2006-11-15 Rask Ingemann Lambertsen <rask@sygehus.dk>
[official-gcc.git] / gcc / emit-rtl.c
blob114015c8a2d6126f94a0f6d1eeb12c334d2bd398
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "real.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num = 1;
74 /* Nonzero means do not generate NOTEs for source line numbers. */
76 static int no_line_numbers;
78 /* Commonly used rtx's, so that we only need space for one copy.
79 These are initialized once for the entire compilation.
80 All of these are unique; no other rtx-object will be equal to any
81 of these. */
83 rtx global_rtl[GR_MAX];
85 /* Commonly used RTL for hard registers. These objects are not necessarily
86 unique, so we allocate them separately from global_rtl. They are
87 initialized once per compilation unit, then copied into regno_reg_rtx
88 at the beginning of each function. */
89 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx. */
95 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
97 rtx const_true_rtx;
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconst3;
103 REAL_VALUE_TYPE dconst10;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconstm2;
106 REAL_VALUE_TYPE dconsthalf;
107 REAL_VALUE_TYPE dconstthird;
108 REAL_VALUE_TYPE dconstpi;
109 REAL_VALUE_TYPE dconste;
111 /* All references to the following fixed hard registers go through
112 these unique rtl objects. On machines where the frame-pointer and
113 arg-pointer are the same register, they use the same unique object.
115 After register allocation, other rtl objects which used to be pseudo-regs
116 may be clobbered to refer to the frame-pointer register.
117 But references that were originally to the frame-pointer can be
118 distinguished from the others because they contain frame_pointer_rtx.
120 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
121 tricky: until register elimination has taken place hard_frame_pointer_rtx
122 should be used if it is being set, and frame_pointer_rtx otherwise. After
123 register elimination hard_frame_pointer_rtx should always be used.
124 On machines where the two registers are same (most) then these are the
125 same.
127 In an inline procedure, the stack and frame pointer rtxs may not be
128 used for anything else. */
129 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
130 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
131 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
133 /* This is used to implement __builtin_return_address for some machines.
134 See for instance the MIPS port. */
135 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
137 /* We make one copy of (const_int C) where C is in
138 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
139 to save space during the compilation and simplify comparisons of
140 integers. */
142 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
144 /* A hash table storing CONST_INTs whose absolute value is greater
145 than MAX_SAVED_CONST_INT. */
147 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
148 htab_t const_int_htab;
150 /* A hash table storing memory attribute structures. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
152 htab_t mem_attrs_htab;
154 /* A hash table storing register attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
156 htab_t reg_attrs_htab;
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_location (cfun->emit->x_last_location)
166 #define first_label_num (cfun->emit->x_first_label_num)
168 static rtx make_call_insn_raw (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
193 /* Returns a hash code for X (which is a really a CONST_INT). */
195 static hashval_t
196 const_int_htab_hash (const void *x)
198 return (hashval_t) INTVAL ((rtx) x);
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
205 static int
206 const_int_htab_eq (const void *x, const void *y)
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
215 rtx value = (rtx) x;
216 hashval_t h;
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
226 return h;
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
234 rtx a = (rtx)x, b = (rtx)y;
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
251 mem_attrs *p = (mem_attrs *) x;
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p->expr, 0));
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
269 return (p->alias == q->alias && p->offset == q->offset
270 && p->size == q->size && p->align == q->align
271 && (p->expr == q->expr
272 || (p->expr != NULL_TREE && q->expr != NULL_TREE
273 && operand_equal_p (p->expr, q->expr, 0))));
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
278 MEM of mode MODE. */
280 static mem_attrs *
281 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
282 unsigned int align, enum machine_mode mode)
284 mem_attrs attrs;
285 void **slot;
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias == 0 && expr == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
293 && (STRICT_ALIGNMENT && mode != BLKmode
294 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
295 return 0;
297 attrs.alias = alias;
298 attrs.expr = expr;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
310 return *slot;
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
315 static hashval_t
316 reg_attrs_htab_hash (const void *x)
318 reg_attrs *p = (reg_attrs *) x;
320 return ((p->offset * 1000) ^ (long) p->decl);
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs *). */
327 static int
328 reg_attrs_htab_eq (const void *x, const void *y)
330 reg_attrs *p = (reg_attrs *) x;
331 reg_attrs *q = (reg_attrs *) y;
333 return (p->decl == q->decl && p->offset == q->offset);
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
337 MEM of mode MODE. */
339 static reg_attrs *
340 get_reg_attrs (tree decl, int offset)
342 reg_attrs attrs;
343 void **slot;
345 /* If everything is the default, we can just return zero. */
346 if (decl == 0 && offset == 0)
347 return 0;
349 attrs.decl = decl;
350 attrs.offset = offset;
352 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
353 if (*slot == 0)
355 *slot = ggc_alloc (sizeof (reg_attrs));
356 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 return *slot;
362 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
363 don't attempt to share with the various global pieces of rtl (such as
364 frame_pointer_rtx). */
367 gen_raw_REG (enum machine_mode mode, int regno)
369 rtx x = gen_rtx_raw_REG (mode, regno);
370 ORIGINAL_REGNO (x) = regno;
371 return x;
374 /* There are some RTL codes that require special attention; the generation
375 functions do the raw handling. If you add to this list, modify
376 special_rtx in gengenrtl.c as well. */
379 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
381 void **slot;
383 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
384 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
386 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
387 if (const_true_rtx && arg == STORE_FLAG_VALUE)
388 return const_true_rtx;
389 #endif
391 /* Look up the CONST_INT in the hash table. */
392 slot = htab_find_slot_with_hash (const_int_htab, &arg,
393 (hashval_t) arg, INSERT);
394 if (*slot == 0)
395 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
397 return (rtx) *slot;
401 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
403 return GEN_INT (trunc_int_for_mode (c, mode));
406 /* CONST_DOUBLEs might be created from pairs of integers, or from
407 REAL_VALUE_TYPEs. Also, their length is known only at run time,
408 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
410 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
411 hash table. If so, return its counterpart; otherwise add it
412 to the hash table and return it. */
413 static rtx
414 lookup_const_double (rtx real)
416 void **slot = htab_find_slot (const_double_htab, real, INSERT);
417 if (*slot == 0)
418 *slot = real;
420 return (rtx) *slot;
423 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
424 VALUE in mode MODE. */
426 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
428 rtx real = rtx_alloc (CONST_DOUBLE);
429 PUT_MODE (real, mode);
431 real->u.rv = value;
433 return lookup_const_double (real);
436 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
437 of ints: I0 is the low-order word and I1 is the high-order word.
438 Do not use this routine for non-integer modes; convert to
439 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
442 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
444 rtx value;
445 unsigned int i;
447 /* There are the following cases (note that there are no modes with
448 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
450 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
451 gen_int_mode.
452 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
453 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
454 from copies of the sign bit, and sign of i0 and i1 are the same), then
455 we return a CONST_INT for i0.
456 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
457 if (mode != VOIDmode)
459 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
460 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
463 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
465 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
466 return gen_int_mode (i0, mode);
468 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
471 /* If this integer fits in one word, return a CONST_INT. */
472 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
473 return GEN_INT (i0);
475 /* We use VOIDmode for integers. */
476 value = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (value, VOIDmode);
479 CONST_DOUBLE_LOW (value) = i0;
480 CONST_DOUBLE_HIGH (value) = i1;
482 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
483 XWINT (value, i) = 0;
485 return lookup_const_double (value);
489 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
491 /* In case the MD file explicitly references the frame pointer, have
492 all such references point to the same frame pointer. This is
493 used during frame pointer elimination to distinguish the explicit
494 references to these registers from pseudos that happened to be
495 assigned to them.
497 If we have eliminated the frame pointer or arg pointer, we will
498 be using it as a normal register, for example as a spill
499 register. In such cases, we might be accessing it in a mode that
500 is not Pmode and therefore cannot use the pre-allocated rtx.
502 Also don't do this when we are making new REGs in reload, since
503 we don't want to get confused with the real pointers. */
505 if (mode == Pmode && !reload_in_progress)
507 if (regno == FRAME_POINTER_REGNUM
508 && (!reload_completed || frame_pointer_needed))
509 return frame_pointer_rtx;
510 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
511 if (regno == HARD_FRAME_POINTER_REGNUM
512 && (!reload_completed || frame_pointer_needed))
513 return hard_frame_pointer_rtx;
514 #endif
515 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
516 if (regno == ARG_POINTER_REGNUM)
517 return arg_pointer_rtx;
518 #endif
519 #ifdef RETURN_ADDRESS_POINTER_REGNUM
520 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
521 return return_address_pointer_rtx;
522 #endif
523 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
524 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
525 return pic_offset_table_rtx;
526 if (regno == STACK_POINTER_REGNUM)
527 return stack_pointer_rtx;
530 #if 0
531 /* If the per-function register table has been set up, try to re-use
532 an existing entry in that table to avoid useless generation of RTL.
534 This code is disabled for now until we can fix the various backends
535 which depend on having non-shared hard registers in some cases. Long
536 term we want to re-enable this code as it can significantly cut down
537 on the amount of useless RTL that gets generated.
539 We'll also need to fix some code that runs after reload that wants to
540 set ORIGINAL_REGNO. */
542 if (cfun
543 && cfun->emit
544 && regno_reg_rtx
545 && regno < FIRST_PSEUDO_REGISTER
546 && reg_raw_mode[regno] == mode)
547 return regno_reg_rtx[regno];
548 #endif
550 return gen_raw_REG (mode, regno);
554 gen_rtx_MEM (enum machine_mode mode, rtx addr)
556 rtx rt = gen_rtx_raw_MEM (mode, addr);
558 /* This field is not cleared by the mere allocation of the rtx, so
559 we clear it here. */
560 MEM_ATTRS (rt) = 0;
562 return rt;
565 /* Generate a memory referring to non-trapping constant memory. */
568 gen_const_mem (enum machine_mode mode, rtx addr)
570 rtx mem = gen_rtx_MEM (mode, addr);
571 MEM_READONLY_P (mem) = 1;
572 MEM_NOTRAP_P (mem) = 1;
573 return mem;
576 /* Generate a MEM referring to fixed portions of the frame, e.g., register
577 save areas. */
580 gen_frame_mem (enum machine_mode mode, rtx addr)
582 rtx mem = gen_rtx_MEM (mode, addr);
583 MEM_NOTRAP_P (mem) = 1;
584 set_mem_alias_set (mem, get_frame_alias_set ());
585 return mem;
588 /* Generate a MEM referring to a temporary use of the stack, not part
589 of the fixed stack frame. For example, something which is pushed
590 by a target splitter. */
592 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
594 rtx mem = gen_rtx_MEM (mode, addr);
595 MEM_NOTRAP_P (mem) = 1;
596 if (!current_function_calls_alloca)
597 set_mem_alias_set (mem, get_frame_alias_set ());
598 return mem;
601 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
602 this construct would be valid, and false otherwise. */
604 bool
605 validate_subreg (enum machine_mode omode, enum machine_mode imode,
606 rtx reg, unsigned int offset)
608 unsigned int isize = GET_MODE_SIZE (imode);
609 unsigned int osize = GET_MODE_SIZE (omode);
611 /* All subregs must be aligned. */
612 if (offset % osize != 0)
613 return false;
615 /* The subreg offset cannot be outside the inner object. */
616 if (offset >= isize)
617 return false;
619 /* ??? This should not be here. Temporarily continue to allow word_mode
620 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
621 Generally, backends are doing something sketchy but it'll take time to
622 fix them all. */
623 if (omode == word_mode)
625 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
626 is the culprit here, and not the backends. */
627 else if (osize >= UNITS_PER_WORD && isize >= osize)
629 /* Allow component subregs of complex and vector. Though given the below
630 extraction rules, it's not always clear what that means. */
631 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
632 && GET_MODE_INNER (imode) == omode)
634 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
635 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
636 represent this. It's questionable if this ought to be represented at
637 all -- why can't this all be hidden in post-reload splitters that make
638 arbitrarily mode changes to the registers themselves. */
639 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
641 /* Subregs involving floating point modes are not allowed to
642 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
643 (subreg:SI (reg:DF) 0) isn't. */
644 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
646 if (isize != osize)
647 return false;
650 /* Paradoxical subregs must have offset zero. */
651 if (osize > isize)
652 return offset == 0;
654 /* This is a normal subreg. Verify that the offset is representable. */
656 /* For hard registers, we already have most of these rules collected in
657 subreg_offset_representable_p. */
658 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
660 unsigned int regno = REGNO (reg);
662 #ifdef CANNOT_CHANGE_MODE_CLASS
663 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
664 && GET_MODE_INNER (imode) == omode)
666 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
667 return false;
668 #endif
670 return subreg_offset_representable_p (regno, imode, offset, omode);
673 /* For pseudo registers, we want most of the same checks. Namely:
674 If the register no larger than a word, the subreg must be lowpart.
675 If the register is larger than a word, the subreg must be the lowpart
676 of a subword. A subreg does *not* perform arbitrary bit extraction.
677 Given that we've already checked mode/offset alignment, we only have
678 to check subword subregs here. */
679 if (osize < UNITS_PER_WORD)
681 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
682 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
683 if (offset % UNITS_PER_WORD != low_off)
684 return false;
686 return true;
690 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
692 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
693 return gen_rtx_raw_SUBREG (mode, reg, offset);
696 /* Generate a SUBREG representing the least-significant part of REG if MODE
697 is smaller than mode of REG, otherwise paradoxical SUBREG. */
700 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
702 enum machine_mode inmode;
704 inmode = GET_MODE (reg);
705 if (inmode == VOIDmode)
706 inmode = mode;
707 return gen_rtx_SUBREG (mode, reg,
708 subreg_lowpart_offset (mode, inmode));
711 /* gen_rtvec (n, [rt1, ..., rtn])
713 ** This routine creates an rtvec and stores within it the
714 ** pointers to rtx's which are its arguments.
717 /*VARARGS1*/
718 rtvec
719 gen_rtvec (int n, ...)
721 int i, save_n;
722 rtx *vector;
723 va_list p;
725 va_start (p, n);
727 if (n == 0)
728 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
730 vector = alloca (n * sizeof (rtx));
732 for (i = 0; i < n; i++)
733 vector[i] = va_arg (p, rtx);
735 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
736 save_n = n;
737 va_end (p);
739 return gen_rtvec_v (save_n, vector);
742 rtvec
743 gen_rtvec_v (int n, rtx *argp)
745 int i;
746 rtvec rt_val;
748 if (n == 0)
749 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
751 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
753 for (i = 0; i < n; i++)
754 rt_val->elem[i] = *argp++;
756 return rt_val;
759 /* Generate a REG rtx for a new pseudo register of mode MODE.
760 This pseudo is assigned the next sequential register number. */
763 gen_reg_rtx (enum machine_mode mode)
765 struct function *f = cfun;
766 rtx val;
768 /* Don't let anything called after initial flow analysis create new
769 registers. */
770 gcc_assert (!no_new_pseudos);
772 if (generating_concat_p
773 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
774 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
776 /* For complex modes, don't make a single pseudo.
777 Instead, make a CONCAT of two pseudos.
778 This allows noncontiguous allocation of the real and imaginary parts,
779 which makes much better code. Besides, allocating DCmode
780 pseudos overstrains reload on some machines like the 386. */
781 rtx realpart, imagpart;
782 enum machine_mode partmode = GET_MODE_INNER (mode);
784 realpart = gen_reg_rtx (partmode);
785 imagpart = gen_reg_rtx (partmode);
786 return gen_rtx_CONCAT (mode, realpart, imagpart);
789 /* Make sure regno_pointer_align, and regno_reg_rtx are large
790 enough to have an element for this pseudo reg number. */
792 if (reg_rtx_no == f->emit->regno_pointer_align_length)
794 int old_size = f->emit->regno_pointer_align_length;
795 char *new;
796 rtx *new1;
798 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
799 memset (new + old_size, 0, old_size);
800 f->emit->regno_pointer_align = (unsigned char *) new;
802 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
803 old_size * 2 * sizeof (rtx));
804 memset (new1 + old_size, 0, old_size * sizeof (rtx));
805 regno_reg_rtx = new1;
807 f->emit->regno_pointer_align_length = old_size * 2;
810 val = gen_raw_REG (mode, reg_rtx_no);
811 regno_reg_rtx[reg_rtx_no++] = val;
812 return val;
815 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
816 Do the big endian correction if needed. */
819 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
821 rtx new = gen_rtx_REG (mode, regno);
822 tree decl;
823 HOST_WIDE_INT var_size;
825 /* PR middle-end/14084
826 The problem appears when a variable is stored in a larger register
827 and later it is used in the original mode or some mode in between
828 or some part of variable is accessed.
830 On little endian machines there is no problem because
831 the REG_OFFSET of the start of the variable is the same when
832 accessed in any mode (it is 0).
834 However, this is not true on big endian machines.
835 The offset of the start of the variable is different when accessed
836 in different modes.
837 When we are taking a part of the REG we have to change the OFFSET
838 from offset WRT size of mode of REG to offset WRT size of variable.
840 If we would not do the big endian correction the resulting REG_OFFSET
841 would be larger than the size of the DECL.
843 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
845 REG.mode MODE DECL size old offset new offset description
846 DI SI 4 4 0 int32 in SImode
847 DI SI 1 4 0 char in SImode
848 DI QI 1 7 0 char in QImode
849 DI QI 4 5 1 1st element in QImode
850 of char[4]
851 DI HI 4 6 2 1st element in HImode
852 of int16[2]
854 If the size of DECL is equal or greater than the size of REG
855 we can't do this correction because the register holds the
856 whole variable or a part of the variable and thus the REG_OFFSET
857 is already correct. */
859 decl = REG_EXPR (reg);
860 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
861 && decl != NULL
862 && offset > 0
863 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
864 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
865 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
867 int offset_le;
869 /* Convert machine endian to little endian WRT size of mode of REG. */
870 if (WORDS_BIG_ENDIAN)
871 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
872 / UNITS_PER_WORD) * UNITS_PER_WORD;
873 else
874 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
876 if (BYTES_BIG_ENDIAN)
877 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
878 % UNITS_PER_WORD);
879 else
880 offset_le += offset % UNITS_PER_WORD;
882 if (offset_le >= var_size)
884 /* MODE is wider than the variable so the new reg will cover
885 the whole variable so the resulting OFFSET should be 0. */
886 offset = 0;
888 else
890 /* Convert little endian to machine endian WRT size of variable. */
891 if (WORDS_BIG_ENDIAN)
892 offset = ((var_size - 1 - offset_le)
893 / UNITS_PER_WORD) * UNITS_PER_WORD;
894 else
895 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
897 if (BYTES_BIG_ENDIAN)
898 offset += ((var_size - 1 - offset_le)
899 % UNITS_PER_WORD);
900 else
901 offset += offset_le % UNITS_PER_WORD;
905 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
906 REG_OFFSET (reg) + offset);
907 return new;
910 /* Set the decl for MEM to DECL. */
912 void
913 set_reg_attrs_from_mem (rtx reg, rtx mem)
915 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
916 REG_ATTRS (reg)
917 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
920 /* Set the register attributes for registers contained in PARM_RTX.
921 Use needed values from memory attributes of MEM. */
923 void
924 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
926 if (REG_P (parm_rtx))
927 set_reg_attrs_from_mem (parm_rtx, mem);
928 else if (GET_CODE (parm_rtx) == PARALLEL)
930 /* Check for a NULL entry in the first slot, used to indicate that the
931 parameter goes both on the stack and in registers. */
932 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
933 for (; i < XVECLEN (parm_rtx, 0); i++)
935 rtx x = XVECEXP (parm_rtx, 0, i);
936 if (REG_P (XEXP (x, 0)))
937 REG_ATTRS (XEXP (x, 0))
938 = get_reg_attrs (MEM_EXPR (mem),
939 INTVAL (XEXP (x, 1)));
944 /* Assign the RTX X to declaration T. */
945 void
946 set_decl_rtl (tree t, rtx x)
948 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
950 if (!x)
951 return;
952 /* For register, we maintain the reverse information too. */
953 if (REG_P (x))
954 REG_ATTRS (x) = get_reg_attrs (t, 0);
955 else if (GET_CODE (x) == SUBREG)
956 REG_ATTRS (SUBREG_REG (x))
957 = get_reg_attrs (t, -SUBREG_BYTE (x));
958 if (GET_CODE (x) == CONCAT)
960 if (REG_P (XEXP (x, 0)))
961 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
962 if (REG_P (XEXP (x, 1)))
963 REG_ATTRS (XEXP (x, 1))
964 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
966 if (GET_CODE (x) == PARALLEL)
968 int i;
969 for (i = 0; i < XVECLEN (x, 0); i++)
971 rtx y = XVECEXP (x, 0, i);
972 if (REG_P (XEXP (y, 0)))
973 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
978 /* Assign the RTX X to parameter declaration T. */
979 void
980 set_decl_incoming_rtl (tree t, rtx x)
982 DECL_INCOMING_RTL (t) = x;
984 if (!x)
985 return;
986 /* For register, we maintain the reverse information too. */
987 if (REG_P (x))
988 REG_ATTRS (x) = get_reg_attrs (t, 0);
989 else if (GET_CODE (x) == SUBREG)
990 REG_ATTRS (SUBREG_REG (x))
991 = get_reg_attrs (t, -SUBREG_BYTE (x));
992 if (GET_CODE (x) == CONCAT)
994 if (REG_P (XEXP (x, 0)))
995 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
996 if (REG_P (XEXP (x, 1)))
997 REG_ATTRS (XEXP (x, 1))
998 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1000 if (GET_CODE (x) == PARALLEL)
1002 int i, start;
1004 /* Check for a NULL entry, used to indicate that the parameter goes
1005 both on the stack and in registers. */
1006 if (XEXP (XVECEXP (x, 0, 0), 0))
1007 start = 0;
1008 else
1009 start = 1;
1011 for (i = start; i < XVECLEN (x, 0); i++)
1013 rtx y = XVECEXP (x, 0, i);
1014 if (REG_P (XEXP (y, 0)))
1015 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1020 /* Identify REG (which may be a CONCAT) as a user register. */
1022 void
1023 mark_user_reg (rtx reg)
1025 if (GET_CODE (reg) == CONCAT)
1027 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1028 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1030 else
1032 gcc_assert (REG_P (reg));
1033 REG_USERVAR_P (reg) = 1;
1037 /* Identify REG as a probable pointer register and show its alignment
1038 as ALIGN, if nonzero. */
1040 void
1041 mark_reg_pointer (rtx reg, int align)
1043 if (! REG_POINTER (reg))
1045 REG_POINTER (reg) = 1;
1047 if (align)
1048 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1050 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1051 /* We can no-longer be sure just how aligned this pointer is. */
1052 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1055 /* Return 1 plus largest pseudo reg number used in the current function. */
1058 max_reg_num (void)
1060 return reg_rtx_no;
1063 /* Return 1 + the largest label number used so far in the current function. */
1066 max_label_num (void)
1068 return label_num;
1071 /* Return first label number used in this function (if any were used). */
1074 get_first_label_num (void)
1076 return first_label_num;
1079 /* If the rtx for label was created during the expansion of a nested
1080 function, then first_label_num won't include this label number.
1081 Fix this now so that array indicies work later. */
1083 void
1084 maybe_set_first_label_num (rtx x)
1086 if (CODE_LABEL_NUMBER (x) < first_label_num)
1087 first_label_num = CODE_LABEL_NUMBER (x);
1090 /* Return a value representing some low-order bits of X, where the number
1091 of low-order bits is given by MODE. Note that no conversion is done
1092 between floating-point and fixed-point values, rather, the bit
1093 representation is returned.
1095 This function handles the cases in common between gen_lowpart, below,
1096 and two variants in cse.c and combine.c. These are the cases that can
1097 be safely handled at all points in the compilation.
1099 If this is not a case we can handle, return 0. */
1102 gen_lowpart_common (enum machine_mode mode, rtx x)
1104 int msize = GET_MODE_SIZE (mode);
1105 int xsize;
1106 int offset = 0;
1107 enum machine_mode innermode;
1109 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1110 so we have to make one up. Yuk. */
1111 innermode = GET_MODE (x);
1112 if (GET_CODE (x) == CONST_INT
1113 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1114 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1115 else if (innermode == VOIDmode)
1116 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1118 xsize = GET_MODE_SIZE (innermode);
1120 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1122 if (innermode == mode)
1123 return x;
1125 /* MODE must occupy no more words than the mode of X. */
1126 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1127 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1128 return 0;
1130 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1131 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1132 return 0;
1134 offset = subreg_lowpart_offset (mode, innermode);
1136 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1137 && (GET_MODE_CLASS (mode) == MODE_INT
1138 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1140 /* If we are getting the low-order part of something that has been
1141 sign- or zero-extended, we can either just use the object being
1142 extended or make a narrower extension. If we want an even smaller
1143 piece than the size of the object being extended, call ourselves
1144 recursively.
1146 This case is used mostly by combine and cse. */
1148 if (GET_MODE (XEXP (x, 0)) == mode)
1149 return XEXP (x, 0);
1150 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1151 return gen_lowpart_common (mode, XEXP (x, 0));
1152 else if (msize < xsize)
1153 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1155 else if (GET_CODE (x) == SUBREG || REG_P (x)
1156 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1157 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1158 return simplify_gen_subreg (mode, x, innermode, offset);
1160 /* Otherwise, we can't do this. */
1161 return 0;
1165 gen_highpart (enum machine_mode mode, rtx x)
1167 unsigned int msize = GET_MODE_SIZE (mode);
1168 rtx result;
1170 /* This case loses if X is a subreg. To catch bugs early,
1171 complain if an invalid MODE is used even in other cases. */
1172 gcc_assert (msize <= UNITS_PER_WORD
1173 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1175 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1176 subreg_highpart_offset (mode, GET_MODE (x)));
1177 gcc_assert (result);
1179 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1180 the target if we have a MEM. gen_highpart must return a valid operand,
1181 emitting code if necessary to do so. */
1182 if (MEM_P (result))
1184 result = validize_mem (result);
1185 gcc_assert (result);
1188 return result;
1191 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1192 be VOIDmode constant. */
1194 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1196 if (GET_MODE (exp) != VOIDmode)
1198 gcc_assert (GET_MODE (exp) == innermode);
1199 return gen_highpart (outermode, exp);
1201 return simplify_gen_subreg (outermode, exp, innermode,
1202 subreg_highpart_offset (outermode, innermode));
1205 /* Return offset in bytes to get OUTERMODE low part
1206 of the value in mode INNERMODE stored in memory in target format. */
1208 unsigned int
1209 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1211 unsigned int offset = 0;
1212 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1214 if (difference > 0)
1216 if (WORDS_BIG_ENDIAN)
1217 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1218 if (BYTES_BIG_ENDIAN)
1219 offset += difference % UNITS_PER_WORD;
1222 return offset;
1225 /* Return offset in bytes to get OUTERMODE high part
1226 of the value in mode INNERMODE stored in memory in target format. */
1227 unsigned int
1228 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1230 unsigned int offset = 0;
1231 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1233 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1235 if (difference > 0)
1237 if (! WORDS_BIG_ENDIAN)
1238 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1239 if (! BYTES_BIG_ENDIAN)
1240 offset += difference % UNITS_PER_WORD;
1243 return offset;
1246 /* Return 1 iff X, assumed to be a SUBREG,
1247 refers to the least significant part of its containing reg.
1248 If X is not a SUBREG, always return 1 (it is its own low part!). */
1251 subreg_lowpart_p (rtx x)
1253 if (GET_CODE (x) != SUBREG)
1254 return 1;
1255 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1256 return 0;
1258 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1259 == SUBREG_BYTE (x));
1262 /* Return subword OFFSET of operand OP.
1263 The word number, OFFSET, is interpreted as the word number starting
1264 at the low-order address. OFFSET 0 is the low-order word if not
1265 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1267 If we cannot extract the required word, we return zero. Otherwise,
1268 an rtx corresponding to the requested word will be returned.
1270 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1271 reload has completed, a valid address will always be returned. After
1272 reload, if a valid address cannot be returned, we return zero.
1274 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1275 it is the responsibility of the caller.
1277 MODE is the mode of OP in case it is a CONST_INT.
1279 ??? This is still rather broken for some cases. The problem for the
1280 moment is that all callers of this thing provide no 'goal mode' to
1281 tell us to work with. This exists because all callers were written
1282 in a word based SUBREG world.
1283 Now use of this function can be deprecated by simplify_subreg in most
1284 cases.
1288 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1290 if (mode == VOIDmode)
1291 mode = GET_MODE (op);
1293 gcc_assert (mode != VOIDmode);
1295 /* If OP is narrower than a word, fail. */
1296 if (mode != BLKmode
1297 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1298 return 0;
1300 /* If we want a word outside OP, return zero. */
1301 if (mode != BLKmode
1302 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1303 return const0_rtx;
1305 /* Form a new MEM at the requested address. */
1306 if (MEM_P (op))
1308 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1310 if (! validate_address)
1311 return new;
1313 else if (reload_completed)
1315 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1316 return 0;
1318 else
1319 return replace_equiv_address (new, XEXP (new, 0));
1322 /* Rest can be handled by simplify_subreg. */
1323 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1326 /* Similar to `operand_subword', but never return 0. If we can't
1327 extract the required subword, put OP into a register and try again.
1328 The second attempt must succeed. We always validate the address in
1329 this case.
1331 MODE is the mode of OP, in case it is CONST_INT. */
1334 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1336 rtx result = operand_subword (op, offset, 1, mode);
1338 if (result)
1339 return result;
1341 if (mode != BLKmode && mode != VOIDmode)
1343 /* If this is a register which can not be accessed by words, copy it
1344 to a pseudo register. */
1345 if (REG_P (op))
1346 op = copy_to_reg (op);
1347 else
1348 op = force_reg (mode, op);
1351 result = operand_subword (op, offset, 1, mode);
1352 gcc_assert (result);
1354 return result;
1357 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1358 or (2) a component ref of something variable. Represent the later with
1359 a NULL expression. */
1361 static tree
1362 component_ref_for_mem_expr (tree ref)
1364 tree inner = TREE_OPERAND (ref, 0);
1366 if (TREE_CODE (inner) == COMPONENT_REF)
1367 inner = component_ref_for_mem_expr (inner);
1368 else
1370 /* Now remove any conversions: they don't change what the underlying
1371 object is. Likewise for SAVE_EXPR. */
1372 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1373 || TREE_CODE (inner) == NON_LVALUE_EXPR
1374 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1375 || TREE_CODE (inner) == SAVE_EXPR)
1376 inner = TREE_OPERAND (inner, 0);
1378 if (! DECL_P (inner))
1379 inner = NULL_TREE;
1382 if (inner == TREE_OPERAND (ref, 0))
1383 return ref;
1384 else
1385 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1386 TREE_OPERAND (ref, 1), NULL_TREE);
1389 /* Returns 1 if both MEM_EXPR can be considered equal
1390 and 0 otherwise. */
1393 mem_expr_equal_p (tree expr1, tree expr2)
1395 if (expr1 == expr2)
1396 return 1;
1398 if (! expr1 || ! expr2)
1399 return 0;
1401 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1402 return 0;
1404 if (TREE_CODE (expr1) == COMPONENT_REF)
1405 return
1406 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1407 TREE_OPERAND (expr2, 0))
1408 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1409 TREE_OPERAND (expr2, 1));
1411 if (INDIRECT_REF_P (expr1))
1412 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1413 TREE_OPERAND (expr2, 0));
1415 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1416 have been resolved here. */
1417 gcc_assert (DECL_P (expr1));
1419 /* Decls with different pointers can't be equal. */
1420 return 0;
1423 /* Given REF, a MEM, and T, either the type of X or the expression
1424 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1425 if we are making a new object of this type. BITPOS is nonzero if
1426 there is an offset outstanding on T that will be applied later. */
1428 void
1429 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1430 HOST_WIDE_INT bitpos)
1432 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1433 tree expr = MEM_EXPR (ref);
1434 rtx offset = MEM_OFFSET (ref);
1435 rtx size = MEM_SIZE (ref);
1436 unsigned int align = MEM_ALIGN (ref);
1437 HOST_WIDE_INT apply_bitpos = 0;
1438 tree type;
1440 /* It can happen that type_for_mode was given a mode for which there
1441 is no language-level type. In which case it returns NULL, which
1442 we can see here. */
1443 if (t == NULL_TREE)
1444 return;
1446 type = TYPE_P (t) ? t : TREE_TYPE (t);
1447 if (type == error_mark_node)
1448 return;
1450 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1451 wrong answer, as it assumes that DECL_RTL already has the right alias
1452 info. Callers should not set DECL_RTL until after the call to
1453 set_mem_attributes. */
1454 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1456 /* Get the alias set from the expression or type (perhaps using a
1457 front-end routine) and use it. */
1458 alias = get_alias_set (t);
1460 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1461 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1462 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1464 /* If we are making an object of this type, or if this is a DECL, we know
1465 that it is a scalar if the type is not an aggregate. */
1466 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1467 MEM_SCALAR_P (ref) = 1;
1469 /* We can set the alignment from the type if we are making an object,
1470 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1471 if (objectp || TREE_CODE (t) == INDIRECT_REF
1472 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1473 || TYPE_ALIGN_OK (type))
1474 align = MAX (align, TYPE_ALIGN (type));
1475 else
1476 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1478 if (integer_zerop (TREE_OPERAND (t, 1)))
1479 /* We don't know anything about the alignment. */
1480 align = BITS_PER_UNIT;
1481 else
1482 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1485 /* If the size is known, we can set that. */
1486 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1487 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1489 /* If T is not a type, we may be able to deduce some more information about
1490 the expression. */
1491 if (! TYPE_P (t))
1493 tree base;
1495 if (TREE_THIS_VOLATILE (t))
1496 MEM_VOLATILE_P (ref) = 1;
1498 /* Now remove any conversions: they don't change what the underlying
1499 object is. Likewise for SAVE_EXPR. */
1500 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1501 || TREE_CODE (t) == NON_LVALUE_EXPR
1502 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1503 || TREE_CODE (t) == SAVE_EXPR)
1504 t = TREE_OPERAND (t, 0);
1506 /* We may look through structure-like accesses for the purposes of
1507 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1508 base = t;
1509 while (TREE_CODE (base) == COMPONENT_REF
1510 || TREE_CODE (base) == REALPART_EXPR
1511 || TREE_CODE (base) == IMAGPART_EXPR
1512 || TREE_CODE (base) == BIT_FIELD_REF)
1513 base = TREE_OPERAND (base, 0);
1515 if (DECL_P (base))
1517 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1518 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1519 else
1520 MEM_NOTRAP_P (ref) = 1;
1522 else
1523 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1525 base = get_base_address (base);
1526 if (base && DECL_P (base)
1527 && TREE_READONLY (base)
1528 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1530 tree base_type = TREE_TYPE (base);
1531 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1532 || DECL_ARTIFICIAL (base));
1533 MEM_READONLY_P (ref) = 1;
1536 /* If this expression uses it's parent's alias set, mark it such
1537 that we won't change it. */
1538 if (component_uses_parent_alias_set (t))
1539 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1541 /* If this is a decl, set the attributes of the MEM from it. */
1542 if (DECL_P (t))
1544 expr = t;
1545 offset = const0_rtx;
1546 apply_bitpos = bitpos;
1547 size = (DECL_SIZE_UNIT (t)
1548 && host_integerp (DECL_SIZE_UNIT (t), 1)
1549 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1550 align = DECL_ALIGN (t);
1553 /* If this is a constant, we know the alignment. */
1554 else if (CONSTANT_CLASS_P (t))
1556 align = TYPE_ALIGN (type);
1557 #ifdef CONSTANT_ALIGNMENT
1558 align = CONSTANT_ALIGNMENT (t, align);
1559 #endif
1562 /* If this is a field reference and not a bit-field, record it. */
1563 /* ??? There is some information that can be gleened from bit-fields,
1564 such as the word offset in the structure that might be modified.
1565 But skip it for now. */
1566 else if (TREE_CODE (t) == COMPONENT_REF
1567 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1569 expr = component_ref_for_mem_expr (t);
1570 offset = const0_rtx;
1571 apply_bitpos = bitpos;
1572 /* ??? Any reason the field size would be different than
1573 the size we got from the type? */
1576 /* If this is an array reference, look for an outer field reference. */
1577 else if (TREE_CODE (t) == ARRAY_REF)
1579 tree off_tree = size_zero_node;
1580 /* We can't modify t, because we use it at the end of the
1581 function. */
1582 tree t2 = t;
1586 tree index = TREE_OPERAND (t2, 1);
1587 tree low_bound = array_ref_low_bound (t2);
1588 tree unit_size = array_ref_element_size (t2);
1590 /* We assume all arrays have sizes that are a multiple of a byte.
1591 First subtract the lower bound, if any, in the type of the
1592 index, then convert to sizetype and multiply by the size of
1593 the array element. */
1594 if (! integer_zerop (low_bound))
1595 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1596 index, low_bound);
1598 off_tree = size_binop (PLUS_EXPR,
1599 size_binop (MULT_EXPR,
1600 fold_convert (sizetype,
1601 index),
1602 unit_size),
1603 off_tree);
1604 t2 = TREE_OPERAND (t2, 0);
1606 while (TREE_CODE (t2) == ARRAY_REF);
1608 if (DECL_P (t2))
1610 expr = t2;
1611 offset = NULL;
1612 if (host_integerp (off_tree, 1))
1614 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1615 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1616 align = DECL_ALIGN (t2);
1617 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1618 align = aoff;
1619 offset = GEN_INT (ioff);
1620 apply_bitpos = bitpos;
1623 else if (TREE_CODE (t2) == COMPONENT_REF)
1625 expr = component_ref_for_mem_expr (t2);
1626 if (host_integerp (off_tree, 1))
1628 offset = GEN_INT (tree_low_cst (off_tree, 1));
1629 apply_bitpos = bitpos;
1631 /* ??? Any reason the field size would be different than
1632 the size we got from the type? */
1634 else if (flag_argument_noalias > 1
1635 && (INDIRECT_REF_P (t2))
1636 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1638 expr = t2;
1639 offset = NULL;
1643 /* If this is a Fortran indirect argument reference, record the
1644 parameter decl. */
1645 else if (flag_argument_noalias > 1
1646 && (INDIRECT_REF_P (t))
1647 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1649 expr = t;
1650 offset = NULL;
1654 /* If we modified OFFSET based on T, then subtract the outstanding
1655 bit position offset. Similarly, increase the size of the accessed
1656 object to contain the negative offset. */
1657 if (apply_bitpos)
1659 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1660 if (size)
1661 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1664 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1666 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1667 we're overlapping. */
1668 offset = NULL;
1669 expr = NULL;
1672 /* Now set the attributes we computed above. */
1673 MEM_ATTRS (ref)
1674 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1676 /* If this is already known to be a scalar or aggregate, we are done. */
1677 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1678 return;
1680 /* If it is a reference into an aggregate, this is part of an aggregate.
1681 Otherwise we don't know. */
1682 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1683 || TREE_CODE (t) == ARRAY_RANGE_REF
1684 || TREE_CODE (t) == BIT_FIELD_REF)
1685 MEM_IN_STRUCT_P (ref) = 1;
1688 void
1689 set_mem_attributes (rtx ref, tree t, int objectp)
1691 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1694 /* Set the decl for MEM to DECL. */
1696 void
1697 set_mem_attrs_from_reg (rtx mem, rtx reg)
1699 MEM_ATTRS (mem)
1700 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1701 GEN_INT (REG_OFFSET (reg)),
1702 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1705 /* Set the alias set of MEM to SET. */
1707 void
1708 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1710 #ifdef ENABLE_CHECKING
1711 /* If the new and old alias sets don't conflict, something is wrong. */
1712 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1713 #endif
1715 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1716 MEM_SIZE (mem), MEM_ALIGN (mem),
1717 GET_MODE (mem));
1720 /* Set the alignment of MEM to ALIGN bits. */
1722 void
1723 set_mem_align (rtx mem, unsigned int align)
1725 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1726 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1727 GET_MODE (mem));
1730 /* Set the expr for MEM to EXPR. */
1732 void
1733 set_mem_expr (rtx mem, tree expr)
1735 MEM_ATTRS (mem)
1736 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1737 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1740 /* Set the offset of MEM to OFFSET. */
1742 void
1743 set_mem_offset (rtx mem, rtx offset)
1745 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1746 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1747 GET_MODE (mem));
1750 /* Set the size of MEM to SIZE. */
1752 void
1753 set_mem_size (rtx mem, rtx size)
1755 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1756 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1757 GET_MODE (mem));
1760 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1761 and its address changed to ADDR. (VOIDmode means don't change the mode.
1762 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1763 returned memory location is required to be valid. The memory
1764 attributes are not changed. */
1766 static rtx
1767 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1769 rtx new;
1771 gcc_assert (MEM_P (memref));
1772 if (mode == VOIDmode)
1773 mode = GET_MODE (memref);
1774 if (addr == 0)
1775 addr = XEXP (memref, 0);
1776 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1777 && (!validate || memory_address_p (mode, addr)))
1778 return memref;
1780 if (validate)
1782 if (reload_in_progress || reload_completed)
1783 gcc_assert (memory_address_p (mode, addr));
1784 else
1785 addr = memory_address (mode, addr);
1788 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1789 return memref;
1791 new = gen_rtx_MEM (mode, addr);
1792 MEM_COPY_ATTRIBUTES (new, memref);
1793 return new;
1796 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1797 way we are changing MEMREF, so we only preserve the alias set. */
1800 change_address (rtx memref, enum machine_mode mode, rtx addr)
1802 rtx new = change_address_1 (memref, mode, addr, 1), size;
1803 enum machine_mode mmode = GET_MODE (new);
1804 unsigned int align;
1806 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1807 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1809 /* If there are no changes, just return the original memory reference. */
1810 if (new == memref)
1812 if (MEM_ATTRS (memref) == 0
1813 || (MEM_EXPR (memref) == NULL
1814 && MEM_OFFSET (memref) == NULL
1815 && MEM_SIZE (memref) == size
1816 && MEM_ALIGN (memref) == align))
1817 return new;
1819 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1820 MEM_COPY_ATTRIBUTES (new, memref);
1823 MEM_ATTRS (new)
1824 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1826 return new;
1829 /* Return a memory reference like MEMREF, but with its mode changed
1830 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1831 nonzero, the memory address is forced to be valid.
1832 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1833 and caller is responsible for adjusting MEMREF base register. */
1836 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1837 int validate, int adjust)
1839 rtx addr = XEXP (memref, 0);
1840 rtx new;
1841 rtx memoffset = MEM_OFFSET (memref);
1842 rtx size = 0;
1843 unsigned int memalign = MEM_ALIGN (memref);
1845 /* If there are no changes, just return the original memory reference. */
1846 if (mode == GET_MODE (memref) && !offset
1847 && (!validate || memory_address_p (mode, addr)))
1848 return memref;
1850 /* ??? Prefer to create garbage instead of creating shared rtl.
1851 This may happen even if offset is nonzero -- consider
1852 (plus (plus reg reg) const_int) -- so do this always. */
1853 addr = copy_rtx (addr);
1855 if (adjust)
1857 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1858 object, we can merge it into the LO_SUM. */
1859 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1860 && offset >= 0
1861 && (unsigned HOST_WIDE_INT) offset
1862 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1863 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1864 plus_constant (XEXP (addr, 1), offset));
1865 else
1866 addr = plus_constant (addr, offset);
1869 new = change_address_1 (memref, mode, addr, validate);
1871 /* Compute the new values of the memory attributes due to this adjustment.
1872 We add the offsets and update the alignment. */
1873 if (memoffset)
1874 memoffset = GEN_INT (offset + INTVAL (memoffset));
1876 /* Compute the new alignment by taking the MIN of the alignment and the
1877 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1878 if zero. */
1879 if (offset != 0)
1880 memalign
1881 = MIN (memalign,
1882 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1884 /* We can compute the size in a number of ways. */
1885 if (GET_MODE (new) != BLKmode)
1886 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1887 else if (MEM_SIZE (memref))
1888 size = plus_constant (MEM_SIZE (memref), -offset);
1890 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1891 memoffset, size, memalign, GET_MODE (new));
1893 /* At some point, we should validate that this offset is within the object,
1894 if all the appropriate values are known. */
1895 return new;
1898 /* Return a memory reference like MEMREF, but with its mode changed
1899 to MODE and its address changed to ADDR, which is assumed to be
1900 MEMREF offseted by OFFSET bytes. If VALIDATE is
1901 nonzero, the memory address is forced to be valid. */
1904 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1905 HOST_WIDE_INT offset, int validate)
1907 memref = change_address_1 (memref, VOIDmode, addr, validate);
1908 return adjust_address_1 (memref, mode, offset, validate, 0);
1911 /* Return a memory reference like MEMREF, but whose address is changed by
1912 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1913 known to be in OFFSET (possibly 1). */
1916 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1918 rtx new, addr = XEXP (memref, 0);
1920 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1922 /* At this point we don't know _why_ the address is invalid. It
1923 could have secondary memory references, multiplies or anything.
1925 However, if we did go and rearrange things, we can wind up not
1926 being able to recognize the magic around pic_offset_table_rtx.
1927 This stuff is fragile, and is yet another example of why it is
1928 bad to expose PIC machinery too early. */
1929 if (! memory_address_p (GET_MODE (memref), new)
1930 && GET_CODE (addr) == PLUS
1931 && XEXP (addr, 0) == pic_offset_table_rtx)
1933 addr = force_reg (GET_MODE (addr), addr);
1934 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1937 update_temp_slot_address (XEXP (memref, 0), new);
1938 new = change_address_1 (memref, VOIDmode, new, 1);
1940 /* If there are no changes, just return the original memory reference. */
1941 if (new == memref)
1942 return new;
1944 /* Update the alignment to reflect the offset. Reset the offset, which
1945 we don't know. */
1946 MEM_ATTRS (new)
1947 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1948 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1949 GET_MODE (new));
1950 return new;
1953 /* Return a memory reference like MEMREF, but with its address changed to
1954 ADDR. The caller is asserting that the actual piece of memory pointed
1955 to is the same, just the form of the address is being changed, such as
1956 by putting something into a register. */
1959 replace_equiv_address (rtx memref, rtx addr)
1961 /* change_address_1 copies the memory attribute structure without change
1962 and that's exactly what we want here. */
1963 update_temp_slot_address (XEXP (memref, 0), addr);
1964 return change_address_1 (memref, VOIDmode, addr, 1);
1967 /* Likewise, but the reference is not required to be valid. */
1970 replace_equiv_address_nv (rtx memref, rtx addr)
1972 return change_address_1 (memref, VOIDmode, addr, 0);
1975 /* Return a memory reference like MEMREF, but with its mode widened to
1976 MODE and offset by OFFSET. This would be used by targets that e.g.
1977 cannot issue QImode memory operations and have to use SImode memory
1978 operations plus masking logic. */
1981 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
1983 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
1984 tree expr = MEM_EXPR (new);
1985 rtx memoffset = MEM_OFFSET (new);
1986 unsigned int size = GET_MODE_SIZE (mode);
1988 /* If there are no changes, just return the original memory reference. */
1989 if (new == memref)
1990 return new;
1992 /* If we don't know what offset we were at within the expression, then
1993 we can't know if we've overstepped the bounds. */
1994 if (! memoffset)
1995 expr = NULL_TREE;
1997 while (expr)
1999 if (TREE_CODE (expr) == COMPONENT_REF)
2001 tree field = TREE_OPERAND (expr, 1);
2002 tree offset = component_ref_field_offset (expr);
2004 if (! DECL_SIZE_UNIT (field))
2006 expr = NULL_TREE;
2007 break;
2010 /* Is the field at least as large as the access? If so, ok,
2011 otherwise strip back to the containing structure. */
2012 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2013 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2014 && INTVAL (memoffset) >= 0)
2015 break;
2017 if (! host_integerp (offset, 1))
2019 expr = NULL_TREE;
2020 break;
2023 expr = TREE_OPERAND (expr, 0);
2024 memoffset
2025 = (GEN_INT (INTVAL (memoffset)
2026 + tree_low_cst (offset, 1)
2027 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2028 / BITS_PER_UNIT)));
2030 /* Similarly for the decl. */
2031 else if (DECL_P (expr)
2032 && DECL_SIZE_UNIT (expr)
2033 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2034 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2035 && (! memoffset || INTVAL (memoffset) >= 0))
2036 break;
2037 else
2039 /* The widened memory access overflows the expression, which means
2040 that it could alias another expression. Zap it. */
2041 expr = NULL_TREE;
2042 break;
2046 if (! expr)
2047 memoffset = NULL_RTX;
2049 /* The widened memory may alias other stuff, so zap the alias set. */
2050 /* ??? Maybe use get_alias_set on any remaining expression. */
2052 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2053 MEM_ALIGN (new), mode);
2055 return new;
2058 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2061 gen_label_rtx (void)
2063 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2064 NULL, label_num++, NULL);
2067 /* For procedure integration. */
2069 /* Install new pointers to the first and last insns in the chain.
2070 Also, set cur_insn_uid to one higher than the last in use.
2071 Used for an inline-procedure after copying the insn chain. */
2073 void
2074 set_new_first_and_last_insn (rtx first, rtx last)
2076 rtx insn;
2078 first_insn = first;
2079 last_insn = last;
2080 cur_insn_uid = 0;
2082 for (insn = first; insn; insn = NEXT_INSN (insn))
2083 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2085 cur_insn_uid++;
2088 /* Go through all the RTL insn bodies and copy any invalid shared
2089 structure. This routine should only be called once. */
2091 static void
2092 unshare_all_rtl_1 (tree fndecl, rtx insn)
2094 tree decl;
2096 /* Make sure that virtual parameters are not shared. */
2097 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2098 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2100 /* Make sure that virtual stack slots are not shared. */
2101 unshare_all_decls (DECL_INITIAL (fndecl));
2103 /* Unshare just about everything else. */
2104 unshare_all_rtl_in_chain (insn);
2106 /* Make sure the addresses of stack slots found outside the insn chain
2107 (such as, in DECL_RTL of a variable) are not shared
2108 with the insn chain.
2110 This special care is necessary when the stack slot MEM does not
2111 actually appear in the insn chain. If it does appear, its address
2112 is unshared from all else at that point. */
2113 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2116 /* Go through all the RTL insn bodies and copy any invalid shared
2117 structure, again. This is a fairly expensive thing to do so it
2118 should be done sparingly. */
2120 void
2121 unshare_all_rtl_again (rtx insn)
2123 rtx p;
2124 tree decl;
2126 for (p = insn; p; p = NEXT_INSN (p))
2127 if (INSN_P (p))
2129 reset_used_flags (PATTERN (p));
2130 reset_used_flags (REG_NOTES (p));
2131 reset_used_flags (LOG_LINKS (p));
2134 /* Make sure that virtual stack slots are not shared. */
2135 reset_used_decls (DECL_INITIAL (cfun->decl));
2137 /* Make sure that virtual parameters are not shared. */
2138 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2139 reset_used_flags (DECL_RTL (decl));
2141 reset_used_flags (stack_slot_list);
2143 unshare_all_rtl_1 (cfun->decl, insn);
2146 unsigned int
2147 unshare_all_rtl (void)
2149 unshare_all_rtl_1 (current_function_decl, get_insns ());
2150 return 0;
2153 struct tree_opt_pass pass_unshare_all_rtl =
2155 "unshare", /* name */
2156 NULL, /* gate */
2157 unshare_all_rtl, /* execute */
2158 NULL, /* sub */
2159 NULL, /* next */
2160 0, /* static_pass_number */
2161 0, /* tv_id */
2162 0, /* properties_required */
2163 0, /* properties_provided */
2164 0, /* properties_destroyed */
2165 0, /* todo_flags_start */
2166 TODO_dump_func, /* todo_flags_finish */
2167 0 /* letter */
2171 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2172 Recursively does the same for subexpressions. */
2174 static void
2175 verify_rtx_sharing (rtx orig, rtx insn)
2177 rtx x = orig;
2178 int i;
2179 enum rtx_code code;
2180 const char *format_ptr;
2182 if (x == 0)
2183 return;
2185 code = GET_CODE (x);
2187 /* These types may be freely shared. */
2189 switch (code)
2191 case REG:
2192 case CONST_INT:
2193 case CONST_DOUBLE:
2194 case CONST_VECTOR:
2195 case SYMBOL_REF:
2196 case LABEL_REF:
2197 case CODE_LABEL:
2198 case PC:
2199 case CC0:
2200 case SCRATCH:
2201 return;
2202 /* SCRATCH must be shared because they represent distinct values. */
2203 case CLOBBER:
2204 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2205 return;
2206 break;
2208 case CONST:
2209 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2210 a LABEL_REF, it isn't sharable. */
2211 if (GET_CODE (XEXP (x, 0)) == PLUS
2212 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2213 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2214 return;
2215 break;
2217 case MEM:
2218 /* A MEM is allowed to be shared if its address is constant. */
2219 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2220 || reload_completed || reload_in_progress)
2221 return;
2223 break;
2225 default:
2226 break;
2229 /* This rtx may not be shared. If it has already been seen,
2230 replace it with a copy of itself. */
2231 #ifdef ENABLE_CHECKING
2232 if (RTX_FLAG (x, used))
2234 error ("invalid rtl sharing found in the insn");
2235 debug_rtx (insn);
2236 error ("shared rtx");
2237 debug_rtx (x);
2238 internal_error ("internal consistency failure");
2240 #endif
2241 gcc_assert (!RTX_FLAG (x, used));
2243 RTX_FLAG (x, used) = 1;
2245 /* Now scan the subexpressions recursively. */
2247 format_ptr = GET_RTX_FORMAT (code);
2249 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2251 switch (*format_ptr++)
2253 case 'e':
2254 verify_rtx_sharing (XEXP (x, i), insn);
2255 break;
2257 case 'E':
2258 if (XVEC (x, i) != NULL)
2260 int j;
2261 int len = XVECLEN (x, i);
2263 for (j = 0; j < len; j++)
2265 /* We allow sharing of ASM_OPERANDS inside single
2266 instruction. */
2267 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2268 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2269 == ASM_OPERANDS))
2270 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2271 else
2272 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2275 break;
2278 return;
2281 /* Go through all the RTL insn bodies and check that there is no unexpected
2282 sharing in between the subexpressions. */
2284 void
2285 verify_rtl_sharing (void)
2287 rtx p;
2289 for (p = get_insns (); p; p = NEXT_INSN (p))
2290 if (INSN_P (p))
2292 reset_used_flags (PATTERN (p));
2293 reset_used_flags (REG_NOTES (p));
2294 reset_used_flags (LOG_LINKS (p));
2297 for (p = get_insns (); p; p = NEXT_INSN (p))
2298 if (INSN_P (p))
2300 verify_rtx_sharing (PATTERN (p), p);
2301 verify_rtx_sharing (REG_NOTES (p), p);
2302 verify_rtx_sharing (LOG_LINKS (p), p);
2306 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2307 Assumes the mark bits are cleared at entry. */
2309 void
2310 unshare_all_rtl_in_chain (rtx insn)
2312 for (; insn; insn = NEXT_INSN (insn))
2313 if (INSN_P (insn))
2315 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2316 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2317 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2321 /* Go through all virtual stack slots of a function and copy any
2322 shared structure. */
2323 static void
2324 unshare_all_decls (tree blk)
2326 tree t;
2328 /* Copy shared decls. */
2329 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2330 if (DECL_RTL_SET_P (t))
2331 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2333 /* Now process sub-blocks. */
2334 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2335 unshare_all_decls (t);
2338 /* Go through all virtual stack slots of a function and mark them as
2339 not shared. */
2340 static void
2341 reset_used_decls (tree blk)
2343 tree t;
2345 /* Mark decls. */
2346 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2347 if (DECL_RTL_SET_P (t))
2348 reset_used_flags (DECL_RTL (t));
2350 /* Now process sub-blocks. */
2351 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2352 reset_used_decls (t);
2355 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2356 Recursively does the same for subexpressions. Uses
2357 copy_rtx_if_shared_1 to reduce stack space. */
2360 copy_rtx_if_shared (rtx orig)
2362 copy_rtx_if_shared_1 (&orig);
2363 return orig;
2366 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2367 use. Recursively does the same for subexpressions. */
2369 static void
2370 copy_rtx_if_shared_1 (rtx *orig1)
2372 rtx x;
2373 int i;
2374 enum rtx_code code;
2375 rtx *last_ptr;
2376 const char *format_ptr;
2377 int copied = 0;
2378 int length;
2380 /* Repeat is used to turn tail-recursion into iteration. */
2381 repeat:
2382 x = *orig1;
2384 if (x == 0)
2385 return;
2387 code = GET_CODE (x);
2389 /* These types may be freely shared. */
2391 switch (code)
2393 case REG:
2394 case CONST_INT:
2395 case CONST_DOUBLE:
2396 case CONST_VECTOR:
2397 case SYMBOL_REF:
2398 case LABEL_REF:
2399 case CODE_LABEL:
2400 case PC:
2401 case CC0:
2402 case SCRATCH:
2403 /* SCRATCH must be shared because they represent distinct values. */
2404 return;
2405 case CLOBBER:
2406 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2407 return;
2408 break;
2410 case CONST:
2411 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2412 a LABEL_REF, it isn't sharable. */
2413 if (GET_CODE (XEXP (x, 0)) == PLUS
2414 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2415 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2416 return;
2417 break;
2419 case INSN:
2420 case JUMP_INSN:
2421 case CALL_INSN:
2422 case NOTE:
2423 case BARRIER:
2424 /* The chain of insns is not being copied. */
2425 return;
2427 default:
2428 break;
2431 /* This rtx may not be shared. If it has already been seen,
2432 replace it with a copy of itself. */
2434 if (RTX_FLAG (x, used))
2436 x = shallow_copy_rtx (x);
2437 copied = 1;
2439 RTX_FLAG (x, used) = 1;
2441 /* Now scan the subexpressions recursively.
2442 We can store any replaced subexpressions directly into X
2443 since we know X is not shared! Any vectors in X
2444 must be copied if X was copied. */
2446 format_ptr = GET_RTX_FORMAT (code);
2447 length = GET_RTX_LENGTH (code);
2448 last_ptr = NULL;
2450 for (i = 0; i < length; i++)
2452 switch (*format_ptr++)
2454 case 'e':
2455 if (last_ptr)
2456 copy_rtx_if_shared_1 (last_ptr);
2457 last_ptr = &XEXP (x, i);
2458 break;
2460 case 'E':
2461 if (XVEC (x, i) != NULL)
2463 int j;
2464 int len = XVECLEN (x, i);
2466 /* Copy the vector iff I copied the rtx and the length
2467 is nonzero. */
2468 if (copied && len > 0)
2469 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2471 /* Call recursively on all inside the vector. */
2472 for (j = 0; j < len; j++)
2474 if (last_ptr)
2475 copy_rtx_if_shared_1 (last_ptr);
2476 last_ptr = &XVECEXP (x, i, j);
2479 break;
2482 *orig1 = x;
2483 if (last_ptr)
2485 orig1 = last_ptr;
2486 goto repeat;
2488 return;
2491 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2492 to look for shared sub-parts. */
2494 void
2495 reset_used_flags (rtx x)
2497 int i, j;
2498 enum rtx_code code;
2499 const char *format_ptr;
2500 int length;
2502 /* Repeat is used to turn tail-recursion into iteration. */
2503 repeat:
2504 if (x == 0)
2505 return;
2507 code = GET_CODE (x);
2509 /* These types may be freely shared so we needn't do any resetting
2510 for them. */
2512 switch (code)
2514 case REG:
2515 case CONST_INT:
2516 case CONST_DOUBLE:
2517 case CONST_VECTOR:
2518 case SYMBOL_REF:
2519 case CODE_LABEL:
2520 case PC:
2521 case CC0:
2522 return;
2524 case INSN:
2525 case JUMP_INSN:
2526 case CALL_INSN:
2527 case NOTE:
2528 case LABEL_REF:
2529 case BARRIER:
2530 /* The chain of insns is not being copied. */
2531 return;
2533 default:
2534 break;
2537 RTX_FLAG (x, used) = 0;
2539 format_ptr = GET_RTX_FORMAT (code);
2540 length = GET_RTX_LENGTH (code);
2542 for (i = 0; i < length; i++)
2544 switch (*format_ptr++)
2546 case 'e':
2547 if (i == length-1)
2549 x = XEXP (x, i);
2550 goto repeat;
2552 reset_used_flags (XEXP (x, i));
2553 break;
2555 case 'E':
2556 for (j = 0; j < XVECLEN (x, i); j++)
2557 reset_used_flags (XVECEXP (x, i, j));
2558 break;
2563 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2564 to look for shared sub-parts. */
2566 void
2567 set_used_flags (rtx x)
2569 int i, j;
2570 enum rtx_code code;
2571 const char *format_ptr;
2573 if (x == 0)
2574 return;
2576 code = GET_CODE (x);
2578 /* These types may be freely shared so we needn't do any resetting
2579 for them. */
2581 switch (code)
2583 case REG:
2584 case CONST_INT:
2585 case CONST_DOUBLE:
2586 case CONST_VECTOR:
2587 case SYMBOL_REF:
2588 case CODE_LABEL:
2589 case PC:
2590 case CC0:
2591 return;
2593 case INSN:
2594 case JUMP_INSN:
2595 case CALL_INSN:
2596 case NOTE:
2597 case LABEL_REF:
2598 case BARRIER:
2599 /* The chain of insns is not being copied. */
2600 return;
2602 default:
2603 break;
2606 RTX_FLAG (x, used) = 1;
2608 format_ptr = GET_RTX_FORMAT (code);
2609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2611 switch (*format_ptr++)
2613 case 'e':
2614 set_used_flags (XEXP (x, i));
2615 break;
2617 case 'E':
2618 for (j = 0; j < XVECLEN (x, i); j++)
2619 set_used_flags (XVECEXP (x, i, j));
2620 break;
2625 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2626 Return X or the rtx for the pseudo reg the value of X was copied into.
2627 OTHER must be valid as a SET_DEST. */
2630 make_safe_from (rtx x, rtx other)
2632 while (1)
2633 switch (GET_CODE (other))
2635 case SUBREG:
2636 other = SUBREG_REG (other);
2637 break;
2638 case STRICT_LOW_PART:
2639 case SIGN_EXTEND:
2640 case ZERO_EXTEND:
2641 other = XEXP (other, 0);
2642 break;
2643 default:
2644 goto done;
2646 done:
2647 if ((MEM_P (other)
2648 && ! CONSTANT_P (x)
2649 && !REG_P (x)
2650 && GET_CODE (x) != SUBREG)
2651 || (REG_P (other)
2652 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2653 || reg_mentioned_p (other, x))))
2655 rtx temp = gen_reg_rtx (GET_MODE (x));
2656 emit_move_insn (temp, x);
2657 return temp;
2659 return x;
2662 /* Emission of insns (adding them to the doubly-linked list). */
2664 /* Return the first insn of the current sequence or current function. */
2667 get_insns (void)
2669 return first_insn;
2672 /* Specify a new insn as the first in the chain. */
2674 void
2675 set_first_insn (rtx insn)
2677 gcc_assert (!PREV_INSN (insn));
2678 first_insn = insn;
2681 /* Return the last insn emitted in current sequence or current function. */
2684 get_last_insn (void)
2686 return last_insn;
2689 /* Specify a new insn as the last in the chain. */
2691 void
2692 set_last_insn (rtx insn)
2694 gcc_assert (!NEXT_INSN (insn));
2695 last_insn = insn;
2698 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2701 get_last_insn_anywhere (void)
2703 struct sequence_stack *stack;
2704 if (last_insn)
2705 return last_insn;
2706 for (stack = seq_stack; stack; stack = stack->next)
2707 if (stack->last != 0)
2708 return stack->last;
2709 return 0;
2712 /* Return the first nonnote insn emitted in current sequence or current
2713 function. This routine looks inside SEQUENCEs. */
2716 get_first_nonnote_insn (void)
2718 rtx insn = first_insn;
2720 if (insn)
2722 if (NOTE_P (insn))
2723 for (insn = next_insn (insn);
2724 insn && NOTE_P (insn);
2725 insn = next_insn (insn))
2726 continue;
2727 else
2729 if (NONJUMP_INSN_P (insn)
2730 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2731 insn = XVECEXP (PATTERN (insn), 0, 0);
2735 return insn;
2738 /* Return the last nonnote insn emitted in current sequence or current
2739 function. This routine looks inside SEQUENCEs. */
2742 get_last_nonnote_insn (void)
2744 rtx insn = last_insn;
2746 if (insn)
2748 if (NOTE_P (insn))
2749 for (insn = previous_insn (insn);
2750 insn && NOTE_P (insn);
2751 insn = previous_insn (insn))
2752 continue;
2753 else
2755 if (NONJUMP_INSN_P (insn)
2756 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2757 insn = XVECEXP (PATTERN (insn), 0,
2758 XVECLEN (PATTERN (insn), 0) - 1);
2762 return insn;
2765 /* Return a number larger than any instruction's uid in this function. */
2768 get_max_uid (void)
2770 return cur_insn_uid;
2773 /* Renumber instructions so that no instruction UIDs are wasted. */
2775 void
2776 renumber_insns (void)
2778 rtx insn;
2780 /* If we're not supposed to renumber instructions, don't. */
2781 if (!flag_renumber_insns)
2782 return;
2784 /* If there aren't that many instructions, then it's not really
2785 worth renumbering them. */
2786 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2787 return;
2789 cur_insn_uid = 1;
2791 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2793 if (dump_file)
2794 fprintf (dump_file, "Renumbering insn %d to %d\n",
2795 INSN_UID (insn), cur_insn_uid);
2796 INSN_UID (insn) = cur_insn_uid++;
2800 /* Return the next insn. If it is a SEQUENCE, return the first insn
2801 of the sequence. */
2804 next_insn (rtx insn)
2806 if (insn)
2808 insn = NEXT_INSN (insn);
2809 if (insn && NONJUMP_INSN_P (insn)
2810 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2811 insn = XVECEXP (PATTERN (insn), 0, 0);
2814 return insn;
2817 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2818 of the sequence. */
2821 previous_insn (rtx insn)
2823 if (insn)
2825 insn = PREV_INSN (insn);
2826 if (insn && NONJUMP_INSN_P (insn)
2827 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2828 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2831 return insn;
2834 /* Return the next insn after INSN that is not a NOTE. This routine does not
2835 look inside SEQUENCEs. */
2838 next_nonnote_insn (rtx insn)
2840 while (insn)
2842 insn = NEXT_INSN (insn);
2843 if (insn == 0 || !NOTE_P (insn))
2844 break;
2847 return insn;
2850 /* Return the previous insn before INSN that is not a NOTE. This routine does
2851 not look inside SEQUENCEs. */
2854 prev_nonnote_insn (rtx insn)
2856 while (insn)
2858 insn = PREV_INSN (insn);
2859 if (insn == 0 || !NOTE_P (insn))
2860 break;
2863 return insn;
2866 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2867 or 0, if there is none. This routine does not look inside
2868 SEQUENCEs. */
2871 next_real_insn (rtx insn)
2873 while (insn)
2875 insn = NEXT_INSN (insn);
2876 if (insn == 0 || INSN_P (insn))
2877 break;
2880 return insn;
2883 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2884 or 0, if there is none. This routine does not look inside
2885 SEQUENCEs. */
2888 prev_real_insn (rtx insn)
2890 while (insn)
2892 insn = PREV_INSN (insn);
2893 if (insn == 0 || INSN_P (insn))
2894 break;
2897 return insn;
2900 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2901 This routine does not look inside SEQUENCEs. */
2904 last_call_insn (void)
2906 rtx insn;
2908 for (insn = get_last_insn ();
2909 insn && !CALL_P (insn);
2910 insn = PREV_INSN (insn))
2913 return insn;
2916 /* Find the next insn after INSN that really does something. This routine
2917 does not look inside SEQUENCEs. Until reload has completed, this is the
2918 same as next_real_insn. */
2921 active_insn_p (rtx insn)
2923 return (CALL_P (insn) || JUMP_P (insn)
2924 || (NONJUMP_INSN_P (insn)
2925 && (! reload_completed
2926 || (GET_CODE (PATTERN (insn)) != USE
2927 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2931 next_active_insn (rtx insn)
2933 while (insn)
2935 insn = NEXT_INSN (insn);
2936 if (insn == 0 || active_insn_p (insn))
2937 break;
2940 return insn;
2943 /* Find the last insn before INSN that really does something. This routine
2944 does not look inside SEQUENCEs. Until reload has completed, this is the
2945 same as prev_real_insn. */
2948 prev_active_insn (rtx insn)
2950 while (insn)
2952 insn = PREV_INSN (insn);
2953 if (insn == 0 || active_insn_p (insn))
2954 break;
2957 return insn;
2960 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2963 next_label (rtx insn)
2965 while (insn)
2967 insn = NEXT_INSN (insn);
2968 if (insn == 0 || LABEL_P (insn))
2969 break;
2972 return insn;
2975 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2978 prev_label (rtx insn)
2980 while (insn)
2982 insn = PREV_INSN (insn);
2983 if (insn == 0 || LABEL_P (insn))
2984 break;
2987 return insn;
2990 /* Return the last label to mark the same position as LABEL. Return null
2991 if LABEL itself is null. */
2994 skip_consecutive_labels (rtx label)
2996 rtx insn;
2998 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
2999 if (LABEL_P (insn))
3000 label = insn;
3002 return label;
3005 #ifdef HAVE_cc0
3006 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3007 and REG_CC_USER notes so we can find it. */
3009 void
3010 link_cc0_insns (rtx insn)
3012 rtx user = next_nonnote_insn (insn);
3014 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3015 user = XVECEXP (PATTERN (user), 0, 0);
3017 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3018 REG_NOTES (user));
3019 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3022 /* Return the next insn that uses CC0 after INSN, which is assumed to
3023 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3024 applied to the result of this function should yield INSN).
3026 Normally, this is simply the next insn. However, if a REG_CC_USER note
3027 is present, it contains the insn that uses CC0.
3029 Return 0 if we can't find the insn. */
3032 next_cc0_user (rtx insn)
3034 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3036 if (note)
3037 return XEXP (note, 0);
3039 insn = next_nonnote_insn (insn);
3040 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3041 insn = XVECEXP (PATTERN (insn), 0, 0);
3043 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3044 return insn;
3046 return 0;
3049 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3050 note, it is the previous insn. */
3053 prev_cc0_setter (rtx insn)
3055 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3057 if (note)
3058 return XEXP (note, 0);
3060 insn = prev_nonnote_insn (insn);
3061 gcc_assert (sets_cc0_p (PATTERN (insn)));
3063 return insn;
3065 #endif
3067 /* Increment the label uses for all labels present in rtx. */
3069 static void
3070 mark_label_nuses (rtx x)
3072 enum rtx_code code;
3073 int i, j;
3074 const char *fmt;
3076 code = GET_CODE (x);
3077 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3078 LABEL_NUSES (XEXP (x, 0))++;
3080 fmt = GET_RTX_FORMAT (code);
3081 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3083 if (fmt[i] == 'e')
3084 mark_label_nuses (XEXP (x, i));
3085 else if (fmt[i] == 'E')
3086 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3087 mark_label_nuses (XVECEXP (x, i, j));
3092 /* Try splitting insns that can be split for better scheduling.
3093 PAT is the pattern which might split.
3094 TRIAL is the insn providing PAT.
3095 LAST is nonzero if we should return the last insn of the sequence produced.
3097 If this routine succeeds in splitting, it returns the first or last
3098 replacement insn depending on the value of LAST. Otherwise, it
3099 returns TRIAL. If the insn to be returned can be split, it will be. */
3102 try_split (rtx pat, rtx trial, int last)
3104 rtx before = PREV_INSN (trial);
3105 rtx after = NEXT_INSN (trial);
3106 int has_barrier = 0;
3107 rtx tem;
3108 rtx note, seq;
3109 int probability;
3110 rtx insn_last, insn;
3111 int njumps = 0;
3113 if (any_condjump_p (trial)
3114 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3115 split_branch_probability = INTVAL (XEXP (note, 0));
3116 probability = split_branch_probability;
3118 seq = split_insns (pat, trial);
3120 split_branch_probability = -1;
3122 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3123 We may need to handle this specially. */
3124 if (after && BARRIER_P (after))
3126 has_barrier = 1;
3127 after = NEXT_INSN (after);
3130 if (!seq)
3131 return trial;
3133 /* Avoid infinite loop if any insn of the result matches
3134 the original pattern. */
3135 insn_last = seq;
3136 while (1)
3138 if (INSN_P (insn_last)
3139 && rtx_equal_p (PATTERN (insn_last), pat))
3140 return trial;
3141 if (!NEXT_INSN (insn_last))
3142 break;
3143 insn_last = NEXT_INSN (insn_last);
3146 /* Mark labels. */
3147 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3149 if (JUMP_P (insn))
3151 mark_jump_label (PATTERN (insn), insn, 0);
3152 njumps++;
3153 if (probability != -1
3154 && any_condjump_p (insn)
3155 && !find_reg_note (insn, REG_BR_PROB, 0))
3157 /* We can preserve the REG_BR_PROB notes only if exactly
3158 one jump is created, otherwise the machine description
3159 is responsible for this step using
3160 split_branch_probability variable. */
3161 gcc_assert (njumps == 1);
3162 REG_NOTES (insn)
3163 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3164 GEN_INT (probability),
3165 REG_NOTES (insn));
3170 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3171 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3172 if (CALL_P (trial))
3174 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3175 if (CALL_P (insn))
3177 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3178 while (*p)
3179 p = &XEXP (*p, 1);
3180 *p = CALL_INSN_FUNCTION_USAGE (trial);
3181 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3185 /* Copy notes, particularly those related to the CFG. */
3186 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3188 switch (REG_NOTE_KIND (note))
3190 case REG_EH_REGION:
3191 insn = insn_last;
3192 while (insn != NULL_RTX)
3194 if (CALL_P (insn)
3195 || (flag_non_call_exceptions && INSN_P (insn)
3196 && may_trap_p (PATTERN (insn))))
3197 REG_NOTES (insn)
3198 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3199 XEXP (note, 0),
3200 REG_NOTES (insn));
3201 insn = PREV_INSN (insn);
3203 break;
3205 case REG_NORETURN:
3206 case REG_SETJMP:
3207 insn = insn_last;
3208 while (insn != NULL_RTX)
3210 if (CALL_P (insn))
3211 REG_NOTES (insn)
3212 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3213 XEXP (note, 0),
3214 REG_NOTES (insn));
3215 insn = PREV_INSN (insn);
3217 break;
3219 case REG_NON_LOCAL_GOTO:
3220 insn = insn_last;
3221 while (insn != NULL_RTX)
3223 if (JUMP_P (insn))
3224 REG_NOTES (insn)
3225 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3226 XEXP (note, 0),
3227 REG_NOTES (insn));
3228 insn = PREV_INSN (insn);
3230 break;
3232 default:
3233 break;
3237 /* If there are LABELS inside the split insns increment the
3238 usage count so we don't delete the label. */
3239 if (NONJUMP_INSN_P (trial))
3241 insn = insn_last;
3242 while (insn != NULL_RTX)
3244 if (NONJUMP_INSN_P (insn))
3245 mark_label_nuses (PATTERN (insn));
3247 insn = PREV_INSN (insn);
3251 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3253 delete_insn (trial);
3254 if (has_barrier)
3255 emit_barrier_after (tem);
3257 /* Recursively call try_split for each new insn created; by the
3258 time control returns here that insn will be fully split, so
3259 set LAST and continue from the insn after the one returned.
3260 We can't use next_active_insn here since AFTER may be a note.
3261 Ignore deleted insns, which can be occur if not optimizing. */
3262 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3263 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3264 tem = try_split (PATTERN (tem), tem, 1);
3266 /* Return either the first or the last insn, depending on which was
3267 requested. */
3268 return last
3269 ? (after ? PREV_INSN (after) : last_insn)
3270 : NEXT_INSN (before);
3273 /* Make and return an INSN rtx, initializing all its slots.
3274 Store PATTERN in the pattern slots. */
3277 make_insn_raw (rtx pattern)
3279 rtx insn;
3281 insn = rtx_alloc (INSN);
3283 INSN_UID (insn) = cur_insn_uid++;
3284 PATTERN (insn) = pattern;
3285 INSN_CODE (insn) = -1;
3286 LOG_LINKS (insn) = NULL;
3287 REG_NOTES (insn) = NULL;
3288 INSN_LOCATOR (insn) = 0;
3289 BLOCK_FOR_INSN (insn) = NULL;
3291 #ifdef ENABLE_RTL_CHECKING
3292 if (insn
3293 && INSN_P (insn)
3294 && (returnjump_p (insn)
3295 || (GET_CODE (insn) == SET
3296 && SET_DEST (insn) == pc_rtx)))
3298 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3299 debug_rtx (insn);
3301 #endif
3303 return insn;
3306 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3309 make_jump_insn_raw (rtx pattern)
3311 rtx insn;
3313 insn = rtx_alloc (JUMP_INSN);
3314 INSN_UID (insn) = cur_insn_uid++;
3316 PATTERN (insn) = pattern;
3317 INSN_CODE (insn) = -1;
3318 LOG_LINKS (insn) = NULL;
3319 REG_NOTES (insn) = NULL;
3320 JUMP_LABEL (insn) = NULL;
3321 INSN_LOCATOR (insn) = 0;
3322 BLOCK_FOR_INSN (insn) = NULL;
3324 return insn;
3327 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3329 static rtx
3330 make_call_insn_raw (rtx pattern)
3332 rtx insn;
3334 insn = rtx_alloc (CALL_INSN);
3335 INSN_UID (insn) = cur_insn_uid++;
3337 PATTERN (insn) = pattern;
3338 INSN_CODE (insn) = -1;
3339 LOG_LINKS (insn) = NULL;
3340 REG_NOTES (insn) = NULL;
3341 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3342 INSN_LOCATOR (insn) = 0;
3343 BLOCK_FOR_INSN (insn) = NULL;
3345 return insn;
3348 /* Add INSN to the end of the doubly-linked list.
3349 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3351 void
3352 add_insn (rtx insn)
3354 PREV_INSN (insn) = last_insn;
3355 NEXT_INSN (insn) = 0;
3357 if (NULL != last_insn)
3358 NEXT_INSN (last_insn) = insn;
3360 if (NULL == first_insn)
3361 first_insn = insn;
3363 last_insn = insn;
3366 /* Add INSN into the doubly-linked list after insn AFTER. This and
3367 the next should be the only functions called to insert an insn once
3368 delay slots have been filled since only they know how to update a
3369 SEQUENCE. */
3371 void
3372 add_insn_after (rtx insn, rtx after)
3374 rtx next = NEXT_INSN (after);
3375 basic_block bb;
3377 gcc_assert (!optimize || !INSN_DELETED_P (after));
3379 NEXT_INSN (insn) = next;
3380 PREV_INSN (insn) = after;
3382 if (next)
3384 PREV_INSN (next) = insn;
3385 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3386 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3388 else if (last_insn == after)
3389 last_insn = insn;
3390 else
3392 struct sequence_stack *stack = seq_stack;
3393 /* Scan all pending sequences too. */
3394 for (; stack; stack = stack->next)
3395 if (after == stack->last)
3397 stack->last = insn;
3398 break;
3401 gcc_assert (stack);
3404 if (!BARRIER_P (after)
3405 && !BARRIER_P (insn)
3406 && (bb = BLOCK_FOR_INSN (after)))
3408 set_block_for_insn (insn, bb);
3409 if (INSN_P (insn))
3410 bb->flags |= BB_DIRTY;
3411 /* Should not happen as first in the BB is always
3412 either NOTE or LABEL. */
3413 if (BB_END (bb) == after
3414 /* Avoid clobbering of structure when creating new BB. */
3415 && !BARRIER_P (insn)
3416 && (!NOTE_P (insn)
3417 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3418 BB_END (bb) = insn;
3421 NEXT_INSN (after) = insn;
3422 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3424 rtx sequence = PATTERN (after);
3425 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3429 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3430 the previous should be the only functions called to insert an insn once
3431 delay slots have been filled since only they know how to update a
3432 SEQUENCE. */
3434 void
3435 add_insn_before (rtx insn, rtx before)
3437 rtx prev = PREV_INSN (before);
3438 basic_block bb;
3440 gcc_assert (!optimize || !INSN_DELETED_P (before));
3442 PREV_INSN (insn) = prev;
3443 NEXT_INSN (insn) = before;
3445 if (prev)
3447 NEXT_INSN (prev) = insn;
3448 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3450 rtx sequence = PATTERN (prev);
3451 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3454 else if (first_insn == before)
3455 first_insn = insn;
3456 else
3458 struct sequence_stack *stack = seq_stack;
3459 /* Scan all pending sequences too. */
3460 for (; stack; stack = stack->next)
3461 if (before == stack->first)
3463 stack->first = insn;
3464 break;
3467 gcc_assert (stack);
3470 if (!BARRIER_P (before)
3471 && !BARRIER_P (insn)
3472 && (bb = BLOCK_FOR_INSN (before)))
3474 set_block_for_insn (insn, bb);
3475 if (INSN_P (insn))
3476 bb->flags |= BB_DIRTY;
3477 /* Should not happen as first in the BB is always either NOTE or
3478 LABEL. */
3479 gcc_assert (BB_HEAD (bb) != insn
3480 /* Avoid clobbering of structure when creating new BB. */
3481 || BARRIER_P (insn)
3482 || (NOTE_P (insn)
3483 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3486 PREV_INSN (before) = insn;
3487 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3488 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3491 /* Remove an insn from its doubly-linked list. This function knows how
3492 to handle sequences. */
3493 void
3494 remove_insn (rtx insn)
3496 rtx next = NEXT_INSN (insn);
3497 rtx prev = PREV_INSN (insn);
3498 basic_block bb;
3500 if (prev)
3502 NEXT_INSN (prev) = next;
3503 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3505 rtx sequence = PATTERN (prev);
3506 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3509 else if (first_insn == insn)
3510 first_insn = next;
3511 else
3513 struct sequence_stack *stack = seq_stack;
3514 /* Scan all pending sequences too. */
3515 for (; stack; stack = stack->next)
3516 if (insn == stack->first)
3518 stack->first = next;
3519 break;
3522 gcc_assert (stack);
3525 if (next)
3527 PREV_INSN (next) = prev;
3528 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3529 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3531 else if (last_insn == insn)
3532 last_insn = prev;
3533 else
3535 struct sequence_stack *stack = seq_stack;
3536 /* Scan all pending sequences too. */
3537 for (; stack; stack = stack->next)
3538 if (insn == stack->last)
3540 stack->last = prev;
3541 break;
3544 gcc_assert (stack);
3546 if (!BARRIER_P (insn)
3547 && (bb = BLOCK_FOR_INSN (insn)))
3549 if (INSN_P (insn))
3550 bb->flags |= BB_DIRTY;
3551 if (BB_HEAD (bb) == insn)
3553 /* Never ever delete the basic block note without deleting whole
3554 basic block. */
3555 gcc_assert (!NOTE_P (insn));
3556 BB_HEAD (bb) = next;
3558 if (BB_END (bb) == insn)
3559 BB_END (bb) = prev;
3563 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3565 void
3566 add_function_usage_to (rtx call_insn, rtx call_fusage)
3568 gcc_assert (call_insn && CALL_P (call_insn));
3570 /* Put the register usage information on the CALL. If there is already
3571 some usage information, put ours at the end. */
3572 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3574 rtx link;
3576 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3577 link = XEXP (link, 1))
3580 XEXP (link, 1) = call_fusage;
3582 else
3583 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3586 /* Delete all insns made since FROM.
3587 FROM becomes the new last instruction. */
3589 void
3590 delete_insns_since (rtx from)
3592 if (from == 0)
3593 first_insn = 0;
3594 else
3595 NEXT_INSN (from) = 0;
3596 last_insn = from;
3599 /* This function is deprecated, please use sequences instead.
3601 Move a consecutive bunch of insns to a different place in the chain.
3602 The insns to be moved are those between FROM and TO.
3603 They are moved to a new position after the insn AFTER.
3604 AFTER must not be FROM or TO or any insn in between.
3606 This function does not know about SEQUENCEs and hence should not be
3607 called after delay-slot filling has been done. */
3609 void
3610 reorder_insns_nobb (rtx from, rtx to, rtx after)
3612 /* Splice this bunch out of where it is now. */
3613 if (PREV_INSN (from))
3614 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3615 if (NEXT_INSN (to))
3616 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3617 if (last_insn == to)
3618 last_insn = PREV_INSN (from);
3619 if (first_insn == from)
3620 first_insn = NEXT_INSN (to);
3622 /* Make the new neighbors point to it and it to them. */
3623 if (NEXT_INSN (after))
3624 PREV_INSN (NEXT_INSN (after)) = to;
3626 NEXT_INSN (to) = NEXT_INSN (after);
3627 PREV_INSN (from) = after;
3628 NEXT_INSN (after) = from;
3629 if (after == last_insn)
3630 last_insn = to;
3633 /* Same as function above, but take care to update BB boundaries. */
3634 void
3635 reorder_insns (rtx from, rtx to, rtx after)
3637 rtx prev = PREV_INSN (from);
3638 basic_block bb, bb2;
3640 reorder_insns_nobb (from, to, after);
3642 if (!BARRIER_P (after)
3643 && (bb = BLOCK_FOR_INSN (after)))
3645 rtx x;
3646 bb->flags |= BB_DIRTY;
3648 if (!BARRIER_P (from)
3649 && (bb2 = BLOCK_FOR_INSN (from)))
3651 if (BB_END (bb2) == to)
3652 BB_END (bb2) = prev;
3653 bb2->flags |= BB_DIRTY;
3656 if (BB_END (bb) == after)
3657 BB_END (bb) = to;
3659 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3660 if (!BARRIER_P (x))
3661 set_block_for_insn (x, bb);
3666 /* Emit insn(s) of given code and pattern
3667 at a specified place within the doubly-linked list.
3669 All of the emit_foo global entry points accept an object
3670 X which is either an insn list or a PATTERN of a single
3671 instruction.
3673 There are thus a few canonical ways to generate code and
3674 emit it at a specific place in the instruction stream. For
3675 example, consider the instruction named SPOT and the fact that
3676 we would like to emit some instructions before SPOT. We might
3677 do it like this:
3679 start_sequence ();
3680 ... emit the new instructions ...
3681 insns_head = get_insns ();
3682 end_sequence ();
3684 emit_insn_before (insns_head, SPOT);
3686 It used to be common to generate SEQUENCE rtl instead, but that
3687 is a relic of the past which no longer occurs. The reason is that
3688 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3689 generated would almost certainly die right after it was created. */
3691 /* Make X be output before the instruction BEFORE. */
3694 emit_insn_before_noloc (rtx x, rtx before)
3696 rtx last = before;
3697 rtx insn;
3699 gcc_assert (before);
3701 if (x == NULL_RTX)
3702 return last;
3704 switch (GET_CODE (x))
3706 case INSN:
3707 case JUMP_INSN:
3708 case CALL_INSN:
3709 case CODE_LABEL:
3710 case BARRIER:
3711 case NOTE:
3712 insn = x;
3713 while (insn)
3715 rtx next = NEXT_INSN (insn);
3716 add_insn_before (insn, before);
3717 last = insn;
3718 insn = next;
3720 break;
3722 #ifdef ENABLE_RTL_CHECKING
3723 case SEQUENCE:
3724 gcc_unreachable ();
3725 break;
3726 #endif
3728 default:
3729 last = make_insn_raw (x);
3730 add_insn_before (last, before);
3731 break;
3734 return last;
3737 /* Make an instruction with body X and code JUMP_INSN
3738 and output it before the instruction BEFORE. */
3741 emit_jump_insn_before_noloc (rtx x, rtx before)
3743 rtx insn, last = NULL_RTX;
3745 gcc_assert (before);
3747 switch (GET_CODE (x))
3749 case INSN:
3750 case JUMP_INSN:
3751 case CALL_INSN:
3752 case CODE_LABEL:
3753 case BARRIER:
3754 case NOTE:
3755 insn = x;
3756 while (insn)
3758 rtx next = NEXT_INSN (insn);
3759 add_insn_before (insn, before);
3760 last = insn;
3761 insn = next;
3763 break;
3765 #ifdef ENABLE_RTL_CHECKING
3766 case SEQUENCE:
3767 gcc_unreachable ();
3768 break;
3769 #endif
3771 default:
3772 last = make_jump_insn_raw (x);
3773 add_insn_before (last, before);
3774 break;
3777 return last;
3780 /* Make an instruction with body X and code CALL_INSN
3781 and output it before the instruction BEFORE. */
3784 emit_call_insn_before_noloc (rtx x, rtx before)
3786 rtx last = NULL_RTX, insn;
3788 gcc_assert (before);
3790 switch (GET_CODE (x))
3792 case INSN:
3793 case JUMP_INSN:
3794 case CALL_INSN:
3795 case CODE_LABEL:
3796 case BARRIER:
3797 case NOTE:
3798 insn = x;
3799 while (insn)
3801 rtx next = NEXT_INSN (insn);
3802 add_insn_before (insn, before);
3803 last = insn;
3804 insn = next;
3806 break;
3808 #ifdef ENABLE_RTL_CHECKING
3809 case SEQUENCE:
3810 gcc_unreachable ();
3811 break;
3812 #endif
3814 default:
3815 last = make_call_insn_raw (x);
3816 add_insn_before (last, before);
3817 break;
3820 return last;
3823 /* Make an insn of code BARRIER
3824 and output it before the insn BEFORE. */
3827 emit_barrier_before (rtx before)
3829 rtx insn = rtx_alloc (BARRIER);
3831 INSN_UID (insn) = cur_insn_uid++;
3833 add_insn_before (insn, before);
3834 return insn;
3837 /* Emit the label LABEL before the insn BEFORE. */
3840 emit_label_before (rtx label, rtx before)
3842 /* This can be called twice for the same label as a result of the
3843 confusion that follows a syntax error! So make it harmless. */
3844 if (INSN_UID (label) == 0)
3846 INSN_UID (label) = cur_insn_uid++;
3847 add_insn_before (label, before);
3850 return label;
3853 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3856 emit_note_before (int subtype, rtx before)
3858 rtx note = rtx_alloc (NOTE);
3859 INSN_UID (note) = cur_insn_uid++;
3860 #ifndef USE_MAPPED_LOCATION
3861 NOTE_SOURCE_FILE (note) = 0;
3862 #endif
3863 NOTE_LINE_NUMBER (note) = subtype;
3864 BLOCK_FOR_INSN (note) = NULL;
3866 add_insn_before (note, before);
3867 return note;
3870 /* Helper for emit_insn_after, handles lists of instructions
3871 efficiently. */
3873 static rtx emit_insn_after_1 (rtx, rtx);
3875 static rtx
3876 emit_insn_after_1 (rtx first, rtx after)
3878 rtx last;
3879 rtx after_after;
3880 basic_block bb;
3882 if (!BARRIER_P (after)
3883 && (bb = BLOCK_FOR_INSN (after)))
3885 bb->flags |= BB_DIRTY;
3886 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3887 if (!BARRIER_P (last))
3888 set_block_for_insn (last, bb);
3889 if (!BARRIER_P (last))
3890 set_block_for_insn (last, bb);
3891 if (BB_END (bb) == after)
3892 BB_END (bb) = last;
3894 else
3895 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3896 continue;
3898 after_after = NEXT_INSN (after);
3900 NEXT_INSN (after) = first;
3901 PREV_INSN (first) = after;
3902 NEXT_INSN (last) = after_after;
3903 if (after_after)
3904 PREV_INSN (after_after) = last;
3906 if (after == last_insn)
3907 last_insn = last;
3908 return last;
3911 /* Make X be output after the insn AFTER. */
3914 emit_insn_after_noloc (rtx x, rtx after)
3916 rtx last = after;
3918 gcc_assert (after);
3920 if (x == NULL_RTX)
3921 return last;
3923 switch (GET_CODE (x))
3925 case INSN:
3926 case JUMP_INSN:
3927 case CALL_INSN:
3928 case CODE_LABEL:
3929 case BARRIER:
3930 case NOTE:
3931 last = emit_insn_after_1 (x, after);
3932 break;
3934 #ifdef ENABLE_RTL_CHECKING
3935 case SEQUENCE:
3936 gcc_unreachable ();
3937 break;
3938 #endif
3940 default:
3941 last = make_insn_raw (x);
3942 add_insn_after (last, after);
3943 break;
3946 return last;
3950 /* Make an insn of code JUMP_INSN with body X
3951 and output it after the insn AFTER. */
3954 emit_jump_insn_after_noloc (rtx x, rtx after)
3956 rtx last;
3958 gcc_assert (after);
3960 switch (GET_CODE (x))
3962 case INSN:
3963 case JUMP_INSN:
3964 case CALL_INSN:
3965 case CODE_LABEL:
3966 case BARRIER:
3967 case NOTE:
3968 last = emit_insn_after_1 (x, after);
3969 break;
3971 #ifdef ENABLE_RTL_CHECKING
3972 case SEQUENCE:
3973 gcc_unreachable ();
3974 break;
3975 #endif
3977 default:
3978 last = make_jump_insn_raw (x);
3979 add_insn_after (last, after);
3980 break;
3983 return last;
3986 /* Make an instruction with body X and code CALL_INSN
3987 and output it after the instruction AFTER. */
3990 emit_call_insn_after_noloc (rtx x, rtx after)
3992 rtx last;
3994 gcc_assert (after);
3996 switch (GET_CODE (x))
3998 case INSN:
3999 case JUMP_INSN:
4000 case CALL_INSN:
4001 case CODE_LABEL:
4002 case BARRIER:
4003 case NOTE:
4004 last = emit_insn_after_1 (x, after);
4005 break;
4007 #ifdef ENABLE_RTL_CHECKING
4008 case SEQUENCE:
4009 gcc_unreachable ();
4010 break;
4011 #endif
4013 default:
4014 last = make_call_insn_raw (x);
4015 add_insn_after (last, after);
4016 break;
4019 return last;
4022 /* Make an insn of code BARRIER
4023 and output it after the insn AFTER. */
4026 emit_barrier_after (rtx after)
4028 rtx insn = rtx_alloc (BARRIER);
4030 INSN_UID (insn) = cur_insn_uid++;
4032 add_insn_after (insn, after);
4033 return insn;
4036 /* Emit the label LABEL after the insn AFTER. */
4039 emit_label_after (rtx label, rtx after)
4041 /* This can be called twice for the same label
4042 as a result of the confusion that follows a syntax error!
4043 So make it harmless. */
4044 if (INSN_UID (label) == 0)
4046 INSN_UID (label) = cur_insn_uid++;
4047 add_insn_after (label, after);
4050 return label;
4053 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4056 emit_note_after (int subtype, rtx after)
4058 rtx note = rtx_alloc (NOTE);
4059 INSN_UID (note) = cur_insn_uid++;
4060 #ifndef USE_MAPPED_LOCATION
4061 NOTE_SOURCE_FILE (note) = 0;
4062 #endif
4063 NOTE_LINE_NUMBER (note) = subtype;
4064 BLOCK_FOR_INSN (note) = NULL;
4065 add_insn_after (note, after);
4066 return note;
4069 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4071 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4073 rtx last = emit_insn_after_noloc (pattern, after);
4075 if (pattern == NULL_RTX || !loc)
4076 return last;
4078 after = NEXT_INSN (after);
4079 while (1)
4081 if (active_insn_p (after) && !INSN_LOCATOR (after))
4082 INSN_LOCATOR (after) = loc;
4083 if (after == last)
4084 break;
4085 after = NEXT_INSN (after);
4087 return last;
4090 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4092 emit_insn_after (rtx pattern, rtx after)
4094 if (INSN_P (after))
4095 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4096 else
4097 return emit_insn_after_noloc (pattern, after);
4100 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4102 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4104 rtx last = emit_jump_insn_after_noloc (pattern, after);
4106 if (pattern == NULL_RTX || !loc)
4107 return last;
4109 after = NEXT_INSN (after);
4110 while (1)
4112 if (active_insn_p (after) && !INSN_LOCATOR (after))
4113 INSN_LOCATOR (after) = loc;
4114 if (after == last)
4115 break;
4116 after = NEXT_INSN (after);
4118 return last;
4121 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4123 emit_jump_insn_after (rtx pattern, rtx after)
4125 if (INSN_P (after))
4126 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4127 else
4128 return emit_jump_insn_after_noloc (pattern, after);
4131 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4133 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4135 rtx last = emit_call_insn_after_noloc (pattern, after);
4137 if (pattern == NULL_RTX || !loc)
4138 return last;
4140 after = NEXT_INSN (after);
4141 while (1)
4143 if (active_insn_p (after) && !INSN_LOCATOR (after))
4144 INSN_LOCATOR (after) = loc;
4145 if (after == last)
4146 break;
4147 after = NEXT_INSN (after);
4149 return last;
4152 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4154 emit_call_insn_after (rtx pattern, rtx after)
4156 if (INSN_P (after))
4157 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4158 else
4159 return emit_call_insn_after_noloc (pattern, after);
4162 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4164 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4166 rtx first = PREV_INSN (before);
4167 rtx last = emit_insn_before_noloc (pattern, before);
4169 if (pattern == NULL_RTX || !loc)
4170 return last;
4172 first = NEXT_INSN (first);
4173 while (1)
4175 if (active_insn_p (first) && !INSN_LOCATOR (first))
4176 INSN_LOCATOR (first) = loc;
4177 if (first == last)
4178 break;
4179 first = NEXT_INSN (first);
4181 return last;
4184 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4186 emit_insn_before (rtx pattern, rtx before)
4188 if (INSN_P (before))
4189 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4190 else
4191 return emit_insn_before_noloc (pattern, before);
4194 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4196 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4198 rtx first = PREV_INSN (before);
4199 rtx last = emit_jump_insn_before_noloc (pattern, before);
4201 if (pattern == NULL_RTX)
4202 return last;
4204 first = NEXT_INSN (first);
4205 while (1)
4207 if (active_insn_p (first) && !INSN_LOCATOR (first))
4208 INSN_LOCATOR (first) = loc;
4209 if (first == last)
4210 break;
4211 first = NEXT_INSN (first);
4213 return last;
4216 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4218 emit_jump_insn_before (rtx pattern, rtx before)
4220 if (INSN_P (before))
4221 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4222 else
4223 return emit_jump_insn_before_noloc (pattern, before);
4226 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4228 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4230 rtx first = PREV_INSN (before);
4231 rtx last = emit_call_insn_before_noloc (pattern, before);
4233 if (pattern == NULL_RTX)
4234 return last;
4236 first = NEXT_INSN (first);
4237 while (1)
4239 if (active_insn_p (first) && !INSN_LOCATOR (first))
4240 INSN_LOCATOR (first) = loc;
4241 if (first == last)
4242 break;
4243 first = NEXT_INSN (first);
4245 return last;
4248 /* like emit_call_insn_before_noloc,
4249 but set insn_locator according to before. */
4251 emit_call_insn_before (rtx pattern, rtx before)
4253 if (INSN_P (before))
4254 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4255 else
4256 return emit_call_insn_before_noloc (pattern, before);
4259 /* Take X and emit it at the end of the doubly-linked
4260 INSN list.
4262 Returns the last insn emitted. */
4265 emit_insn (rtx x)
4267 rtx last = last_insn;
4268 rtx insn;
4270 if (x == NULL_RTX)
4271 return last;
4273 switch (GET_CODE (x))
4275 case INSN:
4276 case JUMP_INSN:
4277 case CALL_INSN:
4278 case CODE_LABEL:
4279 case BARRIER:
4280 case NOTE:
4281 insn = x;
4282 while (insn)
4284 rtx next = NEXT_INSN (insn);
4285 add_insn (insn);
4286 last = insn;
4287 insn = next;
4289 break;
4291 #ifdef ENABLE_RTL_CHECKING
4292 case SEQUENCE:
4293 gcc_unreachable ();
4294 break;
4295 #endif
4297 default:
4298 last = make_insn_raw (x);
4299 add_insn (last);
4300 break;
4303 return last;
4306 /* Make an insn of code JUMP_INSN with pattern X
4307 and add it to the end of the doubly-linked list. */
4310 emit_jump_insn (rtx x)
4312 rtx last = NULL_RTX, insn;
4314 switch (GET_CODE (x))
4316 case INSN:
4317 case JUMP_INSN:
4318 case CALL_INSN:
4319 case CODE_LABEL:
4320 case BARRIER:
4321 case NOTE:
4322 insn = x;
4323 while (insn)
4325 rtx next = NEXT_INSN (insn);
4326 add_insn (insn);
4327 last = insn;
4328 insn = next;
4330 break;
4332 #ifdef ENABLE_RTL_CHECKING
4333 case SEQUENCE:
4334 gcc_unreachable ();
4335 break;
4336 #endif
4338 default:
4339 last = make_jump_insn_raw (x);
4340 add_insn (last);
4341 break;
4344 return last;
4347 /* Make an insn of code CALL_INSN with pattern X
4348 and add it to the end of the doubly-linked list. */
4351 emit_call_insn (rtx x)
4353 rtx insn;
4355 switch (GET_CODE (x))
4357 case INSN:
4358 case JUMP_INSN:
4359 case CALL_INSN:
4360 case CODE_LABEL:
4361 case BARRIER:
4362 case NOTE:
4363 insn = emit_insn (x);
4364 break;
4366 #ifdef ENABLE_RTL_CHECKING
4367 case SEQUENCE:
4368 gcc_unreachable ();
4369 break;
4370 #endif
4372 default:
4373 insn = make_call_insn_raw (x);
4374 add_insn (insn);
4375 break;
4378 return insn;
4381 /* Add the label LABEL to the end of the doubly-linked list. */
4384 emit_label (rtx label)
4386 /* This can be called twice for the same label
4387 as a result of the confusion that follows a syntax error!
4388 So make it harmless. */
4389 if (INSN_UID (label) == 0)
4391 INSN_UID (label) = cur_insn_uid++;
4392 add_insn (label);
4394 return label;
4397 /* Make an insn of code BARRIER
4398 and add it to the end of the doubly-linked list. */
4401 emit_barrier (void)
4403 rtx barrier = rtx_alloc (BARRIER);
4404 INSN_UID (barrier) = cur_insn_uid++;
4405 add_insn (barrier);
4406 return barrier;
4409 /* Make line numbering NOTE insn for LOCATION add it to the end
4410 of the doubly-linked list, but only if line-numbers are desired for
4411 debugging info and it doesn't match the previous one. */
4414 emit_line_note (location_t location)
4416 rtx note;
4418 #ifdef USE_MAPPED_LOCATION
4419 if (location == last_location)
4420 return NULL_RTX;
4421 #else
4422 if (location.file && last_location.file
4423 && !strcmp (location.file, last_location.file)
4424 && location.line == last_location.line)
4425 return NULL_RTX;
4426 #endif
4427 last_location = location;
4429 if (no_line_numbers)
4431 cur_insn_uid++;
4432 return NULL_RTX;
4435 #ifdef USE_MAPPED_LOCATION
4436 note = emit_note ((int) location);
4437 #else
4438 note = emit_note (location.line);
4439 NOTE_SOURCE_FILE (note) = location.file;
4440 #endif
4442 return note;
4445 /* Emit a copy of note ORIG. */
4448 emit_note_copy (rtx orig)
4450 rtx note;
4452 note = rtx_alloc (NOTE);
4454 INSN_UID (note) = cur_insn_uid++;
4455 NOTE_DATA (note) = NOTE_DATA (orig);
4456 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4457 BLOCK_FOR_INSN (note) = NULL;
4458 add_insn (note);
4460 return note;
4463 /* Make an insn of code NOTE or type NOTE_NO
4464 and add it to the end of the doubly-linked list. */
4467 emit_note (int note_no)
4469 rtx note;
4471 note = rtx_alloc (NOTE);
4472 INSN_UID (note) = cur_insn_uid++;
4473 NOTE_LINE_NUMBER (note) = note_no;
4474 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4475 BLOCK_FOR_INSN (note) = NULL;
4476 add_insn (note);
4477 return note;
4480 /* Cause next statement to emit a line note even if the line number
4481 has not changed. */
4483 void
4484 force_next_line_note (void)
4486 #ifdef USE_MAPPED_LOCATION
4487 last_location = -1;
4488 #else
4489 last_location.line = -1;
4490 #endif
4493 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4494 note of this type already exists, remove it first. */
4497 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4499 rtx note = find_reg_note (insn, kind, NULL_RTX);
4501 switch (kind)
4503 case REG_EQUAL:
4504 case REG_EQUIV:
4505 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4506 has multiple sets (some callers assume single_set
4507 means the insn only has one set, when in fact it
4508 means the insn only has one * useful * set). */
4509 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4511 gcc_assert (!note);
4512 return NULL_RTX;
4515 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4516 It serves no useful purpose and breaks eliminate_regs. */
4517 if (GET_CODE (datum) == ASM_OPERANDS)
4518 return NULL_RTX;
4519 break;
4521 default:
4522 break;
4525 if (note)
4527 XEXP (note, 0) = datum;
4528 return note;
4531 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4532 return REG_NOTES (insn);
4535 /* Return an indication of which type of insn should have X as a body.
4536 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4538 static enum rtx_code
4539 classify_insn (rtx x)
4541 if (LABEL_P (x))
4542 return CODE_LABEL;
4543 if (GET_CODE (x) == CALL)
4544 return CALL_INSN;
4545 if (GET_CODE (x) == RETURN)
4546 return JUMP_INSN;
4547 if (GET_CODE (x) == SET)
4549 if (SET_DEST (x) == pc_rtx)
4550 return JUMP_INSN;
4551 else if (GET_CODE (SET_SRC (x)) == CALL)
4552 return CALL_INSN;
4553 else
4554 return INSN;
4556 if (GET_CODE (x) == PARALLEL)
4558 int j;
4559 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4560 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4561 return CALL_INSN;
4562 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4563 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4564 return JUMP_INSN;
4565 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4566 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4567 return CALL_INSN;
4569 return INSN;
4572 /* Emit the rtl pattern X as an appropriate kind of insn.
4573 If X is a label, it is simply added into the insn chain. */
4576 emit (rtx x)
4578 enum rtx_code code = classify_insn (x);
4580 switch (code)
4582 case CODE_LABEL:
4583 return emit_label (x);
4584 case INSN:
4585 return emit_insn (x);
4586 case JUMP_INSN:
4588 rtx insn = emit_jump_insn (x);
4589 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4590 return emit_barrier ();
4591 return insn;
4593 case CALL_INSN:
4594 return emit_call_insn (x);
4595 default:
4596 gcc_unreachable ();
4600 /* Space for free sequence stack entries. */
4601 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4603 /* Begin emitting insns to a sequence. If this sequence will contain
4604 something that might cause the compiler to pop arguments to function
4605 calls (because those pops have previously been deferred; see
4606 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4607 before calling this function. That will ensure that the deferred
4608 pops are not accidentally emitted in the middle of this sequence. */
4610 void
4611 start_sequence (void)
4613 struct sequence_stack *tem;
4615 if (free_sequence_stack != NULL)
4617 tem = free_sequence_stack;
4618 free_sequence_stack = tem->next;
4620 else
4621 tem = ggc_alloc (sizeof (struct sequence_stack));
4623 tem->next = seq_stack;
4624 tem->first = first_insn;
4625 tem->last = last_insn;
4627 seq_stack = tem;
4629 first_insn = 0;
4630 last_insn = 0;
4633 /* Set up the insn chain starting with FIRST as the current sequence,
4634 saving the previously current one. See the documentation for
4635 start_sequence for more information about how to use this function. */
4637 void
4638 push_to_sequence (rtx first)
4640 rtx last;
4642 start_sequence ();
4644 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4646 first_insn = first;
4647 last_insn = last;
4650 /* Set up the outer-level insn chain
4651 as the current sequence, saving the previously current one. */
4653 void
4654 push_topmost_sequence (void)
4656 struct sequence_stack *stack, *top = NULL;
4658 start_sequence ();
4660 for (stack = seq_stack; stack; stack = stack->next)
4661 top = stack;
4663 first_insn = top->first;
4664 last_insn = top->last;
4667 /* After emitting to the outer-level insn chain, update the outer-level
4668 insn chain, and restore the previous saved state. */
4670 void
4671 pop_topmost_sequence (void)
4673 struct sequence_stack *stack, *top = NULL;
4675 for (stack = seq_stack; stack; stack = stack->next)
4676 top = stack;
4678 top->first = first_insn;
4679 top->last = last_insn;
4681 end_sequence ();
4684 /* After emitting to a sequence, restore previous saved state.
4686 To get the contents of the sequence just made, you must call
4687 `get_insns' *before* calling here.
4689 If the compiler might have deferred popping arguments while
4690 generating this sequence, and this sequence will not be immediately
4691 inserted into the instruction stream, use do_pending_stack_adjust
4692 before calling get_insns. That will ensure that the deferred
4693 pops are inserted into this sequence, and not into some random
4694 location in the instruction stream. See INHIBIT_DEFER_POP for more
4695 information about deferred popping of arguments. */
4697 void
4698 end_sequence (void)
4700 struct sequence_stack *tem = seq_stack;
4702 first_insn = tem->first;
4703 last_insn = tem->last;
4704 seq_stack = tem->next;
4706 memset (tem, 0, sizeof (*tem));
4707 tem->next = free_sequence_stack;
4708 free_sequence_stack = tem;
4711 /* Return 1 if currently emitting into a sequence. */
4714 in_sequence_p (void)
4716 return seq_stack != 0;
4719 /* Put the various virtual registers into REGNO_REG_RTX. */
4721 static void
4722 init_virtual_regs (struct emit_status *es)
4724 rtx *ptr = es->x_regno_reg_rtx;
4725 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4726 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4727 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4728 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4729 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4733 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4734 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4735 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4736 static int copy_insn_n_scratches;
4738 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4739 copied an ASM_OPERANDS.
4740 In that case, it is the original input-operand vector. */
4741 static rtvec orig_asm_operands_vector;
4743 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4744 copied an ASM_OPERANDS.
4745 In that case, it is the copied input-operand vector. */
4746 static rtvec copy_asm_operands_vector;
4748 /* Likewise for the constraints vector. */
4749 static rtvec orig_asm_constraints_vector;
4750 static rtvec copy_asm_constraints_vector;
4752 /* Recursively create a new copy of an rtx for copy_insn.
4753 This function differs from copy_rtx in that it handles SCRATCHes and
4754 ASM_OPERANDs properly.
4755 Normally, this function is not used directly; use copy_insn as front end.
4756 However, you could first copy an insn pattern with copy_insn and then use
4757 this function afterwards to properly copy any REG_NOTEs containing
4758 SCRATCHes. */
4761 copy_insn_1 (rtx orig)
4763 rtx copy;
4764 int i, j;
4765 RTX_CODE code;
4766 const char *format_ptr;
4768 code = GET_CODE (orig);
4770 switch (code)
4772 case REG:
4773 case CONST_INT:
4774 case CONST_DOUBLE:
4775 case CONST_VECTOR:
4776 case SYMBOL_REF:
4777 case CODE_LABEL:
4778 case PC:
4779 case CC0:
4780 return orig;
4781 case CLOBBER:
4782 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4783 return orig;
4784 break;
4786 case SCRATCH:
4787 for (i = 0; i < copy_insn_n_scratches; i++)
4788 if (copy_insn_scratch_in[i] == orig)
4789 return copy_insn_scratch_out[i];
4790 break;
4792 case CONST:
4793 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4794 a LABEL_REF, it isn't sharable. */
4795 if (GET_CODE (XEXP (orig, 0)) == PLUS
4796 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4797 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4798 return orig;
4799 break;
4801 /* A MEM with a constant address is not sharable. The problem is that
4802 the constant address may need to be reloaded. If the mem is shared,
4803 then reloading one copy of this mem will cause all copies to appear
4804 to have been reloaded. */
4806 default:
4807 break;
4810 /* Copy the various flags, fields, and other information. We assume
4811 that all fields need copying, and then clear the fields that should
4812 not be copied. That is the sensible default behavior, and forces
4813 us to explicitly document why we are *not* copying a flag. */
4814 copy = shallow_copy_rtx (orig);
4816 /* We do not copy the USED flag, which is used as a mark bit during
4817 walks over the RTL. */
4818 RTX_FLAG (copy, used) = 0;
4820 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4821 if (INSN_P (orig))
4823 RTX_FLAG (copy, jump) = 0;
4824 RTX_FLAG (copy, call) = 0;
4825 RTX_FLAG (copy, frame_related) = 0;
4828 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4830 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4831 switch (*format_ptr++)
4833 case 'e':
4834 if (XEXP (orig, i) != NULL)
4835 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4836 break;
4838 case 'E':
4839 case 'V':
4840 if (XVEC (orig, i) == orig_asm_constraints_vector)
4841 XVEC (copy, i) = copy_asm_constraints_vector;
4842 else if (XVEC (orig, i) == orig_asm_operands_vector)
4843 XVEC (copy, i) = copy_asm_operands_vector;
4844 else if (XVEC (orig, i) != NULL)
4846 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4847 for (j = 0; j < XVECLEN (copy, i); j++)
4848 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4850 break;
4852 case 't':
4853 case 'w':
4854 case 'i':
4855 case 's':
4856 case 'S':
4857 case 'u':
4858 case '0':
4859 /* These are left unchanged. */
4860 break;
4862 default:
4863 gcc_unreachable ();
4866 if (code == SCRATCH)
4868 i = copy_insn_n_scratches++;
4869 gcc_assert (i < MAX_RECOG_OPERANDS);
4870 copy_insn_scratch_in[i] = orig;
4871 copy_insn_scratch_out[i] = copy;
4873 else if (code == ASM_OPERANDS)
4875 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4876 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4877 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4878 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4881 return copy;
4884 /* Create a new copy of an rtx.
4885 This function differs from copy_rtx in that it handles SCRATCHes and
4886 ASM_OPERANDs properly.
4887 INSN doesn't really have to be a full INSN; it could be just the
4888 pattern. */
4890 copy_insn (rtx insn)
4892 copy_insn_n_scratches = 0;
4893 orig_asm_operands_vector = 0;
4894 orig_asm_constraints_vector = 0;
4895 copy_asm_operands_vector = 0;
4896 copy_asm_constraints_vector = 0;
4897 return copy_insn_1 (insn);
4900 /* Initialize data structures and variables in this file
4901 before generating rtl for each function. */
4903 void
4904 init_emit (void)
4906 struct function *f = cfun;
4908 f->emit = ggc_alloc (sizeof (struct emit_status));
4909 first_insn = NULL;
4910 last_insn = NULL;
4911 cur_insn_uid = 1;
4912 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4913 last_location = UNKNOWN_LOCATION;
4914 first_label_num = label_num;
4915 seq_stack = NULL;
4917 /* Init the tables that describe all the pseudo regs. */
4919 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4921 f->emit->regno_pointer_align
4922 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4923 * sizeof (unsigned char));
4925 regno_reg_rtx
4926 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4928 /* Put copies of all the hard registers into regno_reg_rtx. */
4929 memcpy (regno_reg_rtx,
4930 static_regno_reg_rtx,
4931 FIRST_PSEUDO_REGISTER * sizeof (rtx));
4933 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4934 init_virtual_regs (f->emit);
4936 /* Indicate that the virtual registers and stack locations are
4937 all pointers. */
4938 REG_POINTER (stack_pointer_rtx) = 1;
4939 REG_POINTER (frame_pointer_rtx) = 1;
4940 REG_POINTER (hard_frame_pointer_rtx) = 1;
4941 REG_POINTER (arg_pointer_rtx) = 1;
4943 REG_POINTER (virtual_incoming_args_rtx) = 1;
4944 REG_POINTER (virtual_stack_vars_rtx) = 1;
4945 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4946 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4947 REG_POINTER (virtual_cfa_rtx) = 1;
4949 #ifdef STACK_BOUNDARY
4950 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4951 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4952 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4953 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4955 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4956 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4957 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4958 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4959 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4960 #endif
4962 #ifdef INIT_EXPANDERS
4963 INIT_EXPANDERS;
4964 #endif
4967 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
4969 static rtx
4970 gen_const_vector (enum machine_mode mode, int constant)
4972 rtx tem;
4973 rtvec v;
4974 int units, i;
4975 enum machine_mode inner;
4977 units = GET_MODE_NUNITS (mode);
4978 inner = GET_MODE_INNER (mode);
4980 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
4982 v = rtvec_alloc (units);
4984 /* We need to call this function after we set the scalar const_tiny_rtx
4985 entries. */
4986 gcc_assert (const_tiny_rtx[constant][(int) inner]);
4988 for (i = 0; i < units; ++i)
4989 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
4991 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
4992 return tem;
4995 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
4996 all elements are zero, and the one vector when all elements are one. */
4998 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5000 enum machine_mode inner = GET_MODE_INNER (mode);
5001 int nunits = GET_MODE_NUNITS (mode);
5002 rtx x;
5003 int i;
5005 /* Check to see if all of the elements have the same value. */
5006 x = RTVEC_ELT (v, nunits - 1);
5007 for (i = nunits - 2; i >= 0; i--)
5008 if (RTVEC_ELT (v, i) != x)
5009 break;
5011 /* If the values are all the same, check to see if we can use one of the
5012 standard constant vectors. */
5013 if (i == -1)
5015 if (x == CONST0_RTX (inner))
5016 return CONST0_RTX (mode);
5017 else if (x == CONST1_RTX (inner))
5018 return CONST1_RTX (mode);
5021 return gen_rtx_raw_CONST_VECTOR (mode, v);
5024 /* Create some permanent unique rtl objects shared between all functions.
5025 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5027 void
5028 init_emit_once (int line_numbers)
5030 int i;
5031 enum machine_mode mode;
5032 enum machine_mode double_mode;
5034 /* We need reg_raw_mode, so initialize the modes now. */
5035 init_reg_modes_once ();
5037 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5038 tables. */
5039 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5040 const_int_htab_eq, NULL);
5042 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5043 const_double_htab_eq, NULL);
5045 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5046 mem_attrs_htab_eq, NULL);
5047 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5048 reg_attrs_htab_eq, NULL);
5050 no_line_numbers = ! line_numbers;
5052 /* Compute the word and byte modes. */
5054 byte_mode = VOIDmode;
5055 word_mode = VOIDmode;
5056 double_mode = VOIDmode;
5058 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5059 mode != VOIDmode;
5060 mode = GET_MODE_WIDER_MODE (mode))
5062 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5063 && byte_mode == VOIDmode)
5064 byte_mode = mode;
5066 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5067 && word_mode == VOIDmode)
5068 word_mode = mode;
5071 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5072 mode != VOIDmode;
5073 mode = GET_MODE_WIDER_MODE (mode))
5075 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5076 && double_mode == VOIDmode)
5077 double_mode = mode;
5080 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5082 /* Assign register numbers to the globally defined register rtx.
5083 This must be done at runtime because the register number field
5084 is in a union and some compilers can't initialize unions. */
5086 pc_rtx = gen_rtx_PC (VOIDmode);
5087 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5088 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5089 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5090 if (hard_frame_pointer_rtx == 0)
5091 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5092 HARD_FRAME_POINTER_REGNUM);
5093 if (arg_pointer_rtx == 0)
5094 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5095 virtual_incoming_args_rtx =
5096 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5097 virtual_stack_vars_rtx =
5098 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5099 virtual_stack_dynamic_rtx =
5100 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5101 virtual_outgoing_args_rtx =
5102 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5103 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5105 /* Initialize RTL for commonly used hard registers. These are
5106 copied into regno_reg_rtx as we begin to compile each function. */
5107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5108 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5110 #ifdef INIT_EXPANDERS
5111 /* This is to initialize {init|mark|free}_machine_status before the first
5112 call to push_function_context_to. This is needed by the Chill front
5113 end which calls push_function_context_to before the first call to
5114 init_function_start. */
5115 INIT_EXPANDERS;
5116 #endif
5118 /* Create the unique rtx's for certain rtx codes and operand values. */
5120 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5121 tries to use these variables. */
5122 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5123 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5124 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5126 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5127 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5128 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5129 else
5130 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5132 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5133 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5134 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5135 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5136 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5137 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5138 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5140 dconsthalf = dconst1;
5141 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5143 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5145 /* Initialize mathematical constants for constant folding builtins.
5146 These constants need to be given to at least 160 bits precision. */
5147 real_from_string (&dconstpi,
5148 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5149 real_from_string (&dconste,
5150 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5152 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5154 REAL_VALUE_TYPE *r =
5155 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5157 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5158 mode != VOIDmode;
5159 mode = GET_MODE_WIDER_MODE (mode))
5160 const_tiny_rtx[i][(int) mode] =
5161 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5163 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5164 mode != VOIDmode;
5165 mode = GET_MODE_WIDER_MODE (mode))
5166 const_tiny_rtx[i][(int) mode] =
5167 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5169 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5171 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5172 mode != VOIDmode;
5173 mode = GET_MODE_WIDER_MODE (mode))
5174 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5176 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5177 mode != VOIDmode;
5178 mode = GET_MODE_WIDER_MODE (mode))
5179 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5182 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5183 mode != VOIDmode;
5184 mode = GET_MODE_WIDER_MODE (mode))
5186 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5187 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5190 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5191 mode != VOIDmode;
5192 mode = GET_MODE_WIDER_MODE (mode))
5194 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5195 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5198 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5199 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5200 const_tiny_rtx[0][i] = const0_rtx;
5202 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5203 if (STORE_FLAG_VALUE == 1)
5204 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5206 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5207 return_address_pointer_rtx
5208 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5209 #endif
5211 #ifdef STATIC_CHAIN_REGNUM
5212 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5214 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5215 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5216 static_chain_incoming_rtx
5217 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5218 else
5219 #endif
5220 static_chain_incoming_rtx = static_chain_rtx;
5221 #endif
5223 #ifdef STATIC_CHAIN
5224 static_chain_rtx = STATIC_CHAIN;
5226 #ifdef STATIC_CHAIN_INCOMING
5227 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5228 #else
5229 static_chain_incoming_rtx = static_chain_rtx;
5230 #endif
5231 #endif
5233 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5234 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5237 /* Produce exact duplicate of insn INSN after AFTER.
5238 Care updating of libcall regions if present. */
5241 emit_copy_of_insn_after (rtx insn, rtx after)
5243 rtx new;
5244 rtx note1, note2, link;
5246 switch (GET_CODE (insn))
5248 case INSN:
5249 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5250 break;
5252 case JUMP_INSN:
5253 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5254 break;
5256 case CALL_INSN:
5257 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5258 if (CALL_INSN_FUNCTION_USAGE (insn))
5259 CALL_INSN_FUNCTION_USAGE (new)
5260 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5261 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5262 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5263 break;
5265 default:
5266 gcc_unreachable ();
5269 /* Update LABEL_NUSES. */
5270 mark_jump_label (PATTERN (new), new, 0);
5272 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5274 /* If the old insn is frame related, then so is the new one. This is
5275 primarily needed for IA-64 unwind info which marks epilogue insns,
5276 which may be duplicated by the basic block reordering code. */
5277 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5279 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5280 make them. */
5281 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5282 if (REG_NOTE_KIND (link) != REG_LABEL)
5284 if (GET_CODE (link) == EXPR_LIST)
5285 REG_NOTES (new)
5286 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5287 XEXP (link, 0),
5288 REG_NOTES (new)));
5289 else
5290 REG_NOTES (new)
5291 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5292 XEXP (link, 0),
5293 REG_NOTES (new)));
5296 /* Fix the libcall sequences. */
5297 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5299 rtx p = new;
5300 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5301 p = PREV_INSN (p);
5302 XEXP (note1, 0) = p;
5303 XEXP (note2, 0) = new;
5305 INSN_CODE (new) = INSN_CODE (insn);
5306 return new;
5309 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5311 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5313 if (hard_reg_clobbers[mode][regno])
5314 return hard_reg_clobbers[mode][regno];
5315 else
5316 return (hard_reg_clobbers[mode][regno] =
5317 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5320 #include "gt-emit-rtl.h"