2016-06-14 Hristian Kirtchev <kirtchev@adacore.com>
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob7f98b91d23d8543d8fbb0f95b36966c9cc5fffb5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Aggr; use Exp_Aggr;
32 with Exp_Atag; use Exp_Atag;
33 with Exp_Ch4; use Exp_Ch4;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Ch11; use Exp_Ch11;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Dist; use Exp_Dist;
41 with Exp_Smem; use Exp_Smem;
42 with Exp_Strm; use Exp_Strm;
43 with Exp_Tss; use Exp_Tss;
44 with Exp_Util; use Exp_Util;
45 with Freeze; use Freeze;
46 with Ghost; use Ghost;
47 with Inline; use Inline;
48 with Namet; use Namet;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Aux; use Sem_Aux;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Eval; use Sem_Eval;
65 with Sem_Mech; use Sem_Mech;
66 with Sem_Res; use Sem_Res;
67 with Sem_SCIL; use Sem_SCIL;
68 with Sem_Type; use Sem_Type;
69 with Sem_Util; use Sem_Util;
70 with Sinfo; use Sinfo;
71 with Stand; use Stand;
72 with Snames; use Snames;
73 with Targparm; use Targparm;
74 with Tbuild; use Tbuild;
75 with Ttypes; use Ttypes;
76 with Validsw; use Validsw;
78 package body Exp_Ch3 is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Adjust_Discriminants (Rtype : Entity_Id);
85 -- This is used when freezing a record type. It attempts to construct
86 -- more restrictive subtypes for discriminants so that the max size of
87 -- the record can be calculated more accurately. See the body of this
88 -- procedure for details.
90 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
91 -- Build initialization procedure for given array type. Nod is a node
92 -- used for attachment of any actions required in its construction.
93 -- It also supplies the source location used for the procedure.
95 function Build_Array_Invariant_Proc
96 (A_Type : Entity_Id;
97 Nod : Node_Id) return Node_Id;
98 -- If the component of type of array type has invariants, build procedure
99 -- that checks invariant on all components of the array. Ada 2012 specifies
100 -- that an invariant on some type T must be applied to in-out parameters
101 -- and return values that include a part of type T. If the array type has
102 -- an otherwise specified invariant, the component check procedure is
103 -- called from within the user-specified invariant. Otherwise this becomes
104 -- the invariant procedure for the array type.
106 function Build_Record_Invariant_Proc
107 (R_Type : Entity_Id;
108 Nod : Node_Id) return Node_Id;
109 -- Ditto for record types.
111 function Build_Discriminant_Formals
112 (Rec_Id : Entity_Id;
113 Use_Dl : Boolean) return List_Id;
114 -- This function uses the discriminants of a type to build a list of
115 -- formal parameters, used in Build_Init_Procedure among other places.
116 -- If the flag Use_Dl is set, the list is built using the already
117 -- defined discriminals of the type, as is the case for concurrent
118 -- types with discriminants. Otherwise new identifiers are created,
119 -- with the source names of the discriminants.
121 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id;
122 -- This function builds a static aggregate that can serve as the initial
123 -- value for an array type whose bounds are static, and whose component
124 -- type is a composite type that has a static equivalent aggregate.
125 -- The equivalent array aggregate is used both for object initialization
126 -- and for component initialization, when used in the following function.
128 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id;
129 -- This function builds a static aggregate that can serve as the initial
130 -- value for a record type whose components are scalar and initialized
131 -- with compile-time values, or arrays with similar initialization or
132 -- defaults. When possible, initialization of an object of the type can
133 -- be achieved by using a copy of the aggregate as an initial value, thus
134 -- removing the implicit call that would otherwise constitute elaboration
135 -- code.
137 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id);
138 -- Build record initialization procedure. N is the type declaration
139 -- node, and Rec_Ent is the corresponding entity for the record type.
141 procedure Build_Slice_Assignment (Typ : Entity_Id);
142 -- Build assignment procedure for one-dimensional arrays of controlled
143 -- types. Other array and slice assignments are expanded in-line, but
144 -- the code expansion for controlled components (when control actions
145 -- are active) can lead to very large blocks that GCC3 handles poorly.
147 procedure Build_Untagged_Equality (Typ : Entity_Id);
148 -- AI05-0123: Equality on untagged records composes. This procedure
149 -- builds the equality routine for an untagged record that has components
150 -- of a record type that has user-defined primitive equality operations.
151 -- The resulting operation is a TSS subprogram.
153 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
154 -- Create An Equality function for the untagged variant record Typ and
155 -- attach it to the TSS list
157 procedure Check_Stream_Attributes (Typ : Entity_Id);
158 -- Check that if a limited extension has a parent with user-defined stream
159 -- attributes, and does not itself have user-defined stream-attributes,
160 -- then any limited component of the extension also has the corresponding
161 -- user-defined stream attributes.
163 procedure Clean_Task_Names
164 (Typ : Entity_Id;
165 Proc_Id : Entity_Id);
166 -- If an initialization procedure includes calls to generate names
167 -- for task subcomponents, indicate that secondary stack cleanup is
168 -- needed after an initialization. Typ is the component type, and Proc_Id
169 -- the initialization procedure for the enclosing composite type.
171 procedure Expand_Freeze_Array_Type (N : Node_Id);
172 -- Freeze an array type. Deals with building the initialization procedure,
173 -- creating the packed array type for a packed array and also with the
174 -- creation of the controlling procedures for the controlled case. The
175 -- argument N is the N_Freeze_Entity node for the type.
177 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id);
178 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
179 -- of finalizing controlled derivations from the class-wide's root type.
181 procedure Expand_Freeze_Enumeration_Type (N : Node_Id);
182 -- Freeze enumeration type with non-standard representation. Builds the
183 -- array and function needed to convert between enumeration pos and
184 -- enumeration representation values. N is the N_Freeze_Entity node
185 -- for the type.
187 procedure Expand_Freeze_Record_Type (N : Node_Id);
188 -- Freeze record type. Builds all necessary discriminant checking
189 -- and other ancillary functions, and builds dispatch tables where
190 -- needed. The argument N is the N_Freeze_Entity node. This processing
191 -- applies only to E_Record_Type entities, not to class wide types,
192 -- record subtypes, or private types.
194 procedure Expand_Tagged_Root (T : Entity_Id);
195 -- Add a field _Tag at the beginning of the record. This field carries
196 -- the value of the access to the Dispatch table. This procedure is only
197 -- called on root type, the _Tag field being inherited by the descendants.
199 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
200 -- Treat user-defined stream operations as renaming_as_body if the
201 -- subprogram they rename is not frozen when the type is frozen.
203 procedure Insert_Component_Invariant_Checks
204 (N : Node_Id;
205 Typ : Entity_Id;
206 Proc : Node_Id);
207 -- If a composite type has invariants and also has components with defined
208 -- invariants. the component invariant procedure is inserted into the user-
209 -- defined invariant procedure and added to the checks to be performed.
211 procedure Initialization_Warning (E : Entity_Id);
212 -- If static elaboration of the package is requested, indicate
213 -- when a type does meet the conditions for static initialization. If
214 -- E is a type, it has components that have no static initialization.
215 -- if E is an entity, its initial expression is not compile-time known.
217 function Init_Formals (Typ : Entity_Id) return List_Id;
218 -- This function builds the list of formals for an initialization routine.
219 -- The first formal is always _Init with the given type. For task value
220 -- record types and types containing tasks, three additional formals are
221 -- added:
223 -- _Master : Master_Id
224 -- _Chain : in out Activation_Chain
225 -- _Task_Name : String
227 -- The caller must append additional entries for discriminants if required.
229 function Inline_Init_Proc (Typ : Entity_Id) return Boolean;
230 -- Returns true if the initialization procedure of Typ should be inlined
232 function In_Runtime (E : Entity_Id) return Boolean;
233 -- Check if E is defined in the RTL (in a child of Ada or System). Used
234 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
236 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean;
237 -- Returns true if Prim is a user defined equality function
239 function Make_Eq_Body
240 (Typ : Entity_Id;
241 Eq_Name : Name_Id) return Node_Id;
242 -- Build the body of a primitive equality operation for a tagged record
243 -- type, or in Ada 2012 for any record type that has components with a
244 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
246 function Make_Eq_Case
247 (E : Entity_Id;
248 CL : Node_Id;
249 Discrs : Elist_Id := New_Elmt_List) return List_Id;
250 -- Building block for variant record equality. Defined to share the code
251 -- between the tagged and untagged case. Given a Component_List node CL,
252 -- it generates an 'if' followed by a 'case' statement that compares all
253 -- components of local temporaries named X and Y (that are declared as
254 -- formals at some upper level). E provides the Sloc to be used for the
255 -- generated code.
257 -- IF E is an unchecked_union, Discrs is the list of formals created for
258 -- the inferred discriminants of one operand. These formals are used in
259 -- the generated case statements for each variant of the unchecked union.
261 function Make_Eq_If
262 (E : Entity_Id;
263 L : List_Id) return Node_Id;
264 -- Building block for variant record equality. Defined to share the code
265 -- between the tagged and untagged case. Given the list of components
266 -- (or discriminants) L, it generates a return statement that compares all
267 -- components of local temporaries named X and Y (that are declared as
268 -- formals at some upper level). E provides the Sloc to be used for the
269 -- generated code.
271 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id;
272 -- Search for a renaming of the inequality dispatching primitive of
273 -- this tagged type. If found then build and return the corresponding
274 -- rename-as-body inequality subprogram; otherwise return Empty.
276 procedure Make_Predefined_Primitive_Specs
277 (Tag_Typ : Entity_Id;
278 Predef_List : out List_Id;
279 Renamed_Eq : out Entity_Id);
280 -- Create a list with the specs of the predefined primitive operations.
281 -- For tagged types that are interfaces all these primitives are defined
282 -- abstract.
284 -- The following entries are present for all tagged types, and provide
285 -- the results of the corresponding attribute applied to the object.
286 -- Dispatching is required in general, since the result of the attribute
287 -- will vary with the actual object subtype.
289 -- _size provides result of 'Size attribute
290 -- typSR provides result of 'Read attribute
291 -- typSW provides result of 'Write attribute
292 -- typSI provides result of 'Input attribute
293 -- typSO provides result of 'Output attribute
295 -- The following entries are additionally present for non-limited tagged
296 -- types, and implement additional dispatching operations for predefined
297 -- operations:
299 -- _equality implements "=" operator
300 -- _assign implements assignment operation
301 -- typDF implements deep finalization
302 -- typDA implements deep adjust
304 -- The latter two are empty procedures unless the type contains some
305 -- controlled components that require finalization actions (the deep
306 -- in the name refers to the fact that the action applies to components).
308 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
309 -- returns the value Empty, or else the defining unit name for the
310 -- predefined equality function in the case where the type has a primitive
311 -- operation that is a renaming of predefined equality (but only if there
312 -- is also an overriding user-defined equality function). The returned
313 -- Renamed_Eq will be passed to the corresponding parameter of
314 -- Predefined_Primitive_Bodies.
316 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
317 -- Returns True if there are representation clauses for type T that are not
318 -- inherited. If the result is false, the init_proc and the discriminant
319 -- checking functions of the parent can be reused by a derived type.
321 procedure Make_Controlling_Function_Wrappers
322 (Tag_Typ : Entity_Id;
323 Decl_List : out List_Id;
324 Body_List : out List_Id);
325 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
326 -- associated with inherited functions with controlling results which
327 -- are not overridden. The body of each wrapper function consists solely
328 -- of a return statement whose expression is an extension aggregate
329 -- invoking the inherited subprogram's parent subprogram and extended
330 -- with a null association list.
332 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id;
333 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
334 -- null procedures inherited from an interface type that have not been
335 -- overridden. Only one null procedure will be created for a given set of
336 -- inherited null procedures with homographic profiles.
338 function Predef_Spec_Or_Body
339 (Loc : Source_Ptr;
340 Tag_Typ : Entity_Id;
341 Name : Name_Id;
342 Profile : List_Id;
343 Ret_Type : Entity_Id := Empty;
344 For_Body : Boolean := False) return Node_Id;
345 -- This function generates the appropriate expansion for a predefined
346 -- primitive operation specified by its name, parameter profile and
347 -- return type (Empty means this is a procedure). If For_Body is false,
348 -- then the returned node is a subprogram declaration. If For_Body is
349 -- true, then the returned node is a empty subprogram body containing
350 -- no declarations and no statements.
352 function Predef_Stream_Attr_Spec
353 (Loc : Source_Ptr;
354 Tag_Typ : Entity_Id;
355 Name : TSS_Name_Type;
356 For_Body : Boolean := False) return Node_Id;
357 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
358 -- input and output attribute whose specs are constructed in Exp_Strm.
360 function Predef_Deep_Spec
361 (Loc : Source_Ptr;
362 Tag_Typ : Entity_Id;
363 Name : TSS_Name_Type;
364 For_Body : Boolean := False) return Node_Id;
365 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
366 -- and _deep_finalize
368 function Predefined_Primitive_Bodies
369 (Tag_Typ : Entity_Id;
370 Renamed_Eq : Entity_Id) return List_Id;
371 -- Create the bodies of the predefined primitives that are described in
372 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
373 -- the defining unit name of the type's predefined equality as returned
374 -- by Make_Predefined_Primitive_Specs.
376 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
377 -- Freeze entities of all predefined primitive operations. This is needed
378 -- because the bodies of these operations do not normally do any freezing.
380 function Stream_Operation_OK
381 (Typ : Entity_Id;
382 Operation : TSS_Name_Type) return Boolean;
383 -- Check whether the named stream operation must be emitted for a given
384 -- type. The rules for inheritance of stream attributes by type extensions
385 -- are enforced by this function. Furthermore, various restrictions prevent
386 -- the generation of these operations, as a useful optimization or for
387 -- certification purposes and to save unnecessary generated code.
389 --------------------------
390 -- Adjust_Discriminants --
391 --------------------------
393 -- This procedure attempts to define subtypes for discriminants that are
394 -- more restrictive than those declared. Such a replacement is possible if
395 -- we can demonstrate that values outside the restricted range would cause
396 -- constraint errors in any case. The advantage of restricting the
397 -- discriminant types in this way is that the maximum size of the variant
398 -- record can be calculated more conservatively.
400 -- An example of a situation in which we can perform this type of
401 -- restriction is the following:
403 -- subtype B is range 1 .. 10;
404 -- type Q is array (B range <>) of Integer;
406 -- type V (N : Natural) is record
407 -- C : Q (1 .. N);
408 -- end record;
410 -- In this situation, we can restrict the upper bound of N to 10, since
411 -- any larger value would cause a constraint error in any case.
413 -- There are many situations in which such restriction is possible, but
414 -- for now, we just look for cases like the above, where the component
415 -- in question is a one dimensional array whose upper bound is one of
416 -- the record discriminants. Also the component must not be part of
417 -- any variant part, since then the component does not always exist.
419 procedure Adjust_Discriminants (Rtype : Entity_Id) is
420 Loc : constant Source_Ptr := Sloc (Rtype);
421 Comp : Entity_Id;
422 Ctyp : Entity_Id;
423 Ityp : Entity_Id;
424 Lo : Node_Id;
425 Hi : Node_Id;
426 P : Node_Id;
427 Loval : Uint;
428 Discr : Entity_Id;
429 Dtyp : Entity_Id;
430 Dhi : Node_Id;
431 Dhiv : Uint;
432 Ahi : Node_Id;
433 Ahiv : Uint;
434 Tnn : Entity_Id;
436 begin
437 Comp := First_Component (Rtype);
438 while Present (Comp) loop
440 -- If our parent is a variant, quit, we do not look at components
441 -- that are in variant parts, because they may not always exist.
443 P := Parent (Comp); -- component declaration
444 P := Parent (P); -- component list
446 exit when Nkind (Parent (P)) = N_Variant;
448 -- We are looking for a one dimensional array type
450 Ctyp := Etype (Comp);
452 if not Is_Array_Type (Ctyp) or else Number_Dimensions (Ctyp) > 1 then
453 goto Continue;
454 end if;
456 -- The lower bound must be constant, and the upper bound is a
457 -- discriminant (which is a discriminant of the current record).
459 Ityp := Etype (First_Index (Ctyp));
460 Lo := Type_Low_Bound (Ityp);
461 Hi := Type_High_Bound (Ityp);
463 if not Compile_Time_Known_Value (Lo)
464 or else Nkind (Hi) /= N_Identifier
465 or else No (Entity (Hi))
466 or else Ekind (Entity (Hi)) /= E_Discriminant
467 then
468 goto Continue;
469 end if;
471 -- We have an array with appropriate bounds
473 Loval := Expr_Value (Lo);
474 Discr := Entity (Hi);
475 Dtyp := Etype (Discr);
477 -- See if the discriminant has a known upper bound
479 Dhi := Type_High_Bound (Dtyp);
481 if not Compile_Time_Known_Value (Dhi) then
482 goto Continue;
483 end if;
485 Dhiv := Expr_Value (Dhi);
487 -- See if base type of component array has known upper bound
489 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
491 if not Compile_Time_Known_Value (Ahi) then
492 goto Continue;
493 end if;
495 Ahiv := Expr_Value (Ahi);
497 -- The condition for doing the restriction is that the high bound
498 -- of the discriminant is greater than the low bound of the array,
499 -- and is also greater than the high bound of the base type index.
501 if Dhiv > Loval and then Dhiv > Ahiv then
503 -- We can reset the upper bound of the discriminant type to
504 -- whichever is larger, the low bound of the component, or
505 -- the high bound of the base type array index.
507 -- We build a subtype that is declared as
509 -- subtype Tnn is discr_type range discr_type'First .. max;
511 -- And insert this declaration into the tree. The type of the
512 -- discriminant is then reset to this more restricted subtype.
514 Tnn := Make_Temporary (Loc, 'T');
516 Insert_Action (Declaration_Node (Rtype),
517 Make_Subtype_Declaration (Loc,
518 Defining_Identifier => Tnn,
519 Subtype_Indication =>
520 Make_Subtype_Indication (Loc,
521 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
522 Constraint =>
523 Make_Range_Constraint (Loc,
524 Range_Expression =>
525 Make_Range (Loc,
526 Low_Bound =>
527 Make_Attribute_Reference (Loc,
528 Attribute_Name => Name_First,
529 Prefix => New_Occurrence_Of (Dtyp, Loc)),
530 High_Bound =>
531 Make_Integer_Literal (Loc,
532 Intval => UI_Max (Loval, Ahiv)))))));
534 Set_Etype (Discr, Tnn);
535 end if;
537 <<Continue>>
538 Next_Component (Comp);
539 end loop;
540 end Adjust_Discriminants;
542 ---------------------------
543 -- Build_Array_Init_Proc --
544 ---------------------------
546 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
547 Comp_Type : constant Entity_Id := Component_Type (A_Type);
548 Body_Stmts : List_Id;
549 Has_Default_Init : Boolean;
550 Index_List : List_Id;
551 Loc : Source_Ptr;
552 Proc_Id : Entity_Id;
554 function Init_Component return List_Id;
555 -- Create one statement to initialize one array component, designated
556 -- by a full set of indexes.
558 function Init_One_Dimension (N : Int) return List_Id;
559 -- Create loop to initialize one dimension of the array. The single
560 -- statement in the loop body initializes the inner dimensions if any,
561 -- or else the single component. Note that this procedure is called
562 -- recursively, with N being the dimension to be initialized. A call
563 -- with N greater than the number of dimensions simply generates the
564 -- component initialization, terminating the recursion.
566 --------------------
567 -- Init_Component --
568 --------------------
570 function Init_Component return List_Id is
571 Comp : Node_Id;
573 begin
574 Comp :=
575 Make_Indexed_Component (Loc,
576 Prefix => Make_Identifier (Loc, Name_uInit),
577 Expressions => Index_List);
579 if Has_Default_Aspect (A_Type) then
580 Set_Assignment_OK (Comp);
581 return New_List (
582 Make_Assignment_Statement (Loc,
583 Name => Comp,
584 Expression =>
585 Convert_To (Comp_Type,
586 Default_Aspect_Component_Value (First_Subtype (A_Type)))));
588 elsif Needs_Simple_Initialization (Comp_Type) then
589 Set_Assignment_OK (Comp);
590 return New_List (
591 Make_Assignment_Statement (Loc,
592 Name => Comp,
593 Expression =>
594 Get_Simple_Init_Val
595 (Comp_Type, Nod, Component_Size (A_Type))));
597 else
598 Clean_Task_Names (Comp_Type, Proc_Id);
599 return
600 Build_Initialization_Call
601 (Loc, Comp, Comp_Type,
602 In_Init_Proc => True,
603 Enclos_Type => A_Type);
604 end if;
605 end Init_Component;
607 ------------------------
608 -- Init_One_Dimension --
609 ------------------------
611 function Init_One_Dimension (N : Int) return List_Id is
612 Index : Entity_Id;
614 begin
615 -- If the component does not need initializing, then there is nothing
616 -- to do here, so we return a null body. This occurs when generating
617 -- the dummy Init_Proc needed for Initialize_Scalars processing.
619 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
620 and then not Needs_Simple_Initialization (Comp_Type)
621 and then not Has_Task (Comp_Type)
622 and then not Has_Default_Aspect (A_Type)
623 then
624 return New_List (Make_Null_Statement (Loc));
626 -- If all dimensions dealt with, we simply initialize the component
628 elsif N > Number_Dimensions (A_Type) then
629 return Init_Component;
631 -- Here we generate the required loop
633 else
634 Index :=
635 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
637 Append (New_Occurrence_Of (Index, Loc), Index_List);
639 return New_List (
640 Make_Implicit_Loop_Statement (Nod,
641 Identifier => Empty,
642 Iteration_Scheme =>
643 Make_Iteration_Scheme (Loc,
644 Loop_Parameter_Specification =>
645 Make_Loop_Parameter_Specification (Loc,
646 Defining_Identifier => Index,
647 Discrete_Subtype_Definition =>
648 Make_Attribute_Reference (Loc,
649 Prefix =>
650 Make_Identifier (Loc, Name_uInit),
651 Attribute_Name => Name_Range,
652 Expressions => New_List (
653 Make_Integer_Literal (Loc, N))))),
654 Statements => Init_One_Dimension (N + 1)));
655 end if;
656 end Init_One_Dimension;
658 -- Start of processing for Build_Array_Init_Proc
660 begin
661 -- The init proc is created when analyzing the freeze node for the type,
662 -- but it properly belongs with the array type declaration. However, if
663 -- the freeze node is for a subtype of a type declared in another unit
664 -- it seems preferable to use the freeze node as the source location of
665 -- the init proc. In any case this is preferable for gcov usage, and
666 -- the Sloc is not otherwise used by the compiler.
668 if In_Open_Scopes (Scope (A_Type)) then
669 Loc := Sloc (A_Type);
670 else
671 Loc := Sloc (Nod);
672 end if;
674 -- Nothing to generate in the following cases:
676 -- 1. Initialization is suppressed for the type
677 -- 2. An initialization already exists for the base type
679 if Initialization_Suppressed (A_Type)
680 or else Present (Base_Init_Proc (A_Type))
681 then
682 return;
683 end if;
685 Index_List := New_List;
687 -- We need an initialization procedure if any of the following is true:
689 -- 1. The component type has an initialization procedure
690 -- 2. The component type needs simple initialization
691 -- 3. Tasks are present
692 -- 4. The type is marked as a public entity
693 -- 5. The array type has a Default_Component_Value aspect
695 -- The reason for the public entity test is to deal properly with the
696 -- Initialize_Scalars pragma. This pragma can be set in the client and
697 -- not in the declaring package, this means the client will make a call
698 -- to the initialization procedure (because one of conditions 1-3 must
699 -- apply in this case), and we must generate a procedure (even if it is
700 -- null) to satisfy the call in this case.
702 -- Exception: do not build an array init_proc for a type whose root
703 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
704 -- is no place to put the code, and in any case we handle initialization
705 -- of such types (in the Initialize_Scalars case, that's the only time
706 -- the issue arises) in a special manner anyway which does not need an
707 -- init_proc.
709 Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type)
710 or else Needs_Simple_Initialization (Comp_Type)
711 or else Has_Task (Comp_Type)
712 or else Has_Default_Aspect (A_Type);
714 if Has_Default_Init
715 or else (not Restriction_Active (No_Initialize_Scalars)
716 and then Is_Public (A_Type)
717 and then not Is_Standard_String_Type (A_Type))
718 then
719 Proc_Id :=
720 Make_Defining_Identifier (Loc,
721 Chars => Make_Init_Proc_Name (A_Type));
723 -- If No_Default_Initialization restriction is active, then we don't
724 -- want to build an init_proc, but we need to mark that an init_proc
725 -- would be needed if this restriction was not active (so that we can
726 -- detect attempts to call it), so set a dummy init_proc in place.
727 -- This is only done though when actual default initialization is
728 -- needed (and not done when only Is_Public is True), since otherwise
729 -- objects such as arrays of scalars could be wrongly flagged as
730 -- violating the restriction.
732 if Restriction_Active (No_Default_Initialization) then
733 if Has_Default_Init then
734 Set_Init_Proc (A_Type, Proc_Id);
735 end if;
737 return;
738 end if;
740 Body_Stmts := Init_One_Dimension (1);
742 Discard_Node (
743 Make_Subprogram_Body (Loc,
744 Specification =>
745 Make_Procedure_Specification (Loc,
746 Defining_Unit_Name => Proc_Id,
747 Parameter_Specifications => Init_Formals (A_Type)),
748 Declarations => New_List,
749 Handled_Statement_Sequence =>
750 Make_Handled_Sequence_Of_Statements (Loc,
751 Statements => Body_Stmts)));
753 Set_Ekind (Proc_Id, E_Procedure);
754 Set_Is_Public (Proc_Id, Is_Public (A_Type));
755 Set_Is_Internal (Proc_Id);
756 Set_Has_Completion (Proc_Id);
758 if not Debug_Generated_Code then
759 Set_Debug_Info_Off (Proc_Id);
760 end if;
762 -- Set Inlined on Init_Proc if it is set on the Init_Proc of the
763 -- component type itself (see also Build_Record_Init_Proc).
765 Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Comp_Type));
767 -- Associate Init_Proc with type, and determine if the procedure
768 -- is null (happens because of the Initialize_Scalars pragma case,
769 -- where we have to generate a null procedure in case it is called
770 -- by a client with Initialize_Scalars set). Such procedures have
771 -- to be generated, but do not have to be called, so we mark them
772 -- as null to suppress the call.
774 Set_Init_Proc (A_Type, Proc_Id);
776 if List_Length (Body_Stmts) = 1
778 -- We must skip SCIL nodes because they may have been added to this
779 -- list by Insert_Actions.
781 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
782 then
783 Set_Is_Null_Init_Proc (Proc_Id);
785 else
786 -- Try to build a static aggregate to statically initialize
787 -- objects of the type. This can only be done for constrained
788 -- one-dimensional arrays with static bounds.
790 Set_Static_Initialization
791 (Proc_Id,
792 Build_Equivalent_Array_Aggregate (First_Subtype (A_Type)));
793 end if;
794 end if;
795 end Build_Array_Init_Proc;
797 --------------------------------
798 -- Build_Array_Invariant_Proc --
799 --------------------------------
801 function Build_Array_Invariant_Proc
802 (A_Type : Entity_Id;
803 Nod : Node_Id) return Node_Id
805 Loc : constant Source_Ptr := Sloc (Nod);
807 Object_Name : constant Name_Id := New_Internal_Name ('I');
808 -- Name for argument of invariant procedure
810 Object_Entity : constant Node_Id :=
811 Make_Defining_Identifier (Loc, Object_Name);
812 -- The procedure declaration entity for the argument
814 Body_Stmts : List_Id;
815 Index_List : List_Id;
816 Proc_Id : Entity_Id;
817 Proc_Body : Node_Id;
819 function Build_Component_Invariant_Call return Node_Id;
820 -- Create one statement to verify invariant on one array component,
821 -- designated by a full set of indexes.
823 function Check_One_Dimension (N : Int) return List_Id;
824 -- Create loop to check on one dimension of the array. The single
825 -- statement in the loop body checks the inner dimensions if any, or
826 -- else a single component. This procedure is called recursively, with
827 -- N being the dimension to be initialized. A call with N greater than
828 -- the number of dimensions generates the component initialization
829 -- and terminates the recursion.
831 ------------------------------------
832 -- Build_Component_Invariant_Call --
833 ------------------------------------
835 function Build_Component_Invariant_Call return Node_Id is
836 Comp : Node_Id;
837 begin
838 Comp :=
839 Make_Indexed_Component (Loc,
840 Prefix => New_Occurrence_Of (Object_Entity, Loc),
841 Expressions => Index_List);
842 return
843 Make_Procedure_Call_Statement (Loc,
844 Name =>
845 New_Occurrence_Of
846 (Invariant_Procedure (Component_Type (A_Type)), Loc),
847 Parameter_Associations => New_List (Comp));
848 end Build_Component_Invariant_Call;
850 -------------------------
851 -- Check_One_Dimension --
852 -------------------------
854 function Check_One_Dimension (N : Int) return List_Id is
855 Index : Entity_Id;
857 begin
858 -- If all dimensions dealt with, we simply check invariant of the
859 -- component.
861 if N > Number_Dimensions (A_Type) then
862 return New_List (Build_Component_Invariant_Call);
864 -- Else generate one loop and recurse
866 else
867 Index :=
868 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
870 Append (New_Occurrence_Of (Index, Loc), Index_List);
872 return New_List (
873 Make_Implicit_Loop_Statement (Nod,
874 Identifier => Empty,
875 Iteration_Scheme =>
876 Make_Iteration_Scheme (Loc,
877 Loop_Parameter_Specification =>
878 Make_Loop_Parameter_Specification (Loc,
879 Defining_Identifier => Index,
880 Discrete_Subtype_Definition =>
881 Make_Attribute_Reference (Loc,
882 Prefix =>
883 New_Occurrence_Of (Object_Entity, Loc),
884 Attribute_Name => Name_Range,
885 Expressions => New_List (
886 Make_Integer_Literal (Loc, N))))),
887 Statements => Check_One_Dimension (N + 1)));
888 end if;
889 end Check_One_Dimension;
891 -- Start of processing for Build_Array_Invariant_Proc
893 begin
894 Index_List := New_List;
896 Proc_Id :=
897 Make_Defining_Identifier (Loc,
898 Chars => New_External_Name (Chars (A_Type), "CInvariant"));
900 Body_Stmts := Check_One_Dimension (1);
902 Proc_Body :=
903 Make_Subprogram_Body (Loc,
904 Specification =>
905 Make_Procedure_Specification (Loc,
906 Defining_Unit_Name => Proc_Id,
907 Parameter_Specifications => New_List (
908 Make_Parameter_Specification (Loc,
909 Defining_Identifier => Object_Entity,
910 Parameter_Type => New_Occurrence_Of (A_Type, Loc)))),
912 Declarations => Empty_List,
913 Handled_Statement_Sequence =>
914 Make_Handled_Sequence_Of_Statements (Loc,
915 Statements => Body_Stmts));
917 Set_Ekind (Proc_Id, E_Procedure);
918 Set_Is_Public (Proc_Id, Is_Public (A_Type));
919 Set_Is_Internal (Proc_Id);
920 Set_Has_Completion (Proc_Id);
922 if not Debug_Generated_Code then
923 Set_Debug_Info_Off (Proc_Id);
924 end if;
926 return Proc_Body;
927 end Build_Array_Invariant_Proc;
929 --------------------------------
930 -- Build_Discr_Checking_Funcs --
931 --------------------------------
933 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
934 Rec_Id : Entity_Id;
935 Loc : Source_Ptr;
936 Enclosing_Func_Id : Entity_Id;
937 Sequence : Nat := 1;
938 Type_Def : Node_Id;
939 V : Node_Id;
941 function Build_Case_Statement
942 (Case_Id : Entity_Id;
943 Variant : Node_Id) return Node_Id;
944 -- Build a case statement containing only two alternatives. The first
945 -- alternative corresponds exactly to the discrete choices given on the
946 -- variant with contains the components that we are generating the
947 -- checks for. If the discriminant is one of these return False. The
948 -- second alternative is an OTHERS choice that will return True
949 -- indicating the discriminant did not match.
951 function Build_Dcheck_Function
952 (Case_Id : Entity_Id;
953 Variant : Node_Id) return Entity_Id;
954 -- Build the discriminant checking function for a given variant
956 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
957 -- Builds the discriminant checking function for each variant of the
958 -- given variant part of the record type.
960 --------------------------
961 -- Build_Case_Statement --
962 --------------------------
964 function Build_Case_Statement
965 (Case_Id : Entity_Id;
966 Variant : Node_Id) return Node_Id
968 Alt_List : constant List_Id := New_List;
969 Actuals_List : List_Id;
970 Case_Node : Node_Id;
971 Case_Alt_Node : Node_Id;
972 Choice : Node_Id;
973 Choice_List : List_Id;
974 D : Entity_Id;
975 Return_Node : Node_Id;
977 begin
978 Case_Node := New_Node (N_Case_Statement, Loc);
980 -- Replace the discriminant which controls the variant with the name
981 -- of the formal of the checking function.
983 Set_Expression (Case_Node, Make_Identifier (Loc, Chars (Case_Id)));
985 Choice := First (Discrete_Choices (Variant));
987 if Nkind (Choice) = N_Others_Choice then
988 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
989 else
990 Choice_List := New_Copy_List (Discrete_Choices (Variant));
991 end if;
993 if not Is_Empty_List (Choice_List) then
994 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
995 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
997 -- In case this is a nested variant, we need to return the result
998 -- of the discriminant checking function for the immediately
999 -- enclosing variant.
1001 if Present (Enclosing_Func_Id) then
1002 Actuals_List := New_List;
1004 D := First_Discriminant (Rec_Id);
1005 while Present (D) loop
1006 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
1007 Next_Discriminant (D);
1008 end loop;
1010 Return_Node :=
1011 Make_Simple_Return_Statement (Loc,
1012 Expression =>
1013 Make_Function_Call (Loc,
1014 Name =>
1015 New_Occurrence_Of (Enclosing_Func_Id, Loc),
1016 Parameter_Associations =>
1017 Actuals_List));
1019 else
1020 Return_Node :=
1021 Make_Simple_Return_Statement (Loc,
1022 Expression =>
1023 New_Occurrence_Of (Standard_False, Loc));
1024 end if;
1026 Set_Statements (Case_Alt_Node, New_List (Return_Node));
1027 Append (Case_Alt_Node, Alt_List);
1028 end if;
1030 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
1031 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
1032 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
1034 Return_Node :=
1035 Make_Simple_Return_Statement (Loc,
1036 Expression =>
1037 New_Occurrence_Of (Standard_True, Loc));
1039 Set_Statements (Case_Alt_Node, New_List (Return_Node));
1040 Append (Case_Alt_Node, Alt_List);
1042 Set_Alternatives (Case_Node, Alt_List);
1043 return Case_Node;
1044 end Build_Case_Statement;
1046 ---------------------------
1047 -- Build_Dcheck_Function --
1048 ---------------------------
1050 function Build_Dcheck_Function
1051 (Case_Id : Entity_Id;
1052 Variant : Node_Id) return Entity_Id
1054 Body_Node : Node_Id;
1055 Func_Id : Entity_Id;
1056 Parameter_List : List_Id;
1057 Spec_Node : Node_Id;
1059 begin
1060 Body_Node := New_Node (N_Subprogram_Body, Loc);
1061 Sequence := Sequence + 1;
1063 Func_Id :=
1064 Make_Defining_Identifier (Loc,
1065 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
1066 Set_Is_Discriminant_Check_Function (Func_Id);
1068 Spec_Node := New_Node (N_Function_Specification, Loc);
1069 Set_Defining_Unit_Name (Spec_Node, Func_Id);
1071 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
1073 Set_Parameter_Specifications (Spec_Node, Parameter_List);
1074 Set_Result_Definition (Spec_Node,
1075 New_Occurrence_Of (Standard_Boolean, Loc));
1076 Set_Specification (Body_Node, Spec_Node);
1077 Set_Declarations (Body_Node, New_List);
1079 Set_Handled_Statement_Sequence (Body_Node,
1080 Make_Handled_Sequence_Of_Statements (Loc,
1081 Statements => New_List (
1082 Build_Case_Statement (Case_Id, Variant))));
1084 Set_Ekind (Func_Id, E_Function);
1085 Set_Mechanism (Func_Id, Default_Mechanism);
1086 Set_Is_Inlined (Func_Id, True);
1087 Set_Is_Pure (Func_Id, True);
1088 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
1089 Set_Is_Internal (Func_Id, True);
1091 if not Debug_Generated_Code then
1092 Set_Debug_Info_Off (Func_Id);
1093 end if;
1095 Analyze (Body_Node);
1097 Append_Freeze_Action (Rec_Id, Body_Node);
1098 Set_Dcheck_Function (Variant, Func_Id);
1099 return Func_Id;
1100 end Build_Dcheck_Function;
1102 ----------------------------
1103 -- Build_Dcheck_Functions --
1104 ----------------------------
1106 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
1107 Component_List_Node : Node_Id;
1108 Decl : Entity_Id;
1109 Discr_Name : Entity_Id;
1110 Func_Id : Entity_Id;
1111 Variant : Node_Id;
1112 Saved_Enclosing_Func_Id : Entity_Id;
1114 begin
1115 -- Build the discriminant-checking function for each variant, and
1116 -- label all components of that variant with the function's name.
1117 -- We only Generate a discriminant-checking function when the
1118 -- variant is not empty, to prevent the creation of dead code.
1119 -- The exception to that is when Frontend_Layout_On_Target is set,
1120 -- because the variant record size function generated in package
1121 -- Layout needs to generate calls to all discriminant-checking
1122 -- functions, including those for empty variants.
1124 Discr_Name := Entity (Name (Variant_Part_Node));
1125 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
1127 while Present (Variant) loop
1128 Component_List_Node := Component_List (Variant);
1130 if not Null_Present (Component_List_Node)
1131 or else Frontend_Layout_On_Target
1132 then
1133 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
1135 Decl :=
1136 First_Non_Pragma (Component_Items (Component_List_Node));
1137 while Present (Decl) loop
1138 Set_Discriminant_Checking_Func
1139 (Defining_Identifier (Decl), Func_Id);
1140 Next_Non_Pragma (Decl);
1141 end loop;
1143 if Present (Variant_Part (Component_List_Node)) then
1144 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
1145 Enclosing_Func_Id := Func_Id;
1146 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
1147 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
1148 end if;
1149 end if;
1151 Next_Non_Pragma (Variant);
1152 end loop;
1153 end Build_Dcheck_Functions;
1155 -- Start of processing for Build_Discr_Checking_Funcs
1157 begin
1158 -- Only build if not done already
1160 if not Discr_Check_Funcs_Built (N) then
1161 Type_Def := Type_Definition (N);
1163 if Nkind (Type_Def) = N_Record_Definition then
1164 if No (Component_List (Type_Def)) then -- null record.
1165 return;
1166 else
1167 V := Variant_Part (Component_List (Type_Def));
1168 end if;
1170 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
1171 if No (Component_List (Record_Extension_Part (Type_Def))) then
1172 return;
1173 else
1174 V := Variant_Part
1175 (Component_List (Record_Extension_Part (Type_Def)));
1176 end if;
1177 end if;
1179 Rec_Id := Defining_Identifier (N);
1181 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
1182 Loc := Sloc (N);
1183 Enclosing_Func_Id := Empty;
1184 Build_Dcheck_Functions (V);
1185 end if;
1187 Set_Discr_Check_Funcs_Built (N);
1188 end if;
1189 end Build_Discr_Checking_Funcs;
1191 --------------------------------
1192 -- Build_Discriminant_Formals --
1193 --------------------------------
1195 function Build_Discriminant_Formals
1196 (Rec_Id : Entity_Id;
1197 Use_Dl : Boolean) return List_Id
1199 Loc : Source_Ptr := Sloc (Rec_Id);
1200 Parameter_List : constant List_Id := New_List;
1201 D : Entity_Id;
1202 Formal : Entity_Id;
1203 Formal_Type : Entity_Id;
1204 Param_Spec_Node : Node_Id;
1206 begin
1207 if Has_Discriminants (Rec_Id) then
1208 D := First_Discriminant (Rec_Id);
1209 while Present (D) loop
1210 Loc := Sloc (D);
1212 if Use_Dl then
1213 Formal := Discriminal (D);
1214 Formal_Type := Etype (Formal);
1215 else
1216 Formal := Make_Defining_Identifier (Loc, Chars (D));
1217 Formal_Type := Etype (D);
1218 end if;
1220 Param_Spec_Node :=
1221 Make_Parameter_Specification (Loc,
1222 Defining_Identifier => Formal,
1223 Parameter_Type =>
1224 New_Occurrence_Of (Formal_Type, Loc));
1225 Append (Param_Spec_Node, Parameter_List);
1226 Next_Discriminant (D);
1227 end loop;
1228 end if;
1230 return Parameter_List;
1231 end Build_Discriminant_Formals;
1233 --------------------------------------
1234 -- Build_Equivalent_Array_Aggregate --
1235 --------------------------------------
1237 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is
1238 Loc : constant Source_Ptr := Sloc (T);
1239 Comp_Type : constant Entity_Id := Component_Type (T);
1240 Index_Type : constant Entity_Id := Etype (First_Index (T));
1241 Proc : constant Entity_Id := Base_Init_Proc (T);
1242 Lo, Hi : Node_Id;
1243 Aggr : Node_Id;
1244 Expr : Node_Id;
1246 begin
1247 if not Is_Constrained (T)
1248 or else Number_Dimensions (T) > 1
1249 or else No (Proc)
1250 then
1251 Initialization_Warning (T);
1252 return Empty;
1253 end if;
1255 Lo := Type_Low_Bound (Index_Type);
1256 Hi := Type_High_Bound (Index_Type);
1258 if not Compile_Time_Known_Value (Lo)
1259 or else not Compile_Time_Known_Value (Hi)
1260 then
1261 Initialization_Warning (T);
1262 return Empty;
1263 end if;
1265 if Is_Record_Type (Comp_Type)
1266 and then Present (Base_Init_Proc (Comp_Type))
1267 then
1268 Expr := Static_Initialization (Base_Init_Proc (Comp_Type));
1270 if No (Expr) then
1271 Initialization_Warning (T);
1272 return Empty;
1273 end if;
1275 else
1276 Initialization_Warning (T);
1277 return Empty;
1278 end if;
1280 Aggr := Make_Aggregate (Loc, No_List, New_List);
1281 Set_Etype (Aggr, T);
1282 Set_Aggregate_Bounds (Aggr,
1283 Make_Range (Loc,
1284 Low_Bound => New_Copy (Lo),
1285 High_Bound => New_Copy (Hi)));
1286 Set_Parent (Aggr, Parent (Proc));
1288 Append_To (Component_Associations (Aggr),
1289 Make_Component_Association (Loc,
1290 Choices =>
1291 New_List (
1292 Make_Range (Loc,
1293 Low_Bound => New_Copy (Lo),
1294 High_Bound => New_Copy (Hi))),
1295 Expression => Expr));
1297 if Static_Array_Aggregate (Aggr) then
1298 return Aggr;
1299 else
1300 Initialization_Warning (T);
1301 return Empty;
1302 end if;
1303 end Build_Equivalent_Array_Aggregate;
1305 ---------------------------------------
1306 -- Build_Equivalent_Record_Aggregate --
1307 ---------------------------------------
1309 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is
1310 Agg : Node_Id;
1311 Comp : Entity_Id;
1312 Comp_Type : Entity_Id;
1314 -- Start of processing for Build_Equivalent_Record_Aggregate
1316 begin
1317 if not Is_Record_Type (T)
1318 or else Has_Discriminants (T)
1319 or else Is_Limited_Type (T)
1320 or else Has_Non_Standard_Rep (T)
1321 then
1322 Initialization_Warning (T);
1323 return Empty;
1324 end if;
1326 Comp := First_Component (T);
1328 -- A null record needs no warning
1330 if No (Comp) then
1331 return Empty;
1332 end if;
1334 while Present (Comp) loop
1336 -- Array components are acceptable if initialized by a positional
1337 -- aggregate with static components.
1339 if Is_Array_Type (Etype (Comp)) then
1340 Comp_Type := Component_Type (Etype (Comp));
1342 if Nkind (Parent (Comp)) /= N_Component_Declaration
1343 or else No (Expression (Parent (Comp)))
1344 or else Nkind (Expression (Parent (Comp))) /= N_Aggregate
1345 then
1346 Initialization_Warning (T);
1347 return Empty;
1349 elsif Is_Scalar_Type (Component_Type (Etype (Comp)))
1350 and then
1351 (not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1352 or else
1353 not Compile_Time_Known_Value (Type_High_Bound (Comp_Type)))
1354 then
1355 Initialization_Warning (T);
1356 return Empty;
1358 elsif
1359 not Static_Array_Aggregate (Expression (Parent (Comp)))
1360 then
1361 Initialization_Warning (T);
1362 return Empty;
1363 end if;
1365 elsif Is_Scalar_Type (Etype (Comp)) then
1366 Comp_Type := Etype (Comp);
1368 if Nkind (Parent (Comp)) /= N_Component_Declaration
1369 or else No (Expression (Parent (Comp)))
1370 or else not Compile_Time_Known_Value (Expression (Parent (Comp)))
1371 or else not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1372 or else not
1373 Compile_Time_Known_Value (Type_High_Bound (Comp_Type))
1374 then
1375 Initialization_Warning (T);
1376 return Empty;
1377 end if;
1379 -- For now, other types are excluded
1381 else
1382 Initialization_Warning (T);
1383 return Empty;
1384 end if;
1386 Next_Component (Comp);
1387 end loop;
1389 -- All components have static initialization. Build positional aggregate
1390 -- from the given expressions or defaults.
1392 Agg := Make_Aggregate (Sloc (T), New_List, New_List);
1393 Set_Parent (Agg, Parent (T));
1395 Comp := First_Component (T);
1396 while Present (Comp) loop
1397 Append
1398 (New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg));
1399 Next_Component (Comp);
1400 end loop;
1402 Analyze_And_Resolve (Agg, T);
1403 return Agg;
1404 end Build_Equivalent_Record_Aggregate;
1406 -------------------------------
1407 -- Build_Initialization_Call --
1408 -------------------------------
1410 -- References to a discriminant inside the record type declaration can
1411 -- appear either in the subtype_indication to constrain a record or an
1412 -- array, or as part of a larger expression given for the initial value
1413 -- of a component. In both of these cases N appears in the record
1414 -- initialization procedure and needs to be replaced by the formal
1415 -- parameter of the initialization procedure which corresponds to that
1416 -- discriminant.
1418 -- In the example below, references to discriminants D1 and D2 in proc_1
1419 -- are replaced by references to formals with the same name
1420 -- (discriminals)
1422 -- A similar replacement is done for calls to any record initialization
1423 -- procedure for any components that are themselves of a record type.
1425 -- type R (D1, D2 : Integer) is record
1426 -- X : Integer := F * D1;
1427 -- Y : Integer := F * D2;
1428 -- end record;
1430 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1431 -- begin
1432 -- Out_2.D1 := D1;
1433 -- Out_2.D2 := D2;
1434 -- Out_2.X := F * D1;
1435 -- Out_2.Y := F * D2;
1436 -- end;
1438 function Build_Initialization_Call
1439 (Loc : Source_Ptr;
1440 Id_Ref : Node_Id;
1441 Typ : Entity_Id;
1442 In_Init_Proc : Boolean := False;
1443 Enclos_Type : Entity_Id := Empty;
1444 Discr_Map : Elist_Id := New_Elmt_List;
1445 With_Default_Init : Boolean := False;
1446 Constructor_Ref : Node_Id := Empty) return List_Id
1448 Res : constant List_Id := New_List;
1449 Arg : Node_Id;
1450 Args : List_Id;
1451 Decls : List_Id;
1452 Decl : Node_Id;
1453 Discr : Entity_Id;
1454 First_Arg : Node_Id;
1455 Full_Init_Type : Entity_Id;
1456 Full_Type : Entity_Id;
1457 Init_Type : Entity_Id;
1458 Proc : Entity_Id;
1460 begin
1461 pragma Assert (Constructor_Ref = Empty
1462 or else Is_CPP_Constructor_Call (Constructor_Ref));
1464 if No (Constructor_Ref) then
1465 Proc := Base_Init_Proc (Typ);
1466 else
1467 Proc := Base_Init_Proc (Typ, Entity (Name (Constructor_Ref)));
1468 end if;
1470 pragma Assert (Present (Proc));
1471 Init_Type := Etype (First_Formal (Proc));
1472 Full_Init_Type := Underlying_Type (Init_Type);
1474 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1475 -- is active (in which case we make the call anyway, since in the
1476 -- actual compiled client it may be non null).
1478 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1479 return Empty_List;
1480 end if;
1482 -- Use the [underlying] full view when dealing with a private type. This
1483 -- may require several steps depending on derivations.
1485 Full_Type := Typ;
1486 loop
1487 if Is_Private_Type (Full_Type) then
1488 if Present (Full_View (Full_Type)) then
1489 Full_Type := Full_View (Full_Type);
1491 elsif Present (Underlying_Full_View (Full_Type)) then
1492 Full_Type := Underlying_Full_View (Full_Type);
1494 -- When a private type acts as a generic actual and lacks a full
1495 -- view, use the base type.
1497 elsif Is_Generic_Actual_Type (Full_Type) then
1498 Full_Type := Base_Type (Full_Type);
1500 -- The loop has recovered the [underlying] full view, stop the
1501 -- traversal.
1503 else
1504 exit;
1505 end if;
1507 -- The type is not private, nothing to do
1509 else
1510 exit;
1511 end if;
1512 end loop;
1514 -- If Typ is derived, the procedure is the initialization procedure for
1515 -- the root type. Wrap the argument in an conversion to make it type
1516 -- honest. Actually it isn't quite type honest, because there can be
1517 -- conflicts of views in the private type case. That is why we set
1518 -- Conversion_OK in the conversion node.
1520 if (Is_Record_Type (Typ)
1521 or else Is_Array_Type (Typ)
1522 or else Is_Private_Type (Typ))
1523 and then Init_Type /= Base_Type (Typ)
1524 then
1525 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1526 Set_Etype (First_Arg, Init_Type);
1528 else
1529 First_Arg := Id_Ref;
1530 end if;
1532 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1534 -- In the tasks case, add _Master as the value of the _Master parameter
1535 -- and _Chain as the value of the _Chain parameter. At the outer level,
1536 -- these will be variables holding the corresponding values obtained
1537 -- from GNARL. At inner levels, they will be the parameters passed down
1538 -- through the outer routines.
1540 if Has_Task (Full_Type) then
1541 if Restriction_Active (No_Task_Hierarchy) then
1542 Append_To (Args,
1543 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
1544 else
1545 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1546 end if;
1548 -- Add _Chain (not done for sequential elaboration policy, see
1549 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1551 if Partition_Elaboration_Policy /= 'S' then
1552 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1553 end if;
1555 -- Ada 2005 (AI-287): In case of default initialized components
1556 -- with tasks, we generate a null string actual parameter.
1557 -- This is just a workaround that must be improved later???
1559 if With_Default_Init then
1560 Append_To (Args,
1561 Make_String_Literal (Loc,
1562 Strval => ""));
1564 else
1565 Decls :=
1566 Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
1567 Decl := Last (Decls);
1569 Append_To (Args,
1570 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1571 Append_List (Decls, Res);
1572 end if;
1574 else
1575 Decls := No_List;
1576 Decl := Empty;
1577 end if;
1579 -- Add discriminant values if discriminants are present
1581 if Has_Discriminants (Full_Init_Type) then
1582 Discr := First_Discriminant (Full_Init_Type);
1583 while Present (Discr) loop
1585 -- If this is a discriminated concurrent type, the init_proc
1586 -- for the corresponding record is being called. Use that type
1587 -- directly to find the discriminant value, to handle properly
1588 -- intervening renamed discriminants.
1590 declare
1591 T : Entity_Id := Full_Type;
1593 begin
1594 if Is_Protected_Type (T) then
1595 T := Corresponding_Record_Type (T);
1596 end if;
1598 Arg :=
1599 Get_Discriminant_Value (
1600 Discr,
1602 Discriminant_Constraint (Full_Type));
1603 end;
1605 -- If the target has access discriminants, and is constrained by
1606 -- an access to the enclosing construct, i.e. a current instance,
1607 -- replace the reference to the type by a reference to the object.
1609 if Nkind (Arg) = N_Attribute_Reference
1610 and then Is_Access_Type (Etype (Arg))
1611 and then Is_Entity_Name (Prefix (Arg))
1612 and then Is_Type (Entity (Prefix (Arg)))
1613 then
1614 Arg :=
1615 Make_Attribute_Reference (Loc,
1616 Prefix => New_Copy (Prefix (Id_Ref)),
1617 Attribute_Name => Name_Unrestricted_Access);
1619 elsif In_Init_Proc then
1621 -- Replace any possible references to the discriminant in the
1622 -- call to the record initialization procedure with references
1623 -- to the appropriate formal parameter.
1625 if Nkind (Arg) = N_Identifier
1626 and then Ekind (Entity (Arg)) = E_Discriminant
1627 then
1628 Arg := New_Occurrence_Of (Discriminal (Entity (Arg)), Loc);
1630 -- Otherwise make a copy of the default expression. Note that
1631 -- we use the current Sloc for this, because we do not want the
1632 -- call to appear to be at the declaration point. Within the
1633 -- expression, replace discriminants with their discriminals.
1635 else
1636 Arg :=
1637 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1638 end if;
1640 else
1641 if Is_Constrained (Full_Type) then
1642 Arg := Duplicate_Subexpr_No_Checks (Arg);
1643 else
1644 -- The constraints come from the discriminant default exps,
1645 -- they must be reevaluated, so we use New_Copy_Tree but we
1646 -- ensure the proper Sloc (for any embedded calls).
1648 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1649 end if;
1650 end if;
1652 -- Ada 2005 (AI-287): In case of default initialized components,
1653 -- if the component is constrained with a discriminant of the
1654 -- enclosing type, we need to generate the corresponding selected
1655 -- component node to access the discriminant value. In other cases
1656 -- this is not required, either because we are inside the init
1657 -- proc and we use the corresponding formal, or else because the
1658 -- component is constrained by an expression.
1660 if With_Default_Init
1661 and then Nkind (Id_Ref) = N_Selected_Component
1662 and then Nkind (Arg) = N_Identifier
1663 and then Ekind (Entity (Arg)) = E_Discriminant
1664 then
1665 Append_To (Args,
1666 Make_Selected_Component (Loc,
1667 Prefix => New_Copy_Tree (Prefix (Id_Ref)),
1668 Selector_Name => Arg));
1669 else
1670 Append_To (Args, Arg);
1671 end if;
1673 Next_Discriminant (Discr);
1674 end loop;
1675 end if;
1677 -- If this is a call to initialize the parent component of a derived
1678 -- tagged type, indicate that the tag should not be set in the parent.
1680 if Is_Tagged_Type (Full_Init_Type)
1681 and then not Is_CPP_Class (Full_Init_Type)
1682 and then Nkind (Id_Ref) = N_Selected_Component
1683 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1684 then
1685 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1687 elsif Present (Constructor_Ref) then
1688 Append_List_To (Args,
1689 New_Copy_List (Parameter_Associations (Constructor_Ref)));
1690 end if;
1692 Append_To (Res,
1693 Make_Procedure_Call_Statement (Loc,
1694 Name => New_Occurrence_Of (Proc, Loc),
1695 Parameter_Associations => Args));
1697 if Needs_Finalization (Typ)
1698 and then Nkind (Id_Ref) = N_Selected_Component
1699 then
1700 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1701 Append_To (Res,
1702 Make_Init_Call
1703 (Obj_Ref => New_Copy_Tree (First_Arg),
1704 Typ => Typ));
1705 end if;
1706 end if;
1708 return Res;
1710 exception
1711 when RE_Not_Available =>
1712 return Empty_List;
1713 end Build_Initialization_Call;
1715 ----------------------------
1716 -- Build_Record_Init_Proc --
1717 ----------------------------
1719 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id) is
1720 Decls : constant List_Id := New_List;
1721 Discr_Map : constant Elist_Id := New_Elmt_List;
1722 Loc : constant Source_Ptr := Sloc (Rec_Ent);
1723 Counter : Nat := 0;
1724 Proc_Id : Entity_Id;
1725 Rec_Type : Entity_Id;
1726 Set_Tag : Entity_Id := Empty;
1728 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1729 -- Build an assignment statement which assigns the default expression
1730 -- to its corresponding record component if defined. The left hand side
1731 -- of the assignment is marked Assignment_OK so that initialization of
1732 -- limited private records works correctly. This routine may also build
1733 -- an adjustment call if the component is controlled.
1735 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1736 -- If the record has discriminants, add assignment statements to
1737 -- Statement_List to initialize the discriminant values from the
1738 -- arguments of the initialization procedure.
1740 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1741 -- Build a list representing a sequence of statements which initialize
1742 -- components of the given component list. This may involve building
1743 -- case statements for the variant parts. Append any locally declared
1744 -- objects on list Decls.
1746 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
1747 -- Given an untagged type-derivation that declares discriminants, e.g.
1749 -- type R (R1, R2 : Integer) is record ... end record;
1750 -- type D (D1 : Integer) is new R (1, D1);
1752 -- we make the _init_proc of D be
1754 -- procedure _init_proc (X : D; D1 : Integer) is
1755 -- begin
1756 -- _init_proc (R (X), 1, D1);
1757 -- end _init_proc;
1759 -- This function builds the call statement in this _init_proc.
1761 procedure Build_CPP_Init_Procedure;
1762 -- Build the tree corresponding to the procedure specification and body
1763 -- of the IC procedure that initializes the C++ part of the dispatch
1764 -- table of an Ada tagged type that is a derivation of a CPP type.
1765 -- Install it as the CPP_Init TSS.
1767 procedure Build_Init_Procedure;
1768 -- Build the tree corresponding to the procedure specification and body
1769 -- of the initialization procedure and install it as the _init TSS.
1771 procedure Build_Offset_To_Top_Functions;
1772 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1773 -- and body of Offset_To_Top, a function used in conjuction with types
1774 -- having secondary dispatch tables.
1776 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
1777 -- Add range checks to components of discriminated records. S is a
1778 -- subtype indication of a record component. Check_List is a list
1779 -- to which the check actions are appended.
1781 function Component_Needs_Simple_Initialization
1782 (T : Entity_Id) return Boolean;
1783 -- Determine if a component needs simple initialization, given its type
1784 -- T. This routine is the same as Needs_Simple_Initialization except for
1785 -- components of type Tag and Interface_Tag. These two access types do
1786 -- not require initialization since they are explicitly initialized by
1787 -- other means.
1789 function Parent_Subtype_Renaming_Discrims return Boolean;
1790 -- Returns True for base types N that rename discriminants, else False
1792 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1793 -- Determine whether a record initialization procedure needs to be
1794 -- generated for the given record type.
1796 ----------------------
1797 -- Build_Assignment --
1798 ----------------------
1800 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1801 N_Loc : constant Source_Ptr := Sloc (N);
1802 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1803 Exp : Node_Id := N;
1804 Kind : Node_Kind := Nkind (N);
1805 Lhs : Node_Id;
1806 Res : List_Id;
1808 begin
1809 Lhs :=
1810 Make_Selected_Component (N_Loc,
1811 Prefix => Make_Identifier (Loc, Name_uInit),
1812 Selector_Name => New_Occurrence_Of (Id, N_Loc));
1813 Set_Assignment_OK (Lhs);
1815 -- Case of an access attribute applied to the current instance.
1816 -- Replace the reference to the type by a reference to the actual
1817 -- object. (Note that this handles the case of the top level of
1818 -- the expression being given by such an attribute, but does not
1819 -- cover uses nested within an initial value expression. Nested
1820 -- uses are unlikely to occur in practice, but are theoretically
1821 -- possible.) It is not clear how to handle them without fully
1822 -- traversing the expression. ???
1824 if Kind = N_Attribute_Reference
1825 and then Nam_In (Attribute_Name (N), Name_Unchecked_Access,
1826 Name_Unrestricted_Access)
1827 and then Is_Entity_Name (Prefix (N))
1828 and then Is_Type (Entity (Prefix (N)))
1829 and then Entity (Prefix (N)) = Rec_Type
1830 then
1831 Exp :=
1832 Make_Attribute_Reference (N_Loc,
1833 Prefix =>
1834 Make_Identifier (N_Loc, Name_uInit),
1835 Attribute_Name => Name_Unrestricted_Access);
1836 end if;
1838 -- Take a copy of Exp to ensure that later copies of this component
1839 -- declaration in derived types see the original tree, not a node
1840 -- rewritten during expansion of the init_proc. If the copy contains
1841 -- itypes, the scope of the new itypes is the init_proc being built.
1843 Exp := New_Copy_Tree (Exp, New_Scope => Proc_Id);
1845 Res := New_List (
1846 Make_Assignment_Statement (Loc,
1847 Name => Lhs,
1848 Expression => Exp));
1850 Set_No_Ctrl_Actions (First (Res));
1852 -- Adjust the tag if tagged (because of possible view conversions).
1853 -- Suppress the tag adjustment when not Tagged_Type_Expansion because
1854 -- tags are represented implicitly in objects.
1856 if Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
1857 Append_To (Res,
1858 Make_Assignment_Statement (N_Loc,
1859 Name =>
1860 Make_Selected_Component (N_Loc,
1861 Prefix =>
1862 New_Copy_Tree (Lhs, New_Scope => Proc_Id),
1863 Selector_Name =>
1864 New_Occurrence_Of (First_Tag_Component (Typ), N_Loc)),
1866 Expression =>
1867 Unchecked_Convert_To (RTE (RE_Tag),
1868 New_Occurrence_Of
1869 (Node
1870 (First_Elmt
1871 (Access_Disp_Table (Underlying_Type (Typ)))),
1872 N_Loc))));
1873 end if;
1875 -- Adjust the component if controlled except if it is an aggregate
1876 -- that will be expanded inline.
1878 if Kind = N_Qualified_Expression then
1879 Kind := Nkind (Expression (N));
1880 end if;
1882 if Needs_Finalization (Typ)
1883 and then not (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate))
1884 and then not Is_Limited_View (Typ)
1885 then
1886 Append_To (Res,
1887 Make_Adjust_Call
1888 (Obj_Ref => New_Copy_Tree (Lhs),
1889 Typ => Etype (Id)));
1890 end if;
1892 return Res;
1894 exception
1895 when RE_Not_Available =>
1896 return Empty_List;
1897 end Build_Assignment;
1899 ------------------------------------
1900 -- Build_Discriminant_Assignments --
1901 ------------------------------------
1903 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1904 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1905 D : Entity_Id;
1906 D_Loc : Source_Ptr;
1908 begin
1909 if Has_Discriminants (Rec_Type)
1910 and then not Is_Unchecked_Union (Rec_Type)
1911 then
1912 D := First_Discriminant (Rec_Type);
1913 while Present (D) loop
1915 -- Don't generate the assignment for discriminants in derived
1916 -- tagged types if the discriminant is a renaming of some
1917 -- ancestor discriminant. This initialization will be done
1918 -- when initializing the _parent field of the derived record.
1920 if Is_Tagged
1921 and then Present (Corresponding_Discriminant (D))
1922 then
1923 null;
1925 else
1926 D_Loc := Sloc (D);
1927 Append_List_To (Statement_List,
1928 Build_Assignment (D,
1929 New_Occurrence_Of (Discriminal (D), D_Loc)));
1930 end if;
1932 Next_Discriminant (D);
1933 end loop;
1934 end if;
1935 end Build_Discriminant_Assignments;
1937 --------------------------
1938 -- Build_Init_Call_Thru --
1939 --------------------------
1941 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
1942 Parent_Proc : constant Entity_Id :=
1943 Base_Init_Proc (Etype (Rec_Type));
1945 Parent_Type : constant Entity_Id :=
1946 Etype (First_Formal (Parent_Proc));
1948 Uparent_Type : constant Entity_Id :=
1949 Underlying_Type (Parent_Type);
1951 First_Discr_Param : Node_Id;
1953 Arg : Node_Id;
1954 Args : List_Id;
1955 First_Arg : Node_Id;
1956 Parent_Discr : Entity_Id;
1957 Res : List_Id;
1959 begin
1960 -- First argument (_Init) is the object to be initialized.
1961 -- ??? not sure where to get a reasonable Loc for First_Arg
1963 First_Arg :=
1964 OK_Convert_To (Parent_Type,
1965 New_Occurrence_Of
1966 (Defining_Identifier (First (Parameters)), Loc));
1968 Set_Etype (First_Arg, Parent_Type);
1970 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1972 -- In the tasks case,
1973 -- add _Master as the value of the _Master parameter
1974 -- add _Chain as the value of the _Chain parameter.
1975 -- add _Task_Name as the value of the _Task_Name parameter.
1976 -- At the outer level, these will be variables holding the
1977 -- corresponding values obtained from GNARL or the expander.
1979 -- At inner levels, they will be the parameters passed down through
1980 -- the outer routines.
1982 First_Discr_Param := Next (First (Parameters));
1984 if Has_Task (Rec_Type) then
1985 if Restriction_Active (No_Task_Hierarchy) then
1986 Append_To (Args,
1987 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
1988 else
1989 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1990 end if;
1992 -- Add _Chain (not done for sequential elaboration policy, see
1993 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1995 if Partition_Elaboration_Policy /= 'S' then
1996 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1997 end if;
1999 Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
2000 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
2001 end if;
2003 -- Append discriminant values
2005 if Has_Discriminants (Uparent_Type) then
2006 pragma Assert (not Is_Tagged_Type (Uparent_Type));
2008 Parent_Discr := First_Discriminant (Uparent_Type);
2009 while Present (Parent_Discr) loop
2011 -- Get the initial value for this discriminant
2012 -- ??? needs to be cleaned up to use parent_Discr_Constr
2013 -- directly.
2015 declare
2016 Discr : Entity_Id :=
2017 First_Stored_Discriminant (Uparent_Type);
2019 Discr_Value : Elmt_Id :=
2020 First_Elmt (Stored_Constraint (Rec_Type));
2022 begin
2023 while Original_Record_Component (Parent_Discr) /= Discr loop
2024 Next_Stored_Discriminant (Discr);
2025 Next_Elmt (Discr_Value);
2026 end loop;
2028 Arg := Node (Discr_Value);
2029 end;
2031 -- Append it to the list
2033 if Nkind (Arg) = N_Identifier
2034 and then Ekind (Entity (Arg)) = E_Discriminant
2035 then
2036 Append_To (Args,
2037 New_Occurrence_Of (Discriminal (Entity (Arg)), Loc));
2039 -- Case of access discriminants. We replace the reference
2040 -- to the type by a reference to the actual object.
2042 -- Is above comment right??? Use of New_Copy below seems mighty
2043 -- suspicious ???
2045 else
2046 Append_To (Args, New_Copy (Arg));
2047 end if;
2049 Next_Discriminant (Parent_Discr);
2050 end loop;
2051 end if;
2053 Res :=
2054 New_List (
2055 Make_Procedure_Call_Statement (Loc,
2056 Name =>
2057 New_Occurrence_Of (Parent_Proc, Loc),
2058 Parameter_Associations => Args));
2060 return Res;
2061 end Build_Init_Call_Thru;
2063 -----------------------------------
2064 -- Build_Offset_To_Top_Functions --
2065 -----------------------------------
2067 procedure Build_Offset_To_Top_Functions is
2069 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id);
2070 -- Generate:
2071 -- function Fxx (O : Address) return Storage_Offset is
2072 -- type Acc is access all <Typ>;
2073 -- begin
2074 -- return Acc!(O).Iface_Comp'Position;
2075 -- end Fxx;
2077 ----------------------------------
2078 -- Build_Offset_To_Top_Function --
2079 ----------------------------------
2081 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is
2082 Body_Node : Node_Id;
2083 Func_Id : Entity_Id;
2084 Spec_Node : Node_Id;
2085 Acc_Type : Entity_Id;
2087 begin
2088 Func_Id := Make_Temporary (Loc, 'F');
2089 Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id);
2091 -- Generate
2092 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2094 Spec_Node := New_Node (N_Function_Specification, Loc);
2095 Set_Defining_Unit_Name (Spec_Node, Func_Id);
2096 Set_Parameter_Specifications (Spec_Node, New_List (
2097 Make_Parameter_Specification (Loc,
2098 Defining_Identifier =>
2099 Make_Defining_Identifier (Loc, Name_uO),
2100 In_Present => True,
2101 Parameter_Type =>
2102 New_Occurrence_Of (RTE (RE_Address), Loc))));
2103 Set_Result_Definition (Spec_Node,
2104 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
2106 -- Generate
2107 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2108 -- begin
2109 -- return O.Iface_Comp'Position;
2110 -- end Fxx;
2112 Body_Node := New_Node (N_Subprogram_Body, Loc);
2113 Set_Specification (Body_Node, Spec_Node);
2115 Acc_Type := Make_Temporary (Loc, 'T');
2116 Set_Declarations (Body_Node, New_List (
2117 Make_Full_Type_Declaration (Loc,
2118 Defining_Identifier => Acc_Type,
2119 Type_Definition =>
2120 Make_Access_To_Object_Definition (Loc,
2121 All_Present => True,
2122 Null_Exclusion_Present => False,
2123 Constant_Present => False,
2124 Subtype_Indication =>
2125 New_Occurrence_Of (Rec_Type, Loc)))));
2127 Set_Handled_Statement_Sequence (Body_Node,
2128 Make_Handled_Sequence_Of_Statements (Loc,
2129 Statements => New_List (
2130 Make_Simple_Return_Statement (Loc,
2131 Expression =>
2132 Make_Attribute_Reference (Loc,
2133 Prefix =>
2134 Make_Selected_Component (Loc,
2135 Prefix =>
2136 Unchecked_Convert_To (Acc_Type,
2137 Make_Identifier (Loc, Name_uO)),
2138 Selector_Name =>
2139 New_Occurrence_Of (Iface_Comp, Loc)),
2140 Attribute_Name => Name_Position)))));
2142 Set_Ekind (Func_Id, E_Function);
2143 Set_Mechanism (Func_Id, Default_Mechanism);
2144 Set_Is_Internal (Func_Id, True);
2146 if not Debug_Generated_Code then
2147 Set_Debug_Info_Off (Func_Id);
2148 end if;
2150 Analyze (Body_Node);
2152 Append_Freeze_Action (Rec_Type, Body_Node);
2153 end Build_Offset_To_Top_Function;
2155 -- Local variables
2157 Iface_Comp : Node_Id;
2158 Iface_Comp_Elmt : Elmt_Id;
2159 Ifaces_Comp_List : Elist_Id;
2161 -- Start of processing for Build_Offset_To_Top_Functions
2163 begin
2164 -- Offset_To_Top_Functions are built only for derivations of types
2165 -- with discriminants that cover interface types.
2166 -- Nothing is needed either in case of virtual targets, since
2167 -- interfaces are handled directly by the target.
2169 if not Is_Tagged_Type (Rec_Type)
2170 or else Etype (Rec_Type) = Rec_Type
2171 or else not Has_Discriminants (Etype (Rec_Type))
2172 or else not Tagged_Type_Expansion
2173 then
2174 return;
2175 end if;
2177 Collect_Interface_Components (Rec_Type, Ifaces_Comp_List);
2179 -- For each interface type with secondary dispatch table we generate
2180 -- the Offset_To_Top_Functions (required to displace the pointer in
2181 -- interface conversions)
2183 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
2184 while Present (Iface_Comp_Elmt) loop
2185 Iface_Comp := Node (Iface_Comp_Elmt);
2186 pragma Assert (Is_Interface (Related_Type (Iface_Comp)));
2188 -- If the interface is a parent of Rec_Type it shares the primary
2189 -- dispatch table and hence there is no need to build the function
2191 if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type,
2192 Use_Full_View => True)
2193 then
2194 Build_Offset_To_Top_Function (Iface_Comp);
2195 end if;
2197 Next_Elmt (Iface_Comp_Elmt);
2198 end loop;
2199 end Build_Offset_To_Top_Functions;
2201 ------------------------------
2202 -- Build_CPP_Init_Procedure --
2203 ------------------------------
2205 procedure Build_CPP_Init_Procedure is
2206 Body_Node : Node_Id;
2207 Body_Stmts : List_Id;
2208 Flag_Id : Entity_Id;
2209 Handled_Stmt_Node : Node_Id;
2210 Init_Tags_List : List_Id;
2211 Proc_Id : Entity_Id;
2212 Proc_Spec_Node : Node_Id;
2214 begin
2215 -- Check cases requiring no IC routine
2217 if not Is_CPP_Class (Root_Type (Rec_Type))
2218 or else Is_CPP_Class (Rec_Type)
2219 or else CPP_Num_Prims (Rec_Type) = 0
2220 or else not Tagged_Type_Expansion
2221 or else No_Run_Time_Mode
2222 then
2223 return;
2224 end if;
2226 -- Generate:
2228 -- Flag : Boolean := False;
2230 -- procedure Typ_IC is
2231 -- begin
2232 -- if not Flag then
2233 -- Copy C++ dispatch table slots from parent
2234 -- Update C++ slots of overridden primitives
2235 -- end if;
2236 -- end;
2238 Flag_Id := Make_Temporary (Loc, 'F');
2240 Append_Freeze_Action (Rec_Type,
2241 Make_Object_Declaration (Loc,
2242 Defining_Identifier => Flag_Id,
2243 Object_Definition =>
2244 New_Occurrence_Of (Standard_Boolean, Loc),
2245 Expression =>
2246 New_Occurrence_Of (Standard_True, Loc)));
2248 Body_Stmts := New_List;
2249 Body_Node := New_Node (N_Subprogram_Body, Loc);
2251 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2253 Proc_Id :=
2254 Make_Defining_Identifier (Loc,
2255 Chars => Make_TSS_Name (Rec_Type, TSS_CPP_Init_Proc));
2257 Set_Ekind (Proc_Id, E_Procedure);
2258 Set_Is_Internal (Proc_Id);
2260 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2262 Set_Parameter_Specifications (Proc_Spec_Node, New_List);
2263 Set_Specification (Body_Node, Proc_Spec_Node);
2264 Set_Declarations (Body_Node, New_List);
2266 Init_Tags_List := Build_Inherit_CPP_Prims (Rec_Type);
2268 Append_To (Init_Tags_List,
2269 Make_Assignment_Statement (Loc,
2270 Name =>
2271 New_Occurrence_Of (Flag_Id, Loc),
2272 Expression =>
2273 New_Occurrence_Of (Standard_False, Loc)));
2275 Append_To (Body_Stmts,
2276 Make_If_Statement (Loc,
2277 Condition => New_Occurrence_Of (Flag_Id, Loc),
2278 Then_Statements => Init_Tags_List));
2280 Handled_Stmt_Node :=
2281 New_Node (N_Handled_Sequence_Of_Statements, Loc);
2282 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2283 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2284 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2286 if not Debug_Generated_Code then
2287 Set_Debug_Info_Off (Proc_Id);
2288 end if;
2290 -- Associate CPP_Init_Proc with type
2292 Set_Init_Proc (Rec_Type, Proc_Id);
2293 end Build_CPP_Init_Procedure;
2295 --------------------------
2296 -- Build_Init_Procedure --
2297 --------------------------
2299 procedure Build_Init_Procedure is
2300 Body_Stmts : List_Id;
2301 Body_Node : Node_Id;
2302 Handled_Stmt_Node : Node_Id;
2303 Init_Tags_List : List_Id;
2304 Parameters : List_Id;
2305 Proc_Spec_Node : Node_Id;
2306 Record_Extension_Node : Node_Id;
2308 begin
2309 Body_Stmts := New_List;
2310 Body_Node := New_Node (N_Subprogram_Body, Loc);
2311 Set_Ekind (Proc_Id, E_Procedure);
2313 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2314 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2316 Parameters := Init_Formals (Rec_Type);
2317 Append_List_To (Parameters,
2318 Build_Discriminant_Formals (Rec_Type, True));
2320 -- For tagged types, we add a flag to indicate whether the routine
2321 -- is called to initialize a parent component in the init_proc of
2322 -- a type extension. If the flag is false, we do not set the tag
2323 -- because it has been set already in the extension.
2325 if Is_Tagged_Type (Rec_Type) then
2326 Set_Tag := Make_Temporary (Loc, 'P');
2328 Append_To (Parameters,
2329 Make_Parameter_Specification (Loc,
2330 Defining_Identifier => Set_Tag,
2331 Parameter_Type =>
2332 New_Occurrence_Of (Standard_Boolean, Loc),
2333 Expression =>
2334 New_Occurrence_Of (Standard_True, Loc)));
2335 end if;
2337 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
2338 Set_Specification (Body_Node, Proc_Spec_Node);
2339 Set_Declarations (Body_Node, Decls);
2341 -- N is a Derived_Type_Definition that renames the parameters of the
2342 -- ancestor type. We initialize it by expanding our discriminants and
2343 -- call the ancestor _init_proc with a type-converted object.
2345 if Parent_Subtype_Renaming_Discrims then
2346 Append_List_To (Body_Stmts, Build_Init_Call_Thru (Parameters));
2348 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
2349 Build_Discriminant_Assignments (Body_Stmts);
2351 if not Null_Present (Type_Definition (N)) then
2352 Append_List_To (Body_Stmts,
2353 Build_Init_Statements (Component_List (Type_Definition (N))));
2354 end if;
2356 -- N is a Derived_Type_Definition with a possible non-empty
2357 -- extension. The initialization of a type extension consists in the
2358 -- initialization of the components in the extension.
2360 else
2361 Build_Discriminant_Assignments (Body_Stmts);
2363 Record_Extension_Node :=
2364 Record_Extension_Part (Type_Definition (N));
2366 if not Null_Present (Record_Extension_Node) then
2367 declare
2368 Stmts : constant List_Id :=
2369 Build_Init_Statements (
2370 Component_List (Record_Extension_Node));
2372 begin
2373 -- The parent field must be initialized first because the
2374 -- offset of the new discriminants may depend on it. This is
2375 -- not needed if the parent is an interface type because in
2376 -- such case the initialization of the _parent field was not
2377 -- generated.
2379 if not Is_Interface (Etype (Rec_Ent)) then
2380 declare
2381 Parent_IP : constant Name_Id :=
2382 Make_Init_Proc_Name (Etype (Rec_Ent));
2383 Stmt : Node_Id;
2384 IP_Call : Node_Id;
2385 IP_Stmts : List_Id;
2387 begin
2388 -- Look for a call to the parent IP at the beginning
2389 -- of Stmts associated with the record extension
2391 Stmt := First (Stmts);
2392 IP_Call := Empty;
2393 while Present (Stmt) loop
2394 if Nkind (Stmt) = N_Procedure_Call_Statement
2395 and then Chars (Name (Stmt)) = Parent_IP
2396 then
2397 IP_Call := Stmt;
2398 exit;
2399 end if;
2401 Next (Stmt);
2402 end loop;
2404 -- If found then move it to the beginning of the
2405 -- statements of this IP routine
2407 if Present (IP_Call) then
2408 IP_Stmts := New_List;
2409 loop
2410 Stmt := Remove_Head (Stmts);
2411 Append_To (IP_Stmts, Stmt);
2412 exit when Stmt = IP_Call;
2413 end loop;
2415 Prepend_List_To (Body_Stmts, IP_Stmts);
2416 end if;
2417 end;
2418 end if;
2420 Append_List_To (Body_Stmts, Stmts);
2421 end;
2422 end if;
2423 end if;
2425 -- Add here the assignment to instantiate the Tag
2427 -- The assignment corresponds to the code:
2429 -- _Init._Tag := Typ'Tag;
2431 -- Suppress the tag assignment when not Tagged_Type_Expansion because
2432 -- tags are represented implicitly in objects. It is also suppressed
2433 -- in case of CPP_Class types because in this case the tag is
2434 -- initialized in the C++ side.
2436 if Is_Tagged_Type (Rec_Type)
2437 and then Tagged_Type_Expansion
2438 and then not No_Run_Time_Mode
2439 then
2440 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2441 -- the actual object and invoke the IP of the parent (in this
2442 -- order). The tag must be initialized before the call to the IP
2443 -- of the parent and the assignments to other components because
2444 -- the initial value of the components may depend on the tag (eg.
2445 -- through a dispatching operation on an access to the current
2446 -- type). The tag assignment is not done when initializing the
2447 -- parent component of a type extension, because in that case the
2448 -- tag is set in the extension.
2450 if not Is_CPP_Class (Root_Type (Rec_Type)) then
2452 -- Initialize the primary tag component
2454 Init_Tags_List := New_List (
2455 Make_Assignment_Statement (Loc,
2456 Name =>
2457 Make_Selected_Component (Loc,
2458 Prefix => Make_Identifier (Loc, Name_uInit),
2459 Selector_Name =>
2460 New_Occurrence_Of
2461 (First_Tag_Component (Rec_Type), Loc)),
2462 Expression =>
2463 New_Occurrence_Of
2464 (Node
2465 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2467 -- Ada 2005 (AI-251): Initialize the secondary tags components
2468 -- located at fixed positions (tags whose position depends on
2469 -- variable size components are initialized later ---see below)
2471 if Ada_Version >= Ada_2005
2472 and then not Is_Interface (Rec_Type)
2473 and then Has_Interfaces (Rec_Type)
2474 then
2475 Init_Secondary_Tags
2476 (Typ => Rec_Type,
2477 Target => Make_Identifier (Loc, Name_uInit),
2478 Stmts_List => Init_Tags_List,
2479 Fixed_Comps => True,
2480 Variable_Comps => False);
2481 end if;
2483 Prepend_To (Body_Stmts,
2484 Make_If_Statement (Loc,
2485 Condition => New_Occurrence_Of (Set_Tag, Loc),
2486 Then_Statements => Init_Tags_List));
2488 -- Case 2: CPP type. The imported C++ constructor takes care of
2489 -- tags initialization. No action needed here because the IP
2490 -- is built by Set_CPP_Constructors; in this case the IP is a
2491 -- wrapper that invokes the C++ constructor and copies the C++
2492 -- tags locally. Done to inherit the C++ slots in Ada derivations
2493 -- (see case 3).
2495 elsif Is_CPP_Class (Rec_Type) then
2496 pragma Assert (False);
2497 null;
2499 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2500 -- type derivations. Derivations of imported C++ classes add a
2501 -- complication, because we cannot inhibit tag setting in the
2502 -- constructor for the parent. Hence we initialize the tag after
2503 -- the call to the parent IP (that is, in reverse order compared
2504 -- with pure Ada hierarchies ---see comment on case 1).
2506 else
2507 -- Initialize the primary tag
2509 Init_Tags_List := New_List (
2510 Make_Assignment_Statement (Loc,
2511 Name =>
2512 Make_Selected_Component (Loc,
2513 Prefix => Make_Identifier (Loc, Name_uInit),
2514 Selector_Name =>
2515 New_Occurrence_Of
2516 (First_Tag_Component (Rec_Type), Loc)),
2517 Expression =>
2518 New_Occurrence_Of
2519 (Node
2520 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2522 -- Ada 2005 (AI-251): Initialize the secondary tags components
2523 -- located at fixed positions (tags whose position depends on
2524 -- variable size components are initialized later ---see below)
2526 if Ada_Version >= Ada_2005
2527 and then not Is_Interface (Rec_Type)
2528 and then Has_Interfaces (Rec_Type)
2529 then
2530 Init_Secondary_Tags
2531 (Typ => Rec_Type,
2532 Target => Make_Identifier (Loc, Name_uInit),
2533 Stmts_List => Init_Tags_List,
2534 Fixed_Comps => True,
2535 Variable_Comps => False);
2536 end if;
2538 -- Initialize the tag component after invocation of parent IP.
2540 -- Generate:
2541 -- parent_IP(_init.parent); // Invokes the C++ constructor
2542 -- [ typIC; ] // Inherit C++ slots from parent
2543 -- init_tags
2545 declare
2546 Ins_Nod : Node_Id;
2548 begin
2549 -- Search for the call to the IP of the parent. We assume
2550 -- that the first init_proc call is for the parent.
2552 Ins_Nod := First (Body_Stmts);
2553 while Present (Next (Ins_Nod))
2554 and then (Nkind (Ins_Nod) /= N_Procedure_Call_Statement
2555 or else not Is_Init_Proc (Name (Ins_Nod)))
2556 loop
2557 Next (Ins_Nod);
2558 end loop;
2560 -- The IC routine copies the inherited slots of the C+ part
2561 -- of the dispatch table from the parent and updates the
2562 -- overridden C++ slots.
2564 if CPP_Num_Prims (Rec_Type) > 0 then
2565 declare
2566 Init_DT : Entity_Id;
2567 New_Nod : Node_Id;
2569 begin
2570 Init_DT := CPP_Init_Proc (Rec_Type);
2571 pragma Assert (Present (Init_DT));
2573 New_Nod :=
2574 Make_Procedure_Call_Statement (Loc,
2575 New_Occurrence_Of (Init_DT, Loc));
2576 Insert_After (Ins_Nod, New_Nod);
2578 -- Update location of init tag statements
2580 Ins_Nod := New_Nod;
2581 end;
2582 end if;
2584 Insert_List_After (Ins_Nod, Init_Tags_List);
2585 end;
2586 end if;
2588 -- Ada 2005 (AI-251): Initialize the secondary tag components
2589 -- located at variable positions. We delay the generation of this
2590 -- code until here because the value of the attribute 'Position
2591 -- applied to variable size components of the parent type that
2592 -- depend on discriminants is only safely read at runtime after
2593 -- the parent components have been initialized.
2595 if Ada_Version >= Ada_2005
2596 and then not Is_Interface (Rec_Type)
2597 and then Has_Interfaces (Rec_Type)
2598 and then Has_Discriminants (Etype (Rec_Type))
2599 and then Is_Variable_Size_Record (Etype (Rec_Type))
2600 then
2601 Init_Tags_List := New_List;
2603 Init_Secondary_Tags
2604 (Typ => Rec_Type,
2605 Target => Make_Identifier (Loc, Name_uInit),
2606 Stmts_List => Init_Tags_List,
2607 Fixed_Comps => False,
2608 Variable_Comps => True);
2610 if Is_Non_Empty_List (Init_Tags_List) then
2611 Append_List_To (Body_Stmts, Init_Tags_List);
2612 end if;
2613 end if;
2614 end if;
2616 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
2617 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2619 -- Generate:
2620 -- Deep_Finalize (_init, C1, ..., CN);
2621 -- raise;
2623 if Counter > 0
2624 and then Needs_Finalization (Rec_Type)
2625 and then not Is_Abstract_Type (Rec_Type)
2626 and then not Restriction_Active (No_Exception_Propagation)
2627 then
2628 declare
2629 DF_Call : Node_Id;
2630 DF_Id : Entity_Id;
2632 begin
2633 -- Create a local version of Deep_Finalize which has indication
2634 -- of partial initialization state.
2636 DF_Id := Make_Temporary (Loc, 'F');
2638 Append_To (Decls, Make_Local_Deep_Finalize (Rec_Type, DF_Id));
2640 DF_Call :=
2641 Make_Procedure_Call_Statement (Loc,
2642 Name => New_Occurrence_Of (DF_Id, Loc),
2643 Parameter_Associations => New_List (
2644 Make_Identifier (Loc, Name_uInit),
2645 New_Occurrence_Of (Standard_False, Loc)));
2647 -- Do not emit warnings related to the elaboration order when a
2648 -- controlled object is declared before the body of Finalize is
2649 -- seen.
2651 Set_No_Elaboration_Check (DF_Call);
2653 Set_Exception_Handlers (Handled_Stmt_Node, New_List (
2654 Make_Exception_Handler (Loc,
2655 Exception_Choices => New_List (
2656 Make_Others_Choice (Loc)),
2657 Statements => New_List (
2658 DF_Call,
2659 Make_Raise_Statement (Loc)))));
2660 end;
2661 else
2662 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2663 end if;
2665 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2667 if not Debug_Generated_Code then
2668 Set_Debug_Info_Off (Proc_Id);
2669 end if;
2671 -- Associate Init_Proc with type, and determine if the procedure
2672 -- is null (happens because of the Initialize_Scalars pragma case,
2673 -- where we have to generate a null procedure in case it is called
2674 -- by a client with Initialize_Scalars set). Such procedures have
2675 -- to be generated, but do not have to be called, so we mark them
2676 -- as null to suppress the call.
2678 Set_Init_Proc (Rec_Type, Proc_Id);
2680 if List_Length (Body_Stmts) = 1
2682 -- We must skip SCIL nodes because they may have been added to this
2683 -- list by Insert_Actions.
2685 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
2686 then
2687 Set_Is_Null_Init_Proc (Proc_Id);
2688 end if;
2689 end Build_Init_Procedure;
2691 ---------------------------
2692 -- Build_Init_Statements --
2693 ---------------------------
2695 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
2696 Checks : constant List_Id := New_List;
2697 Actions : List_Id := No_List;
2698 Counter_Id : Entity_Id := Empty;
2699 Comp_Loc : Source_Ptr;
2700 Decl : Node_Id;
2701 Has_POC : Boolean;
2702 Id : Entity_Id;
2703 Parent_Stmts : List_Id;
2704 Stmts : List_Id;
2705 Typ : Entity_Id;
2707 procedure Increment_Counter (Loc : Source_Ptr);
2708 -- Generate an "increment by one" statement for the current counter
2709 -- and append it to the list Stmts.
2711 procedure Make_Counter (Loc : Source_Ptr);
2712 -- Create a new counter for the current component list. The routine
2713 -- creates a new defining Id, adds an object declaration and sets
2714 -- the Id generator for the next variant.
2716 -----------------------
2717 -- Increment_Counter --
2718 -----------------------
2720 procedure Increment_Counter (Loc : Source_Ptr) is
2721 begin
2722 -- Generate:
2723 -- Counter := Counter + 1;
2725 Append_To (Stmts,
2726 Make_Assignment_Statement (Loc,
2727 Name => New_Occurrence_Of (Counter_Id, Loc),
2728 Expression =>
2729 Make_Op_Add (Loc,
2730 Left_Opnd => New_Occurrence_Of (Counter_Id, Loc),
2731 Right_Opnd => Make_Integer_Literal (Loc, 1))));
2732 end Increment_Counter;
2734 ------------------
2735 -- Make_Counter --
2736 ------------------
2738 procedure Make_Counter (Loc : Source_Ptr) is
2739 begin
2740 -- Increment the Id generator
2742 Counter := Counter + 1;
2744 -- Create the entity and declaration
2746 Counter_Id :=
2747 Make_Defining_Identifier (Loc,
2748 Chars => New_External_Name ('C', Counter));
2750 -- Generate:
2751 -- Cnn : Integer := 0;
2753 Append_To (Decls,
2754 Make_Object_Declaration (Loc,
2755 Defining_Identifier => Counter_Id,
2756 Object_Definition =>
2757 New_Occurrence_Of (Standard_Integer, Loc),
2758 Expression =>
2759 Make_Integer_Literal (Loc, 0)));
2760 end Make_Counter;
2762 -- Start of processing for Build_Init_Statements
2764 begin
2765 if Null_Present (Comp_List) then
2766 return New_List (Make_Null_Statement (Loc));
2767 end if;
2769 Parent_Stmts := New_List;
2770 Stmts := New_List;
2772 -- Loop through visible declarations of task types and protected
2773 -- types moving any expanded code from the spec to the body of the
2774 -- init procedure.
2776 if Is_Task_Record_Type (Rec_Type)
2777 or else Is_Protected_Record_Type (Rec_Type)
2778 then
2779 declare
2780 Decl : constant Node_Id :=
2781 Parent (Corresponding_Concurrent_Type (Rec_Type));
2782 Def : Node_Id;
2783 N1 : Node_Id;
2784 N2 : Node_Id;
2786 begin
2787 if Is_Task_Record_Type (Rec_Type) then
2788 Def := Task_Definition (Decl);
2789 else
2790 Def := Protected_Definition (Decl);
2791 end if;
2793 if Present (Def) then
2794 N1 := First (Visible_Declarations (Def));
2795 while Present (N1) loop
2796 N2 := N1;
2797 N1 := Next (N1);
2799 if Nkind (N2) in N_Statement_Other_Than_Procedure_Call
2800 or else Nkind (N2) in N_Raise_xxx_Error
2801 or else Nkind (N2) = N_Procedure_Call_Statement
2802 then
2803 Append_To (Stmts,
2804 New_Copy_Tree (N2, New_Scope => Proc_Id));
2805 Rewrite (N2, Make_Null_Statement (Sloc (N2)));
2806 Analyze (N2);
2807 end if;
2808 end loop;
2809 end if;
2810 end;
2811 end if;
2813 -- Loop through components, skipping pragmas, in 2 steps. The first
2814 -- step deals with regular components. The second step deals with
2815 -- components that have per object constraints and no explicit
2816 -- initialization.
2818 Has_POC := False;
2820 -- First pass : regular components
2822 Decl := First_Non_Pragma (Component_Items (Comp_List));
2823 while Present (Decl) loop
2824 Comp_Loc := Sloc (Decl);
2825 Build_Record_Checks
2826 (Subtype_Indication (Component_Definition (Decl)), Checks);
2828 Id := Defining_Identifier (Decl);
2829 Typ := Etype (Id);
2831 -- Leave any processing of per-object constrained component for
2832 -- the second pass.
2834 if Has_Access_Constraint (Id) and then No (Expression (Decl)) then
2835 Has_POC := True;
2837 -- Regular component cases
2839 else
2840 -- In the context of the init proc, references to discriminants
2841 -- resolve to denote the discriminals: this is where we can
2842 -- freeze discriminant dependent component subtypes.
2844 if not Is_Frozen (Typ) then
2845 Append_List_To (Stmts, Freeze_Entity (Typ, N));
2846 end if;
2848 -- Explicit initialization
2850 if Present (Expression (Decl)) then
2851 if Is_CPP_Constructor_Call (Expression (Decl)) then
2852 Actions :=
2853 Build_Initialization_Call
2854 (Comp_Loc,
2855 Id_Ref =>
2856 Make_Selected_Component (Comp_Loc,
2857 Prefix =>
2858 Make_Identifier (Comp_Loc, Name_uInit),
2859 Selector_Name =>
2860 New_Occurrence_Of (Id, Comp_Loc)),
2861 Typ => Typ,
2862 In_Init_Proc => True,
2863 Enclos_Type => Rec_Type,
2864 Discr_Map => Discr_Map,
2865 Constructor_Ref => Expression (Decl));
2866 else
2867 Actions := Build_Assignment (Id, Expression (Decl));
2868 end if;
2870 -- CPU, Dispatching_Domain, Priority and Size components are
2871 -- filled with the corresponding rep item expression of the
2872 -- concurrent type (if any).
2874 elsif Ekind (Scope (Id)) = E_Record_Type
2875 and then Present (Corresponding_Concurrent_Type (Scope (Id)))
2876 and then Nam_In (Chars (Id), Name_uCPU,
2877 Name_uDispatching_Domain,
2878 Name_uPriority)
2879 then
2880 declare
2881 Exp : Node_Id;
2882 Nam : Name_Id;
2883 Ritem : Node_Id;
2885 begin
2886 if Chars (Id) = Name_uCPU then
2887 Nam := Name_CPU;
2889 elsif Chars (Id) = Name_uDispatching_Domain then
2890 Nam := Name_Dispatching_Domain;
2892 elsif Chars (Id) = Name_uPriority then
2893 Nam := Name_Priority;
2894 end if;
2896 -- Get the Rep Item (aspect specification, attribute
2897 -- definition clause or pragma) of the corresponding
2898 -- concurrent type.
2900 Ritem :=
2901 Get_Rep_Item
2902 (Corresponding_Concurrent_Type (Scope (Id)),
2903 Nam,
2904 Check_Parents => False);
2906 if Present (Ritem) then
2908 -- Pragma case
2910 if Nkind (Ritem) = N_Pragma then
2911 Exp := First (Pragma_Argument_Associations (Ritem));
2913 if Nkind (Exp) = N_Pragma_Argument_Association then
2914 Exp := Expression (Exp);
2915 end if;
2917 -- Conversion for Priority expression
2919 if Nam = Name_Priority then
2920 if Pragma_Name (Ritem) = Name_Priority
2921 and then not GNAT_Mode
2922 then
2923 Exp := Convert_To (RTE (RE_Priority), Exp);
2924 else
2925 Exp :=
2926 Convert_To (RTE (RE_Any_Priority), Exp);
2927 end if;
2928 end if;
2930 -- Aspect/Attribute definition clause case
2932 else
2933 Exp := Expression (Ritem);
2935 -- Conversion for Priority expression
2937 if Nam = Name_Priority then
2938 if Chars (Ritem) = Name_Priority
2939 and then not GNAT_Mode
2940 then
2941 Exp := Convert_To (RTE (RE_Priority), Exp);
2942 else
2943 Exp :=
2944 Convert_To (RTE (RE_Any_Priority), Exp);
2945 end if;
2946 end if;
2947 end if;
2949 -- Conversion for Dispatching_Domain value
2951 if Nam = Name_Dispatching_Domain then
2952 Exp :=
2953 Unchecked_Convert_To
2954 (RTE (RE_Dispatching_Domain_Access), Exp);
2955 end if;
2957 Actions := Build_Assignment (Id, Exp);
2959 -- Nothing needed if no Rep Item
2961 else
2962 Actions := No_List;
2963 end if;
2964 end;
2966 -- Composite component with its own Init_Proc
2968 elsif not Is_Interface (Typ)
2969 and then Has_Non_Null_Base_Init_Proc (Typ)
2970 then
2971 Actions :=
2972 Build_Initialization_Call
2973 (Comp_Loc,
2974 Make_Selected_Component (Comp_Loc,
2975 Prefix =>
2976 Make_Identifier (Comp_Loc, Name_uInit),
2977 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
2978 Typ,
2979 In_Init_Proc => True,
2980 Enclos_Type => Rec_Type,
2981 Discr_Map => Discr_Map);
2983 Clean_Task_Names (Typ, Proc_Id);
2985 -- Simple initialization
2987 elsif Component_Needs_Simple_Initialization (Typ) then
2988 Actions :=
2989 Build_Assignment
2990 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id)));
2992 -- Nothing needed for this case
2994 else
2995 Actions := No_List;
2996 end if;
2998 if Present (Checks) then
2999 if Chars (Id) = Name_uParent then
3000 Append_List_To (Parent_Stmts, Checks);
3001 else
3002 Append_List_To (Stmts, Checks);
3003 end if;
3004 end if;
3006 if Present (Actions) then
3007 if Chars (Id) = Name_uParent then
3008 Append_List_To (Parent_Stmts, Actions);
3010 else
3011 Append_List_To (Stmts, Actions);
3013 -- Preserve initialization state in the current counter
3015 if Needs_Finalization (Typ) then
3016 if No (Counter_Id) then
3017 Make_Counter (Comp_Loc);
3018 end if;
3020 Increment_Counter (Comp_Loc);
3021 end if;
3022 end if;
3023 end if;
3024 end if;
3026 Next_Non_Pragma (Decl);
3027 end loop;
3029 -- The parent field must be initialized first because variable
3030 -- size components of the parent affect the location of all the
3031 -- new components.
3033 Prepend_List_To (Stmts, Parent_Stmts);
3035 -- Set up tasks and protected object support. This needs to be done
3036 -- before any component with a per-object access discriminant
3037 -- constraint, or any variant part (which may contain such
3038 -- components) is initialized, because the initialization of these
3039 -- components may reference the enclosing concurrent object.
3041 -- For a task record type, add the task create call and calls to bind
3042 -- any interrupt (signal) entries.
3044 if Is_Task_Record_Type (Rec_Type) then
3046 -- In the case of the restricted run time the ATCB has already
3047 -- been preallocated.
3049 if Restricted_Profile then
3050 Append_To (Stmts,
3051 Make_Assignment_Statement (Loc,
3052 Name =>
3053 Make_Selected_Component (Loc,
3054 Prefix => Make_Identifier (Loc, Name_uInit),
3055 Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
3056 Expression =>
3057 Make_Attribute_Reference (Loc,
3058 Prefix =>
3059 Make_Selected_Component (Loc,
3060 Prefix => Make_Identifier (Loc, Name_uInit),
3061 Selector_Name => Make_Identifier (Loc, Name_uATCB)),
3062 Attribute_Name => Name_Unchecked_Access)));
3063 end if;
3065 Append_To (Stmts, Make_Task_Create_Call (Rec_Type));
3067 declare
3068 Task_Type : constant Entity_Id :=
3069 Corresponding_Concurrent_Type (Rec_Type);
3070 Task_Decl : constant Node_Id := Parent (Task_Type);
3071 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
3072 Decl_Loc : Source_Ptr;
3073 Ent : Entity_Id;
3074 Vis_Decl : Node_Id;
3076 begin
3077 if Present (Task_Def) then
3078 Vis_Decl := First (Visible_Declarations (Task_Def));
3079 while Present (Vis_Decl) loop
3080 Decl_Loc := Sloc (Vis_Decl);
3082 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
3083 if Get_Attribute_Id (Chars (Vis_Decl)) =
3084 Attribute_Address
3085 then
3086 Ent := Entity (Name (Vis_Decl));
3088 if Ekind (Ent) = E_Entry then
3089 Append_To (Stmts,
3090 Make_Procedure_Call_Statement (Decl_Loc,
3091 Name =>
3092 New_Occurrence_Of (RTE (
3093 RE_Bind_Interrupt_To_Entry), Decl_Loc),
3094 Parameter_Associations => New_List (
3095 Make_Selected_Component (Decl_Loc,
3096 Prefix =>
3097 Make_Identifier (Decl_Loc, Name_uInit),
3098 Selector_Name =>
3099 Make_Identifier
3100 (Decl_Loc, Name_uTask_Id)),
3101 Entry_Index_Expression
3102 (Decl_Loc, Ent, Empty, Task_Type),
3103 Expression (Vis_Decl))));
3104 end if;
3105 end if;
3106 end if;
3108 Next (Vis_Decl);
3109 end loop;
3110 end if;
3111 end;
3112 end if;
3114 -- For a protected type, add statements generated by
3115 -- Make_Initialize_Protection.
3117 if Is_Protected_Record_Type (Rec_Type) then
3118 Append_List_To (Stmts,
3119 Make_Initialize_Protection (Rec_Type));
3120 end if;
3122 -- Second pass: components with per-object constraints
3124 if Has_POC then
3125 Decl := First_Non_Pragma (Component_Items (Comp_List));
3126 while Present (Decl) loop
3127 Comp_Loc := Sloc (Decl);
3128 Id := Defining_Identifier (Decl);
3129 Typ := Etype (Id);
3131 if Has_Access_Constraint (Id)
3132 and then No (Expression (Decl))
3133 then
3134 if Has_Non_Null_Base_Init_Proc (Typ) then
3135 Append_List_To (Stmts,
3136 Build_Initialization_Call (Comp_Loc,
3137 Make_Selected_Component (Comp_Loc,
3138 Prefix =>
3139 Make_Identifier (Comp_Loc, Name_uInit),
3140 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
3141 Typ,
3142 In_Init_Proc => True,
3143 Enclos_Type => Rec_Type,
3144 Discr_Map => Discr_Map));
3146 Clean_Task_Names (Typ, Proc_Id);
3148 -- Preserve initialization state in the current counter
3150 if Needs_Finalization (Typ) then
3151 if No (Counter_Id) then
3152 Make_Counter (Comp_Loc);
3153 end if;
3155 Increment_Counter (Comp_Loc);
3156 end if;
3158 elsif Component_Needs_Simple_Initialization (Typ) then
3159 Append_List_To (Stmts,
3160 Build_Assignment
3161 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id))));
3162 end if;
3163 end if;
3165 Next_Non_Pragma (Decl);
3166 end loop;
3167 end if;
3169 -- Process the variant part
3171 if Present (Variant_Part (Comp_List)) then
3172 declare
3173 Variant_Alts : constant List_Id := New_List;
3174 Var_Loc : Source_Ptr;
3175 Variant : Node_Id;
3177 begin
3178 Variant :=
3179 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3180 while Present (Variant) loop
3181 Var_Loc := Sloc (Variant);
3182 Append_To (Variant_Alts,
3183 Make_Case_Statement_Alternative (Var_Loc,
3184 Discrete_Choices =>
3185 New_Copy_List (Discrete_Choices (Variant)),
3186 Statements =>
3187 Build_Init_Statements (Component_List (Variant))));
3188 Next_Non_Pragma (Variant);
3189 end loop;
3191 -- The expression of the case statement which is a reference
3192 -- to one of the discriminants is replaced by the appropriate
3193 -- formal parameter of the initialization procedure.
3195 Append_To (Stmts,
3196 Make_Case_Statement (Var_Loc,
3197 Expression =>
3198 New_Occurrence_Of (Discriminal (
3199 Entity (Name (Variant_Part (Comp_List)))), Var_Loc),
3200 Alternatives => Variant_Alts));
3201 end;
3202 end if;
3204 -- If no initializations when generated for component declarations
3205 -- corresponding to this Stmts, append a null statement to Stmts to
3206 -- to make it a valid Ada tree.
3208 if Is_Empty_List (Stmts) then
3209 Append (Make_Null_Statement (Loc), Stmts);
3210 end if;
3212 return Stmts;
3214 exception
3215 when RE_Not_Available =>
3216 return Empty_List;
3217 end Build_Init_Statements;
3219 -------------------------
3220 -- Build_Record_Checks --
3221 -------------------------
3223 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
3224 Subtype_Mark_Id : Entity_Id;
3226 procedure Constrain_Array
3227 (SI : Node_Id;
3228 Check_List : List_Id);
3229 -- Apply a list of index constraints to an unconstrained array type.
3230 -- The first parameter is the entity for the resulting subtype.
3231 -- Check_List is a list to which the check actions are appended.
3233 ---------------------
3234 -- Constrain_Array --
3235 ---------------------
3237 procedure Constrain_Array
3238 (SI : Node_Id;
3239 Check_List : List_Id)
3241 C : constant Node_Id := Constraint (SI);
3242 Number_Of_Constraints : Nat := 0;
3243 Index : Node_Id;
3244 S, T : Entity_Id;
3246 procedure Constrain_Index
3247 (Index : Node_Id;
3248 S : Node_Id;
3249 Check_List : List_Id);
3250 -- Process an index constraint in a constrained array declaration.
3251 -- The constraint can be either a subtype name or a range with or
3252 -- without an explicit subtype mark. Index is the corresponding
3253 -- index of the unconstrained array. S is the range expression.
3254 -- Check_List is a list to which the check actions are appended.
3256 ---------------------
3257 -- Constrain_Index --
3258 ---------------------
3260 procedure Constrain_Index
3261 (Index : Node_Id;
3262 S : Node_Id;
3263 Check_List : List_Id)
3265 T : constant Entity_Id := Etype (Index);
3267 begin
3268 if Nkind (S) = N_Range then
3269 Process_Range_Expr_In_Decl (S, T, Check_List => Check_List);
3270 end if;
3271 end Constrain_Index;
3273 -- Start of processing for Constrain_Array
3275 begin
3276 T := Entity (Subtype_Mark (SI));
3278 if Is_Access_Type (T) then
3279 T := Designated_Type (T);
3280 end if;
3282 S := First (Constraints (C));
3283 while Present (S) loop
3284 Number_Of_Constraints := Number_Of_Constraints + 1;
3285 Next (S);
3286 end loop;
3288 -- In either case, the index constraint must provide a discrete
3289 -- range for each index of the array type and the type of each
3290 -- discrete range must be the same as that of the corresponding
3291 -- index. (RM 3.6.1)
3293 S := First (Constraints (C));
3294 Index := First_Index (T);
3295 Analyze (Index);
3297 -- Apply constraints to each index type
3299 for J in 1 .. Number_Of_Constraints loop
3300 Constrain_Index (Index, S, Check_List);
3301 Next (Index);
3302 Next (S);
3303 end loop;
3304 end Constrain_Array;
3306 -- Start of processing for Build_Record_Checks
3308 begin
3309 if Nkind (S) = N_Subtype_Indication then
3310 Find_Type (Subtype_Mark (S));
3311 Subtype_Mark_Id := Entity (Subtype_Mark (S));
3313 -- Remaining processing depends on type
3315 case Ekind (Subtype_Mark_Id) is
3317 when Array_Kind =>
3318 Constrain_Array (S, Check_List);
3320 when others =>
3321 null;
3322 end case;
3323 end if;
3324 end Build_Record_Checks;
3326 -------------------------------------------
3327 -- Component_Needs_Simple_Initialization --
3328 -------------------------------------------
3330 function Component_Needs_Simple_Initialization
3331 (T : Entity_Id) return Boolean
3333 begin
3334 return
3335 Needs_Simple_Initialization (T)
3336 and then not Is_RTE (T, RE_Tag)
3338 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3340 and then not Is_RTE (T, RE_Interface_Tag);
3341 end Component_Needs_Simple_Initialization;
3343 --------------------------------------
3344 -- Parent_Subtype_Renaming_Discrims --
3345 --------------------------------------
3347 function Parent_Subtype_Renaming_Discrims return Boolean is
3348 De : Entity_Id;
3349 Dp : Entity_Id;
3351 begin
3352 if Base_Type (Rec_Ent) /= Rec_Ent then
3353 return False;
3354 end if;
3356 if Etype (Rec_Ent) = Rec_Ent
3357 or else not Has_Discriminants (Rec_Ent)
3358 or else Is_Constrained (Rec_Ent)
3359 or else Is_Tagged_Type (Rec_Ent)
3360 then
3361 return False;
3362 end if;
3364 -- If there are no explicit stored discriminants we have inherited
3365 -- the root type discriminants so far, so no renamings occurred.
3367 if First_Discriminant (Rec_Ent) =
3368 First_Stored_Discriminant (Rec_Ent)
3369 then
3370 return False;
3371 end if;
3373 -- Check if we have done some trivial renaming of the parent
3374 -- discriminants, i.e. something like
3376 -- type DT (X1, X2: int) is new PT (X1, X2);
3378 De := First_Discriminant (Rec_Ent);
3379 Dp := First_Discriminant (Etype (Rec_Ent));
3380 while Present (De) loop
3381 pragma Assert (Present (Dp));
3383 if Corresponding_Discriminant (De) /= Dp then
3384 return True;
3385 end if;
3387 Next_Discriminant (De);
3388 Next_Discriminant (Dp);
3389 end loop;
3391 return Present (Dp);
3392 end Parent_Subtype_Renaming_Discrims;
3394 ------------------------
3395 -- Requires_Init_Proc --
3396 ------------------------
3398 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
3399 Comp_Decl : Node_Id;
3400 Id : Entity_Id;
3401 Typ : Entity_Id;
3403 begin
3404 -- Definitely do not need one if specifically suppressed
3406 if Initialization_Suppressed (Rec_Id) then
3407 return False;
3408 end if;
3410 -- If it is a type derived from a type with unknown discriminants,
3411 -- we cannot build an initialization procedure for it.
3413 if Has_Unknown_Discriminants (Rec_Id)
3414 or else Has_Unknown_Discriminants (Etype (Rec_Id))
3415 then
3416 return False;
3417 end if;
3419 -- Otherwise we need to generate an initialization procedure if
3420 -- Is_CPP_Class is False and at least one of the following applies:
3422 -- 1. Discriminants are present, since they need to be initialized
3423 -- with the appropriate discriminant constraint expressions.
3424 -- However, the discriminant of an unchecked union does not
3425 -- count, since the discriminant is not present.
3427 -- 2. The type is a tagged type, since the implicit Tag component
3428 -- needs to be initialized with a pointer to the dispatch table.
3430 -- 3. The type contains tasks
3432 -- 4. One or more components has an initial value
3434 -- 5. One or more components is for a type which itself requires
3435 -- an initialization procedure.
3437 -- 6. One or more components is a type that requires simple
3438 -- initialization (see Needs_Simple_Initialization), except
3439 -- that types Tag and Interface_Tag are excluded, since fields
3440 -- of these types are initialized by other means.
3442 -- 7. The type is the record type built for a task type (since at
3443 -- the very least, Create_Task must be called)
3445 -- 8. The type is the record type built for a protected type (since
3446 -- at least Initialize_Protection must be called)
3448 -- 9. The type is marked as a public entity. The reason we add this
3449 -- case (even if none of the above apply) is to properly handle
3450 -- Initialize_Scalars. If a package is compiled without an IS
3451 -- pragma, and the client is compiled with an IS pragma, then
3452 -- the client will think an initialization procedure is present
3453 -- and call it, when in fact no such procedure is required, but
3454 -- since the call is generated, there had better be a routine
3455 -- at the other end of the call, even if it does nothing).
3457 -- Note: the reason we exclude the CPP_Class case is because in this
3458 -- case the initialization is performed by the C++ constructors, and
3459 -- the IP is built by Set_CPP_Constructors.
3461 if Is_CPP_Class (Rec_Id) then
3462 return False;
3464 elsif Is_Interface (Rec_Id) then
3465 return False;
3467 elsif (Has_Discriminants (Rec_Id)
3468 and then not Is_Unchecked_Union (Rec_Id))
3469 or else Is_Tagged_Type (Rec_Id)
3470 or else Is_Concurrent_Record_Type (Rec_Id)
3471 or else Has_Task (Rec_Id)
3472 then
3473 return True;
3474 end if;
3476 Id := First_Component (Rec_Id);
3477 while Present (Id) loop
3478 Comp_Decl := Parent (Id);
3479 Typ := Etype (Id);
3481 if Present (Expression (Comp_Decl))
3482 or else Has_Non_Null_Base_Init_Proc (Typ)
3483 or else Component_Needs_Simple_Initialization (Typ)
3484 then
3485 return True;
3486 end if;
3488 Next_Component (Id);
3489 end loop;
3491 -- As explained above, a record initialization procedure is needed
3492 -- for public types in case Initialize_Scalars applies to a client.
3493 -- However, such a procedure is not needed in the case where either
3494 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3495 -- applies. No_Initialize_Scalars excludes the possibility of using
3496 -- Initialize_Scalars in any partition, and No_Default_Initialization
3497 -- implies that no initialization should ever be done for objects of
3498 -- the type, so is incompatible with Initialize_Scalars.
3500 if not Restriction_Active (No_Initialize_Scalars)
3501 and then not Restriction_Active (No_Default_Initialization)
3502 and then Is_Public (Rec_Id)
3503 then
3504 return True;
3505 end if;
3507 return False;
3508 end Requires_Init_Proc;
3510 -- Start of processing for Build_Record_Init_Proc
3512 begin
3513 Rec_Type := Defining_Identifier (N);
3515 -- This may be full declaration of a private type, in which case
3516 -- the visible entity is a record, and the private entity has been
3517 -- exchanged with it in the private part of the current package.
3518 -- The initialization procedure is built for the record type, which
3519 -- is retrievable from the private entity.
3521 if Is_Incomplete_Or_Private_Type (Rec_Type) then
3522 Rec_Type := Underlying_Type (Rec_Type);
3523 end if;
3525 -- If we have a variant record with restriction No_Implicit_Conditionals
3526 -- in effect, then we skip building the procedure. This is safe because
3527 -- if we can see the restriction, so can any caller, calls to initialize
3528 -- such records are not allowed for variant records if this restriction
3529 -- is active.
3531 if Has_Variant_Part (Rec_Type)
3532 and then Restriction_Active (No_Implicit_Conditionals)
3533 then
3534 return;
3535 end if;
3537 -- If there are discriminants, build the discriminant map to replace
3538 -- discriminants by their discriminals in complex bound expressions.
3539 -- These only arise for the corresponding records of synchronized types.
3541 if Is_Concurrent_Record_Type (Rec_Type)
3542 and then Has_Discriminants (Rec_Type)
3543 then
3544 declare
3545 Disc : Entity_Id;
3546 begin
3547 Disc := First_Discriminant (Rec_Type);
3548 while Present (Disc) loop
3549 Append_Elmt (Disc, Discr_Map);
3550 Append_Elmt (Discriminal (Disc), Discr_Map);
3551 Next_Discriminant (Disc);
3552 end loop;
3553 end;
3554 end if;
3556 -- Derived types that have no type extension can use the initialization
3557 -- procedure of their parent and do not need a procedure of their own.
3558 -- This is only correct if there are no representation clauses for the
3559 -- type or its parent, and if the parent has in fact been frozen so
3560 -- that its initialization procedure exists.
3562 if Is_Derived_Type (Rec_Type)
3563 and then not Is_Tagged_Type (Rec_Type)
3564 and then not Is_Unchecked_Union (Rec_Type)
3565 and then not Has_New_Non_Standard_Rep (Rec_Type)
3566 and then not Parent_Subtype_Renaming_Discrims
3567 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
3568 then
3569 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
3571 -- Otherwise if we need an initialization procedure, then build one,
3572 -- mark it as public and inlinable and as having a completion.
3574 elsif Requires_Init_Proc (Rec_Type)
3575 or else Is_Unchecked_Union (Rec_Type)
3576 then
3577 Proc_Id :=
3578 Make_Defining_Identifier (Loc,
3579 Chars => Make_Init_Proc_Name (Rec_Type));
3581 -- If No_Default_Initialization restriction is active, then we don't
3582 -- want to build an init_proc, but we need to mark that an init_proc
3583 -- would be needed if this restriction was not active (so that we can
3584 -- detect attempts to call it), so set a dummy init_proc in place.
3586 if Restriction_Active (No_Default_Initialization) then
3587 Set_Init_Proc (Rec_Type, Proc_Id);
3588 return;
3589 end if;
3591 Build_Offset_To_Top_Functions;
3592 Build_CPP_Init_Procedure;
3593 Build_Init_Procedure;
3595 Set_Is_Public (Proc_Id, Is_Public (Rec_Ent));
3596 Set_Is_Internal (Proc_Id);
3597 Set_Has_Completion (Proc_Id);
3599 if not Debug_Generated_Code then
3600 Set_Debug_Info_Off (Proc_Id);
3601 end if;
3603 Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Rec_Type));
3605 -- Do not build an aggregate if Modify_Tree_For_C, this isn't
3606 -- needed and may generate early references to non frozen types
3607 -- since we expand aggregate much more systematically.
3609 if Modify_Tree_For_C then
3610 return;
3611 end if;
3613 declare
3614 Agg : constant Node_Id :=
3615 Build_Equivalent_Record_Aggregate (Rec_Type);
3617 procedure Collect_Itypes (Comp : Node_Id);
3618 -- Generate references to itypes in the aggregate, because
3619 -- the first use of the aggregate may be in a nested scope.
3621 --------------------
3622 -- Collect_Itypes --
3623 --------------------
3625 procedure Collect_Itypes (Comp : Node_Id) is
3626 Ref : Node_Id;
3627 Sub_Aggr : Node_Id;
3628 Typ : constant Entity_Id := Etype (Comp);
3630 begin
3631 if Is_Array_Type (Typ) and then Is_Itype (Typ) then
3632 Ref := Make_Itype_Reference (Loc);
3633 Set_Itype (Ref, Typ);
3634 Append_Freeze_Action (Rec_Type, Ref);
3636 Ref := Make_Itype_Reference (Loc);
3637 Set_Itype (Ref, Etype (First_Index (Typ)));
3638 Append_Freeze_Action (Rec_Type, Ref);
3640 -- Recurse on nested arrays
3642 Sub_Aggr := First (Expressions (Comp));
3643 while Present (Sub_Aggr) loop
3644 Collect_Itypes (Sub_Aggr);
3645 Next (Sub_Aggr);
3646 end loop;
3647 end if;
3648 end Collect_Itypes;
3650 begin
3651 -- If there is a static initialization aggregate for the type,
3652 -- generate itype references for the types of its (sub)components,
3653 -- to prevent out-of-scope errors in the resulting tree.
3654 -- The aggregate may have been rewritten as a Raise node, in which
3655 -- case there are no relevant itypes.
3657 if Present (Agg) and then Nkind (Agg) = N_Aggregate then
3658 Set_Static_Initialization (Proc_Id, Agg);
3660 declare
3661 Comp : Node_Id;
3662 begin
3663 Comp := First (Component_Associations (Agg));
3664 while Present (Comp) loop
3665 Collect_Itypes (Expression (Comp));
3666 Next (Comp);
3667 end loop;
3668 end;
3669 end if;
3670 end;
3671 end if;
3672 end Build_Record_Init_Proc;
3674 --------------------------------
3675 -- Build_Record_Invariant_Proc --
3676 --------------------------------
3678 function Build_Record_Invariant_Proc
3679 (R_Type : Entity_Id;
3680 Nod : Node_Id) return Node_Id
3682 Loc : constant Source_Ptr := Sloc (Nod);
3684 Object_Name : constant Name_Id := New_Internal_Name ('I');
3685 -- Name for argument of invariant procedure
3687 Object_Entity : constant Node_Id :=
3688 Make_Defining_Identifier (Loc, Object_Name);
3689 -- The procedure declaration entity for the argument
3691 Invariant_Found : Boolean;
3692 -- Set if any component needs an invariant check.
3694 Proc_Id : Entity_Id;
3695 Proc_Body : Node_Id;
3696 Stmts : List_Id;
3697 Type_Def : Node_Id;
3699 function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id;
3700 -- Recursive procedure that generates a list of checks for components
3701 -- that need it, and recurses through variant parts when present.
3703 function Build_Component_Invariant_Call
3704 (Comp : Entity_Id) return Node_Id;
3705 -- Build call to invariant procedure for a record component
3707 ------------------------------------
3708 -- Build_Component_Invariant_Call --
3709 ------------------------------------
3711 function Build_Component_Invariant_Call
3712 (Comp : Entity_Id) return Node_Id
3714 Call : Node_Id;
3715 Proc : Entity_Id;
3716 Sel_Comp : Node_Id;
3717 Typ : Entity_Id;
3719 begin
3720 Typ := Etype (Comp);
3722 Sel_Comp :=
3723 Make_Selected_Component (Loc,
3724 Prefix => New_Occurrence_Of (Object_Entity, Loc),
3725 Selector_Name => New_Occurrence_Of (Comp, Loc));
3727 if Is_Access_Type (Typ) then
3729 -- If the access component designates a type with an invariant,
3730 -- the check applies to the designated object. The access type
3731 -- itself may have an invariant, in which case it applies to the
3732 -- access value directly.
3734 -- Note: we are assuming that invariants will not occur on both
3735 -- the access type and the type that it designates. This is not
3736 -- really justified but it is hard to imagine that this case will
3737 -- ever cause trouble ???
3739 if not (Has_Invariants (Typ)) then
3740 Sel_Comp := Make_Explicit_Dereference (Loc, Sel_Comp);
3741 Typ := Designated_Type (Typ);
3742 end if;
3743 end if;
3745 -- The aspect is type-specific, so retrieve it from the base type
3747 Proc := Invariant_Procedure (Base_Type (Typ));
3749 if Has_Null_Body (Proc) then
3750 return Make_Null_Statement (Loc);
3751 end if;
3753 Invariant_Found := True;
3754 Call :=
3755 Make_Procedure_Call_Statement (Loc,
3756 Name => New_Occurrence_Of (Proc, Loc),
3757 Parameter_Associations => New_List (Sel_Comp));
3759 if Is_Access_Type (Etype (Comp)) then
3760 Call :=
3761 Make_If_Statement (Loc,
3762 Condition =>
3763 Make_Op_Ne (Loc,
3764 Left_Opnd => Make_Null (Loc),
3765 Right_Opnd =>
3766 Make_Selected_Component (Loc,
3767 Prefix =>
3768 New_Occurrence_Of (Object_Entity, Loc),
3769 Selector_Name => New_Occurrence_Of (Comp, Loc))),
3770 Then_Statements => New_List (Call));
3771 end if;
3773 return Call;
3774 end Build_Component_Invariant_Call;
3776 ----------------------------
3777 -- Build_Invariant_Checks --
3778 ----------------------------
3780 function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id is
3781 Decl : Node_Id;
3782 Id : Entity_Id;
3783 Stmts : List_Id;
3785 begin
3786 Stmts := New_List;
3787 Decl := First_Non_Pragma (Component_Items (Comp_List));
3788 while Present (Decl) loop
3789 if Nkind (Decl) = N_Component_Declaration then
3790 Id := Defining_Identifier (Decl);
3792 if Has_Invariants (Etype (Id))
3793 and then In_Open_Scopes (Scope (R_Type))
3794 then
3795 if Has_Unchecked_Union (R_Type) then
3796 Error_Msg_NE
3797 ("invariants cannot be checked on components of "
3798 & "unchecked_union type&?", Decl, R_Type);
3799 return Empty_List;
3801 else
3802 Append_To (Stmts, Build_Component_Invariant_Call (Id));
3803 end if;
3805 elsif Is_Access_Type (Etype (Id))
3806 and then not Is_Access_Constant (Etype (Id))
3807 and then Has_Invariants (Designated_Type (Etype (Id)))
3808 and then In_Open_Scopes (Scope (Designated_Type (Etype (Id))))
3809 then
3810 Append_To (Stmts, Build_Component_Invariant_Call (Id));
3811 end if;
3812 end if;
3814 Next (Decl);
3815 end loop;
3817 if Present (Variant_Part (Comp_List)) then
3818 declare
3819 Variant_Alts : constant List_Id := New_List;
3820 Var_Loc : Source_Ptr;
3821 Variant : Node_Id;
3822 Variant_Stmts : List_Id;
3824 begin
3825 Variant :=
3826 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3827 while Present (Variant) loop
3828 Variant_Stmts :=
3829 Build_Invariant_Checks (Component_List (Variant));
3830 Var_Loc := Sloc (Variant);
3831 Append_To (Variant_Alts,
3832 Make_Case_Statement_Alternative (Var_Loc,
3833 Discrete_Choices =>
3834 New_Copy_List (Discrete_Choices (Variant)),
3835 Statements => Variant_Stmts));
3837 Next_Non_Pragma (Variant);
3838 end loop;
3840 -- The expression in the case statement is the reference to
3841 -- the discriminant of the target object.
3843 Append_To (Stmts,
3844 Make_Case_Statement (Var_Loc,
3845 Expression =>
3846 Make_Selected_Component (Var_Loc,
3847 Prefix => New_Occurrence_Of (Object_Entity, Var_Loc),
3848 Selector_Name => New_Occurrence_Of
3849 (Entity
3850 (Name (Variant_Part (Comp_List))), Var_Loc)),
3851 Alternatives => Variant_Alts));
3852 end;
3853 end if;
3855 return Stmts;
3856 end Build_Invariant_Checks;
3858 -- Start of processing for Build_Record_Invariant_Proc
3860 begin
3861 Invariant_Found := False;
3862 Type_Def := Type_Definition (Parent (R_Type));
3864 if Nkind (Type_Def) = N_Record_Definition
3865 and then not Null_Present (Type_Def)
3866 then
3867 Stmts := Build_Invariant_Checks (Component_List (Type_Def));
3868 else
3869 return Empty;
3870 end if;
3872 if not Invariant_Found then
3873 return Empty;
3874 end if;
3876 -- The name of the invariant procedure reflects the fact that the
3877 -- checks correspond to invariants on the component types. The
3878 -- record type itself may have invariants that will create a separate
3879 -- procedure whose name carries the Invariant suffix.
3881 Proc_Id :=
3882 Make_Defining_Identifier (Loc,
3883 Chars => New_External_Name (Chars (R_Type), "CInvariant"));
3885 Proc_Body :=
3886 Make_Subprogram_Body (Loc,
3887 Specification =>
3888 Make_Procedure_Specification (Loc,
3889 Defining_Unit_Name => Proc_Id,
3890 Parameter_Specifications => New_List (
3891 Make_Parameter_Specification (Loc,
3892 Defining_Identifier => Object_Entity,
3893 Parameter_Type => New_Occurrence_Of (R_Type, Loc)))),
3895 Declarations => Empty_List,
3896 Handled_Statement_Sequence =>
3897 Make_Handled_Sequence_Of_Statements (Loc,
3898 Statements => Stmts));
3900 Set_Ekind (Proc_Id, E_Procedure);
3901 Set_Is_Public (Proc_Id, Is_Public (R_Type));
3902 Set_Is_Internal (Proc_Id);
3903 Set_Has_Completion (Proc_Id);
3905 return Proc_Body;
3906 -- Insert_After (Nod, Proc_Body);
3907 -- Analyze (Proc_Body);
3908 end Build_Record_Invariant_Proc;
3910 ----------------------------
3911 -- Build_Slice_Assignment --
3912 ----------------------------
3914 -- Generates the following subprogram:
3916 -- procedure Assign
3917 -- (Source, Target : Array_Type,
3918 -- Left_Lo, Left_Hi : Index;
3919 -- Right_Lo, Right_Hi : Index;
3920 -- Rev : Boolean)
3921 -- is
3922 -- Li1 : Index;
3923 -- Ri1 : Index;
3925 -- begin
3927 -- if Left_Hi < Left_Lo then
3928 -- return;
3929 -- end if;
3931 -- if Rev then
3932 -- Li1 := Left_Hi;
3933 -- Ri1 := Right_Hi;
3934 -- else
3935 -- Li1 := Left_Lo;
3936 -- Ri1 := Right_Lo;
3937 -- end if;
3939 -- loop
3940 -- Target (Li1) := Source (Ri1);
3942 -- if Rev then
3943 -- exit when Li1 = Left_Lo;
3944 -- Li1 := Index'pred (Li1);
3945 -- Ri1 := Index'pred (Ri1);
3946 -- else
3947 -- exit when Li1 = Left_Hi;
3948 -- Li1 := Index'succ (Li1);
3949 -- Ri1 := Index'succ (Ri1);
3950 -- end if;
3951 -- end loop;
3952 -- end Assign;
3954 procedure Build_Slice_Assignment (Typ : Entity_Id) is
3955 Loc : constant Source_Ptr := Sloc (Typ);
3956 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
3958 Larray : constant Entity_Id := Make_Temporary (Loc, 'A');
3959 Rarray : constant Entity_Id := Make_Temporary (Loc, 'R');
3960 Left_Lo : constant Entity_Id := Make_Temporary (Loc, 'L');
3961 Left_Hi : constant Entity_Id := Make_Temporary (Loc, 'L');
3962 Right_Lo : constant Entity_Id := Make_Temporary (Loc, 'R');
3963 Right_Hi : constant Entity_Id := Make_Temporary (Loc, 'R');
3964 Rev : constant Entity_Id := Make_Temporary (Loc, 'D');
3965 -- Formal parameters of procedure
3967 Proc_Name : constant Entity_Id :=
3968 Make_Defining_Identifier (Loc,
3969 Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
3971 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L');
3972 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R');
3973 -- Subscripts for left and right sides
3975 Decls : List_Id;
3976 Loops : Node_Id;
3977 Stats : List_Id;
3979 begin
3980 -- Build declarations for indexes
3982 Decls := New_List;
3984 Append_To (Decls,
3985 Make_Object_Declaration (Loc,
3986 Defining_Identifier => Lnn,
3987 Object_Definition =>
3988 New_Occurrence_Of (Index, Loc)));
3990 Append_To (Decls,
3991 Make_Object_Declaration (Loc,
3992 Defining_Identifier => Rnn,
3993 Object_Definition =>
3994 New_Occurrence_Of (Index, Loc)));
3996 Stats := New_List;
3998 -- Build test for empty slice case
4000 Append_To (Stats,
4001 Make_If_Statement (Loc,
4002 Condition =>
4003 Make_Op_Lt (Loc,
4004 Left_Opnd => New_Occurrence_Of (Left_Hi, Loc),
4005 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)),
4006 Then_Statements => New_List (Make_Simple_Return_Statement (Loc))));
4008 -- Build initializations for indexes
4010 declare
4011 F_Init : constant List_Id := New_List;
4012 B_Init : constant List_Id := New_List;
4014 begin
4015 Append_To (F_Init,
4016 Make_Assignment_Statement (Loc,
4017 Name => New_Occurrence_Of (Lnn, Loc),
4018 Expression => New_Occurrence_Of (Left_Lo, Loc)));
4020 Append_To (F_Init,
4021 Make_Assignment_Statement (Loc,
4022 Name => New_Occurrence_Of (Rnn, Loc),
4023 Expression => New_Occurrence_Of (Right_Lo, Loc)));
4025 Append_To (B_Init,
4026 Make_Assignment_Statement (Loc,
4027 Name => New_Occurrence_Of (Lnn, Loc),
4028 Expression => New_Occurrence_Of (Left_Hi, Loc)));
4030 Append_To (B_Init,
4031 Make_Assignment_Statement (Loc,
4032 Name => New_Occurrence_Of (Rnn, Loc),
4033 Expression => New_Occurrence_Of (Right_Hi, Loc)));
4035 Append_To (Stats,
4036 Make_If_Statement (Loc,
4037 Condition => New_Occurrence_Of (Rev, Loc),
4038 Then_Statements => B_Init,
4039 Else_Statements => F_Init));
4040 end;
4042 -- Now construct the assignment statement
4044 Loops :=
4045 Make_Loop_Statement (Loc,
4046 Statements => New_List (
4047 Make_Assignment_Statement (Loc,
4048 Name =>
4049 Make_Indexed_Component (Loc,
4050 Prefix => New_Occurrence_Of (Larray, Loc),
4051 Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
4052 Expression =>
4053 Make_Indexed_Component (Loc,
4054 Prefix => New_Occurrence_Of (Rarray, Loc),
4055 Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
4056 End_Label => Empty);
4058 -- Build the exit condition and increment/decrement statements
4060 declare
4061 F_Ass : constant List_Id := New_List;
4062 B_Ass : constant List_Id := New_List;
4064 begin
4065 Append_To (F_Ass,
4066 Make_Exit_Statement (Loc,
4067 Condition =>
4068 Make_Op_Eq (Loc,
4069 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4070 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
4072 Append_To (F_Ass,
4073 Make_Assignment_Statement (Loc,
4074 Name => New_Occurrence_Of (Lnn, Loc),
4075 Expression =>
4076 Make_Attribute_Reference (Loc,
4077 Prefix =>
4078 New_Occurrence_Of (Index, Loc),
4079 Attribute_Name => Name_Succ,
4080 Expressions => New_List (
4081 New_Occurrence_Of (Lnn, Loc)))));
4083 Append_To (F_Ass,
4084 Make_Assignment_Statement (Loc,
4085 Name => New_Occurrence_Of (Rnn, Loc),
4086 Expression =>
4087 Make_Attribute_Reference (Loc,
4088 Prefix =>
4089 New_Occurrence_Of (Index, Loc),
4090 Attribute_Name => Name_Succ,
4091 Expressions => New_List (
4092 New_Occurrence_Of (Rnn, Loc)))));
4094 Append_To (B_Ass,
4095 Make_Exit_Statement (Loc,
4096 Condition =>
4097 Make_Op_Eq (Loc,
4098 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4099 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
4101 Append_To (B_Ass,
4102 Make_Assignment_Statement (Loc,
4103 Name => New_Occurrence_Of (Lnn, Loc),
4104 Expression =>
4105 Make_Attribute_Reference (Loc,
4106 Prefix =>
4107 New_Occurrence_Of (Index, Loc),
4108 Attribute_Name => Name_Pred,
4109 Expressions => New_List (
4110 New_Occurrence_Of (Lnn, Loc)))));
4112 Append_To (B_Ass,
4113 Make_Assignment_Statement (Loc,
4114 Name => New_Occurrence_Of (Rnn, Loc),
4115 Expression =>
4116 Make_Attribute_Reference (Loc,
4117 Prefix =>
4118 New_Occurrence_Of (Index, Loc),
4119 Attribute_Name => Name_Pred,
4120 Expressions => New_List (
4121 New_Occurrence_Of (Rnn, Loc)))));
4123 Append_To (Statements (Loops),
4124 Make_If_Statement (Loc,
4125 Condition => New_Occurrence_Of (Rev, Loc),
4126 Then_Statements => B_Ass,
4127 Else_Statements => F_Ass));
4128 end;
4130 Append_To (Stats, Loops);
4132 declare
4133 Spec : Node_Id;
4134 Formals : List_Id := New_List;
4136 begin
4137 Formals := New_List (
4138 Make_Parameter_Specification (Loc,
4139 Defining_Identifier => Larray,
4140 Out_Present => True,
4141 Parameter_Type =>
4142 New_Occurrence_Of (Base_Type (Typ), Loc)),
4144 Make_Parameter_Specification (Loc,
4145 Defining_Identifier => Rarray,
4146 Parameter_Type =>
4147 New_Occurrence_Of (Base_Type (Typ), Loc)),
4149 Make_Parameter_Specification (Loc,
4150 Defining_Identifier => Left_Lo,
4151 Parameter_Type =>
4152 New_Occurrence_Of (Index, Loc)),
4154 Make_Parameter_Specification (Loc,
4155 Defining_Identifier => Left_Hi,
4156 Parameter_Type =>
4157 New_Occurrence_Of (Index, Loc)),
4159 Make_Parameter_Specification (Loc,
4160 Defining_Identifier => Right_Lo,
4161 Parameter_Type =>
4162 New_Occurrence_Of (Index, Loc)),
4164 Make_Parameter_Specification (Loc,
4165 Defining_Identifier => Right_Hi,
4166 Parameter_Type =>
4167 New_Occurrence_Of (Index, Loc)));
4169 Append_To (Formals,
4170 Make_Parameter_Specification (Loc,
4171 Defining_Identifier => Rev,
4172 Parameter_Type =>
4173 New_Occurrence_Of (Standard_Boolean, Loc)));
4175 Spec :=
4176 Make_Procedure_Specification (Loc,
4177 Defining_Unit_Name => Proc_Name,
4178 Parameter_Specifications => Formals);
4180 Discard_Node (
4181 Make_Subprogram_Body (Loc,
4182 Specification => Spec,
4183 Declarations => Decls,
4184 Handled_Statement_Sequence =>
4185 Make_Handled_Sequence_Of_Statements (Loc,
4186 Statements => Stats)));
4187 end;
4189 Set_TSS (Typ, Proc_Name);
4190 Set_Is_Pure (Proc_Name);
4191 end Build_Slice_Assignment;
4193 -----------------------------
4194 -- Build_Untagged_Equality --
4195 -----------------------------
4197 procedure Build_Untagged_Equality (Typ : Entity_Id) is
4198 Build_Eq : Boolean;
4199 Comp : Entity_Id;
4200 Decl : Node_Id;
4201 Op : Entity_Id;
4202 Prim : Elmt_Id;
4203 Eq_Op : Entity_Id;
4205 function User_Defined_Eq (T : Entity_Id) return Entity_Id;
4206 -- Check whether the type T has a user-defined primitive equality. If so
4207 -- return it, else return Empty. If true for a component of Typ, we have
4208 -- to build the primitive equality for it.
4210 ---------------------
4211 -- User_Defined_Eq --
4212 ---------------------
4214 function User_Defined_Eq (T : Entity_Id) return Entity_Id is
4215 Prim : Elmt_Id;
4216 Op : Entity_Id;
4218 begin
4219 Op := TSS (T, TSS_Composite_Equality);
4221 if Present (Op) then
4222 return Op;
4223 end if;
4225 Prim := First_Elmt (Collect_Primitive_Operations (T));
4226 while Present (Prim) loop
4227 Op := Node (Prim);
4229 if Chars (Op) = Name_Op_Eq
4230 and then Etype (Op) = Standard_Boolean
4231 and then Etype (First_Formal (Op)) = T
4232 and then Etype (Next_Formal (First_Formal (Op))) = T
4233 then
4234 return Op;
4235 end if;
4237 Next_Elmt (Prim);
4238 end loop;
4240 return Empty;
4241 end User_Defined_Eq;
4243 -- Start of processing for Build_Untagged_Equality
4245 begin
4246 -- If a record component has a primitive equality operation, we must
4247 -- build the corresponding one for the current type.
4249 Build_Eq := False;
4250 Comp := First_Component (Typ);
4251 while Present (Comp) loop
4252 if Is_Record_Type (Etype (Comp))
4253 and then Present (User_Defined_Eq (Etype (Comp)))
4254 then
4255 Build_Eq := True;
4256 end if;
4258 Next_Component (Comp);
4259 end loop;
4261 -- If there is a user-defined equality for the type, we do not create
4262 -- the implicit one.
4264 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
4265 Eq_Op := Empty;
4266 while Present (Prim) loop
4267 if Chars (Node (Prim)) = Name_Op_Eq
4268 and then Comes_From_Source (Node (Prim))
4270 -- Don't we also need to check formal types and return type as in
4271 -- User_Defined_Eq above???
4273 then
4274 Eq_Op := Node (Prim);
4275 Build_Eq := False;
4276 exit;
4277 end if;
4279 Next_Elmt (Prim);
4280 end loop;
4282 -- If the type is derived, inherit the operation, if present, from the
4283 -- parent type. It may have been declared after the type derivation. If
4284 -- the parent type itself is derived, it may have inherited an operation
4285 -- that has itself been overridden, so update its alias and related
4286 -- flags. Ditto for inequality.
4288 if No (Eq_Op) and then Is_Derived_Type (Typ) then
4289 Prim := First_Elmt (Collect_Primitive_Operations (Etype (Typ)));
4290 while Present (Prim) loop
4291 if Chars (Node (Prim)) = Name_Op_Eq then
4292 Copy_TSS (Node (Prim), Typ);
4293 Build_Eq := False;
4295 declare
4296 Op : constant Entity_Id := User_Defined_Eq (Typ);
4297 Eq_Op : constant Entity_Id := Node (Prim);
4298 NE_Op : constant Entity_Id := Next_Entity (Eq_Op);
4300 begin
4301 if Present (Op) then
4302 Set_Alias (Op, Eq_Op);
4303 Set_Is_Abstract_Subprogram
4304 (Op, Is_Abstract_Subprogram (Eq_Op));
4306 if Chars (Next_Entity (Op)) = Name_Op_Ne then
4307 Set_Is_Abstract_Subprogram
4308 (Next_Entity (Op), Is_Abstract_Subprogram (NE_Op));
4309 end if;
4310 end if;
4311 end;
4313 exit;
4314 end if;
4316 Next_Elmt (Prim);
4317 end loop;
4318 end if;
4320 -- If not inherited and not user-defined, build body as for a type with
4321 -- tagged components.
4323 if Build_Eq then
4324 Decl :=
4325 Make_Eq_Body (Typ, Make_TSS_Name (Typ, TSS_Composite_Equality));
4326 Op := Defining_Entity (Decl);
4327 Set_TSS (Typ, Op);
4328 Set_Is_Pure (Op);
4330 if Is_Library_Level_Entity (Typ) then
4331 Set_Is_Public (Op);
4332 end if;
4333 end if;
4334 end Build_Untagged_Equality;
4336 -----------------------------------
4337 -- Build_Variant_Record_Equality --
4338 -----------------------------------
4340 -- Generates:
4342 -- function _Equality (X, Y : T) return Boolean is
4343 -- begin
4344 -- -- Compare discriminants
4346 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
4347 -- return False;
4348 -- end if;
4350 -- -- Compare components
4352 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
4353 -- return False;
4354 -- end if;
4356 -- -- Compare variant part
4358 -- case X.D1 is
4359 -- when V1 =>
4360 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
4361 -- return False;
4362 -- end if;
4363 -- ...
4364 -- when Vn =>
4365 -- if X.Cn /= Y.Cn or else ... then
4366 -- return False;
4367 -- end if;
4368 -- end case;
4370 -- return True;
4371 -- end _Equality;
4373 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
4374 Loc : constant Source_Ptr := Sloc (Typ);
4376 F : constant Entity_Id :=
4377 Make_Defining_Identifier (Loc,
4378 Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
4380 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
4381 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_Y);
4383 Def : constant Node_Id := Parent (Typ);
4384 Comps : constant Node_Id := Component_List (Type_Definition (Def));
4385 Stmts : constant List_Id := New_List;
4386 Pspecs : constant List_Id := New_List;
4388 begin
4389 -- If we have a variant record with restriction No_Implicit_Conditionals
4390 -- in effect, then we skip building the procedure. This is safe because
4391 -- if we can see the restriction, so can any caller, calls to equality
4392 -- test routines are not allowed for variant records if this restriction
4393 -- is active.
4395 if Restriction_Active (No_Implicit_Conditionals) then
4396 return;
4397 end if;
4399 -- Derived Unchecked_Union types no longer inherit the equality function
4400 -- of their parent.
4402 if Is_Derived_Type (Typ)
4403 and then not Is_Unchecked_Union (Typ)
4404 and then not Has_New_Non_Standard_Rep (Typ)
4405 then
4406 declare
4407 Parent_Eq : constant Entity_Id :=
4408 TSS (Root_Type (Typ), TSS_Composite_Equality);
4409 begin
4410 if Present (Parent_Eq) then
4411 Copy_TSS (Parent_Eq, Typ);
4412 return;
4413 end if;
4414 end;
4415 end if;
4417 Discard_Node (
4418 Make_Subprogram_Body (Loc,
4419 Specification =>
4420 Make_Function_Specification (Loc,
4421 Defining_Unit_Name => F,
4422 Parameter_Specifications => Pspecs,
4423 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
4424 Declarations => New_List,
4425 Handled_Statement_Sequence =>
4426 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts)));
4428 Append_To (Pspecs,
4429 Make_Parameter_Specification (Loc,
4430 Defining_Identifier => X,
4431 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4433 Append_To (Pspecs,
4434 Make_Parameter_Specification (Loc,
4435 Defining_Identifier => Y,
4436 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4438 -- Unchecked_Unions require additional machinery to support equality.
4439 -- Two extra parameters (A and B) are added to the equality function
4440 -- parameter list for each discriminant of the type, in order to
4441 -- capture the inferred values of the discriminants in equality calls.
4442 -- The names of the parameters match the names of the corresponding
4443 -- discriminant, with an added suffix.
4445 if Is_Unchecked_Union (Typ) then
4446 declare
4447 Discr : Entity_Id;
4448 Discr_Type : Entity_Id;
4449 A, B : Entity_Id;
4450 New_Discrs : Elist_Id;
4452 begin
4453 New_Discrs := New_Elmt_List;
4455 Discr := First_Discriminant (Typ);
4456 while Present (Discr) loop
4457 Discr_Type := Etype (Discr);
4458 A := Make_Defining_Identifier (Loc,
4459 Chars => New_External_Name (Chars (Discr), 'A'));
4461 B := Make_Defining_Identifier (Loc,
4462 Chars => New_External_Name (Chars (Discr), 'B'));
4464 -- Add new parameters to the parameter list
4466 Append_To (Pspecs,
4467 Make_Parameter_Specification (Loc,
4468 Defining_Identifier => A,
4469 Parameter_Type =>
4470 New_Occurrence_Of (Discr_Type, Loc)));
4472 Append_To (Pspecs,
4473 Make_Parameter_Specification (Loc,
4474 Defining_Identifier => B,
4475 Parameter_Type =>
4476 New_Occurrence_Of (Discr_Type, Loc)));
4478 Append_Elmt (A, New_Discrs);
4480 -- Generate the following code to compare each of the inferred
4481 -- discriminants:
4483 -- if a /= b then
4484 -- return False;
4485 -- end if;
4487 Append_To (Stmts,
4488 Make_If_Statement (Loc,
4489 Condition =>
4490 Make_Op_Ne (Loc,
4491 Left_Opnd => New_Occurrence_Of (A, Loc),
4492 Right_Opnd => New_Occurrence_Of (B, Loc)),
4493 Then_Statements => New_List (
4494 Make_Simple_Return_Statement (Loc,
4495 Expression =>
4496 New_Occurrence_Of (Standard_False, Loc)))));
4497 Next_Discriminant (Discr);
4498 end loop;
4500 -- Generate component-by-component comparison. Note that we must
4501 -- propagate the inferred discriminants formals to act as
4502 -- the case statement switch. Their value is added when an
4503 -- equality call on unchecked unions is expanded.
4505 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps, New_Discrs));
4506 end;
4508 -- Normal case (not unchecked union)
4510 else
4511 Append_To (Stmts,
4512 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
4513 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
4514 end if;
4516 Append_To (Stmts,
4517 Make_Simple_Return_Statement (Loc,
4518 Expression => New_Occurrence_Of (Standard_True, Loc)));
4520 Set_TSS (Typ, F);
4521 Set_Is_Pure (F);
4523 if not Debug_Generated_Code then
4524 Set_Debug_Info_Off (F);
4525 end if;
4526 end Build_Variant_Record_Equality;
4528 -----------------------------
4529 -- Check_Stream_Attributes --
4530 -----------------------------
4532 procedure Check_Stream_Attributes (Typ : Entity_Id) is
4533 Comp : Entity_Id;
4534 Par_Read : constant Boolean :=
4535 Stream_Attribute_Available (Typ, TSS_Stream_Read)
4536 and then not Has_Specified_Stream_Read (Typ);
4537 Par_Write : constant Boolean :=
4538 Stream_Attribute_Available (Typ, TSS_Stream_Write)
4539 and then not Has_Specified_Stream_Write (Typ);
4541 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
4542 -- Check that Comp has a user-specified Nam stream attribute
4544 ----------------
4545 -- Check_Attr --
4546 ----------------
4548 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
4549 begin
4550 if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
4551 Error_Msg_Name_1 := Nam;
4552 Error_Msg_N
4553 ("|component& in limited extension must have% attribute", Comp);
4554 end if;
4555 end Check_Attr;
4557 -- Start of processing for Check_Stream_Attributes
4559 begin
4560 if Par_Read or else Par_Write then
4561 Comp := First_Component (Typ);
4562 while Present (Comp) loop
4563 if Comes_From_Source (Comp)
4564 and then Original_Record_Component (Comp) = Comp
4565 and then Is_Limited_Type (Etype (Comp))
4566 then
4567 if Par_Read then
4568 Check_Attr (Name_Read, TSS_Stream_Read);
4569 end if;
4571 if Par_Write then
4572 Check_Attr (Name_Write, TSS_Stream_Write);
4573 end if;
4574 end if;
4576 Next_Component (Comp);
4577 end loop;
4578 end if;
4579 end Check_Stream_Attributes;
4581 ----------------------
4582 -- Clean_Task_Names --
4583 ----------------------
4585 procedure Clean_Task_Names
4586 (Typ : Entity_Id;
4587 Proc_Id : Entity_Id)
4589 begin
4590 if Has_Task (Typ)
4591 and then not Restriction_Active (No_Implicit_Heap_Allocations)
4592 and then not Global_Discard_Names
4593 and then Tagged_Type_Expansion
4594 then
4595 Set_Uses_Sec_Stack (Proc_Id);
4596 end if;
4597 end Clean_Task_Names;
4599 ------------------------------
4600 -- Expand_Freeze_Array_Type --
4601 ------------------------------
4603 procedure Expand_Freeze_Array_Type (N : Node_Id) is
4604 Typ : constant Entity_Id := Entity (N);
4605 Base : constant Entity_Id := Base_Type (Typ);
4606 Comp_Typ : constant Entity_Id := Component_Type (Typ);
4608 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4610 begin
4611 -- Ensure that all freezing activities are properly flagged as Ghost
4613 Set_Ghost_Mode_From_Entity (Typ);
4615 if not Is_Bit_Packed_Array (Typ) then
4617 -- If the component contains tasks, so does the array type. This may
4618 -- not be indicated in the array type because the component may have
4619 -- been a private type at the point of definition. Same if component
4620 -- type is controlled or contains protected objects.
4622 Propagate_Type_Has_Flags (Base, Comp_Typ);
4623 Set_Has_Controlled_Component
4624 (Base, Has_Controlled_Component (Comp_Typ)
4625 or else Is_Controlled (Comp_Typ));
4627 if No (Init_Proc (Base)) then
4629 -- If this is an anonymous array created for a declaration with
4630 -- an initial value, its init_proc will never be called. The
4631 -- initial value itself may have been expanded into assignments,
4632 -- in which case the object declaration is carries the
4633 -- No_Initialization flag.
4635 if Is_Itype (Base)
4636 and then Nkind (Associated_Node_For_Itype (Base)) =
4637 N_Object_Declaration
4638 and then
4639 (Present (Expression (Associated_Node_For_Itype (Base)))
4640 or else No_Initialization (Associated_Node_For_Itype (Base)))
4641 then
4642 null;
4644 -- We do not need an init proc for string or wide [wide] string,
4645 -- since the only time these need initialization in normalize or
4646 -- initialize scalars mode, and these types are treated specially
4647 -- and do not need initialization procedures.
4649 elsif Is_Standard_String_Type (Base) then
4650 null;
4652 -- Otherwise we have to build an init proc for the subtype
4654 else
4655 Build_Array_Init_Proc (Base, N);
4656 end if;
4657 end if;
4659 if Typ = Base and then Has_Controlled_Component (Base) then
4660 Build_Controlling_Procs (Base);
4662 if not Is_Limited_Type (Comp_Typ)
4663 and then Number_Dimensions (Typ) = 1
4664 then
4665 Build_Slice_Assignment (Typ);
4666 end if;
4667 end if;
4669 -- For packed case, default initialization, except if the component type
4670 -- is itself a packed structure with an initialization procedure, or
4671 -- initialize/normalize scalars active, and we have a base type, or the
4672 -- type is public, because in that case a client might specify
4673 -- Normalize_Scalars and there better be a public Init_Proc for it.
4675 elsif (Present (Init_Proc (Component_Type (Base)))
4676 and then No (Base_Init_Proc (Base)))
4677 or else (Init_Or_Norm_Scalars and then Base = Typ)
4678 or else Is_Public (Typ)
4679 then
4680 Build_Array_Init_Proc (Base, N);
4681 end if;
4683 if Has_Invariants (Component_Type (Base))
4684 and then Typ = Base
4685 and then In_Open_Scopes (Scope (Component_Type (Base)))
4686 then
4687 -- Generate component invariant checking procedure. This is only
4688 -- relevant if the array type is within the scope of the component
4689 -- type. Otherwise an array object can only be built using the public
4690 -- subprograms for the component type, and calls to those will have
4691 -- invariant checks. The invariant procedure is only generated for
4692 -- a base type, not a subtype.
4694 Insert_Component_Invariant_Checks
4695 (N, Base, Build_Array_Invariant_Proc (Base, N));
4696 end if;
4698 Ghost_Mode := Save_Ghost_Mode;
4699 end Expand_Freeze_Array_Type;
4701 -----------------------------------
4702 -- Expand_Freeze_Class_Wide_Type --
4703 -----------------------------------
4705 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id) is
4706 function Is_C_Derivation (Typ : Entity_Id) return Boolean;
4707 -- Given a type, determine whether it is derived from a C or C++ root
4709 ---------------------
4710 -- Is_C_Derivation --
4711 ---------------------
4713 function Is_C_Derivation (Typ : Entity_Id) return Boolean is
4714 T : Entity_Id;
4716 begin
4717 T := Typ;
4718 loop
4719 if Is_CPP_Class (T)
4720 or else Convention (T) = Convention_C
4721 or else Convention (T) = Convention_CPP
4722 then
4723 return True;
4724 end if;
4726 exit when T = Etype (T);
4728 T := Etype (T);
4729 end loop;
4731 return False;
4732 end Is_C_Derivation;
4734 -- Local variables
4736 Typ : constant Entity_Id := Entity (N);
4737 Root : constant Entity_Id := Root_Type (Typ);
4739 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4741 -- Start of processing for Expand_Freeze_Class_Wide_Type
4743 begin
4744 -- Certain run-time configurations and targets do not provide support
4745 -- for controlled types.
4747 if Restriction_Active (No_Finalization) then
4748 return;
4750 -- Do not create TSS routine Finalize_Address when dispatching calls are
4751 -- disabled since the core of the routine is a dispatching call.
4753 elsif Restriction_Active (No_Dispatching_Calls) then
4754 return;
4756 -- Do not create TSS routine Finalize_Address for concurrent class-wide
4757 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
4758 -- non-Ada side will handle their destruction.
4760 elsif Is_Concurrent_Type (Root)
4761 or else Is_C_Derivation (Root)
4762 or else Convention (Typ) = Convention_CPP
4763 then
4764 return;
4766 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
4767 -- mode since the routine contains an Unchecked_Conversion.
4769 elsif CodePeer_Mode then
4770 return;
4771 end if;
4773 -- Ensure that all freezing activities are properly flagged as Ghost
4775 Set_Ghost_Mode_From_Entity (Typ);
4777 -- Create the body of TSS primitive Finalize_Address. This automatically
4778 -- sets the TSS entry for the class-wide type.
4780 Make_Finalize_Address_Body (Typ);
4781 Ghost_Mode := Save_Ghost_Mode;
4782 end Expand_Freeze_Class_Wide_Type;
4784 ------------------------------------
4785 -- Expand_Freeze_Enumeration_Type --
4786 ------------------------------------
4788 procedure Expand_Freeze_Enumeration_Type (N : Node_Id) is
4789 Typ : constant Entity_Id := Entity (N);
4790 Loc : constant Source_Ptr := Sloc (Typ);
4792 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4794 Arr : Entity_Id;
4795 Ent : Entity_Id;
4796 Fent : Entity_Id;
4797 Is_Contiguous : Boolean;
4798 Ityp : Entity_Id;
4799 Last_Repval : Uint;
4800 Lst : List_Id;
4801 Num : Nat;
4802 Pos_Expr : Node_Id;
4804 Func : Entity_Id;
4805 pragma Warnings (Off, Func);
4807 begin
4808 -- Ensure that all freezing activities are properly flagged as Ghost
4810 Set_Ghost_Mode_From_Entity (Typ);
4812 -- Various optimizations possible if given representation is contiguous
4814 Is_Contiguous := True;
4816 Ent := First_Literal (Typ);
4817 Last_Repval := Enumeration_Rep (Ent);
4819 Next_Literal (Ent);
4820 while Present (Ent) loop
4821 if Enumeration_Rep (Ent) - Last_Repval /= 1 then
4822 Is_Contiguous := False;
4823 exit;
4824 else
4825 Last_Repval := Enumeration_Rep (Ent);
4826 end if;
4828 Next_Literal (Ent);
4829 end loop;
4831 if Is_Contiguous then
4832 Set_Has_Contiguous_Rep (Typ);
4833 Ent := First_Literal (Typ);
4834 Num := 1;
4835 Lst := New_List (New_Occurrence_Of (Ent, Sloc (Ent)));
4837 else
4838 -- Build list of literal references
4840 Lst := New_List;
4841 Num := 0;
4843 Ent := First_Literal (Typ);
4844 while Present (Ent) loop
4845 Append_To (Lst, New_Occurrence_Of (Ent, Sloc (Ent)));
4846 Num := Num + 1;
4847 Next_Literal (Ent);
4848 end loop;
4849 end if;
4851 -- Now build an array declaration
4853 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4854 -- (v, v, v, v, v, ....)
4856 -- where ctype is the corresponding integer type. If the representation
4857 -- is contiguous, we only keep the first literal, which provides the
4858 -- offset for Pos_To_Rep computations.
4860 Arr :=
4861 Make_Defining_Identifier (Loc,
4862 Chars => New_External_Name (Chars (Typ), 'A'));
4864 Append_Freeze_Action (Typ,
4865 Make_Object_Declaration (Loc,
4866 Defining_Identifier => Arr,
4867 Constant_Present => True,
4869 Object_Definition =>
4870 Make_Constrained_Array_Definition (Loc,
4871 Discrete_Subtype_Definitions => New_List (
4872 Make_Subtype_Indication (Loc,
4873 Subtype_Mark => New_Occurrence_Of (Standard_Natural, Loc),
4874 Constraint =>
4875 Make_Range_Constraint (Loc,
4876 Range_Expression =>
4877 Make_Range (Loc,
4878 Low_Bound =>
4879 Make_Integer_Literal (Loc, 0),
4880 High_Bound =>
4881 Make_Integer_Literal (Loc, Num - 1))))),
4883 Component_Definition =>
4884 Make_Component_Definition (Loc,
4885 Aliased_Present => False,
4886 Subtype_Indication => New_Occurrence_Of (Typ, Loc))),
4888 Expression =>
4889 Make_Aggregate (Loc,
4890 Expressions => Lst)));
4892 Set_Enum_Pos_To_Rep (Typ, Arr);
4894 -- Now we build the function that converts representation values to
4895 -- position values. This function has the form:
4897 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4898 -- begin
4899 -- case ityp!(A) is
4900 -- when enum-lit'Enum_Rep => return posval;
4901 -- when enum-lit'Enum_Rep => return posval;
4902 -- ...
4903 -- when others =>
4904 -- [raise Constraint_Error when F "invalid data"]
4905 -- return -1;
4906 -- end case;
4907 -- end;
4909 -- Note: the F parameter determines whether the others case (no valid
4910 -- representation) raises Constraint_Error or returns a unique value
4911 -- of minus one. The latter case is used, e.g. in 'Valid code.
4913 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4914 -- the code generator making inappropriate assumptions about the range
4915 -- of the values in the case where the value is invalid. ityp is a
4916 -- signed or unsigned integer type of appropriate width.
4918 -- Note: if exceptions are not supported, then we suppress the raise
4919 -- and return -1 unconditionally (this is an erroneous program in any
4920 -- case and there is no obligation to raise Constraint_Error here). We
4921 -- also do this if pragma Restrictions (No_Exceptions) is active.
4923 -- Is this right??? What about No_Exception_Propagation???
4925 -- Representations are signed
4927 if Enumeration_Rep (First_Literal (Typ)) < 0 then
4929 -- The underlying type is signed. Reset the Is_Unsigned_Type
4930 -- explicitly, because it might have been inherited from
4931 -- parent type.
4933 Set_Is_Unsigned_Type (Typ, False);
4935 if Esize (Typ) <= Standard_Integer_Size then
4936 Ityp := Standard_Integer;
4937 else
4938 Ityp := Universal_Integer;
4939 end if;
4941 -- Representations are unsigned
4943 else
4944 if Esize (Typ) <= Standard_Integer_Size then
4945 Ityp := RTE (RE_Unsigned);
4946 else
4947 Ityp := RTE (RE_Long_Long_Unsigned);
4948 end if;
4949 end if;
4951 -- The body of the function is a case statement. First collect case
4952 -- alternatives, or optimize the contiguous case.
4954 Lst := New_List;
4956 -- If representation is contiguous, Pos is computed by subtracting
4957 -- the representation of the first literal.
4959 if Is_Contiguous then
4960 Ent := First_Literal (Typ);
4962 if Enumeration_Rep (Ent) = Last_Repval then
4964 -- Another special case: for a single literal, Pos is zero
4966 Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
4968 else
4969 Pos_Expr :=
4970 Convert_To (Standard_Integer,
4971 Make_Op_Subtract (Loc,
4972 Left_Opnd =>
4973 Unchecked_Convert_To
4974 (Ityp, Make_Identifier (Loc, Name_uA)),
4975 Right_Opnd =>
4976 Make_Integer_Literal (Loc,
4977 Intval => Enumeration_Rep (First_Literal (Typ)))));
4978 end if;
4980 Append_To (Lst,
4981 Make_Case_Statement_Alternative (Loc,
4982 Discrete_Choices => New_List (
4983 Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
4984 Low_Bound =>
4985 Make_Integer_Literal (Loc,
4986 Intval => Enumeration_Rep (Ent)),
4987 High_Bound =>
4988 Make_Integer_Literal (Loc, Intval => Last_Repval))),
4990 Statements => New_List (
4991 Make_Simple_Return_Statement (Loc,
4992 Expression => Pos_Expr))));
4994 else
4995 Ent := First_Literal (Typ);
4996 while Present (Ent) loop
4997 Append_To (Lst,
4998 Make_Case_Statement_Alternative (Loc,
4999 Discrete_Choices => New_List (
5000 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
5001 Intval => Enumeration_Rep (Ent))),
5003 Statements => New_List (
5004 Make_Simple_Return_Statement (Loc,
5005 Expression =>
5006 Make_Integer_Literal (Loc,
5007 Intval => Enumeration_Pos (Ent))))));
5009 Next_Literal (Ent);
5010 end loop;
5011 end if;
5013 -- In normal mode, add the others clause with the test.
5014 -- If Predicates_Ignored is True, validity checks do not apply to
5015 -- the subtype.
5017 if not No_Exception_Handlers_Set
5018 and then not Predicates_Ignored (Typ)
5019 then
5020 Append_To (Lst,
5021 Make_Case_Statement_Alternative (Loc,
5022 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
5023 Statements => New_List (
5024 Make_Raise_Constraint_Error (Loc,
5025 Condition => Make_Identifier (Loc, Name_uF),
5026 Reason => CE_Invalid_Data),
5027 Make_Simple_Return_Statement (Loc,
5028 Expression => Make_Integer_Literal (Loc, -1)))));
5030 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
5031 -- active then return -1 (we cannot usefully raise Constraint_Error in
5032 -- this case). See description above for further details.
5034 else
5035 Append_To (Lst,
5036 Make_Case_Statement_Alternative (Loc,
5037 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
5038 Statements => New_List (
5039 Make_Simple_Return_Statement (Loc,
5040 Expression => Make_Integer_Literal (Loc, -1)))));
5041 end if;
5043 -- Now we can build the function body
5045 Fent :=
5046 Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
5048 Func :=
5049 Make_Subprogram_Body (Loc,
5050 Specification =>
5051 Make_Function_Specification (Loc,
5052 Defining_Unit_Name => Fent,
5053 Parameter_Specifications => New_List (
5054 Make_Parameter_Specification (Loc,
5055 Defining_Identifier =>
5056 Make_Defining_Identifier (Loc, Name_uA),
5057 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
5058 Make_Parameter_Specification (Loc,
5059 Defining_Identifier =>
5060 Make_Defining_Identifier (Loc, Name_uF),
5061 Parameter_Type =>
5062 New_Occurrence_Of (Standard_Boolean, Loc))),
5064 Result_Definition => New_Occurrence_Of (Standard_Integer, Loc)),
5066 Declarations => Empty_List,
5068 Handled_Statement_Sequence =>
5069 Make_Handled_Sequence_Of_Statements (Loc,
5070 Statements => New_List (
5071 Make_Case_Statement (Loc,
5072 Expression =>
5073 Unchecked_Convert_To
5074 (Ityp, Make_Identifier (Loc, Name_uA)),
5075 Alternatives => Lst))));
5077 Set_TSS (Typ, Fent);
5079 -- Set Pure flag (it will be reset if the current context is not Pure).
5080 -- We also pretend there was a pragma Pure_Function so that for purposes
5081 -- of optimization and constant-folding, we will consider the function
5082 -- Pure even if we are not in a Pure context).
5084 Set_Is_Pure (Fent);
5085 Set_Has_Pragma_Pure_Function (Fent);
5087 -- Unless we are in -gnatD mode, where we are debugging generated code,
5088 -- this is an internal entity for which we don't need debug info.
5090 if not Debug_Generated_Code then
5091 Set_Debug_Info_Off (Fent);
5092 end if;
5094 Ghost_Mode := Save_Ghost_Mode;
5096 exception
5097 when RE_Not_Available =>
5098 Ghost_Mode := Save_Ghost_Mode;
5099 return;
5100 end Expand_Freeze_Enumeration_Type;
5102 -------------------------------
5103 -- Expand_Freeze_Record_Type --
5104 -------------------------------
5106 procedure Expand_Freeze_Record_Type (N : Node_Id) is
5107 Typ : constant Node_Id := Entity (N);
5108 Typ_Decl : constant Node_Id := Parent (Typ);
5110 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
5112 Comp : Entity_Id;
5113 Comp_Typ : Entity_Id;
5114 Predef_List : List_Id;
5116 Wrapper_Decl_List : List_Id := No_List;
5117 Wrapper_Body_List : List_Id := No_List;
5119 Renamed_Eq : Node_Id := Empty;
5120 -- Defining unit name for the predefined equality function in the case
5121 -- where the type has a primitive operation that is a renaming of
5122 -- predefined equality (but only if there is also an overriding
5123 -- user-defined equality function). Used to pass this entity from
5124 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
5126 -- Start of processing for Expand_Freeze_Record_Type
5128 begin
5129 -- Ensure that all freezing activities are properly flagged as Ghost
5131 Set_Ghost_Mode_From_Entity (Typ);
5133 -- Build discriminant checking functions if not a derived type (for
5134 -- derived types that are not tagged types, always use the discriminant
5135 -- checking functions of the parent type). However, for untagged types
5136 -- the derivation may have taken place before the parent was frozen, so
5137 -- we copy explicitly the discriminant checking functions from the
5138 -- parent into the components of the derived type.
5140 if not Is_Derived_Type (Typ)
5141 or else Has_New_Non_Standard_Rep (Typ)
5142 or else Is_Tagged_Type (Typ)
5143 then
5144 Build_Discr_Checking_Funcs (Typ_Decl);
5146 elsif Is_Derived_Type (Typ)
5147 and then not Is_Tagged_Type (Typ)
5149 -- If we have a derived Unchecked_Union, we do not inherit the
5150 -- discriminant checking functions from the parent type since the
5151 -- discriminants are non existent.
5153 and then not Is_Unchecked_Union (Typ)
5154 and then Has_Discriminants (Typ)
5155 then
5156 declare
5157 Old_Comp : Entity_Id;
5159 begin
5160 Old_Comp :=
5161 First_Component (Base_Type (Underlying_Type (Etype (Typ))));
5162 Comp := First_Component (Typ);
5163 while Present (Comp) loop
5164 if Ekind (Comp) = E_Component
5165 and then Chars (Comp) = Chars (Old_Comp)
5166 then
5167 Set_Discriminant_Checking_Func
5168 (Comp, Discriminant_Checking_Func (Old_Comp));
5169 end if;
5171 Next_Component (Old_Comp);
5172 Next_Component (Comp);
5173 end loop;
5174 end;
5175 end if;
5177 if Is_Derived_Type (Typ)
5178 and then Is_Limited_Type (Typ)
5179 and then Is_Tagged_Type (Typ)
5180 then
5181 Check_Stream_Attributes (Typ);
5182 end if;
5184 -- Update task, protected, and controlled component flags, because some
5185 -- of the component types may have been private at the point of the
5186 -- record declaration. Detect anonymous access-to-controlled components.
5188 Comp := First_Component (Typ);
5189 while Present (Comp) loop
5190 Comp_Typ := Etype (Comp);
5192 Propagate_Type_Has_Flags (Typ, Comp_Typ);
5194 -- Do not set Has_Controlled_Component on a class-wide equivalent
5195 -- type. See Make_CW_Equivalent_Type.
5197 if not Is_Class_Wide_Equivalent_Type (Typ)
5198 and then
5199 (Has_Controlled_Component (Comp_Typ)
5200 or else (Chars (Comp) /= Name_uParent
5201 and then (Is_Controlled_Active (Comp_Typ))))
5202 then
5203 Set_Has_Controlled_Component (Typ);
5204 end if;
5206 Next_Component (Comp);
5207 end loop;
5209 -- Handle constructors of untagged CPP_Class types
5211 if not Is_Tagged_Type (Typ) and then Is_CPP_Class (Typ) then
5212 Set_CPP_Constructors (Typ);
5213 end if;
5215 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
5216 -- for regular tagged types as well as for Ada types deriving from a C++
5217 -- Class, but not for tagged types directly corresponding to C++ classes
5218 -- In the later case we assume that it is created in the C++ side and we
5219 -- just use it.
5221 if Is_Tagged_Type (Typ) then
5223 -- Add the _Tag component
5225 if Underlying_Type (Etype (Typ)) = Typ then
5226 Expand_Tagged_Root (Typ);
5227 end if;
5229 if Is_CPP_Class (Typ) then
5230 Set_All_DT_Position (Typ);
5232 -- Create the tag entities with a minimum decoration
5234 if Tagged_Type_Expansion then
5235 Append_Freeze_Actions (Typ, Make_Tags (Typ));
5236 end if;
5238 Set_CPP_Constructors (Typ);
5240 else
5241 if not Building_Static_DT (Typ) then
5243 -- Usually inherited primitives are not delayed but the first
5244 -- Ada extension of a CPP_Class is an exception since the
5245 -- address of the inherited subprogram has to be inserted in
5246 -- the new Ada Dispatch Table and this is a freezing action.
5248 -- Similarly, if this is an inherited operation whose parent is
5249 -- not frozen yet, it is not in the DT of the parent, and we
5250 -- generate an explicit freeze node for the inherited operation
5251 -- so it is properly inserted in the DT of the current type.
5253 declare
5254 Elmt : Elmt_Id;
5255 Subp : Entity_Id;
5257 begin
5258 Elmt := First_Elmt (Primitive_Operations (Typ));
5259 while Present (Elmt) loop
5260 Subp := Node (Elmt);
5262 if Present (Alias (Subp)) then
5263 if Is_CPP_Class (Etype (Typ)) then
5264 Set_Has_Delayed_Freeze (Subp);
5266 elsif Has_Delayed_Freeze (Alias (Subp))
5267 and then not Is_Frozen (Alias (Subp))
5268 then
5269 Set_Is_Frozen (Subp, False);
5270 Set_Has_Delayed_Freeze (Subp);
5271 end if;
5272 end if;
5274 Next_Elmt (Elmt);
5275 end loop;
5276 end;
5277 end if;
5279 -- Unfreeze momentarily the type to add the predefined primitives
5280 -- operations. The reason we unfreeze is so that these predefined
5281 -- operations will indeed end up as primitive operations (which
5282 -- must be before the freeze point).
5284 Set_Is_Frozen (Typ, False);
5286 -- Do not add the spec of predefined primitives in case of
5287 -- CPP tagged type derivations that have convention CPP.
5289 if Is_CPP_Class (Root_Type (Typ))
5290 and then Convention (Typ) = Convention_CPP
5291 then
5292 null;
5294 -- Do not add the spec of the predefined primitives if we are
5295 -- compiling under restriction No_Dispatching_Calls.
5297 elsif not Restriction_Active (No_Dispatching_Calls) then
5298 Make_Predefined_Primitive_Specs (Typ, Predef_List, Renamed_Eq);
5299 Insert_List_Before_And_Analyze (N, Predef_List);
5300 end if;
5302 -- Ada 2005 (AI-391): For a nonabstract null extension, create
5303 -- wrapper functions for each nonoverridden inherited function
5304 -- with a controlling result of the type. The wrapper for such
5305 -- a function returns an extension aggregate that invokes the
5306 -- parent function.
5308 if Ada_Version >= Ada_2005
5309 and then not Is_Abstract_Type (Typ)
5310 and then Is_Null_Extension (Typ)
5311 then
5312 Make_Controlling_Function_Wrappers
5313 (Typ, Wrapper_Decl_List, Wrapper_Body_List);
5314 Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
5315 end if;
5317 -- Ada 2005 (AI-251): For a nonabstract type extension, build
5318 -- null procedure declarations for each set of homographic null
5319 -- procedures that are inherited from interface types but not
5320 -- overridden. This is done to ensure that the dispatch table
5321 -- entry associated with such null primitives are properly filled.
5323 if Ada_Version >= Ada_2005
5324 and then Etype (Typ) /= Typ
5325 and then not Is_Abstract_Type (Typ)
5326 and then Has_Interfaces (Typ)
5327 then
5328 Insert_Actions (N, Make_Null_Procedure_Specs (Typ));
5329 end if;
5331 Set_Is_Frozen (Typ);
5333 if not Is_Derived_Type (Typ)
5334 or else Is_Tagged_Type (Etype (Typ))
5335 then
5336 Set_All_DT_Position (Typ);
5338 -- If this is a type derived from an untagged private type whose
5339 -- full view is tagged, the type is marked tagged for layout
5340 -- reasons, but it has no dispatch table.
5342 elsif Is_Derived_Type (Typ)
5343 and then Is_Private_Type (Etype (Typ))
5344 and then not Is_Tagged_Type (Etype (Typ))
5345 then
5346 return;
5347 end if;
5349 -- Create and decorate the tags. Suppress their creation when
5350 -- not Tagged_Type_Expansion because the dispatching mechanism is
5351 -- handled internally by the virtual target.
5353 if Tagged_Type_Expansion then
5354 Append_Freeze_Actions (Typ, Make_Tags (Typ));
5356 -- Generate dispatch table of locally defined tagged type.
5357 -- Dispatch tables of library level tagged types are built
5358 -- later (see Analyze_Declarations).
5360 if not Building_Static_DT (Typ) then
5361 Append_Freeze_Actions (Typ, Make_DT (Typ));
5362 end if;
5363 end if;
5365 -- If the type has unknown discriminants, propagate dispatching
5366 -- information to its underlying record view, which does not get
5367 -- its own dispatch table.
5369 if Is_Derived_Type (Typ)
5370 and then Has_Unknown_Discriminants (Typ)
5371 and then Present (Underlying_Record_View (Typ))
5372 then
5373 declare
5374 Rep : constant Entity_Id := Underlying_Record_View (Typ);
5375 begin
5376 Set_Access_Disp_Table
5377 (Rep, Access_Disp_Table (Typ));
5378 Set_Dispatch_Table_Wrappers
5379 (Rep, Dispatch_Table_Wrappers (Typ));
5380 Set_Direct_Primitive_Operations
5381 (Rep, Direct_Primitive_Operations (Typ));
5382 end;
5383 end if;
5385 -- Make sure that the primitives Initialize, Adjust and Finalize
5386 -- are Frozen before other TSS subprograms. We don't want them
5387 -- Frozen inside.
5389 if Is_Controlled (Typ) then
5390 if not Is_Limited_Type (Typ) then
5391 Append_Freeze_Actions (Typ,
5392 Freeze_Entity (Find_Prim_Op (Typ, Name_Adjust), Typ));
5393 end if;
5395 Append_Freeze_Actions (Typ,
5396 Freeze_Entity (Find_Prim_Op (Typ, Name_Initialize), Typ));
5398 Append_Freeze_Actions (Typ,
5399 Freeze_Entity (Find_Prim_Op (Typ, Name_Finalize), Typ));
5400 end if;
5402 -- Freeze rest of primitive operations. There is no need to handle
5403 -- the predefined primitives if we are compiling under restriction
5404 -- No_Dispatching_Calls.
5406 if not Restriction_Active (No_Dispatching_Calls) then
5407 Append_Freeze_Actions (Typ, Predefined_Primitive_Freeze (Typ));
5408 end if;
5409 end if;
5411 -- In the untagged case, ever since Ada 83 an equality function must
5412 -- be provided for variant records that are not unchecked unions.
5413 -- In Ada 2012 the equality function composes, and thus must be built
5414 -- explicitly just as for tagged records.
5416 elsif Has_Discriminants (Typ)
5417 and then not Is_Limited_Type (Typ)
5418 then
5419 declare
5420 Comps : constant Node_Id :=
5421 Component_List (Type_Definition (Typ_Decl));
5422 begin
5423 if Present (Comps)
5424 and then Present (Variant_Part (Comps))
5425 then
5426 Build_Variant_Record_Equality (Typ);
5427 end if;
5428 end;
5430 -- Otherwise create primitive equality operation (AI05-0123)
5432 -- This is done unconditionally to ensure that tools can be linked
5433 -- properly with user programs compiled with older language versions.
5434 -- In addition, this is needed because "=" composes for bounded strings
5435 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
5437 elsif Comes_From_Source (Typ)
5438 and then Convention (Typ) = Convention_Ada
5439 and then not Is_Limited_Type (Typ)
5440 then
5441 Build_Untagged_Equality (Typ);
5442 end if;
5444 -- Before building the record initialization procedure, if we are
5445 -- dealing with a concurrent record value type, then we must go through
5446 -- the discriminants, exchanging discriminals between the concurrent
5447 -- type and the concurrent record value type. See the section "Handling
5448 -- of Discriminants" in the Einfo spec for details.
5450 if Is_Concurrent_Record_Type (Typ)
5451 and then Has_Discriminants (Typ)
5452 then
5453 declare
5454 Ctyp : constant Entity_Id :=
5455 Corresponding_Concurrent_Type (Typ);
5456 Conc_Discr : Entity_Id;
5457 Rec_Discr : Entity_Id;
5458 Temp : Entity_Id;
5460 begin
5461 Conc_Discr := First_Discriminant (Ctyp);
5462 Rec_Discr := First_Discriminant (Typ);
5463 while Present (Conc_Discr) loop
5464 Temp := Discriminal (Conc_Discr);
5465 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
5466 Set_Discriminal (Rec_Discr, Temp);
5468 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
5469 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
5471 Next_Discriminant (Conc_Discr);
5472 Next_Discriminant (Rec_Discr);
5473 end loop;
5474 end;
5475 end if;
5477 if Has_Controlled_Component (Typ) then
5478 Build_Controlling_Procs (Typ);
5479 end if;
5481 Adjust_Discriminants (Typ);
5483 -- Do not need init for interfaces on virtual targets since they're
5484 -- abstract.
5486 if Tagged_Type_Expansion or else not Is_Interface (Typ) then
5487 Build_Record_Init_Proc (Typ_Decl, Typ);
5488 end if;
5490 -- For tagged type that are not interfaces, build bodies of primitive
5491 -- operations. Note: do this after building the record initialization
5492 -- procedure, since the primitive operations may need the initialization
5493 -- routine. There is no need to add predefined primitives of interfaces
5494 -- because all their predefined primitives are abstract.
5496 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
5498 -- Do not add the body of predefined primitives in case of CPP tagged
5499 -- type derivations that have convention CPP.
5501 if Is_CPP_Class (Root_Type (Typ))
5502 and then Convention (Typ) = Convention_CPP
5503 then
5504 null;
5506 -- Do not add the body of the predefined primitives if we are
5507 -- compiling under restriction No_Dispatching_Calls or if we are
5508 -- compiling a CPP tagged type.
5510 elsif not Restriction_Active (No_Dispatching_Calls) then
5512 -- Create the body of TSS primitive Finalize_Address. This must
5513 -- be done before the bodies of all predefined primitives are
5514 -- created. If Typ is limited, Stream_Input and Stream_Read may
5515 -- produce build-in-place allocations and for those the expander
5516 -- needs Finalize_Address.
5518 Make_Finalize_Address_Body (Typ);
5519 Predef_List := Predefined_Primitive_Bodies (Typ, Renamed_Eq);
5520 Append_Freeze_Actions (Typ, Predef_List);
5521 end if;
5523 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5524 -- inherited functions, then add their bodies to the freeze actions.
5526 if Present (Wrapper_Body_List) then
5527 Append_Freeze_Actions (Typ, Wrapper_Body_List);
5528 end if;
5530 -- Create extra formals for the primitive operations of the type.
5531 -- This must be done before analyzing the body of the initialization
5532 -- procedure, because a self-referential type might call one of these
5533 -- primitives in the body of the init_proc itself.
5535 declare
5536 Elmt : Elmt_Id;
5537 Subp : Entity_Id;
5539 begin
5540 Elmt := First_Elmt (Primitive_Operations (Typ));
5541 while Present (Elmt) loop
5542 Subp := Node (Elmt);
5543 if not Has_Foreign_Convention (Subp)
5544 and then not Is_Predefined_Dispatching_Operation (Subp)
5545 then
5546 Create_Extra_Formals (Subp);
5547 end if;
5549 Next_Elmt (Elmt);
5550 end loop;
5551 end;
5552 end if;
5554 -- Check whether individual components have a defined invariant, and add
5555 -- the corresponding component invariant checks.
5557 -- Do not create an invariant procedure for some internally generated
5558 -- subtypes, in particular those created for objects of a class-wide
5559 -- type. Such types may have components to which invariant apply, but
5560 -- the corresponding checks will be applied when an object of the parent
5561 -- type is constructed.
5563 -- Such objects will show up in a class-wide postcondition, and the
5564 -- invariant will be checked, if necessary, upon return from the
5565 -- enclosing subprogram.
5567 if not Is_Class_Wide_Equivalent_Type (Typ) then
5568 Insert_Component_Invariant_Checks
5569 (N, Typ, Build_Record_Invariant_Proc (Typ, N));
5570 end if;
5572 Ghost_Mode := Save_Ghost_Mode;
5573 end Expand_Freeze_Record_Type;
5575 ------------------------------------
5576 -- Expand_N_Full_Type_Declaration --
5577 ------------------------------------
5579 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
5580 procedure Build_Master (Ptr_Typ : Entity_Id);
5581 -- Create the master associated with Ptr_Typ
5583 ------------------
5584 -- Build_Master --
5585 ------------------
5587 procedure Build_Master (Ptr_Typ : Entity_Id) is
5588 Desig_Typ : Entity_Id := Designated_Type (Ptr_Typ);
5590 begin
5591 -- If the designated type is an incomplete view coming from a
5592 -- limited-with'ed package, we need to use the nonlimited view in
5593 -- case it has tasks.
5595 if Ekind (Desig_Typ) in Incomplete_Kind
5596 and then Present (Non_Limited_View (Desig_Typ))
5597 then
5598 Desig_Typ := Non_Limited_View (Desig_Typ);
5599 end if;
5601 -- Anonymous access types are created for the components of the
5602 -- record parameter for an entry declaration. No master is created
5603 -- for such a type.
5605 if Comes_From_Source (N) and then Has_Task (Desig_Typ) then
5606 Build_Master_Entity (Ptr_Typ);
5607 Build_Master_Renaming (Ptr_Typ);
5609 -- Create a class-wide master because a Master_Id must be generated
5610 -- for access-to-limited-class-wide types whose root may be extended
5611 -- with task components.
5613 -- Note: This code covers access-to-limited-interfaces because they
5614 -- can be used to reference tasks implementing them.
5616 elsif Is_Limited_Class_Wide_Type (Desig_Typ)
5617 and then Tasking_Allowed
5618 then
5619 Build_Class_Wide_Master (Ptr_Typ);
5620 end if;
5621 end Build_Master;
5623 -- Local declarations
5625 Def_Id : constant Entity_Id := Defining_Identifier (N);
5626 B_Id : constant Entity_Id := Base_Type (Def_Id);
5627 FN : Node_Id;
5628 Par_Id : Entity_Id;
5630 -- Start of processing for Expand_N_Full_Type_Declaration
5632 begin
5633 if Is_Access_Type (Def_Id) then
5634 Build_Master (Def_Id);
5636 if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
5637 Expand_Access_Protected_Subprogram_Type (N);
5638 end if;
5640 -- Array of anonymous access-to-task pointers
5642 elsif Ada_Version >= Ada_2005
5643 and then Is_Array_Type (Def_Id)
5644 and then Is_Access_Type (Component_Type (Def_Id))
5645 and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type
5646 then
5647 Build_Master (Component_Type (Def_Id));
5649 elsif Has_Task (Def_Id) then
5650 Expand_Previous_Access_Type (Def_Id);
5652 -- Check the components of a record type or array of records for
5653 -- anonymous access-to-task pointers.
5655 elsif Ada_Version >= Ada_2005
5656 and then (Is_Record_Type (Def_Id)
5657 or else
5658 (Is_Array_Type (Def_Id)
5659 and then Is_Record_Type (Component_Type (Def_Id))))
5660 then
5661 declare
5662 Comp : Entity_Id;
5663 First : Boolean;
5664 M_Id : Entity_Id;
5665 Typ : Entity_Id;
5667 begin
5668 if Is_Array_Type (Def_Id) then
5669 Comp := First_Entity (Component_Type (Def_Id));
5670 else
5671 Comp := First_Entity (Def_Id);
5672 end if;
5674 -- Examine all components looking for anonymous access-to-task
5675 -- types.
5677 First := True;
5678 while Present (Comp) loop
5679 Typ := Etype (Comp);
5681 if Ekind (Typ) = E_Anonymous_Access_Type
5682 and then Has_Task (Available_View (Designated_Type (Typ)))
5683 and then No (Master_Id (Typ))
5684 then
5685 -- Ensure that the record or array type have a _master
5687 if First then
5688 Build_Master_Entity (Def_Id);
5689 Build_Master_Renaming (Typ);
5690 M_Id := Master_Id (Typ);
5692 First := False;
5694 -- Reuse the same master to service any additional types
5696 else
5697 Set_Master_Id (Typ, M_Id);
5698 end if;
5699 end if;
5701 Next_Entity (Comp);
5702 end loop;
5703 end;
5704 end if;
5706 Par_Id := Etype (B_Id);
5708 -- The parent type is private then we need to inherit any TSS operations
5709 -- from the full view.
5711 if Ekind (Par_Id) in Private_Kind
5712 and then Present (Full_View (Par_Id))
5713 then
5714 Par_Id := Base_Type (Full_View (Par_Id));
5715 end if;
5717 if Nkind (Type_Definition (Original_Node (N))) =
5718 N_Derived_Type_Definition
5719 and then not Is_Tagged_Type (Def_Id)
5720 and then Present (Freeze_Node (Par_Id))
5721 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
5722 then
5723 Ensure_Freeze_Node (B_Id);
5724 FN := Freeze_Node (B_Id);
5726 if No (TSS_Elist (FN)) then
5727 Set_TSS_Elist (FN, New_Elmt_List);
5728 end if;
5730 declare
5731 T_E : constant Elist_Id := TSS_Elist (FN);
5732 Elmt : Elmt_Id;
5734 begin
5735 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
5736 while Present (Elmt) loop
5737 if Chars (Node (Elmt)) /= Name_uInit then
5738 Append_Elmt (Node (Elmt), T_E);
5739 end if;
5741 Next_Elmt (Elmt);
5742 end loop;
5744 -- If the derived type itself is private with a full view, then
5745 -- associate the full view with the inherited TSS_Elist as well.
5747 if Ekind (B_Id) in Private_Kind
5748 and then Present (Full_View (B_Id))
5749 then
5750 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
5751 Set_TSS_Elist
5752 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
5753 end if;
5754 end;
5755 end if;
5756 end Expand_N_Full_Type_Declaration;
5758 ---------------------------------
5759 -- Expand_N_Object_Declaration --
5760 ---------------------------------
5762 procedure Expand_N_Object_Declaration (N : Node_Id) is
5763 Loc : constant Source_Ptr := Sloc (N);
5764 Def_Id : constant Entity_Id := Defining_Identifier (N);
5765 Expr : constant Node_Id := Expression (N);
5766 Obj_Def : constant Node_Id := Object_Definition (N);
5767 Typ : constant Entity_Id := Etype (Def_Id);
5768 Base_Typ : constant Entity_Id := Base_Type (Typ);
5769 Expr_Q : Node_Id;
5771 function Build_Equivalent_Aggregate return Boolean;
5772 -- If the object has a constrained discriminated type and no initial
5773 -- value, it may be possible to build an equivalent aggregate instead,
5774 -- and prevent an actual call to the initialization procedure.
5776 procedure Default_Initialize_Object (After : Node_Id);
5777 -- Generate all default initialization actions for object Def_Id. Any
5778 -- new code is inserted after node After.
5780 function Rewrite_As_Renaming return Boolean;
5781 -- Indicate whether to rewrite a declaration with initialization into an
5782 -- object renaming declaration (see below).
5784 --------------------------------
5785 -- Build_Equivalent_Aggregate --
5786 --------------------------------
5788 function Build_Equivalent_Aggregate return Boolean is
5789 Aggr : Node_Id;
5790 Comp : Entity_Id;
5791 Discr : Elmt_Id;
5792 Full_Type : Entity_Id;
5794 begin
5795 Full_Type := Typ;
5797 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
5798 Full_Type := Full_View (Typ);
5799 end if;
5801 -- Only perform this transformation if Elaboration_Code is forbidden
5802 -- or undesirable, and if this is a global entity of a constrained
5803 -- record type.
5805 -- If Initialize_Scalars might be active this transformation cannot
5806 -- be performed either, because it will lead to different semantics
5807 -- or because elaboration code will in fact be created.
5809 if Ekind (Full_Type) /= E_Record_Subtype
5810 or else not Has_Discriminants (Full_Type)
5811 or else not Is_Constrained (Full_Type)
5812 or else Is_Controlled (Full_Type)
5813 or else Is_Limited_Type (Full_Type)
5814 or else not Restriction_Active (No_Initialize_Scalars)
5815 then
5816 return False;
5817 end if;
5819 if Ekind (Current_Scope) = E_Package
5820 and then
5821 (Restriction_Active (No_Elaboration_Code)
5822 or else Is_Preelaborated (Current_Scope))
5823 then
5824 -- Building a static aggregate is possible if the discriminants
5825 -- have static values and the other components have static
5826 -- defaults or none.
5828 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
5829 while Present (Discr) loop
5830 if not Is_OK_Static_Expression (Node (Discr)) then
5831 return False;
5832 end if;
5834 Next_Elmt (Discr);
5835 end loop;
5837 -- Check that initialized components are OK, and that non-
5838 -- initialized components do not require a call to their own
5839 -- initialization procedure.
5841 Comp := First_Component (Full_Type);
5842 while Present (Comp) loop
5843 if Ekind (Comp) = E_Component
5844 and then Present (Expression (Parent (Comp)))
5845 and then
5846 not Is_OK_Static_Expression (Expression (Parent (Comp)))
5847 then
5848 return False;
5850 elsif Has_Non_Null_Base_Init_Proc (Etype (Comp)) then
5851 return False;
5853 end if;
5855 Next_Component (Comp);
5856 end loop;
5858 -- Everything is static, assemble the aggregate, discriminant
5859 -- values first.
5861 Aggr :=
5862 Make_Aggregate (Loc,
5863 Expressions => New_List,
5864 Component_Associations => New_List);
5866 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
5867 while Present (Discr) loop
5868 Append_To (Expressions (Aggr), New_Copy (Node (Discr)));
5869 Next_Elmt (Discr);
5870 end loop;
5872 -- Now collect values of initialized components
5874 Comp := First_Component (Full_Type);
5875 while Present (Comp) loop
5876 if Ekind (Comp) = E_Component
5877 and then Present (Expression (Parent (Comp)))
5878 then
5879 Append_To (Component_Associations (Aggr),
5880 Make_Component_Association (Loc,
5881 Choices => New_List (New_Occurrence_Of (Comp, Loc)),
5882 Expression => New_Copy_Tree
5883 (Expression (Parent (Comp)))));
5884 end if;
5886 Next_Component (Comp);
5887 end loop;
5889 -- Finally, box-initialize remaining components
5891 Append_To (Component_Associations (Aggr),
5892 Make_Component_Association (Loc,
5893 Choices => New_List (Make_Others_Choice (Loc)),
5894 Expression => Empty));
5895 Set_Box_Present (Last (Component_Associations (Aggr)));
5896 Set_Expression (N, Aggr);
5898 if Typ /= Full_Type then
5899 Analyze_And_Resolve (Aggr, Full_View (Base_Type (Full_Type)));
5900 Rewrite (Aggr, Unchecked_Convert_To (Typ, Aggr));
5901 Analyze_And_Resolve (Aggr, Typ);
5902 else
5903 Analyze_And_Resolve (Aggr, Full_Type);
5904 end if;
5906 return True;
5908 else
5909 return False;
5910 end if;
5911 end Build_Equivalent_Aggregate;
5913 -------------------------------
5914 -- Default_Initialize_Object --
5915 -------------------------------
5917 procedure Default_Initialize_Object (After : Node_Id) is
5918 function New_Object_Reference return Node_Id;
5919 -- Return a new reference to Def_Id with attributes Assignment_OK and
5920 -- Must_Not_Freeze already set.
5922 --------------------------
5923 -- New_Object_Reference --
5924 --------------------------
5926 function New_Object_Reference return Node_Id is
5927 Obj_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);
5929 begin
5930 -- The call to the type init proc or [Deep_]Finalize must not
5931 -- freeze the related object as the call is internally generated.
5932 -- This way legal rep clauses that apply to the object will not be
5933 -- flagged. Note that the initialization call may be removed if
5934 -- pragma Import is encountered or moved to the freeze actions of
5935 -- the object because of an address clause.
5937 Set_Assignment_OK (Obj_Ref);
5938 Set_Must_Not_Freeze (Obj_Ref);
5940 return Obj_Ref;
5941 end New_Object_Reference;
5943 -- Local variables
5945 Exceptions_OK : constant Boolean :=
5946 not Restriction_Active (No_Exception_Propagation);
5948 Abrt_Blk : Node_Id;
5949 Abrt_Blk_Id : Entity_Id;
5950 Abrt_HSS : Node_Id;
5951 Aggr_Init : Node_Id;
5952 AUD : Entity_Id;
5953 Comp_Init : List_Id := No_List;
5954 Fin_Call : Node_Id;
5955 Init_Stmts : List_Id := No_List;
5956 Obj_Init : Node_Id := Empty;
5957 Obj_Ref : Node_Id;
5959 -- Start of processing for Default_Initialize_Object
5961 begin
5962 -- Default initialization is suppressed for objects that are already
5963 -- known to be imported (i.e. whose declaration specifies the Import
5964 -- aspect). Note that for objects with a pragma Import, we generate
5965 -- initialization here, and then remove it downstream when processing
5966 -- the pragma. It is also suppressed for variables for which a pragma
5967 -- Suppress_Initialization has been explicitly given
5969 if Is_Imported (Def_Id) or else Suppress_Initialization (Def_Id) then
5970 return;
5971 end if;
5973 -- The expansion performed by this routine is as follows:
5975 -- begin
5976 -- Abort_Defer;
5977 -- Type_Init_Proc (Obj);
5979 -- begin
5980 -- [Deep_]Initialize (Obj);
5982 -- exception
5983 -- when others =>
5984 -- [Deep_]Finalize (Obj, Self => False);
5985 -- raise;
5986 -- end;
5987 -- at end
5988 -- Abort_Undefer_Direct;
5989 -- end;
5991 -- Initialize the components of the object
5993 if Has_Non_Null_Base_Init_Proc (Typ)
5994 and then not No_Initialization (N)
5995 and then not Initialization_Suppressed (Typ)
5996 then
5997 -- Do not initialize the components if No_Default_Initialization
5998 -- applies as the actual restriction check will occur later
5999 -- when the object is frozen as it is not known yet whether the
6000 -- object is imported or not.
6002 if not Restriction_Active (No_Default_Initialization) then
6004 -- If the values of the components are compile-time known, use
6005 -- their prebuilt aggregate form directly.
6007 Aggr_Init := Static_Initialization (Base_Init_Proc (Typ));
6009 if Present (Aggr_Init) then
6010 Set_Expression
6011 (N, New_Copy_Tree (Aggr_Init, New_Scope => Current_Scope));
6013 -- If type has discriminants, try to build an equivalent
6014 -- aggregate using discriminant values from the declaration.
6015 -- This is a useful optimization, in particular if restriction
6016 -- No_Elaboration_Code is active.
6018 elsif Build_Equivalent_Aggregate then
6019 null;
6021 -- Otherwise invoke the type init proc, generate:
6022 -- Type_Init_Proc (Obj);
6024 else
6025 Obj_Ref := New_Object_Reference;
6027 if Comes_From_Source (Def_Id) then
6028 Initialization_Warning (Obj_Ref);
6029 end if;
6031 Comp_Init := Build_Initialization_Call (Loc, Obj_Ref, Typ);
6032 end if;
6033 end if;
6035 -- Provide a default value if the object needs simple initialization
6036 -- and does not already have an initial value. A generated temporary
6037 -- does not require initialization because it will be assigned later.
6039 elsif Needs_Simple_Initialization
6040 (Typ, Initialize_Scalars
6041 and then No (Following_Address_Clause (N)))
6042 and then not Is_Internal (Def_Id)
6043 and then not Has_Init_Expression (N)
6044 then
6045 Set_No_Initialization (N, False);
6046 Set_Expression (N, Get_Simple_Init_Val (Typ, N, Esize (Def_Id)));
6047 Analyze_And_Resolve (Expression (N), Typ);
6048 end if;
6050 -- Initialize the object, generate:
6051 -- [Deep_]Initialize (Obj);
6053 if Needs_Finalization (Typ) and then not No_Initialization (N) then
6054 Obj_Init :=
6055 Make_Init_Call
6056 (Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
6057 Typ => Typ);
6058 end if;
6060 -- Build a special finalization block when both the object and its
6061 -- controlled components are to be initialized. The block finalizes
6062 -- the components if the object initialization fails. Generate:
6064 -- begin
6065 -- <Obj_Init>
6067 -- exception
6068 -- when others =>
6069 -- <Fin_Call>
6070 -- raise;
6071 -- end;
6073 if Has_Controlled_Component (Typ)
6074 and then Present (Comp_Init)
6075 and then Present (Obj_Init)
6076 and then Exceptions_OK
6077 then
6078 Init_Stmts := Comp_Init;
6080 Fin_Call :=
6081 Make_Final_Call
6082 (Obj_Ref => New_Object_Reference,
6083 Typ => Typ,
6084 Skip_Self => True);
6086 if Present (Fin_Call) then
6088 -- Do not emit warnings related to the elaboration order when a
6089 -- controlled object is declared before the body of Finalize is
6090 -- seen.
6092 Set_No_Elaboration_Check (Fin_Call);
6094 Append_To (Init_Stmts,
6095 Make_Block_Statement (Loc,
6096 Declarations => No_List,
6098 Handled_Statement_Sequence =>
6099 Make_Handled_Sequence_Of_Statements (Loc,
6100 Statements => New_List (Obj_Init),
6102 Exception_Handlers => New_List (
6103 Make_Exception_Handler (Loc,
6104 Exception_Choices => New_List (
6105 Make_Others_Choice (Loc)),
6107 Statements => New_List (
6108 Fin_Call,
6109 Make_Raise_Statement (Loc)))))));
6110 end if;
6112 -- Otherwise finalization is not required, the initialization calls
6113 -- are passed to the abort block building circuitry, generate:
6115 -- Type_Init_Proc (Obj);
6116 -- [Deep_]Initialize (Obj);
6118 else
6119 if Present (Comp_Init) then
6120 Init_Stmts := Comp_Init;
6121 end if;
6123 if Present (Obj_Init) then
6124 if No (Init_Stmts) then
6125 Init_Stmts := New_List;
6126 end if;
6128 Append_To (Init_Stmts, Obj_Init);
6129 end if;
6130 end if;
6132 -- Build an abort block to protect the initialization calls
6134 if Abort_Allowed
6135 and then Present (Comp_Init)
6136 and then Present (Obj_Init)
6137 then
6138 -- Generate:
6139 -- Abort_Defer;
6141 Prepend_To (Init_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
6143 -- When exceptions are propagated, abort deferral must take place
6144 -- in the presence of initialization or finalization exceptions.
6145 -- Generate:
6147 -- begin
6148 -- Abort_Defer;
6149 -- <Init_Stmts>
6150 -- at end
6151 -- Abort_Undefer_Direct;
6152 -- end;
6154 if Exceptions_OK then
6155 AUD := RTE (RE_Abort_Undefer_Direct);
6157 Abrt_HSS :=
6158 Make_Handled_Sequence_Of_Statements (Loc,
6159 Statements => Init_Stmts,
6160 At_End_Proc => New_Occurrence_Of (AUD, Loc));
6162 Abrt_Blk :=
6163 Make_Block_Statement (Loc,
6164 Handled_Statement_Sequence => Abrt_HSS);
6166 Add_Block_Identifier (Abrt_Blk, Abrt_Blk_Id);
6167 Expand_At_End_Handler (Abrt_HSS, Abrt_Blk_Id);
6169 -- Present the Abort_Undefer_Direct function to the backend so
6170 -- that it can inline the call to the function.
6172 Add_Inlined_Body (AUD, N);
6174 Init_Stmts := New_List (Abrt_Blk);
6176 -- Otherwise exceptions are not propagated. Generate:
6178 -- Abort_Defer;
6179 -- <Init_Stmts>
6180 -- Abort_Undefer;
6182 else
6183 Append_To (Init_Stmts,
6184 Build_Runtime_Call (Loc, RE_Abort_Undefer));
6185 end if;
6186 end if;
6188 -- Insert the whole initialization sequence into the tree. If the
6189 -- object has a delayed freeze, as will be the case when it has
6190 -- aspect specifications, the initialization sequence is part of
6191 -- the freeze actions.
6193 if Present (Init_Stmts) then
6194 if Has_Delayed_Freeze (Def_Id) then
6195 Append_Freeze_Actions (Def_Id, Init_Stmts);
6196 else
6197 Insert_Actions_After (After, Init_Stmts);
6198 end if;
6199 end if;
6200 end Default_Initialize_Object;
6202 -------------------------
6203 -- Rewrite_As_Renaming --
6204 -------------------------
6206 function Rewrite_As_Renaming return Boolean is
6207 begin
6208 -- If the object declaration appears in the form
6210 -- Obj : Ctrl_Typ := Func (...);
6212 -- where Ctrl_Typ is controlled but not immutably limited type, then
6213 -- the expansion of the function call should use a dereference of the
6214 -- result to reference the value on the secondary stack.
6216 -- Obj : Ctrl_Typ renames Func (...).all;
6218 -- As a result, the call avoids an extra copy. This an optimization,
6219 -- but it is required for passing ACATS tests in some cases where it
6220 -- would otherwise make two copies. The RM allows removing redunant
6221 -- Adjust/Finalize calls, but does not allow insertion of extra ones.
6223 -- This part is disabled for now, because it breaks GPS builds
6225 return (False -- ???
6226 and then Nkind (Expr_Q) = N_Explicit_Dereference
6227 and then not Comes_From_Source (Expr_Q)
6228 and then Nkind (Original_Node (Expr_Q)) = N_Function_Call
6229 and then Nkind (Object_Definition (N)) in N_Has_Entity
6230 and then (Needs_Finalization (Entity (Object_Definition (N)))))
6232 -- If the initializing expression is for a variable with attribute
6233 -- OK_To_Rename set, then transform:
6235 -- Obj : Typ := Expr;
6237 -- into
6239 -- Obj : Typ renames Expr;
6241 -- provided that Obj is not aliased. The aliased case has to be
6242 -- excluded in general because Expr will not be aliased in
6243 -- general.
6245 or else
6246 (not Aliased_Present (N)
6247 and then Is_Entity_Name (Expr_Q)
6248 and then Ekind (Entity (Expr_Q)) = E_Variable
6249 and then OK_To_Rename (Entity (Expr_Q))
6250 and then Is_Entity_Name (Obj_Def));
6251 end Rewrite_As_Renaming;
6253 -- Local variables
6255 Next_N : constant Node_Id := Next (N);
6256 Id_Ref : Node_Id;
6257 Tag_Assign : Node_Id;
6259 Init_After : Node_Id := N;
6260 -- Node after which the initialization actions are to be inserted. This
6261 -- is normally N, except for the case of a shared passive variable, in
6262 -- which case the init proc call must be inserted only after the bodies
6263 -- of the shared variable procedures have been seen.
6265 -- Start of processing for Expand_N_Object_Declaration
6267 begin
6268 -- Don't do anything for deferred constants. All proper actions will be
6269 -- expanded during the full declaration.
6271 if No (Expr) and Constant_Present (N) then
6272 return;
6273 end if;
6275 -- The type of the object cannot be abstract. This is diagnosed at the
6276 -- point the object is frozen, which happens after the declaration is
6277 -- fully expanded, so simply return now.
6279 if Is_Abstract_Type (Typ) then
6280 return;
6281 end if;
6283 -- First we do special processing for objects of a tagged type where
6284 -- this is the point at which the type is frozen. The creation of the
6285 -- dispatch table and the initialization procedure have to be deferred
6286 -- to this point, since we reference previously declared primitive
6287 -- subprograms.
6289 -- Force construction of dispatch tables of library level tagged types
6291 if Tagged_Type_Expansion
6292 and then Static_Dispatch_Tables
6293 and then Is_Library_Level_Entity (Def_Id)
6294 and then Is_Library_Level_Tagged_Type (Base_Typ)
6295 and then Ekind_In (Base_Typ, E_Record_Type,
6296 E_Protected_Type,
6297 E_Task_Type)
6298 and then not Has_Dispatch_Table (Base_Typ)
6299 then
6300 declare
6301 New_Nodes : List_Id := No_List;
6303 begin
6304 if Is_Concurrent_Type (Base_Typ) then
6305 New_Nodes := Make_DT (Corresponding_Record_Type (Base_Typ), N);
6306 else
6307 New_Nodes := Make_DT (Base_Typ, N);
6308 end if;
6310 if not Is_Empty_List (New_Nodes) then
6311 Insert_List_Before (N, New_Nodes);
6312 end if;
6313 end;
6314 end if;
6316 -- Make shared memory routines for shared passive variable
6318 if Is_Shared_Passive (Def_Id) then
6319 Init_After := Make_Shared_Var_Procs (N);
6320 end if;
6322 -- If tasks being declared, make sure we have an activation chain
6323 -- defined for the tasks (has no effect if we already have one), and
6324 -- also that a Master variable is established and that the appropriate
6325 -- enclosing construct is established as a task master.
6327 if Has_Task (Typ) then
6328 Build_Activation_Chain_Entity (N);
6329 Build_Master_Entity (Def_Id);
6330 end if;
6332 -- Default initialization required, and no expression present
6334 if No (Expr) then
6336 -- If we have a type with a variant part, the initialization proc
6337 -- will contain implicit tests of the discriminant values, which
6338 -- counts as a violation of the restriction No_Implicit_Conditionals.
6340 if Has_Variant_Part (Typ) then
6341 declare
6342 Msg : Boolean;
6344 begin
6345 Check_Restriction (Msg, No_Implicit_Conditionals, Obj_Def);
6347 if Msg then
6348 Error_Msg_N
6349 ("\initialization of variant record tests discriminants",
6350 Obj_Def);
6351 return;
6352 end if;
6353 end;
6354 end if;
6356 -- For the default initialization case, if we have a private type
6357 -- with invariants, and invariant checks are enabled, then insert an
6358 -- invariant check after the object declaration. Note that it is OK
6359 -- to clobber the object with an invalid value since if the exception
6360 -- is raised, then the object will go out of scope. In the case where
6361 -- an array object is initialized with an aggregate, the expression
6362 -- is removed. Check flag Has_Init_Expression to avoid generating a
6363 -- junk invariant check and flag No_Initialization to avoid checking
6364 -- an uninitialized object such as a compiler temporary used for an
6365 -- aggregate.
6367 if Has_Invariants (Base_Typ)
6368 and then Present (Invariant_Procedure (Base_Typ))
6369 and then not Has_Init_Expression (N)
6370 and then not No_Initialization (N)
6371 then
6372 -- If entity has an address clause or aspect, make invariant
6373 -- call into a freeze action for the explicit freeze node for
6374 -- object. Otherwise insert invariant check after declaration.
6376 if Present (Following_Address_Clause (N))
6377 or else Has_Aspect (Def_Id, Aspect_Address)
6378 then
6379 Ensure_Freeze_Node (Def_Id);
6380 Set_Has_Delayed_Freeze (Def_Id);
6381 Set_Is_Frozen (Def_Id, False);
6383 if not Partial_View_Has_Unknown_Discr (Typ) then
6384 Append_Freeze_Action (Def_Id,
6385 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
6386 end if;
6388 elsif not Partial_View_Has_Unknown_Discr (Typ) then
6389 Insert_After (N,
6390 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
6391 end if;
6392 end if;
6394 Default_Initialize_Object (Init_After);
6396 -- Generate attribute for Persistent_BSS if needed
6398 if Persistent_BSS_Mode
6399 and then Comes_From_Source (N)
6400 and then Is_Potentially_Persistent_Type (Typ)
6401 and then not Has_Init_Expression (N)
6402 and then Is_Library_Level_Entity (Def_Id)
6403 then
6404 declare
6405 Prag : Node_Id;
6406 begin
6407 Prag :=
6408 Make_Linker_Section_Pragma
6409 (Def_Id, Sloc (N), ".persistent.bss");
6410 Insert_After (N, Prag);
6411 Analyze (Prag);
6412 end;
6413 end if;
6415 -- If access type, then we know it is null if not initialized
6417 if Is_Access_Type (Typ) then
6418 Set_Is_Known_Null (Def_Id);
6419 end if;
6421 -- Explicit initialization present
6423 else
6424 -- Obtain actual expression from qualified expression
6426 if Nkind (Expr) = N_Qualified_Expression then
6427 Expr_Q := Expression (Expr);
6428 else
6429 Expr_Q := Expr;
6430 end if;
6432 -- When we have the appropriate type of aggregate in the expression
6433 -- (it has been determined during analysis of the aggregate by
6434 -- setting the delay flag), let's perform in place assignment and
6435 -- thus avoid creating a temporary.
6437 if Is_Delayed_Aggregate (Expr_Q) then
6438 Convert_Aggr_In_Object_Decl (N);
6440 -- Ada 2005 (AI-318-02): If the initialization expression is a call
6441 -- to a build-in-place function, then access to the declared object
6442 -- must be passed to the function. Currently we limit such functions
6443 -- to those with constrained limited result subtypes, but eventually
6444 -- plan to expand the allowed forms of functions that are treated as
6445 -- build-in-place.
6447 elsif Ada_Version >= Ada_2005
6448 and then Is_Build_In_Place_Function_Call (Expr_Q)
6449 then
6450 Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);
6452 -- The previous call expands the expression initializing the
6453 -- built-in-place object into further code that will be analyzed
6454 -- later. No further expansion needed here.
6456 return;
6458 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
6459 -- class-wide interface object to ensure that we copy the full
6460 -- object, unless we are targetting a VM where interfaces are handled
6461 -- by VM itself. Note that if the root type of Typ is an ancestor of
6462 -- Expr's type, both types share the same dispatch table and there is
6463 -- no need to displace the pointer.
6465 elsif Is_Interface (Typ)
6467 -- Avoid never-ending recursion because if Equivalent_Type is set
6468 -- then we've done it already and must not do it again.
6470 and then not
6471 (Nkind (Obj_Def) = N_Identifier
6472 and then Present (Equivalent_Type (Entity (Obj_Def))))
6473 then
6474 pragma Assert (Is_Class_Wide_Type (Typ));
6476 -- If the object is a return object of an inherently limited type,
6477 -- which implies build-in-place treatment, bypass the special
6478 -- treatment of class-wide interface initialization below. In this
6479 -- case, the expansion of the return statement will take care of
6480 -- creating the object (via allocator) and initializing it.
6482 if Is_Return_Object (Def_Id) and then Is_Limited_View (Typ) then
6483 null;
6485 elsif Tagged_Type_Expansion then
6486 declare
6487 Iface : constant Entity_Id := Root_Type (Typ);
6488 Expr_N : Node_Id := Expr;
6489 Expr_Typ : Entity_Id;
6490 New_Expr : Node_Id;
6491 Obj_Id : Entity_Id;
6492 Tag_Comp : Node_Id;
6494 begin
6495 -- If the original node of the expression was a conversion
6496 -- to this specific class-wide interface type then restore
6497 -- the original node because we must copy the object before
6498 -- displacing the pointer to reference the secondary tag
6499 -- component. This code must be kept synchronized with the
6500 -- expansion done by routine Expand_Interface_Conversion
6502 if not Comes_From_Source (Expr_N)
6503 and then Nkind (Expr_N) = N_Explicit_Dereference
6504 and then Nkind (Original_Node (Expr_N)) = N_Type_Conversion
6505 and then Etype (Original_Node (Expr_N)) = Typ
6506 then
6507 Rewrite (Expr_N, Original_Node (Expression (N)));
6508 end if;
6510 -- Avoid expansion of redundant interface conversion
6512 if Is_Interface (Etype (Expr_N))
6513 and then Nkind (Expr_N) = N_Type_Conversion
6514 and then Etype (Expr_N) = Typ
6515 then
6516 Expr_N := Expression (Expr_N);
6517 Set_Expression (N, Expr_N);
6518 end if;
6520 Obj_Id := Make_Temporary (Loc, 'D', Expr_N);
6521 Expr_Typ := Base_Type (Etype (Expr_N));
6523 if Is_Class_Wide_Type (Expr_Typ) then
6524 Expr_Typ := Root_Type (Expr_Typ);
6525 end if;
6527 -- Replace
6528 -- CW : I'Class := Obj;
6529 -- by
6530 -- Tmp : T := Obj;
6531 -- type Ityp is not null access I'Class;
6532 -- CW : I'Class renames Ityp (Tmp.I_Tag'Address).all;
6534 if Comes_From_Source (Expr_N)
6535 and then Nkind (Expr_N) = N_Identifier
6536 and then not Is_Interface (Expr_Typ)
6537 and then Interface_Present_In_Ancestor (Expr_Typ, Typ)
6538 and then (Expr_Typ = Etype (Expr_Typ)
6539 or else not
6540 Is_Variable_Size_Record (Etype (Expr_Typ)))
6541 then
6542 -- Copy the object
6544 Insert_Action (N,
6545 Make_Object_Declaration (Loc,
6546 Defining_Identifier => Obj_Id,
6547 Object_Definition =>
6548 New_Occurrence_Of (Expr_Typ, Loc),
6549 Expression => Relocate_Node (Expr_N)));
6551 -- Statically reference the tag associated with the
6552 -- interface
6554 Tag_Comp :=
6555 Make_Selected_Component (Loc,
6556 Prefix => New_Occurrence_Of (Obj_Id, Loc),
6557 Selector_Name =>
6558 New_Occurrence_Of
6559 (Find_Interface_Tag (Expr_Typ, Iface), Loc));
6561 -- Replace
6562 -- IW : I'Class := Obj;
6563 -- by
6564 -- type Equiv_Record is record ... end record;
6565 -- implicit subtype CW is <Class_Wide_Subtype>;
6566 -- Tmp : CW := CW!(Obj);
6567 -- type Ityp is not null access I'Class;
6568 -- IW : I'Class renames
6569 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
6571 else
6572 -- Generate the equivalent record type and update the
6573 -- subtype indication to reference it.
6575 Expand_Subtype_From_Expr
6576 (N => N,
6577 Unc_Type => Typ,
6578 Subtype_Indic => Obj_Def,
6579 Exp => Expr_N);
6581 if not Is_Interface (Etype (Expr_N)) then
6582 New_Expr := Relocate_Node (Expr_N);
6584 -- For interface types we use 'Address which displaces
6585 -- the pointer to the base of the object (if required)
6587 else
6588 New_Expr :=
6589 Unchecked_Convert_To (Etype (Obj_Def),
6590 Make_Explicit_Dereference (Loc,
6591 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6592 Make_Attribute_Reference (Loc,
6593 Prefix => Relocate_Node (Expr_N),
6594 Attribute_Name => Name_Address))));
6595 end if;
6597 -- Copy the object
6599 if not Is_Limited_Record (Expr_Typ) then
6600 Insert_Action (N,
6601 Make_Object_Declaration (Loc,
6602 Defining_Identifier => Obj_Id,
6603 Object_Definition =>
6604 New_Occurrence_Of (Etype (Obj_Def), Loc),
6605 Expression => New_Expr));
6607 -- Rename limited type object since they cannot be copied
6608 -- This case occurs when the initialization expression
6609 -- has been previously expanded into a temporary object.
6611 else pragma Assert (not Comes_From_Source (Expr_Q));
6612 Insert_Action (N,
6613 Make_Object_Renaming_Declaration (Loc,
6614 Defining_Identifier => Obj_Id,
6615 Subtype_Mark =>
6616 New_Occurrence_Of (Etype (Obj_Def), Loc),
6617 Name =>
6618 Unchecked_Convert_To
6619 (Etype (Obj_Def), New_Expr)));
6620 end if;
6622 -- Dynamically reference the tag associated with the
6623 -- interface.
6625 Tag_Comp :=
6626 Make_Function_Call (Loc,
6627 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
6628 Parameter_Associations => New_List (
6629 Make_Attribute_Reference (Loc,
6630 Prefix => New_Occurrence_Of (Obj_Id, Loc),
6631 Attribute_Name => Name_Address),
6632 New_Occurrence_Of
6633 (Node (First_Elmt (Access_Disp_Table (Iface))),
6634 Loc)));
6635 end if;
6637 Rewrite (N,
6638 Make_Object_Renaming_Declaration (Loc,
6639 Defining_Identifier => Make_Temporary (Loc, 'D'),
6640 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
6641 Name =>
6642 Convert_Tag_To_Interface (Typ, Tag_Comp)));
6644 -- If the original entity comes from source, then mark the
6645 -- new entity as needing debug information, even though it's
6646 -- defined by a generated renaming that does not come from
6647 -- source, so that Materialize_Entity will be set on the
6648 -- entity when Debug_Renaming_Declaration is called during
6649 -- analysis.
6651 if Comes_From_Source (Def_Id) then
6652 Set_Debug_Info_Needed (Defining_Identifier (N));
6653 end if;
6655 Analyze (N, Suppress => All_Checks);
6657 -- Replace internal identifier of rewritten node by the
6658 -- identifier found in the sources. We also have to exchange
6659 -- entities containing their defining identifiers to ensure
6660 -- the correct replacement of the object declaration by this
6661 -- object renaming declaration because these identifiers
6662 -- were previously added by Enter_Name to the current scope.
6663 -- We must preserve the homonym chain of the source entity
6664 -- as well. We must also preserve the kind of the entity,
6665 -- which may be a constant. Preserve entity chain because
6666 -- itypes may have been generated already, and the full
6667 -- chain must be preserved for final freezing. Finally,
6668 -- preserve Comes_From_Source setting, so that debugging
6669 -- and cross-referencing information is properly kept, and
6670 -- preserve source location, to prevent spurious errors when
6671 -- entities are declared (they must have their own Sloc).
6673 declare
6674 New_Id : constant Entity_Id := Defining_Identifier (N);
6675 Next_Temp : constant Entity_Id := Next_Entity (New_Id);
6676 S_Flag : constant Boolean :=
6677 Comes_From_Source (Def_Id);
6679 begin
6680 Set_Next_Entity (New_Id, Next_Entity (Def_Id));
6681 Set_Next_Entity (Def_Id, Next_Temp);
6683 Set_Chars (Defining_Identifier (N), Chars (Def_Id));
6684 Set_Homonym (Defining_Identifier (N), Homonym (Def_Id));
6685 Set_Ekind (Defining_Identifier (N), Ekind (Def_Id));
6686 Set_Sloc (Defining_Identifier (N), Sloc (Def_Id));
6688 Set_Comes_From_Source (Def_Id, False);
6689 Exchange_Entities (Defining_Identifier (N), Def_Id);
6690 Set_Comes_From_Source (Def_Id, S_Flag);
6691 end;
6692 end;
6693 end if;
6695 return;
6697 -- Common case of explicit object initialization
6699 else
6700 -- In most cases, we must check that the initial value meets any
6701 -- constraint imposed by the declared type. However, there is one
6702 -- very important exception to this rule. If the entity has an
6703 -- unconstrained nominal subtype, then it acquired its constraints
6704 -- from the expression in the first place, and not only does this
6705 -- mean that the constraint check is not needed, but an attempt to
6706 -- perform the constraint check can cause order of elaboration
6707 -- problems.
6709 if not Is_Constr_Subt_For_U_Nominal (Typ) then
6711 -- If this is an allocator for an aggregate that has been
6712 -- allocated in place, delay checks until assignments are
6713 -- made, because the discriminants are not initialized.
6715 if Nkind (Expr) = N_Allocator and then No_Initialization (Expr)
6716 then
6717 null;
6719 -- Otherwise apply a constraint check now if no prev error
6721 elsif Nkind (Expr) /= N_Error then
6722 Apply_Constraint_Check (Expr, Typ);
6724 -- Deal with possible range check
6726 if Do_Range_Check (Expr) then
6728 -- If assignment checks are suppressed, turn off flag
6730 if Suppress_Assignment_Checks (N) then
6731 Set_Do_Range_Check (Expr, False);
6733 -- Otherwise generate the range check
6735 else
6736 Generate_Range_Check
6737 (Expr, Typ, CE_Range_Check_Failed);
6738 end if;
6739 end if;
6740 end if;
6741 end if;
6743 -- If the type is controlled and not inherently limited, then
6744 -- the target is adjusted after the copy and attached to the
6745 -- finalization list. However, no adjustment is done in the case
6746 -- where the object was initialized by a call to a function whose
6747 -- result is built in place, since no copy occurred. (Eventually
6748 -- we plan to support in-place function results for some cases
6749 -- of nonlimited types. ???) Similarly, no adjustment is required
6750 -- if we are going to rewrite the object declaration into a
6751 -- renaming declaration.
6753 if Needs_Finalization (Typ)
6754 and then not Is_Limited_View (Typ)
6755 and then not Rewrite_As_Renaming
6756 then
6757 Insert_Action_After (Init_After,
6758 Make_Adjust_Call (
6759 Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
6760 Typ => Base_Typ));
6761 end if;
6763 -- For tagged types, when an init value is given, the tag has to
6764 -- be re-initialized separately in order to avoid the propagation
6765 -- of a wrong tag coming from a view conversion unless the type
6766 -- is class wide (in this case the tag comes from the init value).
6767 -- Suppress the tag assignment when not Tagged_Type_Expansion
6768 -- because tags are represented implicitly in objects. Ditto for
6769 -- types that are CPP_CLASS, and for initializations that are
6770 -- aggregates, because they have to have the right tag.
6772 -- The re-assignment of the tag has to be done even if the object
6773 -- is a constant. The assignment must be analyzed after the
6774 -- declaration. If an address clause follows, this is handled as
6775 -- part of the freeze actions for the object, otherwise insert
6776 -- tag assignment here.
6778 Tag_Assign := Make_Tag_Assignment (N);
6780 if Present (Tag_Assign) then
6781 if Present (Following_Address_Clause (N)) then
6782 Ensure_Freeze_Node (Def_Id);
6784 else
6785 Insert_Action_After (Init_After, Tag_Assign);
6786 end if;
6788 -- Handle C++ constructor calls. Note that we do not check that
6789 -- Typ is a tagged type since the equivalent Ada type of a C++
6790 -- class that has no virtual methods is an untagged limited
6791 -- record type.
6793 elsif Is_CPP_Constructor_Call (Expr) then
6795 -- The call to the initialization procedure does NOT freeze the
6796 -- object being initialized.
6798 Id_Ref := New_Occurrence_Of (Def_Id, Loc);
6799 Set_Must_Not_Freeze (Id_Ref);
6800 Set_Assignment_OK (Id_Ref);
6802 Insert_Actions_After (Init_After,
6803 Build_Initialization_Call (Loc, Id_Ref, Typ,
6804 Constructor_Ref => Expr));
6806 -- We remove here the original call to the constructor
6807 -- to avoid its management in the backend
6809 Set_Expression (N, Empty);
6810 return;
6812 -- Handle initialization of limited tagged types
6814 elsif Is_Tagged_Type (Typ)
6815 and then Is_Class_Wide_Type (Typ)
6816 and then Is_Limited_Record (Typ)
6817 and then not Is_Limited_Interface (Typ)
6818 then
6819 -- Given that the type is limited we cannot perform a copy. If
6820 -- Expr_Q is the reference to a variable we mark the variable
6821 -- as OK_To_Rename to expand this declaration into a renaming
6822 -- declaration (see bellow).
6824 if Is_Entity_Name (Expr_Q) then
6825 Set_OK_To_Rename (Entity (Expr_Q));
6827 -- If we cannot convert the expression into a renaming we must
6828 -- consider it an internal error because the backend does not
6829 -- have support to handle it.
6831 else
6832 pragma Assert (False);
6833 raise Program_Error;
6834 end if;
6836 -- For discrete types, set the Is_Known_Valid flag if the
6837 -- initializing value is known to be valid. Only do this for
6838 -- source assignments, since otherwise we can end up turning
6839 -- on the known valid flag prematurely from inserted code.
6841 elsif Comes_From_Source (N)
6842 and then Is_Discrete_Type (Typ)
6843 and then Expr_Known_Valid (Expr)
6844 then
6845 Set_Is_Known_Valid (Def_Id);
6847 elsif Is_Access_Type (Typ) then
6849 -- For access types set the Is_Known_Non_Null flag if the
6850 -- initializing value is known to be non-null. We can also set
6851 -- Can_Never_Be_Null if this is a constant.
6853 if Known_Non_Null (Expr) then
6854 Set_Is_Known_Non_Null (Def_Id, True);
6856 if Constant_Present (N) then
6857 Set_Can_Never_Be_Null (Def_Id);
6858 end if;
6859 end if;
6860 end if;
6862 -- If validity checking on copies, validate initial expression.
6863 -- But skip this if declaration is for a generic type, since it
6864 -- makes no sense to validate generic types. Not clear if this
6865 -- can happen for legal programs, but it definitely can arise
6866 -- from previous instantiation errors.
6868 if Validity_Checks_On
6869 and then Comes_From_Source (N)
6870 and then Validity_Check_Copies
6871 and then not Is_Generic_Type (Etype (Def_Id))
6872 then
6873 Ensure_Valid (Expr);
6874 Set_Is_Known_Valid (Def_Id);
6875 end if;
6876 end if;
6878 -- Cases where the back end cannot handle the initialization directly
6879 -- In such cases, we expand an assignment that will be appropriately
6880 -- handled by Expand_N_Assignment_Statement.
6882 -- The exclusion of the unconstrained case is wrong, but for now it
6883 -- is too much trouble ???
6885 if (Is_Possibly_Unaligned_Slice (Expr)
6886 or else (Is_Possibly_Unaligned_Object (Expr)
6887 and then not Represented_As_Scalar (Etype (Expr))))
6888 and then not (Is_Array_Type (Etype (Expr))
6889 and then not Is_Constrained (Etype (Expr)))
6890 then
6891 declare
6892 Stat : constant Node_Id :=
6893 Make_Assignment_Statement (Loc,
6894 Name => New_Occurrence_Of (Def_Id, Loc),
6895 Expression => Relocate_Node (Expr));
6896 begin
6897 Set_Expression (N, Empty);
6898 Set_No_Initialization (N);
6899 Set_Assignment_OK (Name (Stat));
6900 Set_No_Ctrl_Actions (Stat);
6901 Insert_After_And_Analyze (Init_After, Stat);
6902 end;
6903 end if;
6904 end if;
6906 if Nkind (Obj_Def) = N_Access_Definition
6907 and then not Is_Local_Anonymous_Access (Etype (Def_Id))
6908 then
6909 -- An Ada 2012 stand-alone object of an anonymous access type
6911 declare
6912 Loc : constant Source_Ptr := Sloc (N);
6914 Level : constant Entity_Id :=
6915 Make_Defining_Identifier (Sloc (N),
6916 Chars =>
6917 New_External_Name (Chars (Def_Id), Suffix => "L"));
6919 Level_Expr : Node_Id;
6920 Level_Decl : Node_Id;
6922 begin
6923 Set_Ekind (Level, Ekind (Def_Id));
6924 Set_Etype (Level, Standard_Natural);
6925 Set_Scope (Level, Scope (Def_Id));
6927 if No (Expr) then
6929 -- Set accessibility level of null
6931 Level_Expr :=
6932 Make_Integer_Literal (Loc, Scope_Depth (Standard_Standard));
6934 else
6935 Level_Expr := Dynamic_Accessibility_Level (Expr);
6936 end if;
6938 Level_Decl :=
6939 Make_Object_Declaration (Loc,
6940 Defining_Identifier => Level,
6941 Object_Definition =>
6942 New_Occurrence_Of (Standard_Natural, Loc),
6943 Expression => Level_Expr,
6944 Constant_Present => Constant_Present (N),
6945 Has_Init_Expression => True);
6947 Insert_Action_After (Init_After, Level_Decl);
6949 Set_Extra_Accessibility (Def_Id, Level);
6950 end;
6951 end if;
6953 -- If the object is default initialized and its type is subject to
6954 -- pragma Default_Initial_Condition, add a runtime check to verify
6955 -- the assumption of the pragma (SPARK RM 7.3.3). Generate:
6957 -- <Base_Typ>Default_Init_Cond (<Base_Typ> (Def_Id));
6959 -- Note that the check is generated for source objects only
6961 if Comes_From_Source (Def_Id)
6962 and then (Has_Default_Init_Cond (Typ)
6963 or else
6964 Has_Inherited_Default_Init_Cond (Typ))
6965 and then not Has_Init_Expression (N)
6966 then
6967 declare
6968 DIC_Call : constant Node_Id :=
6969 Build_Default_Init_Cond_Call (Loc, Def_Id, Typ);
6970 begin
6971 if Present (Next_N) then
6972 Insert_Before_And_Analyze (Next_N, DIC_Call);
6974 -- The object declaration is the last node in a declarative or a
6975 -- statement list.
6977 else
6978 Append_To (List_Containing (N), DIC_Call);
6979 Analyze (DIC_Call);
6980 end if;
6981 end;
6982 end if;
6984 -- Final transformation - turn the object declaration into a renaming
6985 -- if appropriate. If this is the completion of a deferred constant
6986 -- declaration, then this transformation generates what would be
6987 -- illegal code if written by hand, but that's OK.
6989 if Present (Expr) then
6990 if Rewrite_As_Renaming then
6991 Rewrite (N,
6992 Make_Object_Renaming_Declaration (Loc,
6993 Defining_Identifier => Defining_Identifier (N),
6994 Subtype_Mark => Obj_Def,
6995 Name => Expr_Q));
6997 -- We do not analyze this renaming declaration, because all its
6998 -- components have already been analyzed, and if we were to go
6999 -- ahead and analyze it, we would in effect be trying to generate
7000 -- another declaration of X, which won't do.
7002 Set_Renamed_Object (Defining_Identifier (N), Expr_Q);
7003 Set_Analyzed (N);
7005 -- We do need to deal with debug issues for this renaming
7007 -- First, if entity comes from source, then mark it as needing
7008 -- debug information, even though it is defined by a generated
7009 -- renaming that does not come from source.
7011 if Comes_From_Source (Defining_Identifier (N)) then
7012 Set_Debug_Info_Needed (Defining_Identifier (N));
7013 end if;
7015 -- Now call the routine to generate debug info for the renaming
7017 declare
7018 Decl : constant Node_Id := Debug_Renaming_Declaration (N);
7019 begin
7020 if Present (Decl) then
7021 Insert_Action (N, Decl);
7022 end if;
7023 end;
7024 end if;
7025 end if;
7027 -- Exception on library entity not available
7029 exception
7030 when RE_Not_Available =>
7031 return;
7032 end Expand_N_Object_Declaration;
7034 ---------------------------------
7035 -- Expand_N_Subtype_Indication --
7036 ---------------------------------
7038 -- Add a check on the range of the subtype. The static case is partially
7039 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
7040 -- to check here for the static case in order to avoid generating
7041 -- extraneous expanded code. Also deal with validity checking.
7043 procedure Expand_N_Subtype_Indication (N : Node_Id) is
7044 Ran : constant Node_Id := Range_Expression (Constraint (N));
7045 Typ : constant Entity_Id := Entity (Subtype_Mark (N));
7047 begin
7048 if Nkind (Constraint (N)) = N_Range_Constraint then
7049 Validity_Check_Range (Range_Expression (Constraint (N)));
7050 end if;
7052 if Nkind_In (Parent (N), N_Constrained_Array_Definition, N_Slice) then
7053 Apply_Range_Check (Ran, Typ);
7054 end if;
7055 end Expand_N_Subtype_Indication;
7057 ---------------------------
7058 -- Expand_N_Variant_Part --
7059 ---------------------------
7061 -- Note: this procedure no longer has any effect. It used to be that we
7062 -- would replace the choices in the last variant by a when others, and
7063 -- also expanded static predicates in variant choices here, but both of
7064 -- those activities were being done too early, since we can't check the
7065 -- choices until the statically predicated subtypes are frozen, which can
7066 -- happen as late as the free point of the record, and we can't change the
7067 -- last choice to an others before checking the choices, which is now done
7068 -- at the freeze point of the record.
7070 procedure Expand_N_Variant_Part (N : Node_Id) is
7071 begin
7072 null;
7073 end Expand_N_Variant_Part;
7075 ---------------------------------
7076 -- Expand_Previous_Access_Type --
7077 ---------------------------------
7079 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
7080 Ptr_Typ : Entity_Id;
7082 begin
7083 -- Find all access types in the current scope whose designated type is
7084 -- Def_Id and build master renamings for them.
7086 Ptr_Typ := First_Entity (Current_Scope);
7087 while Present (Ptr_Typ) loop
7088 if Is_Access_Type (Ptr_Typ)
7089 and then Designated_Type (Ptr_Typ) = Def_Id
7090 and then No (Master_Id (Ptr_Typ))
7091 then
7092 -- Ensure that the designated type has a master
7094 Build_Master_Entity (Def_Id);
7096 -- Private and incomplete types complicate the insertion of master
7097 -- renamings because the access type may precede the full view of
7098 -- the designated type. For this reason, the master renamings are
7099 -- inserted relative to the designated type.
7101 Build_Master_Renaming (Ptr_Typ, Ins_Nod => Parent (Def_Id));
7102 end if;
7104 Next_Entity (Ptr_Typ);
7105 end loop;
7106 end Expand_Previous_Access_Type;
7108 -----------------------------
7109 -- Expand_Record_Extension --
7110 -----------------------------
7112 -- Add a field _parent at the beginning of the record extension. This is
7113 -- used to implement inheritance. Here are some examples of expansion:
7115 -- 1. no discriminants
7116 -- type T2 is new T1 with null record;
7117 -- gives
7118 -- type T2 is new T1 with record
7119 -- _Parent : T1;
7120 -- end record;
7122 -- 2. renamed discriminants
7123 -- type T2 (B, C : Int) is new T1 (A => B) with record
7124 -- _Parent : T1 (A => B);
7125 -- D : Int;
7126 -- end;
7128 -- 3. inherited discriminants
7129 -- type T2 is new T1 with record -- discriminant A inherited
7130 -- _Parent : T1 (A);
7131 -- D : Int;
7132 -- end;
7134 procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
7135 Indic : constant Node_Id := Subtype_Indication (Def);
7136 Loc : constant Source_Ptr := Sloc (Def);
7137 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
7138 Par_Subtype : Entity_Id;
7139 Comp_List : Node_Id;
7140 Comp_Decl : Node_Id;
7141 Parent_N : Node_Id;
7142 D : Entity_Id;
7143 List_Constr : constant List_Id := New_List;
7145 begin
7146 -- Expand_Record_Extension is called directly from the semantics, so
7147 -- we must check to see whether expansion is active before proceeding,
7148 -- because this affects the visibility of selected components in bodies
7149 -- of instances.
7151 if not Expander_Active then
7152 return;
7153 end if;
7155 -- This may be a derivation of an untagged private type whose full
7156 -- view is tagged, in which case the Derived_Type_Definition has no
7157 -- extension part. Build an empty one now.
7159 if No (Rec_Ext_Part) then
7160 Rec_Ext_Part :=
7161 Make_Record_Definition (Loc,
7162 End_Label => Empty,
7163 Component_List => Empty,
7164 Null_Present => True);
7166 Set_Record_Extension_Part (Def, Rec_Ext_Part);
7167 Mark_Rewrite_Insertion (Rec_Ext_Part);
7168 end if;
7170 Comp_List := Component_List (Rec_Ext_Part);
7172 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
7174 -- If the derived type inherits its discriminants the type of the
7175 -- _parent field must be constrained by the inherited discriminants
7177 if Has_Discriminants (T)
7178 and then Nkind (Indic) /= N_Subtype_Indication
7179 and then not Is_Constrained (Entity (Indic))
7180 then
7181 D := First_Discriminant (T);
7182 while Present (D) loop
7183 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
7184 Next_Discriminant (D);
7185 end loop;
7187 Par_Subtype :=
7188 Process_Subtype (
7189 Make_Subtype_Indication (Loc,
7190 Subtype_Mark => New_Occurrence_Of (Entity (Indic), Loc),
7191 Constraint =>
7192 Make_Index_Or_Discriminant_Constraint (Loc,
7193 Constraints => List_Constr)),
7194 Def);
7196 -- Otherwise the original subtype_indication is just what is needed
7198 else
7199 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
7200 end if;
7202 Set_Parent_Subtype (T, Par_Subtype);
7204 Comp_Decl :=
7205 Make_Component_Declaration (Loc,
7206 Defining_Identifier => Parent_N,
7207 Component_Definition =>
7208 Make_Component_Definition (Loc,
7209 Aliased_Present => False,
7210 Subtype_Indication => New_Occurrence_Of (Par_Subtype, Loc)));
7212 if Null_Present (Rec_Ext_Part) then
7213 Set_Component_List (Rec_Ext_Part,
7214 Make_Component_List (Loc,
7215 Component_Items => New_List (Comp_Decl),
7216 Variant_Part => Empty,
7217 Null_Present => False));
7218 Set_Null_Present (Rec_Ext_Part, False);
7220 elsif Null_Present (Comp_List)
7221 or else Is_Empty_List (Component_Items (Comp_List))
7222 then
7223 Set_Component_Items (Comp_List, New_List (Comp_Decl));
7224 Set_Null_Present (Comp_List, False);
7226 else
7227 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
7228 end if;
7230 Analyze (Comp_Decl);
7231 end Expand_Record_Extension;
7233 ------------------------
7234 -- Expand_Tagged_Root --
7235 ------------------------
7237 procedure Expand_Tagged_Root (T : Entity_Id) is
7238 Def : constant Node_Id := Type_Definition (Parent (T));
7239 Comp_List : Node_Id;
7240 Comp_Decl : Node_Id;
7241 Sloc_N : Source_Ptr;
7243 begin
7244 if Null_Present (Def) then
7245 Set_Component_List (Def,
7246 Make_Component_List (Sloc (Def),
7247 Component_Items => Empty_List,
7248 Variant_Part => Empty,
7249 Null_Present => True));
7250 end if;
7252 Comp_List := Component_List (Def);
7254 if Null_Present (Comp_List)
7255 or else Is_Empty_List (Component_Items (Comp_List))
7256 then
7257 Sloc_N := Sloc (Comp_List);
7258 else
7259 Sloc_N := Sloc (First (Component_Items (Comp_List)));
7260 end if;
7262 Comp_Decl :=
7263 Make_Component_Declaration (Sloc_N,
7264 Defining_Identifier => First_Tag_Component (T),
7265 Component_Definition =>
7266 Make_Component_Definition (Sloc_N,
7267 Aliased_Present => False,
7268 Subtype_Indication => New_Occurrence_Of (RTE (RE_Tag), Sloc_N)));
7270 if Null_Present (Comp_List)
7271 or else Is_Empty_List (Component_Items (Comp_List))
7272 then
7273 Set_Component_Items (Comp_List, New_List (Comp_Decl));
7274 Set_Null_Present (Comp_List, False);
7276 else
7277 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
7278 end if;
7280 -- We don't Analyze the whole expansion because the tag component has
7281 -- already been analyzed previously. Here we just insure that the tree
7282 -- is coherent with the semantic decoration
7284 Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
7286 exception
7287 when RE_Not_Available =>
7288 return;
7289 end Expand_Tagged_Root;
7291 ------------------------------
7292 -- Freeze_Stream_Operations --
7293 ------------------------------
7295 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
7296 Names : constant array (1 .. 4) of TSS_Name_Type :=
7297 (TSS_Stream_Input,
7298 TSS_Stream_Output,
7299 TSS_Stream_Read,
7300 TSS_Stream_Write);
7301 Stream_Op : Entity_Id;
7303 begin
7304 -- Primitive operations of tagged types are frozen when the dispatch
7305 -- table is constructed.
7307 if not Comes_From_Source (Typ) or else Is_Tagged_Type (Typ) then
7308 return;
7309 end if;
7311 for J in Names'Range loop
7312 Stream_Op := TSS (Typ, Names (J));
7314 if Present (Stream_Op)
7315 and then Is_Subprogram (Stream_Op)
7316 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
7317 N_Subprogram_Declaration
7318 and then not Is_Frozen (Stream_Op)
7319 then
7320 Append_Freeze_Actions (Typ, Freeze_Entity (Stream_Op, N));
7321 end if;
7322 end loop;
7323 end Freeze_Stream_Operations;
7325 -----------------
7326 -- Freeze_Type --
7327 -----------------
7329 -- Full type declarations are expanded at the point at which the type is
7330 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
7331 -- declarations generated by the freezing (e.g. the procedure generated
7332 -- for initialization) are chained in the Actions field list of the freeze
7333 -- node using Append_Freeze_Actions.
7335 function Freeze_Type (N : Node_Id) return Boolean is
7336 procedure Process_RACW_Types (Typ : Entity_Id);
7337 -- Validate and generate stubs for all RACW types associated with type
7338 -- Typ.
7340 procedure Process_Pending_Access_Types (Typ : Entity_Id);
7341 -- Associate type Typ's Finalize_Address primitive with the finalization
7342 -- masters of pending access-to-Typ types.
7344 ------------------------
7345 -- Process_RACW_Types --
7346 ------------------------
7348 procedure Process_RACW_Types (Typ : Entity_Id) is
7349 List : constant Elist_Id := Access_Types_To_Process (N);
7350 E : Elmt_Id;
7351 Seen : Boolean := False;
7353 begin
7354 if Present (List) then
7355 E := First_Elmt (List);
7356 while Present (E) loop
7357 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
7358 Validate_RACW_Primitives (Node (E));
7359 Seen := True;
7360 end if;
7362 Next_Elmt (E);
7363 end loop;
7364 end if;
7366 -- If there are RACWs designating this type, make stubs now
7368 if Seen then
7369 Remote_Types_Tagged_Full_View_Encountered (Typ);
7370 end if;
7371 end Process_RACW_Types;
7373 ----------------------------------
7374 -- Process_Pending_Access_Types --
7375 ----------------------------------
7377 procedure Process_Pending_Access_Types (Typ : Entity_Id) is
7378 E : Elmt_Id;
7380 begin
7381 -- Finalize_Address is not generated in CodePeer mode because the
7382 -- body contains address arithmetic. This processing is disabled.
7384 if CodePeer_Mode then
7385 null;
7387 -- Certain itypes are generated for contexts that cannot allocate
7388 -- objects and should not set primitive Finalize_Address.
7390 elsif Is_Itype (Typ)
7391 and then Nkind (Associated_Node_For_Itype (Typ)) =
7392 N_Explicit_Dereference
7393 then
7394 null;
7396 -- When an access type is declared after the incomplete view of a
7397 -- Taft-amendment type, the access type is considered pending in
7398 -- case the full view of the Taft-amendment type is controlled. If
7399 -- this is indeed the case, associate the Finalize_Address routine
7400 -- of the full view with the finalization masters of all pending
7401 -- access types. This scenario applies to anonymous access types as
7402 -- well.
7404 elsif Needs_Finalization (Typ)
7405 and then Present (Pending_Access_Types (Typ))
7406 then
7407 E := First_Elmt (Pending_Access_Types (Typ));
7408 while Present (E) loop
7410 -- Generate:
7411 -- Set_Finalize_Address
7412 -- (Ptr_Typ, <Typ>FD'Unrestricted_Access);
7414 Append_Freeze_Action (Typ,
7415 Make_Set_Finalize_Address_Call
7416 (Loc => Sloc (N),
7417 Ptr_Typ => Node (E)));
7419 Next_Elmt (E);
7420 end loop;
7421 end if;
7422 end Process_Pending_Access_Types;
7424 -- Local variables
7426 Def_Id : constant Entity_Id := Entity (N);
7427 Result : Boolean := False;
7429 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
7431 -- Start of processing for Freeze_Type
7433 begin
7434 -- The type being frozen may be subject to pragma Ghost. Set the mode
7435 -- now to ensure that any nodes generated during freezing are properly
7436 -- marked as Ghost.
7438 Set_Ghost_Mode (N, Def_Id);
7440 -- Process any remote access-to-class-wide types designating the type
7441 -- being frozen.
7443 Process_RACW_Types (Def_Id);
7445 -- Freeze processing for record types
7447 if Is_Record_Type (Def_Id) then
7448 if Ekind (Def_Id) = E_Record_Type then
7449 Expand_Freeze_Record_Type (N);
7450 elsif Is_Class_Wide_Type (Def_Id) then
7451 Expand_Freeze_Class_Wide_Type (N);
7452 end if;
7454 -- Freeze processing for array types
7456 elsif Is_Array_Type (Def_Id) then
7457 Expand_Freeze_Array_Type (N);
7459 -- Freeze processing for access types
7461 -- For pool-specific access types, find out the pool object used for
7462 -- this type, needs actual expansion of it in some cases. Here are the
7463 -- different cases :
7465 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
7466 -- ---> don't use any storage pool
7468 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
7469 -- Expand:
7470 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
7472 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7473 -- ---> Storage Pool is the specified one
7475 -- See GNAT Pool packages in the Run-Time for more details
7477 elsif Ekind_In (Def_Id, E_Access_Type, E_General_Access_Type) then
7478 declare
7479 Loc : constant Source_Ptr := Sloc (N);
7480 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
7481 Pool_Object : Entity_Id;
7483 Freeze_Action_Typ : Entity_Id;
7485 begin
7486 -- Case 1
7488 -- Rep Clause "for Def_Id'Storage_Size use 0;"
7489 -- ---> don't use any storage pool
7491 if No_Pool_Assigned (Def_Id) then
7492 null;
7494 -- Case 2
7496 -- Rep Clause : for Def_Id'Storage_Size use Expr.
7497 -- ---> Expand:
7498 -- Def_Id__Pool : Stack_Bounded_Pool
7499 -- (Expr, DT'Size, DT'Alignment);
7501 elsif Has_Storage_Size_Clause (Def_Id) then
7502 declare
7503 DT_Size : Node_Id;
7504 DT_Align : Node_Id;
7506 begin
7507 -- For unconstrained composite types we give a size of zero
7508 -- so that the pool knows that it needs a special algorithm
7509 -- for variable size object allocation.
7511 if Is_Composite_Type (Desig_Type)
7512 and then not Is_Constrained (Desig_Type)
7513 then
7514 DT_Size := Make_Integer_Literal (Loc, 0);
7515 DT_Align := Make_Integer_Literal (Loc, Maximum_Alignment);
7517 else
7518 DT_Size :=
7519 Make_Attribute_Reference (Loc,
7520 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7521 Attribute_Name => Name_Max_Size_In_Storage_Elements);
7523 DT_Align :=
7524 Make_Attribute_Reference (Loc,
7525 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7526 Attribute_Name => Name_Alignment);
7527 end if;
7529 Pool_Object :=
7530 Make_Defining_Identifier (Loc,
7531 Chars => New_External_Name (Chars (Def_Id), 'P'));
7533 -- We put the code associated with the pools in the entity
7534 -- that has the later freeze node, usually the access type
7535 -- but it can also be the designated_type; because the pool
7536 -- code requires both those types to be frozen
7538 if Is_Frozen (Desig_Type)
7539 and then (No (Freeze_Node (Desig_Type))
7540 or else Analyzed (Freeze_Node (Desig_Type)))
7541 then
7542 Freeze_Action_Typ := Def_Id;
7544 -- A Taft amendment type cannot get the freeze actions
7545 -- since the full view is not there.
7547 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
7548 and then No (Full_View (Desig_Type))
7549 then
7550 Freeze_Action_Typ := Def_Id;
7552 else
7553 Freeze_Action_Typ := Desig_Type;
7554 end if;
7556 Append_Freeze_Action (Freeze_Action_Typ,
7557 Make_Object_Declaration (Loc,
7558 Defining_Identifier => Pool_Object,
7559 Object_Definition =>
7560 Make_Subtype_Indication (Loc,
7561 Subtype_Mark =>
7562 New_Occurrence_Of
7563 (RTE (RE_Stack_Bounded_Pool), Loc),
7565 Constraint =>
7566 Make_Index_Or_Discriminant_Constraint (Loc,
7567 Constraints => New_List (
7569 -- First discriminant is the Pool Size
7571 New_Occurrence_Of (
7572 Storage_Size_Variable (Def_Id), Loc),
7574 -- Second discriminant is the element size
7576 DT_Size,
7578 -- Third discriminant is the alignment
7580 DT_Align)))));
7581 end;
7583 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
7585 -- Case 3
7587 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7588 -- ---> Storage Pool is the specified one
7590 -- When compiling in Ada 2012 mode, ensure that the accessibility
7591 -- level of the subpool access type is not deeper than that of the
7592 -- pool_with_subpools.
7594 elsif Ada_Version >= Ada_2012
7595 and then Present (Associated_Storage_Pool (Def_Id))
7597 -- Omit this check for the case of a configurable run-time that
7598 -- does not provide package System.Storage_Pools.Subpools.
7600 and then RTE_Available (RE_Root_Storage_Pool_With_Subpools)
7601 then
7602 declare
7603 Loc : constant Source_Ptr := Sloc (Def_Id);
7604 Pool : constant Entity_Id :=
7605 Associated_Storage_Pool (Def_Id);
7606 RSPWS : constant Entity_Id :=
7607 RTE (RE_Root_Storage_Pool_With_Subpools);
7609 begin
7610 -- It is known that the accessibility level of the access
7611 -- type is deeper than that of the pool.
7613 if Type_Access_Level (Def_Id) > Object_Access_Level (Pool)
7614 and then not Accessibility_Checks_Suppressed (Def_Id)
7615 and then not Accessibility_Checks_Suppressed (Pool)
7616 then
7617 -- Static case: the pool is known to be a descendant of
7618 -- Root_Storage_Pool_With_Subpools.
7620 if Is_Ancestor (RSPWS, Etype (Pool)) then
7621 Error_Msg_N
7622 ("??subpool access type has deeper accessibility "
7623 & "level than pool", Def_Id);
7625 Append_Freeze_Action (Def_Id,
7626 Make_Raise_Program_Error (Loc,
7627 Reason => PE_Accessibility_Check_Failed));
7629 -- Dynamic case: when the pool is of a class-wide type,
7630 -- it may or may not support subpools depending on the
7631 -- path of derivation. Generate:
7633 -- if Def_Id in RSPWS'Class then
7634 -- raise Program_Error;
7635 -- end if;
7637 elsif Is_Class_Wide_Type (Etype (Pool)) then
7638 Append_Freeze_Action (Def_Id,
7639 Make_If_Statement (Loc,
7640 Condition =>
7641 Make_In (Loc,
7642 Left_Opnd => New_Occurrence_Of (Pool, Loc),
7643 Right_Opnd =>
7644 New_Occurrence_Of
7645 (Class_Wide_Type (RSPWS), Loc)),
7647 Then_Statements => New_List (
7648 Make_Raise_Program_Error (Loc,
7649 Reason => PE_Accessibility_Check_Failed))));
7650 end if;
7651 end if;
7652 end;
7653 end if;
7655 -- For access-to-controlled types (including class-wide types and
7656 -- Taft-amendment types, which potentially have controlled
7657 -- components), expand the list controller object that will store
7658 -- the dynamically allocated objects. Don't do this transformation
7659 -- for expander-generated access types, but do it for types that
7660 -- are the full view of types derived from other private types.
7661 -- Also suppress the list controller in the case of a designated
7662 -- type with convention Java, since this is used when binding to
7663 -- Java API specs, where there's no equivalent of a finalization
7664 -- list and we don't want to pull in the finalization support if
7665 -- not needed.
7667 if not Comes_From_Source (Def_Id)
7668 and then not Has_Private_Declaration (Def_Id)
7669 then
7670 null;
7672 -- An exception is made for types defined in the run-time because
7673 -- Ada.Tags.Tag itself is such a type and cannot afford this
7674 -- unnecessary overhead that would generates a loop in the
7675 -- expansion scheme. Another exception is if Restrictions
7676 -- (No_Finalization) is active, since then we know nothing is
7677 -- controlled.
7679 elsif Restriction_Active (No_Finalization)
7680 or else In_Runtime (Def_Id)
7681 then
7682 null;
7684 -- Create a finalization master for an access-to-controlled type
7685 -- or an access-to-incomplete type. It is assumed that the full
7686 -- view will be controlled.
7688 elsif Needs_Finalization (Desig_Type)
7689 or else (Is_Incomplete_Type (Desig_Type)
7690 and then No (Full_View (Desig_Type)))
7691 then
7692 Build_Finalization_Master (Def_Id);
7694 -- Create a finalization master when the designated type contains
7695 -- a private component. It is assumed that the full view will be
7696 -- controlled.
7698 elsif Has_Private_Component (Desig_Type) then
7699 Build_Finalization_Master
7700 (Typ => Def_Id,
7701 For_Private => True,
7702 Context_Scope => Scope (Def_Id),
7703 Insertion_Node => Declaration_Node (Desig_Type));
7704 end if;
7705 end;
7707 -- Freeze processing for enumeration types
7709 elsif Ekind (Def_Id) = E_Enumeration_Type then
7711 -- We only have something to do if we have a non-standard
7712 -- representation (i.e. at least one literal whose pos value
7713 -- is not the same as its representation)
7715 if Has_Non_Standard_Rep (Def_Id) then
7716 Expand_Freeze_Enumeration_Type (N);
7717 end if;
7719 -- Private types that are completed by a derivation from a private
7720 -- type have an internally generated full view, that needs to be
7721 -- frozen. This must be done explicitly because the two views share
7722 -- the freeze node, and the underlying full view is not visible when
7723 -- the freeze node is analyzed.
7725 elsif Is_Private_Type (Def_Id)
7726 and then Is_Derived_Type (Def_Id)
7727 and then Present (Full_View (Def_Id))
7728 and then Is_Itype (Full_View (Def_Id))
7729 and then Has_Private_Declaration (Full_View (Def_Id))
7730 and then Freeze_Node (Full_View (Def_Id)) = N
7731 then
7732 Set_Entity (N, Full_View (Def_Id));
7733 Result := Freeze_Type (N);
7734 Set_Entity (N, Def_Id);
7736 -- All other types require no expander action. There are such cases
7737 -- (e.g. task types and protected types). In such cases, the freeze
7738 -- nodes are there for use by Gigi.
7740 end if;
7742 -- Complete the initialization of all pending access types' finalization
7743 -- masters now that the designated type has been is frozen and primitive
7744 -- Finalize_Address generated.
7746 Process_Pending_Access_Types (Def_Id);
7747 Freeze_Stream_Operations (N, Def_Id);
7749 Ghost_Mode := Save_Ghost_Mode;
7750 return Result;
7752 exception
7753 when RE_Not_Available =>
7754 Ghost_Mode := Save_Ghost_Mode;
7755 return False;
7756 end Freeze_Type;
7758 -------------------------
7759 -- Get_Simple_Init_Val --
7760 -------------------------
7762 function Get_Simple_Init_Val
7763 (T : Entity_Id;
7764 N : Node_Id;
7765 Size : Uint := No_Uint) return Node_Id
7767 Loc : constant Source_Ptr := Sloc (N);
7768 Val : Node_Id;
7769 Result : Node_Id;
7770 Val_RE : RE_Id;
7772 Size_To_Use : Uint;
7773 -- This is the size to be used for computation of the appropriate
7774 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7776 IV_Attribute : constant Boolean :=
7777 Nkind (N) = N_Attribute_Reference
7778 and then Attribute_Name (N) = Name_Invalid_Value;
7780 Lo_Bound : Uint;
7781 Hi_Bound : Uint;
7782 -- These are the values computed by the procedure Check_Subtype_Bounds
7784 procedure Check_Subtype_Bounds;
7785 -- This procedure examines the subtype T, and its ancestor subtypes and
7786 -- derived types to determine the best known information about the
7787 -- bounds of the subtype. After the call Lo_Bound is set either to
7788 -- No_Uint if no information can be determined, or to a value which
7789 -- represents a known low bound, i.e. a valid value of the subtype can
7790 -- not be less than this value. Hi_Bound is similarly set to a known
7791 -- high bound (valid value cannot be greater than this).
7793 --------------------------
7794 -- Check_Subtype_Bounds --
7795 --------------------------
7797 procedure Check_Subtype_Bounds is
7798 ST1 : Entity_Id;
7799 ST2 : Entity_Id;
7800 Lo : Node_Id;
7801 Hi : Node_Id;
7802 Loval : Uint;
7803 Hival : Uint;
7805 begin
7806 Lo_Bound := No_Uint;
7807 Hi_Bound := No_Uint;
7809 -- Loop to climb ancestor subtypes and derived types
7811 ST1 := T;
7812 loop
7813 if not Is_Discrete_Type (ST1) then
7814 return;
7815 end if;
7817 Lo := Type_Low_Bound (ST1);
7818 Hi := Type_High_Bound (ST1);
7820 if Compile_Time_Known_Value (Lo) then
7821 Loval := Expr_Value (Lo);
7823 if Lo_Bound = No_Uint or else Lo_Bound < Loval then
7824 Lo_Bound := Loval;
7825 end if;
7826 end if;
7828 if Compile_Time_Known_Value (Hi) then
7829 Hival := Expr_Value (Hi);
7831 if Hi_Bound = No_Uint or else Hi_Bound > Hival then
7832 Hi_Bound := Hival;
7833 end if;
7834 end if;
7836 ST2 := Ancestor_Subtype (ST1);
7838 if No (ST2) then
7839 ST2 := Etype (ST1);
7840 end if;
7842 exit when ST1 = ST2;
7843 ST1 := ST2;
7844 end loop;
7845 end Check_Subtype_Bounds;
7847 -- Start of processing for Get_Simple_Init_Val
7849 begin
7850 -- For a private type, we should always have an underlying type (because
7851 -- this was already checked in Needs_Simple_Initialization). What we do
7852 -- is to get the value for the underlying type and then do an unchecked
7853 -- conversion to the private type.
7855 if Is_Private_Type (T) then
7856 Val := Get_Simple_Init_Val (Underlying_Type (T), N, Size);
7858 -- A special case, if the underlying value is null, then qualify it
7859 -- with the underlying type, so that the null is properly typed.
7860 -- Similarly, if it is an aggregate it must be qualified, because an
7861 -- unchecked conversion does not provide a context for it.
7863 if Nkind_In (Val, N_Null, N_Aggregate) then
7864 Val :=
7865 Make_Qualified_Expression (Loc,
7866 Subtype_Mark =>
7867 New_Occurrence_Of (Underlying_Type (T), Loc),
7868 Expression => Val);
7869 end if;
7871 Result := Unchecked_Convert_To (T, Val);
7873 -- Don't truncate result (important for Initialize/Normalize_Scalars)
7875 if Nkind (Result) = N_Unchecked_Type_Conversion
7876 and then Is_Scalar_Type (Underlying_Type (T))
7877 then
7878 Set_No_Truncation (Result);
7879 end if;
7881 return Result;
7883 -- Scalars with Default_Value aspect. The first subtype may now be
7884 -- private, so retrieve value from underlying type.
7886 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
7887 if Is_Private_Type (First_Subtype (T)) then
7888 return Unchecked_Convert_To (T,
7889 Default_Aspect_Value (Full_View (First_Subtype (T))));
7890 else
7891 return
7892 Convert_To (T, Default_Aspect_Value (First_Subtype (T)));
7893 end if;
7895 -- Otherwise, for scalars, we must have normalize/initialize scalars
7896 -- case, or if the node N is an 'Invalid_Value attribute node.
7898 elsif Is_Scalar_Type (T) then
7899 pragma Assert (Init_Or_Norm_Scalars or IV_Attribute);
7901 -- Compute size of object. If it is given by the caller, we can use
7902 -- it directly, otherwise we use Esize (T) as an estimate. As far as
7903 -- we know this covers all cases correctly.
7905 if Size = No_Uint or else Size <= Uint_0 then
7906 Size_To_Use := UI_Max (Uint_1, Esize (T));
7907 else
7908 Size_To_Use := Size;
7909 end if;
7911 -- Maximum size to use is 64 bits, since we will create values of
7912 -- type Unsigned_64 and the range must fit this type.
7914 if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
7915 Size_To_Use := Uint_64;
7916 end if;
7918 -- Check known bounds of subtype
7920 Check_Subtype_Bounds;
7922 -- Processing for Normalize_Scalars case
7924 if Normalize_Scalars and then not IV_Attribute then
7926 -- If zero is invalid, it is a convenient value to use that is
7927 -- for sure an appropriate invalid value in all situations.
7929 if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
7930 Val := Make_Integer_Literal (Loc, 0);
7932 -- Cases where all one bits is the appropriate invalid value
7934 -- For modular types, all 1 bits is either invalid or valid. If
7935 -- it is valid, then there is nothing that can be done since there
7936 -- are no invalid values (we ruled out zero already).
7938 -- For signed integer types that have no negative values, either
7939 -- there is room for negative values, or there is not. If there
7940 -- is, then all 1-bits may be interpreted as minus one, which is
7941 -- certainly invalid. Alternatively it is treated as the largest
7942 -- positive value, in which case the observation for modular types
7943 -- still applies.
7945 -- For float types, all 1-bits is a NaN (not a number), which is
7946 -- certainly an appropriately invalid value.
7948 elsif Is_Unsigned_Type (T)
7949 or else Is_Floating_Point_Type (T)
7950 or else Is_Enumeration_Type (T)
7951 then
7952 Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
7954 -- Resolve as Unsigned_64, because the largest number we can
7955 -- generate is out of range of universal integer.
7957 Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
7959 -- Case of signed types
7961 else
7962 declare
7963 Signed_Size : constant Uint :=
7964 UI_Min (Uint_63, Size_To_Use - 1);
7966 begin
7967 -- Normally we like to use the most negative number. The one
7968 -- exception is when this number is in the known subtype
7969 -- range and the largest positive number is not in the known
7970 -- subtype range.
7972 -- For this exceptional case, use largest positive value
7974 if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
7975 and then Lo_Bound <= (-(2 ** Signed_Size))
7976 and then Hi_Bound < 2 ** Signed_Size
7977 then
7978 Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
7980 -- Normal case of largest negative value
7982 else
7983 Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
7984 end if;
7985 end;
7986 end if;
7988 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
7990 else
7991 -- For float types, use float values from System.Scalar_Values
7993 if Is_Floating_Point_Type (T) then
7994 if Root_Type (T) = Standard_Short_Float then
7995 Val_RE := RE_IS_Isf;
7996 elsif Root_Type (T) = Standard_Float then
7997 Val_RE := RE_IS_Ifl;
7998 elsif Root_Type (T) = Standard_Long_Float then
7999 Val_RE := RE_IS_Ilf;
8000 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
8001 Val_RE := RE_IS_Ill;
8002 end if;
8004 -- If zero is invalid, use zero values from System.Scalar_Values
8006 elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
8007 if Size_To_Use <= 8 then
8008 Val_RE := RE_IS_Iz1;
8009 elsif Size_To_Use <= 16 then
8010 Val_RE := RE_IS_Iz2;
8011 elsif Size_To_Use <= 32 then
8012 Val_RE := RE_IS_Iz4;
8013 else
8014 Val_RE := RE_IS_Iz8;
8015 end if;
8017 -- For unsigned, use unsigned values from System.Scalar_Values
8019 elsif Is_Unsigned_Type (T) then
8020 if Size_To_Use <= 8 then
8021 Val_RE := RE_IS_Iu1;
8022 elsif Size_To_Use <= 16 then
8023 Val_RE := RE_IS_Iu2;
8024 elsif Size_To_Use <= 32 then
8025 Val_RE := RE_IS_Iu4;
8026 else
8027 Val_RE := RE_IS_Iu8;
8028 end if;
8030 -- For signed, use signed values from System.Scalar_Values
8032 else
8033 if Size_To_Use <= 8 then
8034 Val_RE := RE_IS_Is1;
8035 elsif Size_To_Use <= 16 then
8036 Val_RE := RE_IS_Is2;
8037 elsif Size_To_Use <= 32 then
8038 Val_RE := RE_IS_Is4;
8039 else
8040 Val_RE := RE_IS_Is8;
8041 end if;
8042 end if;
8044 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
8045 end if;
8047 -- The final expression is obtained by doing an unchecked conversion
8048 -- of this result to the base type of the required subtype. Use the
8049 -- base type to prevent the unchecked conversion from chopping bits,
8050 -- and then we set Kill_Range_Check to preserve the "bad" value.
8052 Result := Unchecked_Convert_To (Base_Type (T), Val);
8054 -- Ensure result is not truncated, since we want the "bad" bits, and
8055 -- also kill range check on result.
8057 if Nkind (Result) = N_Unchecked_Type_Conversion then
8058 Set_No_Truncation (Result);
8059 Set_Kill_Range_Check (Result, True);
8060 end if;
8062 return Result;
8064 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
8066 elsif Is_Standard_String_Type (T) then
8067 pragma Assert (Init_Or_Norm_Scalars);
8069 return
8070 Make_Aggregate (Loc,
8071 Component_Associations => New_List (
8072 Make_Component_Association (Loc,
8073 Choices => New_List (
8074 Make_Others_Choice (Loc)),
8075 Expression =>
8076 Get_Simple_Init_Val
8077 (Component_Type (T), N, Esize (Root_Type (T))))));
8079 -- Access type is initialized to null
8081 elsif Is_Access_Type (T) then
8082 return Make_Null (Loc);
8084 -- No other possibilities should arise, since we should only be calling
8085 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
8086 -- indicating one of the above cases held.
8088 else
8089 raise Program_Error;
8090 end if;
8092 exception
8093 when RE_Not_Available =>
8094 return Empty;
8095 end Get_Simple_Init_Val;
8097 ------------------------------
8098 -- Has_New_Non_Standard_Rep --
8099 ------------------------------
8101 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
8102 begin
8103 if not Is_Derived_Type (T) then
8104 return Has_Non_Standard_Rep (T)
8105 or else Has_Non_Standard_Rep (Root_Type (T));
8107 -- If Has_Non_Standard_Rep is not set on the derived type, the
8108 -- representation is fully inherited.
8110 elsif not Has_Non_Standard_Rep (T) then
8111 return False;
8113 else
8114 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
8116 -- May need a more precise check here: the First_Rep_Item may be a
8117 -- stream attribute, which does not affect the representation of the
8118 -- type ???
8120 end if;
8121 end Has_New_Non_Standard_Rep;
8123 ----------------------
8124 -- Inline_Init_Proc --
8125 ----------------------
8127 function Inline_Init_Proc (Typ : Entity_Id) return Boolean is
8128 begin
8129 -- The initialization proc of protected records is not worth inlining.
8130 -- In addition, when compiled for another unit for inlining purposes,
8131 -- it may make reference to entities that have not been elaborated yet.
8132 -- The initialization proc of records that need finalization contains
8133 -- a nested clean-up procedure that makes it impractical to inline as
8134 -- well, except for simple controlled types themselves. And similar
8135 -- considerations apply to task types.
8137 if Is_Concurrent_Type (Typ) then
8138 return False;
8140 elsif Needs_Finalization (Typ) and then not Is_Controlled (Typ) then
8141 return False;
8143 elsif Has_Task (Typ) then
8144 return False;
8146 else
8147 return True;
8148 end if;
8149 end Inline_Init_Proc;
8151 ----------------
8152 -- In_Runtime --
8153 ----------------
8155 function In_Runtime (E : Entity_Id) return Boolean is
8156 S1 : Entity_Id;
8158 begin
8159 S1 := Scope (E);
8160 while Scope (S1) /= Standard_Standard loop
8161 S1 := Scope (S1);
8162 end loop;
8164 return Is_RTU (S1, System) or else Is_RTU (S1, Ada);
8165 end In_Runtime;
8167 ---------------------------------------
8168 -- Insert_Component_Invariant_Checks --
8169 ---------------------------------------
8171 procedure Insert_Component_Invariant_Checks
8172 (N : Node_Id;
8173 Typ : Entity_Id;
8174 Proc : Node_Id)
8176 Loc : constant Source_Ptr := Sloc (Typ);
8177 Proc_Id : Entity_Id;
8179 begin
8180 if Present (Proc) then
8181 Proc_Id := Defining_Entity (Proc);
8183 if not Has_Invariants (Typ) then
8184 Set_Has_Invariants (Typ);
8185 Set_Is_Invariant_Procedure (Proc_Id);
8186 Set_Invariant_Procedure (Typ, Proc_Id);
8187 Insert_After (N, Proc);
8188 Analyze (Proc);
8190 else
8192 -- Find already created invariant subprogram, insert body of
8193 -- component invariant proc in its body, and add call after
8194 -- other checks.
8196 declare
8197 Bod : Node_Id;
8198 Inv_Id : constant Entity_Id := Invariant_Procedure (Typ);
8199 Call : constant Node_Id :=
8200 Make_Procedure_Call_Statement (Sloc (N),
8201 Name => New_Occurrence_Of (Proc_Id, Loc),
8202 Parameter_Associations =>
8203 New_List
8204 (New_Occurrence_Of (First_Formal (Inv_Id), Loc)));
8206 begin
8207 -- The invariant body has not been analyzed yet, so we do a
8208 -- sequential search forward, and retrieve it by name.
8210 Bod := Next (N);
8211 while Present (Bod) loop
8212 exit when Nkind (Bod) = N_Subprogram_Body
8213 and then Chars (Defining_Entity (Bod)) = Chars (Inv_Id);
8214 Next (Bod);
8215 end loop;
8217 -- If the body is not found, it is the case of an invariant
8218 -- appearing on a full declaration in a private part, in
8219 -- which case the type has been frozen but the invariant
8220 -- procedure for the composite type not created yet. Create
8221 -- body now.
8223 if No (Bod) then
8224 Build_Invariant_Procedure (Typ, Parent (Current_Scope));
8225 Bod := Unit_Declaration_Node
8226 (Corresponding_Body (Unit_Declaration_Node (Inv_Id)));
8227 end if;
8229 Append_To (Declarations (Bod), Proc);
8230 Append_To (Statements (Handled_Statement_Sequence (Bod)), Call);
8231 Analyze (Proc);
8232 Analyze (Call);
8233 end;
8234 end if;
8235 end if;
8236 end Insert_Component_Invariant_Checks;
8238 ----------------------------
8239 -- Initialization_Warning --
8240 ----------------------------
8242 procedure Initialization_Warning (E : Entity_Id) is
8243 Warning_Needed : Boolean;
8245 begin
8246 Warning_Needed := False;
8248 if Ekind (Current_Scope) = E_Package
8249 and then Static_Elaboration_Desired (Current_Scope)
8250 then
8251 if Is_Type (E) then
8252 if Is_Record_Type (E) then
8253 if Has_Discriminants (E)
8254 or else Is_Limited_Type (E)
8255 or else Has_Non_Standard_Rep (E)
8256 then
8257 Warning_Needed := True;
8259 else
8260 -- Verify that at least one component has an initialization
8261 -- expression. No need for a warning on a type if all its
8262 -- components have no initialization.
8264 declare
8265 Comp : Entity_Id;
8267 begin
8268 Comp := First_Component (E);
8269 while Present (Comp) loop
8270 if Ekind (Comp) = E_Discriminant
8271 or else
8272 (Nkind (Parent (Comp)) = N_Component_Declaration
8273 and then Present (Expression (Parent (Comp))))
8274 then
8275 Warning_Needed := True;
8276 exit;
8277 end if;
8279 Next_Component (Comp);
8280 end loop;
8281 end;
8282 end if;
8284 if Warning_Needed then
8285 Error_Msg_N
8286 ("Objects of the type cannot be initialized statically "
8287 & "by default??", Parent (E));
8288 end if;
8289 end if;
8291 else
8292 Error_Msg_N ("Object cannot be initialized statically??", E);
8293 end if;
8294 end if;
8295 end Initialization_Warning;
8297 ------------------
8298 -- Init_Formals --
8299 ------------------
8301 function Init_Formals (Typ : Entity_Id) return List_Id is
8302 Loc : constant Source_Ptr := Sloc (Typ);
8303 Formals : List_Id;
8305 begin
8306 -- First parameter is always _Init : in out typ. Note that we need this
8307 -- to be in/out because in the case of the task record value, there
8308 -- are default record fields (_Priority, _Size, -Task_Info) that may
8309 -- be referenced in the generated initialization routine.
8311 Formals := New_List (
8312 Make_Parameter_Specification (Loc,
8313 Defining_Identifier => Make_Defining_Identifier (Loc, Name_uInit),
8314 In_Present => True,
8315 Out_Present => True,
8316 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
8318 -- For task record value, or type that contains tasks, add two more
8319 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
8320 -- We also add these parameters for the task record type case.
8322 if Has_Task (Typ)
8323 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
8324 then
8325 Append_To (Formals,
8326 Make_Parameter_Specification (Loc,
8327 Defining_Identifier =>
8328 Make_Defining_Identifier (Loc, Name_uMaster),
8329 Parameter_Type =>
8330 New_Occurrence_Of (RTE (RE_Master_Id), Loc)));
8332 -- Add _Chain (not done for sequential elaboration policy, see
8333 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
8335 if Partition_Elaboration_Policy /= 'S' then
8336 Append_To (Formals,
8337 Make_Parameter_Specification (Loc,
8338 Defining_Identifier =>
8339 Make_Defining_Identifier (Loc, Name_uChain),
8340 In_Present => True,
8341 Out_Present => True,
8342 Parameter_Type =>
8343 New_Occurrence_Of (RTE (RE_Activation_Chain), Loc)));
8344 end if;
8346 Append_To (Formals,
8347 Make_Parameter_Specification (Loc,
8348 Defining_Identifier =>
8349 Make_Defining_Identifier (Loc, Name_uTask_Name),
8350 In_Present => True,
8351 Parameter_Type => New_Occurrence_Of (Standard_String, Loc)));
8352 end if;
8354 return Formals;
8356 exception
8357 when RE_Not_Available =>
8358 return Empty_List;
8359 end Init_Formals;
8361 -------------------------
8362 -- Init_Secondary_Tags --
8363 -------------------------
8365 procedure Init_Secondary_Tags
8366 (Typ : Entity_Id;
8367 Target : Node_Id;
8368 Stmts_List : List_Id;
8369 Fixed_Comps : Boolean := True;
8370 Variable_Comps : Boolean := True)
8372 Loc : constant Source_Ptr := Sloc (Target);
8374 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
8375 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8377 procedure Initialize_Tag
8378 (Typ : Entity_Id;
8379 Iface : Entity_Id;
8380 Tag_Comp : Entity_Id;
8381 Iface_Tag : Node_Id);
8382 -- Initialize the tag of the secondary dispatch table of Typ associated
8383 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8384 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
8385 -- of Typ CPP tagged type we generate code to inherit the contents of
8386 -- the dispatch table directly from the ancestor.
8388 --------------------
8389 -- Initialize_Tag --
8390 --------------------
8392 procedure Initialize_Tag
8393 (Typ : Entity_Id;
8394 Iface : Entity_Id;
8395 Tag_Comp : Entity_Id;
8396 Iface_Tag : Node_Id)
8398 Comp_Typ : Entity_Id;
8399 Offset_To_Top_Comp : Entity_Id := Empty;
8401 begin
8402 -- Initialize pointer to secondary DT associated with the interface
8404 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8405 Append_To (Stmts_List,
8406 Make_Assignment_Statement (Loc,
8407 Name =>
8408 Make_Selected_Component (Loc,
8409 Prefix => New_Copy_Tree (Target),
8410 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8411 Expression =>
8412 New_Occurrence_Of (Iface_Tag, Loc)));
8413 end if;
8415 Comp_Typ := Scope (Tag_Comp);
8417 -- Initialize the entries of the table of interfaces. We generate a
8418 -- different call when the parent of the type has variable size
8419 -- components.
8421 if Comp_Typ /= Etype (Comp_Typ)
8422 and then Is_Variable_Size_Record (Etype (Comp_Typ))
8423 and then Chars (Tag_Comp) /= Name_uTag
8424 then
8425 pragma Assert (Present (DT_Offset_To_Top_Func (Tag_Comp)));
8427 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
8428 -- configurable run-time environment.
8430 if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then
8431 Error_Msg_CRT
8432 ("variable size record with interface types", Typ);
8433 return;
8434 end if;
8436 -- Generate:
8437 -- Set_Dynamic_Offset_To_Top
8438 -- (This => Init,
8439 -- Interface_T => Iface'Tag,
8440 -- Offset_Value => n,
8441 -- Offset_Func => Fn'Address)
8443 Append_To (Stmts_List,
8444 Make_Procedure_Call_Statement (Loc,
8445 Name =>
8446 New_Occurrence_Of (RTE (RE_Set_Dynamic_Offset_To_Top), Loc),
8447 Parameter_Associations => New_List (
8448 Make_Attribute_Reference (Loc,
8449 Prefix => New_Copy_Tree (Target),
8450 Attribute_Name => Name_Address),
8452 Unchecked_Convert_To (RTE (RE_Tag),
8453 New_Occurrence_Of
8454 (Node (First_Elmt (Access_Disp_Table (Iface))),
8455 Loc)),
8457 Unchecked_Convert_To
8458 (RTE (RE_Storage_Offset),
8459 Make_Attribute_Reference (Loc,
8460 Prefix =>
8461 Make_Selected_Component (Loc,
8462 Prefix => New_Copy_Tree (Target),
8463 Selector_Name =>
8464 New_Occurrence_Of (Tag_Comp, Loc)),
8465 Attribute_Name => Name_Position)),
8467 Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr),
8468 Make_Attribute_Reference (Loc,
8469 Prefix => New_Occurrence_Of
8470 (DT_Offset_To_Top_Func (Tag_Comp), Loc),
8471 Attribute_Name => Name_Address)))));
8473 -- In this case the next component stores the value of the offset
8474 -- to the top.
8476 Offset_To_Top_Comp := Next_Entity (Tag_Comp);
8477 pragma Assert (Present (Offset_To_Top_Comp));
8479 Append_To (Stmts_List,
8480 Make_Assignment_Statement (Loc,
8481 Name =>
8482 Make_Selected_Component (Loc,
8483 Prefix => New_Copy_Tree (Target),
8484 Selector_Name =>
8485 New_Occurrence_Of (Offset_To_Top_Comp, Loc)),
8487 Expression =>
8488 Make_Attribute_Reference (Loc,
8489 Prefix =>
8490 Make_Selected_Component (Loc,
8491 Prefix => New_Copy_Tree (Target),
8492 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8493 Attribute_Name => Name_Position)));
8495 -- Normal case: No discriminants in the parent type
8497 else
8498 -- Don't need to set any value if this interface shares the
8499 -- primary dispatch table.
8501 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8502 Append_To (Stmts_List,
8503 Build_Set_Static_Offset_To_Top (Loc,
8504 Iface_Tag => New_Occurrence_Of (Iface_Tag, Loc),
8505 Offset_Value =>
8506 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8507 Make_Attribute_Reference (Loc,
8508 Prefix =>
8509 Make_Selected_Component (Loc,
8510 Prefix => New_Copy_Tree (Target),
8511 Selector_Name =>
8512 New_Occurrence_Of (Tag_Comp, Loc)),
8513 Attribute_Name => Name_Position))));
8514 end if;
8516 -- Generate:
8517 -- Register_Interface_Offset
8518 -- (This => Init,
8519 -- Interface_T => Iface'Tag,
8520 -- Is_Constant => True,
8521 -- Offset_Value => n,
8522 -- Offset_Func => null);
8524 if RTE_Available (RE_Register_Interface_Offset) then
8525 Append_To (Stmts_List,
8526 Make_Procedure_Call_Statement (Loc,
8527 Name =>
8528 New_Occurrence_Of
8529 (RTE (RE_Register_Interface_Offset), Loc),
8530 Parameter_Associations => New_List (
8531 Make_Attribute_Reference (Loc,
8532 Prefix => New_Copy_Tree (Target),
8533 Attribute_Name => Name_Address),
8535 Unchecked_Convert_To (RTE (RE_Tag),
8536 New_Occurrence_Of
8537 (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)),
8539 New_Occurrence_Of (Standard_True, Loc),
8541 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8542 Make_Attribute_Reference (Loc,
8543 Prefix =>
8544 Make_Selected_Component (Loc,
8545 Prefix => New_Copy_Tree (Target),
8546 Selector_Name =>
8547 New_Occurrence_Of (Tag_Comp, Loc)),
8548 Attribute_Name => Name_Position)),
8550 Make_Null (Loc))));
8551 end if;
8552 end if;
8553 end Initialize_Tag;
8555 -- Local variables
8557 Full_Typ : Entity_Id;
8558 Ifaces_List : Elist_Id;
8559 Ifaces_Comp_List : Elist_Id;
8560 Ifaces_Tag_List : Elist_Id;
8561 Iface_Elmt : Elmt_Id;
8562 Iface_Comp_Elmt : Elmt_Id;
8563 Iface_Tag_Elmt : Elmt_Id;
8564 Tag_Comp : Node_Id;
8565 In_Variable_Pos : Boolean;
8567 -- Start of processing for Init_Secondary_Tags
8569 begin
8570 -- Handle private types
8572 if Present (Full_View (Typ)) then
8573 Full_Typ := Full_View (Typ);
8574 else
8575 Full_Typ := Typ;
8576 end if;
8578 Collect_Interfaces_Info
8579 (Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);
8581 Iface_Elmt := First_Elmt (Ifaces_List);
8582 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
8583 Iface_Tag_Elmt := First_Elmt (Ifaces_Tag_List);
8584 while Present (Iface_Elmt) loop
8585 Tag_Comp := Node (Iface_Comp_Elmt);
8587 -- Check if parent of record type has variable size components
8589 In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp))
8590 and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp)));
8592 -- If we are compiling under the CPP full ABI compatibility mode and
8593 -- the ancestor is a CPP_Pragma tagged type then we generate code to
8594 -- initialize the secondary tag components from tags that reference
8595 -- secondary tables filled with copy of parent slots.
8597 if Is_CPP_Class (Root_Type (Full_Typ)) then
8599 -- Reject interface components located at variable offset in
8600 -- C++ derivations. This is currently unsupported.
8602 if not Fixed_Comps and then In_Variable_Pos then
8604 -- Locate the first dynamic component of the record. Done to
8605 -- improve the text of the warning.
8607 declare
8608 Comp : Entity_Id;
8609 Comp_Typ : Entity_Id;
8611 begin
8612 Comp := First_Entity (Typ);
8613 while Present (Comp) loop
8614 Comp_Typ := Etype (Comp);
8616 if Ekind (Comp) /= E_Discriminant
8617 and then not Is_Tag (Comp)
8618 then
8619 exit when
8620 (Is_Record_Type (Comp_Typ)
8621 and then
8622 Is_Variable_Size_Record (Base_Type (Comp_Typ)))
8623 or else
8624 (Is_Array_Type (Comp_Typ)
8625 and then Is_Variable_Size_Array (Comp_Typ));
8626 end if;
8628 Next_Entity (Comp);
8629 end loop;
8631 pragma Assert (Present (Comp));
8632 Error_Msg_Node_2 := Comp;
8633 Error_Msg_NE
8634 ("parent type & with dynamic component & cannot be parent"
8635 & " of 'C'P'P derivation if new interfaces are present",
8636 Typ, Scope (Original_Record_Component (Comp)));
8638 Error_Msg_Sloc :=
8639 Sloc (Scope (Original_Record_Component (Comp)));
8640 Error_Msg_NE
8641 ("type derived from 'C'P'P type & defined #",
8642 Typ, Scope (Original_Record_Component (Comp)));
8644 -- Avoid duplicated warnings
8646 exit;
8647 end;
8649 -- Initialize secondary tags
8651 else
8652 Append_To (Stmts_List,
8653 Make_Assignment_Statement (Loc,
8654 Name =>
8655 Make_Selected_Component (Loc,
8656 Prefix => New_Copy_Tree (Target),
8657 Selector_Name =>
8658 New_Occurrence_Of (Node (Iface_Comp_Elmt), Loc)),
8659 Expression =>
8660 New_Occurrence_Of (Node (Iface_Tag_Elmt), Loc)));
8661 end if;
8663 -- Otherwise generate code to initialize the tag
8665 else
8666 if (In_Variable_Pos and then Variable_Comps)
8667 or else (not In_Variable_Pos and then Fixed_Comps)
8668 then
8669 Initialize_Tag (Full_Typ,
8670 Iface => Node (Iface_Elmt),
8671 Tag_Comp => Tag_Comp,
8672 Iface_Tag => Node (Iface_Tag_Elmt));
8673 end if;
8674 end if;
8676 Next_Elmt (Iface_Elmt);
8677 Next_Elmt (Iface_Comp_Elmt);
8678 Next_Elmt (Iface_Tag_Elmt);
8679 end loop;
8680 end Init_Secondary_Tags;
8682 ------------------------
8683 -- Is_User_Defined_Eq --
8684 ------------------------
8686 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean is
8687 begin
8688 return Chars (Prim) = Name_Op_Eq
8689 and then Etype (First_Formal (Prim)) =
8690 Etype (Next_Formal (First_Formal (Prim)))
8691 and then Base_Type (Etype (Prim)) = Standard_Boolean;
8692 end Is_User_Defined_Equality;
8694 ----------------------------------------
8695 -- Make_Controlling_Function_Wrappers --
8696 ----------------------------------------
8698 procedure Make_Controlling_Function_Wrappers
8699 (Tag_Typ : Entity_Id;
8700 Decl_List : out List_Id;
8701 Body_List : out List_Id)
8703 Loc : constant Source_Ptr := Sloc (Tag_Typ);
8704 Prim_Elmt : Elmt_Id;
8705 Subp : Entity_Id;
8706 Actual_List : List_Id;
8707 Formal_List : List_Id;
8708 Formal : Entity_Id;
8709 Par_Formal : Entity_Id;
8710 Formal_Node : Node_Id;
8711 Func_Body : Node_Id;
8712 Func_Decl : Node_Id;
8713 Func_Spec : Node_Id;
8714 Return_Stmt : Node_Id;
8716 begin
8717 Decl_List := New_List;
8718 Body_List := New_List;
8720 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
8721 while Present (Prim_Elmt) loop
8722 Subp := Node (Prim_Elmt);
8724 -- If a primitive function with a controlling result of the type has
8725 -- not been overridden by the user, then we must create a wrapper
8726 -- function here that effectively overrides it and invokes the
8727 -- (non-abstract) parent function. This can only occur for a null
8728 -- extension. Note that functions with anonymous controlling access
8729 -- results don't qualify and must be overridden. We also exclude
8730 -- Input attributes, since each type will have its own version of
8731 -- Input constructed by the expander. The test for Comes_From_Source
8732 -- is needed to distinguish inherited operations from renamings
8733 -- (which also have Alias set). We exclude internal entities with
8734 -- Interface_Alias to avoid generating duplicated wrappers since
8735 -- the primitive which covers the interface is also available in
8736 -- the list of primitive operations.
8738 -- The function may be abstract, or require_Overriding may be set
8739 -- for it, because tests for null extensions may already have reset
8740 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
8741 -- set, functions that need wrappers are recognized by having an
8742 -- alias that returns the parent type.
8744 if Comes_From_Source (Subp)
8745 or else No (Alias (Subp))
8746 or else Present (Interface_Alias (Subp))
8747 or else Ekind (Subp) /= E_Function
8748 or else not Has_Controlling_Result (Subp)
8749 or else Is_Access_Type (Etype (Subp))
8750 or else Is_Abstract_Subprogram (Alias (Subp))
8751 or else Is_TSS (Subp, TSS_Stream_Input)
8752 then
8753 goto Next_Prim;
8755 elsif Is_Abstract_Subprogram (Subp)
8756 or else Requires_Overriding (Subp)
8757 or else
8758 (Is_Null_Extension (Etype (Subp))
8759 and then Etype (Alias (Subp)) /= Etype (Subp))
8760 then
8761 Formal_List := No_List;
8762 Formal := First_Formal (Subp);
8764 if Present (Formal) then
8765 Formal_List := New_List;
8767 while Present (Formal) loop
8768 Append
8769 (Make_Parameter_Specification
8770 (Loc,
8771 Defining_Identifier =>
8772 Make_Defining_Identifier (Sloc (Formal),
8773 Chars => Chars (Formal)),
8774 In_Present => In_Present (Parent (Formal)),
8775 Out_Present => Out_Present (Parent (Formal)),
8776 Null_Exclusion_Present =>
8777 Null_Exclusion_Present (Parent (Formal)),
8778 Parameter_Type =>
8779 New_Occurrence_Of (Etype (Formal), Loc),
8780 Expression =>
8781 New_Copy_Tree (Expression (Parent (Formal)))),
8782 Formal_List);
8784 Next_Formal (Formal);
8785 end loop;
8786 end if;
8788 Func_Spec :=
8789 Make_Function_Specification (Loc,
8790 Defining_Unit_Name =>
8791 Make_Defining_Identifier (Loc,
8792 Chars => Chars (Subp)),
8793 Parameter_Specifications => Formal_List,
8794 Result_Definition =>
8795 New_Occurrence_Of (Etype (Subp), Loc));
8797 Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
8798 Append_To (Decl_List, Func_Decl);
8800 -- Build a wrapper body that calls the parent function. The body
8801 -- contains a single return statement that returns an extension
8802 -- aggregate whose ancestor part is a call to the parent function,
8803 -- passing the formals as actuals (with any controlling arguments
8804 -- converted to the types of the corresponding formals of the
8805 -- parent function, which might be anonymous access types), and
8806 -- having a null extension.
8808 Formal := First_Formal (Subp);
8809 Par_Formal := First_Formal (Alias (Subp));
8810 Formal_Node := First (Formal_List);
8812 if Present (Formal) then
8813 Actual_List := New_List;
8814 else
8815 Actual_List := No_List;
8816 end if;
8818 while Present (Formal) loop
8819 if Is_Controlling_Formal (Formal) then
8820 Append_To (Actual_List,
8821 Make_Type_Conversion (Loc,
8822 Subtype_Mark =>
8823 New_Occurrence_Of (Etype (Par_Formal), Loc),
8824 Expression =>
8825 New_Occurrence_Of
8826 (Defining_Identifier (Formal_Node), Loc)));
8827 else
8828 Append_To
8829 (Actual_List,
8830 New_Occurrence_Of
8831 (Defining_Identifier (Formal_Node), Loc));
8832 end if;
8834 Next_Formal (Formal);
8835 Next_Formal (Par_Formal);
8836 Next (Formal_Node);
8837 end loop;
8839 Return_Stmt :=
8840 Make_Simple_Return_Statement (Loc,
8841 Expression =>
8842 Make_Extension_Aggregate (Loc,
8843 Ancestor_Part =>
8844 Make_Function_Call (Loc,
8845 Name =>
8846 New_Occurrence_Of (Alias (Subp), Loc),
8847 Parameter_Associations => Actual_List),
8848 Null_Record_Present => True));
8850 Func_Body :=
8851 Make_Subprogram_Body (Loc,
8852 Specification => New_Copy_Tree (Func_Spec),
8853 Declarations => Empty_List,
8854 Handled_Statement_Sequence =>
8855 Make_Handled_Sequence_Of_Statements (Loc,
8856 Statements => New_List (Return_Stmt)));
8858 Set_Defining_Unit_Name
8859 (Specification (Func_Body),
8860 Make_Defining_Identifier (Loc, Chars (Subp)));
8862 Append_To (Body_List, Func_Body);
8864 -- Replace the inherited function with the wrapper function in the
8865 -- primitive operations list. We add the minimum decoration needed
8866 -- to override interface primitives.
8868 Set_Ekind (Defining_Unit_Name (Func_Spec), E_Function);
8870 Override_Dispatching_Operation
8871 (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec),
8872 Is_Wrapper => True);
8873 end if;
8875 <<Next_Prim>>
8876 Next_Elmt (Prim_Elmt);
8877 end loop;
8878 end Make_Controlling_Function_Wrappers;
8880 -------------------
8881 -- Make_Eq_Body --
8882 -------------------
8884 function Make_Eq_Body
8885 (Typ : Entity_Id;
8886 Eq_Name : Name_Id) return Node_Id
8888 Loc : constant Source_Ptr := Sloc (Parent (Typ));
8889 Decl : Node_Id;
8890 Def : constant Node_Id := Parent (Typ);
8891 Stmts : constant List_Id := New_List;
8892 Variant_Case : Boolean := Has_Discriminants (Typ);
8893 Comps : Node_Id := Empty;
8894 Typ_Def : Node_Id := Type_Definition (Def);
8896 begin
8897 Decl :=
8898 Predef_Spec_Or_Body (Loc,
8899 Tag_Typ => Typ,
8900 Name => Eq_Name,
8901 Profile => New_List (
8902 Make_Parameter_Specification (Loc,
8903 Defining_Identifier =>
8904 Make_Defining_Identifier (Loc, Name_X),
8905 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
8907 Make_Parameter_Specification (Loc,
8908 Defining_Identifier =>
8909 Make_Defining_Identifier (Loc, Name_Y),
8910 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8912 Ret_Type => Standard_Boolean,
8913 For_Body => True);
8915 if Variant_Case then
8916 if Nkind (Typ_Def) = N_Derived_Type_Definition then
8917 Typ_Def := Record_Extension_Part (Typ_Def);
8918 end if;
8920 if Present (Typ_Def) then
8921 Comps := Component_List (Typ_Def);
8922 end if;
8924 Variant_Case :=
8925 Present (Comps) and then Present (Variant_Part (Comps));
8926 end if;
8928 if Variant_Case then
8929 Append_To (Stmts,
8930 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
8931 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
8932 Append_To (Stmts,
8933 Make_Simple_Return_Statement (Loc,
8934 Expression => New_Occurrence_Of (Standard_True, Loc)));
8936 else
8937 Append_To (Stmts,
8938 Make_Simple_Return_Statement (Loc,
8939 Expression =>
8940 Expand_Record_Equality
8941 (Typ,
8942 Typ => Typ,
8943 Lhs => Make_Identifier (Loc, Name_X),
8944 Rhs => Make_Identifier (Loc, Name_Y),
8945 Bodies => Declarations (Decl))));
8946 end if;
8948 Set_Handled_Statement_Sequence
8949 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
8950 return Decl;
8951 end Make_Eq_Body;
8953 ------------------
8954 -- Make_Eq_Case --
8955 ------------------
8957 -- <Make_Eq_If shared components>
8959 -- case X.D1 is
8960 -- when V1 => <Make_Eq_Case> on subcomponents
8961 -- ...
8962 -- when Vn => <Make_Eq_Case> on subcomponents
8963 -- end case;
8965 function Make_Eq_Case
8966 (E : Entity_Id;
8967 CL : Node_Id;
8968 Discrs : Elist_Id := New_Elmt_List) return List_Id
8970 Loc : constant Source_Ptr := Sloc (E);
8971 Result : constant List_Id := New_List;
8972 Variant : Node_Id;
8973 Alt_List : List_Id;
8975 function Corresponding_Formal (C : Node_Id) return Entity_Id;
8976 -- Given the discriminant that controls a given variant of an unchecked
8977 -- union, find the formal of the equality function that carries the
8978 -- inferred value of the discriminant.
8980 function External_Name (E : Entity_Id) return Name_Id;
8981 -- The value of a given discriminant is conveyed in the corresponding
8982 -- formal parameter of the equality routine. The name of this formal
8983 -- parameter carries a one-character suffix which is removed here.
8985 --------------------------
8986 -- Corresponding_Formal --
8987 --------------------------
8989 function Corresponding_Formal (C : Node_Id) return Entity_Id is
8990 Discr : constant Entity_Id := Entity (Name (Variant_Part (C)));
8991 Elm : Elmt_Id;
8993 begin
8994 Elm := First_Elmt (Discrs);
8995 while Present (Elm) loop
8996 if Chars (Discr) = External_Name (Node (Elm)) then
8997 return Node (Elm);
8998 end if;
9000 Next_Elmt (Elm);
9001 end loop;
9003 -- A formal of the proper name must be found
9005 raise Program_Error;
9006 end Corresponding_Formal;
9008 -------------------
9009 -- External_Name --
9010 -------------------
9012 function External_Name (E : Entity_Id) return Name_Id is
9013 begin
9014 Get_Name_String (Chars (E));
9015 Name_Len := Name_Len - 1;
9016 return Name_Find;
9017 end External_Name;
9019 -- Start of processing for Make_Eq_Case
9021 begin
9022 Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
9024 if No (Variant_Part (CL)) then
9025 return Result;
9026 end if;
9028 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
9030 if No (Variant) then
9031 return Result;
9032 end if;
9034 Alt_List := New_List;
9035 while Present (Variant) loop
9036 Append_To (Alt_List,
9037 Make_Case_Statement_Alternative (Loc,
9038 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
9039 Statements =>
9040 Make_Eq_Case (E, Component_List (Variant), Discrs)));
9041 Next_Non_Pragma (Variant);
9042 end loop;
9044 -- If we have an Unchecked_Union, use one of the parameters of the
9045 -- enclosing equality routine that captures the discriminant, to use
9046 -- as the expression in the generated case statement.
9048 if Is_Unchecked_Union (E) then
9049 Append_To (Result,
9050 Make_Case_Statement (Loc,
9051 Expression =>
9052 New_Occurrence_Of (Corresponding_Formal (CL), Loc),
9053 Alternatives => Alt_List));
9055 else
9056 Append_To (Result,
9057 Make_Case_Statement (Loc,
9058 Expression =>
9059 Make_Selected_Component (Loc,
9060 Prefix => Make_Identifier (Loc, Name_X),
9061 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
9062 Alternatives => Alt_List));
9063 end if;
9065 return Result;
9066 end Make_Eq_Case;
9068 ----------------
9069 -- Make_Eq_If --
9070 ----------------
9072 -- Generates:
9074 -- if
9075 -- X.C1 /= Y.C1
9076 -- or else
9077 -- X.C2 /= Y.C2
9078 -- ...
9079 -- then
9080 -- return False;
9081 -- end if;
9083 -- or a null statement if the list L is empty
9085 function Make_Eq_If
9086 (E : Entity_Id;
9087 L : List_Id) return Node_Id
9089 Loc : constant Source_Ptr := Sloc (E);
9090 C : Node_Id;
9091 Field_Name : Name_Id;
9092 Cond : Node_Id;
9094 begin
9095 if No (L) then
9096 return Make_Null_Statement (Loc);
9098 else
9099 Cond := Empty;
9101 C := First_Non_Pragma (L);
9102 while Present (C) loop
9103 Field_Name := Chars (Defining_Identifier (C));
9105 -- The tags must not be compared: they are not part of the value.
9106 -- Ditto for parent interfaces because their equality operator is
9107 -- abstract.
9109 -- Note also that in the following, we use Make_Identifier for
9110 -- the component names. Use of New_Occurrence_Of to identify the
9111 -- components would be incorrect because the wrong entities for
9112 -- discriminants could be picked up in the private type case.
9114 if Field_Name = Name_uParent
9115 and then Is_Interface (Etype (Defining_Identifier (C)))
9116 then
9117 null;
9119 elsif Field_Name /= Name_uTag then
9120 Evolve_Or_Else (Cond,
9121 Make_Op_Ne (Loc,
9122 Left_Opnd =>
9123 Make_Selected_Component (Loc,
9124 Prefix => Make_Identifier (Loc, Name_X),
9125 Selector_Name => Make_Identifier (Loc, Field_Name)),
9127 Right_Opnd =>
9128 Make_Selected_Component (Loc,
9129 Prefix => Make_Identifier (Loc, Name_Y),
9130 Selector_Name => Make_Identifier (Loc, Field_Name))));
9131 end if;
9133 Next_Non_Pragma (C);
9134 end loop;
9136 if No (Cond) then
9137 return Make_Null_Statement (Loc);
9139 else
9140 return
9141 Make_Implicit_If_Statement (E,
9142 Condition => Cond,
9143 Then_Statements => New_List (
9144 Make_Simple_Return_Statement (Loc,
9145 Expression => New_Occurrence_Of (Standard_False, Loc))));
9146 end if;
9147 end if;
9148 end Make_Eq_If;
9150 -------------------
9151 -- Make_Neq_Body --
9152 -------------------
9154 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id is
9156 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean;
9157 -- Returns true if Prim is a renaming of an unresolved predefined
9158 -- inequality operation.
9160 --------------------------------
9161 -- Is_Predefined_Neq_Renaming --
9162 --------------------------------
9164 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean is
9165 begin
9166 return Chars (Prim) /= Name_Op_Ne
9167 and then Present (Alias (Prim))
9168 and then Comes_From_Source (Prim)
9169 and then Is_Intrinsic_Subprogram (Alias (Prim))
9170 and then Chars (Alias (Prim)) = Name_Op_Ne;
9171 end Is_Predefined_Neq_Renaming;
9173 -- Local variables
9175 Loc : constant Source_Ptr := Sloc (Parent (Tag_Typ));
9176 Stmts : constant List_Id := New_List;
9177 Decl : Node_Id;
9178 Eq_Prim : Entity_Id;
9179 Left_Op : Entity_Id;
9180 Renaming_Prim : Entity_Id;
9181 Right_Op : Entity_Id;
9182 Target : Entity_Id;
9184 -- Start of processing for Make_Neq_Body
9186 begin
9187 -- For a call on a renaming of a dispatching subprogram that is
9188 -- overridden, if the overriding occurred before the renaming, then
9189 -- the body executed is that of the overriding declaration, even if the
9190 -- overriding declaration is not visible at the place of the renaming;
9191 -- otherwise, the inherited or predefined subprogram is called, see
9192 -- (RM 8.5.4(8))
9194 -- Stage 1: Search for a renaming of the inequality primitive and also
9195 -- search for an overriding of the equality primitive located before the
9196 -- renaming declaration.
9198 declare
9199 Elmt : Elmt_Id;
9200 Prim : Node_Id;
9202 begin
9203 Eq_Prim := Empty;
9204 Renaming_Prim := Empty;
9206 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9207 while Present (Elmt) loop
9208 Prim := Node (Elmt);
9210 if Is_User_Defined_Equality (Prim) and then No (Alias (Prim)) then
9211 if No (Renaming_Prim) then
9212 pragma Assert (No (Eq_Prim));
9213 Eq_Prim := Prim;
9214 end if;
9216 elsif Is_Predefined_Neq_Renaming (Prim) then
9217 Renaming_Prim := Prim;
9218 end if;
9220 Next_Elmt (Elmt);
9221 end loop;
9222 end;
9224 -- No further action needed if no renaming was found
9226 if No (Renaming_Prim) then
9227 return Empty;
9228 end if;
9230 -- Stage 2: Replace the renaming declaration by a subprogram declaration
9231 -- (required to add its body)
9233 Decl := Parent (Parent (Renaming_Prim));
9234 Rewrite (Decl,
9235 Make_Subprogram_Declaration (Loc,
9236 Specification => Specification (Decl)));
9237 Set_Analyzed (Decl);
9239 -- Remove the decoration of intrinsic renaming subprogram
9241 Set_Is_Intrinsic_Subprogram (Renaming_Prim, False);
9242 Set_Convention (Renaming_Prim, Convention_Ada);
9243 Set_Alias (Renaming_Prim, Empty);
9244 Set_Has_Completion (Renaming_Prim, False);
9246 -- Stage 3: Build the corresponding body
9248 Left_Op := First_Formal (Renaming_Prim);
9249 Right_Op := Next_Formal (Left_Op);
9251 Decl :=
9252 Predef_Spec_Or_Body (Loc,
9253 Tag_Typ => Tag_Typ,
9254 Name => Chars (Renaming_Prim),
9255 Profile => New_List (
9256 Make_Parameter_Specification (Loc,
9257 Defining_Identifier =>
9258 Make_Defining_Identifier (Loc, Chars (Left_Op)),
9259 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9261 Make_Parameter_Specification (Loc,
9262 Defining_Identifier =>
9263 Make_Defining_Identifier (Loc, Chars (Right_Op)),
9264 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9266 Ret_Type => Standard_Boolean,
9267 For_Body => True);
9269 -- If the overriding of the equality primitive occurred before the
9270 -- renaming, then generate:
9272 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9273 -- begin
9274 -- return not Oeq (X, Y);
9275 -- end;
9277 if Present (Eq_Prim) then
9278 Target := Eq_Prim;
9280 -- Otherwise build a nested subprogram which performs the predefined
9281 -- evaluation of the equality operator. That is, generate:
9283 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9284 -- function Oeq (X : Y) return Boolean is
9285 -- begin
9286 -- <<body of default implementation>>
9287 -- end;
9288 -- begin
9289 -- return not Oeq (X, Y);
9290 -- end;
9292 else
9293 declare
9294 Local_Subp : Node_Id;
9295 begin
9296 Local_Subp := Make_Eq_Body (Tag_Typ, Name_Op_Eq);
9297 Set_Declarations (Decl, New_List (Local_Subp));
9298 Target := Defining_Entity (Local_Subp);
9299 end;
9300 end if;
9302 Append_To (Stmts,
9303 Make_Simple_Return_Statement (Loc,
9304 Expression =>
9305 Make_Op_Not (Loc,
9306 Make_Function_Call (Loc,
9307 Name => New_Occurrence_Of (Target, Loc),
9308 Parameter_Associations => New_List (
9309 Make_Identifier (Loc, Chars (Left_Op)),
9310 Make_Identifier (Loc, Chars (Right_Op)))))));
9312 Set_Handled_Statement_Sequence
9313 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
9314 return Decl;
9315 end Make_Neq_Body;
9317 -------------------------------
9318 -- Make_Null_Procedure_Specs --
9319 -------------------------------
9321 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id is
9322 Decl_List : constant List_Id := New_List;
9323 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9324 Formal : Entity_Id;
9325 Formal_List : List_Id;
9326 New_Param_Spec : Node_Id;
9327 Parent_Subp : Entity_Id;
9328 Prim_Elmt : Elmt_Id;
9329 Subp : Entity_Id;
9331 begin
9332 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9333 while Present (Prim_Elmt) loop
9334 Subp := Node (Prim_Elmt);
9336 -- If a null procedure inherited from an interface has not been
9337 -- overridden, then we build a null procedure declaration to
9338 -- override the inherited procedure.
9340 Parent_Subp := Alias (Subp);
9342 if Present (Parent_Subp)
9343 and then Is_Null_Interface_Primitive (Parent_Subp)
9344 then
9345 Formal_List := No_List;
9346 Formal := First_Formal (Subp);
9348 if Present (Formal) then
9349 Formal_List := New_List;
9351 while Present (Formal) loop
9353 -- Copy the parameter spec including default expressions
9355 New_Param_Spec :=
9356 New_Copy_Tree (Parent (Formal), New_Sloc => Loc);
9358 -- Generate a new defining identifier for the new formal.
9359 -- required because New_Copy_Tree does not duplicate
9360 -- semantic fields (except itypes).
9362 Set_Defining_Identifier (New_Param_Spec,
9363 Make_Defining_Identifier (Sloc (Formal),
9364 Chars => Chars (Formal)));
9366 -- For controlling arguments we must change their
9367 -- parameter type to reference the tagged type (instead
9368 -- of the interface type)
9370 if Is_Controlling_Formal (Formal) then
9371 if Nkind (Parameter_Type (Parent (Formal))) = N_Identifier
9372 then
9373 Set_Parameter_Type (New_Param_Spec,
9374 New_Occurrence_Of (Tag_Typ, Loc));
9376 else pragma Assert
9377 (Nkind (Parameter_Type (Parent (Formal))) =
9378 N_Access_Definition);
9379 Set_Subtype_Mark (Parameter_Type (New_Param_Spec),
9380 New_Occurrence_Of (Tag_Typ, Loc));
9381 end if;
9382 end if;
9384 Append (New_Param_Spec, Formal_List);
9386 Next_Formal (Formal);
9387 end loop;
9388 end if;
9390 Append_To (Decl_List,
9391 Make_Subprogram_Declaration (Loc,
9392 Make_Procedure_Specification (Loc,
9393 Defining_Unit_Name =>
9394 Make_Defining_Identifier (Loc, Chars (Subp)),
9395 Parameter_Specifications => Formal_List,
9396 Null_Present => True)));
9397 end if;
9399 Next_Elmt (Prim_Elmt);
9400 end loop;
9402 return Decl_List;
9403 end Make_Null_Procedure_Specs;
9405 -------------------------------------
9406 -- Make_Predefined_Primitive_Specs --
9407 -------------------------------------
9409 procedure Make_Predefined_Primitive_Specs
9410 (Tag_Typ : Entity_Id;
9411 Predef_List : out List_Id;
9412 Renamed_Eq : out Entity_Id)
9414 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
9415 -- Returns true if Prim is a renaming of an unresolved predefined
9416 -- equality operation.
9418 -------------------------------
9419 -- Is_Predefined_Eq_Renaming --
9420 -------------------------------
9422 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
9423 begin
9424 return Chars (Prim) /= Name_Op_Eq
9425 and then Present (Alias (Prim))
9426 and then Comes_From_Source (Prim)
9427 and then Is_Intrinsic_Subprogram (Alias (Prim))
9428 and then Chars (Alias (Prim)) = Name_Op_Eq;
9429 end Is_Predefined_Eq_Renaming;
9431 -- Local variables
9433 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9434 Res : constant List_Id := New_List;
9435 Eq_Name : Name_Id := Name_Op_Eq;
9436 Eq_Needed : Boolean;
9437 Eq_Spec : Node_Id;
9438 Prim : Elmt_Id;
9440 Has_Predef_Eq_Renaming : Boolean := False;
9441 -- Set to True if Tag_Typ has a primitive that renames the predefined
9442 -- equality operator. Used to implement (RM 8-5-4(8)).
9444 -- Start of processing for Make_Predefined_Primitive_Specs
9446 begin
9447 Renamed_Eq := Empty;
9449 -- Spec of _Size
9451 Append_To (Res, Predef_Spec_Or_Body (Loc,
9452 Tag_Typ => Tag_Typ,
9453 Name => Name_uSize,
9454 Profile => New_List (
9455 Make_Parameter_Specification (Loc,
9456 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9457 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9459 Ret_Type => Standard_Long_Long_Integer));
9461 -- Specs for dispatching stream attributes
9463 declare
9464 Stream_Op_TSS_Names :
9465 constant array (Integer range <>) of TSS_Name_Type :=
9466 (TSS_Stream_Read,
9467 TSS_Stream_Write,
9468 TSS_Stream_Input,
9469 TSS_Stream_Output);
9471 begin
9472 for Op in Stream_Op_TSS_Names'Range loop
9473 if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
9474 Append_To (Res,
9475 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
9476 Stream_Op_TSS_Names (Op)));
9477 end if;
9478 end loop;
9479 end;
9481 -- Spec of "=" is expanded if the type is not limited and if a user
9482 -- defined "=" was not already declared for the non-full view of a
9483 -- private extension
9485 if not Is_Limited_Type (Tag_Typ) then
9486 Eq_Needed := True;
9487 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9488 while Present (Prim) loop
9490 -- If a primitive is encountered that renames the predefined
9491 -- equality operator before reaching any explicit equality
9492 -- primitive, then we still need to create a predefined equality
9493 -- function, because calls to it can occur via the renaming. A
9494 -- new name is created for the equality to avoid conflicting with
9495 -- any user-defined equality. (Note that this doesn't account for
9496 -- renamings of equality nested within subpackages???)
9498 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9499 Has_Predef_Eq_Renaming := True;
9500 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
9502 -- User-defined equality
9504 elsif Is_User_Defined_Equality (Node (Prim)) then
9505 if No (Alias (Node (Prim)))
9506 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
9507 N_Subprogram_Renaming_Declaration
9508 then
9509 Eq_Needed := False;
9510 exit;
9512 -- If the parent is not an interface type and has an abstract
9513 -- equality function explicitly defined in the sources, then
9514 -- the inherited equality is abstract as well, and no body can
9515 -- be created for it.
9517 elsif not Is_Interface (Etype (Tag_Typ))
9518 and then Present (Alias (Node (Prim)))
9519 and then Comes_From_Source (Alias (Node (Prim)))
9520 and then Is_Abstract_Subprogram (Alias (Node (Prim)))
9521 then
9522 Eq_Needed := False;
9523 exit;
9525 -- If the type has an equality function corresponding with
9526 -- a primitive defined in an interface type, the inherited
9527 -- equality is abstract as well, and no body can be created
9528 -- for it.
9530 elsif Present (Alias (Node (Prim)))
9531 and then Comes_From_Source (Ultimate_Alias (Node (Prim)))
9532 and then
9533 Is_Interface
9534 (Find_Dispatching_Type (Ultimate_Alias (Node (Prim))))
9535 then
9536 Eq_Needed := False;
9537 exit;
9538 end if;
9539 end if;
9541 Next_Elmt (Prim);
9542 end loop;
9544 -- If a renaming of predefined equality was found but there was no
9545 -- user-defined equality (so Eq_Needed is still true), then set the
9546 -- name back to Name_Op_Eq. But in the case where a user-defined
9547 -- equality was located after such a renaming, then the predefined
9548 -- equality function is still needed, so Eq_Needed must be set back
9549 -- to True.
9551 if Eq_Name /= Name_Op_Eq then
9552 if Eq_Needed then
9553 Eq_Name := Name_Op_Eq;
9554 else
9555 Eq_Needed := True;
9556 end if;
9557 end if;
9559 if Eq_Needed then
9560 Eq_Spec := Predef_Spec_Or_Body (Loc,
9561 Tag_Typ => Tag_Typ,
9562 Name => Eq_Name,
9563 Profile => New_List (
9564 Make_Parameter_Specification (Loc,
9565 Defining_Identifier =>
9566 Make_Defining_Identifier (Loc, Name_X),
9567 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9569 Make_Parameter_Specification (Loc,
9570 Defining_Identifier =>
9571 Make_Defining_Identifier (Loc, Name_Y),
9572 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9573 Ret_Type => Standard_Boolean);
9574 Append_To (Res, Eq_Spec);
9576 if Has_Predef_Eq_Renaming then
9577 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
9579 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9580 while Present (Prim) loop
9582 -- Any renamings of equality that appeared before an
9583 -- overriding equality must be updated to refer to the
9584 -- entity for the predefined equality, otherwise calls via
9585 -- the renaming would get incorrectly resolved to call the
9586 -- user-defined equality function.
9588 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9589 Set_Alias (Node (Prim), Renamed_Eq);
9591 -- Exit upon encountering a user-defined equality
9593 elsif Chars (Node (Prim)) = Name_Op_Eq
9594 and then No (Alias (Node (Prim)))
9595 then
9596 exit;
9597 end if;
9599 Next_Elmt (Prim);
9600 end loop;
9601 end if;
9602 end if;
9604 -- Spec for dispatching assignment
9606 Append_To (Res, Predef_Spec_Or_Body (Loc,
9607 Tag_Typ => Tag_Typ,
9608 Name => Name_uAssign,
9609 Profile => New_List (
9610 Make_Parameter_Specification (Loc,
9611 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9612 Out_Present => True,
9613 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9615 Make_Parameter_Specification (Loc,
9616 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
9617 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)))));
9618 end if;
9620 -- Ada 2005: Generate declarations for the following primitive
9621 -- operations for limited interfaces and synchronized types that
9622 -- implement a limited interface.
9624 -- Disp_Asynchronous_Select
9625 -- Disp_Conditional_Select
9626 -- Disp_Get_Prim_Op_Kind
9627 -- Disp_Get_Task_Id
9628 -- Disp_Requeue
9629 -- Disp_Timed_Select
9631 -- Disable the generation of these bodies if No_Dispatching_Calls,
9632 -- Ravenscar or ZFP is active.
9634 if Ada_Version >= Ada_2005
9635 and then not Restriction_Active (No_Dispatching_Calls)
9636 and then not Restriction_Active (No_Select_Statements)
9637 and then RTE_Available (RE_Select_Specific_Data)
9638 then
9639 -- These primitives are defined abstract in interface types
9641 if Is_Interface (Tag_Typ)
9642 and then Is_Limited_Record (Tag_Typ)
9643 then
9644 Append_To (Res,
9645 Make_Abstract_Subprogram_Declaration (Loc,
9646 Specification =>
9647 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9649 Append_To (Res,
9650 Make_Abstract_Subprogram_Declaration (Loc,
9651 Specification =>
9652 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9654 Append_To (Res,
9655 Make_Abstract_Subprogram_Declaration (Loc,
9656 Specification =>
9657 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9659 Append_To (Res,
9660 Make_Abstract_Subprogram_Declaration (Loc,
9661 Specification =>
9662 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9664 Append_To (Res,
9665 Make_Abstract_Subprogram_Declaration (Loc,
9666 Specification =>
9667 Make_Disp_Requeue_Spec (Tag_Typ)));
9669 Append_To (Res,
9670 Make_Abstract_Subprogram_Declaration (Loc,
9671 Specification =>
9672 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9674 -- If ancestor is an interface type, declare non-abstract primitives
9675 -- to override the abstract primitives of the interface type.
9677 -- In VM targets we define these primitives in all root tagged types
9678 -- that are not interface types. Done because in VM targets we don't
9679 -- have secondary dispatch tables and any derivation of Tag_Typ may
9680 -- cover limited interfaces (which always have these primitives since
9681 -- they may be ancestors of synchronized interface types).
9683 elsif (not Is_Interface (Tag_Typ)
9684 and then Is_Interface (Etype (Tag_Typ))
9685 and then Is_Limited_Record (Etype (Tag_Typ)))
9686 or else
9687 (Is_Concurrent_Record_Type (Tag_Typ)
9688 and then Has_Interfaces (Tag_Typ))
9689 or else
9690 (not Tagged_Type_Expansion
9691 and then not Is_Interface (Tag_Typ)
9692 and then Tag_Typ = Root_Type (Tag_Typ))
9693 then
9694 Append_To (Res,
9695 Make_Subprogram_Declaration (Loc,
9696 Specification =>
9697 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9699 Append_To (Res,
9700 Make_Subprogram_Declaration (Loc,
9701 Specification =>
9702 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9704 Append_To (Res,
9705 Make_Subprogram_Declaration (Loc,
9706 Specification =>
9707 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9709 Append_To (Res,
9710 Make_Subprogram_Declaration (Loc,
9711 Specification =>
9712 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9714 Append_To (Res,
9715 Make_Subprogram_Declaration (Loc,
9716 Specification =>
9717 Make_Disp_Requeue_Spec (Tag_Typ)));
9719 Append_To (Res,
9720 Make_Subprogram_Declaration (Loc,
9721 Specification =>
9722 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9723 end if;
9724 end if;
9726 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
9727 -- regardless of whether they are controlled or may contain controlled
9728 -- components.
9730 -- Do not generate the routines if finalization is disabled
9732 if Restriction_Active (No_Finalization) then
9733 null;
9735 else
9736 if not Is_Limited_Type (Tag_Typ) then
9737 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
9738 end if;
9740 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
9741 end if;
9743 Predef_List := Res;
9744 end Make_Predefined_Primitive_Specs;
9746 -------------------------
9747 -- Make_Tag_Assignment --
9748 -------------------------
9750 function Make_Tag_Assignment (N : Node_Id) return Node_Id is
9751 Loc : constant Source_Ptr := Sloc (N);
9752 Def_If : constant Entity_Id := Defining_Identifier (N);
9753 Expr : constant Node_Id := Expression (N);
9754 Typ : constant Entity_Id := Etype (Def_If);
9755 Full_Typ : constant Entity_Id := Underlying_Type (Typ);
9756 New_Ref : Node_Id;
9758 begin
9759 -- This expansion activity is called during analysis, but cannot
9760 -- be applied in ASIS mode when other expansion is disabled.
9762 if Is_Tagged_Type (Typ)
9763 and then not Is_Class_Wide_Type (Typ)
9764 and then not Is_CPP_Class (Typ)
9765 and then Tagged_Type_Expansion
9766 and then Nkind (Expr) /= N_Aggregate
9767 and then not ASIS_Mode
9768 and then (Nkind (Expr) /= N_Qualified_Expression
9769 or else Nkind (Expression (Expr)) /= N_Aggregate)
9770 then
9771 New_Ref :=
9772 Make_Selected_Component (Loc,
9773 Prefix => New_Occurrence_Of (Def_If, Loc),
9774 Selector_Name =>
9775 New_Occurrence_Of (First_Tag_Component (Full_Typ), Loc));
9776 Set_Assignment_OK (New_Ref);
9778 return
9779 Make_Assignment_Statement (Loc,
9780 Name => New_Ref,
9781 Expression =>
9782 Unchecked_Convert_To (RTE (RE_Tag),
9783 New_Occurrence_Of (Node
9784 (First_Elmt (Access_Disp_Table (Full_Typ))), Loc)));
9785 else
9786 return Empty;
9787 end if;
9788 end Make_Tag_Assignment;
9790 ---------------------------------
9791 -- Needs_Simple_Initialization --
9792 ---------------------------------
9794 function Needs_Simple_Initialization
9795 (T : Entity_Id;
9796 Consider_IS : Boolean := True) return Boolean
9798 Consider_IS_NS : constant Boolean :=
9799 Normalize_Scalars or (Initialize_Scalars and Consider_IS);
9801 begin
9802 -- Never need initialization if it is suppressed
9804 if Initialization_Suppressed (T) then
9805 return False;
9806 end if;
9808 -- Check for private type, in which case test applies to the underlying
9809 -- type of the private type.
9811 if Is_Private_Type (T) then
9812 declare
9813 RT : constant Entity_Id := Underlying_Type (T);
9814 begin
9815 if Present (RT) then
9816 return Needs_Simple_Initialization (RT);
9817 else
9818 return False;
9819 end if;
9820 end;
9822 -- Scalar type with Default_Value aspect requires initialization
9824 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
9825 return True;
9827 -- Cases needing simple initialization are access types, and, if pragma
9828 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
9829 -- types.
9831 elsif Is_Access_Type (T)
9832 or else (Consider_IS_NS and then (Is_Scalar_Type (T)))
9833 then
9834 return True;
9836 -- If Initialize/Normalize_Scalars is in effect, string objects also
9837 -- need initialization, unless they are created in the course of
9838 -- expanding an aggregate (since in the latter case they will be
9839 -- filled with appropriate initializing values before they are used).
9841 elsif Consider_IS_NS
9842 and then Is_Standard_String_Type (T)
9843 and then
9844 (not Is_Itype (T)
9845 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
9846 then
9847 return True;
9849 else
9850 return False;
9851 end if;
9852 end Needs_Simple_Initialization;
9854 ----------------------
9855 -- Predef_Deep_Spec --
9856 ----------------------
9858 function Predef_Deep_Spec
9859 (Loc : Source_Ptr;
9860 Tag_Typ : Entity_Id;
9861 Name : TSS_Name_Type;
9862 For_Body : Boolean := False) return Node_Id
9864 Formals : List_Id;
9866 begin
9867 -- V : in out Tag_Typ
9869 Formals := New_List (
9870 Make_Parameter_Specification (Loc,
9871 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
9872 In_Present => True,
9873 Out_Present => True,
9874 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)));
9876 -- F : Boolean := True
9878 if Name = TSS_Deep_Adjust
9879 or else Name = TSS_Deep_Finalize
9880 then
9881 Append_To (Formals,
9882 Make_Parameter_Specification (Loc,
9883 Defining_Identifier => Make_Defining_Identifier (Loc, Name_F),
9884 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
9885 Expression => New_Occurrence_Of (Standard_True, Loc)));
9886 end if;
9888 return
9889 Predef_Spec_Or_Body (Loc,
9890 Name => Make_TSS_Name (Tag_Typ, Name),
9891 Tag_Typ => Tag_Typ,
9892 Profile => Formals,
9893 For_Body => For_Body);
9895 exception
9896 when RE_Not_Available =>
9897 return Empty;
9898 end Predef_Deep_Spec;
9900 -------------------------
9901 -- Predef_Spec_Or_Body --
9902 -------------------------
9904 function Predef_Spec_Or_Body
9905 (Loc : Source_Ptr;
9906 Tag_Typ : Entity_Id;
9907 Name : Name_Id;
9908 Profile : List_Id;
9909 Ret_Type : Entity_Id := Empty;
9910 For_Body : Boolean := False) return Node_Id
9912 Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
9913 Spec : Node_Id;
9915 begin
9916 Set_Is_Public (Id, Is_Public (Tag_Typ));
9918 -- The internal flag is set to mark these declarations because they have
9919 -- specific properties. First, they are primitives even if they are not
9920 -- defined in the type scope (the freezing point is not necessarily in
9921 -- the same scope). Second, the predefined equality can be overridden by
9922 -- a user-defined equality, no body will be generated in this case.
9924 Set_Is_Internal (Id);
9926 if not Debug_Generated_Code then
9927 Set_Debug_Info_Off (Id);
9928 end if;
9930 if No (Ret_Type) then
9931 Spec :=
9932 Make_Procedure_Specification (Loc,
9933 Defining_Unit_Name => Id,
9934 Parameter_Specifications => Profile);
9935 else
9936 Spec :=
9937 Make_Function_Specification (Loc,
9938 Defining_Unit_Name => Id,
9939 Parameter_Specifications => Profile,
9940 Result_Definition => New_Occurrence_Of (Ret_Type, Loc));
9941 end if;
9943 if Is_Interface (Tag_Typ) then
9944 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
9946 -- If body case, return empty subprogram body. Note that this is ill-
9947 -- formed, because there is not even a null statement, and certainly not
9948 -- a return in the function case. The caller is expected to do surgery
9949 -- on the body to add the appropriate stuff.
9951 elsif For_Body then
9952 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
9954 -- For the case of an Input attribute predefined for an abstract type,
9955 -- generate an abstract specification. This will never be called, but we
9956 -- need the slot allocated in the dispatching table so that attributes
9957 -- typ'Class'Input and typ'Class'Output will work properly.
9959 elsif Is_TSS (Name, TSS_Stream_Input)
9960 and then Is_Abstract_Type (Tag_Typ)
9961 then
9962 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
9964 -- Normal spec case, where we return a subprogram declaration
9966 else
9967 return Make_Subprogram_Declaration (Loc, Spec);
9968 end if;
9969 end Predef_Spec_Or_Body;
9971 -----------------------------
9972 -- Predef_Stream_Attr_Spec --
9973 -----------------------------
9975 function Predef_Stream_Attr_Spec
9976 (Loc : Source_Ptr;
9977 Tag_Typ : Entity_Id;
9978 Name : TSS_Name_Type;
9979 For_Body : Boolean := False) return Node_Id
9981 Ret_Type : Entity_Id;
9983 begin
9984 if Name = TSS_Stream_Input then
9985 Ret_Type := Tag_Typ;
9986 else
9987 Ret_Type := Empty;
9988 end if;
9990 return
9991 Predef_Spec_Or_Body
9992 (Loc,
9993 Name => Make_TSS_Name (Tag_Typ, Name),
9994 Tag_Typ => Tag_Typ,
9995 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
9996 Ret_Type => Ret_Type,
9997 For_Body => For_Body);
9998 end Predef_Stream_Attr_Spec;
10000 ---------------------------------
10001 -- Predefined_Primitive_Bodies --
10002 ---------------------------------
10004 function Predefined_Primitive_Bodies
10005 (Tag_Typ : Entity_Id;
10006 Renamed_Eq : Entity_Id) return List_Id
10008 Loc : constant Source_Ptr := Sloc (Tag_Typ);
10009 Res : constant List_Id := New_List;
10010 Decl : Node_Id;
10011 Prim : Elmt_Id;
10012 Eq_Needed : Boolean;
10013 Eq_Name : Name_Id;
10014 Ent : Entity_Id;
10016 pragma Warnings (Off, Ent);
10018 begin
10019 pragma Assert (not Is_Interface (Tag_Typ));
10021 -- See if we have a predefined "=" operator
10023 if Present (Renamed_Eq) then
10024 Eq_Needed := True;
10025 Eq_Name := Chars (Renamed_Eq);
10027 -- If the parent is an interface type then it has defined all the
10028 -- predefined primitives abstract and we need to check if the type
10029 -- has some user defined "=" function which matches the profile of
10030 -- the Ada predefined equality operator to avoid generating it.
10032 elsif Is_Interface (Etype (Tag_Typ)) then
10033 Eq_Needed := True;
10034 Eq_Name := Name_Op_Eq;
10036 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10037 while Present (Prim) loop
10038 if Chars (Node (Prim)) = Name_Op_Eq
10039 and then not Is_Internal (Node (Prim))
10040 and then Present (First_Entity (Node (Prim)))
10042 -- The predefined equality primitive must have exactly two
10043 -- formals whose type is this tagged type
10045 and then Present (Last_Entity (Node (Prim)))
10046 and then Next_Entity (First_Entity (Node (Prim)))
10047 = Last_Entity (Node (Prim))
10048 and then Etype (First_Entity (Node (Prim))) = Tag_Typ
10049 and then Etype (Last_Entity (Node (Prim))) = Tag_Typ
10050 then
10051 Eq_Needed := False;
10052 Eq_Name := No_Name;
10053 exit;
10054 end if;
10056 Next_Elmt (Prim);
10057 end loop;
10059 else
10060 Eq_Needed := False;
10061 Eq_Name := No_Name;
10063 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10064 while Present (Prim) loop
10065 if Chars (Node (Prim)) = Name_Op_Eq
10066 and then Is_Internal (Node (Prim))
10067 then
10068 Eq_Needed := True;
10069 Eq_Name := Name_Op_Eq;
10070 exit;
10071 end if;
10073 Next_Elmt (Prim);
10074 end loop;
10075 end if;
10077 -- Body of _Size
10079 Decl := Predef_Spec_Or_Body (Loc,
10080 Tag_Typ => Tag_Typ,
10081 Name => Name_uSize,
10082 Profile => New_List (
10083 Make_Parameter_Specification (Loc,
10084 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10085 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10087 Ret_Type => Standard_Long_Long_Integer,
10088 For_Body => True);
10090 Set_Handled_Statement_Sequence (Decl,
10091 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10092 Make_Simple_Return_Statement (Loc,
10093 Expression =>
10094 Make_Attribute_Reference (Loc,
10095 Prefix => Make_Identifier (Loc, Name_X),
10096 Attribute_Name => Name_Size)))));
10098 Append_To (Res, Decl);
10100 -- Bodies for Dispatching stream IO routines. We need these only for
10101 -- non-limited types (in the limited case there is no dispatching).
10102 -- We also skip them if dispatching or finalization are not available
10103 -- or if stream operations are prohibited by restriction No_Streams or
10104 -- from use of pragma/aspect No_Tagged_Streams.
10106 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
10107 and then No (TSS (Tag_Typ, TSS_Stream_Read))
10108 then
10109 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
10110 Append_To (Res, Decl);
10111 end if;
10113 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
10114 and then No (TSS (Tag_Typ, TSS_Stream_Write))
10115 then
10116 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
10117 Append_To (Res, Decl);
10118 end if;
10120 -- Skip body of _Input for the abstract case, since the corresponding
10121 -- spec is abstract (see Predef_Spec_Or_Body).
10123 if not Is_Abstract_Type (Tag_Typ)
10124 and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
10125 and then No (TSS (Tag_Typ, TSS_Stream_Input))
10126 then
10127 Build_Record_Or_Elementary_Input_Function
10128 (Loc, Tag_Typ, Decl, Ent);
10129 Append_To (Res, Decl);
10130 end if;
10132 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
10133 and then No (TSS (Tag_Typ, TSS_Stream_Output))
10134 then
10135 Build_Record_Or_Elementary_Output_Procedure (Loc, Tag_Typ, Decl, Ent);
10136 Append_To (Res, Decl);
10137 end if;
10139 -- Ada 2005: Generate bodies for the following primitive operations for
10140 -- limited interfaces and synchronized types that implement a limited
10141 -- interface.
10143 -- disp_asynchronous_select
10144 -- disp_conditional_select
10145 -- disp_get_prim_op_kind
10146 -- disp_get_task_id
10147 -- disp_timed_select
10149 -- The interface versions will have null bodies
10151 -- Disable the generation of these bodies if No_Dispatching_Calls,
10152 -- Ravenscar or ZFP is active.
10154 -- In VM targets we define these primitives in all root tagged types
10155 -- that are not interface types. Done because in VM targets we don't
10156 -- have secondary dispatch tables and any derivation of Tag_Typ may
10157 -- cover limited interfaces (which always have these primitives since
10158 -- they may be ancestors of synchronized interface types).
10160 if Ada_Version >= Ada_2005
10161 and then not Is_Interface (Tag_Typ)
10162 and then
10163 ((Is_Interface (Etype (Tag_Typ))
10164 and then Is_Limited_Record (Etype (Tag_Typ)))
10165 or else
10166 (Is_Concurrent_Record_Type (Tag_Typ)
10167 and then Has_Interfaces (Tag_Typ))
10168 or else
10169 (not Tagged_Type_Expansion
10170 and then Tag_Typ = Root_Type (Tag_Typ)))
10171 and then not Restriction_Active (No_Dispatching_Calls)
10172 and then not Restriction_Active (No_Select_Statements)
10173 and then RTE_Available (RE_Select_Specific_Data)
10174 then
10175 Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
10176 Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
10177 Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
10178 Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
10179 Append_To (Res, Make_Disp_Requeue_Body (Tag_Typ));
10180 Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
10181 end if;
10183 if not Is_Limited_Type (Tag_Typ) and then not Is_Interface (Tag_Typ) then
10185 -- Body for equality
10187 if Eq_Needed then
10188 Decl := Make_Eq_Body (Tag_Typ, Eq_Name);
10189 Append_To (Res, Decl);
10190 end if;
10192 -- Body for inequality (if required)
10194 Decl := Make_Neq_Body (Tag_Typ);
10196 if Present (Decl) then
10197 Append_To (Res, Decl);
10198 end if;
10200 -- Body for dispatching assignment
10202 Decl :=
10203 Predef_Spec_Or_Body (Loc,
10204 Tag_Typ => Tag_Typ,
10205 Name => Name_uAssign,
10206 Profile => New_List (
10207 Make_Parameter_Specification (Loc,
10208 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10209 Out_Present => True,
10210 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
10212 Make_Parameter_Specification (Loc,
10213 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
10214 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10215 For_Body => True);
10217 Set_Handled_Statement_Sequence (Decl,
10218 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10219 Make_Assignment_Statement (Loc,
10220 Name => Make_Identifier (Loc, Name_X),
10221 Expression => Make_Identifier (Loc, Name_Y)))));
10223 Append_To (Res, Decl);
10224 end if;
10226 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
10227 -- tagged types which do not contain controlled components.
10229 -- Do not generate the routines if finalization is disabled
10231 if Restriction_Active (No_Finalization) then
10232 null;
10234 elsif not Has_Controlled_Component (Tag_Typ) then
10235 if not Is_Limited_Type (Tag_Typ) then
10236 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
10238 if Is_Controlled (Tag_Typ) then
10239 Set_Handled_Statement_Sequence (Decl,
10240 Make_Handled_Sequence_Of_Statements (Loc,
10241 Statements => New_List (
10242 Make_Adjust_Call (
10243 Obj_Ref => Make_Identifier (Loc, Name_V),
10244 Typ => Tag_Typ))));
10246 else
10247 Set_Handled_Statement_Sequence (Decl,
10248 Make_Handled_Sequence_Of_Statements (Loc,
10249 Statements => New_List (
10250 Make_Null_Statement (Loc))));
10251 end if;
10253 Append_To (Res, Decl);
10254 end if;
10256 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
10258 if Is_Controlled (Tag_Typ) then
10259 Set_Handled_Statement_Sequence (Decl,
10260 Make_Handled_Sequence_Of_Statements (Loc,
10261 Statements => New_List (
10262 Make_Final_Call
10263 (Obj_Ref => Make_Identifier (Loc, Name_V),
10264 Typ => Tag_Typ))));
10266 else
10267 Set_Handled_Statement_Sequence (Decl,
10268 Make_Handled_Sequence_Of_Statements (Loc,
10269 Statements => New_List (Make_Null_Statement (Loc))));
10270 end if;
10272 Append_To (Res, Decl);
10273 end if;
10275 return Res;
10276 end Predefined_Primitive_Bodies;
10278 ---------------------------------
10279 -- Predefined_Primitive_Freeze --
10280 ---------------------------------
10282 function Predefined_Primitive_Freeze
10283 (Tag_Typ : Entity_Id) return List_Id
10285 Res : constant List_Id := New_List;
10286 Prim : Elmt_Id;
10287 Frnodes : List_Id;
10289 begin
10290 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10291 while Present (Prim) loop
10292 if Is_Predefined_Dispatching_Operation (Node (Prim)) then
10293 Frnodes := Freeze_Entity (Node (Prim), Tag_Typ);
10295 if Present (Frnodes) then
10296 Append_List_To (Res, Frnodes);
10297 end if;
10298 end if;
10300 Next_Elmt (Prim);
10301 end loop;
10303 return Res;
10304 end Predefined_Primitive_Freeze;
10306 -------------------------
10307 -- Stream_Operation_OK --
10308 -------------------------
10310 function Stream_Operation_OK
10311 (Typ : Entity_Id;
10312 Operation : TSS_Name_Type) return Boolean
10314 Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False;
10316 begin
10317 -- Special case of a limited type extension: a default implementation
10318 -- of the stream attributes Read or Write exists if that attribute
10319 -- has been specified or is available for an ancestor type; a default
10320 -- implementation of the attribute Output (resp. Input) exists if the
10321 -- attribute has been specified or Write (resp. Read) is available for
10322 -- an ancestor type. The last condition only applies under Ada 2005.
10324 if Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ) then
10325 if Operation = TSS_Stream_Read then
10326 Has_Predefined_Or_Specified_Stream_Attribute :=
10327 Has_Specified_Stream_Read (Typ);
10329 elsif Operation = TSS_Stream_Write then
10330 Has_Predefined_Or_Specified_Stream_Attribute :=
10331 Has_Specified_Stream_Write (Typ);
10333 elsif Operation = TSS_Stream_Input then
10334 Has_Predefined_Or_Specified_Stream_Attribute :=
10335 Has_Specified_Stream_Input (Typ)
10336 or else
10337 (Ada_Version >= Ada_2005
10338 and then Stream_Operation_OK (Typ, TSS_Stream_Read));
10340 elsif Operation = TSS_Stream_Output then
10341 Has_Predefined_Or_Specified_Stream_Attribute :=
10342 Has_Specified_Stream_Output (Typ)
10343 or else
10344 (Ada_Version >= Ada_2005
10345 and then Stream_Operation_OK (Typ, TSS_Stream_Write));
10346 end if;
10348 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
10350 if not Has_Predefined_Or_Specified_Stream_Attribute
10351 and then Is_Derived_Type (Typ)
10352 and then (Operation = TSS_Stream_Read
10353 or else Operation = TSS_Stream_Write)
10354 then
10355 Has_Predefined_Or_Specified_Stream_Attribute :=
10356 Present
10357 (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
10358 end if;
10359 end if;
10361 -- If the type is not limited, or else is limited but the attribute is
10362 -- explicitly specified or is predefined for the type, then return True,
10363 -- unless other conditions prevail, such as restrictions prohibiting
10364 -- streams or dispatching operations. We also return True for limited
10365 -- interfaces, because they may be extended by nonlimited types and
10366 -- permit inheritance in this case (addresses cases where an abstract
10367 -- extension doesn't get 'Input declared, as per comments below, but
10368 -- 'Class'Input must still be allowed). Note that attempts to apply
10369 -- stream attributes to a limited interface or its class-wide type
10370 -- (or limited extensions thereof) will still get properly rejected
10371 -- by Check_Stream_Attribute.
10373 -- We exclude the Input operation from being a predefined subprogram in
10374 -- the case where the associated type is an abstract extension, because
10375 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
10376 -- we don't want an abstract version created because types derived from
10377 -- the abstract type may not even have Input available (for example if
10378 -- derived from a private view of the abstract type that doesn't have
10379 -- a visible Input).
10381 -- Do not generate stream routines for type Finalization_Master because
10382 -- a master may never appear in types and therefore cannot be read or
10383 -- written.
10385 return
10386 (not Is_Limited_Type (Typ)
10387 or else Is_Interface (Typ)
10388 or else Has_Predefined_Or_Specified_Stream_Attribute)
10389 and then
10390 (Operation /= TSS_Stream_Input
10391 or else not Is_Abstract_Type (Typ)
10392 or else not Is_Derived_Type (Typ))
10393 and then not Has_Unknown_Discriminants (Typ)
10394 and then not
10395 (Is_Interface (Typ)
10396 and then
10397 (Is_Task_Interface (Typ)
10398 or else Is_Protected_Interface (Typ)
10399 or else Is_Synchronized_Interface (Typ)))
10400 and then not Restriction_Active (No_Streams)
10401 and then not Restriction_Active (No_Dispatch)
10402 and then No (No_Tagged_Streams_Pragma (Typ))
10403 and then not No_Run_Time_Mode
10404 and then RTE_Available (RE_Tag)
10405 and then No (Type_Without_Stream_Operation (Typ))
10406 and then RTE_Available (RE_Root_Stream_Type)
10407 and then not Is_RTE (Typ, RE_Finalization_Master);
10408 end Stream_Operation_OK;
10410 end Exp_Ch3;