2006-11-15 Rask Ingemann Lambertsen <rask@sygehus.dk>
[official-gcc.git] / gcc / jump.c
blobf42ee5a43ab956972b3ff00f4fcd272475234e9c
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This is the pathetic reminder of old fame of the jump-optimization pass
24 of the compiler. Now it contains basically a set of utility functions to
25 operate with jumps.
27 Each CODE_LABEL has a count of the times it is used
28 stored in the LABEL_NUSES internal field, and each JUMP_INSN
29 has one label that it refers to stored in the
30 JUMP_LABEL internal field. With this we can detect labels that
31 become unused because of the deletion of all the jumps that
32 formerly used them. The JUMP_LABEL info is sometimes looked
33 at by later passes.
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "rtl.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
49 #include "recog.h"
50 #include "function.h"
51 #include "expr.h"
52 #include "real.h"
53 #include "except.h"
54 #include "diagnostic.h"
55 #include "toplev.h"
56 #include "reload.h"
57 #include "predict.h"
58 #include "timevar.h"
59 #include "tree-pass.h"
60 #include "target.h"
62 /* Optimize jump y; x: ... y: jumpif... x?
63 Don't know if it is worth bothering with. */
64 /* Optimize two cases of conditional jump to conditional jump?
65 This can never delete any instruction or make anything dead,
66 or even change what is live at any point.
67 So perhaps let combiner do it. */
69 static void init_label_info (rtx);
70 static void mark_all_labels (rtx);
71 static void delete_computation (rtx);
72 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
73 static int invert_exp_1 (rtx, rtx);
74 static int returnjump_p_1 (rtx *, void *);
75 static void delete_prior_computation (rtx, rtx);
77 /* Alternate entry into the jump optimizer. This entry point only rebuilds
78 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
79 instructions. */
80 void
81 rebuild_jump_labels (rtx f)
83 rtx insn;
85 timevar_push (TV_REBUILD_JUMP);
86 init_label_info (f);
87 mark_all_labels (f);
89 /* Keep track of labels used from static data; we don't track them
90 closely enough to delete them here, so make sure their reference
91 count doesn't drop to zero. */
93 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
94 if (LABEL_P (XEXP (insn, 0)))
95 LABEL_NUSES (XEXP (insn, 0))++;
96 timevar_pop (TV_REBUILD_JUMP);
99 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
100 non-fallthru insn. This is not generally true, as multiple barriers
101 may have crept in, or the BARRIER may be separated from the last
102 real insn by one or more NOTEs.
104 This simple pass moves barriers and removes duplicates so that the
105 old code is happy.
107 unsigned int
108 cleanup_barriers (void)
110 rtx insn, next, prev;
111 for (insn = get_insns (); insn; insn = next)
113 next = NEXT_INSN (insn);
114 if (BARRIER_P (insn))
116 prev = prev_nonnote_insn (insn);
117 if (BARRIER_P (prev))
118 delete_insn (insn);
119 else if (prev != PREV_INSN (insn))
120 reorder_insns (insn, insn, prev);
123 return 0;
126 struct tree_opt_pass pass_cleanup_barriers =
128 "barriers", /* name */
129 NULL, /* gate */
130 cleanup_barriers, /* execute */
131 NULL, /* sub */
132 NULL, /* next */
133 0, /* static_pass_number */
134 0, /* tv_id */
135 0, /* properties_required */
136 0, /* properties_provided */
137 0, /* properties_destroyed */
138 0, /* todo_flags_start */
139 TODO_dump_func, /* todo_flags_finish */
140 0 /* letter */
144 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
145 notes whose labels don't occur in the insn any more. Returns the
146 largest INSN_UID found. */
147 static void
148 init_label_info (rtx f)
150 rtx insn;
152 for (insn = f; insn; insn = NEXT_INSN (insn))
153 if (LABEL_P (insn))
154 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
155 else if (JUMP_P (insn))
156 JUMP_LABEL (insn) = 0;
157 else if (NONJUMP_INSN_P (insn) || CALL_P (insn))
159 rtx note, next;
161 for (note = REG_NOTES (insn); note; note = next)
163 next = XEXP (note, 1);
164 if (REG_NOTE_KIND (note) == REG_LABEL
165 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
166 remove_note (insn, note);
171 /* Mark the label each jump jumps to.
172 Combine consecutive labels, and count uses of labels. */
174 static void
175 mark_all_labels (rtx f)
177 rtx insn;
179 for (insn = f; insn; insn = NEXT_INSN (insn))
180 if (INSN_P (insn))
182 mark_jump_label (PATTERN (insn), insn, 0);
183 if (! INSN_DELETED_P (insn) && JUMP_P (insn))
185 /* When we know the LABEL_REF contained in a REG used in
186 an indirect jump, we'll have a REG_LABEL note so that
187 flow can tell where it's going. */
188 if (JUMP_LABEL (insn) == 0)
190 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
191 if (label_note)
193 /* But a LABEL_REF around the REG_LABEL note, so
194 that we can canonicalize it. */
195 rtx label_ref = gen_rtx_LABEL_REF (Pmode,
196 XEXP (label_note, 0));
198 mark_jump_label (label_ref, insn, 0);
199 XEXP (label_note, 0) = XEXP (label_ref, 0);
200 JUMP_LABEL (insn) = XEXP (label_note, 0);
207 /* Move all block-beg, block-end and loop-beg notes between START and END out
208 before START. START and END may be such notes. Returns the values of the
209 new starting and ending insns, which may be different if the original ones
210 were such notes. Return true if there were only such notes and no real
211 instructions. */
213 bool
214 squeeze_notes (rtx* startp, rtx* endp)
216 rtx start = *startp;
217 rtx end = *endp;
219 rtx insn;
220 rtx next;
221 rtx last = NULL;
222 rtx past_end = NEXT_INSN (end);
224 for (insn = start; insn != past_end; insn = next)
226 next = NEXT_INSN (insn);
227 if (NOTE_P (insn)
228 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
229 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG))
231 /* BLOCK_BEG or BLOCK_END notes only exist in the `final' pass. */
232 gcc_assert (NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_BEG
233 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BLOCK_END);
235 if (insn == start)
236 start = next;
237 else
239 rtx prev = PREV_INSN (insn);
240 PREV_INSN (insn) = PREV_INSN (start);
241 NEXT_INSN (insn) = start;
242 NEXT_INSN (PREV_INSN (insn)) = insn;
243 PREV_INSN (NEXT_INSN (insn)) = insn;
244 NEXT_INSN (prev) = next;
245 PREV_INSN (next) = prev;
248 else
249 last = insn;
252 /* There were no real instructions. */
253 if (start == past_end)
254 return true;
256 end = last;
258 *startp = start;
259 *endp = end;
260 return false;
263 /* Return the label before INSN, or put a new label there. */
266 get_label_before (rtx insn)
268 rtx label;
270 /* Find an existing label at this point
271 or make a new one if there is none. */
272 label = prev_nonnote_insn (insn);
274 if (label == 0 || !LABEL_P (label))
276 rtx prev = PREV_INSN (insn);
278 label = gen_label_rtx ();
279 emit_label_after (label, prev);
280 LABEL_NUSES (label) = 0;
282 return label;
285 /* Return the label after INSN, or put a new label there. */
288 get_label_after (rtx insn)
290 rtx label;
292 /* Find an existing label at this point
293 or make a new one if there is none. */
294 label = next_nonnote_insn (insn);
296 if (label == 0 || !LABEL_P (label))
298 label = gen_label_rtx ();
299 emit_label_after (label, insn);
300 LABEL_NUSES (label) = 0;
302 return label;
305 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
306 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
307 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
308 know whether it's source is floating point or integer comparison. Machine
309 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
310 to help this function avoid overhead in these cases. */
311 enum rtx_code
312 reversed_comparison_code_parts (enum rtx_code code, rtx arg0, rtx arg1, rtx insn)
314 enum machine_mode mode;
316 /* If this is not actually a comparison, we can't reverse it. */
317 if (GET_RTX_CLASS (code) != RTX_COMPARE
318 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
319 return UNKNOWN;
321 mode = GET_MODE (arg0);
322 if (mode == VOIDmode)
323 mode = GET_MODE (arg1);
325 /* First see if machine description supplies us way to reverse the
326 comparison. Give it priority over everything else to allow
327 machine description to do tricks. */
328 if (GET_MODE_CLASS (mode) == MODE_CC
329 && REVERSIBLE_CC_MODE (mode))
331 #ifdef REVERSE_CONDITION
332 return REVERSE_CONDITION (code, mode);
333 #endif
334 return reverse_condition (code);
337 /* Try a few special cases based on the comparison code. */
338 switch (code)
340 case GEU:
341 case GTU:
342 case LEU:
343 case LTU:
344 case NE:
345 case EQ:
346 /* It is always safe to reverse EQ and NE, even for the floating
347 point. Similarly the unsigned comparisons are never used for
348 floating point so we can reverse them in the default way. */
349 return reverse_condition (code);
350 case ORDERED:
351 case UNORDERED:
352 case LTGT:
353 case UNEQ:
354 /* In case we already see unordered comparison, we can be sure to
355 be dealing with floating point so we don't need any more tests. */
356 return reverse_condition_maybe_unordered (code);
357 case UNLT:
358 case UNLE:
359 case UNGT:
360 case UNGE:
361 /* We don't have safe way to reverse these yet. */
362 return UNKNOWN;
363 default:
364 break;
367 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
369 rtx prev;
370 /* Try to search for the comparison to determine the real mode.
371 This code is expensive, but with sane machine description it
372 will be never used, since REVERSIBLE_CC_MODE will return true
373 in all cases. */
374 if (! insn)
375 return UNKNOWN;
377 for (prev = prev_nonnote_insn (insn);
378 prev != 0 && !LABEL_P (prev);
379 prev = prev_nonnote_insn (prev))
381 rtx set = set_of (arg0, prev);
382 if (set && GET_CODE (set) == SET
383 && rtx_equal_p (SET_DEST (set), arg0))
385 rtx src = SET_SRC (set);
387 if (GET_CODE (src) == COMPARE)
389 rtx comparison = src;
390 arg0 = XEXP (src, 0);
391 mode = GET_MODE (arg0);
392 if (mode == VOIDmode)
393 mode = GET_MODE (XEXP (comparison, 1));
394 break;
396 /* We can get past reg-reg moves. This may be useful for model
397 of i387 comparisons that first move flag registers around. */
398 if (REG_P (src))
400 arg0 = src;
401 continue;
404 /* If register is clobbered in some ununderstandable way,
405 give up. */
406 if (set)
407 return UNKNOWN;
411 /* Test for an integer condition, or a floating-point comparison
412 in which NaNs can be ignored. */
413 if (GET_CODE (arg0) == CONST_INT
414 || (GET_MODE (arg0) != VOIDmode
415 && GET_MODE_CLASS (mode) != MODE_CC
416 && !HONOR_NANS (mode)))
417 return reverse_condition (code);
419 return UNKNOWN;
422 /* A wrapper around the previous function to take COMPARISON as rtx
423 expression. This simplifies many callers. */
424 enum rtx_code
425 reversed_comparison_code (rtx comparison, rtx insn)
427 if (!COMPARISON_P (comparison))
428 return UNKNOWN;
429 return reversed_comparison_code_parts (GET_CODE (comparison),
430 XEXP (comparison, 0),
431 XEXP (comparison, 1), insn);
434 /* Return comparison with reversed code of EXP.
435 Return NULL_RTX in case we fail to do the reversal. */
437 reversed_comparison (rtx exp, enum machine_mode mode)
439 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
440 if (reversed_code == UNKNOWN)
441 return NULL_RTX;
442 else
443 return simplify_gen_relational (reversed_code, mode, VOIDmode,
444 XEXP (exp, 0), XEXP (exp, 1));
448 /* Given an rtx-code for a comparison, return the code for the negated
449 comparison. If no such code exists, return UNKNOWN.
451 WATCH OUT! reverse_condition is not safe to use on a jump that might
452 be acting on the results of an IEEE floating point comparison, because
453 of the special treatment of non-signaling nans in comparisons.
454 Use reversed_comparison_code instead. */
456 enum rtx_code
457 reverse_condition (enum rtx_code code)
459 switch (code)
461 case EQ:
462 return NE;
463 case NE:
464 return EQ;
465 case GT:
466 return LE;
467 case GE:
468 return LT;
469 case LT:
470 return GE;
471 case LE:
472 return GT;
473 case GTU:
474 return LEU;
475 case GEU:
476 return LTU;
477 case LTU:
478 return GEU;
479 case LEU:
480 return GTU;
481 case UNORDERED:
482 return ORDERED;
483 case ORDERED:
484 return UNORDERED;
486 case UNLT:
487 case UNLE:
488 case UNGT:
489 case UNGE:
490 case UNEQ:
491 case LTGT:
492 return UNKNOWN;
494 default:
495 gcc_unreachable ();
499 /* Similar, but we're allowed to generate unordered comparisons, which
500 makes it safe for IEEE floating-point. Of course, we have to recognize
501 that the target will support them too... */
503 enum rtx_code
504 reverse_condition_maybe_unordered (enum rtx_code code)
506 switch (code)
508 case EQ:
509 return NE;
510 case NE:
511 return EQ;
512 case GT:
513 return UNLE;
514 case GE:
515 return UNLT;
516 case LT:
517 return UNGE;
518 case LE:
519 return UNGT;
520 case LTGT:
521 return UNEQ;
522 case UNORDERED:
523 return ORDERED;
524 case ORDERED:
525 return UNORDERED;
526 case UNLT:
527 return GE;
528 case UNLE:
529 return GT;
530 case UNGT:
531 return LE;
532 case UNGE:
533 return LT;
534 case UNEQ:
535 return LTGT;
537 default:
538 gcc_unreachable ();
542 /* Similar, but return the code when two operands of a comparison are swapped.
543 This IS safe for IEEE floating-point. */
545 enum rtx_code
546 swap_condition (enum rtx_code code)
548 switch (code)
550 case EQ:
551 case NE:
552 case UNORDERED:
553 case ORDERED:
554 case UNEQ:
555 case LTGT:
556 return code;
558 case GT:
559 return LT;
560 case GE:
561 return LE;
562 case LT:
563 return GT;
564 case LE:
565 return GE;
566 case GTU:
567 return LTU;
568 case GEU:
569 return LEU;
570 case LTU:
571 return GTU;
572 case LEU:
573 return GEU;
574 case UNLT:
575 return UNGT;
576 case UNLE:
577 return UNGE;
578 case UNGT:
579 return UNLT;
580 case UNGE:
581 return UNLE;
583 default:
584 gcc_unreachable ();
588 /* Given a comparison CODE, return the corresponding unsigned comparison.
589 If CODE is an equality comparison or already an unsigned comparison,
590 CODE is returned. */
592 enum rtx_code
593 unsigned_condition (enum rtx_code code)
595 switch (code)
597 case EQ:
598 case NE:
599 case GTU:
600 case GEU:
601 case LTU:
602 case LEU:
603 return code;
605 case GT:
606 return GTU;
607 case GE:
608 return GEU;
609 case LT:
610 return LTU;
611 case LE:
612 return LEU;
614 default:
615 gcc_unreachable ();
619 /* Similarly, return the signed version of a comparison. */
621 enum rtx_code
622 signed_condition (enum rtx_code code)
624 switch (code)
626 case EQ:
627 case NE:
628 case GT:
629 case GE:
630 case LT:
631 case LE:
632 return code;
634 case GTU:
635 return GT;
636 case GEU:
637 return GE;
638 case LTU:
639 return LT;
640 case LEU:
641 return LE;
643 default:
644 gcc_unreachable ();
648 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
649 truth of CODE1 implies the truth of CODE2. */
652 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
654 /* UNKNOWN comparison codes can happen as a result of trying to revert
655 comparison codes.
656 They can't match anything, so we have to reject them here. */
657 if (code1 == UNKNOWN || code2 == UNKNOWN)
658 return 0;
660 if (code1 == code2)
661 return 1;
663 switch (code1)
665 case UNEQ:
666 if (code2 == UNLE || code2 == UNGE)
667 return 1;
668 break;
670 case EQ:
671 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
672 || code2 == ORDERED)
673 return 1;
674 break;
676 case UNLT:
677 if (code2 == UNLE || code2 == NE)
678 return 1;
679 break;
681 case LT:
682 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
683 return 1;
684 break;
686 case UNGT:
687 if (code2 == UNGE || code2 == NE)
688 return 1;
689 break;
691 case GT:
692 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
693 return 1;
694 break;
696 case GE:
697 case LE:
698 if (code2 == ORDERED)
699 return 1;
700 break;
702 case LTGT:
703 if (code2 == NE || code2 == ORDERED)
704 return 1;
705 break;
707 case LTU:
708 if (code2 == LEU || code2 == NE)
709 return 1;
710 break;
712 case GTU:
713 if (code2 == GEU || code2 == NE)
714 return 1;
715 break;
717 case UNORDERED:
718 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
719 || code2 == UNGE || code2 == UNGT)
720 return 1;
721 break;
723 default:
724 break;
727 return 0;
730 /* Return 1 if INSN is an unconditional jump and nothing else. */
733 simplejump_p (rtx insn)
735 return (JUMP_P (insn)
736 && GET_CODE (PATTERN (insn)) == SET
737 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
738 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
741 /* Return nonzero if INSN is a (possibly) conditional jump
742 and nothing more.
744 Use of this function is deprecated, since we need to support combined
745 branch and compare insns. Use any_condjump_p instead whenever possible. */
748 condjump_p (rtx insn)
750 rtx x = PATTERN (insn);
752 if (GET_CODE (x) != SET
753 || GET_CODE (SET_DEST (x)) != PC)
754 return 0;
756 x = SET_SRC (x);
757 if (GET_CODE (x) == LABEL_REF)
758 return 1;
759 else
760 return (GET_CODE (x) == IF_THEN_ELSE
761 && ((GET_CODE (XEXP (x, 2)) == PC
762 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
763 || GET_CODE (XEXP (x, 1)) == RETURN))
764 || (GET_CODE (XEXP (x, 1)) == PC
765 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
766 || GET_CODE (XEXP (x, 2)) == RETURN))));
769 /* Return nonzero if INSN is a (possibly) conditional jump inside a
770 PARALLEL.
772 Use this function is deprecated, since we need to support combined
773 branch and compare insns. Use any_condjump_p instead whenever possible. */
776 condjump_in_parallel_p (rtx insn)
778 rtx x = PATTERN (insn);
780 if (GET_CODE (x) != PARALLEL)
781 return 0;
782 else
783 x = XVECEXP (x, 0, 0);
785 if (GET_CODE (x) != SET)
786 return 0;
787 if (GET_CODE (SET_DEST (x)) != PC)
788 return 0;
789 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
790 return 1;
791 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
792 return 0;
793 if (XEXP (SET_SRC (x), 2) == pc_rtx
794 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
795 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
796 return 1;
797 if (XEXP (SET_SRC (x), 1) == pc_rtx
798 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
799 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
800 return 1;
801 return 0;
804 /* Return set of PC, otherwise NULL. */
807 pc_set (rtx insn)
809 rtx pat;
810 if (!JUMP_P (insn))
811 return NULL_RTX;
812 pat = PATTERN (insn);
814 /* The set is allowed to appear either as the insn pattern or
815 the first set in a PARALLEL. */
816 if (GET_CODE (pat) == PARALLEL)
817 pat = XVECEXP (pat, 0, 0);
818 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
819 return pat;
821 return NULL_RTX;
824 /* Return true when insn is an unconditional direct jump,
825 possibly bundled inside a PARALLEL. */
828 any_uncondjump_p (rtx insn)
830 rtx x = pc_set (insn);
831 if (!x)
832 return 0;
833 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
834 return 0;
835 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
836 return 0;
837 return 1;
840 /* Return true when insn is a conditional jump. This function works for
841 instructions containing PC sets in PARALLELs. The instruction may have
842 various other effects so before removing the jump you must verify
843 onlyjump_p.
845 Note that unlike condjump_p it returns false for unconditional jumps. */
848 any_condjump_p (rtx insn)
850 rtx x = pc_set (insn);
851 enum rtx_code a, b;
853 if (!x)
854 return 0;
855 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
856 return 0;
858 a = GET_CODE (XEXP (SET_SRC (x), 1));
859 b = GET_CODE (XEXP (SET_SRC (x), 2));
861 return ((b == PC && (a == LABEL_REF || a == RETURN))
862 || (a == PC && (b == LABEL_REF || b == RETURN)));
865 /* Return the label of a conditional jump. */
868 condjump_label (rtx insn)
870 rtx x = pc_set (insn);
872 if (!x)
873 return NULL_RTX;
874 x = SET_SRC (x);
875 if (GET_CODE (x) == LABEL_REF)
876 return x;
877 if (GET_CODE (x) != IF_THEN_ELSE)
878 return NULL_RTX;
879 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
880 return XEXP (x, 1);
881 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
882 return XEXP (x, 2);
883 return NULL_RTX;
886 /* Return true if INSN is a (possibly conditional) return insn. */
888 static int
889 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
891 rtx x = *loc;
893 return x && (GET_CODE (x) == RETURN
894 || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
898 returnjump_p (rtx insn)
900 if (!JUMP_P (insn))
901 return 0;
902 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
905 /* Return true if INSN is a jump that only transfers control and
906 nothing more. */
909 onlyjump_p (rtx insn)
911 rtx set;
913 if (!JUMP_P (insn))
914 return 0;
916 set = single_set (insn);
917 if (set == NULL)
918 return 0;
919 if (GET_CODE (SET_DEST (set)) != PC)
920 return 0;
921 if (side_effects_p (SET_SRC (set)))
922 return 0;
924 return 1;
927 #ifdef HAVE_cc0
929 /* Return nonzero if X is an RTX that only sets the condition codes
930 and has no side effects. */
933 only_sets_cc0_p (rtx x)
935 if (! x)
936 return 0;
938 if (INSN_P (x))
939 x = PATTERN (x);
941 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
944 /* Return 1 if X is an RTX that does nothing but set the condition codes
945 and CLOBBER or USE registers.
946 Return -1 if X does explicitly set the condition codes,
947 but also does other things. */
950 sets_cc0_p (rtx x)
952 if (! x)
953 return 0;
955 if (INSN_P (x))
956 x = PATTERN (x);
958 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
959 return 1;
960 if (GET_CODE (x) == PARALLEL)
962 int i;
963 int sets_cc0 = 0;
964 int other_things = 0;
965 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
967 if (GET_CODE (XVECEXP (x, 0, i)) == SET
968 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
969 sets_cc0 = 1;
970 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
971 other_things = 1;
973 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
975 return 0;
977 #endif
979 /* Follow any unconditional jump at LABEL;
980 return the ultimate label reached by any such chain of jumps.
981 Return null if the chain ultimately leads to a return instruction.
982 If LABEL is not followed by a jump, return LABEL.
983 If the chain loops or we can't find end, return LABEL,
984 since that tells caller to avoid changing the insn.
986 If RELOAD_COMPLETED is 0, we do not chain across a USE or CLOBBER. */
989 follow_jumps (rtx label)
991 rtx insn;
992 rtx next;
993 rtx value = label;
994 int depth;
996 for (depth = 0;
997 (depth < 10
998 && (insn = next_active_insn (value)) != 0
999 && JUMP_P (insn)
1000 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
1001 && onlyjump_p (insn))
1002 || GET_CODE (PATTERN (insn)) == RETURN)
1003 && (next = NEXT_INSN (insn))
1004 && BARRIER_P (next));
1005 depth++)
1007 rtx tem;
1008 if (!reload_completed && flag_test_coverage)
1010 /* ??? Optional. Disables some optimizations, but makes
1011 gcov output more accurate with -O. */
1012 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
1013 if (NOTE_P (tem) && NOTE_LINE_NUMBER (tem) > 0)
1014 return value;
1017 /* If we have found a cycle, make the insn jump to itself. */
1018 if (JUMP_LABEL (insn) == label)
1019 return label;
1021 tem = next_active_insn (JUMP_LABEL (insn));
1022 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
1023 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
1024 break;
1026 value = JUMP_LABEL (insn);
1028 if (depth == 10)
1029 return label;
1030 return value;
1034 /* Find all CODE_LABELs referred to in X, and increment their use counts.
1035 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
1036 in INSN, then store one of them in JUMP_LABEL (INSN).
1037 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
1038 referenced in INSN, add a REG_LABEL note containing that label to INSN.
1039 Also, when there are consecutive labels, canonicalize on the last of them.
1041 Note that two labels separated by a loop-beginning note
1042 must be kept distinct if we have not yet done loop-optimization,
1043 because the gap between them is where loop-optimize
1044 will want to move invariant code to. CROSS_JUMP tells us
1045 that loop-optimization is done with. */
1047 void
1048 mark_jump_label (rtx x, rtx insn, int in_mem)
1050 RTX_CODE code = GET_CODE (x);
1051 int i;
1052 const char *fmt;
1054 switch (code)
1056 case PC:
1057 case CC0:
1058 case REG:
1059 case CONST_INT:
1060 case CONST_DOUBLE:
1061 case CLOBBER:
1062 case CALL:
1063 return;
1065 case MEM:
1066 in_mem = 1;
1067 break;
1069 case SYMBOL_REF:
1070 if (!in_mem)
1071 return;
1073 /* If this is a constant-pool reference, see if it is a label. */
1074 if (CONSTANT_POOL_ADDRESS_P (x))
1075 mark_jump_label (get_pool_constant (x), insn, in_mem);
1076 break;
1078 case LABEL_REF:
1080 rtx label = XEXP (x, 0);
1082 /* Ignore remaining references to unreachable labels that
1083 have been deleted. */
1084 if (NOTE_P (label)
1085 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
1086 break;
1088 gcc_assert (LABEL_P (label));
1090 /* Ignore references to labels of containing functions. */
1091 if (LABEL_REF_NONLOCAL_P (x))
1092 break;
1094 XEXP (x, 0) = label;
1095 if (! insn || ! INSN_DELETED_P (insn))
1096 ++LABEL_NUSES (label);
1098 if (insn)
1100 if (JUMP_P (insn))
1101 JUMP_LABEL (insn) = label;
1102 else
1104 /* Add a REG_LABEL note for LABEL unless there already
1105 is one. All uses of a label, except for labels
1106 that are the targets of jumps, must have a
1107 REG_LABEL note. */
1108 if (! find_reg_note (insn, REG_LABEL, label))
1109 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
1110 REG_NOTES (insn));
1113 return;
1116 /* Do walk the labels in a vector, but not the first operand of an
1117 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1118 case ADDR_VEC:
1119 case ADDR_DIFF_VEC:
1120 if (! INSN_DELETED_P (insn))
1122 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1124 for (i = 0; i < XVECLEN (x, eltnum); i++)
1125 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
1127 return;
1129 default:
1130 break;
1133 fmt = GET_RTX_FORMAT (code);
1134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1136 if (fmt[i] == 'e')
1137 mark_jump_label (XEXP (x, i), insn, in_mem);
1138 else if (fmt[i] == 'E')
1140 int j;
1141 for (j = 0; j < XVECLEN (x, i); j++)
1142 mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
1147 /* If all INSN does is set the pc, delete it,
1148 and delete the insn that set the condition codes for it
1149 if that's what the previous thing was. */
1151 void
1152 delete_jump (rtx insn)
1154 rtx set = single_set (insn);
1156 if (set && GET_CODE (SET_DEST (set)) == PC)
1157 delete_computation (insn);
1160 /* Recursively delete prior insns that compute the value (used only by INSN
1161 which the caller is deleting) stored in the register mentioned by NOTE
1162 which is a REG_DEAD note associated with INSN. */
1164 static void
1165 delete_prior_computation (rtx note, rtx insn)
1167 rtx our_prev;
1168 rtx reg = XEXP (note, 0);
1170 for (our_prev = prev_nonnote_insn (insn);
1171 our_prev && (NONJUMP_INSN_P (our_prev)
1172 || CALL_P (our_prev));
1173 our_prev = prev_nonnote_insn (our_prev))
1175 rtx pat = PATTERN (our_prev);
1177 /* If we reach a CALL which is not calling a const function
1178 or the callee pops the arguments, then give up. */
1179 if (CALL_P (our_prev)
1180 && (! CONST_OR_PURE_CALL_P (our_prev)
1181 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
1182 break;
1184 /* If we reach a SEQUENCE, it is too complex to try to
1185 do anything with it, so give up. We can be run during
1186 and after reorg, so SEQUENCE rtl can legitimately show
1187 up here. */
1188 if (GET_CODE (pat) == SEQUENCE)
1189 break;
1191 if (GET_CODE (pat) == USE
1192 && NONJUMP_INSN_P (XEXP (pat, 0)))
1193 /* reorg creates USEs that look like this. We leave them
1194 alone because reorg needs them for its own purposes. */
1195 break;
1197 if (reg_set_p (reg, pat))
1199 if (side_effects_p (pat) && !CALL_P (our_prev))
1200 break;
1202 if (GET_CODE (pat) == PARALLEL)
1204 /* If we find a SET of something else, we can't
1205 delete the insn. */
1207 int i;
1209 for (i = 0; i < XVECLEN (pat, 0); i++)
1211 rtx part = XVECEXP (pat, 0, i);
1213 if (GET_CODE (part) == SET
1214 && SET_DEST (part) != reg)
1215 break;
1218 if (i == XVECLEN (pat, 0))
1219 delete_computation (our_prev);
1221 else if (GET_CODE (pat) == SET
1222 && REG_P (SET_DEST (pat)))
1224 int dest_regno = REGNO (SET_DEST (pat));
1225 int dest_endregno
1226 = (dest_regno
1227 + (dest_regno < FIRST_PSEUDO_REGISTER
1228 ? hard_regno_nregs[dest_regno]
1229 [GET_MODE (SET_DEST (pat))] : 1));
1230 int regno = REGNO (reg);
1231 int endregno
1232 = (regno
1233 + (regno < FIRST_PSEUDO_REGISTER
1234 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1));
1236 if (dest_regno >= regno
1237 && dest_endregno <= endregno)
1238 delete_computation (our_prev);
1240 /* We may have a multi-word hard register and some, but not
1241 all, of the words of the register are needed in subsequent
1242 insns. Write REG_UNUSED notes for those parts that were not
1243 needed. */
1244 else if (dest_regno <= regno
1245 && dest_endregno >= endregno)
1247 int i;
1249 REG_NOTES (our_prev)
1250 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
1251 REG_NOTES (our_prev));
1253 for (i = dest_regno; i < dest_endregno; i++)
1254 if (! find_regno_note (our_prev, REG_UNUSED, i))
1255 break;
1257 if (i == dest_endregno)
1258 delete_computation (our_prev);
1262 break;
1265 /* If PAT references the register that dies here, it is an
1266 additional use. Hence any prior SET isn't dead. However, this
1267 insn becomes the new place for the REG_DEAD note. */
1268 if (reg_overlap_mentioned_p (reg, pat))
1270 XEXP (note, 1) = REG_NOTES (our_prev);
1271 REG_NOTES (our_prev) = note;
1272 break;
1277 /* Delete INSN and recursively delete insns that compute values used only
1278 by INSN. This uses the REG_DEAD notes computed during flow analysis.
1279 If we are running before flow.c, we need do nothing since flow.c will
1280 delete dead code. We also can't know if the registers being used are
1281 dead or not at this point.
1283 Otherwise, look at all our REG_DEAD notes. If a previous insn does
1284 nothing other than set a register that dies in this insn, we can delete
1285 that insn as well.
1287 On machines with CC0, if CC0 is used in this insn, we may be able to
1288 delete the insn that set it. */
1290 static void
1291 delete_computation (rtx insn)
1293 rtx note, next;
1295 #ifdef HAVE_cc0
1296 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
1298 rtx prev = prev_nonnote_insn (insn);
1299 /* We assume that at this stage
1300 CC's are always set explicitly
1301 and always immediately before the jump that
1302 will use them. So if the previous insn
1303 exists to set the CC's, delete it
1304 (unless it performs auto-increments, etc.). */
1305 if (prev && NONJUMP_INSN_P (prev)
1306 && sets_cc0_p (PATTERN (prev)))
1308 if (sets_cc0_p (PATTERN (prev)) > 0
1309 && ! side_effects_p (PATTERN (prev)))
1310 delete_computation (prev);
1311 else
1312 /* Otherwise, show that cc0 won't be used. */
1313 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
1314 cc0_rtx, REG_NOTES (prev));
1317 #endif
1319 for (note = REG_NOTES (insn); note; note = next)
1321 next = XEXP (note, 1);
1323 if (REG_NOTE_KIND (note) != REG_DEAD
1324 /* Verify that the REG_NOTE is legitimate. */
1325 || !REG_P (XEXP (note, 0)))
1326 continue;
1328 delete_prior_computation (note, insn);
1331 delete_related_insns (insn);
1334 /* Delete insn INSN from the chain of insns and update label ref counts
1335 and delete insns now unreachable.
1337 Returns the first insn after INSN that was not deleted.
1339 Usage of this instruction is deprecated. Use delete_insn instead and
1340 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1343 delete_related_insns (rtx insn)
1345 int was_code_label = (LABEL_P (insn));
1346 rtx note;
1347 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1349 while (next && INSN_DELETED_P (next))
1350 next = NEXT_INSN (next);
1352 /* This insn is already deleted => return first following nondeleted. */
1353 if (INSN_DELETED_P (insn))
1354 return next;
1356 delete_insn (insn);
1358 /* If instruction is followed by a barrier,
1359 delete the barrier too. */
1361 if (next != 0 && BARRIER_P (next))
1362 delete_insn (next);
1364 /* If deleting a jump, decrement the count of the label,
1365 and delete the label if it is now unused. */
1367 if (JUMP_P (insn) && JUMP_LABEL (insn))
1369 rtx lab = JUMP_LABEL (insn), lab_next;
1371 if (LABEL_NUSES (lab) == 0)
1373 /* This can delete NEXT or PREV,
1374 either directly if NEXT is JUMP_LABEL (INSN),
1375 or indirectly through more levels of jumps. */
1376 delete_related_insns (lab);
1378 /* I feel a little doubtful about this loop,
1379 but I see no clean and sure alternative way
1380 to find the first insn after INSN that is not now deleted.
1381 I hope this works. */
1382 while (next && INSN_DELETED_P (next))
1383 next = NEXT_INSN (next);
1384 return next;
1386 else if (tablejump_p (insn, NULL, &lab_next))
1388 /* If we're deleting the tablejump, delete the dispatch table.
1389 We may not be able to kill the label immediately preceding
1390 just yet, as it might be referenced in code leading up to
1391 the tablejump. */
1392 delete_related_insns (lab_next);
1396 /* Likewise if we're deleting a dispatch table. */
1398 if (JUMP_P (insn)
1399 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1400 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1402 rtx pat = PATTERN (insn);
1403 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1404 int len = XVECLEN (pat, diff_vec_p);
1406 for (i = 0; i < len; i++)
1407 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1408 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1409 while (next && INSN_DELETED_P (next))
1410 next = NEXT_INSN (next);
1411 return next;
1414 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
1415 if (NONJUMP_INSN_P (insn) || CALL_P (insn))
1416 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1417 if (REG_NOTE_KIND (note) == REG_LABEL
1418 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1419 && LABEL_P (XEXP (note, 0)))
1420 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1421 delete_related_insns (XEXP (note, 0));
1423 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1424 prev = PREV_INSN (prev);
1426 /* If INSN was a label and a dispatch table follows it,
1427 delete the dispatch table. The tablejump must have gone already.
1428 It isn't useful to fall through into a table. */
1430 if (was_code_label
1431 && NEXT_INSN (insn) != 0
1432 && JUMP_P (NEXT_INSN (insn))
1433 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1434 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1435 next = delete_related_insns (NEXT_INSN (insn));
1437 /* If INSN was a label, delete insns following it if now unreachable. */
1439 if (was_code_label && prev && BARRIER_P (prev))
1441 enum rtx_code code;
1442 while (next)
1444 code = GET_CODE (next);
1445 if (code == NOTE
1446 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
1447 next = NEXT_INSN (next);
1448 /* Keep going past other deleted labels to delete what follows. */
1449 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1450 next = NEXT_INSN (next);
1451 else if (code == BARRIER || INSN_P (next))
1452 /* Note: if this deletes a jump, it can cause more
1453 deletion of unreachable code, after a different label.
1454 As long as the value from this recursive call is correct,
1455 this invocation functions correctly. */
1456 next = delete_related_insns (next);
1457 else
1458 break;
1462 return next;
1465 /* Delete a range of insns from FROM to TO, inclusive.
1466 This is for the sake of peephole optimization, so assume
1467 that whatever these insns do will still be done by a new
1468 peephole insn that will replace them. */
1470 void
1471 delete_for_peephole (rtx from, rtx to)
1473 rtx insn = from;
1475 while (1)
1477 rtx next = NEXT_INSN (insn);
1478 rtx prev = PREV_INSN (insn);
1480 if (!NOTE_P (insn))
1482 INSN_DELETED_P (insn) = 1;
1484 /* Patch this insn out of the chain. */
1485 /* We don't do this all at once, because we
1486 must preserve all NOTEs. */
1487 if (prev)
1488 NEXT_INSN (prev) = next;
1490 if (next)
1491 PREV_INSN (next) = prev;
1494 if (insn == to)
1495 break;
1496 insn = next;
1499 /* Note that if TO is an unconditional jump
1500 we *do not* delete the BARRIER that follows,
1501 since the peephole that replaces this sequence
1502 is also an unconditional jump in that case. */
1505 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1506 NLABEL as a return. Accrue modifications into the change group. */
1508 static void
1509 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1511 rtx x = *loc;
1512 RTX_CODE code = GET_CODE (x);
1513 int i;
1514 const char *fmt;
1516 if (code == LABEL_REF)
1518 if (XEXP (x, 0) == olabel)
1520 rtx n;
1521 if (nlabel)
1522 n = gen_rtx_LABEL_REF (Pmode, nlabel);
1523 else
1524 n = gen_rtx_RETURN (VOIDmode);
1526 validate_change (insn, loc, n, 1);
1527 return;
1530 else if (code == RETURN && olabel == 0)
1532 if (nlabel)
1533 x = gen_rtx_LABEL_REF (Pmode, nlabel);
1534 else
1535 x = gen_rtx_RETURN (VOIDmode);
1536 if (loc == &PATTERN (insn))
1537 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1538 validate_change (insn, loc, x, 1);
1539 return;
1542 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1543 && GET_CODE (SET_SRC (x)) == LABEL_REF
1544 && XEXP (SET_SRC (x), 0) == olabel)
1546 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1547 return;
1550 fmt = GET_RTX_FORMAT (code);
1551 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1553 if (fmt[i] == 'e')
1554 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1555 else if (fmt[i] == 'E')
1557 int j;
1558 for (j = 0; j < XVECLEN (x, i); j++)
1559 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1564 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1565 the modifications into the change group. Return false if we did
1566 not see how to do that. */
1569 redirect_jump_1 (rtx jump, rtx nlabel)
1571 int ochanges = num_validated_changes ();
1572 rtx *loc;
1574 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1575 loc = &XVECEXP (PATTERN (jump), 0, 0);
1576 else
1577 loc = &PATTERN (jump);
1579 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1580 return num_validated_changes () > ochanges;
1583 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1584 jump target label is unused as a result, it and the code following
1585 it may be deleted.
1587 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1588 RETURN insn.
1590 The return value will be 1 if the change was made, 0 if it wasn't
1591 (this can only occur for NLABEL == 0). */
1594 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1596 rtx olabel = JUMP_LABEL (jump);
1598 if (nlabel == olabel)
1599 return 1;
1601 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1602 return 0;
1604 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1605 return 1;
1608 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1609 NLABEL in JUMP. If DELETE_UNUSED is non-negative, copy a
1610 NOTE_INSN_FUNCTION_END found after OLABEL to the place after NLABEL.
1611 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1612 count has dropped to zero. */
1613 void
1614 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1615 int invert)
1617 rtx note;
1619 JUMP_LABEL (jump) = nlabel;
1620 if (nlabel)
1621 ++LABEL_NUSES (nlabel);
1623 /* Update labels in any REG_EQUAL note. */
1624 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1626 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1627 remove_note (jump, note);
1628 else
1630 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1631 confirm_change_group ();
1635 /* If we're eliding the jump over exception cleanups at the end of a
1636 function, move the function end note so that -Wreturn-type works. */
1637 if (olabel && nlabel
1638 && NEXT_INSN (olabel)
1639 && NOTE_P (NEXT_INSN (olabel))
1640 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END
1641 && delete_unused >= 0)
1642 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
1644 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1645 /* Undefined labels will remain outside the insn stream. */
1646 && INSN_UID (olabel))
1647 delete_related_insns (olabel);
1648 if (invert)
1649 invert_br_probabilities (jump);
1652 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1653 modifications into the change group. Return nonzero for success. */
1654 static int
1655 invert_exp_1 (rtx x, rtx insn)
1657 RTX_CODE code = GET_CODE (x);
1659 if (code == IF_THEN_ELSE)
1661 rtx comp = XEXP (x, 0);
1662 rtx tem;
1663 enum rtx_code reversed_code;
1665 /* We can do this in two ways: The preferable way, which can only
1666 be done if this is not an integer comparison, is to reverse
1667 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1668 of the IF_THEN_ELSE. If we can't do either, fail. */
1670 reversed_code = reversed_comparison_code (comp, insn);
1672 if (reversed_code != UNKNOWN)
1674 validate_change (insn, &XEXP (x, 0),
1675 gen_rtx_fmt_ee (reversed_code,
1676 GET_MODE (comp), XEXP (comp, 0),
1677 XEXP (comp, 1)),
1679 return 1;
1682 tem = XEXP (x, 1);
1683 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1684 validate_change (insn, &XEXP (x, 2), tem, 1);
1685 return 1;
1687 else
1688 return 0;
1691 /* Invert the condition of the jump JUMP, and make it jump to label
1692 NLABEL instead of where it jumps now. Accrue changes into the
1693 change group. Return false if we didn't see how to perform the
1694 inversion and redirection. */
1697 invert_jump_1 (rtx jump, rtx nlabel)
1699 rtx x = pc_set (jump);
1700 int ochanges;
1701 int ok;
1703 ochanges = num_validated_changes ();
1704 gcc_assert (x);
1705 ok = invert_exp_1 (SET_SRC (x), jump);
1706 gcc_assert (ok);
1708 if (num_validated_changes () == ochanges)
1709 return 0;
1711 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1712 in Pmode, so checking this is not merely an optimization. */
1713 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1716 /* Invert the condition of the jump JUMP, and make it jump to label
1717 NLABEL instead of where it jumps now. Return true if successful. */
1720 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1722 rtx olabel = JUMP_LABEL (jump);
1724 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1726 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1727 return 1;
1729 cancel_changes (0);
1730 return 0;
1734 /* Like rtx_equal_p except that it considers two REGs as equal
1735 if they renumber to the same value and considers two commutative
1736 operations to be the same if the order of the operands has been
1737 reversed. */
1740 rtx_renumbered_equal_p (rtx x, rtx y)
1742 int i;
1743 enum rtx_code code = GET_CODE (x);
1744 const char *fmt;
1746 if (x == y)
1747 return 1;
1749 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1750 && (REG_P (y) || (GET_CODE (y) == SUBREG
1751 && REG_P (SUBREG_REG (y)))))
1753 int reg_x = -1, reg_y = -1;
1754 int byte_x = 0, byte_y = 0;
1756 if (GET_MODE (x) != GET_MODE (y))
1757 return 0;
1759 /* If we haven't done any renumbering, don't
1760 make any assumptions. */
1761 if (reg_renumber == 0)
1762 return rtx_equal_p (x, y);
1764 if (code == SUBREG)
1766 reg_x = REGNO (SUBREG_REG (x));
1767 byte_x = SUBREG_BYTE (x);
1769 if (reg_renumber[reg_x] >= 0)
1771 reg_x = subreg_regno_offset (reg_renumber[reg_x],
1772 GET_MODE (SUBREG_REG (x)),
1773 byte_x,
1774 GET_MODE (x));
1775 byte_x = 0;
1778 else
1780 reg_x = REGNO (x);
1781 if (reg_renumber[reg_x] >= 0)
1782 reg_x = reg_renumber[reg_x];
1785 if (GET_CODE (y) == SUBREG)
1787 reg_y = REGNO (SUBREG_REG (y));
1788 byte_y = SUBREG_BYTE (y);
1790 if (reg_renumber[reg_y] >= 0)
1792 reg_y = subreg_regno_offset (reg_renumber[reg_y],
1793 GET_MODE (SUBREG_REG (y)),
1794 byte_y,
1795 GET_MODE (y));
1796 byte_y = 0;
1799 else
1801 reg_y = REGNO (y);
1802 if (reg_renumber[reg_y] >= 0)
1803 reg_y = reg_renumber[reg_y];
1806 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1809 /* Now we have disposed of all the cases
1810 in which different rtx codes can match. */
1811 if (code != GET_CODE (y))
1812 return 0;
1814 switch (code)
1816 case PC:
1817 case CC0:
1818 case ADDR_VEC:
1819 case ADDR_DIFF_VEC:
1820 case CONST_INT:
1821 case CONST_DOUBLE:
1822 return 0;
1824 case LABEL_REF:
1825 /* We can't assume nonlocal labels have their following insns yet. */
1826 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1827 return XEXP (x, 0) == XEXP (y, 0);
1829 /* Two label-refs are equivalent if they point at labels
1830 in the same position in the instruction stream. */
1831 return (next_real_insn (XEXP (x, 0))
1832 == next_real_insn (XEXP (y, 0)));
1834 case SYMBOL_REF:
1835 return XSTR (x, 0) == XSTR (y, 0);
1837 case CODE_LABEL:
1838 /* If we didn't match EQ equality above, they aren't the same. */
1839 return 0;
1841 default:
1842 break;
1845 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1847 if (GET_MODE (x) != GET_MODE (y))
1848 return 0;
1850 /* For commutative operations, the RTX match if the operand match in any
1851 order. Also handle the simple binary and unary cases without a loop. */
1852 if (targetm.commutative_p (x, UNKNOWN))
1853 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1854 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1855 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1856 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1857 else if (NON_COMMUTATIVE_P (x))
1858 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1859 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1860 else if (UNARY_P (x))
1861 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1863 /* Compare the elements. If any pair of corresponding elements
1864 fail to match, return 0 for the whole things. */
1866 fmt = GET_RTX_FORMAT (code);
1867 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1869 int j;
1870 switch (fmt[i])
1872 case 'w':
1873 if (XWINT (x, i) != XWINT (y, i))
1874 return 0;
1875 break;
1877 case 'i':
1878 if (XINT (x, i) != XINT (y, i))
1879 return 0;
1880 break;
1882 case 't':
1883 if (XTREE (x, i) != XTREE (y, i))
1884 return 0;
1885 break;
1887 case 's':
1888 if (strcmp (XSTR (x, i), XSTR (y, i)))
1889 return 0;
1890 break;
1892 case 'e':
1893 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1894 return 0;
1895 break;
1897 case 'u':
1898 if (XEXP (x, i) != XEXP (y, i))
1899 return 0;
1900 /* Fall through. */
1901 case '0':
1902 break;
1904 case 'E':
1905 if (XVECLEN (x, i) != XVECLEN (y, i))
1906 return 0;
1907 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1908 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1909 return 0;
1910 break;
1912 default:
1913 gcc_unreachable ();
1916 return 1;
1919 /* If X is a hard register or equivalent to one or a subregister of one,
1920 return the hard register number. If X is a pseudo register that was not
1921 assigned a hard register, return the pseudo register number. Otherwise,
1922 return -1. Any rtx is valid for X. */
1925 true_regnum (rtx x)
1927 if (REG_P (x))
1929 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1930 return reg_renumber[REGNO (x)];
1931 return REGNO (x);
1933 if (GET_CODE (x) == SUBREG)
1935 int base = true_regnum (SUBREG_REG (x));
1936 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
1937 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
1938 GET_MODE (SUBREG_REG (x)),
1939 SUBREG_BYTE (x), GET_MODE (x));
1941 return -1;
1944 /* Return regno of the register REG and handle subregs too. */
1945 unsigned int
1946 reg_or_subregno (rtx reg)
1948 if (GET_CODE (reg) == SUBREG)
1949 reg = SUBREG_REG (reg);
1950 gcc_assert (REG_P (reg));
1951 return REGNO (reg);