprocal (gimple_stmt_iterator *bsi)
827 gassign *stmt, *stmt1, *stmt2;
828 tree name, lhs, type;
829 tree real_one;
830 gimple_stmt_iterator gsi;
832 stmt = as_a <gassign *> (gsi_stmt (*bsi));
833 lhs = gimple_assign_lhs (stmt);
834 type = TREE_TYPE (lhs);
836 real_one = build_one_cst (type);
838 name = make_temp_ssa_name (type, NULL, "reciptmp");
839 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
840 gimple_assign_rhs2 (stmt));
841 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
842 gimple_assign_rhs1 (stmt));
844 /* Replace division stmt with reciprocal and multiply stmts.
845 The multiply stmt is not invariant, so update iterator
846 and avoid rescanning. */
847 gsi = *bsi;
848 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
849 gsi_replace (&gsi, stmt2, true);
851 /* Continue processing with invariant reciprocal statement. */
852 return stmt1;
855 /* Check if the pattern at *BSI is a bittest of the form
856 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
858 static gimple *
859 rewrite_bittest (gimple_stmt_iterator *bsi)
861 gassign *stmt;
862 gimple *stmt1;
863 gassign *stmt2;
864 gimple *use_stmt;
865 gcond *cond_stmt;
866 tree lhs, name, t, a, b;
867 use_operand_p use;
869 stmt = as_a <gassign *> (gsi_stmt (*bsi));
870 lhs = gimple_assign_lhs (stmt);
872 /* Verify that the single use of lhs is a comparison against zero. */
873 if (TREE_CODE (lhs) != SSA_NAME
874 || !single_imm_use (lhs, &use, &use_stmt))
875 return stmt;
876 cond_stmt = dyn_cast <gcond *> (use_stmt);
877 if (!cond_stmt)
878 return stmt;
879 if (gimple_cond_lhs (cond_stmt) != lhs
880 || (gimple_cond_code (cond_stmt) != NE_EXPR
881 && gimple_cond_code (cond_stmt) != EQ_EXPR)
882 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
883 return stmt;
885 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
886 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
887 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
888 return stmt;
890 /* There is a conversion in between possibly inserted by fold. */
891 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
893 t = gimple_assign_rhs1 (stmt1);
894 if (TREE_CODE (t) != SSA_NAME
895 || !has_single_use (t))
896 return stmt;
897 stmt1 = SSA_NAME_DEF_STMT (t);
898 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
899 return stmt;
902 /* Verify that B is loop invariant but A is not. Verify that with
903 all the stmt walking we are still in the same loop. */
904 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
905 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
906 return stmt;
908 a = gimple_assign_rhs1 (stmt1);
909 b = gimple_assign_rhs2 (stmt1);
911 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
912 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
914 gimple_stmt_iterator rsi;
916 /* 1 << B */
917 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
918 build_int_cst (TREE_TYPE (a), 1), b);
919 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
920 stmt1 = gimple_build_assign (name, t);
922 /* A & (1 << B) */
923 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
924 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
925 stmt2 = gimple_build_assign (name, t);
927 /* Replace the SSA_NAME we compare against zero. Adjust
928 the type of zero accordingly. */
929 SET_USE (use, name);
930 gimple_cond_set_rhs (cond_stmt,
931 build_int_cst_type (TREE_TYPE (name),
932 0));
934 /* Don't use gsi_replace here, none of the new assignments sets
935 the variable originally set in stmt. Move bsi to stmt1, and
936 then remove the original stmt, so that we get a chance to
937 retain debug info for it. */
938 rsi = *bsi;
939 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
940 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
941 gimple *to_release = gsi_stmt (rsi);
942 gsi_remove (&rsi, true);
943 release_defs (to_release);
945 return stmt1;
948 return stmt;
951 /* For each statement determines the outermost loop in that it is invariant,
952 - statements on whose motion it depends and the cost of the computation.
953 - This information is stored to the LIM_DATA structure associated with
954 - each statement. */
955 class invariantness_dom_walker : public dom_walker
957 public:
958 invariantness_dom_walker (cdi_direction direction)
959 : dom_walker (direction) {}
961 virtual void before_dom_children (basic_block);
964 /* Determine the outermost loops in that statements in basic block BB are
965 invariant, and record them to the LIM_DATA associated with the statements.
966 Callback for dom_walker. */
968 void
969 invariantness_dom_walker::before_dom_children (basic_block bb)
971 enum move_pos pos;
972 gimple_stmt_iterator bsi;
973 gimple *stmt;
974 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
975 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
976 struct lim_aux_data *lim_data;
978 if (!loop_outer (bb->loop_father))
979 return;
981 if (dump_file && (dump_flags & TDF_DETAILS))
982 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
983 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
985 /* Look at PHI nodes, but only if there is at most two.
986 ??? We could relax this further by post-processing the inserted
987 code and transforming adjacent cond-exprs with the same predicate
988 to control flow again. */
989 bsi = gsi_start_phis (bb);
990 if (!gsi_end_p (bsi)
991 && ((gsi_next (&bsi), gsi_end_p (bsi))
992 || (gsi_next (&bsi), gsi_end_p (bsi))))
993 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
995 stmt = gsi_stmt (bsi);
997 pos = movement_possibility (stmt);
998 if (pos == MOVE_IMPOSSIBLE)
999 continue;
1001 lim_data = init_lim_data (stmt);
1002 lim_data->always_executed_in = outermost;
1004 if (!determine_max_movement (stmt, false))
1006 lim_data->max_loop = NULL;
1007 continue;
1010 if (dump_file && (dump_flags & TDF_DETAILS))
1012 print_gimple_stmt (dump_file, stmt, 2, 0);
1013 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1014 loop_depth (lim_data->max_loop),
1015 lim_data->cost);
1018 if (lim_data->cost >= LIM_EXPENSIVE)
1019 set_profitable_level (stmt);
1022 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1024 stmt = gsi_stmt (bsi);
1026 pos = movement_possibility (stmt);
1027 if (pos == MOVE_IMPOSSIBLE)
1029 if (nonpure_call_p (stmt))
1031 maybe_never = true;
1032 outermost = NULL;
1034 /* Make sure to note always_executed_in for stores to make
1035 store-motion work. */
1036 else if (stmt_makes_single_store (stmt))
1038 struct lim_aux_data *lim_data = init_lim_data (stmt);
1039 lim_data->always_executed_in = outermost;
1041 continue;
1044 if (is_gimple_assign (stmt)
1045 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1046 == GIMPLE_BINARY_RHS))
1048 tree op0 = gimple_assign_rhs1 (stmt);
1049 tree op1 = gimple_assign_rhs2 (stmt);
1050 struct loop *ol1 = outermost_invariant_loop (op1,
1051 loop_containing_stmt (stmt));
1053 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1054 to be hoisted out of loop, saving expensive divide. */
1055 if (pos == MOVE_POSSIBLE
1056 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1057 && flag_unsafe_math_optimizations
1058 && !flag_trapping_math
1059 && ol1 != NULL
1060 && outermost_invariant_loop (op0, ol1) == NULL)
1061 stmt = rewrite_reciprocal (&bsi);
1063 /* If the shift count is invariant, convert (A >> B) & 1 to
1064 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1065 saving an expensive shift. */
1066 if (pos == MOVE_POSSIBLE
1067 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1068 && integer_onep (op1)
1069 && TREE_CODE (op0) == SSA_NAME
1070 && has_single_use (op0))
1071 stmt = rewrite_bittest (&bsi);
1074 lim_data = init_lim_data (stmt);
1075 lim_data->always_executed_in = outermost;
1077 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1078 continue;
1080 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1082 lim_data->max_loop = NULL;
1083 continue;
1086 if (dump_file && (dump_flags & TDF_DETAILS))
1088 print_gimple_stmt (dump_file, stmt, 2, 0);
1089 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1090 loop_depth (lim_data->max_loop),
1091 lim_data->cost);
1094 if (lim_data->cost >= LIM_EXPENSIVE)
1095 set_profitable_level (stmt);
1099 class move_computations_dom_walker : public dom_walker
1101 public:
1102 move_computations_dom_walker (cdi_direction direction)
1103 : dom_walker (direction), todo_ (0) {}
1105 virtual void before_dom_children (basic_block);
1107 unsigned int todo_;
1110 /* Hoist the statements in basic block BB out of the loops prescribed by
1111 data stored in LIM_DATA structures associated with each statement. Callback
1112 for walk_dominator_tree. */
1114 void
1115 move_computations_dom_walker::before_dom_children (basic_block bb)
1117 struct loop *level;
1118 unsigned cost = 0;
1119 struct lim_aux_data *lim_data;
1121 if (!loop_outer (bb->loop_father))
1122 return;
1124 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1126 gassign *new_stmt;
1127 gphi *stmt = bsi.phi ();
1129 lim_data = get_lim_data (stmt);
1130 if (lim_data == NULL)
1132 gsi_next (&bsi);
1133 continue;
1136 cost = lim_data->cost;
1137 level = lim_data->tgt_loop;
1138 clear_lim_data (stmt);
1140 if (!level)
1142 gsi_next (&bsi);
1143 continue;
1146 if (dump_file && (dump_flags & TDF_DETAILS))
1148 fprintf (dump_file, "Moving PHI node\n");
1149 print_gimple_stmt (dump_file, stmt, 0, 0);
1150 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1151 cost, level->num);
1154 if (gimple_phi_num_args (stmt) == 1)
1156 tree arg = PHI_ARG_DEF (stmt, 0);
1157 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1158 TREE_CODE (arg), arg);
1160 else
1162 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1163 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1164 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1165 /* Get the PHI arguments corresponding to the true and false
1166 edges of COND. */
1167 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1168 gcc_assert (arg0 && arg1);
1169 t = build2 (gimple_cond_code (cond), boolean_type_node,
1170 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1171 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1172 COND_EXPR, t, arg0, arg1);
1173 todo_ |= TODO_cleanup_cfg;
1175 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1176 && (!ALWAYS_EXECUTED_IN (bb)
1177 || (ALWAYS_EXECUTED_IN (bb) != level
1178 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1180 tree lhs = gimple_assign_lhs (new_stmt);
1181 SSA_NAME_RANGE_INFO (lhs) = NULL;
1183 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1184 remove_phi_node (&bsi, false);
1187 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1189 edge e;
1191 gimple *stmt = gsi_stmt (bsi);
1193 lim_data = get_lim_data (stmt);
1194 if (lim_data == NULL)
1196 gsi_next (&bsi);
1197 continue;
1200 cost = lim_data->cost;
1201 level = lim_data->tgt_loop;
1202 clear_lim_data (stmt);
1204 if (!level)
1206 gsi_next (&bsi);
1207 continue;
1210 /* We do not really want to move conditionals out of the loop; we just
1211 placed it here to force its operands to be moved if necessary. */
1212 if (gimple_code (stmt) == GIMPLE_COND)
1213 continue;
1215 if (dump_file && (dump_flags & TDF_DETAILS))
1217 fprintf (dump_file, "Moving statement\n");
1218 print_gimple_stmt (dump_file, stmt, 0, 0);
1219 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1220 cost, level->num);
1223 e = loop_preheader_edge (level);
1224 gcc_assert (!gimple_vdef (stmt));
1225 if (gimple_vuse (stmt))
1227 /* The new VUSE is the one from the virtual PHI in the loop
1228 header or the one already present. */
1229 gphi_iterator gsi2;
1230 for (gsi2 = gsi_start_phis (e->dest);
1231 !gsi_end_p (gsi2); gsi_next (&gsi2))
1233 gphi *phi = gsi2.phi ();
1234 if (virtual_operand_p (gimple_phi_result (phi)))
1236 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1237 break;
1241 gsi_remove (&bsi, false);
1242 if (gimple_has_lhs (stmt)
1243 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1244 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1245 && (!ALWAYS_EXECUTED_IN (bb)
1246 || !(ALWAYS_EXECUTED_IN (bb) == level
1247 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1249 tree lhs = gimple_get_lhs (stmt);
1250 SSA_NAME_RANGE_INFO (lhs) = NULL;
1252 /* In case this is a stmt that is not unconditionally executed
1253 when the target loop header is executed and the stmt may
1254 invoke undefined integer or pointer overflow rewrite it to
1255 unsigned arithmetic. */
1256 if (is_gimple_assign (stmt)
1257 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1258 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1259 && arith_code_with_undefined_signed_overflow
1260 (gimple_assign_rhs_code (stmt))
1261 && (!ALWAYS_EXECUTED_IN (bb)
1262 || !(ALWAYS_EXECUTED_IN (bb) == level
1263 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1264 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1265 else
1266 gsi_insert_on_edge (e, stmt);
1270 /* Hoist the statements out of the loops prescribed by data stored in
1271 LIM_DATA structures associated with each statement.*/
1273 static unsigned int
1274 move_computations (void)
1276 move_computations_dom_walker walker (CDI_DOMINATORS);
1277 walker.walk (cfun->cfg->x_entry_block_ptr);
1279 gsi_commit_edge_inserts ();
1280 if (need_ssa_update_p (cfun))
1281 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1283 return walker.todo_;
1286 /* Checks whether the statement defining variable *INDEX can be hoisted
1287 out of the loop passed in DATA. Callback for for_each_index. */
1289 static bool
1290 may_move_till (tree ref, tree *index, void *data)
1292 struct loop *loop = (struct loop *) data, *max_loop;
1294 /* If REF is an array reference, check also that the step and the lower
1295 bound is invariant in LOOP. */
1296 if (TREE_CODE (ref) == ARRAY_REF)
1298 tree step = TREE_OPERAND (ref, 3);
1299 tree lbound = TREE_OPERAND (ref, 2);
1301 max_loop = outermost_invariant_loop (step, loop);
1302 if (!max_loop)
1303 return false;
1305 max_loop = outermost_invariant_loop (lbound, loop);
1306 if (!max_loop)
1307 return false;
1310 max_loop = outermost_invariant_loop (*index, loop);
1311 if (!max_loop)
1312 return false;
1314 return true;
1317 /* If OP is SSA NAME, force the statement that defines it to be
1318 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1320 static void
1321 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1323 gimple *stmt;
1325 if (!op
1326 || is_gimple_min_invariant (op))
1327 return;
1329 gcc_assert (TREE_CODE (op) == SSA_NAME);
1331 stmt = SSA_NAME_DEF_STMT (op);
1332 if (gimple_nop_p (stmt))
1333 return;
1335 set_level (stmt, orig_loop, loop);
1338 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1339 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1340 for_each_index. */
1342 struct fmt_data
1344 struct loop *loop;
1345 struct loop *orig_loop;
1348 static bool
1349 force_move_till (tree ref, tree *index, void *data)
1351 struct fmt_data *fmt_data = (struct fmt_data *) data;
1353 if (TREE_CODE (ref) == ARRAY_REF)
1355 tree step = TREE_OPERAND (ref, 3);
1356 tree lbound = TREE_OPERAND (ref, 2);
1358 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1359 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1362 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1364 return true;
1367 /* A function to free the mem_ref object OBJ. */
1369 static void
1370 memref_free (struct im_mem_ref *mem)
1372 mem->accesses_in_loop.release ();
1375 /* Allocates and returns a memory reference description for MEM whose hash
1376 value is HASH and id is ID. */
1378 static im_mem_ref *
1379 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1381 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1382 ao_ref_init (&ref->mem, mem);
1383 ref->id = id;
1384 ref->hash = hash;
1385 ref->stored = NULL;
1386 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1387 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1388 ref->accesses_in_loop.create (1);
1390 return ref;
1393 /* Records memory reference location *LOC in LOOP to the memory reference
1394 description REF. The reference occurs in statement STMT. */
1396 static void
1397 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1399 mem_ref_loc aref;
1400 aref.stmt = stmt;
1401 aref.ref = loc;
1402 ref->accesses_in_loop.safe_push (aref);
1405 /* Set the LOOP bit in REF stored bitmap and allocate that if
1406 necessary. Return whether a bit was changed. */
1408 static bool
1409 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1411 if (!ref->stored)
1412 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1413 return bitmap_set_bit (ref->stored, loop->num);
1416 /* Marks reference REF as stored in LOOP. */
1418 static void
1419 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1421 while (loop != current_loops->tree_root
1422 && set_ref_stored_in_loop (ref, loop))
1423 loop = loop_outer (loop);
1426 /* Gathers memory references in statement STMT in LOOP, storing the
1427 information about them in the memory_accesses structure. Marks
1428 the vops accessed through unrecognized statements there as
1429 well. */
1431 static void
1432 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1434 tree *mem = NULL;
1435 hashval_t hash;
1436 im_mem_ref **slot;
1437 im_mem_ref *ref;
1438 bool is_stored;
1439 unsigned id;
1441 if (!gimple_vuse (stmt))
1442 return;
1444 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1445 if (!mem)
1447 /* We use the shared mem_ref for all unanalyzable refs. */
1448 id = UNANALYZABLE_MEM_ID;
1449 ref = memory_accesses.refs_list[id];
1450 if (dump_file && (dump_flags & TDF_DETAILS))
1452 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1453 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1455 is_stored = gimple_vdef (stmt);
1457 else
1459 hash = iterative_hash_expr (*mem, 0);
1460 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1461 if (*slot)
1463 ref = *slot;
1464 id = ref->id;
1466 else
1468 id = memory_accesses.refs_list.length ();
1469 ref = mem_ref_alloc (*mem, hash, id);
1470 memory_accesses.refs_list.safe_push (ref);
1471 *slot = ref;
1473 if (dump_file && (dump_flags & TDF_DETAILS))
1475 fprintf (dump_file, "Memory reference %u: ", id);
1476 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1477 fprintf (dump_file, "\n");
1481 record_mem_ref_loc (ref, stmt, mem);
1483 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1484 if (is_stored)
1486 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1487 mark_ref_stored (ref, loop);
1489 return;
1492 static unsigned *bb_loop_postorder;
1494 /* qsort sort function to sort blocks after their loop fathers postorder. */
1496 static int
1497 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1499 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1500 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1501 struct loop *loop1 = bb1->loop_father;
1502 struct loop *loop2 = bb2->loop_father;
1503 if (loop1->num == loop2->num)
1504 return 0;
1505 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1508 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1510 static int
1511 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1513 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1514 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1515 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1516 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1517 if (loop1->num == loop2->num)
1518 return 0;
1519 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1522 /* Gathers memory references in loops. */
1524 static void
1525 analyze_memory_references (void)
1527 gimple_stmt_iterator bsi;
1528 basic_block bb, *bbs;
1529 struct loop *loop, *outer;
1530 unsigned i, n;
1532 /* Collect all basic-blocks in loops and sort them after their
1533 loops postorder. */
1534 i = 0;
1535 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1536 FOR_EACH_BB_FN (bb, cfun)
1537 if (bb->loop_father != current_loops->tree_root)
1538 bbs[i++] = bb;
1539 n = i;
1540 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1542 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1543 That results in better locality for all the bitmaps. */
1544 for (i = 0; i < n; ++i)
1546 basic_block bb = bbs[i];
1547 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1548 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1551 /* Sort the location list of gathered memory references after their
1552 loop postorder number. */
1553 im_mem_ref *ref;
1554 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1555 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1557 free (bbs);
1558 // free (bb_loop_postorder);
1560 /* Propagate the information about accessed memory references up
1561 the loop hierarchy. */
1562 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1564 /* Finalize the overall touched references (including subloops). */
1565 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1566 &memory_accesses.refs_stored_in_loop[loop->num]);
1568 /* Propagate the information about accessed memory references up
1569 the loop hierarchy. */
1570 outer = loop_outer (loop);
1571 if (outer == current_loops->tree_root)
1572 continue;
1574 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1575 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1579 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1580 tree_to_aff_combination_expand. */
1582 static bool
1583 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1584 hash_map<tree, name_expansion *> **ttae_cache)
1586 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1587 object and their offset differ in such a way that the locations cannot
1588 overlap, then they cannot alias. */
1589 widest_int size1, size2;
1590 aff_tree off1, off2;
1592 /* Perform basic offset and type-based disambiguation. */
1593 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1594 return false;
1596 /* The expansion of addresses may be a bit expensive, thus we only do
1597 the check at -O2 and higher optimization levels. */
1598 if (optimize < 2)
1599 return true;
1601 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1602 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1603 aff_combination_expand (&off1, ttae_cache);
1604 aff_combination_expand (&off2, ttae_cache);
1605 aff_combination_scale (&off1, -1);
1606 aff_combination_add (&off2, &off1);
1608 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1609 return false;
1611 return true;
1614 /* Compare function for bsearch searching for reference locations
1615 in a loop. */
1617 static int
1618 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1620 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1621 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1622 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1623 if (loop->num == loc_loop->num
1624 || flow_loop_nested_p (loop, loc_loop))
1625 return 0;
1626 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1627 ? -1 : 1);
1630 /* Iterates over all locations of REF in LOOP and its subloops calling
1631 fn.operator() with the location as argument. When that operator
1632 returns true the iteration is stopped and true is returned.
1633 Otherwise false is returned. */
1635 template <typename FN>
1636 static bool
1637 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1639 unsigned i;
1640 mem_ref_loc *loc;
1642 /* Search for the cluster of locs in the accesses_in_loop vector
1643 which is sorted after postorder index of the loop father. */
1644 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1645 if (!loc)
1646 return false;
1648 /* We have found one location inside loop or its sub-loops. Iterate
1649 both forward and backward to cover the whole cluster. */
1650 i = loc - ref->accesses_in_loop.address ();
1651 while (i > 0)
1653 --i;
1654 mem_ref_loc *l = &ref->accesses_in_loop[i];
1655 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1656 break;
1657 if (fn (l))
1658 return true;
1660 for (i = loc - ref->accesses_in_loop.address ();
1661 i < ref->accesses_in_loop.length (); ++i)
1663 mem_ref_loc *l = &ref->accesses_in_loop[i];
1664 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1665 break;
1666 if (fn (l))
1667 return true;
1670 return false;
1673 /* Rewrites location LOC by TMP_VAR. */
1675 struct rewrite_mem_ref_loc
1677 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1678 bool operator () (mem_ref_loc *loc);
1679 tree tmp_var;
1682 bool
1683 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1685 *loc->ref = tmp_var;
1686 update_stmt (loc->stmt);
1687 return false;
1690 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1692 static void
1693 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1695 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1698 /* Stores the first reference location in LOCP. */
1700 struct first_mem_ref_loc_1
1702 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1703 bool operator () (mem_ref_loc *loc);
1704 mem_ref_loc **locp;
1707 bool
1708 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1710 *locp = loc;
1711 return true;
1714 /* Returns the first reference location to REF in LOOP. */
1716 static mem_ref_loc *
1717 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1719 mem_ref_loc *locp = NULL;
1720 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1721 return locp;
1724 struct prev_flag_edges {
1725 /* Edge to insert new flag comparison code. */
1726 edge append_cond_position;
1728 /* Edge for fall through from previous flag comparison. */
1729 edge last_cond_fallthru;
1732 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1733 MEM along edge EX.
1735 The store is only done if MEM has changed. We do this so no
1736 changes to MEM occur on code paths that did not originally store
1737 into it.
1739 The common case for execute_sm will transform:
1741 for (...) {
1742 if (foo)
1743 stuff;
1744 else
1745 MEM = TMP_VAR;
1748 into:
1750 lsm = MEM;
1751 for (...) {
1752 if (foo)
1753 stuff;
1754 else
1755 lsm = TMP_VAR;
1757 MEM = lsm;
1759 This function will generate:
1761 lsm = MEM;
1763 lsm_flag = false;
1765 for (...) {
1766 if (foo)
1767 stuff;
1768 else {
1769 lsm = TMP_VAR;
1770 lsm_flag = true;
1773 if (lsm_flag) <--
1774 MEM = lsm; <--
1777 static void
1778 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1780 basic_block new_bb, then_bb, old_dest;
1781 bool loop_has_only_one_exit;
1782 edge then_old_edge, orig_ex = ex;
1783 gimple_stmt_iterator gsi;
1784 gimple *stmt;
1785 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1786 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1788 /* ?? Insert store after previous store if applicable. See note
1789 below. */
1790 if (prev_edges)
1791 ex = prev_edges->append_cond_position;
1793 loop_has_only_one_exit = single_pred_p (ex->dest);
1795 if (loop_has_only_one_exit)
1796 ex = split_block_after_labels (ex->dest);
1797 else
1799 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1800 !gsi_end_p (gpi); gsi_next (&gpi))
1802 gphi *phi = gpi.phi ();
1803 if (virtual_operand_p (gimple_phi_result (phi)))
1804 continue;
1806 /* When the destination has a non-virtual PHI node with multiple
1807 predecessors make sure we preserve the PHI structure by
1808 forcing a forwarder block so that hoisting of that PHI will
1809 still work. */
1810 split_edge (ex);
1811 break;
1815 old_dest = ex->dest;
1816 new_bb = split_edge (ex);
1817 then_bb = create_empty_bb (new_bb);
1818 if (irr)
1819 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1820 add_bb_to_loop (then_bb, new_bb->loop_father);
1822 gsi = gsi_start_bb (new_bb);
1823 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1824 NULL_TREE, NULL_TREE);
1825 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1827 gsi = gsi_start_bb (then_bb);
1828 /* Insert actual store. */
1829 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1830 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1832 make_edge (new_bb, then_bb,
1833 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1834 make_edge (new_bb, old_dest,
1835 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1836 then_old_edge = make_edge (then_bb, old_dest,
1837 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1839 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1841 if (prev_edges)
1843 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1844 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1845 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1846 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1847 recompute_dominator (CDI_DOMINATORS, old_dest));
1850 /* ?? Because stores may alias, they must happen in the exact
1851 sequence they originally happened. Save the position right after
1852 the (_lsm) store we just created so we can continue appending after
1853 it and maintain the original order. */
1855 struct prev_flag_edges *p;
1857 if (orig_ex->aux)
1858 orig_ex->aux = NULL;
1859 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1860 p = (struct prev_flag_edges *) orig_ex->aux;
1861 p->append_cond_position = then_old_edge;
1862 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1863 orig_ex->aux = (void *) p;
1866 if (!loop_has_only_one_exit)
1867 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1868 !gsi_end_p (gpi); gsi_next (&gpi))
1870 gphi *phi = gpi.phi ();
1871 unsigned i;
1873 for (i = 0; i < gimple_phi_num_args (phi); i++)
1874 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1876 tree arg = gimple_phi_arg_def (phi, i);
1877 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1878 update_stmt (phi);
1881 /* Remove the original fall through edge. This was the
1882 single_succ_edge (new_bb). */
1883 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1886 /* When REF is set on the location, set flag indicating the store. */
1888 struct sm_set_flag_if_changed
1890 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1891 bool operator () (mem_ref_loc *loc);
1892 tree flag;
1895 bool
1896 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1898 /* Only set the flag for writes. */
1899 if (is_gimple_assign (loc->stmt)
1900 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1902 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1903 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1904 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1906 return false;
1909 /* Helper function for execute_sm. On every location where REF is
1910 set, set an appropriate flag indicating the store. */
1912 static tree
1913 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref)
1915 tree flag;
1916 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1917 flag = create_tmp_reg (boolean_type_node, str);
1918 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1919 return flag;
1922 /* Executes store motion of memory reference REF from LOOP.
1923 Exits from the LOOP are stored in EXITS. The initialization of the
1924 temporary variable is put to the preheader of the loop, and assignments
1925 to the reference from the temporary variable are emitted to exits. */
1927 static void
1928 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
1930 tree tmp_var, store_flag = NULL_TREE;
1931 unsigned i;
1932 gassign *load;
1933 struct fmt_data fmt_data;
1934 edge ex;
1935 struct lim_aux_data *lim_data;
1936 bool multi_threaded_model_p = false;
1937 gimple_stmt_iterator gsi;
1939 if (dump_file && (dump_flags & TDF_DETAILS))
1941 fprintf (dump_file, "Executing store motion of ");
1942 print_generic_expr (dump_file, ref->mem.ref, 0);
1943 fprintf (dump_file, " from loop %d\n", loop->num);
1946 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1947 get_lsm_tmp_name (ref->mem.ref, ~0));
1949 fmt_data.loop = loop;
1950 fmt_data.orig_loop = loop;
1951 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1953 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1954 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1955 multi_threaded_model_p = true;
1957 if (multi_threaded_model_p)
1958 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1960 rewrite_mem_refs (loop, ref, tmp_var);
1962 /* Emit the load code on a random exit edge or into the latch if
1963 the loop does not exit, so that we are sure it will be processed
1964 by move_computations after all dependencies. */
1965 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1967 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1968 load altogether, since the store is predicated by a flag. We
1969 could, do the load only if it was originally in the loop. */
1970 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1971 lim_data = init_lim_data (load);
1972 lim_data->max_loop = loop;
1973 lim_data->tgt_loop = loop;
1974 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1976 if (multi_threaded_model_p)
1978 load = gimple_build_assign (store_flag, boolean_false_node);
1979 lim_data = init_lim_data (load);
1980 lim_data->max_loop = loop;
1981 lim_data->tgt_loop = loop;
1982 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1985 /* Sink the store to every exit from the loop. */
1986 FOR_EACH_VEC_ELT (exits, i, ex)
1987 if (!multi_threaded_model_p)
1989 gassign *store;
1990 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
1991 gsi_insert_on_edge (ex, store);
1993 else
1994 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
1997 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
1998 edges of the LOOP. */
2000 static void
2001 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2002 vec<edge> exits)
2004 im_mem_ref *ref;
2005 unsigned i;
2006 bitmap_iterator bi;
2008 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2010 ref = memory_accesses.refs_list[i];
2011 execute_sm (loop, exits, ref);
2015 struct ref_always_accessed
2017 ref_always_accessed (struct loop *loop_, bool stored_p_)
2018 : loop (loop_), stored_p (stored_p_) {}
2019 bool operator () (mem_ref_loc *loc);
2020 struct loop *loop;
2021 bool stored_p;
2024 bool
2025 ref_always_accessed::operator () (mem_ref_loc *loc)
2027 struct loop *must_exec;
2029 if (!get_lim_data (loc->stmt))
2030 return false;
2032 /* If we require an always executed store make sure the statement
2033 stores to the reference. */
2034 if (stored_p)
2036 tree lhs = gimple_get_lhs (loc->stmt);
2037 if (!lhs
2038 || lhs != *loc->ref)
2039 return false;
2042 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2043 if (!must_exec)
2044 return false;
2046 if (must_exec == loop
2047 || flow_loop_nested_p (must_exec, loop))
2048 return true;
2050 return false;
2053 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2054 make sure REF is always stored to in LOOP. */
2056 static bool
2057 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2059 return for_all_locs_in_loop (loop, ref,
2060 ref_always_accessed (loop, stored_p));
2063 /* Returns true if REF1 and REF2 are independent. */
2065 static bool
2066 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2068 if (ref1 == ref2)
2069 return true;
2071 if (dump_file && (dump_flags & TDF_DETAILS))
2072 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2073 ref1->id, ref2->id);
2075 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2077 if (dump_file && (dump_flags & TDF_DETAILS))
2078 fprintf (dump_file, "dependent.\n");
2079 return false;
2081 else
2083 if (dump_file && (dump_flags & TDF_DETAILS))
2084 fprintf (dump_file, "independent.\n");
2085 return true;
2089 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2090 and its super-loops. */
2092 static void
2093 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2095 /* We can propagate dependent-in-loop bits up the loop
2096 hierarchy to all outer loops. */
2097 while (loop != current_loops->tree_root
2098 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2099 loop = loop_outer (loop);
2102 /* Returns true if REF is independent on all other memory references in
2103 LOOP. */
2105 static bool
2106 ref_indep_loop_p_1 (struct loop *loop, im_mem_ref *ref, bool stored_p)
2108 bitmap refs_to_check;
2109 unsigned i;
2110 bitmap_iterator bi;
2111 im_mem_ref *aref;
2113 if (stored_p)
2114 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2115 else
2116 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2118 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2119 return false;
2121 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2123 aref = memory_accesses.refs_list[i];
2124 if (!refs_independent_p (ref, aref))
2125 return false;
2128 return true;
2131 /* Returns true if REF is independent on all other memory references in
2132 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2134 static bool
2135 ref_indep_loop_p_2 (struct loop *loop, im_mem_ref *ref, bool stored_p)
2137 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2139 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2140 return true;
2141 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2142 return false;
2144 struct loop *inner = loop->inner;
2145 while (inner)
2147 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2148 return false;
2149 inner = inner->next;
2152 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2154 if (dump_file && (dump_flags & TDF_DETAILS))
2155 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2156 ref->id, loop->num, indep_p ? "independent" : "dependent");
2158 /* Record the computed result in the cache. */
2159 if (indep_p)
2161 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2162 && stored_p)
2164 /* If it's independend against all refs then it's independent
2165 against stores, too. */
2166 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2169 else
2171 record_dep_loop (loop, ref, stored_p);
2172 if (!stored_p)
2174 /* If it's dependent against stores it's dependent against
2175 all refs, too. */
2176 record_dep_loop (loop, ref, true);
2180 return indep_p;
2183 /* Returns true if REF is independent on all other memory references in
2184 LOOP. */
2186 static bool
2187 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref)
2189 gcc_checking_assert (MEM_ANALYZABLE (ref));
2191 return ref_indep_loop_p_2 (loop, ref, false);
2194 /* Returns true if we can perform store motion of REF from LOOP. */
2196 static bool
2197 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2199 tree base;
2201 /* Can't hoist unanalyzable refs. */
2202 if (!MEM_ANALYZABLE (ref))
2203 return false;
2205 /* It should be movable. */
2206 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2207 || TREE_THIS_VOLATILE (ref->mem.ref)
2208 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2209 return false;
2211 /* If it can throw fail, we do not properly update EH info. */
2212 if (tree_could_throw_p (ref->mem.ref))
2213 return false;
2215 /* If it can trap, it must be always executed in LOOP.
2216 Readonly memory locations may trap when storing to them, but
2217 tree_could_trap_p is a predicate for rvalues, so check that
2218 explicitly. */
2219 base = get_base_address (ref->mem.ref);
2220 if ((tree_could_trap_p (ref->mem.ref)
2221 || (DECL_P (base) && TREE_READONLY (base)))
2222 && !ref_always_accessed_p (loop, ref, true))
2223 return false;
2225 /* And it must be independent on all other memory references
2226 in LOOP. */
2227 if (!ref_indep_loop_p (loop, ref))
2228 return false;
2230 return true;
2233 /* Marks the references in LOOP for that store motion should be performed
2234 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2235 motion was performed in one of the outer loops. */
2237 static void
2238 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2240 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2241 unsigned i;
2242 bitmap_iterator bi;
2243 im_mem_ref *ref;
2245 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2247 ref = memory_accesses.refs_list[i];
2248 if (can_sm_ref_p (loop, ref))
2249 bitmap_set_bit (refs_to_sm, i);
2253 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2254 for a store motion optimization (i.e. whether we can insert statement
2255 on its exits). */
2257 static bool
2258 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2259 vec<edge> exits)
2261 unsigned i;
2262 edge ex;
2264 FOR_EACH_VEC_ELT (exits, i, ex)
2265 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2266 return false;
2268 return true;
2271 /* Try to perform store motion for all memory references modified inside
2272 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2273 store motion was executed in one of the outer loops. */
2275 static void
2276 store_motion_loop (struct loop *loop, bitmap sm_executed)
2278 vec<edge> exits = get_loop_exit_edges (loop);
2279 struct loop *subloop;
2280 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2282 if (loop_suitable_for_sm (loop, exits))
2284 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2285 hoist_memory_references (loop, sm_in_loop, exits);
2287 exits.release ();
2289 bitmap_ior_into (sm_executed, sm_in_loop);
2290 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2291 store_motion_loop (subloop, sm_executed);
2292 bitmap_and_compl_into (sm_executed, sm_in_loop);
2293 BITMAP_FREE (sm_in_loop);
2296 /* Try to perform store motion for all memory references modified inside
2297 loops. */
2299 static void
2300 store_motion (void)
2302 struct loop *loop;
2303 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2305 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2306 store_motion_loop (loop, sm_executed);
2308 BITMAP_FREE (sm_executed);
2309 gsi_commit_edge_inserts ();
2312 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2313 for each such basic block bb records the outermost loop for that execution
2314 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2315 blocks that contain a nonpure call. */
2317 static void
2318 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2320 basic_block bb = NULL, *bbs, last = NULL;
2321 unsigned i;
2322 edge e;
2323 struct loop *inn_loop = loop;
2325 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2327 bbs = get_loop_body_in_dom_order (loop);
2329 for (i = 0; i < loop->num_nodes; i++)
2331 edge_iterator ei;
2332 bb = bbs[i];
2334 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2335 last = bb;
2337 if (bitmap_bit_p (contains_call, bb->index))
2338 break;
2340 FOR_EACH_EDGE (e, ei, bb->succs)
2341 if (!flow_bb_inside_loop_p (loop, e->dest))
2342 break;
2343 if (e)
2344 break;
2346 /* A loop might be infinite (TODO use simple loop analysis
2347 to disprove this if possible). */
2348 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2349 break;
2351 if (!flow_bb_inside_loop_p (inn_loop, bb))
2352 break;
2354 if (bb->loop_father->header == bb)
2356 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2357 break;
2359 /* In a loop that is always entered we may proceed anyway.
2360 But record that we entered it and stop once we leave it. */
2361 inn_loop = bb->loop_father;
2365 while (1)
2367 SET_ALWAYS_EXECUTED_IN (last, loop);
2368 if (last == loop->header)
2369 break;
2370 last = get_immediate_dominator (CDI_DOMINATORS, last);
2373 free (bbs);
2376 for (loop = loop->inner; loop; loop = loop->next)
2377 fill_always_executed_in_1 (loop, contains_call);
2380 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2381 for each such basic block bb records the outermost loop for that execution
2382 of its header implies execution of bb. */
2384 static void
2385 fill_always_executed_in (void)
2387 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2388 basic_block bb;
2389 struct loop *loop;
2391 bitmap_clear (contains_call);
2392 FOR_EACH_BB_FN (bb, cfun)
2394 gimple_stmt_iterator gsi;
2395 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2397 if (nonpure_call_p (gsi_stmt (gsi)))
2398 break;
2401 if (!gsi_end_p (gsi))
2402 bitmap_set_bit (contains_call, bb->index);
2405 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2406 fill_always_executed_in_1 (loop, contains_call);
2408 sbitmap_free (contains_call);
2412 /* Compute the global information needed by the loop invariant motion pass. */
2414 static void
2415 tree_ssa_lim_initialize (void)
2417 struct loop *loop;
2418 unsigned i;
2420 bitmap_obstack_initialize (&lim_bitmap_obstack);
2421 gcc_obstack_init (&mem_ref_obstack);
2422 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2424 if (flag_tm)
2425 compute_transaction_bits ();
2427 alloc_aux_for_edges (0);
2429 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2430 memory_accesses.refs_list.create (100);
2431 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2432 memory_accesses.refs_list.quick_push
2433 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2435 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2436 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2437 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2438 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2439 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2440 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2442 for (i = 0; i < number_of_loops (cfun); i++)
2444 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2445 &lim_bitmap_obstack);
2446 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2447 &lim_bitmap_obstack);
2448 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2449 &lim_bitmap_obstack);
2452 memory_accesses.ttae_cache = NULL;
2454 /* Initialize bb_loop_postorder with a mapping from loop->num to
2455 its postorder index. */
2456 i = 0;
2457 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2458 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2459 bb_loop_postorder[loop->num] = i++;
2462 /* Cleans up after the invariant motion pass. */
2464 static void
2465 tree_ssa_lim_finalize (void)
2467 basic_block bb;
2468 unsigned i;
2469 im_mem_ref *ref;
2471 free_aux_for_edges ();
2473 FOR_EACH_BB_FN (bb, cfun)
2474 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2476 bitmap_obstack_release (&lim_bitmap_obstack);
2477 delete lim_aux_data_map;
2479 delete memory_accesses.refs;
2480 memory_accesses.refs = NULL;
2482 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2483 memref_free (ref);
2484 memory_accesses.refs_list.release ();
2485 obstack_free (&mem_ref_obstack, NULL);
2487 memory_accesses.refs_in_loop.release ();
2488 memory_accesses.refs_stored_in_loop.release ();
2489 memory_accesses.all_refs_stored_in_loop.release ();
2491 if (memory_accesses.ttae_cache)
2492 free_affine_expand_cache (&memory_accesses.ttae_cache);
2494 free (bb_loop_postorder);
2497 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2498 i.e. those that are likely to be win regardless of the register pressure. */
2500 static unsigned int
2501 tree_ssa_lim (void)
2503 unsigned int todo;
2505 tree_ssa_lim_initialize ();
2507 /* Gathers information about memory accesses in the loops. */
2508 analyze_memory_references ();
2510 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2511 fill_always_executed_in ();
2513 /* For each statement determine the outermost loop in that it is
2514 invariant and cost for computing the invariant. */
2515 invariantness_dom_walker (CDI_DOMINATORS)
2516 .walk (cfun->cfg->x_entry_block_ptr);
2518 /* Execute store motion. Force the necessary invariants to be moved
2519 out of the loops as well. */
2520 store_motion ();
2522 /* Move the expressions that are expensive enough. */
2523 todo = move_computations ();
2525 tree_ssa_lim_finalize ();
2527 return todo;
2530 /* Loop invariant motion pass. */
2532 namespace {
2534 const pass_data pass_data_lim =
2536 GIMPLE_PASS, /* type */
2537 "lim", /* name */
2538 OPTGROUP_LOOP, /* optinfo_flags */
2539 TV_LIM, /* tv_id */
2540 PROP_cfg, /* properties_required */
2541 0, /* properties_provided */
2542 0, /* properties_destroyed */
2543 0, /* todo_flags_start */
2544 0, /* todo_flags_finish */
2547 class pass_lim : public gimple_opt_pass
2549 public:
2550 pass_lim (gcc::context *ctxt)
2551 : gimple_opt_pass (pass_data_lim, ctxt)
2554 /* opt_pass methods: */
2555 opt_pass * clone () { return new pass_lim (m_ctxt); }
2556 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2557 virtual unsigned int execute (function *);
2559 }; // class pass_lim
2561 unsigned int
2562 pass_lim::execute (function *fun)
2564 bool in_loop_pipeline = scev_initialized_p ();
2565 if (!in_loop_pipeline)
2566 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2568 if (number_of_loops (fun) <= 1)
2569 return 0;
2570 unsigned int todo = tree_ssa_lim ();
2572 if (!in_loop_pipeline)
2573 loop_optimizer_finalize ();
2574 return todo;
2577 } // anon namespace
2579 gimple_opt_pass *
2580 make_pass_lim (gcc::context *ctxt)
2582 return new pass_lim (ctxt);