2013-09-03 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / combine.c
blobfc566c55c16649f4d9dd2f5f3a51d4ad2f5d59d6
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "df.h"
103 #include "valtrack.h"
104 #include "cgraph.h"
105 #include "obstack.h"
107 /* Number of attempts to combine instructions in this function. */
109 static int combine_attempts;
111 /* Number of attempts that got as far as substitution in this function. */
113 static int combine_merges;
115 /* Number of instructions combined with added SETs in this function. */
117 static int combine_extras;
119 /* Number of instructions combined in this function. */
121 static int combine_successes;
123 /* Totals over entire compilation. */
125 static int total_attempts, total_merges, total_extras, total_successes;
127 /* combine_instructions may try to replace the right hand side of the
128 second instruction with the value of an associated REG_EQUAL note
129 before throwing it at try_combine. That is problematic when there
130 is a REG_DEAD note for a register used in the old right hand side
131 and can cause distribute_notes to do wrong things. This is the
132 second instruction if it has been so modified, null otherwise. */
134 static rtx i2mod;
136 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138 static rtx i2mod_old_rhs;
140 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142 static rtx i2mod_new_rhs;
144 typedef struct reg_stat_struct {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
239 /* Record the value of the label_tick when the last truncation
240 happened. The field truncated_to_mode is only valid if
241 truncation_label == label_tick. */
243 int truncation_label;
245 /* Record the last truncation seen for this register. If truncation
246 is not a nop to this mode we might be able to save an explicit
247 truncation if we know that value already contains a truncated
248 value. */
250 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
251 } reg_stat_type;
254 static vec<reg_stat_type> reg_stat;
256 /* Record the luid of the last insn that invalidated memory
257 (anything that writes memory, and subroutine calls, but not pushes). */
259 static int mem_last_set;
261 /* Record the luid of the last CALL_INSN
262 so we can tell whether a potential combination crosses any calls. */
264 static int last_call_luid;
266 /* When `subst' is called, this is the insn that is being modified
267 (by combining in a previous insn). The PATTERN of this insn
268 is still the old pattern partially modified and it should not be
269 looked at, but this may be used to examine the successors of the insn
270 to judge whether a simplification is valid. */
272 static rtx subst_insn;
274 /* This is the lowest LUID that `subst' is currently dealing with.
275 get_last_value will not return a value if the register was set at or
276 after this LUID. If not for this mechanism, we could get confused if
277 I2 or I1 in try_combine were an insn that used the old value of a register
278 to obtain a new value. In that case, we might erroneously get the
279 new value of the register when we wanted the old one. */
281 static int subst_low_luid;
283 /* This contains any hard registers that are used in newpat; reg_dead_at_p
284 must consider all these registers to be always live. */
286 static HARD_REG_SET newpat_used_regs;
288 /* This is an insn to which a LOG_LINKS entry has been added. If this
289 insn is the earlier than I2 or I3, combine should rescan starting at
290 that location. */
292 static rtx added_links_insn;
294 /* Basic block in which we are performing combines. */
295 static basic_block this_basic_block;
296 static bool optimize_this_for_speed_p;
299 /* Length of the currently allocated uid_insn_cost array. */
301 static int max_uid_known;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost;
308 /* The following array records the LOG_LINKS for every insn in the
309 instruction stream as struct insn_link pointers. */
311 struct insn_link {
312 rtx insn;
313 struct insn_link *next;
316 static struct insn_link **uid_log_links;
318 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
319 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
321 #define FOR_EACH_LOG_LINK(L, INSN) \
322 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
324 /* Links for LOG_LINKS are allocated from this obstack. */
326 static struct obstack insn_link_obstack;
328 /* Allocate a link. */
330 static inline struct insn_link *
331 alloc_insn_link (rtx insn, struct insn_link *next)
333 struct insn_link *l
334 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
335 sizeof (struct insn_link));
336 l->insn = insn;
337 l->next = next;
338 return l;
341 /* Incremented for each basic block. */
343 static int label_tick;
345 /* Reset to label_tick for each extended basic block in scanning order. */
347 static int label_tick_ebb_start;
349 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
350 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
352 static enum machine_mode nonzero_bits_mode;
354 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
355 be safely used. It is zero while computing them and after combine has
356 completed. This former test prevents propagating values based on
357 previously set values, which can be incorrect if a variable is modified
358 in a loop. */
360 static int nonzero_sign_valid;
363 /* Record one modification to rtl structure
364 to be undone by storing old_contents into *where. */
366 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
368 struct undo
370 struct undo *next;
371 enum undo_kind kind;
372 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
373 union { rtx *r; int *i; struct insn_link **l; } where;
376 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
377 num_undo says how many are currently recorded.
379 other_insn is nonzero if we have modified some other insn in the process
380 of working on subst_insn. It must be verified too. */
382 struct undobuf
384 struct undo *undos;
385 struct undo *frees;
386 rtx other_insn;
389 static struct undobuf undobuf;
391 /* Number of times the pseudo being substituted for
392 was found and replaced. */
394 static int n_occurrences;
396 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
397 enum machine_mode,
398 unsigned HOST_WIDE_INT,
399 unsigned HOST_WIDE_INT *);
400 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
401 enum machine_mode,
402 unsigned int, unsigned int *);
403 static void do_SUBST (rtx *, rtx);
404 static void do_SUBST_INT (int *, int);
405 static void init_reg_last (void);
406 static void setup_incoming_promotions (rtx);
407 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
408 static int cant_combine_insn_p (rtx);
409 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
410 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
411 static int contains_muldiv (rtx);
412 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
413 static void undo_all (void);
414 static void undo_commit (void);
415 static rtx *find_split_point (rtx *, rtx, bool);
416 static rtx subst (rtx, rtx, rtx, int, int, int);
417 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
418 static rtx simplify_if_then_else (rtx);
419 static rtx simplify_set (rtx);
420 static rtx simplify_logical (rtx);
421 static rtx expand_compound_operation (rtx);
422 static const_rtx expand_field_assignment (const_rtx);
423 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
424 rtx, unsigned HOST_WIDE_INT, int, int, int);
425 static rtx extract_left_shift (rtx, int);
426 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx canon_reg_for_combine (rtx, rtx);
429 static rtx force_to_mode (rtx, enum machine_mode,
430 unsigned HOST_WIDE_INT, int);
431 static rtx if_then_else_cond (rtx, rtx *, rtx *);
432 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
433 static int rtx_equal_for_field_assignment_p (rtx, rtx);
434 static rtx make_field_assignment (rtx);
435 static rtx apply_distributive_law (rtx);
436 static rtx distribute_and_simplify_rtx (rtx, int);
437 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
438 unsigned HOST_WIDE_INT);
439 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
440 unsigned HOST_WIDE_INT);
441 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
442 HOST_WIDE_INT, enum machine_mode, int *);
443 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
444 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
445 int);
446 static int recog_for_combine (rtx *, rtx, rtx *);
447 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
448 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
449 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
450 static void update_table_tick (rtx);
451 static void record_value_for_reg (rtx, rtx, rtx);
452 static void check_promoted_subreg (rtx, rtx);
453 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
454 static void record_dead_and_set_regs (rtx);
455 static int get_last_value_validate (rtx *, rtx, int, int);
456 static rtx get_last_value (const_rtx);
457 static int use_crosses_set_p (const_rtx, int);
458 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
459 static int reg_dead_at_p (rtx, rtx);
460 static void move_deaths (rtx, rtx, int, rtx, rtx *);
461 static int reg_bitfield_target_p (rtx, rtx);
462 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
463 static void distribute_links (struct insn_link *);
464 static void mark_used_regs_combine (rtx);
465 static void record_promoted_value (rtx, rtx);
466 static int unmentioned_reg_p_1 (rtx *, void *);
467 static bool unmentioned_reg_p (rtx, rtx);
468 static int record_truncated_value (rtx *, void *);
469 static void record_truncated_values (rtx *, void *);
470 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
471 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
474 /* It is not safe to use ordinary gen_lowpart in combine.
475 See comments in gen_lowpart_for_combine. */
476 #undef RTL_HOOKS_GEN_LOWPART
477 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
479 /* Our implementation of gen_lowpart never emits a new pseudo. */
480 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
481 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
483 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
484 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
486 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
487 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
489 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
490 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
492 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
495 /* Convenience wrapper for the canonicalize_comparison target hook.
496 Target hooks cannot use enum rtx_code. */
497 static inline void
498 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
499 bool op0_preserve_value)
501 int code_int = (int)*code;
502 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
503 *code = (enum rtx_code)code_int;
506 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
507 PATTERN can not be split. Otherwise, it returns an insn sequence.
508 This is a wrapper around split_insns which ensures that the
509 reg_stat vector is made larger if the splitter creates a new
510 register. */
512 static rtx
513 combine_split_insns (rtx pattern, rtx insn)
515 rtx ret;
516 unsigned int nregs;
518 ret = split_insns (pattern, insn);
519 nregs = max_reg_num ();
520 if (nregs > reg_stat.length ())
521 reg_stat.safe_grow_cleared (nregs);
522 return ret;
525 /* This is used by find_single_use to locate an rtx in LOC that
526 contains exactly one use of DEST, which is typically either a REG
527 or CC0. It returns a pointer to the innermost rtx expression
528 containing DEST. Appearances of DEST that are being used to
529 totally replace it are not counted. */
531 static rtx *
532 find_single_use_1 (rtx dest, rtx *loc)
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx *result = NULL;
537 rtx *this_result;
538 int i;
539 const char *fmt;
541 switch (code)
543 case CONST:
544 case LABEL_REF:
545 case SYMBOL_REF:
546 CASE_CONST_ANY:
547 case CLOBBER:
548 return 0;
550 case SET:
551 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
552 of a REG that occupies all of the REG, the insn uses DEST if
553 it is mentioned in the destination or the source. Otherwise, we
554 need just check the source. */
555 if (GET_CODE (SET_DEST (x)) != CC0
556 && GET_CODE (SET_DEST (x)) != PC
557 && !REG_P (SET_DEST (x))
558 && ! (GET_CODE (SET_DEST (x)) == SUBREG
559 && REG_P (SUBREG_REG (SET_DEST (x)))
560 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
561 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
562 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
563 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
564 break;
566 return find_single_use_1 (dest, &SET_SRC (x));
568 case MEM:
569 case SUBREG:
570 return find_single_use_1 (dest, &XEXP (x, 0));
572 default:
573 break;
576 /* If it wasn't one of the common cases above, check each expression and
577 vector of this code. Look for a unique usage of DEST. */
579 fmt = GET_RTX_FORMAT (code);
580 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
582 if (fmt[i] == 'e')
584 if (dest == XEXP (x, i)
585 || (REG_P (dest) && REG_P (XEXP (x, i))
586 && REGNO (dest) == REGNO (XEXP (x, i))))
587 this_result = loc;
588 else
589 this_result = find_single_use_1 (dest, &XEXP (x, i));
591 if (result == NULL)
592 result = this_result;
593 else if (this_result)
594 /* Duplicate usage. */
595 return NULL;
597 else if (fmt[i] == 'E')
599 int j;
601 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
603 if (XVECEXP (x, i, j) == dest
604 || (REG_P (dest)
605 && REG_P (XVECEXP (x, i, j))
606 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
607 this_result = loc;
608 else
609 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
611 if (result == NULL)
612 result = this_result;
613 else if (this_result)
614 return NULL;
619 return result;
623 /* See if DEST, produced in INSN, is used only a single time in the
624 sequel. If so, return a pointer to the innermost rtx expression in which
625 it is used.
627 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
629 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
630 care about REG_DEAD notes or LOG_LINKS.
632 Otherwise, we find the single use by finding an insn that has a
633 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
634 only referenced once in that insn, we know that it must be the first
635 and last insn referencing DEST. */
637 static rtx *
638 find_single_use (rtx dest, rtx insn, rtx *ploc)
640 basic_block bb;
641 rtx next;
642 rtx *result;
643 struct insn_link *link;
645 #ifdef HAVE_cc0
646 if (dest == cc0_rtx)
648 next = NEXT_INSN (insn);
649 if (next == 0
650 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
651 return 0;
653 result = find_single_use_1 (dest, &PATTERN (next));
654 if (result && ploc)
655 *ploc = next;
656 return result;
658 #endif
660 if (!REG_P (dest))
661 return 0;
663 bb = BLOCK_FOR_INSN (insn);
664 for (next = NEXT_INSN (insn);
665 next && BLOCK_FOR_INSN (next) == bb;
666 next = NEXT_INSN (next))
667 if (INSN_P (next) && dead_or_set_p (next, dest))
669 FOR_EACH_LOG_LINK (link, next)
670 if (link->insn == insn)
671 break;
673 if (link)
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (ploc)
677 *ploc = next;
678 return result;
682 return 0;
685 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
686 insn. The substitution can be undone by undo_all. If INTO is already
687 set to NEWVAL, do not record this change. Because computing NEWVAL might
688 also call SUBST, we have to compute it before we put anything into
689 the undo table. */
691 static void
692 do_SUBST (rtx *into, rtx newval)
694 struct undo *buf;
695 rtx oldval = *into;
697 if (oldval == newval)
698 return;
700 /* We'd like to catch as many invalid transformations here as
701 possible. Unfortunately, there are way too many mode changes
702 that are perfectly valid, so we'd waste too much effort for
703 little gain doing the checks here. Focus on catching invalid
704 transformations involving integer constants. */
705 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
706 && CONST_INT_P (newval))
708 /* Sanity check that we're replacing oldval with a CONST_INT
709 that is a valid sign-extension for the original mode. */
710 gcc_assert (INTVAL (newval)
711 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
713 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
714 CONST_INT is not valid, because after the replacement, the
715 original mode would be gone. Unfortunately, we can't tell
716 when do_SUBST is called to replace the operand thereof, so we
717 perform this test on oldval instead, checking whether an
718 invalid replacement took place before we got here. */
719 gcc_assert (!(GET_CODE (oldval) == SUBREG
720 && CONST_INT_P (SUBREG_REG (oldval))));
721 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
722 && CONST_INT_P (XEXP (oldval, 0))));
725 if (undobuf.frees)
726 buf = undobuf.frees, undobuf.frees = buf->next;
727 else
728 buf = XNEW (struct undo);
730 buf->kind = UNDO_RTX;
731 buf->where.r = into;
732 buf->old_contents.r = oldval;
733 *into = newval;
735 buf->next = undobuf.undos, undobuf.undos = buf;
738 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
740 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
741 for the value of a HOST_WIDE_INT value (including CONST_INT) is
742 not safe. */
744 static void
745 do_SUBST_INT (int *into, int newval)
747 struct undo *buf;
748 int oldval = *into;
750 if (oldval == newval)
751 return;
753 if (undobuf.frees)
754 buf = undobuf.frees, undobuf.frees = buf->next;
755 else
756 buf = XNEW (struct undo);
758 buf->kind = UNDO_INT;
759 buf->where.i = into;
760 buf->old_contents.i = oldval;
761 *into = newval;
763 buf->next = undobuf.undos, undobuf.undos = buf;
766 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
768 /* Similar to SUBST, but just substitute the mode. This is used when
769 changing the mode of a pseudo-register, so that any other
770 references to the entry in the regno_reg_rtx array will change as
771 well. */
773 static void
774 do_SUBST_MODE (rtx *into, enum machine_mode newval)
776 struct undo *buf;
777 enum machine_mode oldval = GET_MODE (*into);
779 if (oldval == newval)
780 return;
782 if (undobuf.frees)
783 buf = undobuf.frees, undobuf.frees = buf->next;
784 else
785 buf = XNEW (struct undo);
787 buf->kind = UNDO_MODE;
788 buf->where.r = into;
789 buf->old_contents.m = oldval;
790 adjust_reg_mode (*into, newval);
792 buf->next = undobuf.undos, undobuf.undos = buf;
795 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
797 #ifndef HAVE_cc0
798 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
800 static void
801 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
803 struct undo *buf;
804 struct insn_link * oldval = *into;
806 if (oldval == newval)
807 return;
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
814 buf->kind = UNDO_LINKS;
815 buf->where.l = into;
816 buf->old_contents.l = oldval;
817 *into = newval;
819 buf->next = undobuf.undos, undobuf.undos = buf;
822 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
823 #endif
825 /* Subroutine of try_combine. Determine whether the replacement patterns
826 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
827 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
828 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
829 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
830 of all the instructions can be estimated and the replacements are more
831 expensive than the original sequence. */
833 static bool
834 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
835 rtx newi2pat, rtx newotherpat)
837 int i0_cost, i1_cost, i2_cost, i3_cost;
838 int new_i2_cost, new_i3_cost;
839 int old_cost, new_cost;
841 /* Lookup the original insn_rtx_costs. */
842 i2_cost = INSN_COST (i2);
843 i3_cost = INSN_COST (i3);
845 if (i1)
847 i1_cost = INSN_COST (i1);
848 if (i0)
850 i0_cost = INSN_COST (i0);
851 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
852 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
854 else
856 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
857 ? i1_cost + i2_cost + i3_cost : 0);
858 i0_cost = 0;
861 else
863 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
864 i1_cost = i0_cost = 0;
867 /* Calculate the replacement insn_rtx_costs. */
868 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
869 if (newi2pat)
871 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
872 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
873 ? new_i2_cost + new_i3_cost : 0;
875 else
877 new_cost = new_i3_cost;
878 new_i2_cost = 0;
881 if (undobuf.other_insn)
883 int old_other_cost, new_other_cost;
885 old_other_cost = INSN_COST (undobuf.other_insn);
886 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
887 if (old_other_cost > 0 && new_other_cost > 0)
889 old_cost += old_other_cost;
890 new_cost += new_other_cost;
892 else
893 old_cost = 0;
896 /* Disallow this combination if both new_cost and old_cost are greater than
897 zero, and new_cost is greater than old cost. */
898 if (old_cost > 0 && new_cost > old_cost)
900 if (dump_file)
902 if (i0)
904 fprintf (dump_file,
905 "rejecting combination of insns %d, %d, %d and %d\n",
906 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
907 INSN_UID (i3));
908 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
909 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
911 else if (i1)
913 fprintf (dump_file,
914 "rejecting combination of insns %d, %d and %d\n",
915 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
916 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
917 i1_cost, i2_cost, i3_cost, old_cost);
919 else
921 fprintf (dump_file,
922 "rejecting combination of insns %d and %d\n",
923 INSN_UID (i2), INSN_UID (i3));
924 fprintf (dump_file, "original costs %d + %d = %d\n",
925 i2_cost, i3_cost, old_cost);
928 if (newi2pat)
930 fprintf (dump_file, "replacement costs %d + %d = %d\n",
931 new_i2_cost, new_i3_cost, new_cost);
933 else
934 fprintf (dump_file, "replacement cost %d\n", new_cost);
937 return false;
940 /* Update the uid_insn_cost array with the replacement costs. */
941 INSN_COST (i2) = new_i2_cost;
942 INSN_COST (i3) = new_i3_cost;
943 if (i1)
945 INSN_COST (i1) = 0;
946 if (i0)
947 INSN_COST (i0) = 0;
950 return true;
954 /* Delete any insns that copy a register to itself. */
956 static void
957 delete_noop_moves (void)
959 rtx insn, next;
960 basic_block bb;
962 FOR_EACH_BB (bb)
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972 delete_insn_and_edges (insn);
979 /* Fill in log links field for all insns. */
981 static void
982 create_log_links (void)
984 basic_block bb;
985 rtx *next_use, insn;
986 df_ref *def_vec, *use_vec;
988 next_use = XCNEWVEC (rtx, max_reg_num ());
990 /* Pass through each block from the end, recording the uses of each
991 register and establishing log links when def is encountered.
992 Note that we do not clear next_use array in order to save time,
993 so we have to test whether the use is in the same basic block as def.
995 There are a few cases below when we do not consider the definition or
996 usage -- these are taken from original flow.c did. Don't ask me why it is
997 done this way; I don't know and if it works, I don't want to know. */
999 FOR_EACH_BB (bb)
1001 FOR_BB_INSNS_REVERSE (bb, insn)
1003 if (!NONDEBUG_INSN_P (insn))
1004 continue;
1006 /* Log links are created only once. */
1007 gcc_assert (!LOG_LINKS (insn));
1009 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1011 df_ref def = *def_vec;
1012 int regno = DF_REF_REGNO (def);
1013 rtx use_insn;
1015 if (!next_use[regno])
1016 continue;
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 continue;
1022 /* Do not make the log link for frame pointer. */
1023 if ((regno == FRAME_POINTER_REGNUM
1024 && (! reload_completed || frame_pointer_needed))
1025 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1026 || (regno == HARD_FRAME_POINTER_REGNUM
1027 && (! reload_completed || frame_pointer_needed))
1028 #endif
1029 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1030 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1031 #endif
1033 continue;
1035 use_insn = next_use[regno];
1036 if (BLOCK_FOR_INSN (use_insn) == bb)
1038 /* flow.c claimed:
1040 We don't build a LOG_LINK for hard registers contained
1041 in ASM_OPERANDs. If these registers get replaced,
1042 we might wind up changing the semantics of the insn,
1043 even if reload can make what appear to be valid
1044 assignments later. */
1045 if (regno >= FIRST_PSEUDO_REGISTER
1046 || asm_noperands (PATTERN (use_insn)) < 0)
1048 /* Don't add duplicate links between instructions. */
1049 struct insn_link *links;
1050 FOR_EACH_LOG_LINK (links, use_insn)
1051 if (insn == links->insn)
1052 break;
1054 if (!links)
1055 LOG_LINKS (use_insn)
1056 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1059 next_use[regno] = NULL_RTX;
1062 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1064 df_ref use = *use_vec;
1065 int regno = DF_REF_REGNO (use);
1067 /* Do not consider the usage of the stack pointer
1068 by function call. */
1069 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1070 continue;
1072 next_use[regno] = insn;
1077 free (next_use);
1080 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1081 true if we found a LOG_LINK that proves that A feeds B. This only works
1082 if there are no instructions between A and B which could have a link
1083 depending on A, since in that case we would not record a link for B.
1084 We also check the implicit dependency created by a cc0 setter/user
1085 pair. */
1087 static bool
1088 insn_a_feeds_b (rtx a, rtx b)
1090 struct insn_link *links;
1091 FOR_EACH_LOG_LINK (links, b)
1092 if (links->insn == a)
1093 return true;
1094 #ifdef HAVE_cc0
1095 if (sets_cc0_p (a))
1096 return true;
1097 #endif
1098 return false;
1101 /* Main entry point for combiner. F is the first insn of the function.
1102 NREGS is the first unused pseudo-reg number.
1104 Return nonzero if the combiner has turned an indirect jump
1105 instruction into a direct jump. */
1106 static int
1107 combine_instructions (rtx f, unsigned int nregs)
1109 rtx insn, next;
1110 #ifdef HAVE_cc0
1111 rtx prev;
1112 #endif
1113 struct insn_link *links, *nextlinks;
1114 rtx first;
1115 basic_block last_bb;
1117 int new_direct_jump_p = 0;
1119 for (first = f; first && !INSN_P (first); )
1120 first = NEXT_INSN (first);
1121 if (!first)
1122 return 0;
1124 combine_attempts = 0;
1125 combine_merges = 0;
1126 combine_extras = 0;
1127 combine_successes = 0;
1129 rtl_hooks = combine_rtl_hooks;
1131 reg_stat.safe_grow_cleared (nregs);
1133 init_recog_no_volatile ();
1135 /* Allocate array for insn info. */
1136 max_uid_known = get_max_uid ();
1137 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1138 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1139 gcc_obstack_init (&insn_link_obstack);
1141 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1143 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1144 problems when, for example, we have j <<= 1 in a loop. */
1146 nonzero_sign_valid = 0;
1147 label_tick = label_tick_ebb_start = 1;
1149 /* Scan all SETs and see if we can deduce anything about what
1150 bits are known to be zero for some registers and how many copies
1151 of the sign bit are known to exist for those registers.
1153 Also set any known values so that we can use it while searching
1154 for what bits are known to be set. */
1156 setup_incoming_promotions (first);
1157 /* Allow the entry block and the first block to fall into the same EBB.
1158 Conceptually the incoming promotions are assigned to the entry block. */
1159 last_bb = ENTRY_BLOCK_PTR;
1161 create_log_links ();
1162 FOR_EACH_BB (this_basic_block)
1164 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1165 last_call_luid = 0;
1166 mem_last_set = -1;
1168 label_tick++;
1169 if (!single_pred_p (this_basic_block)
1170 || single_pred (this_basic_block) != last_bb)
1171 label_tick_ebb_start = label_tick;
1172 last_bb = this_basic_block;
1174 FOR_BB_INSNS (this_basic_block, insn)
1175 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1177 #ifdef AUTO_INC_DEC
1178 rtx links;
1179 #endif
1181 subst_low_luid = DF_INSN_LUID (insn);
1182 subst_insn = insn;
1184 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1185 insn);
1186 record_dead_and_set_regs (insn);
1188 #ifdef AUTO_INC_DEC
1189 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1190 if (REG_NOTE_KIND (links) == REG_INC)
1191 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1192 insn);
1193 #endif
1195 /* Record the current insn_rtx_cost of this instruction. */
1196 if (NONJUMP_INSN_P (insn))
1197 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1198 optimize_this_for_speed_p);
1199 if (dump_file)
1200 fprintf(dump_file, "insn_cost %d: %d\n",
1201 INSN_UID (insn), INSN_COST (insn));
1205 nonzero_sign_valid = 1;
1207 /* Now scan all the insns in forward order. */
1208 label_tick = label_tick_ebb_start = 1;
1209 init_reg_last ();
1210 setup_incoming_promotions (first);
1211 last_bb = ENTRY_BLOCK_PTR;
1213 FOR_EACH_BB (this_basic_block)
1215 rtx last_combined_insn = NULL_RTX;
1216 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217 last_call_luid = 0;
1218 mem_last_set = -1;
1220 label_tick++;
1221 if (!single_pred_p (this_basic_block)
1222 || single_pred (this_basic_block) != last_bb)
1223 label_tick_ebb_start = label_tick;
1224 last_bb = this_basic_block;
1226 rtl_profile_for_bb (this_basic_block);
1227 for (insn = BB_HEAD (this_basic_block);
1228 insn != NEXT_INSN (BB_END (this_basic_block));
1229 insn = next ? next : NEXT_INSN (insn))
1231 next = 0;
1232 if (NONDEBUG_INSN_P (insn))
1234 while (last_combined_insn
1235 && INSN_DELETED_P (last_combined_insn))
1236 last_combined_insn = PREV_INSN (last_combined_insn);
1237 if (last_combined_insn == NULL_RTX
1238 || BARRIER_P (last_combined_insn)
1239 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1240 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1241 last_combined_insn = insn;
1243 /* See if we know about function return values before this
1244 insn based upon SUBREG flags. */
1245 check_promoted_subreg (insn, PATTERN (insn));
1247 /* See if we can find hardregs and subreg of pseudos in
1248 narrower modes. This could help turning TRUNCATEs
1249 into SUBREGs. */
1250 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1252 /* Try this insn with each insn it links back to. */
1254 FOR_EACH_LOG_LINK (links, insn)
1255 if ((next = try_combine (insn, links->insn, NULL_RTX,
1256 NULL_RTX, &new_direct_jump_p,
1257 last_combined_insn)) != 0)
1258 goto retry;
1260 /* Try each sequence of three linked insns ending with this one. */
1262 FOR_EACH_LOG_LINK (links, insn)
1264 rtx link = links->insn;
1266 /* If the linked insn has been replaced by a note, then there
1267 is no point in pursuing this chain any further. */
1268 if (NOTE_P (link))
1269 continue;
1271 FOR_EACH_LOG_LINK (nextlinks, link)
1272 if ((next = try_combine (insn, link, nextlinks->insn,
1273 NULL_RTX, &new_direct_jump_p,
1274 last_combined_insn)) != 0)
1275 goto retry;
1278 #ifdef HAVE_cc0
1279 /* Try to combine a jump insn that uses CC0
1280 with a preceding insn that sets CC0, and maybe with its
1281 logical predecessor as well.
1282 This is how we make decrement-and-branch insns.
1283 We need this special code because data flow connections
1284 via CC0 do not get entered in LOG_LINKS. */
1286 if (JUMP_P (insn)
1287 && (prev = prev_nonnote_insn (insn)) != 0
1288 && NONJUMP_INSN_P (prev)
1289 && sets_cc0_p (PATTERN (prev)))
1291 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1292 &new_direct_jump_p,
1293 last_combined_insn)) != 0)
1294 goto retry;
1296 FOR_EACH_LOG_LINK (nextlinks, prev)
1297 if ((next = try_combine (insn, prev, nextlinks->insn,
1298 NULL_RTX, &new_direct_jump_p,
1299 last_combined_insn)) != 0)
1300 goto retry;
1303 /* Do the same for an insn that explicitly references CC0. */
1304 if (NONJUMP_INSN_P (insn)
1305 && (prev = prev_nonnote_insn (insn)) != 0
1306 && NONJUMP_INSN_P (prev)
1307 && sets_cc0_p (PATTERN (prev))
1308 && GET_CODE (PATTERN (insn)) == SET
1309 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1311 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1312 &new_direct_jump_p,
1313 last_combined_insn)) != 0)
1314 goto retry;
1316 FOR_EACH_LOG_LINK (nextlinks, prev)
1317 if ((next = try_combine (insn, prev, nextlinks->insn,
1318 NULL_RTX, &new_direct_jump_p,
1319 last_combined_insn)) != 0)
1320 goto retry;
1323 /* Finally, see if any of the insns that this insn links to
1324 explicitly references CC0. If so, try this insn, that insn,
1325 and its predecessor if it sets CC0. */
1326 FOR_EACH_LOG_LINK (links, insn)
1327 if (NONJUMP_INSN_P (links->insn)
1328 && GET_CODE (PATTERN (links->insn)) == SET
1329 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1330 && (prev = prev_nonnote_insn (links->insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && (next = try_combine (insn, links->insn,
1334 prev, NULL_RTX, &new_direct_jump_p,
1335 last_combined_insn)) != 0)
1336 goto retry;
1337 #endif
1339 /* Try combining an insn with two different insns whose results it
1340 uses. */
1341 FOR_EACH_LOG_LINK (links, insn)
1342 for (nextlinks = links->next; nextlinks;
1343 nextlinks = nextlinks->next)
1344 if ((next = try_combine (insn, links->insn,
1345 nextlinks->insn, NULL_RTX,
1346 &new_direct_jump_p,
1347 last_combined_insn)) != 0)
1348 goto retry;
1350 /* Try four-instruction combinations. */
1351 FOR_EACH_LOG_LINK (links, insn)
1353 struct insn_link *next1;
1354 rtx link = links->insn;
1356 /* If the linked insn has been replaced by a note, then there
1357 is no point in pursuing this chain any further. */
1358 if (NOTE_P (link))
1359 continue;
1361 FOR_EACH_LOG_LINK (next1, link)
1363 rtx link1 = next1->insn;
1364 if (NOTE_P (link1))
1365 continue;
1366 /* I0 -> I1 -> I2 -> I3. */
1367 FOR_EACH_LOG_LINK (nextlinks, link1)
1368 if ((next = try_combine (insn, link, link1,
1369 nextlinks->insn,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1373 /* I0, I1 -> I2, I2 -> I3. */
1374 for (nextlinks = next1->next; nextlinks;
1375 nextlinks = nextlinks->next)
1376 if ((next = try_combine (insn, link, link1,
1377 nextlinks->insn,
1378 &new_direct_jump_p,
1379 last_combined_insn)) != 0)
1380 goto retry;
1383 for (next1 = links->next; next1; next1 = next1->next)
1385 rtx link1 = next1->insn;
1386 if (NOTE_P (link1))
1387 continue;
1388 /* I0 -> I2; I1, I2 -> I3. */
1389 FOR_EACH_LOG_LINK (nextlinks, link)
1390 if ((next = try_combine (insn, link, link1,
1391 nextlinks->insn,
1392 &new_direct_jump_p,
1393 last_combined_insn)) != 0)
1394 goto retry;
1395 /* I0 -> I1; I1, I2 -> I3. */
1396 FOR_EACH_LOG_LINK (nextlinks, link1)
1397 if ((next = try_combine (insn, link, link1,
1398 nextlinks->insn,
1399 &new_direct_jump_p,
1400 last_combined_insn)) != 0)
1401 goto retry;
1405 /* Try this insn with each REG_EQUAL note it links back to. */
1406 FOR_EACH_LOG_LINK (links, insn)
1408 rtx set, note;
1409 rtx temp = links->insn;
1410 if ((set = single_set (temp)) != 0
1411 && (note = find_reg_equal_equiv_note (temp)) != 0
1412 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1413 /* Avoid using a register that may already been marked
1414 dead by an earlier instruction. */
1415 && ! unmentioned_reg_p (note, SET_SRC (set))
1416 && (GET_MODE (note) == VOIDmode
1417 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1418 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1420 /* Temporarily replace the set's source with the
1421 contents of the REG_EQUAL note. The insn will
1422 be deleted or recognized by try_combine. */
1423 rtx orig = SET_SRC (set);
1424 SET_SRC (set) = note;
1425 i2mod = temp;
1426 i2mod_old_rhs = copy_rtx (orig);
1427 i2mod_new_rhs = copy_rtx (note);
1428 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1429 &new_direct_jump_p,
1430 last_combined_insn);
1431 i2mod = NULL_RTX;
1432 if (next)
1433 goto retry;
1434 SET_SRC (set) = orig;
1438 if (!NOTE_P (insn))
1439 record_dead_and_set_regs (insn);
1441 retry:
1447 default_rtl_profile ();
1448 clear_bb_flags ();
1449 new_direct_jump_p |= purge_all_dead_edges ();
1450 delete_noop_moves ();
1452 /* Clean up. */
1453 obstack_free (&insn_link_obstack, NULL);
1454 free (uid_log_links);
1455 free (uid_insn_cost);
1456 reg_stat.release ();
1459 struct undo *undo, *next;
1460 for (undo = undobuf.frees; undo; undo = next)
1462 next = undo->next;
1463 free (undo);
1465 undobuf.frees = 0;
1468 total_attempts += combine_attempts;
1469 total_merges += combine_merges;
1470 total_extras += combine_extras;
1471 total_successes += combine_successes;
1473 nonzero_sign_valid = 0;
1474 rtl_hooks = general_rtl_hooks;
1476 /* Make recognizer allow volatile MEMs again. */
1477 init_recog ();
1479 return new_direct_jump_p;
1482 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1484 static void
1485 init_reg_last (void)
1487 unsigned int i;
1488 reg_stat_type *p;
1490 FOR_EACH_VEC_ELT (reg_stat, i, p)
1491 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1494 /* Set up any promoted values for incoming argument registers. */
1496 static void
1497 setup_incoming_promotions (rtx first)
1499 tree arg;
1500 bool strictly_local = false;
1502 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1503 arg = DECL_CHAIN (arg))
1505 rtx x, reg = DECL_INCOMING_RTL (arg);
1506 int uns1, uns3;
1507 enum machine_mode mode1, mode2, mode3, mode4;
1509 /* Only continue if the incoming argument is in a register. */
1510 if (!REG_P (reg))
1511 continue;
1513 /* Determine, if possible, whether all call sites of the current
1514 function lie within the current compilation unit. (This does
1515 take into account the exporting of a function via taking its
1516 address, and so forth.) */
1517 strictly_local = cgraph_local_info (current_function_decl)->local;
1519 /* The mode and signedness of the argument before any promotions happen
1520 (equal to the mode of the pseudo holding it at that stage). */
1521 mode1 = TYPE_MODE (TREE_TYPE (arg));
1522 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1524 /* The mode and signedness of the argument after any source language and
1525 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1526 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1527 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1529 /* The mode and signedness of the argument as it is actually passed,
1530 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1531 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1532 TREE_TYPE (cfun->decl), 0);
1534 /* The mode of the register in which the argument is being passed. */
1535 mode4 = GET_MODE (reg);
1537 /* Eliminate sign extensions in the callee when:
1538 (a) A mode promotion has occurred; */
1539 if (mode1 == mode3)
1540 continue;
1541 /* (b) The mode of the register is the same as the mode of
1542 the argument as it is passed; */
1543 if (mode3 != mode4)
1544 continue;
1545 /* (c) There's no language level extension; */
1546 if (mode1 == mode2)
1548 /* (c.1) All callers are from the current compilation unit. If that's
1549 the case we don't have to rely on an ABI, we only have to know
1550 what we're generating right now, and we know that we will do the
1551 mode1 to mode2 promotion with the given sign. */
1552 else if (!strictly_local)
1553 continue;
1554 /* (c.2) The combination of the two promotions is useful. This is
1555 true when the signs match, or if the first promotion is unsigned.
1556 In the later case, (sign_extend (zero_extend x)) is the same as
1557 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1558 else if (uns1)
1559 uns3 = true;
1560 else if (uns3)
1561 continue;
1563 /* Record that the value was promoted from mode1 to mode3,
1564 so that any sign extension at the head of the current
1565 function may be eliminated. */
1566 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1567 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1568 record_value_for_reg (reg, first, x);
1572 /* Called via note_stores. If X is a pseudo that is narrower than
1573 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1575 If we are setting only a portion of X and we can't figure out what
1576 portion, assume all bits will be used since we don't know what will
1577 be happening.
1579 Similarly, set how many bits of X are known to be copies of the sign bit
1580 at all locations in the function. This is the smallest number implied
1581 by any set of X. */
1583 static void
1584 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1586 rtx insn = (rtx) data;
1587 unsigned int num;
1589 if (REG_P (x)
1590 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1591 /* If this register is undefined at the start of the file, we can't
1592 say what its contents were. */
1593 && ! REGNO_REG_SET_P
1594 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1597 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1599 if (set == 0 || GET_CODE (set) == CLOBBER)
1601 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1602 rsp->sign_bit_copies = 1;
1603 return;
1606 /* If this register is being initialized using itself, and the
1607 register is uninitialized in this basic block, and there are
1608 no LOG_LINKS which set the register, then part of the
1609 register is uninitialized. In that case we can't assume
1610 anything about the number of nonzero bits.
1612 ??? We could do better if we checked this in
1613 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1614 could avoid making assumptions about the insn which initially
1615 sets the register, while still using the information in other
1616 insns. We would have to be careful to check every insn
1617 involved in the combination. */
1619 if (insn
1620 && reg_referenced_p (x, PATTERN (insn))
1621 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1622 REGNO (x)))
1624 struct insn_link *link;
1626 FOR_EACH_LOG_LINK (link, insn)
1627 if (dead_or_set_p (link->insn, x))
1628 break;
1629 if (!link)
1631 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1632 rsp->sign_bit_copies = 1;
1633 return;
1637 /* If this is a complex assignment, see if we can convert it into a
1638 simple assignment. */
1639 set = expand_field_assignment (set);
1641 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1642 set what we know about X. */
1644 if (SET_DEST (set) == x
1645 || (paradoxical_subreg_p (SET_DEST (set))
1646 && SUBREG_REG (SET_DEST (set)) == x))
1648 rtx src = SET_SRC (set);
1650 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1651 /* If X is narrower than a word and SRC is a non-negative
1652 constant that would appear negative in the mode of X,
1653 sign-extend it for use in reg_stat[].nonzero_bits because some
1654 machines (maybe most) will actually do the sign-extension
1655 and this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard
1658 instead of this kludge. */
1660 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1661 && CONST_INT_P (src)
1662 && INTVAL (src) > 0
1663 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1664 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1665 #endif
1667 /* Don't call nonzero_bits if it cannot change anything. */
1668 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1669 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1670 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1671 if (rsp->sign_bit_copies == 0
1672 || rsp->sign_bit_copies > num)
1673 rsp->sign_bit_copies = num;
1675 else
1677 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1678 rsp->sign_bit_copies = 1;
1683 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1684 optionally insns that were previously combined into I3 or that will be
1685 combined into the merger of INSN and I3. The order is PRED, PRED2,
1686 INSN, SUCC, SUCC2, I3.
1688 Return 0 if the combination is not allowed for any reason.
1690 If the combination is allowed, *PDEST will be set to the single
1691 destination of INSN and *PSRC to the single source, and this function
1692 will return 1. */
1694 static int
1695 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1696 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1697 rtx *pdest, rtx *psrc)
1699 int i;
1700 const_rtx set = 0;
1701 rtx src, dest;
1702 rtx p;
1703 #ifdef AUTO_INC_DEC
1704 rtx link;
1705 #endif
1706 bool all_adjacent = true;
1707 int (*is_volatile_p) (const_rtx);
1709 if (succ)
1711 if (succ2)
1713 if (next_active_insn (succ2) != i3)
1714 all_adjacent = false;
1715 if (next_active_insn (succ) != succ2)
1716 all_adjacent = false;
1718 else if (next_active_insn (succ) != i3)
1719 all_adjacent = false;
1720 if (next_active_insn (insn) != succ)
1721 all_adjacent = false;
1723 else if (next_active_insn (insn) != i3)
1724 all_adjacent = false;
1726 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1727 or a PARALLEL consisting of such a SET and CLOBBERs.
1729 If INSN has CLOBBER parallel parts, ignore them for our processing.
1730 By definition, these happen during the execution of the insn. When it
1731 is merged with another insn, all bets are off. If they are, in fact,
1732 needed and aren't also supplied in I3, they may be added by
1733 recog_for_combine. Otherwise, it won't match.
1735 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1736 note.
1738 Get the source and destination of INSN. If more than one, can't
1739 combine. */
1741 if (GET_CODE (PATTERN (insn)) == SET)
1742 set = PATTERN (insn);
1743 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1744 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1746 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1748 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1750 switch (GET_CODE (elt))
1752 /* This is important to combine floating point insns
1753 for the SH4 port. */
1754 case USE:
1755 /* Combining an isolated USE doesn't make sense.
1756 We depend here on combinable_i3pat to reject them. */
1757 /* The code below this loop only verifies that the inputs of
1758 the SET in INSN do not change. We call reg_set_between_p
1759 to verify that the REG in the USE does not change between
1760 I3 and INSN.
1761 If the USE in INSN was for a pseudo register, the matching
1762 insn pattern will likely match any register; combining this
1763 with any other USE would only be safe if we knew that the
1764 used registers have identical values, or if there was
1765 something to tell them apart, e.g. different modes. For
1766 now, we forgo such complicated tests and simply disallow
1767 combining of USES of pseudo registers with any other USE. */
1768 if (REG_P (XEXP (elt, 0))
1769 && GET_CODE (PATTERN (i3)) == PARALLEL)
1771 rtx i3pat = PATTERN (i3);
1772 int i = XVECLEN (i3pat, 0) - 1;
1773 unsigned int regno = REGNO (XEXP (elt, 0));
1777 rtx i3elt = XVECEXP (i3pat, 0, i);
1779 if (GET_CODE (i3elt) == USE
1780 && REG_P (XEXP (i3elt, 0))
1781 && (REGNO (XEXP (i3elt, 0)) == regno
1782 ? reg_set_between_p (XEXP (elt, 0),
1783 PREV_INSN (insn), i3)
1784 : regno >= FIRST_PSEUDO_REGISTER))
1785 return 0;
1787 while (--i >= 0);
1789 break;
1791 /* We can ignore CLOBBERs. */
1792 case CLOBBER:
1793 break;
1795 case SET:
1796 /* Ignore SETs whose result isn't used but not those that
1797 have side-effects. */
1798 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1799 && insn_nothrow_p (insn)
1800 && !side_effects_p (elt))
1801 break;
1803 /* If we have already found a SET, this is a second one and
1804 so we cannot combine with this insn. */
1805 if (set)
1806 return 0;
1808 set = elt;
1809 break;
1811 default:
1812 /* Anything else means we can't combine. */
1813 return 0;
1817 if (set == 0
1818 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1819 so don't do anything with it. */
1820 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1821 return 0;
1823 else
1824 return 0;
1826 if (set == 0)
1827 return 0;
1829 /* The simplification in expand_field_assignment may call back to
1830 get_last_value, so set safe guard here. */
1831 subst_low_luid = DF_INSN_LUID (insn);
1833 set = expand_field_assignment (set);
1834 src = SET_SRC (set), dest = SET_DEST (set);
1836 /* Don't eliminate a store in the stack pointer. */
1837 if (dest == stack_pointer_rtx
1838 /* Don't combine with an insn that sets a register to itself if it has
1839 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1840 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1841 /* Can't merge an ASM_OPERANDS. */
1842 || GET_CODE (src) == ASM_OPERANDS
1843 /* Can't merge a function call. */
1844 || GET_CODE (src) == CALL
1845 /* Don't eliminate a function call argument. */
1846 || (CALL_P (i3)
1847 && (find_reg_fusage (i3, USE, dest)
1848 || (REG_P (dest)
1849 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1850 && global_regs[REGNO (dest)])))
1851 /* Don't substitute into an incremented register. */
1852 || FIND_REG_INC_NOTE (i3, dest)
1853 || (succ && FIND_REG_INC_NOTE (succ, dest))
1854 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1855 /* Don't substitute into a non-local goto, this confuses CFG. */
1856 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1857 /* Make sure that DEST is not used after SUCC but before I3. */
1858 || (!all_adjacent
1859 && ((succ2
1860 && (reg_used_between_p (dest, succ2, i3)
1861 || reg_used_between_p (dest, succ, succ2)))
1862 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1863 /* Make sure that the value that is to be substituted for the register
1864 does not use any registers whose values alter in between. However,
1865 If the insns are adjacent, a use can't cross a set even though we
1866 think it might (this can happen for a sequence of insns each setting
1867 the same destination; last_set of that register might point to
1868 a NOTE). If INSN has a REG_EQUIV note, the register is always
1869 equivalent to the memory so the substitution is valid even if there
1870 are intervening stores. Also, don't move a volatile asm or
1871 UNSPEC_VOLATILE across any other insns. */
1872 || (! all_adjacent
1873 && (((!MEM_P (src)
1874 || ! find_reg_note (insn, REG_EQUIV, src))
1875 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1876 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1877 || GET_CODE (src) == UNSPEC_VOLATILE))
1878 /* Don't combine across a CALL_INSN, because that would possibly
1879 change whether the life span of some REGs crosses calls or not,
1880 and it is a pain to update that information.
1881 Exception: if source is a constant, moving it later can't hurt.
1882 Accept that as a special case. */
1883 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1884 return 0;
1886 /* DEST must either be a REG or CC0. */
1887 if (REG_P (dest))
1889 /* If register alignment is being enforced for multi-word items in all
1890 cases except for parameters, it is possible to have a register copy
1891 insn referencing a hard register that is not allowed to contain the
1892 mode being copied and which would not be valid as an operand of most
1893 insns. Eliminate this problem by not combining with such an insn.
1895 Also, on some machines we don't want to extend the life of a hard
1896 register. */
1898 if (REG_P (src)
1899 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1901 /* Don't extend the life of a hard register unless it is
1902 user variable (if we have few registers) or it can't
1903 fit into the desired register (meaning something special
1904 is going on).
1905 Also avoid substituting a return register into I3, because
1906 reload can't handle a conflict with constraints of other
1907 inputs. */
1908 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1909 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1910 return 0;
1912 else if (GET_CODE (dest) != CC0)
1913 return 0;
1916 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1917 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1918 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1920 /* Don't substitute for a register intended as a clobberable
1921 operand. */
1922 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1923 if (rtx_equal_p (reg, dest))
1924 return 0;
1926 /* If the clobber represents an earlyclobber operand, we must not
1927 substitute an expression containing the clobbered register.
1928 As we do not analyze the constraint strings here, we have to
1929 make the conservative assumption. However, if the register is
1930 a fixed hard reg, the clobber cannot represent any operand;
1931 we leave it up to the machine description to either accept or
1932 reject use-and-clobber patterns. */
1933 if (!REG_P (reg)
1934 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1935 || !fixed_regs[REGNO (reg)])
1936 if (reg_overlap_mentioned_p (reg, src))
1937 return 0;
1940 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1941 or not), reject, unless nothing volatile comes between it and I3 */
1943 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1945 /* Make sure neither succ nor succ2 contains a volatile reference. */
1946 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1947 return 0;
1948 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1949 return 0;
1950 /* We'll check insns between INSN and I3 below. */
1953 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1954 to be an explicit register variable, and was chosen for a reason. */
1956 if (GET_CODE (src) == ASM_OPERANDS
1957 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1958 return 0;
1960 /* If INSN contains volatile references (specifically volatile MEMs),
1961 we cannot combine across any other volatile references.
1962 Even if INSN doesn't contain volatile references, any intervening
1963 volatile insn might affect machine state. */
1965 is_volatile_p = volatile_refs_p (PATTERN (insn))
1966 ? volatile_refs_p
1967 : volatile_insn_p;
1969 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1970 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1971 return 0;
1973 /* If INSN contains an autoincrement or autodecrement, make sure that
1974 register is not used between there and I3, and not already used in
1975 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1976 Also insist that I3 not be a jump; if it were one
1977 and the incremented register were spilled, we would lose. */
1979 #ifdef AUTO_INC_DEC
1980 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1981 if (REG_NOTE_KIND (link) == REG_INC
1982 && (JUMP_P (i3)
1983 || reg_used_between_p (XEXP (link, 0), insn, i3)
1984 || (pred != NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1986 || (pred2 != NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1988 || (succ != NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1990 || (succ2 != NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1992 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1993 return 0;
1994 #endif
1996 #ifdef HAVE_cc0
1997 /* Don't combine an insn that follows a CC0-setting insn.
1998 An insn that uses CC0 must not be separated from the one that sets it.
1999 We do, however, allow I2 to follow a CC0-setting insn if that insn
2000 is passed as I1; in that case it will be deleted also.
2001 We also allow combining in this case if all the insns are adjacent
2002 because that would leave the two CC0 insns adjacent as well.
2003 It would be more logical to test whether CC0 occurs inside I1 or I2,
2004 but that would be much slower, and this ought to be equivalent. */
2006 p = prev_nonnote_insn (insn);
2007 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2008 && ! all_adjacent)
2009 return 0;
2010 #endif
2012 /* If we get here, we have passed all the tests and the combination is
2013 to be allowed. */
2015 *pdest = dest;
2016 *psrc = src;
2018 return 1;
2021 /* LOC is the location within I3 that contains its pattern or the component
2022 of a PARALLEL of the pattern. We validate that it is valid for combining.
2024 One problem is if I3 modifies its output, as opposed to replacing it
2025 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2026 doing so would produce an insn that is not equivalent to the original insns.
2028 Consider:
2030 (set (reg:DI 101) (reg:DI 100))
2031 (set (subreg:SI (reg:DI 101) 0) <foo>)
2033 This is NOT equivalent to:
2035 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2036 (set (reg:DI 101) (reg:DI 100))])
2038 Not only does this modify 100 (in which case it might still be valid
2039 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2041 We can also run into a problem if I2 sets a register that I1
2042 uses and I1 gets directly substituted into I3 (not via I2). In that
2043 case, we would be getting the wrong value of I2DEST into I3, so we
2044 must reject the combination. This case occurs when I2 and I1 both
2045 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2046 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2047 of a SET must prevent combination from occurring. The same situation
2048 can occur for I0, in which case I0_NOT_IN_SRC is set.
2050 Before doing the above check, we first try to expand a field assignment
2051 into a set of logical operations.
2053 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2054 we place a register that is both set and used within I3. If more than one
2055 such register is detected, we fail.
2057 Return 1 if the combination is valid, zero otherwise. */
2059 static int
2060 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2061 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2063 rtx x = *loc;
2065 if (GET_CODE (x) == SET)
2067 rtx set = x ;
2068 rtx dest = SET_DEST (set);
2069 rtx src = SET_SRC (set);
2070 rtx inner_dest = dest;
2071 rtx subdest;
2073 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2074 || GET_CODE (inner_dest) == SUBREG
2075 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2076 inner_dest = XEXP (inner_dest, 0);
2078 /* Check for the case where I3 modifies its output, as discussed
2079 above. We don't want to prevent pseudos from being combined
2080 into the address of a MEM, so only prevent the combination if
2081 i1 or i2 set the same MEM. */
2082 if ((inner_dest != dest &&
2083 (!MEM_P (inner_dest)
2084 || rtx_equal_p (i2dest, inner_dest)
2085 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2086 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2087 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2088 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2089 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2091 /* This is the same test done in can_combine_p except we can't test
2092 all_adjacent; we don't have to, since this instruction will stay
2093 in place, thus we are not considering increasing the lifetime of
2094 INNER_DEST.
2096 Also, if this insn sets a function argument, combining it with
2097 something that might need a spill could clobber a previous
2098 function argument; the all_adjacent test in can_combine_p also
2099 checks this; here, we do a more specific test for this case. */
2101 || (REG_P (inner_dest)
2102 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2103 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2104 GET_MODE (inner_dest))))
2105 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2106 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2107 return 0;
2109 /* If DEST is used in I3, it is being killed in this insn, so
2110 record that for later. We have to consider paradoxical
2111 subregs here, since they kill the whole register, but we
2112 ignore partial subregs, STRICT_LOW_PART, etc.
2113 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2114 STACK_POINTER_REGNUM, since these are always considered to be
2115 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2116 subdest = dest;
2117 if (GET_CODE (subdest) == SUBREG
2118 && (GET_MODE_SIZE (GET_MODE (subdest))
2119 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2120 subdest = SUBREG_REG (subdest);
2121 if (pi3dest_killed
2122 && REG_P (subdest)
2123 && reg_referenced_p (subdest, PATTERN (i3))
2124 && REGNO (subdest) != FRAME_POINTER_REGNUM
2125 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2126 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2127 #endif
2128 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2129 && (REGNO (subdest) != ARG_POINTER_REGNUM
2130 || ! fixed_regs [REGNO (subdest)])
2131 #endif
2132 && REGNO (subdest) != STACK_POINTER_REGNUM)
2134 if (*pi3dest_killed)
2135 return 0;
2137 *pi3dest_killed = subdest;
2141 else if (GET_CODE (x) == PARALLEL)
2143 int i;
2145 for (i = 0; i < XVECLEN (x, 0); i++)
2146 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2147 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2148 return 0;
2151 return 1;
2154 /* Return 1 if X is an arithmetic expression that contains a multiplication
2155 and division. We don't count multiplications by powers of two here. */
2157 static int
2158 contains_muldiv (rtx x)
2160 switch (GET_CODE (x))
2162 case MOD: case DIV: case UMOD: case UDIV:
2163 return 1;
2165 case MULT:
2166 return ! (CONST_INT_P (XEXP (x, 1))
2167 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2168 default:
2169 if (BINARY_P (x))
2170 return contains_muldiv (XEXP (x, 0))
2171 || contains_muldiv (XEXP (x, 1));
2173 if (UNARY_P (x))
2174 return contains_muldiv (XEXP (x, 0));
2176 return 0;
2180 /* Determine whether INSN can be used in a combination. Return nonzero if
2181 not. This is used in try_combine to detect early some cases where we
2182 can't perform combinations. */
2184 static int
2185 cant_combine_insn_p (rtx insn)
2187 rtx set;
2188 rtx src, dest;
2190 /* If this isn't really an insn, we can't do anything.
2191 This can occur when flow deletes an insn that it has merged into an
2192 auto-increment address. */
2193 if (! INSN_P (insn))
2194 return 1;
2196 /* Never combine loads and stores involving hard regs that are likely
2197 to be spilled. The register allocator can usually handle such
2198 reg-reg moves by tying. If we allow the combiner to make
2199 substitutions of likely-spilled regs, reload might die.
2200 As an exception, we allow combinations involving fixed regs; these are
2201 not available to the register allocator so there's no risk involved. */
2203 set = single_set (insn);
2204 if (! set)
2205 return 0;
2206 src = SET_SRC (set);
2207 dest = SET_DEST (set);
2208 if (GET_CODE (src) == SUBREG)
2209 src = SUBREG_REG (src);
2210 if (GET_CODE (dest) == SUBREG)
2211 dest = SUBREG_REG (dest);
2212 if (REG_P (src) && REG_P (dest)
2213 && ((HARD_REGISTER_P (src)
2214 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2215 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2216 || (HARD_REGISTER_P (dest)
2217 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2218 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2219 return 1;
2221 return 0;
2224 struct likely_spilled_retval_info
2226 unsigned regno, nregs;
2227 unsigned mask;
2230 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2231 hard registers that are known to be written to / clobbered in full. */
2232 static void
2233 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2235 struct likely_spilled_retval_info *const info =
2236 (struct likely_spilled_retval_info *) data;
2237 unsigned regno, nregs;
2238 unsigned new_mask;
2240 if (!REG_P (XEXP (set, 0)))
2241 return;
2242 regno = REGNO (x);
2243 if (regno >= info->regno + info->nregs)
2244 return;
2245 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2246 if (regno + nregs <= info->regno)
2247 return;
2248 new_mask = (2U << (nregs - 1)) - 1;
2249 if (regno < info->regno)
2250 new_mask >>= info->regno - regno;
2251 else
2252 new_mask <<= regno - info->regno;
2253 info->mask &= ~new_mask;
2256 /* Return nonzero iff part of the return value is live during INSN, and
2257 it is likely spilled. This can happen when more than one insn is needed
2258 to copy the return value, e.g. when we consider to combine into the
2259 second copy insn for a complex value. */
2261 static int
2262 likely_spilled_retval_p (rtx insn)
2264 rtx use = BB_END (this_basic_block);
2265 rtx reg, p;
2266 unsigned regno, nregs;
2267 /* We assume here that no machine mode needs more than
2268 32 hard registers when the value overlaps with a register
2269 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2270 unsigned mask;
2271 struct likely_spilled_retval_info info;
2273 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2274 return 0;
2275 reg = XEXP (PATTERN (use), 0);
2276 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2277 return 0;
2278 regno = REGNO (reg);
2279 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2280 if (nregs == 1)
2281 return 0;
2282 mask = (2U << (nregs - 1)) - 1;
2284 /* Disregard parts of the return value that are set later. */
2285 info.regno = regno;
2286 info.nregs = nregs;
2287 info.mask = mask;
2288 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2289 if (INSN_P (p))
2290 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2291 mask = info.mask;
2293 /* Check if any of the (probably) live return value registers is
2294 likely spilled. */
2295 nregs --;
2298 if ((mask & 1 << nregs)
2299 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2300 return 1;
2301 } while (nregs--);
2302 return 0;
2305 /* Adjust INSN after we made a change to its destination.
2307 Changing the destination can invalidate notes that say something about
2308 the results of the insn and a LOG_LINK pointing to the insn. */
2310 static void
2311 adjust_for_new_dest (rtx insn)
2313 /* For notes, be conservative and simply remove them. */
2314 remove_reg_equal_equiv_notes (insn);
2316 /* The new insn will have a destination that was previously the destination
2317 of an insn just above it. Call distribute_links to make a LOG_LINK from
2318 the next use of that destination. */
2319 distribute_links (alloc_insn_link (insn, NULL));
2321 df_insn_rescan (insn);
2324 /* Return TRUE if combine can reuse reg X in mode MODE.
2325 ADDED_SETS is nonzero if the original set is still required. */
2326 static bool
2327 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2329 unsigned int regno;
2331 if (!REG_P(x))
2332 return false;
2334 regno = REGNO (x);
2335 /* Allow hard registers if the new mode is legal, and occupies no more
2336 registers than the old mode. */
2337 if (regno < FIRST_PSEUDO_REGISTER)
2338 return (HARD_REGNO_MODE_OK (regno, mode)
2339 && (hard_regno_nregs[regno][GET_MODE (x)]
2340 >= hard_regno_nregs[regno][mode]));
2342 /* Or a pseudo that is only used once. */
2343 return (REG_N_SETS (regno) == 1 && !added_sets
2344 && !REG_USERVAR_P (x));
2348 /* Check whether X, the destination of a set, refers to part of
2349 the register specified by REG. */
2351 static bool
2352 reg_subword_p (rtx x, rtx reg)
2354 /* Check that reg is an integer mode register. */
2355 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2356 return false;
2358 if (GET_CODE (x) == STRICT_LOW_PART
2359 || GET_CODE (x) == ZERO_EXTRACT)
2360 x = XEXP (x, 0);
2362 return GET_CODE (x) == SUBREG
2363 && SUBREG_REG (x) == reg
2364 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2367 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2368 Note that the INSN should be deleted *after* removing dead edges, so
2369 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2370 but not for a (set (pc) (label_ref FOO)). */
2372 static void
2373 update_cfg_for_uncondjump (rtx insn)
2375 basic_block bb = BLOCK_FOR_INSN (insn);
2376 gcc_assert (BB_END (bb) == insn);
2378 purge_dead_edges (bb);
2380 delete_insn (insn);
2381 if (EDGE_COUNT (bb->succs) == 1)
2383 rtx insn;
2385 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2387 /* Remove barriers from the footer if there are any. */
2388 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2389 if (BARRIER_P (insn))
2391 if (PREV_INSN (insn))
2392 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2393 else
2394 BB_FOOTER (bb) = NEXT_INSN (insn);
2395 if (NEXT_INSN (insn))
2396 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2398 else if (LABEL_P (insn))
2399 break;
2403 /* Try to combine the insns I0, I1 and I2 into I3.
2404 Here I0, I1 and I2 appear earlier than I3.
2405 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2408 If we are combining more than two insns and the resulting insn is not
2409 recognized, try splitting it into two insns. If that happens, I2 and I3
2410 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2411 Otherwise, I0, I1 and I2 are pseudo-deleted.
2413 Return 0 if the combination does not work. Then nothing is changed.
2414 If we did the combination, return the insn at which combine should
2415 resume scanning.
2417 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2418 new direct jump instruction.
2420 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2421 been I3 passed to an earlier try_combine within the same basic
2422 block. */
2424 static rtx
2425 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2426 rtx last_combined_insn)
2428 /* New patterns for I3 and I2, respectively. */
2429 rtx newpat, newi2pat = 0;
2430 rtvec newpat_vec_with_clobbers = 0;
2431 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2432 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2433 dead. */
2434 int added_sets_0, added_sets_1, added_sets_2;
2435 /* Total number of SETs to put into I3. */
2436 int total_sets;
2437 /* Nonzero if I2's or I1's body now appears in I3. */
2438 int i2_is_used = 0, i1_is_used = 0;
2439 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2440 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2441 /* Contains I3 if the destination of I3 is used in its source, which means
2442 that the old life of I3 is being killed. If that usage is placed into
2443 I2 and not in I3, a REG_DEAD note must be made. */
2444 rtx i3dest_killed = 0;
2445 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2446 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2447 /* Copy of SET_SRC of I1 and I0, if needed. */
2448 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2449 /* Set if I2DEST was reused as a scratch register. */
2450 bool i2scratch = false;
2451 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2452 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2454 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2455 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2456 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2457 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2458 /* Notes that must be added to REG_NOTES in I3 and I2. */
2459 rtx new_i3_notes, new_i2_notes;
2460 /* Notes that we substituted I3 into I2 instead of the normal case. */
2461 int i3_subst_into_i2 = 0;
2462 /* Notes that I1, I2 or I3 is a MULT operation. */
2463 int have_mult = 0;
2464 int swap_i2i3 = 0;
2465 int changed_i3_dest = 0;
2467 int maxreg;
2468 rtx temp;
2469 struct insn_link *link;
2470 rtx other_pat = 0;
2471 rtx new_other_notes;
2472 int i;
2474 /* Only try four-insn combinations when there's high likelihood of
2475 success. Look for simple insns, such as loads of constants or
2476 binary operations involving a constant. */
2477 if (i0)
2479 int i;
2480 int ngood = 0;
2481 int nshift = 0;
2483 if (!flag_expensive_optimizations)
2484 return 0;
2486 for (i = 0; i < 4; i++)
2488 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2489 rtx set = single_set (insn);
2490 rtx src;
2491 if (!set)
2492 continue;
2493 src = SET_SRC (set);
2494 if (CONSTANT_P (src))
2496 ngood += 2;
2497 break;
2499 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2500 ngood++;
2501 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2502 || GET_CODE (src) == LSHIFTRT)
2503 nshift++;
2505 if (ngood < 2 && nshift < 2)
2506 return 0;
2509 /* Exit early if one of the insns involved can't be used for
2510 combinations. */
2511 if (cant_combine_insn_p (i3)
2512 || cant_combine_insn_p (i2)
2513 || (i1 && cant_combine_insn_p (i1))
2514 || (i0 && cant_combine_insn_p (i0))
2515 || likely_spilled_retval_p (i3))
2516 return 0;
2518 combine_attempts++;
2519 undobuf.other_insn = 0;
2521 /* Reset the hard register usage information. */
2522 CLEAR_HARD_REG_SET (newpat_used_regs);
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2526 if (i0)
2527 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2528 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2529 else if (i1)
2530 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2531 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2532 else
2533 fprintf (dump_file, "\nTrying %d -> %d:\n",
2534 INSN_UID (i2), INSN_UID (i3));
2537 /* If multiple insns feed into one of I2 or I3, they can be in any
2538 order. To simplify the code below, reorder them in sequence. */
2539 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2540 temp = i2, i2 = i0, i0 = temp;
2541 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2542 temp = i1, i1 = i0, i0 = temp;
2543 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2544 temp = i1, i1 = i2, i2 = temp;
2546 added_links_insn = 0;
2548 /* First check for one important special case that the code below will
2549 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2550 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2551 we may be able to replace that destination with the destination of I3.
2552 This occurs in the common code where we compute both a quotient and
2553 remainder into a structure, in which case we want to do the computation
2554 directly into the structure to avoid register-register copies.
2556 Note that this case handles both multiple sets in I2 and also cases
2557 where I2 has a number of CLOBBERs inside the PARALLEL.
2559 We make very conservative checks below and only try to handle the
2560 most common cases of this. For example, we only handle the case
2561 where I2 and I3 are adjacent to avoid making difficult register
2562 usage tests. */
2564 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2565 && REG_P (SET_SRC (PATTERN (i3)))
2566 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2567 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2568 && GET_CODE (PATTERN (i2)) == PARALLEL
2569 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2570 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2571 below would need to check what is inside (and reg_overlap_mentioned_p
2572 doesn't support those codes anyway). Don't allow those destinations;
2573 the resulting insn isn't likely to be recognized anyway. */
2574 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2575 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2576 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2577 SET_DEST (PATTERN (i3)))
2578 && next_active_insn (i2) == i3)
2580 rtx p2 = PATTERN (i2);
2582 /* Make sure that the destination of I3,
2583 which we are going to substitute into one output of I2,
2584 is not used within another output of I2. We must avoid making this:
2585 (parallel [(set (mem (reg 69)) ...)
2586 (set (reg 69) ...)])
2587 which is not well-defined as to order of actions.
2588 (Besides, reload can't handle output reloads for this.)
2590 The problem can also happen if the dest of I3 is a memory ref,
2591 if another dest in I2 is an indirect memory ref. */
2592 for (i = 0; i < XVECLEN (p2, 0); i++)
2593 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2594 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2595 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2596 SET_DEST (XVECEXP (p2, 0, i))))
2597 break;
2599 if (i == XVECLEN (p2, 0))
2600 for (i = 0; i < XVECLEN (p2, 0); i++)
2601 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2602 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2604 combine_merges++;
2606 subst_insn = i3;
2607 subst_low_luid = DF_INSN_LUID (i2);
2609 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2610 i2src = SET_SRC (XVECEXP (p2, 0, i));
2611 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2612 i2dest_killed = dead_or_set_p (i2, i2dest);
2614 /* Replace the dest in I2 with our dest and make the resulting
2615 insn the new pattern for I3. Then skip to where we validate
2616 the pattern. Everything was set up above. */
2617 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2618 newpat = p2;
2619 i3_subst_into_i2 = 1;
2620 goto validate_replacement;
2624 /* If I2 is setting a pseudo to a constant and I3 is setting some
2625 sub-part of it to another constant, merge them by making a new
2626 constant. */
2627 if (i1 == 0
2628 && (temp = single_set (i2)) != 0
2629 && CONST_SCALAR_INT_P (SET_SRC (temp))
2630 && GET_CODE (PATTERN (i3)) == SET
2631 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2632 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2634 rtx dest = SET_DEST (PATTERN (i3));
2635 int offset = -1;
2636 int width = 0;
2638 if (GET_CODE (dest) == ZERO_EXTRACT)
2640 if (CONST_INT_P (XEXP (dest, 1))
2641 && CONST_INT_P (XEXP (dest, 2)))
2643 width = INTVAL (XEXP (dest, 1));
2644 offset = INTVAL (XEXP (dest, 2));
2645 dest = XEXP (dest, 0);
2646 if (BITS_BIG_ENDIAN)
2647 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2650 else
2652 if (GET_CODE (dest) == STRICT_LOW_PART)
2653 dest = XEXP (dest, 0);
2654 width = GET_MODE_PRECISION (GET_MODE (dest));
2655 offset = 0;
2658 if (offset >= 0)
2660 /* If this is the low part, we're done. */
2661 if (subreg_lowpart_p (dest))
2663 /* Handle the case where inner is twice the size of outer. */
2664 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2665 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2666 offset += GET_MODE_PRECISION (GET_MODE (dest));
2667 /* Otherwise give up for now. */
2668 else
2669 offset = -1;
2672 if (offset >= 0
2673 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2674 <= HOST_BITS_PER_DOUBLE_INT))
2676 double_int m, o, i;
2677 rtx inner = SET_SRC (PATTERN (i3));
2678 rtx outer = SET_SRC (temp);
2680 o = rtx_to_double_int (outer);
2681 i = rtx_to_double_int (inner);
2683 m = double_int::mask (width);
2684 i &= m;
2685 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2686 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2687 o = o.and_not (m) | i;
2689 combine_merges++;
2690 subst_insn = i3;
2691 subst_low_luid = DF_INSN_LUID (i2);
2692 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2693 i2dest = SET_DEST (temp);
2694 i2dest_killed = dead_or_set_p (i2, i2dest);
2696 /* Replace the source in I2 with the new constant and make the
2697 resulting insn the new pattern for I3. Then skip to where we
2698 validate the pattern. Everything was set up above. */
2699 SUBST (SET_SRC (temp),
2700 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2702 newpat = PATTERN (i2);
2704 /* The dest of I3 has been replaced with the dest of I2. */
2705 changed_i3_dest = 1;
2706 goto validate_replacement;
2710 #ifndef HAVE_cc0
2711 /* If we have no I1 and I2 looks like:
2712 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2713 (set Y OP)])
2714 make up a dummy I1 that is
2715 (set Y OP)
2716 and change I2 to be
2717 (set (reg:CC X) (compare:CC Y (const_int 0)))
2719 (We can ignore any trailing CLOBBERs.)
2721 This undoes a previous combination and allows us to match a branch-and-
2722 decrement insn. */
2724 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2725 && XVECLEN (PATTERN (i2), 0) >= 2
2726 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2727 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2728 == MODE_CC)
2729 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2730 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2731 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2732 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2733 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2734 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2736 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2737 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2738 break;
2740 if (i == 1)
2742 /* We make I1 with the same INSN_UID as I2. This gives it
2743 the same DF_INSN_LUID for value tracking. Our fake I1 will
2744 never appear in the insn stream so giving it the same INSN_UID
2745 as I2 will not cause a problem. */
2747 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2748 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2749 INSN_LOCATION (i2), -1, NULL_RTX);
2751 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2752 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2753 SET_DEST (PATTERN (i1)));
2754 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2757 #endif
2759 /* Verify that I2 and I1 are valid for combining. */
2760 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2761 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2762 &i1dest, &i1src))
2763 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2764 &i0dest, &i0src)))
2766 undo_all ();
2767 return 0;
2770 /* Record whether I2DEST is used in I2SRC and similarly for the other
2771 cases. Knowing this will help in register status updating below. */
2772 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2773 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2774 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2775 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2776 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2777 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2778 i2dest_killed = dead_or_set_p (i2, i2dest);
2779 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2780 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2782 /* For the earlier insns, determine which of the subsequent ones they
2783 feed. */
2784 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2785 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2786 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2787 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2788 && reg_overlap_mentioned_p (i0dest, i2src))));
2790 /* Ensure that I3's pattern can be the destination of combines. */
2791 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2792 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2793 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2794 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2795 &i3dest_killed))
2797 undo_all ();
2798 return 0;
2801 /* See if any of the insns is a MULT operation. Unless one is, we will
2802 reject a combination that is, since it must be slower. Be conservative
2803 here. */
2804 if (GET_CODE (i2src) == MULT
2805 || (i1 != 0 && GET_CODE (i1src) == MULT)
2806 || (i0 != 0 && GET_CODE (i0src) == MULT)
2807 || (GET_CODE (PATTERN (i3)) == SET
2808 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2809 have_mult = 1;
2811 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2812 We used to do this EXCEPT in one case: I3 has a post-inc in an
2813 output operand. However, that exception can give rise to insns like
2814 mov r3,(r3)+
2815 which is a famous insn on the PDP-11 where the value of r3 used as the
2816 source was model-dependent. Avoid this sort of thing. */
2818 #if 0
2819 if (!(GET_CODE (PATTERN (i3)) == SET
2820 && REG_P (SET_SRC (PATTERN (i3)))
2821 && MEM_P (SET_DEST (PATTERN (i3)))
2822 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2823 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2824 /* It's not the exception. */
2825 #endif
2826 #ifdef AUTO_INC_DEC
2828 rtx link;
2829 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2830 if (REG_NOTE_KIND (link) == REG_INC
2831 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2832 || (i1 != 0
2833 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2835 undo_all ();
2836 return 0;
2839 #endif
2841 /* See if the SETs in I1 or I2 need to be kept around in the merged
2842 instruction: whenever the value set there is still needed past I3.
2843 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2845 For the SET in I1, we have two cases: if I1 and I2 independently feed
2846 into I3, the set in I1 needs to be kept around unless I1DEST dies
2847 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2848 in I1 needs to be kept around unless I1DEST dies or is set in either
2849 I2 or I3. The same considerations apply to I0. */
2851 added_sets_2 = !dead_or_set_p (i3, i2dest);
2853 if (i1)
2854 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2855 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2856 else
2857 added_sets_1 = 0;
2859 if (i0)
2860 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2861 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
2862 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
2863 && dead_or_set_p (i2, i0dest)));
2864 else
2865 added_sets_0 = 0;
2867 /* We are about to copy insns for the case where they need to be kept
2868 around. Check that they can be copied in the merged instruction. */
2870 if (targetm.cannot_copy_insn_p
2871 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2872 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2873 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2875 undo_all ();
2876 return 0;
2879 /* If the set in I2 needs to be kept around, we must make a copy of
2880 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2881 PATTERN (I2), we are only substituting for the original I1DEST, not into
2882 an already-substituted copy. This also prevents making self-referential
2883 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2884 I2DEST. */
2886 if (added_sets_2)
2888 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2889 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2890 else
2891 i2pat = copy_rtx (PATTERN (i2));
2894 if (added_sets_1)
2896 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2897 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2898 else
2899 i1pat = copy_rtx (PATTERN (i1));
2902 if (added_sets_0)
2904 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2905 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2906 else
2907 i0pat = copy_rtx (PATTERN (i0));
2910 combine_merges++;
2912 /* Substitute in the latest insn for the regs set by the earlier ones. */
2914 maxreg = max_reg_num ();
2916 subst_insn = i3;
2918 #ifndef HAVE_cc0
2919 /* Many machines that don't use CC0 have insns that can both perform an
2920 arithmetic operation and set the condition code. These operations will
2921 be represented as a PARALLEL with the first element of the vector
2922 being a COMPARE of an arithmetic operation with the constant zero.
2923 The second element of the vector will set some pseudo to the result
2924 of the same arithmetic operation. If we simplify the COMPARE, we won't
2925 match such a pattern and so will generate an extra insn. Here we test
2926 for this case, where both the comparison and the operation result are
2927 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2928 I2SRC. Later we will make the PARALLEL that contains I2. */
2930 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2931 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2932 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2933 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2935 rtx newpat_dest;
2936 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2937 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2938 enum machine_mode compare_mode, orig_compare_mode;
2939 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2941 newpat = PATTERN (i3);
2942 newpat_dest = SET_DEST (newpat);
2943 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2945 if (undobuf.other_insn == 0
2946 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2947 &cc_use_insn)))
2949 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2950 compare_code = simplify_compare_const (compare_code,
2951 op0, &op1);
2952 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
2955 /* Do the rest only if op1 is const0_rtx, which may be the
2956 result of simplification. */
2957 if (op1 == const0_rtx)
2959 /* If a single use of the CC is found, prepare to modify it
2960 when SELECT_CC_MODE returns a new CC-class mode, or when
2961 the above simplify_compare_const() returned a new comparison
2962 operator. undobuf.other_insn is assigned the CC use insn
2963 when modifying it. */
2964 if (cc_use_loc)
2966 #ifdef SELECT_CC_MODE
2967 enum machine_mode new_mode
2968 = SELECT_CC_MODE (compare_code, op0, op1);
2969 if (new_mode != orig_compare_mode
2970 && can_change_dest_mode (SET_DEST (newpat),
2971 added_sets_2, new_mode))
2973 unsigned int regno = REGNO (newpat_dest);
2974 compare_mode = new_mode;
2975 if (regno < FIRST_PSEUDO_REGISTER)
2976 newpat_dest = gen_rtx_REG (compare_mode, regno);
2977 else
2979 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2980 newpat_dest = regno_reg_rtx[regno];
2983 #endif
2984 /* Cases for modifying the CC-using comparison. */
2985 if (compare_code != orig_compare_code
2986 /* ??? Do we need to verify the zero rtx? */
2987 && XEXP (*cc_use_loc, 1) == const0_rtx)
2989 /* Replace cc_use_loc with entire new RTX. */
2990 SUBST (*cc_use_loc,
2991 gen_rtx_fmt_ee (compare_code, compare_mode,
2992 newpat_dest, const0_rtx));
2993 undobuf.other_insn = cc_use_insn;
2995 else if (compare_mode != orig_compare_mode)
2997 /* Just replace the CC reg with a new mode. */
2998 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
2999 undobuf.other_insn = cc_use_insn;
3003 /* Now we modify the current newpat:
3004 First, SET_DEST(newpat) is updated if the CC mode has been
3005 altered. For targets without SELECT_CC_MODE, this should be
3006 optimized away. */
3007 if (compare_mode != orig_compare_mode)
3008 SUBST (SET_DEST (newpat), newpat_dest);
3009 /* This is always done to propagate i2src into newpat. */
3010 SUBST (SET_SRC (newpat),
3011 gen_rtx_COMPARE (compare_mode, op0, op1));
3012 /* Create new version of i2pat if needed; the below PARALLEL
3013 creation needs this to work correctly. */
3014 if (! rtx_equal_p (i2src, op0))
3015 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3016 i2_is_used = 1;
3019 #endif
3021 if (i2_is_used == 0)
3023 /* It is possible that the source of I2 or I1 may be performing
3024 an unneeded operation, such as a ZERO_EXTEND of something
3025 that is known to have the high part zero. Handle that case
3026 by letting subst look at the inner insns.
3028 Another way to do this would be to have a function that tries
3029 to simplify a single insn instead of merging two or more
3030 insns. We don't do this because of the potential of infinite
3031 loops and because of the potential extra memory required.
3032 However, doing it the way we are is a bit of a kludge and
3033 doesn't catch all cases.
3035 But only do this if -fexpensive-optimizations since it slows
3036 things down and doesn't usually win.
3038 This is not done in the COMPARE case above because the
3039 unmodified I2PAT is used in the PARALLEL and so a pattern
3040 with a modified I2SRC would not match. */
3042 if (flag_expensive_optimizations)
3044 /* Pass pc_rtx so no substitutions are done, just
3045 simplifications. */
3046 if (i1)
3048 subst_low_luid = DF_INSN_LUID (i1);
3049 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3052 subst_low_luid = DF_INSN_LUID (i2);
3053 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3056 n_occurrences = 0; /* `subst' counts here */
3057 subst_low_luid = DF_INSN_LUID (i2);
3059 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3060 copy of I2SRC each time we substitute it, in order to avoid creating
3061 self-referential RTL when we will be substituting I1SRC for I1DEST
3062 later. Likewise if I0 feeds into I2, either directly or indirectly
3063 through I1, and I0DEST is in I0SRC. */
3064 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3065 (i1_feeds_i2_n && i1dest_in_i1src)
3066 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3067 && i0dest_in_i0src));
3068 substed_i2 = 1;
3070 /* Record whether I2's body now appears within I3's body. */
3071 i2_is_used = n_occurrences;
3074 /* If we already got a failure, don't try to do more. Otherwise, try to
3075 substitute I1 if we have it. */
3077 if (i1 && GET_CODE (newpat) != CLOBBER)
3079 /* Check that an autoincrement side-effect on I1 has not been lost.
3080 This happens if I1DEST is mentioned in I2 and dies there, and
3081 has disappeared from the new pattern. */
3082 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3083 && i1_feeds_i2_n
3084 && dead_or_set_p (i2, i1dest)
3085 && !reg_overlap_mentioned_p (i1dest, newpat))
3086 /* Before we can do this substitution, we must redo the test done
3087 above (see detailed comments there) that ensures I1DEST isn't
3088 mentioned in any SETs in NEWPAT that are field assignments. */
3089 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3090 0, 0, 0))
3092 undo_all ();
3093 return 0;
3096 n_occurrences = 0;
3097 subst_low_luid = DF_INSN_LUID (i1);
3099 /* If the following substitution will modify I1SRC, make a copy of it
3100 for the case where it is substituted for I1DEST in I2PAT later. */
3101 if (added_sets_2 && i1_feeds_i2_n)
3102 i1src_copy = copy_rtx (i1src);
3104 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3105 copy of I1SRC each time we substitute it, in order to avoid creating
3106 self-referential RTL when we will be substituting I0SRC for I0DEST
3107 later. */
3108 newpat = subst (newpat, i1dest, i1src, 0, 0,
3109 i0_feeds_i1_n && i0dest_in_i0src);
3110 substed_i1 = 1;
3112 /* Record whether I1's body now appears within I3's body. */
3113 i1_is_used = n_occurrences;
3116 /* Likewise for I0 if we have it. */
3118 if (i0 && GET_CODE (newpat) != CLOBBER)
3120 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3121 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3122 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3123 && !reg_overlap_mentioned_p (i0dest, newpat))
3124 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3125 0, 0, 0))
3127 undo_all ();
3128 return 0;
3131 /* If the following substitution will modify I0SRC, make a copy of it
3132 for the case where it is substituted for I0DEST in I1PAT later. */
3133 if (added_sets_1 && i0_feeds_i1_n)
3134 i0src_copy = copy_rtx (i0src);
3135 /* And a copy for I0DEST in I2PAT substitution. */
3136 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3137 || (i0_feeds_i2_n)))
3138 i0src_copy2 = copy_rtx (i0src);
3140 n_occurrences = 0;
3141 subst_low_luid = DF_INSN_LUID (i0);
3142 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3143 substed_i0 = 1;
3146 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3147 to count all the ways that I2SRC and I1SRC can be used. */
3148 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3149 && i2_is_used + added_sets_2 > 1)
3150 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3151 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3152 > 1))
3153 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3154 && (n_occurrences + added_sets_0
3155 + (added_sets_1 && i0_feeds_i1_n)
3156 + (added_sets_2 && i0_feeds_i2_n)
3157 > 1))
3158 /* Fail if we tried to make a new register. */
3159 || max_reg_num () != maxreg
3160 /* Fail if we couldn't do something and have a CLOBBER. */
3161 || GET_CODE (newpat) == CLOBBER
3162 /* Fail if this new pattern is a MULT and we didn't have one before
3163 at the outer level. */
3164 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3165 && ! have_mult))
3167 undo_all ();
3168 return 0;
3171 /* If the actions of the earlier insns must be kept
3172 in addition to substituting them into the latest one,
3173 we must make a new PARALLEL for the latest insn
3174 to hold additional the SETs. */
3176 if (added_sets_0 || added_sets_1 || added_sets_2)
3178 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3179 combine_extras++;
3181 if (GET_CODE (newpat) == PARALLEL)
3183 rtvec old = XVEC (newpat, 0);
3184 total_sets = XVECLEN (newpat, 0) + extra_sets;
3185 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3186 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3187 sizeof (old->elem[0]) * old->num_elem);
3189 else
3191 rtx old = newpat;
3192 total_sets = 1 + extra_sets;
3193 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3194 XVECEXP (newpat, 0, 0) = old;
3197 if (added_sets_0)
3198 XVECEXP (newpat, 0, --total_sets) = i0pat;
3200 if (added_sets_1)
3202 rtx t = i1pat;
3203 if (i0_feeds_i1_n)
3204 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3206 XVECEXP (newpat, 0, --total_sets) = t;
3208 if (added_sets_2)
3210 rtx t = i2pat;
3211 if (i1_feeds_i2_n)
3212 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3213 i0_feeds_i1_n && i0dest_in_i0src);
3214 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3215 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3217 XVECEXP (newpat, 0, --total_sets) = t;
3221 validate_replacement:
3223 /* Note which hard regs this insn has as inputs. */
3224 mark_used_regs_combine (newpat);
3226 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3227 consider splitting this pattern, we might need these clobbers. */
3228 if (i1 && GET_CODE (newpat) == PARALLEL
3229 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3231 int len = XVECLEN (newpat, 0);
3233 newpat_vec_with_clobbers = rtvec_alloc (len);
3234 for (i = 0; i < len; i++)
3235 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3238 /* Is the result of combination a valid instruction? */
3239 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3241 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3242 the second SET's destination is a register that is unused and isn't
3243 marked as an instruction that might trap in an EH region. In that case,
3244 we just need the first SET. This can occur when simplifying a divmod
3245 insn. We *must* test for this case here because the code below that
3246 splits two independent SETs doesn't handle this case correctly when it
3247 updates the register status.
3249 It's pointless doing this if we originally had two sets, one from
3250 i3, and one from i2. Combining then splitting the parallel results
3251 in the original i2 again plus an invalid insn (which we delete).
3252 The net effect is only to move instructions around, which makes
3253 debug info less accurate.
3255 Also check the case where the first SET's destination is unused.
3256 That would not cause incorrect code, but does cause an unneeded
3257 insn to remain. */
3259 if (insn_code_number < 0
3260 && !(added_sets_2 && i1 == 0)
3261 && GET_CODE (newpat) == PARALLEL
3262 && XVECLEN (newpat, 0) == 2
3263 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3264 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3265 && asm_noperands (newpat) < 0)
3267 rtx set0 = XVECEXP (newpat, 0, 0);
3268 rtx set1 = XVECEXP (newpat, 0, 1);
3270 if (((REG_P (SET_DEST (set1))
3271 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3272 || (GET_CODE (SET_DEST (set1)) == SUBREG
3273 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3274 && insn_nothrow_p (i3)
3275 && !side_effects_p (SET_SRC (set1)))
3277 newpat = set0;
3278 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3281 else if (((REG_P (SET_DEST (set0))
3282 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3283 || (GET_CODE (SET_DEST (set0)) == SUBREG
3284 && find_reg_note (i3, REG_UNUSED,
3285 SUBREG_REG (SET_DEST (set0)))))
3286 && insn_nothrow_p (i3)
3287 && !side_effects_p (SET_SRC (set0)))
3289 newpat = set1;
3290 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3292 if (insn_code_number >= 0)
3293 changed_i3_dest = 1;
3297 /* If we were combining three insns and the result is a simple SET
3298 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3299 insns. There are two ways to do this. It can be split using a
3300 machine-specific method (like when you have an addition of a large
3301 constant) or by combine in the function find_split_point. */
3303 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3304 && asm_noperands (newpat) < 0)
3306 rtx parallel, m_split, *split;
3308 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3309 use I2DEST as a scratch register will help. In the latter case,
3310 convert I2DEST to the mode of the source of NEWPAT if we can. */
3312 m_split = combine_split_insns (newpat, i3);
3314 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3315 inputs of NEWPAT. */
3317 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3318 possible to try that as a scratch reg. This would require adding
3319 more code to make it work though. */
3321 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3323 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3325 /* First try to split using the original register as a
3326 scratch register. */
3327 parallel = gen_rtx_PARALLEL (VOIDmode,
3328 gen_rtvec (2, newpat,
3329 gen_rtx_CLOBBER (VOIDmode,
3330 i2dest)));
3331 m_split = combine_split_insns (parallel, i3);
3333 /* If that didn't work, try changing the mode of I2DEST if
3334 we can. */
3335 if (m_split == 0
3336 && new_mode != GET_MODE (i2dest)
3337 && new_mode != VOIDmode
3338 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3340 enum machine_mode old_mode = GET_MODE (i2dest);
3341 rtx ni2dest;
3343 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3344 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3345 else
3347 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3348 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3351 parallel = (gen_rtx_PARALLEL
3352 (VOIDmode,
3353 gen_rtvec (2, newpat,
3354 gen_rtx_CLOBBER (VOIDmode,
3355 ni2dest))));
3356 m_split = combine_split_insns (parallel, i3);
3358 if (m_split == 0
3359 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3361 struct undo *buf;
3363 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3364 buf = undobuf.undos;
3365 undobuf.undos = buf->next;
3366 buf->next = undobuf.frees;
3367 undobuf.frees = buf;
3371 i2scratch = m_split != 0;
3374 /* If recog_for_combine has discarded clobbers, try to use them
3375 again for the split. */
3376 if (m_split == 0 && newpat_vec_with_clobbers)
3378 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3379 m_split = combine_split_insns (parallel, i3);
3382 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3384 m_split = PATTERN (m_split);
3385 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3386 if (insn_code_number >= 0)
3387 newpat = m_split;
3389 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3390 && (next_nonnote_nondebug_insn (i2) == i3
3391 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3393 rtx i2set, i3set;
3394 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3395 newi2pat = PATTERN (m_split);
3397 i3set = single_set (NEXT_INSN (m_split));
3398 i2set = single_set (m_split);
3400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3402 /* If I2 or I3 has multiple SETs, we won't know how to track
3403 register status, so don't use these insns. If I2's destination
3404 is used between I2 and I3, we also can't use these insns. */
3406 if (i2_code_number >= 0 && i2set && i3set
3407 && (next_nonnote_nondebug_insn (i2) == i3
3408 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3409 insn_code_number = recog_for_combine (&newi3pat, i3,
3410 &new_i3_notes);
3411 if (insn_code_number >= 0)
3412 newpat = newi3pat;
3414 /* It is possible that both insns now set the destination of I3.
3415 If so, we must show an extra use of it. */
3417 if (insn_code_number >= 0)
3419 rtx new_i3_dest = SET_DEST (i3set);
3420 rtx new_i2_dest = SET_DEST (i2set);
3422 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3423 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3424 || GET_CODE (new_i3_dest) == SUBREG)
3425 new_i3_dest = XEXP (new_i3_dest, 0);
3427 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3428 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3429 || GET_CODE (new_i2_dest) == SUBREG)
3430 new_i2_dest = XEXP (new_i2_dest, 0);
3432 if (REG_P (new_i3_dest)
3433 && REG_P (new_i2_dest)
3434 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3435 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3439 /* If we can split it and use I2DEST, go ahead and see if that
3440 helps things be recognized. Verify that none of the registers
3441 are set between I2 and I3. */
3442 if (insn_code_number < 0
3443 && (split = find_split_point (&newpat, i3, false)) != 0
3444 #ifdef HAVE_cc0
3445 && REG_P (i2dest)
3446 #endif
3447 /* We need I2DEST in the proper mode. If it is a hard register
3448 or the only use of a pseudo, we can change its mode.
3449 Make sure we don't change a hard register to have a mode that
3450 isn't valid for it, or change the number of registers. */
3451 && (GET_MODE (*split) == GET_MODE (i2dest)
3452 || GET_MODE (*split) == VOIDmode
3453 || can_change_dest_mode (i2dest, added_sets_2,
3454 GET_MODE (*split)))
3455 && (next_nonnote_nondebug_insn (i2) == i3
3456 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3457 /* We can't overwrite I2DEST if its value is still used by
3458 NEWPAT. */
3459 && ! reg_referenced_p (i2dest, newpat))
3461 rtx newdest = i2dest;
3462 enum rtx_code split_code = GET_CODE (*split);
3463 enum machine_mode split_mode = GET_MODE (*split);
3464 bool subst_done = false;
3465 newi2pat = NULL_RTX;
3467 i2scratch = true;
3469 /* *SPLIT may be part of I2SRC, so make sure we have the
3470 original expression around for later debug processing.
3471 We should not need I2SRC any more in other cases. */
3472 if (MAY_HAVE_DEBUG_INSNS)
3473 i2src = copy_rtx (i2src);
3474 else
3475 i2src = NULL;
3477 /* Get NEWDEST as a register in the proper mode. We have already
3478 validated that we can do this. */
3479 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3481 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3482 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3483 else
3485 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3486 newdest = regno_reg_rtx[REGNO (i2dest)];
3490 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3491 an ASHIFT. This can occur if it was inside a PLUS and hence
3492 appeared to be a memory address. This is a kludge. */
3493 if (split_code == MULT
3494 && CONST_INT_P (XEXP (*split, 1))
3495 && INTVAL (XEXP (*split, 1)) > 0
3496 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3498 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3499 XEXP (*split, 0), GEN_INT (i)));
3500 /* Update split_code because we may not have a multiply
3501 anymore. */
3502 split_code = GET_CODE (*split);
3505 #ifdef INSN_SCHEDULING
3506 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3507 be written as a ZERO_EXTEND. */
3508 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3510 #ifdef LOAD_EXTEND_OP
3511 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3512 what it really is. */
3513 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3514 == SIGN_EXTEND)
3515 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3516 SUBREG_REG (*split)));
3517 else
3518 #endif
3519 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3520 SUBREG_REG (*split)));
3522 #endif
3524 /* Attempt to split binary operators using arithmetic identities. */
3525 if (BINARY_P (SET_SRC (newpat))
3526 && split_mode == GET_MODE (SET_SRC (newpat))
3527 && ! side_effects_p (SET_SRC (newpat)))
3529 rtx setsrc = SET_SRC (newpat);
3530 enum machine_mode mode = GET_MODE (setsrc);
3531 enum rtx_code code = GET_CODE (setsrc);
3532 rtx src_op0 = XEXP (setsrc, 0);
3533 rtx src_op1 = XEXP (setsrc, 1);
3535 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3536 if (rtx_equal_p (src_op0, src_op1))
3538 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3539 SUBST (XEXP (setsrc, 0), newdest);
3540 SUBST (XEXP (setsrc, 1), newdest);
3541 subst_done = true;
3543 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3544 else if ((code == PLUS || code == MULT)
3545 && GET_CODE (src_op0) == code
3546 && GET_CODE (XEXP (src_op0, 0)) == code
3547 && (INTEGRAL_MODE_P (mode)
3548 || (FLOAT_MODE_P (mode)
3549 && flag_unsafe_math_optimizations)))
3551 rtx p = XEXP (XEXP (src_op0, 0), 0);
3552 rtx q = XEXP (XEXP (src_op0, 0), 1);
3553 rtx r = XEXP (src_op0, 1);
3554 rtx s = src_op1;
3556 /* Split both "((X op Y) op X) op Y" and
3557 "((X op Y) op Y) op X" as "T op T" where T is
3558 "X op Y". */
3559 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3560 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3562 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3563 XEXP (src_op0, 0));
3564 SUBST (XEXP (setsrc, 0), newdest);
3565 SUBST (XEXP (setsrc, 1), newdest);
3566 subst_done = true;
3568 /* Split "((X op X) op Y) op Y)" as "T op T" where
3569 T is "X op Y". */
3570 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3572 rtx tmp = simplify_gen_binary (code, mode, p, r);
3573 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3574 SUBST (XEXP (setsrc, 0), newdest);
3575 SUBST (XEXP (setsrc, 1), newdest);
3576 subst_done = true;
3581 if (!subst_done)
3583 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3584 SUBST (*split, newdest);
3587 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3589 /* recog_for_combine might have added CLOBBERs to newi2pat.
3590 Make sure NEWPAT does not depend on the clobbered regs. */
3591 if (GET_CODE (newi2pat) == PARALLEL)
3592 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3593 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3595 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3596 if (reg_overlap_mentioned_p (reg, newpat))
3598 undo_all ();
3599 return 0;
3603 /* If the split point was a MULT and we didn't have one before,
3604 don't use one now. */
3605 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3606 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3610 /* Check for a case where we loaded from memory in a narrow mode and
3611 then sign extended it, but we need both registers. In that case,
3612 we have a PARALLEL with both loads from the same memory location.
3613 We can split this into a load from memory followed by a register-register
3614 copy. This saves at least one insn, more if register allocation can
3615 eliminate the copy.
3617 We cannot do this if the destination of the first assignment is a
3618 condition code register or cc0. We eliminate this case by making sure
3619 the SET_DEST and SET_SRC have the same mode.
3621 We cannot do this if the destination of the second assignment is
3622 a register that we have already assumed is zero-extended. Similarly
3623 for a SUBREG of such a register. */
3625 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3626 && GET_CODE (newpat) == PARALLEL
3627 && XVECLEN (newpat, 0) == 2
3628 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3629 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3630 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3631 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3632 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3633 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3634 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3635 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3636 DF_INSN_LUID (i2))
3637 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3638 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3639 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3640 (REG_P (temp)
3641 && reg_stat[REGNO (temp)].nonzero_bits != 0
3642 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3643 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3644 && (reg_stat[REGNO (temp)].nonzero_bits
3645 != GET_MODE_MASK (word_mode))))
3646 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3647 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3648 (REG_P (temp)
3649 && reg_stat[REGNO (temp)].nonzero_bits != 0
3650 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3651 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3652 && (reg_stat[REGNO (temp)].nonzero_bits
3653 != GET_MODE_MASK (word_mode)))))
3654 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3655 SET_SRC (XVECEXP (newpat, 0, 1)))
3656 && ! find_reg_note (i3, REG_UNUSED,
3657 SET_DEST (XVECEXP (newpat, 0, 0))))
3659 rtx ni2dest;
3661 newi2pat = XVECEXP (newpat, 0, 0);
3662 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3663 newpat = XVECEXP (newpat, 0, 1);
3664 SUBST (SET_SRC (newpat),
3665 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3666 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3668 if (i2_code_number >= 0)
3669 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3671 if (insn_code_number >= 0)
3672 swap_i2i3 = 1;
3675 /* Similarly, check for a case where we have a PARALLEL of two independent
3676 SETs but we started with three insns. In this case, we can do the sets
3677 as two separate insns. This case occurs when some SET allows two
3678 other insns to combine, but the destination of that SET is still live. */
3680 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3681 && GET_CODE (newpat) == PARALLEL
3682 && XVECLEN (newpat, 0) == 2
3683 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3684 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3685 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3686 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3687 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3688 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3689 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3690 XVECEXP (newpat, 0, 0))
3691 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3692 XVECEXP (newpat, 0, 1))
3693 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3694 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3696 /* Normally, it doesn't matter which of the two is done first,
3697 but the one that references cc0 can't be the second, and
3698 one which uses any regs/memory set in between i2 and i3 can't
3699 be first. */
3700 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3701 DF_INSN_LUID (i2))
3702 #ifdef HAVE_cc0
3703 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3704 #endif
3707 newi2pat = XVECEXP (newpat, 0, 1);
3708 newpat = XVECEXP (newpat, 0, 0);
3710 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3711 DF_INSN_LUID (i2))
3712 #ifdef HAVE_cc0
3713 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3714 #endif
3717 newi2pat = XVECEXP (newpat, 0, 0);
3718 newpat = XVECEXP (newpat, 0, 1);
3720 else
3722 undo_all ();
3723 return 0;
3726 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3728 if (i2_code_number >= 0)
3730 /* recog_for_combine might have added CLOBBERs to newi2pat.
3731 Make sure NEWPAT does not depend on the clobbered regs. */
3732 if (GET_CODE (newi2pat) == PARALLEL)
3734 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3735 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3737 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3738 if (reg_overlap_mentioned_p (reg, newpat))
3740 undo_all ();
3741 return 0;
3746 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3750 /* If it still isn't recognized, fail and change things back the way they
3751 were. */
3752 if ((insn_code_number < 0
3753 /* Is the result a reasonable ASM_OPERANDS? */
3754 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3756 undo_all ();
3757 return 0;
3760 /* If we had to change another insn, make sure it is valid also. */
3761 if (undobuf.other_insn)
3763 CLEAR_HARD_REG_SET (newpat_used_regs);
3765 other_pat = PATTERN (undobuf.other_insn);
3766 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3767 &new_other_notes);
3769 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3771 undo_all ();
3772 return 0;
3776 #ifdef HAVE_cc0
3777 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3778 they are adjacent to each other or not. */
3780 rtx p = prev_nonnote_insn (i3);
3781 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3782 && sets_cc0_p (newi2pat))
3784 undo_all ();
3785 return 0;
3788 #endif
3790 /* Only allow this combination if insn_rtx_costs reports that the
3791 replacement instructions are cheaper than the originals. */
3792 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3794 undo_all ();
3795 return 0;
3798 if (MAY_HAVE_DEBUG_INSNS)
3800 struct undo *undo;
3802 for (undo = undobuf.undos; undo; undo = undo->next)
3803 if (undo->kind == UNDO_MODE)
3805 rtx reg = *undo->where.r;
3806 enum machine_mode new_mode = GET_MODE (reg);
3807 enum machine_mode old_mode = undo->old_contents.m;
3809 /* Temporarily revert mode back. */
3810 adjust_reg_mode (reg, old_mode);
3812 if (reg == i2dest && i2scratch)
3814 /* If we used i2dest as a scratch register with a
3815 different mode, substitute it for the original
3816 i2src while its original mode is temporarily
3817 restored, and then clear i2scratch so that we don't
3818 do it again later. */
3819 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3820 this_basic_block);
3821 i2scratch = false;
3822 /* Put back the new mode. */
3823 adjust_reg_mode (reg, new_mode);
3825 else
3827 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3828 rtx first, last;
3830 if (reg == i2dest)
3832 first = i2;
3833 last = last_combined_insn;
3835 else
3837 first = i3;
3838 last = undobuf.other_insn;
3839 gcc_assert (last);
3840 if (DF_INSN_LUID (last)
3841 < DF_INSN_LUID (last_combined_insn))
3842 last = last_combined_insn;
3845 /* We're dealing with a reg that changed mode but not
3846 meaning, so we want to turn it into a subreg for
3847 the new mode. However, because of REG sharing and
3848 because its mode had already changed, we have to do
3849 it in two steps. First, replace any debug uses of
3850 reg, with its original mode temporarily restored,
3851 with this copy we have created; then, replace the
3852 copy with the SUBREG of the original shared reg,
3853 once again changed to the new mode. */
3854 propagate_for_debug (first, last, reg, tempreg,
3855 this_basic_block);
3856 adjust_reg_mode (reg, new_mode);
3857 propagate_for_debug (first, last, tempreg,
3858 lowpart_subreg (old_mode, reg, new_mode),
3859 this_basic_block);
3864 /* If we will be able to accept this, we have made a
3865 change to the destination of I3. This requires us to
3866 do a few adjustments. */
3868 if (changed_i3_dest)
3870 PATTERN (i3) = newpat;
3871 adjust_for_new_dest (i3);
3874 /* We now know that we can do this combination. Merge the insns and
3875 update the status of registers and LOG_LINKS. */
3877 if (undobuf.other_insn)
3879 rtx note, next;
3881 PATTERN (undobuf.other_insn) = other_pat;
3883 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3884 are still valid. Then add any non-duplicate notes added by
3885 recog_for_combine. */
3886 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3888 next = XEXP (note, 1);
3890 if (REG_NOTE_KIND (note) == REG_UNUSED
3891 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3892 remove_note (undobuf.other_insn, note);
3895 distribute_notes (new_other_notes, undobuf.other_insn,
3896 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3897 NULL_RTX);
3900 if (swap_i2i3)
3902 rtx insn;
3903 struct insn_link *link;
3904 rtx ni2dest;
3906 /* I3 now uses what used to be its destination and which is now
3907 I2's destination. This requires us to do a few adjustments. */
3908 PATTERN (i3) = newpat;
3909 adjust_for_new_dest (i3);
3911 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3912 so we still will.
3914 However, some later insn might be using I2's dest and have
3915 a LOG_LINK pointing at I3. We must remove this link.
3916 The simplest way to remove the link is to point it at I1,
3917 which we know will be a NOTE. */
3919 /* newi2pat is usually a SET here; however, recog_for_combine might
3920 have added some clobbers. */
3921 if (GET_CODE (newi2pat) == PARALLEL)
3922 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3923 else
3924 ni2dest = SET_DEST (newi2pat);
3926 for (insn = NEXT_INSN (i3);
3927 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3928 || insn != BB_HEAD (this_basic_block->next_bb));
3929 insn = NEXT_INSN (insn))
3931 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3933 FOR_EACH_LOG_LINK (link, insn)
3934 if (link->insn == i3)
3935 link->insn = i1;
3937 break;
3943 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3944 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3945 rtx midnotes = 0;
3946 int from_luid;
3947 /* Compute which registers we expect to eliminate. newi2pat may be setting
3948 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3949 same as i3dest, in which case newi2pat may be setting i1dest. */
3950 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3951 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3952 || !i2dest_killed
3953 ? 0 : i2dest);
3954 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3955 || (newi2pat && reg_set_p (i1dest, newi2pat))
3956 || !i1dest_killed
3957 ? 0 : i1dest);
3958 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3959 || (newi2pat && reg_set_p (i0dest, newi2pat))
3960 || !i0dest_killed
3961 ? 0 : i0dest);
3963 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3964 clear them. */
3965 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3966 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3967 if (i1)
3968 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3969 if (i0)
3970 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3972 /* Ensure that we do not have something that should not be shared but
3973 occurs multiple times in the new insns. Check this by first
3974 resetting all the `used' flags and then copying anything is shared. */
3976 reset_used_flags (i3notes);
3977 reset_used_flags (i2notes);
3978 reset_used_flags (i1notes);
3979 reset_used_flags (i0notes);
3980 reset_used_flags (newpat);
3981 reset_used_flags (newi2pat);
3982 if (undobuf.other_insn)
3983 reset_used_flags (PATTERN (undobuf.other_insn));
3985 i3notes = copy_rtx_if_shared (i3notes);
3986 i2notes = copy_rtx_if_shared (i2notes);
3987 i1notes = copy_rtx_if_shared (i1notes);
3988 i0notes = copy_rtx_if_shared (i0notes);
3989 newpat = copy_rtx_if_shared (newpat);
3990 newi2pat = copy_rtx_if_shared (newi2pat);
3991 if (undobuf.other_insn)
3992 reset_used_flags (PATTERN (undobuf.other_insn));
3994 INSN_CODE (i3) = insn_code_number;
3995 PATTERN (i3) = newpat;
3997 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3999 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4001 reset_used_flags (call_usage);
4002 call_usage = copy_rtx (call_usage);
4004 if (substed_i2)
4006 /* I2SRC must still be meaningful at this point. Some splitting
4007 operations can invalidate I2SRC, but those operations do not
4008 apply to calls. */
4009 gcc_assert (i2src);
4010 replace_rtx (call_usage, i2dest, i2src);
4013 if (substed_i1)
4014 replace_rtx (call_usage, i1dest, i1src);
4015 if (substed_i0)
4016 replace_rtx (call_usage, i0dest, i0src);
4018 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4021 if (undobuf.other_insn)
4022 INSN_CODE (undobuf.other_insn) = other_code_number;
4024 /* We had one special case above where I2 had more than one set and
4025 we replaced a destination of one of those sets with the destination
4026 of I3. In that case, we have to update LOG_LINKS of insns later
4027 in this basic block. Note that this (expensive) case is rare.
4029 Also, in this case, we must pretend that all REG_NOTEs for I2
4030 actually came from I3, so that REG_UNUSED notes from I2 will be
4031 properly handled. */
4033 if (i3_subst_into_i2)
4035 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4036 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4037 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4038 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4039 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4040 && ! find_reg_note (i2, REG_UNUSED,
4041 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4042 for (temp = NEXT_INSN (i2);
4043 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4044 || BB_HEAD (this_basic_block) != temp);
4045 temp = NEXT_INSN (temp))
4046 if (temp != i3 && INSN_P (temp))
4047 FOR_EACH_LOG_LINK (link, temp)
4048 if (link->insn == i2)
4049 link->insn = i3;
4051 if (i3notes)
4053 rtx link = i3notes;
4054 while (XEXP (link, 1))
4055 link = XEXP (link, 1);
4056 XEXP (link, 1) = i2notes;
4058 else
4059 i3notes = i2notes;
4060 i2notes = 0;
4063 LOG_LINKS (i3) = NULL;
4064 REG_NOTES (i3) = 0;
4065 LOG_LINKS (i2) = NULL;
4066 REG_NOTES (i2) = 0;
4068 if (newi2pat)
4070 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4071 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4072 this_basic_block);
4073 INSN_CODE (i2) = i2_code_number;
4074 PATTERN (i2) = newi2pat;
4076 else
4078 if (MAY_HAVE_DEBUG_INSNS && i2src)
4079 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4080 this_basic_block);
4081 SET_INSN_DELETED (i2);
4084 if (i1)
4086 LOG_LINKS (i1) = NULL;
4087 REG_NOTES (i1) = 0;
4088 if (MAY_HAVE_DEBUG_INSNS)
4089 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4090 this_basic_block);
4091 SET_INSN_DELETED (i1);
4094 if (i0)
4096 LOG_LINKS (i0) = NULL;
4097 REG_NOTES (i0) = 0;
4098 if (MAY_HAVE_DEBUG_INSNS)
4099 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4100 this_basic_block);
4101 SET_INSN_DELETED (i0);
4104 /* Get death notes for everything that is now used in either I3 or
4105 I2 and used to die in a previous insn. If we built two new
4106 patterns, move from I1 to I2 then I2 to I3 so that we get the
4107 proper movement on registers that I2 modifies. */
4109 if (i0)
4110 from_luid = DF_INSN_LUID (i0);
4111 else if (i1)
4112 from_luid = DF_INSN_LUID (i1);
4113 else
4114 from_luid = DF_INSN_LUID (i2);
4115 if (newi2pat)
4116 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4117 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4119 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4120 if (i3notes)
4121 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4122 elim_i2, elim_i1, elim_i0);
4123 if (i2notes)
4124 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4125 elim_i2, elim_i1, elim_i0);
4126 if (i1notes)
4127 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4128 elim_i2, elim_i1, elim_i0);
4129 if (i0notes)
4130 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4131 elim_i2, elim_i1, elim_i0);
4132 if (midnotes)
4133 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4134 elim_i2, elim_i1, elim_i0);
4136 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4137 know these are REG_UNUSED and want them to go to the desired insn,
4138 so we always pass it as i3. */
4140 if (newi2pat && new_i2_notes)
4141 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4142 NULL_RTX);
4144 if (new_i3_notes)
4145 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4146 NULL_RTX);
4148 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4149 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4150 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4151 in that case, it might delete I2. Similarly for I2 and I1.
4152 Show an additional death due to the REG_DEAD note we make here. If
4153 we discard it in distribute_notes, we will decrement it again. */
4155 if (i3dest_killed)
4157 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4158 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4159 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, elim_i2,
4160 elim_i1, elim_i0);
4161 else
4162 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4163 elim_i2, elim_i1, elim_i0);
4166 if (i2dest_in_i2src)
4168 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4169 if (newi2pat && reg_set_p (i2dest, newi2pat))
4170 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4171 NULL_RTX, NULL_RTX);
4172 else
4173 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4174 NULL_RTX, NULL_RTX, NULL_RTX);
4177 if (i1dest_in_i1src)
4179 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4180 if (newi2pat && reg_set_p (i1dest, newi2pat))
4181 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4182 NULL_RTX, NULL_RTX);
4183 else
4184 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4185 NULL_RTX, NULL_RTX, NULL_RTX);
4188 if (i0dest_in_i0src)
4190 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4191 if (newi2pat && reg_set_p (i0dest, newi2pat))
4192 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4193 NULL_RTX, NULL_RTX);
4194 else
4195 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4196 NULL_RTX, NULL_RTX, NULL_RTX);
4199 distribute_links (i3links);
4200 distribute_links (i2links);
4201 distribute_links (i1links);
4202 distribute_links (i0links);
4204 if (REG_P (i2dest))
4206 struct insn_link *link;
4207 rtx i2_insn = 0, i2_val = 0, set;
4209 /* The insn that used to set this register doesn't exist, and
4210 this life of the register may not exist either. See if one of
4211 I3's links points to an insn that sets I2DEST. If it does,
4212 that is now the last known value for I2DEST. If we don't update
4213 this and I2 set the register to a value that depended on its old
4214 contents, we will get confused. If this insn is used, thing
4215 will be set correctly in combine_instructions. */
4216 FOR_EACH_LOG_LINK (link, i3)
4217 if ((set = single_set (link->insn)) != 0
4218 && rtx_equal_p (i2dest, SET_DEST (set)))
4219 i2_insn = link->insn, i2_val = SET_SRC (set);
4221 record_value_for_reg (i2dest, i2_insn, i2_val);
4223 /* If the reg formerly set in I2 died only once and that was in I3,
4224 zero its use count so it won't make `reload' do any work. */
4225 if (! added_sets_2
4226 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4227 && ! i2dest_in_i2src)
4228 INC_REG_N_SETS (REGNO (i2dest), -1);
4231 if (i1 && REG_P (i1dest))
4233 struct insn_link *link;
4234 rtx i1_insn = 0, i1_val = 0, set;
4236 FOR_EACH_LOG_LINK (link, i3)
4237 if ((set = single_set (link->insn)) != 0
4238 && rtx_equal_p (i1dest, SET_DEST (set)))
4239 i1_insn = link->insn, i1_val = SET_SRC (set);
4241 record_value_for_reg (i1dest, i1_insn, i1_val);
4243 if (! added_sets_1 && ! i1dest_in_i1src)
4244 INC_REG_N_SETS (REGNO (i1dest), -1);
4247 if (i0 && REG_P (i0dest))
4249 struct insn_link *link;
4250 rtx i0_insn = 0, i0_val = 0, set;
4252 FOR_EACH_LOG_LINK (link, i3)
4253 if ((set = single_set (link->insn)) != 0
4254 && rtx_equal_p (i0dest, SET_DEST (set)))
4255 i0_insn = link->insn, i0_val = SET_SRC (set);
4257 record_value_for_reg (i0dest, i0_insn, i0_val);
4259 if (! added_sets_0 && ! i0dest_in_i0src)
4260 INC_REG_N_SETS (REGNO (i0dest), -1);
4263 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4264 been made to this insn. The order of
4265 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4266 can affect nonzero_bits of newpat */
4267 if (newi2pat)
4268 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4269 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4272 if (undobuf.other_insn != NULL_RTX)
4274 if (dump_file)
4276 fprintf (dump_file, "modifying other_insn ");
4277 dump_insn_slim (dump_file, undobuf.other_insn);
4279 df_insn_rescan (undobuf.other_insn);
4282 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4284 if (dump_file)
4286 fprintf (dump_file, "modifying insn i1 ");
4287 dump_insn_slim (dump_file, i0);
4289 df_insn_rescan (i0);
4292 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4294 if (dump_file)
4296 fprintf (dump_file, "modifying insn i1 ");
4297 dump_insn_slim (dump_file, i1);
4299 df_insn_rescan (i1);
4302 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4304 if (dump_file)
4306 fprintf (dump_file, "modifying insn i2 ");
4307 dump_insn_slim (dump_file, i2);
4309 df_insn_rescan (i2);
4312 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4314 if (dump_file)
4316 fprintf (dump_file, "modifying insn i3 ");
4317 dump_insn_slim (dump_file, i3);
4319 df_insn_rescan (i3);
4322 /* Set new_direct_jump_p if a new return or simple jump instruction
4323 has been created. Adjust the CFG accordingly. */
4325 if (returnjump_p (i3) || any_uncondjump_p (i3))
4327 *new_direct_jump_p = 1;
4328 mark_jump_label (PATTERN (i3), i3, 0);
4329 update_cfg_for_uncondjump (i3);
4332 if (undobuf.other_insn != NULL_RTX
4333 && (returnjump_p (undobuf.other_insn)
4334 || any_uncondjump_p (undobuf.other_insn)))
4336 *new_direct_jump_p = 1;
4337 update_cfg_for_uncondjump (undobuf.other_insn);
4340 /* A noop might also need cleaning up of CFG, if it comes from the
4341 simplification of a jump. */
4342 if (JUMP_P (i3)
4343 && GET_CODE (newpat) == SET
4344 && SET_SRC (newpat) == pc_rtx
4345 && SET_DEST (newpat) == pc_rtx)
4347 *new_direct_jump_p = 1;
4348 update_cfg_for_uncondjump (i3);
4351 if (undobuf.other_insn != NULL_RTX
4352 && JUMP_P (undobuf.other_insn)
4353 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4354 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4355 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4357 *new_direct_jump_p = 1;
4358 update_cfg_for_uncondjump (undobuf.other_insn);
4361 combine_successes++;
4362 undo_commit ();
4364 if (added_links_insn
4365 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4366 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4367 return added_links_insn;
4368 else
4369 return newi2pat ? i2 : i3;
4372 /* Undo all the modifications recorded in undobuf. */
4374 static void
4375 undo_all (void)
4377 struct undo *undo, *next;
4379 for (undo = undobuf.undos; undo; undo = next)
4381 next = undo->next;
4382 switch (undo->kind)
4384 case UNDO_RTX:
4385 *undo->where.r = undo->old_contents.r;
4386 break;
4387 case UNDO_INT:
4388 *undo->where.i = undo->old_contents.i;
4389 break;
4390 case UNDO_MODE:
4391 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4392 break;
4393 case UNDO_LINKS:
4394 *undo->where.l = undo->old_contents.l;
4395 break;
4396 default:
4397 gcc_unreachable ();
4400 undo->next = undobuf.frees;
4401 undobuf.frees = undo;
4404 undobuf.undos = 0;
4407 /* We've committed to accepting the changes we made. Move all
4408 of the undos to the free list. */
4410 static void
4411 undo_commit (void)
4413 struct undo *undo, *next;
4415 for (undo = undobuf.undos; undo; undo = next)
4417 next = undo->next;
4418 undo->next = undobuf.frees;
4419 undobuf.frees = undo;
4421 undobuf.undos = 0;
4424 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4425 where we have an arithmetic expression and return that point. LOC will
4426 be inside INSN.
4428 try_combine will call this function to see if an insn can be split into
4429 two insns. */
4431 static rtx *
4432 find_split_point (rtx *loc, rtx insn, bool set_src)
4434 rtx x = *loc;
4435 enum rtx_code code = GET_CODE (x);
4436 rtx *split;
4437 unsigned HOST_WIDE_INT len = 0;
4438 HOST_WIDE_INT pos = 0;
4439 int unsignedp = 0;
4440 rtx inner = NULL_RTX;
4442 /* First special-case some codes. */
4443 switch (code)
4445 case SUBREG:
4446 #ifdef INSN_SCHEDULING
4447 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4448 point. */
4449 if (MEM_P (SUBREG_REG (x)))
4450 return loc;
4451 #endif
4452 return find_split_point (&SUBREG_REG (x), insn, false);
4454 case MEM:
4455 #ifdef HAVE_lo_sum
4456 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4457 using LO_SUM and HIGH. */
4458 if (GET_CODE (XEXP (x, 0)) == CONST
4459 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4461 enum machine_mode address_mode = get_address_mode (x);
4463 SUBST (XEXP (x, 0),
4464 gen_rtx_LO_SUM (address_mode,
4465 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4466 XEXP (x, 0)));
4467 return &XEXP (XEXP (x, 0), 0);
4469 #endif
4471 /* If we have a PLUS whose second operand is a constant and the
4472 address is not valid, perhaps will can split it up using
4473 the machine-specific way to split large constants. We use
4474 the first pseudo-reg (one of the virtual regs) as a placeholder;
4475 it will not remain in the result. */
4476 if (GET_CODE (XEXP (x, 0)) == PLUS
4477 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4478 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4479 MEM_ADDR_SPACE (x)))
4481 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4482 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4483 XEXP (x, 0)),
4484 subst_insn);
4486 /* This should have produced two insns, each of which sets our
4487 placeholder. If the source of the second is a valid address,
4488 we can make put both sources together and make a split point
4489 in the middle. */
4491 if (seq
4492 && NEXT_INSN (seq) != NULL_RTX
4493 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4494 && NONJUMP_INSN_P (seq)
4495 && GET_CODE (PATTERN (seq)) == SET
4496 && SET_DEST (PATTERN (seq)) == reg
4497 && ! reg_mentioned_p (reg,
4498 SET_SRC (PATTERN (seq)))
4499 && NONJUMP_INSN_P (NEXT_INSN (seq))
4500 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4501 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4502 && memory_address_addr_space_p
4503 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4504 MEM_ADDR_SPACE (x)))
4506 rtx src1 = SET_SRC (PATTERN (seq));
4507 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4509 /* Replace the placeholder in SRC2 with SRC1. If we can
4510 find where in SRC2 it was placed, that can become our
4511 split point and we can replace this address with SRC2.
4512 Just try two obvious places. */
4514 src2 = replace_rtx (src2, reg, src1);
4515 split = 0;
4516 if (XEXP (src2, 0) == src1)
4517 split = &XEXP (src2, 0);
4518 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4519 && XEXP (XEXP (src2, 0), 0) == src1)
4520 split = &XEXP (XEXP (src2, 0), 0);
4522 if (split)
4524 SUBST (XEXP (x, 0), src2);
4525 return split;
4529 /* If that didn't work, perhaps the first operand is complex and
4530 needs to be computed separately, so make a split point there.
4531 This will occur on machines that just support REG + CONST
4532 and have a constant moved through some previous computation. */
4534 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4535 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4536 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4537 return &XEXP (XEXP (x, 0), 0);
4540 /* If we have a PLUS whose first operand is complex, try computing it
4541 separately by making a split there. */
4542 if (GET_CODE (XEXP (x, 0)) == PLUS
4543 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4544 MEM_ADDR_SPACE (x))
4545 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4546 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4547 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4548 return &XEXP (XEXP (x, 0), 0);
4549 break;
4551 case SET:
4552 #ifdef HAVE_cc0
4553 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4554 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4555 we need to put the operand into a register. So split at that
4556 point. */
4558 if (SET_DEST (x) == cc0_rtx
4559 && GET_CODE (SET_SRC (x)) != COMPARE
4560 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4561 && !OBJECT_P (SET_SRC (x))
4562 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4563 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4564 return &SET_SRC (x);
4565 #endif
4567 /* See if we can split SET_SRC as it stands. */
4568 split = find_split_point (&SET_SRC (x), insn, true);
4569 if (split && split != &SET_SRC (x))
4570 return split;
4572 /* See if we can split SET_DEST as it stands. */
4573 split = find_split_point (&SET_DEST (x), insn, false);
4574 if (split && split != &SET_DEST (x))
4575 return split;
4577 /* See if this is a bitfield assignment with everything constant. If
4578 so, this is an IOR of an AND, so split it into that. */
4579 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4580 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4581 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4582 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4583 && CONST_INT_P (SET_SRC (x))
4584 && ((INTVAL (XEXP (SET_DEST (x), 1))
4585 + INTVAL (XEXP (SET_DEST (x), 2)))
4586 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4587 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4589 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4590 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4591 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4592 rtx dest = XEXP (SET_DEST (x), 0);
4593 enum machine_mode mode = GET_MODE (dest);
4594 unsigned HOST_WIDE_INT mask
4595 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4596 rtx or_mask;
4598 if (BITS_BIG_ENDIAN)
4599 pos = GET_MODE_PRECISION (mode) - len - pos;
4601 or_mask = gen_int_mode (src << pos, mode);
4602 if (src == mask)
4603 SUBST (SET_SRC (x),
4604 simplify_gen_binary (IOR, mode, dest, or_mask));
4605 else
4607 rtx negmask = gen_int_mode (~(mask << pos), mode);
4608 SUBST (SET_SRC (x),
4609 simplify_gen_binary (IOR, mode,
4610 simplify_gen_binary (AND, mode,
4611 dest, negmask),
4612 or_mask));
4615 SUBST (SET_DEST (x), dest);
4617 split = find_split_point (&SET_SRC (x), insn, true);
4618 if (split && split != &SET_SRC (x))
4619 return split;
4622 /* Otherwise, see if this is an operation that we can split into two.
4623 If so, try to split that. */
4624 code = GET_CODE (SET_SRC (x));
4626 switch (code)
4628 case AND:
4629 /* If we are AND'ing with a large constant that is only a single
4630 bit and the result is only being used in a context where we
4631 need to know if it is zero or nonzero, replace it with a bit
4632 extraction. This will avoid the large constant, which might
4633 have taken more than one insn to make. If the constant were
4634 not a valid argument to the AND but took only one insn to make,
4635 this is no worse, but if it took more than one insn, it will
4636 be better. */
4638 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4639 && REG_P (XEXP (SET_SRC (x), 0))
4640 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4641 && REG_P (SET_DEST (x))
4642 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4643 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4644 && XEXP (*split, 0) == SET_DEST (x)
4645 && XEXP (*split, 1) == const0_rtx)
4647 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4648 XEXP (SET_SRC (x), 0),
4649 pos, NULL_RTX, 1, 1, 0, 0);
4650 if (extraction != 0)
4652 SUBST (SET_SRC (x), extraction);
4653 return find_split_point (loc, insn, false);
4656 break;
4658 case NE:
4659 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4660 is known to be on, this can be converted into a NEG of a shift. */
4661 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4662 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4663 && 1 <= (pos = exact_log2
4664 (nonzero_bits (XEXP (SET_SRC (x), 0),
4665 GET_MODE (XEXP (SET_SRC (x), 0))))))
4667 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4669 SUBST (SET_SRC (x),
4670 gen_rtx_NEG (mode,
4671 gen_rtx_LSHIFTRT (mode,
4672 XEXP (SET_SRC (x), 0),
4673 GEN_INT (pos))));
4675 split = find_split_point (&SET_SRC (x), insn, true);
4676 if (split && split != &SET_SRC (x))
4677 return split;
4679 break;
4681 case SIGN_EXTEND:
4682 inner = XEXP (SET_SRC (x), 0);
4684 /* We can't optimize if either mode is a partial integer
4685 mode as we don't know how many bits are significant
4686 in those modes. */
4687 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4688 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4689 break;
4691 pos = 0;
4692 len = GET_MODE_PRECISION (GET_MODE (inner));
4693 unsignedp = 0;
4694 break;
4696 case SIGN_EXTRACT:
4697 case ZERO_EXTRACT:
4698 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4699 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4701 inner = XEXP (SET_SRC (x), 0);
4702 len = INTVAL (XEXP (SET_SRC (x), 1));
4703 pos = INTVAL (XEXP (SET_SRC (x), 2));
4705 if (BITS_BIG_ENDIAN)
4706 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4707 unsignedp = (code == ZERO_EXTRACT);
4709 break;
4711 default:
4712 break;
4715 if (len && pos >= 0
4716 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4718 enum machine_mode mode = GET_MODE (SET_SRC (x));
4720 /* For unsigned, we have a choice of a shift followed by an
4721 AND or two shifts. Use two shifts for field sizes where the
4722 constant might be too large. We assume here that we can
4723 always at least get 8-bit constants in an AND insn, which is
4724 true for every current RISC. */
4726 if (unsignedp && len <= 8)
4728 SUBST (SET_SRC (x),
4729 gen_rtx_AND (mode,
4730 gen_rtx_LSHIFTRT
4731 (mode, gen_lowpart (mode, inner),
4732 GEN_INT (pos)),
4733 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4734 - 1)));
4736 split = find_split_point (&SET_SRC (x), insn, true);
4737 if (split && split != &SET_SRC (x))
4738 return split;
4740 else
4742 SUBST (SET_SRC (x),
4743 gen_rtx_fmt_ee
4744 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4745 gen_rtx_ASHIFT (mode,
4746 gen_lowpart (mode, inner),
4747 GEN_INT (GET_MODE_PRECISION (mode)
4748 - len - pos)),
4749 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4751 split = find_split_point (&SET_SRC (x), insn, true);
4752 if (split && split != &SET_SRC (x))
4753 return split;
4757 /* See if this is a simple operation with a constant as the second
4758 operand. It might be that this constant is out of range and hence
4759 could be used as a split point. */
4760 if (BINARY_P (SET_SRC (x))
4761 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4762 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4763 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4764 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4765 return &XEXP (SET_SRC (x), 1);
4767 /* Finally, see if this is a simple operation with its first operand
4768 not in a register. The operation might require this operand in a
4769 register, so return it as a split point. We can always do this
4770 because if the first operand were another operation, we would have
4771 already found it as a split point. */
4772 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4773 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4774 return &XEXP (SET_SRC (x), 0);
4776 return 0;
4778 case AND:
4779 case IOR:
4780 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4781 it is better to write this as (not (ior A B)) so we can split it.
4782 Similarly for IOR. */
4783 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4785 SUBST (*loc,
4786 gen_rtx_NOT (GET_MODE (x),
4787 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4788 GET_MODE (x),
4789 XEXP (XEXP (x, 0), 0),
4790 XEXP (XEXP (x, 1), 0))));
4791 return find_split_point (loc, insn, set_src);
4794 /* Many RISC machines have a large set of logical insns. If the
4795 second operand is a NOT, put it first so we will try to split the
4796 other operand first. */
4797 if (GET_CODE (XEXP (x, 1)) == NOT)
4799 rtx tem = XEXP (x, 0);
4800 SUBST (XEXP (x, 0), XEXP (x, 1));
4801 SUBST (XEXP (x, 1), tem);
4803 break;
4805 case PLUS:
4806 case MINUS:
4807 /* Canonicalization can produce (minus A (mult B C)), where C is a
4808 constant. It may be better to try splitting (plus (mult B -C) A)
4809 instead if this isn't a multiply by a power of two. */
4810 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4811 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4812 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4814 enum machine_mode mode = GET_MODE (x);
4815 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4816 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4817 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4818 XEXP (XEXP (x, 1), 0),
4819 GEN_INT (other_int)),
4820 XEXP (x, 0)));
4821 return find_split_point (loc, insn, set_src);
4824 /* Split at a multiply-accumulate instruction. However if this is
4825 the SET_SRC, we likely do not have such an instruction and it's
4826 worthless to try this split. */
4827 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4828 return loc;
4830 default:
4831 break;
4834 /* Otherwise, select our actions depending on our rtx class. */
4835 switch (GET_RTX_CLASS (code))
4837 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4838 case RTX_TERNARY:
4839 split = find_split_point (&XEXP (x, 2), insn, false);
4840 if (split)
4841 return split;
4842 /* ... fall through ... */
4843 case RTX_BIN_ARITH:
4844 case RTX_COMM_ARITH:
4845 case RTX_COMPARE:
4846 case RTX_COMM_COMPARE:
4847 split = find_split_point (&XEXP (x, 1), insn, false);
4848 if (split)
4849 return split;
4850 /* ... fall through ... */
4851 case RTX_UNARY:
4852 /* Some machines have (and (shift ...) ...) insns. If X is not
4853 an AND, but XEXP (X, 0) is, use it as our split point. */
4854 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4855 return &XEXP (x, 0);
4857 split = find_split_point (&XEXP (x, 0), insn, false);
4858 if (split)
4859 return split;
4860 return loc;
4862 default:
4863 /* Otherwise, we don't have a split point. */
4864 return 0;
4868 /* Throughout X, replace FROM with TO, and return the result.
4869 The result is TO if X is FROM;
4870 otherwise the result is X, but its contents may have been modified.
4871 If they were modified, a record was made in undobuf so that
4872 undo_all will (among other things) return X to its original state.
4874 If the number of changes necessary is too much to record to undo,
4875 the excess changes are not made, so the result is invalid.
4876 The changes already made can still be undone.
4877 undobuf.num_undo is incremented for such changes, so by testing that
4878 the caller can tell whether the result is valid.
4880 `n_occurrences' is incremented each time FROM is replaced.
4882 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4884 IN_COND is nonzero if we are at the top level of a condition.
4886 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4887 by copying if `n_occurrences' is nonzero. */
4889 static rtx
4890 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4892 enum rtx_code code = GET_CODE (x);
4893 enum machine_mode op0_mode = VOIDmode;
4894 const char *fmt;
4895 int len, i;
4896 rtx new_rtx;
4898 /* Two expressions are equal if they are identical copies of a shared
4899 RTX or if they are both registers with the same register number
4900 and mode. */
4902 #define COMBINE_RTX_EQUAL_P(X,Y) \
4903 ((X) == (Y) \
4904 || (REG_P (X) && REG_P (Y) \
4905 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4907 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4909 n_occurrences++;
4910 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4913 /* If X and FROM are the same register but different modes, they
4914 will not have been seen as equal above. However, the log links code
4915 will make a LOG_LINKS entry for that case. If we do nothing, we
4916 will try to rerecognize our original insn and, when it succeeds,
4917 we will delete the feeding insn, which is incorrect.
4919 So force this insn not to match in this (rare) case. */
4920 if (! in_dest && code == REG && REG_P (from)
4921 && reg_overlap_mentioned_p (x, from))
4922 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4924 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4925 of which may contain things that can be combined. */
4926 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4927 return x;
4929 /* It is possible to have a subexpression appear twice in the insn.
4930 Suppose that FROM is a register that appears within TO.
4931 Then, after that subexpression has been scanned once by `subst',
4932 the second time it is scanned, TO may be found. If we were
4933 to scan TO here, we would find FROM within it and create a
4934 self-referent rtl structure which is completely wrong. */
4935 if (COMBINE_RTX_EQUAL_P (x, to))
4936 return to;
4938 /* Parallel asm_operands need special attention because all of the
4939 inputs are shared across the arms. Furthermore, unsharing the
4940 rtl results in recognition failures. Failure to handle this case
4941 specially can result in circular rtl.
4943 Solve this by doing a normal pass across the first entry of the
4944 parallel, and only processing the SET_DESTs of the subsequent
4945 entries. Ug. */
4947 if (code == PARALLEL
4948 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4949 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4951 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4953 /* If this substitution failed, this whole thing fails. */
4954 if (GET_CODE (new_rtx) == CLOBBER
4955 && XEXP (new_rtx, 0) == const0_rtx)
4956 return new_rtx;
4958 SUBST (XVECEXP (x, 0, 0), new_rtx);
4960 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4962 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4964 if (!REG_P (dest)
4965 && GET_CODE (dest) != CC0
4966 && GET_CODE (dest) != PC)
4968 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4970 /* If this substitution failed, this whole thing fails. */
4971 if (GET_CODE (new_rtx) == CLOBBER
4972 && XEXP (new_rtx, 0) == const0_rtx)
4973 return new_rtx;
4975 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4979 else
4981 len = GET_RTX_LENGTH (code);
4982 fmt = GET_RTX_FORMAT (code);
4984 /* We don't need to process a SET_DEST that is a register, CC0,
4985 or PC, so set up to skip this common case. All other cases
4986 where we want to suppress replacing something inside a
4987 SET_SRC are handled via the IN_DEST operand. */
4988 if (code == SET
4989 && (REG_P (SET_DEST (x))
4990 || GET_CODE (SET_DEST (x)) == CC0
4991 || GET_CODE (SET_DEST (x)) == PC))
4992 fmt = "ie";
4994 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4995 constant. */
4996 if (fmt[0] == 'e')
4997 op0_mode = GET_MODE (XEXP (x, 0));
4999 for (i = 0; i < len; i++)
5001 if (fmt[i] == 'E')
5003 int j;
5004 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5006 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5008 new_rtx = (unique_copy && n_occurrences
5009 ? copy_rtx (to) : to);
5010 n_occurrences++;
5012 else
5014 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5015 unique_copy);
5017 /* If this substitution failed, this whole thing
5018 fails. */
5019 if (GET_CODE (new_rtx) == CLOBBER
5020 && XEXP (new_rtx, 0) == const0_rtx)
5021 return new_rtx;
5024 SUBST (XVECEXP (x, i, j), new_rtx);
5027 else if (fmt[i] == 'e')
5029 /* If this is a register being set, ignore it. */
5030 new_rtx = XEXP (x, i);
5031 if (in_dest
5032 && i == 0
5033 && (((code == SUBREG || code == ZERO_EXTRACT)
5034 && REG_P (new_rtx))
5035 || code == STRICT_LOW_PART))
5038 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5040 /* In general, don't install a subreg involving two
5041 modes not tieable. It can worsen register
5042 allocation, and can even make invalid reload
5043 insns, since the reg inside may need to be copied
5044 from in the outside mode, and that may be invalid
5045 if it is an fp reg copied in integer mode.
5047 We allow two exceptions to this: It is valid if
5048 it is inside another SUBREG and the mode of that
5049 SUBREG and the mode of the inside of TO is
5050 tieable and it is valid if X is a SET that copies
5051 FROM to CC0. */
5053 if (GET_CODE (to) == SUBREG
5054 && ! MODES_TIEABLE_P (GET_MODE (to),
5055 GET_MODE (SUBREG_REG (to)))
5056 && ! (code == SUBREG
5057 && MODES_TIEABLE_P (GET_MODE (x),
5058 GET_MODE (SUBREG_REG (to))))
5059 #ifdef HAVE_cc0
5060 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5061 #endif
5063 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5065 #ifdef CANNOT_CHANGE_MODE_CLASS
5066 if (code == SUBREG
5067 && REG_P (to)
5068 && REGNO (to) < FIRST_PSEUDO_REGISTER
5069 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5070 GET_MODE (to),
5071 GET_MODE (x)))
5072 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5073 #endif
5075 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5076 n_occurrences++;
5078 else
5079 /* If we are in a SET_DEST, suppress most cases unless we
5080 have gone inside a MEM, in which case we want to
5081 simplify the address. We assume here that things that
5082 are actually part of the destination have their inner
5083 parts in the first expression. This is true for SUBREG,
5084 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5085 things aside from REG and MEM that should appear in a
5086 SET_DEST. */
5087 new_rtx = subst (XEXP (x, i), from, to,
5088 (((in_dest
5089 && (code == SUBREG || code == STRICT_LOW_PART
5090 || code == ZERO_EXTRACT))
5091 || code == SET)
5092 && i == 0),
5093 code == IF_THEN_ELSE && i == 0,
5094 unique_copy);
5096 /* If we found that we will have to reject this combination,
5097 indicate that by returning the CLOBBER ourselves, rather than
5098 an expression containing it. This will speed things up as
5099 well as prevent accidents where two CLOBBERs are considered
5100 to be equal, thus producing an incorrect simplification. */
5102 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5103 return new_rtx;
5105 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5107 enum machine_mode mode = GET_MODE (x);
5109 x = simplify_subreg (GET_MODE (x), new_rtx,
5110 GET_MODE (SUBREG_REG (x)),
5111 SUBREG_BYTE (x));
5112 if (! x)
5113 x = gen_rtx_CLOBBER (mode, const0_rtx);
5115 else if (CONST_INT_P (new_rtx)
5116 && GET_CODE (x) == ZERO_EXTEND)
5118 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5119 new_rtx, GET_MODE (XEXP (x, 0)));
5120 gcc_assert (x);
5122 else
5123 SUBST (XEXP (x, i), new_rtx);
5128 /* Check if we are loading something from the constant pool via float
5129 extension; in this case we would undo compress_float_constant
5130 optimization and degenerate constant load to an immediate value. */
5131 if (GET_CODE (x) == FLOAT_EXTEND
5132 && MEM_P (XEXP (x, 0))
5133 && MEM_READONLY_P (XEXP (x, 0)))
5135 rtx tmp = avoid_constant_pool_reference (x);
5136 if (x != tmp)
5137 return x;
5140 /* Try to simplify X. If the simplification changed the code, it is likely
5141 that further simplification will help, so loop, but limit the number
5142 of repetitions that will be performed. */
5144 for (i = 0; i < 4; i++)
5146 /* If X is sufficiently simple, don't bother trying to do anything
5147 with it. */
5148 if (code != CONST_INT && code != REG && code != CLOBBER)
5149 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5151 if (GET_CODE (x) == code)
5152 break;
5154 code = GET_CODE (x);
5156 /* We no longer know the original mode of operand 0 since we
5157 have changed the form of X) */
5158 op0_mode = VOIDmode;
5161 return x;
5164 /* Simplify X, a piece of RTL. We just operate on the expression at the
5165 outer level; call `subst' to simplify recursively. Return the new
5166 expression.
5168 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5169 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5170 of a condition. */
5172 static rtx
5173 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5174 int in_cond)
5176 enum rtx_code code = GET_CODE (x);
5177 enum machine_mode mode = GET_MODE (x);
5178 rtx temp;
5179 int i;
5181 /* If this is a commutative operation, put a constant last and a complex
5182 expression first. We don't need to do this for comparisons here. */
5183 if (COMMUTATIVE_ARITH_P (x)
5184 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5186 temp = XEXP (x, 0);
5187 SUBST (XEXP (x, 0), XEXP (x, 1));
5188 SUBST (XEXP (x, 1), temp);
5191 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5192 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5193 things. Check for cases where both arms are testing the same
5194 condition.
5196 Don't do anything if all operands are very simple. */
5198 if ((BINARY_P (x)
5199 && ((!OBJECT_P (XEXP (x, 0))
5200 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5201 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5202 || (!OBJECT_P (XEXP (x, 1))
5203 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5204 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5205 || (UNARY_P (x)
5206 && (!OBJECT_P (XEXP (x, 0))
5207 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5208 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5210 rtx cond, true_rtx, false_rtx;
5212 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5213 if (cond != 0
5214 /* If everything is a comparison, what we have is highly unlikely
5215 to be simpler, so don't use it. */
5216 && ! (COMPARISON_P (x)
5217 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5219 rtx cop1 = const0_rtx;
5220 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5222 if (cond_code == NE && COMPARISON_P (cond))
5223 return x;
5225 /* Simplify the alternative arms; this may collapse the true and
5226 false arms to store-flag values. Be careful to use copy_rtx
5227 here since true_rtx or false_rtx might share RTL with x as a
5228 result of the if_then_else_cond call above. */
5229 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5230 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5232 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5233 is unlikely to be simpler. */
5234 if (general_operand (true_rtx, VOIDmode)
5235 && general_operand (false_rtx, VOIDmode))
5237 enum rtx_code reversed;
5239 /* Restarting if we generate a store-flag expression will cause
5240 us to loop. Just drop through in this case. */
5242 /* If the result values are STORE_FLAG_VALUE and zero, we can
5243 just make the comparison operation. */
5244 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5245 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5246 cond, cop1);
5247 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5248 && ((reversed = reversed_comparison_code_parts
5249 (cond_code, cond, cop1, NULL))
5250 != UNKNOWN))
5251 x = simplify_gen_relational (reversed, mode, VOIDmode,
5252 cond, cop1);
5254 /* Likewise, we can make the negate of a comparison operation
5255 if the result values are - STORE_FLAG_VALUE and zero. */
5256 else if (CONST_INT_P (true_rtx)
5257 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5258 && false_rtx == const0_rtx)
5259 x = simplify_gen_unary (NEG, mode,
5260 simplify_gen_relational (cond_code,
5261 mode, VOIDmode,
5262 cond, cop1),
5263 mode);
5264 else if (CONST_INT_P (false_rtx)
5265 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5266 && true_rtx == const0_rtx
5267 && ((reversed = reversed_comparison_code_parts
5268 (cond_code, cond, cop1, NULL))
5269 != UNKNOWN))
5270 x = simplify_gen_unary (NEG, mode,
5271 simplify_gen_relational (reversed,
5272 mode, VOIDmode,
5273 cond, cop1),
5274 mode);
5275 else
5276 return gen_rtx_IF_THEN_ELSE (mode,
5277 simplify_gen_relational (cond_code,
5278 mode,
5279 VOIDmode,
5280 cond,
5281 cop1),
5282 true_rtx, false_rtx);
5284 code = GET_CODE (x);
5285 op0_mode = VOIDmode;
5290 /* Try to fold this expression in case we have constants that weren't
5291 present before. */
5292 temp = 0;
5293 switch (GET_RTX_CLASS (code))
5295 case RTX_UNARY:
5296 if (op0_mode == VOIDmode)
5297 op0_mode = GET_MODE (XEXP (x, 0));
5298 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5299 break;
5300 case RTX_COMPARE:
5301 case RTX_COMM_COMPARE:
5303 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5304 if (cmp_mode == VOIDmode)
5306 cmp_mode = GET_MODE (XEXP (x, 1));
5307 if (cmp_mode == VOIDmode)
5308 cmp_mode = op0_mode;
5310 temp = simplify_relational_operation (code, mode, cmp_mode,
5311 XEXP (x, 0), XEXP (x, 1));
5313 break;
5314 case RTX_COMM_ARITH:
5315 case RTX_BIN_ARITH:
5316 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5317 break;
5318 case RTX_BITFIELD_OPS:
5319 case RTX_TERNARY:
5320 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5321 XEXP (x, 1), XEXP (x, 2));
5322 break;
5323 default:
5324 break;
5327 if (temp)
5329 x = temp;
5330 code = GET_CODE (temp);
5331 op0_mode = VOIDmode;
5332 mode = GET_MODE (temp);
5335 /* First see if we can apply the inverse distributive law. */
5336 if (code == PLUS || code == MINUS
5337 || code == AND || code == IOR || code == XOR)
5339 x = apply_distributive_law (x);
5340 code = GET_CODE (x);
5341 op0_mode = VOIDmode;
5344 /* If CODE is an associative operation not otherwise handled, see if we
5345 can associate some operands. This can win if they are constants or
5346 if they are logically related (i.e. (a & b) & a). */
5347 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5348 || code == AND || code == IOR || code == XOR
5349 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5350 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5351 || (flag_associative_math && FLOAT_MODE_P (mode))))
5353 if (GET_CODE (XEXP (x, 0)) == code)
5355 rtx other = XEXP (XEXP (x, 0), 0);
5356 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5357 rtx inner_op1 = XEXP (x, 1);
5358 rtx inner;
5360 /* Make sure we pass the constant operand if any as the second
5361 one if this is a commutative operation. */
5362 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5364 rtx tem = inner_op0;
5365 inner_op0 = inner_op1;
5366 inner_op1 = tem;
5368 inner = simplify_binary_operation (code == MINUS ? PLUS
5369 : code == DIV ? MULT
5370 : code,
5371 mode, inner_op0, inner_op1);
5373 /* For commutative operations, try the other pair if that one
5374 didn't simplify. */
5375 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5377 other = XEXP (XEXP (x, 0), 1);
5378 inner = simplify_binary_operation (code, mode,
5379 XEXP (XEXP (x, 0), 0),
5380 XEXP (x, 1));
5383 if (inner)
5384 return simplify_gen_binary (code, mode, other, inner);
5388 /* A little bit of algebraic simplification here. */
5389 switch (code)
5391 case MEM:
5392 /* Ensure that our address has any ASHIFTs converted to MULT in case
5393 address-recognizing predicates are called later. */
5394 temp = make_compound_operation (XEXP (x, 0), MEM);
5395 SUBST (XEXP (x, 0), temp);
5396 break;
5398 case SUBREG:
5399 if (op0_mode == VOIDmode)
5400 op0_mode = GET_MODE (SUBREG_REG (x));
5402 /* See if this can be moved to simplify_subreg. */
5403 if (CONSTANT_P (SUBREG_REG (x))
5404 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5405 /* Don't call gen_lowpart if the inner mode
5406 is VOIDmode and we cannot simplify it, as SUBREG without
5407 inner mode is invalid. */
5408 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5409 || gen_lowpart_common (mode, SUBREG_REG (x))))
5410 return gen_lowpart (mode, SUBREG_REG (x));
5412 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5413 break;
5415 rtx temp;
5416 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5417 SUBREG_BYTE (x));
5418 if (temp)
5419 return temp;
5421 /* If op is known to have all lower bits zero, the result is zero. */
5422 if (!in_dest
5423 && SCALAR_INT_MODE_P (mode)
5424 && SCALAR_INT_MODE_P (op0_mode)
5425 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5426 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5427 && HWI_COMPUTABLE_MODE_P (op0_mode)
5428 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5429 & GET_MODE_MASK (mode)) == 0)
5430 return CONST0_RTX (mode);
5433 /* Don't change the mode of the MEM if that would change the meaning
5434 of the address. */
5435 if (MEM_P (SUBREG_REG (x))
5436 && (MEM_VOLATILE_P (SUBREG_REG (x))
5437 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5438 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5439 return gen_rtx_CLOBBER (mode, const0_rtx);
5441 /* Note that we cannot do any narrowing for non-constants since
5442 we might have been counting on using the fact that some bits were
5443 zero. We now do this in the SET. */
5445 break;
5447 case NEG:
5448 temp = expand_compound_operation (XEXP (x, 0));
5450 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5451 replaced by (lshiftrt X C). This will convert
5452 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5454 if (GET_CODE (temp) == ASHIFTRT
5455 && CONST_INT_P (XEXP (temp, 1))
5456 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5457 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5458 INTVAL (XEXP (temp, 1)));
5460 /* If X has only a single bit that might be nonzero, say, bit I, convert
5461 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5462 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5463 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5464 or a SUBREG of one since we'd be making the expression more
5465 complex if it was just a register. */
5467 if (!REG_P (temp)
5468 && ! (GET_CODE (temp) == SUBREG
5469 && REG_P (SUBREG_REG (temp)))
5470 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5472 rtx temp1 = simplify_shift_const
5473 (NULL_RTX, ASHIFTRT, mode,
5474 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5475 GET_MODE_PRECISION (mode) - 1 - i),
5476 GET_MODE_PRECISION (mode) - 1 - i);
5478 /* If all we did was surround TEMP with the two shifts, we
5479 haven't improved anything, so don't use it. Otherwise,
5480 we are better off with TEMP1. */
5481 if (GET_CODE (temp1) != ASHIFTRT
5482 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5483 || XEXP (XEXP (temp1, 0), 0) != temp)
5484 return temp1;
5486 break;
5488 case TRUNCATE:
5489 /* We can't handle truncation to a partial integer mode here
5490 because we don't know the real bitsize of the partial
5491 integer mode. */
5492 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5493 break;
5495 if (HWI_COMPUTABLE_MODE_P (mode))
5496 SUBST (XEXP (x, 0),
5497 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5498 GET_MODE_MASK (mode), 0));
5500 /* We can truncate a constant value and return it. */
5501 if (CONST_INT_P (XEXP (x, 0)))
5502 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5504 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5505 whose value is a comparison can be replaced with a subreg if
5506 STORE_FLAG_VALUE permits. */
5507 if (HWI_COMPUTABLE_MODE_P (mode)
5508 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5509 && (temp = get_last_value (XEXP (x, 0)))
5510 && COMPARISON_P (temp))
5511 return gen_lowpart (mode, XEXP (x, 0));
5512 break;
5514 case CONST:
5515 /* (const (const X)) can become (const X). Do it this way rather than
5516 returning the inner CONST since CONST can be shared with a
5517 REG_EQUAL note. */
5518 if (GET_CODE (XEXP (x, 0)) == CONST)
5519 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5520 break;
5522 #ifdef HAVE_lo_sum
5523 case LO_SUM:
5524 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5525 can add in an offset. find_split_point will split this address up
5526 again if it doesn't match. */
5527 if (GET_CODE (XEXP (x, 0)) == HIGH
5528 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5529 return XEXP (x, 1);
5530 break;
5531 #endif
5533 case PLUS:
5534 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5535 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5536 bit-field and can be replaced by either a sign_extend or a
5537 sign_extract. The `and' may be a zero_extend and the two
5538 <c>, -<c> constants may be reversed. */
5539 if (GET_CODE (XEXP (x, 0)) == XOR
5540 && CONST_INT_P (XEXP (x, 1))
5541 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5542 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5543 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5544 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5545 && HWI_COMPUTABLE_MODE_P (mode)
5546 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5547 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5548 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5549 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5550 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5551 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5552 == (unsigned int) i + 1))))
5553 return simplify_shift_const
5554 (NULL_RTX, ASHIFTRT, mode,
5555 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5556 XEXP (XEXP (XEXP (x, 0), 0), 0),
5557 GET_MODE_PRECISION (mode) - (i + 1)),
5558 GET_MODE_PRECISION (mode) - (i + 1));
5560 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5561 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5562 the bitsize of the mode - 1. This allows simplification of
5563 "a = (b & 8) == 0;" */
5564 if (XEXP (x, 1) == constm1_rtx
5565 && !REG_P (XEXP (x, 0))
5566 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5567 && REG_P (SUBREG_REG (XEXP (x, 0))))
5568 && nonzero_bits (XEXP (x, 0), mode) == 1)
5569 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5570 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5571 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5572 GET_MODE_PRECISION (mode) - 1),
5573 GET_MODE_PRECISION (mode) - 1);
5575 /* If we are adding two things that have no bits in common, convert
5576 the addition into an IOR. This will often be further simplified,
5577 for example in cases like ((a & 1) + (a & 2)), which can
5578 become a & 3. */
5580 if (HWI_COMPUTABLE_MODE_P (mode)
5581 && (nonzero_bits (XEXP (x, 0), mode)
5582 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5584 /* Try to simplify the expression further. */
5585 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5586 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5588 /* If we could, great. If not, do not go ahead with the IOR
5589 replacement, since PLUS appears in many special purpose
5590 address arithmetic instructions. */
5591 if (GET_CODE (temp) != CLOBBER
5592 && (GET_CODE (temp) != IOR
5593 || ((XEXP (temp, 0) != XEXP (x, 0)
5594 || XEXP (temp, 1) != XEXP (x, 1))
5595 && (XEXP (temp, 0) != XEXP (x, 1)
5596 || XEXP (temp, 1) != XEXP (x, 0)))))
5597 return temp;
5599 break;
5601 case MINUS:
5602 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5603 (and <foo> (const_int pow2-1)) */
5604 if (GET_CODE (XEXP (x, 1)) == AND
5605 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5606 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5607 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5608 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5609 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5610 break;
5612 case MULT:
5613 /* If we have (mult (plus A B) C), apply the distributive law and then
5614 the inverse distributive law to see if things simplify. This
5615 occurs mostly in addresses, often when unrolling loops. */
5617 if (GET_CODE (XEXP (x, 0)) == PLUS)
5619 rtx result = distribute_and_simplify_rtx (x, 0);
5620 if (result)
5621 return result;
5624 /* Try simplify a*(b/c) as (a*b)/c. */
5625 if (FLOAT_MODE_P (mode) && flag_associative_math
5626 && GET_CODE (XEXP (x, 0)) == DIV)
5628 rtx tem = simplify_binary_operation (MULT, mode,
5629 XEXP (XEXP (x, 0), 0),
5630 XEXP (x, 1));
5631 if (tem)
5632 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5634 break;
5636 case UDIV:
5637 /* If this is a divide by a power of two, treat it as a shift if
5638 its first operand is a shift. */
5639 if (CONST_INT_P (XEXP (x, 1))
5640 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5641 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5642 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5643 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5644 || GET_CODE (XEXP (x, 0)) == ROTATE
5645 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5646 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5647 break;
5649 case EQ: case NE:
5650 case GT: case GTU: case GE: case GEU:
5651 case LT: case LTU: case LE: case LEU:
5652 case UNEQ: case LTGT:
5653 case UNGT: case UNGE:
5654 case UNLT: case UNLE:
5655 case UNORDERED: case ORDERED:
5656 /* If the first operand is a condition code, we can't do anything
5657 with it. */
5658 if (GET_CODE (XEXP (x, 0)) == COMPARE
5659 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5660 && ! CC0_P (XEXP (x, 0))))
5662 rtx op0 = XEXP (x, 0);
5663 rtx op1 = XEXP (x, 1);
5664 enum rtx_code new_code;
5666 if (GET_CODE (op0) == COMPARE)
5667 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5669 /* Simplify our comparison, if possible. */
5670 new_code = simplify_comparison (code, &op0, &op1);
5672 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5673 if only the low-order bit is possibly nonzero in X (such as when
5674 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5675 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5676 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5677 (plus X 1).
5679 Remove any ZERO_EXTRACT we made when thinking this was a
5680 comparison. It may now be simpler to use, e.g., an AND. If a
5681 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5682 the call to make_compound_operation in the SET case.
5684 Don't apply these optimizations if the caller would
5685 prefer a comparison rather than a value.
5686 E.g., for the condition in an IF_THEN_ELSE most targets need
5687 an explicit comparison. */
5689 if (in_cond)
5692 else if (STORE_FLAG_VALUE == 1
5693 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5694 && op1 == const0_rtx
5695 && mode == GET_MODE (op0)
5696 && nonzero_bits (op0, mode) == 1)
5697 return gen_lowpart (mode,
5698 expand_compound_operation (op0));
5700 else if (STORE_FLAG_VALUE == 1
5701 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5702 && op1 == const0_rtx
5703 && mode == GET_MODE (op0)
5704 && (num_sign_bit_copies (op0, mode)
5705 == GET_MODE_PRECISION (mode)))
5707 op0 = expand_compound_operation (op0);
5708 return simplify_gen_unary (NEG, mode,
5709 gen_lowpart (mode, op0),
5710 mode);
5713 else if (STORE_FLAG_VALUE == 1
5714 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5715 && op1 == const0_rtx
5716 && mode == GET_MODE (op0)
5717 && nonzero_bits (op0, mode) == 1)
5719 op0 = expand_compound_operation (op0);
5720 return simplify_gen_binary (XOR, mode,
5721 gen_lowpart (mode, op0),
5722 const1_rtx);
5725 else if (STORE_FLAG_VALUE == 1
5726 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5727 && op1 == const0_rtx
5728 && mode == GET_MODE (op0)
5729 && (num_sign_bit_copies (op0, mode)
5730 == GET_MODE_PRECISION (mode)))
5732 op0 = expand_compound_operation (op0);
5733 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5736 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5737 those above. */
5738 if (in_cond)
5741 else if (STORE_FLAG_VALUE == -1
5742 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5743 && op1 == const0_rtx
5744 && (num_sign_bit_copies (op0, mode)
5745 == GET_MODE_PRECISION (mode)))
5746 return gen_lowpart (mode,
5747 expand_compound_operation (op0));
5749 else if (STORE_FLAG_VALUE == -1
5750 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5751 && op1 == const0_rtx
5752 && mode == GET_MODE (op0)
5753 && nonzero_bits (op0, mode) == 1)
5755 op0 = expand_compound_operation (op0);
5756 return simplify_gen_unary (NEG, mode,
5757 gen_lowpart (mode, op0),
5758 mode);
5761 else if (STORE_FLAG_VALUE == -1
5762 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5763 && op1 == const0_rtx
5764 && mode == GET_MODE (op0)
5765 && (num_sign_bit_copies (op0, mode)
5766 == GET_MODE_PRECISION (mode)))
5768 op0 = expand_compound_operation (op0);
5769 return simplify_gen_unary (NOT, mode,
5770 gen_lowpart (mode, op0),
5771 mode);
5774 /* If X is 0/1, (eq X 0) is X-1. */
5775 else if (STORE_FLAG_VALUE == -1
5776 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5777 && op1 == const0_rtx
5778 && mode == GET_MODE (op0)
5779 && nonzero_bits (op0, mode) == 1)
5781 op0 = expand_compound_operation (op0);
5782 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5785 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5786 one bit that might be nonzero, we can convert (ne x 0) to
5787 (ashift x c) where C puts the bit in the sign bit. Remove any
5788 AND with STORE_FLAG_VALUE when we are done, since we are only
5789 going to test the sign bit. */
5790 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5791 && HWI_COMPUTABLE_MODE_P (mode)
5792 && val_signbit_p (mode, STORE_FLAG_VALUE)
5793 && op1 == const0_rtx
5794 && mode == GET_MODE (op0)
5795 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5797 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5798 expand_compound_operation (op0),
5799 GET_MODE_PRECISION (mode) - 1 - i);
5800 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5801 return XEXP (x, 0);
5802 else
5803 return x;
5806 /* If the code changed, return a whole new comparison.
5807 We also need to avoid using SUBST in cases where
5808 simplify_comparison has widened a comparison with a CONST_INT,
5809 since in that case the wider CONST_INT may fail the sanity
5810 checks in do_SUBST. */
5811 if (new_code != code
5812 || (CONST_INT_P (op1)
5813 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
5814 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
5815 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5817 /* Otherwise, keep this operation, but maybe change its operands.
5818 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5819 SUBST (XEXP (x, 0), op0);
5820 SUBST (XEXP (x, 1), op1);
5822 break;
5824 case IF_THEN_ELSE:
5825 return simplify_if_then_else (x);
5827 case ZERO_EXTRACT:
5828 case SIGN_EXTRACT:
5829 case ZERO_EXTEND:
5830 case SIGN_EXTEND:
5831 /* If we are processing SET_DEST, we are done. */
5832 if (in_dest)
5833 return x;
5835 return expand_compound_operation (x);
5837 case SET:
5838 return simplify_set (x);
5840 case AND:
5841 case IOR:
5842 return simplify_logical (x);
5844 case ASHIFT:
5845 case LSHIFTRT:
5846 case ASHIFTRT:
5847 case ROTATE:
5848 case ROTATERT:
5849 /* If this is a shift by a constant amount, simplify it. */
5850 if (CONST_INT_P (XEXP (x, 1)))
5851 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5852 INTVAL (XEXP (x, 1)));
5854 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5855 SUBST (XEXP (x, 1),
5856 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5857 ((unsigned HOST_WIDE_INT) 1
5858 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5859 - 1,
5860 0));
5861 break;
5863 default:
5864 break;
5867 return x;
5870 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5872 static rtx
5873 simplify_if_then_else (rtx x)
5875 enum machine_mode mode = GET_MODE (x);
5876 rtx cond = XEXP (x, 0);
5877 rtx true_rtx = XEXP (x, 1);
5878 rtx false_rtx = XEXP (x, 2);
5879 enum rtx_code true_code = GET_CODE (cond);
5880 int comparison_p = COMPARISON_P (cond);
5881 rtx temp;
5882 int i;
5883 enum rtx_code false_code;
5884 rtx reversed;
5886 /* Simplify storing of the truth value. */
5887 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5888 return simplify_gen_relational (true_code, mode, VOIDmode,
5889 XEXP (cond, 0), XEXP (cond, 1));
5891 /* Also when the truth value has to be reversed. */
5892 if (comparison_p
5893 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5894 && (reversed = reversed_comparison (cond, mode)))
5895 return reversed;
5897 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5898 in it is being compared against certain values. Get the true and false
5899 comparisons and see if that says anything about the value of each arm. */
5901 if (comparison_p
5902 && ((false_code = reversed_comparison_code (cond, NULL))
5903 != UNKNOWN)
5904 && REG_P (XEXP (cond, 0)))
5906 HOST_WIDE_INT nzb;
5907 rtx from = XEXP (cond, 0);
5908 rtx true_val = XEXP (cond, 1);
5909 rtx false_val = true_val;
5910 int swapped = 0;
5912 /* If FALSE_CODE is EQ, swap the codes and arms. */
5914 if (false_code == EQ)
5916 swapped = 1, true_code = EQ, false_code = NE;
5917 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5920 /* If we are comparing against zero and the expression being tested has
5921 only a single bit that might be nonzero, that is its value when it is
5922 not equal to zero. Similarly if it is known to be -1 or 0. */
5924 if (true_code == EQ && true_val == const0_rtx
5925 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5927 false_code = EQ;
5928 false_val = gen_int_mode (nzb, GET_MODE (from));
5930 else if (true_code == EQ && true_val == const0_rtx
5931 && (num_sign_bit_copies (from, GET_MODE (from))
5932 == GET_MODE_PRECISION (GET_MODE (from))))
5934 false_code = EQ;
5935 false_val = constm1_rtx;
5938 /* Now simplify an arm if we know the value of the register in the
5939 branch and it is used in the arm. Be careful due to the potential
5940 of locally-shared RTL. */
5942 if (reg_mentioned_p (from, true_rtx))
5943 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5944 from, true_val),
5945 pc_rtx, pc_rtx, 0, 0, 0);
5946 if (reg_mentioned_p (from, false_rtx))
5947 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5948 from, false_val),
5949 pc_rtx, pc_rtx, 0, 0, 0);
5951 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5952 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5954 true_rtx = XEXP (x, 1);
5955 false_rtx = XEXP (x, 2);
5956 true_code = GET_CODE (cond);
5959 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5960 reversed, do so to avoid needing two sets of patterns for
5961 subtract-and-branch insns. Similarly if we have a constant in the true
5962 arm, the false arm is the same as the first operand of the comparison, or
5963 the false arm is more complicated than the true arm. */
5965 if (comparison_p
5966 && reversed_comparison_code (cond, NULL) != UNKNOWN
5967 && (true_rtx == pc_rtx
5968 || (CONSTANT_P (true_rtx)
5969 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5970 || true_rtx == const0_rtx
5971 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5972 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5973 && !OBJECT_P (false_rtx))
5974 || reg_mentioned_p (true_rtx, false_rtx)
5975 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5977 true_code = reversed_comparison_code (cond, NULL);
5978 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5979 SUBST (XEXP (x, 1), false_rtx);
5980 SUBST (XEXP (x, 2), true_rtx);
5982 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5983 cond = XEXP (x, 0);
5985 /* It is possible that the conditional has been simplified out. */
5986 true_code = GET_CODE (cond);
5987 comparison_p = COMPARISON_P (cond);
5990 /* If the two arms are identical, we don't need the comparison. */
5992 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5993 return true_rtx;
5995 /* Convert a == b ? b : a to "a". */
5996 if (true_code == EQ && ! side_effects_p (cond)
5997 && !HONOR_NANS (mode)
5998 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5999 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6000 return false_rtx;
6001 else if (true_code == NE && ! side_effects_p (cond)
6002 && !HONOR_NANS (mode)
6003 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6004 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6005 return true_rtx;
6007 /* Look for cases where we have (abs x) or (neg (abs X)). */
6009 if (GET_MODE_CLASS (mode) == MODE_INT
6010 && comparison_p
6011 && XEXP (cond, 1) == const0_rtx
6012 && GET_CODE (false_rtx) == NEG
6013 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6014 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6015 && ! side_effects_p (true_rtx))
6016 switch (true_code)
6018 case GT:
6019 case GE:
6020 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6021 case LT:
6022 case LE:
6023 return
6024 simplify_gen_unary (NEG, mode,
6025 simplify_gen_unary (ABS, mode, true_rtx, mode),
6026 mode);
6027 default:
6028 break;
6031 /* Look for MIN or MAX. */
6033 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6034 && comparison_p
6035 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6036 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6037 && ! side_effects_p (cond))
6038 switch (true_code)
6040 case GE:
6041 case GT:
6042 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6043 case LE:
6044 case LT:
6045 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6046 case GEU:
6047 case GTU:
6048 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6049 case LEU:
6050 case LTU:
6051 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6052 default:
6053 break;
6056 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6057 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6058 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6059 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6060 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6061 neither 1 or -1, but it isn't worth checking for. */
6063 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6064 && comparison_p
6065 && GET_MODE_CLASS (mode) == MODE_INT
6066 && ! side_effects_p (x))
6068 rtx t = make_compound_operation (true_rtx, SET);
6069 rtx f = make_compound_operation (false_rtx, SET);
6070 rtx cond_op0 = XEXP (cond, 0);
6071 rtx cond_op1 = XEXP (cond, 1);
6072 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6073 enum machine_mode m = mode;
6074 rtx z = 0, c1 = NULL_RTX;
6076 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6077 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6078 || GET_CODE (t) == ASHIFT
6079 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6080 && rtx_equal_p (XEXP (t, 0), f))
6081 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6083 /* If an identity-zero op is commutative, check whether there
6084 would be a match if we swapped the operands. */
6085 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6086 || GET_CODE (t) == XOR)
6087 && rtx_equal_p (XEXP (t, 1), f))
6088 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6089 else if (GET_CODE (t) == SIGN_EXTEND
6090 && (GET_CODE (XEXP (t, 0)) == PLUS
6091 || GET_CODE (XEXP (t, 0)) == MINUS
6092 || GET_CODE (XEXP (t, 0)) == IOR
6093 || GET_CODE (XEXP (t, 0)) == XOR
6094 || GET_CODE (XEXP (t, 0)) == ASHIFT
6095 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6096 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6097 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6098 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6099 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6100 && (num_sign_bit_copies (f, GET_MODE (f))
6101 > (unsigned int)
6102 (GET_MODE_PRECISION (mode)
6103 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6105 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6106 extend_op = SIGN_EXTEND;
6107 m = GET_MODE (XEXP (t, 0));
6109 else if (GET_CODE (t) == SIGN_EXTEND
6110 && (GET_CODE (XEXP (t, 0)) == PLUS
6111 || GET_CODE (XEXP (t, 0)) == IOR
6112 || GET_CODE (XEXP (t, 0)) == XOR)
6113 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6114 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6115 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6116 && (num_sign_bit_copies (f, GET_MODE (f))
6117 > (unsigned int)
6118 (GET_MODE_PRECISION (mode)
6119 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6121 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6122 extend_op = SIGN_EXTEND;
6123 m = GET_MODE (XEXP (t, 0));
6125 else if (GET_CODE (t) == ZERO_EXTEND
6126 && (GET_CODE (XEXP (t, 0)) == PLUS
6127 || GET_CODE (XEXP (t, 0)) == MINUS
6128 || GET_CODE (XEXP (t, 0)) == IOR
6129 || GET_CODE (XEXP (t, 0)) == XOR
6130 || GET_CODE (XEXP (t, 0)) == ASHIFT
6131 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6132 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6133 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6134 && HWI_COMPUTABLE_MODE_P (mode)
6135 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6136 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6137 && ((nonzero_bits (f, GET_MODE (f))
6138 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6139 == 0))
6141 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6142 extend_op = ZERO_EXTEND;
6143 m = GET_MODE (XEXP (t, 0));
6145 else if (GET_CODE (t) == ZERO_EXTEND
6146 && (GET_CODE (XEXP (t, 0)) == PLUS
6147 || GET_CODE (XEXP (t, 0)) == IOR
6148 || GET_CODE (XEXP (t, 0)) == XOR)
6149 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6150 && HWI_COMPUTABLE_MODE_P (mode)
6151 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6152 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6153 && ((nonzero_bits (f, GET_MODE (f))
6154 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6155 == 0))
6157 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6158 extend_op = ZERO_EXTEND;
6159 m = GET_MODE (XEXP (t, 0));
6162 if (z)
6164 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6165 cond_op0, cond_op1),
6166 pc_rtx, pc_rtx, 0, 0, 0);
6167 temp = simplify_gen_binary (MULT, m, temp,
6168 simplify_gen_binary (MULT, m, c1,
6169 const_true_rtx));
6170 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6171 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6173 if (extend_op != UNKNOWN)
6174 temp = simplify_gen_unary (extend_op, mode, temp, m);
6176 return temp;
6180 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6181 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6182 negation of a single bit, we can convert this operation to a shift. We
6183 can actually do this more generally, but it doesn't seem worth it. */
6185 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6186 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6187 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6188 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6189 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6190 == GET_MODE_PRECISION (mode))
6191 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6192 return
6193 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6194 gen_lowpart (mode, XEXP (cond, 0)), i);
6196 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6197 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6198 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6199 && GET_MODE (XEXP (cond, 0)) == mode
6200 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6201 == nonzero_bits (XEXP (cond, 0), mode)
6202 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6203 return XEXP (cond, 0);
6205 return x;
6208 /* Simplify X, a SET expression. Return the new expression. */
6210 static rtx
6211 simplify_set (rtx x)
6213 rtx src = SET_SRC (x);
6214 rtx dest = SET_DEST (x);
6215 enum machine_mode mode
6216 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6217 rtx other_insn;
6218 rtx *cc_use;
6220 /* (set (pc) (return)) gets written as (return). */
6221 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6222 return src;
6224 /* Now that we know for sure which bits of SRC we are using, see if we can
6225 simplify the expression for the object knowing that we only need the
6226 low-order bits. */
6228 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6230 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6231 SUBST (SET_SRC (x), src);
6234 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6235 the comparison result and try to simplify it unless we already have used
6236 undobuf.other_insn. */
6237 if ((GET_MODE_CLASS (mode) == MODE_CC
6238 || GET_CODE (src) == COMPARE
6239 || CC0_P (dest))
6240 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6241 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6242 && COMPARISON_P (*cc_use)
6243 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6245 enum rtx_code old_code = GET_CODE (*cc_use);
6246 enum rtx_code new_code;
6247 rtx op0, op1, tmp;
6248 int other_changed = 0;
6249 rtx inner_compare = NULL_RTX;
6250 enum machine_mode compare_mode = GET_MODE (dest);
6252 if (GET_CODE (src) == COMPARE)
6254 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6255 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6257 inner_compare = op0;
6258 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6261 else
6262 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6264 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6265 op0, op1);
6266 if (!tmp)
6267 new_code = old_code;
6268 else if (!CONSTANT_P (tmp))
6270 new_code = GET_CODE (tmp);
6271 op0 = XEXP (tmp, 0);
6272 op1 = XEXP (tmp, 1);
6274 else
6276 rtx pat = PATTERN (other_insn);
6277 undobuf.other_insn = other_insn;
6278 SUBST (*cc_use, tmp);
6280 /* Attempt to simplify CC user. */
6281 if (GET_CODE (pat) == SET)
6283 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6284 if (new_rtx != NULL_RTX)
6285 SUBST (SET_SRC (pat), new_rtx);
6288 /* Convert X into a no-op move. */
6289 SUBST (SET_DEST (x), pc_rtx);
6290 SUBST (SET_SRC (x), pc_rtx);
6291 return x;
6294 /* Simplify our comparison, if possible. */
6295 new_code = simplify_comparison (new_code, &op0, &op1);
6297 #ifdef SELECT_CC_MODE
6298 /* If this machine has CC modes other than CCmode, check to see if we
6299 need to use a different CC mode here. */
6300 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6301 compare_mode = GET_MODE (op0);
6302 else if (inner_compare
6303 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6304 && new_code == old_code
6305 && op0 == XEXP (inner_compare, 0)
6306 && op1 == XEXP (inner_compare, 1))
6307 compare_mode = GET_MODE (inner_compare);
6308 else
6309 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6311 #ifndef HAVE_cc0
6312 /* If the mode changed, we have to change SET_DEST, the mode in the
6313 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6314 a hard register, just build new versions with the proper mode. If it
6315 is a pseudo, we lose unless it is only time we set the pseudo, in
6316 which case we can safely change its mode. */
6317 if (compare_mode != GET_MODE (dest))
6319 if (can_change_dest_mode (dest, 0, compare_mode))
6321 unsigned int regno = REGNO (dest);
6322 rtx new_dest;
6324 if (regno < FIRST_PSEUDO_REGISTER)
6325 new_dest = gen_rtx_REG (compare_mode, regno);
6326 else
6328 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6329 new_dest = regno_reg_rtx[regno];
6332 SUBST (SET_DEST (x), new_dest);
6333 SUBST (XEXP (*cc_use, 0), new_dest);
6334 other_changed = 1;
6336 dest = new_dest;
6339 #endif /* cc0 */
6340 #endif /* SELECT_CC_MODE */
6342 /* If the code changed, we have to build a new comparison in
6343 undobuf.other_insn. */
6344 if (new_code != old_code)
6346 int other_changed_previously = other_changed;
6347 unsigned HOST_WIDE_INT mask;
6348 rtx old_cc_use = *cc_use;
6350 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6351 dest, const0_rtx));
6352 other_changed = 1;
6354 /* If the only change we made was to change an EQ into an NE or
6355 vice versa, OP0 has only one bit that might be nonzero, and OP1
6356 is zero, check if changing the user of the condition code will
6357 produce a valid insn. If it won't, we can keep the original code
6358 in that insn by surrounding our operation with an XOR. */
6360 if (((old_code == NE && new_code == EQ)
6361 || (old_code == EQ && new_code == NE))
6362 && ! other_changed_previously && op1 == const0_rtx
6363 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6364 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6366 rtx pat = PATTERN (other_insn), note = 0;
6368 if ((recog_for_combine (&pat, other_insn, &note) < 0
6369 && ! check_asm_operands (pat)))
6371 *cc_use = old_cc_use;
6372 other_changed = 0;
6374 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6375 op0, GEN_INT (mask));
6380 if (other_changed)
6381 undobuf.other_insn = other_insn;
6383 /* Otherwise, if we didn't previously have a COMPARE in the
6384 correct mode, we need one. */
6385 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6387 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6388 src = SET_SRC (x);
6390 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6392 SUBST (SET_SRC (x), op0);
6393 src = SET_SRC (x);
6395 /* Otherwise, update the COMPARE if needed. */
6396 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6398 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6399 src = SET_SRC (x);
6402 else
6404 /* Get SET_SRC in a form where we have placed back any
6405 compound expressions. Then do the checks below. */
6406 src = make_compound_operation (src, SET);
6407 SUBST (SET_SRC (x), src);
6410 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6411 and X being a REG or (subreg (reg)), we may be able to convert this to
6412 (set (subreg:m2 x) (op)).
6414 We can always do this if M1 is narrower than M2 because that means that
6415 we only care about the low bits of the result.
6417 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6418 perform a narrower operation than requested since the high-order bits will
6419 be undefined. On machine where it is defined, this transformation is safe
6420 as long as M1 and M2 have the same number of words. */
6422 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6423 && !OBJECT_P (SUBREG_REG (src))
6424 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6425 / UNITS_PER_WORD)
6426 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6427 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6428 #ifndef WORD_REGISTER_OPERATIONS
6429 && (GET_MODE_SIZE (GET_MODE (src))
6430 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6431 #endif
6432 #ifdef CANNOT_CHANGE_MODE_CLASS
6433 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6434 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6435 GET_MODE (SUBREG_REG (src)),
6436 GET_MODE (src)))
6437 #endif
6438 && (REG_P (dest)
6439 || (GET_CODE (dest) == SUBREG
6440 && REG_P (SUBREG_REG (dest)))))
6442 SUBST (SET_DEST (x),
6443 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6444 dest));
6445 SUBST (SET_SRC (x), SUBREG_REG (src));
6447 src = SET_SRC (x), dest = SET_DEST (x);
6450 #ifdef HAVE_cc0
6451 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6452 in SRC. */
6453 if (dest == cc0_rtx
6454 && GET_CODE (src) == SUBREG
6455 && subreg_lowpart_p (src)
6456 && (GET_MODE_PRECISION (GET_MODE (src))
6457 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6459 rtx inner = SUBREG_REG (src);
6460 enum machine_mode inner_mode = GET_MODE (inner);
6462 /* Here we make sure that we don't have a sign bit on. */
6463 if (val_signbit_known_clear_p (GET_MODE (src),
6464 nonzero_bits (inner, inner_mode)))
6466 SUBST (SET_SRC (x), inner);
6467 src = SET_SRC (x);
6470 #endif
6472 #ifdef LOAD_EXTEND_OP
6473 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6474 would require a paradoxical subreg. Replace the subreg with a
6475 zero_extend to avoid the reload that would otherwise be required. */
6477 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6478 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6479 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6480 && SUBREG_BYTE (src) == 0
6481 && paradoxical_subreg_p (src)
6482 && MEM_P (SUBREG_REG (src)))
6484 SUBST (SET_SRC (x),
6485 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6486 GET_MODE (src), SUBREG_REG (src)));
6488 src = SET_SRC (x);
6490 #endif
6492 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6493 are comparing an item known to be 0 or -1 against 0, use a logical
6494 operation instead. Check for one of the arms being an IOR of the other
6495 arm with some value. We compute three terms to be IOR'ed together. In
6496 practice, at most two will be nonzero. Then we do the IOR's. */
6498 if (GET_CODE (dest) != PC
6499 && GET_CODE (src) == IF_THEN_ELSE
6500 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6501 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6502 && XEXP (XEXP (src, 0), 1) == const0_rtx
6503 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6504 #ifdef HAVE_conditional_move
6505 && ! can_conditionally_move_p (GET_MODE (src))
6506 #endif
6507 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6508 GET_MODE (XEXP (XEXP (src, 0), 0)))
6509 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6510 && ! side_effects_p (src))
6512 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6513 ? XEXP (src, 1) : XEXP (src, 2));
6514 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6515 ? XEXP (src, 2) : XEXP (src, 1));
6516 rtx term1 = const0_rtx, term2, term3;
6518 if (GET_CODE (true_rtx) == IOR
6519 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6520 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6521 else if (GET_CODE (true_rtx) == IOR
6522 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6523 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6524 else if (GET_CODE (false_rtx) == IOR
6525 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6526 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6527 else if (GET_CODE (false_rtx) == IOR
6528 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6529 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6531 term2 = simplify_gen_binary (AND, GET_MODE (src),
6532 XEXP (XEXP (src, 0), 0), true_rtx);
6533 term3 = simplify_gen_binary (AND, GET_MODE (src),
6534 simplify_gen_unary (NOT, GET_MODE (src),
6535 XEXP (XEXP (src, 0), 0),
6536 GET_MODE (src)),
6537 false_rtx);
6539 SUBST (SET_SRC (x),
6540 simplify_gen_binary (IOR, GET_MODE (src),
6541 simplify_gen_binary (IOR, GET_MODE (src),
6542 term1, term2),
6543 term3));
6545 src = SET_SRC (x);
6548 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6549 whole thing fail. */
6550 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6551 return src;
6552 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6553 return dest;
6554 else
6555 /* Convert this into a field assignment operation, if possible. */
6556 return make_field_assignment (x);
6559 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6560 result. */
6562 static rtx
6563 simplify_logical (rtx x)
6565 enum machine_mode mode = GET_MODE (x);
6566 rtx op0 = XEXP (x, 0);
6567 rtx op1 = XEXP (x, 1);
6569 switch (GET_CODE (x))
6571 case AND:
6572 /* We can call simplify_and_const_int only if we don't lose
6573 any (sign) bits when converting INTVAL (op1) to
6574 "unsigned HOST_WIDE_INT". */
6575 if (CONST_INT_P (op1)
6576 && (HWI_COMPUTABLE_MODE_P (mode)
6577 || INTVAL (op1) > 0))
6579 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6580 if (GET_CODE (x) != AND)
6581 return x;
6583 op0 = XEXP (x, 0);
6584 op1 = XEXP (x, 1);
6587 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6588 apply the distributive law and then the inverse distributive
6589 law to see if things simplify. */
6590 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6592 rtx result = distribute_and_simplify_rtx (x, 0);
6593 if (result)
6594 return result;
6596 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6598 rtx result = distribute_and_simplify_rtx (x, 1);
6599 if (result)
6600 return result;
6602 break;
6604 case IOR:
6605 /* If we have (ior (and A B) C), apply the distributive law and then
6606 the inverse distributive law to see if things simplify. */
6608 if (GET_CODE (op0) == AND)
6610 rtx result = distribute_and_simplify_rtx (x, 0);
6611 if (result)
6612 return result;
6615 if (GET_CODE (op1) == AND)
6617 rtx result = distribute_and_simplify_rtx (x, 1);
6618 if (result)
6619 return result;
6621 break;
6623 default:
6624 gcc_unreachable ();
6627 return x;
6630 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6631 operations" because they can be replaced with two more basic operations.
6632 ZERO_EXTEND is also considered "compound" because it can be replaced with
6633 an AND operation, which is simpler, though only one operation.
6635 The function expand_compound_operation is called with an rtx expression
6636 and will convert it to the appropriate shifts and AND operations,
6637 simplifying at each stage.
6639 The function make_compound_operation is called to convert an expression
6640 consisting of shifts and ANDs into the equivalent compound expression.
6641 It is the inverse of this function, loosely speaking. */
6643 static rtx
6644 expand_compound_operation (rtx x)
6646 unsigned HOST_WIDE_INT pos = 0, len;
6647 int unsignedp = 0;
6648 unsigned int modewidth;
6649 rtx tem;
6651 switch (GET_CODE (x))
6653 case ZERO_EXTEND:
6654 unsignedp = 1;
6655 case SIGN_EXTEND:
6656 /* We can't necessarily use a const_int for a multiword mode;
6657 it depends on implicitly extending the value.
6658 Since we don't know the right way to extend it,
6659 we can't tell whether the implicit way is right.
6661 Even for a mode that is no wider than a const_int,
6662 we can't win, because we need to sign extend one of its bits through
6663 the rest of it, and we don't know which bit. */
6664 if (CONST_INT_P (XEXP (x, 0)))
6665 return x;
6667 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6668 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6669 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6670 reloaded. If not for that, MEM's would very rarely be safe.
6672 Reject MODEs bigger than a word, because we might not be able
6673 to reference a two-register group starting with an arbitrary register
6674 (and currently gen_lowpart might crash for a SUBREG). */
6676 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6677 return x;
6679 /* Reject MODEs that aren't scalar integers because turning vector
6680 or complex modes into shifts causes problems. */
6682 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6683 return x;
6685 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6686 /* If the inner object has VOIDmode (the only way this can happen
6687 is if it is an ASM_OPERANDS), we can't do anything since we don't
6688 know how much masking to do. */
6689 if (len == 0)
6690 return x;
6692 break;
6694 case ZERO_EXTRACT:
6695 unsignedp = 1;
6697 /* ... fall through ... */
6699 case SIGN_EXTRACT:
6700 /* If the operand is a CLOBBER, just return it. */
6701 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6702 return XEXP (x, 0);
6704 if (!CONST_INT_P (XEXP (x, 1))
6705 || !CONST_INT_P (XEXP (x, 2))
6706 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6707 return x;
6709 /* Reject MODEs that aren't scalar integers because turning vector
6710 or complex modes into shifts causes problems. */
6712 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6713 return x;
6715 len = INTVAL (XEXP (x, 1));
6716 pos = INTVAL (XEXP (x, 2));
6718 /* This should stay within the object being extracted, fail otherwise. */
6719 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6720 return x;
6722 if (BITS_BIG_ENDIAN)
6723 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6725 break;
6727 default:
6728 return x;
6730 /* Convert sign extension to zero extension, if we know that the high
6731 bit is not set, as this is easier to optimize. It will be converted
6732 back to cheaper alternative in make_extraction. */
6733 if (GET_CODE (x) == SIGN_EXTEND
6734 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6735 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6736 & ~(((unsigned HOST_WIDE_INT)
6737 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6738 >> 1))
6739 == 0)))
6741 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6742 rtx temp2 = expand_compound_operation (temp);
6744 /* Make sure this is a profitable operation. */
6745 if (set_src_cost (x, optimize_this_for_speed_p)
6746 > set_src_cost (temp2, optimize_this_for_speed_p))
6747 return temp2;
6748 else if (set_src_cost (x, optimize_this_for_speed_p)
6749 > set_src_cost (temp, optimize_this_for_speed_p))
6750 return temp;
6751 else
6752 return x;
6755 /* We can optimize some special cases of ZERO_EXTEND. */
6756 if (GET_CODE (x) == ZERO_EXTEND)
6758 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6759 know that the last value didn't have any inappropriate bits
6760 set. */
6761 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6762 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6763 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6764 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6765 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6766 return XEXP (XEXP (x, 0), 0);
6768 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6769 if (GET_CODE (XEXP (x, 0)) == SUBREG
6770 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6771 && subreg_lowpart_p (XEXP (x, 0))
6772 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6773 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6774 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6775 return SUBREG_REG (XEXP (x, 0));
6777 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6778 is a comparison and STORE_FLAG_VALUE permits. This is like
6779 the first case, but it works even when GET_MODE (x) is larger
6780 than HOST_WIDE_INT. */
6781 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6782 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6783 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6784 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6785 <= HOST_BITS_PER_WIDE_INT)
6786 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6787 return XEXP (XEXP (x, 0), 0);
6789 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6790 if (GET_CODE (XEXP (x, 0)) == SUBREG
6791 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6792 && subreg_lowpart_p (XEXP (x, 0))
6793 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6794 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6795 <= HOST_BITS_PER_WIDE_INT)
6796 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6797 return SUBREG_REG (XEXP (x, 0));
6801 /* If we reach here, we want to return a pair of shifts. The inner
6802 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6803 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6804 logical depending on the value of UNSIGNEDP.
6806 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6807 converted into an AND of a shift.
6809 We must check for the case where the left shift would have a negative
6810 count. This can happen in a case like (x >> 31) & 255 on machines
6811 that can't shift by a constant. On those machines, we would first
6812 combine the shift with the AND to produce a variable-position
6813 extraction. Then the constant of 31 would be substituted in
6814 to produce such a position. */
6816 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6817 if (modewidth >= pos + len)
6819 enum machine_mode mode = GET_MODE (x);
6820 tem = gen_lowpart (mode, XEXP (x, 0));
6821 if (!tem || GET_CODE (tem) == CLOBBER)
6822 return x;
6823 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6824 tem, modewidth - pos - len);
6825 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6826 mode, tem, modewidth - len);
6828 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6829 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6830 simplify_shift_const (NULL_RTX, LSHIFTRT,
6831 GET_MODE (x),
6832 XEXP (x, 0), pos),
6833 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6834 else
6835 /* Any other cases we can't handle. */
6836 return x;
6838 /* If we couldn't do this for some reason, return the original
6839 expression. */
6840 if (GET_CODE (tem) == CLOBBER)
6841 return x;
6843 return tem;
6846 /* X is a SET which contains an assignment of one object into
6847 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6848 or certain SUBREGS). If possible, convert it into a series of
6849 logical operations.
6851 We half-heartedly support variable positions, but do not at all
6852 support variable lengths. */
6854 static const_rtx
6855 expand_field_assignment (const_rtx x)
6857 rtx inner;
6858 rtx pos; /* Always counts from low bit. */
6859 int len;
6860 rtx mask, cleared, masked;
6861 enum machine_mode compute_mode;
6863 /* Loop until we find something we can't simplify. */
6864 while (1)
6866 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6867 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6869 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6870 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6871 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6873 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6874 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6876 inner = XEXP (SET_DEST (x), 0);
6877 len = INTVAL (XEXP (SET_DEST (x), 1));
6878 pos = XEXP (SET_DEST (x), 2);
6880 /* A constant position should stay within the width of INNER. */
6881 if (CONST_INT_P (pos)
6882 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6883 break;
6885 if (BITS_BIG_ENDIAN)
6887 if (CONST_INT_P (pos))
6888 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6889 - INTVAL (pos));
6890 else if (GET_CODE (pos) == MINUS
6891 && CONST_INT_P (XEXP (pos, 1))
6892 && (INTVAL (XEXP (pos, 1))
6893 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6894 /* If position is ADJUST - X, new position is X. */
6895 pos = XEXP (pos, 0);
6896 else
6897 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6898 GEN_INT (GET_MODE_PRECISION (
6899 GET_MODE (inner))
6900 - len),
6901 pos);
6905 /* A SUBREG between two modes that occupy the same numbers of words
6906 can be done by moving the SUBREG to the source. */
6907 else if (GET_CODE (SET_DEST (x)) == SUBREG
6908 /* We need SUBREGs to compute nonzero_bits properly. */
6909 && nonzero_sign_valid
6910 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6911 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6912 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6913 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6915 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6916 gen_lowpart
6917 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6918 SET_SRC (x)));
6919 continue;
6921 else
6922 break;
6924 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6925 inner = SUBREG_REG (inner);
6927 compute_mode = GET_MODE (inner);
6929 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6930 if (! SCALAR_INT_MODE_P (compute_mode))
6932 enum machine_mode imode;
6934 /* Don't do anything for vector or complex integral types. */
6935 if (! FLOAT_MODE_P (compute_mode))
6936 break;
6938 /* Try to find an integral mode to pun with. */
6939 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6940 if (imode == BLKmode)
6941 break;
6943 compute_mode = imode;
6944 inner = gen_lowpart (imode, inner);
6947 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6948 if (len >= HOST_BITS_PER_WIDE_INT)
6949 break;
6951 /* Now compute the equivalent expression. Make a copy of INNER
6952 for the SET_DEST in case it is a MEM into which we will substitute;
6953 we don't want shared RTL in that case. */
6954 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6955 cleared = simplify_gen_binary (AND, compute_mode,
6956 simplify_gen_unary (NOT, compute_mode,
6957 simplify_gen_binary (ASHIFT,
6958 compute_mode,
6959 mask, pos),
6960 compute_mode),
6961 inner);
6962 masked = simplify_gen_binary (ASHIFT, compute_mode,
6963 simplify_gen_binary (
6964 AND, compute_mode,
6965 gen_lowpart (compute_mode, SET_SRC (x)),
6966 mask),
6967 pos);
6969 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6970 simplify_gen_binary (IOR, compute_mode,
6971 cleared, masked));
6974 return x;
6977 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6978 it is an RTX that represents the (variable) starting position; otherwise,
6979 POS is the (constant) starting bit position. Both are counted from the LSB.
6981 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
6983 IN_DEST is nonzero if this is a reference in the destination of a SET.
6984 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6985 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6986 be used.
6988 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6989 ZERO_EXTRACT should be built even for bits starting at bit 0.
6991 MODE is the desired mode of the result (if IN_DEST == 0).
6993 The result is an RTX for the extraction or NULL_RTX if the target
6994 can't handle it. */
6996 static rtx
6997 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6998 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6999 int in_dest, int in_compare)
7001 /* This mode describes the size of the storage area
7002 to fetch the overall value from. Within that, we
7003 ignore the POS lowest bits, etc. */
7004 enum machine_mode is_mode = GET_MODE (inner);
7005 enum machine_mode inner_mode;
7006 enum machine_mode wanted_inner_mode;
7007 enum machine_mode wanted_inner_reg_mode = word_mode;
7008 enum machine_mode pos_mode = word_mode;
7009 enum machine_mode extraction_mode = word_mode;
7010 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7011 rtx new_rtx = 0;
7012 rtx orig_pos_rtx = pos_rtx;
7013 HOST_WIDE_INT orig_pos;
7015 if (pos_rtx && CONST_INT_P (pos_rtx))
7016 pos = INTVAL (pos_rtx), pos_rtx = 0;
7018 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7020 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7021 consider just the QI as the memory to extract from.
7022 The subreg adds or removes high bits; its mode is
7023 irrelevant to the meaning of this extraction,
7024 since POS and LEN count from the lsb. */
7025 if (MEM_P (SUBREG_REG (inner)))
7026 is_mode = GET_MODE (SUBREG_REG (inner));
7027 inner = SUBREG_REG (inner);
7029 else if (GET_CODE (inner) == ASHIFT
7030 && CONST_INT_P (XEXP (inner, 1))
7031 && pos_rtx == 0 && pos == 0
7032 && len > UINTVAL (XEXP (inner, 1)))
7034 /* We're extracting the least significant bits of an rtx
7035 (ashift X (const_int C)), where LEN > C. Extract the
7036 least significant (LEN - C) bits of X, giving an rtx
7037 whose mode is MODE, then shift it left C times. */
7038 new_rtx = make_extraction (mode, XEXP (inner, 0),
7039 0, 0, len - INTVAL (XEXP (inner, 1)),
7040 unsignedp, in_dest, in_compare);
7041 if (new_rtx != 0)
7042 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7044 else if (GET_CODE (inner) == TRUNCATE)
7045 inner = XEXP (inner, 0);
7047 inner_mode = GET_MODE (inner);
7049 /* See if this can be done without an extraction. We never can if the
7050 width of the field is not the same as that of some integer mode. For
7051 registers, we can only avoid the extraction if the position is at the
7052 low-order bit and this is either not in the destination or we have the
7053 appropriate STRICT_LOW_PART operation available.
7055 For MEM, we can avoid an extract if the field starts on an appropriate
7056 boundary and we can change the mode of the memory reference. */
7058 if (tmode != BLKmode
7059 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7060 && !MEM_P (inner)
7061 && (inner_mode == tmode
7062 || !REG_P (inner)
7063 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7064 || reg_truncated_to_mode (tmode, inner))
7065 && (! in_dest
7066 || (REG_P (inner)
7067 && have_insn_for (STRICT_LOW_PART, tmode))))
7068 || (MEM_P (inner) && pos_rtx == 0
7069 && (pos
7070 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7071 : BITS_PER_UNIT)) == 0
7072 /* We can't do this if we are widening INNER_MODE (it
7073 may not be aligned, for one thing). */
7074 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7075 && (inner_mode == tmode
7076 || (! mode_dependent_address_p (XEXP (inner, 0),
7077 MEM_ADDR_SPACE (inner))
7078 && ! MEM_VOLATILE_P (inner))))))
7080 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7081 field. If the original and current mode are the same, we need not
7082 adjust the offset. Otherwise, we do if bytes big endian.
7084 If INNER is not a MEM, get a piece consisting of just the field
7085 of interest (in this case POS % BITS_PER_WORD must be 0). */
7087 if (MEM_P (inner))
7089 HOST_WIDE_INT offset;
7091 /* POS counts from lsb, but make OFFSET count in memory order. */
7092 if (BYTES_BIG_ENDIAN)
7093 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7094 else
7095 offset = pos / BITS_PER_UNIT;
7097 new_rtx = adjust_address_nv (inner, tmode, offset);
7099 else if (REG_P (inner))
7101 if (tmode != inner_mode)
7103 /* We can't call gen_lowpart in a DEST since we
7104 always want a SUBREG (see below) and it would sometimes
7105 return a new hard register. */
7106 if (pos || in_dest)
7108 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7110 if (WORDS_BIG_ENDIAN
7111 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7112 final_word = ((GET_MODE_SIZE (inner_mode)
7113 - GET_MODE_SIZE (tmode))
7114 / UNITS_PER_WORD) - final_word;
7116 final_word *= UNITS_PER_WORD;
7117 if (BYTES_BIG_ENDIAN &&
7118 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7119 final_word += (GET_MODE_SIZE (inner_mode)
7120 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7122 /* Avoid creating invalid subregs, for example when
7123 simplifying (x>>32)&255. */
7124 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7125 return NULL_RTX;
7127 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7129 else
7130 new_rtx = gen_lowpart (tmode, inner);
7132 else
7133 new_rtx = inner;
7135 else
7136 new_rtx = force_to_mode (inner, tmode,
7137 len >= HOST_BITS_PER_WIDE_INT
7138 ? ~(unsigned HOST_WIDE_INT) 0
7139 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7142 /* If this extraction is going into the destination of a SET,
7143 make a STRICT_LOW_PART unless we made a MEM. */
7145 if (in_dest)
7146 return (MEM_P (new_rtx) ? new_rtx
7147 : (GET_CODE (new_rtx) != SUBREG
7148 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7149 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7151 if (mode == tmode)
7152 return new_rtx;
7154 if (CONST_SCALAR_INT_P (new_rtx))
7155 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7156 mode, new_rtx, tmode);
7158 /* If we know that no extraneous bits are set, and that the high
7159 bit is not set, convert the extraction to the cheaper of
7160 sign and zero extension, that are equivalent in these cases. */
7161 if (flag_expensive_optimizations
7162 && (HWI_COMPUTABLE_MODE_P (tmode)
7163 && ((nonzero_bits (new_rtx, tmode)
7164 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7165 == 0)))
7167 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7168 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7170 /* Prefer ZERO_EXTENSION, since it gives more information to
7171 backends. */
7172 if (set_src_cost (temp, optimize_this_for_speed_p)
7173 <= set_src_cost (temp1, optimize_this_for_speed_p))
7174 return temp;
7175 return temp1;
7178 /* Otherwise, sign- or zero-extend unless we already are in the
7179 proper mode. */
7181 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7182 mode, new_rtx));
7185 /* Unless this is a COMPARE or we have a funny memory reference,
7186 don't do anything with zero-extending field extracts starting at
7187 the low-order bit since they are simple AND operations. */
7188 if (pos_rtx == 0 && pos == 0 && ! in_dest
7189 && ! in_compare && unsignedp)
7190 return 0;
7192 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7193 if the position is not a constant and the length is not 1. In all
7194 other cases, we would only be going outside our object in cases when
7195 an original shift would have been undefined. */
7196 if (MEM_P (inner)
7197 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7198 || (pos_rtx != 0 && len != 1)))
7199 return 0;
7201 enum extraction_pattern pattern = (in_dest ? EP_insv
7202 : unsignedp ? EP_extzv : EP_extv);
7204 /* If INNER is not from memory, we want it to have the mode of a register
7205 extraction pattern's structure operand, or word_mode if there is no
7206 such pattern. The same applies to extraction_mode and pos_mode
7207 and their respective operands.
7209 For memory, assume that the desired extraction_mode and pos_mode
7210 are the same as for a register operation, since at present we don't
7211 have named patterns for aligned memory structures. */
7212 struct extraction_insn insn;
7213 if (get_best_reg_extraction_insn (&insn, pattern,
7214 GET_MODE_BITSIZE (inner_mode), mode))
7216 wanted_inner_reg_mode = insn.struct_mode;
7217 pos_mode = insn.pos_mode;
7218 extraction_mode = insn.field_mode;
7221 /* Never narrow an object, since that might not be safe. */
7223 if (mode != VOIDmode
7224 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7225 extraction_mode = mode;
7227 if (!MEM_P (inner))
7228 wanted_inner_mode = wanted_inner_reg_mode;
7229 else
7231 /* Be careful not to go beyond the extracted object and maintain the
7232 natural alignment of the memory. */
7233 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7234 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7235 > GET_MODE_BITSIZE (wanted_inner_mode))
7237 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7238 gcc_assert (wanted_inner_mode != VOIDmode);
7242 orig_pos = pos;
7244 if (BITS_BIG_ENDIAN)
7246 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7247 BITS_BIG_ENDIAN style. If position is constant, compute new
7248 position. Otherwise, build subtraction.
7249 Note that POS is relative to the mode of the original argument.
7250 If it's a MEM we need to recompute POS relative to that.
7251 However, if we're extracting from (or inserting into) a register,
7252 we want to recompute POS relative to wanted_inner_mode. */
7253 int width = (MEM_P (inner)
7254 ? GET_MODE_BITSIZE (is_mode)
7255 : GET_MODE_BITSIZE (wanted_inner_mode));
7257 if (pos_rtx == 0)
7258 pos = width - len - pos;
7259 else
7260 pos_rtx
7261 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7262 /* POS may be less than 0 now, but we check for that below.
7263 Note that it can only be less than 0 if !MEM_P (inner). */
7266 /* If INNER has a wider mode, and this is a constant extraction, try to
7267 make it smaller and adjust the byte to point to the byte containing
7268 the value. */
7269 if (wanted_inner_mode != VOIDmode
7270 && inner_mode != wanted_inner_mode
7271 && ! pos_rtx
7272 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7273 && MEM_P (inner)
7274 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7275 && ! MEM_VOLATILE_P (inner))
7277 int offset = 0;
7279 /* The computations below will be correct if the machine is big
7280 endian in both bits and bytes or little endian in bits and bytes.
7281 If it is mixed, we must adjust. */
7283 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7284 adjust OFFSET to compensate. */
7285 if (BYTES_BIG_ENDIAN
7286 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7287 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7289 /* We can now move to the desired byte. */
7290 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7291 * GET_MODE_SIZE (wanted_inner_mode);
7292 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7294 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7295 && is_mode != wanted_inner_mode)
7296 offset = (GET_MODE_SIZE (is_mode)
7297 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7299 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7302 /* If INNER is not memory, get it into the proper mode. If we are changing
7303 its mode, POS must be a constant and smaller than the size of the new
7304 mode. */
7305 else if (!MEM_P (inner))
7307 /* On the LHS, don't create paradoxical subregs implicitely truncating
7308 the register unless TRULY_NOOP_TRUNCATION. */
7309 if (in_dest
7310 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7311 wanted_inner_mode))
7312 return NULL_RTX;
7314 if (GET_MODE (inner) != wanted_inner_mode
7315 && (pos_rtx != 0
7316 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7317 return NULL_RTX;
7319 if (orig_pos < 0)
7320 return NULL_RTX;
7322 inner = force_to_mode (inner, wanted_inner_mode,
7323 pos_rtx
7324 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7325 ? ~(unsigned HOST_WIDE_INT) 0
7326 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7327 << orig_pos),
7331 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7332 have to zero extend. Otherwise, we can just use a SUBREG. */
7333 if (pos_rtx != 0
7334 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7336 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7337 GET_MODE (pos_rtx));
7339 /* If we know that no extraneous bits are set, and that the high
7340 bit is not set, convert extraction to cheaper one - either
7341 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7342 cases. */
7343 if (flag_expensive_optimizations
7344 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7345 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7346 & ~(((unsigned HOST_WIDE_INT)
7347 GET_MODE_MASK (GET_MODE (pos_rtx)))
7348 >> 1))
7349 == 0)))
7351 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7352 GET_MODE (pos_rtx));
7354 /* Prefer ZERO_EXTENSION, since it gives more information to
7355 backends. */
7356 if (set_src_cost (temp1, optimize_this_for_speed_p)
7357 < set_src_cost (temp, optimize_this_for_speed_p))
7358 temp = temp1;
7360 pos_rtx = temp;
7363 /* Make POS_RTX unless we already have it and it is correct. If we don't
7364 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7365 be a CONST_INT. */
7366 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7367 pos_rtx = orig_pos_rtx;
7369 else if (pos_rtx == 0)
7370 pos_rtx = GEN_INT (pos);
7372 /* Make the required operation. See if we can use existing rtx. */
7373 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7374 extraction_mode, inner, GEN_INT (len), pos_rtx);
7375 if (! in_dest)
7376 new_rtx = gen_lowpart (mode, new_rtx);
7378 return new_rtx;
7381 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7382 with any other operations in X. Return X without that shift if so. */
7384 static rtx
7385 extract_left_shift (rtx x, int count)
7387 enum rtx_code code = GET_CODE (x);
7388 enum machine_mode mode = GET_MODE (x);
7389 rtx tem;
7391 switch (code)
7393 case ASHIFT:
7394 /* This is the shift itself. If it is wide enough, we will return
7395 either the value being shifted if the shift count is equal to
7396 COUNT or a shift for the difference. */
7397 if (CONST_INT_P (XEXP (x, 1))
7398 && INTVAL (XEXP (x, 1)) >= count)
7399 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7400 INTVAL (XEXP (x, 1)) - count);
7401 break;
7403 case NEG: case NOT:
7404 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7405 return simplify_gen_unary (code, mode, tem, mode);
7407 break;
7409 case PLUS: case IOR: case XOR: case AND:
7410 /* If we can safely shift this constant and we find the inner shift,
7411 make a new operation. */
7412 if (CONST_INT_P (XEXP (x, 1))
7413 && (UINTVAL (XEXP (x, 1))
7414 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7415 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7416 return simplify_gen_binary (code, mode, tem,
7417 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7419 break;
7421 default:
7422 break;
7425 return 0;
7428 /* Look at the expression rooted at X. Look for expressions
7429 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7430 Form these expressions.
7432 Return the new rtx, usually just X.
7434 Also, for machines like the VAX that don't have logical shift insns,
7435 try to convert logical to arithmetic shift operations in cases where
7436 they are equivalent. This undoes the canonicalizations to logical
7437 shifts done elsewhere.
7439 We try, as much as possible, to re-use rtl expressions to save memory.
7441 IN_CODE says what kind of expression we are processing. Normally, it is
7442 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7443 being kludges), it is MEM. When processing the arguments of a comparison
7444 or a COMPARE against zero, it is COMPARE. */
7447 make_compound_operation (rtx x, enum rtx_code in_code)
7449 enum rtx_code code = GET_CODE (x);
7450 enum machine_mode mode = GET_MODE (x);
7451 int mode_width = GET_MODE_PRECISION (mode);
7452 rtx rhs, lhs;
7453 enum rtx_code next_code;
7454 int i, j;
7455 rtx new_rtx = 0;
7456 rtx tem;
7457 const char *fmt;
7459 /* Select the code to be used in recursive calls. Once we are inside an
7460 address, we stay there. If we have a comparison, set to COMPARE,
7461 but once inside, go back to our default of SET. */
7463 next_code = (code == MEM ? MEM
7464 : ((code == PLUS || code == MINUS)
7465 && SCALAR_INT_MODE_P (mode)) ? MEM
7466 : ((code == COMPARE || COMPARISON_P (x))
7467 && XEXP (x, 1) == const0_rtx) ? COMPARE
7468 : in_code == COMPARE ? SET : in_code);
7470 /* Process depending on the code of this operation. If NEW is set
7471 nonzero, it will be returned. */
7473 switch (code)
7475 case ASHIFT:
7476 /* Convert shifts by constants into multiplications if inside
7477 an address. */
7478 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7479 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7480 && INTVAL (XEXP (x, 1)) >= 0
7481 && SCALAR_INT_MODE_P (mode))
7483 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7484 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7486 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7487 if (GET_CODE (new_rtx) == NEG)
7489 new_rtx = XEXP (new_rtx, 0);
7490 multval = -multval;
7492 multval = trunc_int_for_mode (multval, mode);
7493 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7495 break;
7497 case PLUS:
7498 lhs = XEXP (x, 0);
7499 rhs = XEXP (x, 1);
7500 lhs = make_compound_operation (lhs, next_code);
7501 rhs = make_compound_operation (rhs, next_code);
7502 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7503 && SCALAR_INT_MODE_P (mode))
7505 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7506 XEXP (lhs, 1));
7507 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7509 else if (GET_CODE (lhs) == MULT
7510 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7512 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7513 simplify_gen_unary (NEG, mode,
7514 XEXP (lhs, 1),
7515 mode));
7516 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7518 else
7520 SUBST (XEXP (x, 0), lhs);
7521 SUBST (XEXP (x, 1), rhs);
7522 goto maybe_swap;
7524 x = gen_lowpart (mode, new_rtx);
7525 goto maybe_swap;
7527 case MINUS:
7528 lhs = XEXP (x, 0);
7529 rhs = XEXP (x, 1);
7530 lhs = make_compound_operation (lhs, next_code);
7531 rhs = make_compound_operation (rhs, next_code);
7532 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7533 && SCALAR_INT_MODE_P (mode))
7535 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7536 XEXP (rhs, 1));
7537 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7539 else if (GET_CODE (rhs) == MULT
7540 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7542 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7543 simplify_gen_unary (NEG, mode,
7544 XEXP (rhs, 1),
7545 mode));
7546 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7548 else
7550 SUBST (XEXP (x, 0), lhs);
7551 SUBST (XEXP (x, 1), rhs);
7552 return x;
7554 return gen_lowpart (mode, new_rtx);
7556 case AND:
7557 /* If the second operand is not a constant, we can't do anything
7558 with it. */
7559 if (!CONST_INT_P (XEXP (x, 1)))
7560 break;
7562 /* If the constant is a power of two minus one and the first operand
7563 is a logical right shift, make an extraction. */
7564 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7565 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7567 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7568 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7569 0, in_code == COMPARE);
7572 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7573 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7574 && subreg_lowpart_p (XEXP (x, 0))
7575 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7576 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7578 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7579 next_code);
7580 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7581 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7582 0, in_code == COMPARE);
7584 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7585 else if ((GET_CODE (XEXP (x, 0)) == XOR
7586 || GET_CODE (XEXP (x, 0)) == IOR)
7587 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7588 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7589 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7591 /* Apply the distributive law, and then try to make extractions. */
7592 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7593 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7594 XEXP (x, 1)),
7595 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7596 XEXP (x, 1)));
7597 new_rtx = make_compound_operation (new_rtx, in_code);
7600 /* If we are have (and (rotate X C) M) and C is larger than the number
7601 of bits in M, this is an extraction. */
7603 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7604 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7605 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7606 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7608 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7609 new_rtx = make_extraction (mode, new_rtx,
7610 (GET_MODE_PRECISION (mode)
7611 - INTVAL (XEXP (XEXP (x, 0), 1))),
7612 NULL_RTX, i, 1, 0, in_code == COMPARE);
7615 /* On machines without logical shifts, if the operand of the AND is
7616 a logical shift and our mask turns off all the propagated sign
7617 bits, we can replace the logical shift with an arithmetic shift. */
7618 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7619 && !have_insn_for (LSHIFTRT, mode)
7620 && have_insn_for (ASHIFTRT, mode)
7621 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7622 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7623 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7624 && mode_width <= HOST_BITS_PER_WIDE_INT)
7626 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7628 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7629 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7630 SUBST (XEXP (x, 0),
7631 gen_rtx_ASHIFTRT (mode,
7632 make_compound_operation
7633 (XEXP (XEXP (x, 0), 0), next_code),
7634 XEXP (XEXP (x, 0), 1)));
7637 /* If the constant is one less than a power of two, this might be
7638 representable by an extraction even if no shift is present.
7639 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7640 we are in a COMPARE. */
7641 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7642 new_rtx = make_extraction (mode,
7643 make_compound_operation (XEXP (x, 0),
7644 next_code),
7645 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7647 /* If we are in a comparison and this is an AND with a power of two,
7648 convert this into the appropriate bit extract. */
7649 else if (in_code == COMPARE
7650 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7651 new_rtx = make_extraction (mode,
7652 make_compound_operation (XEXP (x, 0),
7653 next_code),
7654 i, NULL_RTX, 1, 1, 0, 1);
7656 break;
7658 case LSHIFTRT:
7659 /* If the sign bit is known to be zero, replace this with an
7660 arithmetic shift. */
7661 if (have_insn_for (ASHIFTRT, mode)
7662 && ! have_insn_for (LSHIFTRT, mode)
7663 && mode_width <= HOST_BITS_PER_WIDE_INT
7664 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7666 new_rtx = gen_rtx_ASHIFTRT (mode,
7667 make_compound_operation (XEXP (x, 0),
7668 next_code),
7669 XEXP (x, 1));
7670 break;
7673 /* ... fall through ... */
7675 case ASHIFTRT:
7676 lhs = XEXP (x, 0);
7677 rhs = XEXP (x, 1);
7679 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7680 this is a SIGN_EXTRACT. */
7681 if (CONST_INT_P (rhs)
7682 && GET_CODE (lhs) == ASHIFT
7683 && CONST_INT_P (XEXP (lhs, 1))
7684 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7685 && INTVAL (XEXP (lhs, 1)) >= 0
7686 && INTVAL (rhs) < mode_width)
7688 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7689 new_rtx = make_extraction (mode, new_rtx,
7690 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7691 NULL_RTX, mode_width - INTVAL (rhs),
7692 code == LSHIFTRT, 0, in_code == COMPARE);
7693 break;
7696 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7697 If so, try to merge the shifts into a SIGN_EXTEND. We could
7698 also do this for some cases of SIGN_EXTRACT, but it doesn't
7699 seem worth the effort; the case checked for occurs on Alpha. */
7701 if (!OBJECT_P (lhs)
7702 && ! (GET_CODE (lhs) == SUBREG
7703 && (OBJECT_P (SUBREG_REG (lhs))))
7704 && CONST_INT_P (rhs)
7705 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7706 && INTVAL (rhs) < mode_width
7707 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7708 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7709 0, NULL_RTX, mode_width - INTVAL (rhs),
7710 code == LSHIFTRT, 0, in_code == COMPARE);
7712 break;
7714 case SUBREG:
7715 /* Call ourselves recursively on the inner expression. If we are
7716 narrowing the object and it has a different RTL code from
7717 what it originally did, do this SUBREG as a force_to_mode. */
7719 rtx inner = SUBREG_REG (x), simplified;
7720 enum rtx_code subreg_code = in_code;
7722 /* If in_code is COMPARE, it isn't always safe to pass it through
7723 to the recursive make_compound_operation call. */
7724 if (subreg_code == COMPARE
7725 && (!subreg_lowpart_p (x)
7726 || GET_CODE (inner) == SUBREG
7727 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7728 is (const_int 0), rather than
7729 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7730 || (GET_CODE (inner) == AND
7731 && CONST_INT_P (XEXP (inner, 1))
7732 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7733 && exact_log2 (UINTVAL (XEXP (inner, 1)))
7734 >= GET_MODE_BITSIZE (mode))))
7735 subreg_code = SET;
7737 tem = make_compound_operation (inner, subreg_code);
7739 simplified
7740 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7741 if (simplified)
7742 tem = simplified;
7744 if (GET_CODE (tem) != GET_CODE (inner)
7745 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7746 && subreg_lowpart_p (x))
7748 rtx newer
7749 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7751 /* If we have something other than a SUBREG, we might have
7752 done an expansion, so rerun ourselves. */
7753 if (GET_CODE (newer) != SUBREG)
7754 newer = make_compound_operation (newer, in_code);
7756 /* force_to_mode can expand compounds. If it just re-expanded the
7757 compound, use gen_lowpart to convert to the desired mode. */
7758 if (rtx_equal_p (newer, x)
7759 /* Likewise if it re-expanded the compound only partially.
7760 This happens for SUBREG of ZERO_EXTRACT if they extract
7761 the same number of bits. */
7762 || (GET_CODE (newer) == SUBREG
7763 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7764 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7765 && GET_CODE (inner) == AND
7766 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7767 return gen_lowpart (GET_MODE (x), tem);
7769 return newer;
7772 if (simplified)
7773 return tem;
7775 break;
7777 default:
7778 break;
7781 if (new_rtx)
7783 x = gen_lowpart (mode, new_rtx);
7784 code = GET_CODE (x);
7787 /* Now recursively process each operand of this operation. We need to
7788 handle ZERO_EXTEND specially so that we don't lose track of the
7789 inner mode. */
7790 if (GET_CODE (x) == ZERO_EXTEND)
7792 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7793 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7794 new_rtx, GET_MODE (XEXP (x, 0)));
7795 if (tem)
7796 return tem;
7797 SUBST (XEXP (x, 0), new_rtx);
7798 return x;
7801 fmt = GET_RTX_FORMAT (code);
7802 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7803 if (fmt[i] == 'e')
7805 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7806 SUBST (XEXP (x, i), new_rtx);
7808 else if (fmt[i] == 'E')
7809 for (j = 0; j < XVECLEN (x, i); j++)
7811 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7812 SUBST (XVECEXP (x, i, j), new_rtx);
7815 maybe_swap:
7816 /* If this is a commutative operation, the changes to the operands
7817 may have made it noncanonical. */
7818 if (COMMUTATIVE_ARITH_P (x)
7819 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7821 tem = XEXP (x, 0);
7822 SUBST (XEXP (x, 0), XEXP (x, 1));
7823 SUBST (XEXP (x, 1), tem);
7826 return x;
7829 /* Given M see if it is a value that would select a field of bits
7830 within an item, but not the entire word. Return -1 if not.
7831 Otherwise, return the starting position of the field, where 0 is the
7832 low-order bit.
7834 *PLEN is set to the length of the field. */
7836 static int
7837 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7839 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7840 int pos = m ? ctz_hwi (m) : -1;
7841 int len = 0;
7843 if (pos >= 0)
7844 /* Now shift off the low-order zero bits and see if we have a
7845 power of two minus 1. */
7846 len = exact_log2 ((m >> pos) + 1);
7848 if (len <= 0)
7849 pos = -1;
7851 *plen = len;
7852 return pos;
7855 /* If X refers to a register that equals REG in value, replace these
7856 references with REG. */
7857 static rtx
7858 canon_reg_for_combine (rtx x, rtx reg)
7860 rtx op0, op1, op2;
7861 const char *fmt;
7862 int i;
7863 bool copied;
7865 enum rtx_code code = GET_CODE (x);
7866 switch (GET_RTX_CLASS (code))
7868 case RTX_UNARY:
7869 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7870 if (op0 != XEXP (x, 0))
7871 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7872 GET_MODE (reg));
7873 break;
7875 case RTX_BIN_ARITH:
7876 case RTX_COMM_ARITH:
7877 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7878 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7879 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7880 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7881 break;
7883 case RTX_COMPARE:
7884 case RTX_COMM_COMPARE:
7885 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7886 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7887 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7888 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7889 GET_MODE (op0), op0, op1);
7890 break;
7892 case RTX_TERNARY:
7893 case RTX_BITFIELD_OPS:
7894 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7895 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7896 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7897 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7898 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7899 GET_MODE (op0), op0, op1, op2);
7901 case RTX_OBJ:
7902 if (REG_P (x))
7904 if (rtx_equal_p (get_last_value (reg), x)
7905 || rtx_equal_p (reg, get_last_value (x)))
7906 return reg;
7907 else
7908 break;
7911 /* fall through */
7913 default:
7914 fmt = GET_RTX_FORMAT (code);
7915 copied = false;
7916 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7917 if (fmt[i] == 'e')
7919 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7920 if (op != XEXP (x, i))
7922 if (!copied)
7924 copied = true;
7925 x = copy_rtx (x);
7927 XEXP (x, i) = op;
7930 else if (fmt[i] == 'E')
7932 int j;
7933 for (j = 0; j < XVECLEN (x, i); j++)
7935 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7936 if (op != XVECEXP (x, i, j))
7938 if (!copied)
7940 copied = true;
7941 x = copy_rtx (x);
7943 XVECEXP (x, i, j) = op;
7948 break;
7951 return x;
7954 /* Return X converted to MODE. If the value is already truncated to
7955 MODE we can just return a subreg even though in the general case we
7956 would need an explicit truncation. */
7958 static rtx
7959 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7961 if (!CONST_INT_P (x)
7962 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7963 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7964 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7966 /* Bit-cast X into an integer mode. */
7967 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7968 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7969 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7970 x, GET_MODE (x));
7973 return gen_lowpart (mode, x);
7976 /* See if X can be simplified knowing that we will only refer to it in
7977 MODE and will only refer to those bits that are nonzero in MASK.
7978 If other bits are being computed or if masking operations are done
7979 that select a superset of the bits in MASK, they can sometimes be
7980 ignored.
7982 Return a possibly simplified expression, but always convert X to
7983 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7985 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7986 are all off in X. This is used when X will be complemented, by either
7987 NOT, NEG, or XOR. */
7989 static rtx
7990 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7991 int just_select)
7993 enum rtx_code code = GET_CODE (x);
7994 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7995 enum machine_mode op_mode;
7996 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7997 rtx op0, op1, temp;
7999 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8000 code below will do the wrong thing since the mode of such an
8001 expression is VOIDmode.
8003 Also do nothing if X is a CLOBBER; this can happen if X was
8004 the return value from a call to gen_lowpart. */
8005 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8006 return x;
8008 /* We want to perform the operation is its present mode unless we know
8009 that the operation is valid in MODE, in which case we do the operation
8010 in MODE. */
8011 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8012 && have_insn_for (code, mode))
8013 ? mode : GET_MODE (x));
8015 /* It is not valid to do a right-shift in a narrower mode
8016 than the one it came in with. */
8017 if ((code == LSHIFTRT || code == ASHIFTRT)
8018 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8019 op_mode = GET_MODE (x);
8021 /* Truncate MASK to fit OP_MODE. */
8022 if (op_mode)
8023 mask &= GET_MODE_MASK (op_mode);
8025 /* When we have an arithmetic operation, or a shift whose count we
8026 do not know, we need to assume that all bits up to the highest-order
8027 bit in MASK will be needed. This is how we form such a mask. */
8028 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8029 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8030 else
8031 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8032 - 1);
8034 /* Determine what bits of X are guaranteed to be (non)zero. */
8035 nonzero = nonzero_bits (x, mode);
8037 /* If none of the bits in X are needed, return a zero. */
8038 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8039 x = const0_rtx;
8041 /* If X is a CONST_INT, return a new one. Do this here since the
8042 test below will fail. */
8043 if (CONST_INT_P (x))
8045 if (SCALAR_INT_MODE_P (mode))
8046 return gen_int_mode (INTVAL (x) & mask, mode);
8047 else
8049 x = GEN_INT (INTVAL (x) & mask);
8050 return gen_lowpart_common (mode, x);
8054 /* If X is narrower than MODE and we want all the bits in X's mode, just
8055 get X in the proper mode. */
8056 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8057 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8058 return gen_lowpart (mode, x);
8060 /* We can ignore the effect of a SUBREG if it narrows the mode or
8061 if the constant masks to zero all the bits the mode doesn't have. */
8062 if (GET_CODE (x) == SUBREG
8063 && subreg_lowpart_p (x)
8064 && ((GET_MODE_SIZE (GET_MODE (x))
8065 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8066 || (0 == (mask
8067 & GET_MODE_MASK (GET_MODE (x))
8068 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8069 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8071 /* The arithmetic simplifications here only work for scalar integer modes. */
8072 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8073 return gen_lowpart_or_truncate (mode, x);
8075 switch (code)
8077 case CLOBBER:
8078 /* If X is a (clobber (const_int)), return it since we know we are
8079 generating something that won't match. */
8080 return x;
8082 case SIGN_EXTEND:
8083 case ZERO_EXTEND:
8084 case ZERO_EXTRACT:
8085 case SIGN_EXTRACT:
8086 x = expand_compound_operation (x);
8087 if (GET_CODE (x) != code)
8088 return force_to_mode (x, mode, mask, next_select);
8089 break;
8091 case TRUNCATE:
8092 /* Similarly for a truncate. */
8093 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8095 case AND:
8096 /* If this is an AND with a constant, convert it into an AND
8097 whose constant is the AND of that constant with MASK. If it
8098 remains an AND of MASK, delete it since it is redundant. */
8100 if (CONST_INT_P (XEXP (x, 1)))
8102 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8103 mask & INTVAL (XEXP (x, 1)));
8105 /* If X is still an AND, see if it is an AND with a mask that
8106 is just some low-order bits. If so, and it is MASK, we don't
8107 need it. */
8109 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8110 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8111 == mask))
8112 x = XEXP (x, 0);
8114 /* If it remains an AND, try making another AND with the bits
8115 in the mode mask that aren't in MASK turned on. If the
8116 constant in the AND is wide enough, this might make a
8117 cheaper constant. */
8119 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8120 && GET_MODE_MASK (GET_MODE (x)) != mask
8121 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8123 unsigned HOST_WIDE_INT cval
8124 = UINTVAL (XEXP (x, 1))
8125 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8126 int width = GET_MODE_PRECISION (GET_MODE (x));
8127 rtx y;
8129 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8130 number, sign extend it. */
8131 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8132 && (cval & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8133 cval |= HOST_WIDE_INT_M1U << width;
8135 y = simplify_gen_binary (AND, GET_MODE (x),
8136 XEXP (x, 0), GEN_INT (cval));
8137 if (set_src_cost (y, optimize_this_for_speed_p)
8138 < set_src_cost (x, optimize_this_for_speed_p))
8139 x = y;
8142 break;
8145 goto binop;
8147 case PLUS:
8148 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8149 low-order bits (as in an alignment operation) and FOO is already
8150 aligned to that boundary, mask C1 to that boundary as well.
8151 This may eliminate that PLUS and, later, the AND. */
8154 unsigned int width = GET_MODE_PRECISION (mode);
8155 unsigned HOST_WIDE_INT smask = mask;
8157 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8158 number, sign extend it. */
8160 if (width < HOST_BITS_PER_WIDE_INT
8161 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8162 smask |= HOST_WIDE_INT_M1U << width;
8164 if (CONST_INT_P (XEXP (x, 1))
8165 && exact_log2 (- smask) >= 0
8166 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8167 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8168 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8169 (INTVAL (XEXP (x, 1)) & smask)),
8170 mode, smask, next_select);
8173 /* ... fall through ... */
8175 case MULT:
8176 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8177 most significant bit in MASK since carries from those bits will
8178 affect the bits we are interested in. */
8179 mask = fuller_mask;
8180 goto binop;
8182 case MINUS:
8183 /* If X is (minus C Y) where C's least set bit is larger than any bit
8184 in the mask, then we may replace with (neg Y). */
8185 if (CONST_INT_P (XEXP (x, 0))
8186 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8187 & -INTVAL (XEXP (x, 0))))
8188 > mask))
8190 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8191 GET_MODE (x));
8192 return force_to_mode (x, mode, mask, next_select);
8195 /* Similarly, if C contains every bit in the fuller_mask, then we may
8196 replace with (not Y). */
8197 if (CONST_INT_P (XEXP (x, 0))
8198 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8200 x = simplify_gen_unary (NOT, GET_MODE (x),
8201 XEXP (x, 1), GET_MODE (x));
8202 return force_to_mode (x, mode, mask, next_select);
8205 mask = fuller_mask;
8206 goto binop;
8208 case IOR:
8209 case XOR:
8210 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8211 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8212 operation which may be a bitfield extraction. Ensure that the
8213 constant we form is not wider than the mode of X. */
8215 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8216 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8217 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8218 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8219 && CONST_INT_P (XEXP (x, 1))
8220 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8221 + floor_log2 (INTVAL (XEXP (x, 1))))
8222 < GET_MODE_PRECISION (GET_MODE (x)))
8223 && (UINTVAL (XEXP (x, 1))
8224 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8226 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8227 << INTVAL (XEXP (XEXP (x, 0), 1)));
8228 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8229 XEXP (XEXP (x, 0), 0), temp);
8230 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8231 XEXP (XEXP (x, 0), 1));
8232 return force_to_mode (x, mode, mask, next_select);
8235 binop:
8236 /* For most binary operations, just propagate into the operation and
8237 change the mode if we have an operation of that mode. */
8239 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8240 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8242 /* If we ended up truncating both operands, truncate the result of the
8243 operation instead. */
8244 if (GET_CODE (op0) == TRUNCATE
8245 && GET_CODE (op1) == TRUNCATE)
8247 op0 = XEXP (op0, 0);
8248 op1 = XEXP (op1, 0);
8251 op0 = gen_lowpart_or_truncate (op_mode, op0);
8252 op1 = gen_lowpart_or_truncate (op_mode, op1);
8254 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8255 x = simplify_gen_binary (code, op_mode, op0, op1);
8256 break;
8258 case ASHIFT:
8259 /* For left shifts, do the same, but just for the first operand.
8260 However, we cannot do anything with shifts where we cannot
8261 guarantee that the counts are smaller than the size of the mode
8262 because such a count will have a different meaning in a
8263 wider mode. */
8265 if (! (CONST_INT_P (XEXP (x, 1))
8266 && INTVAL (XEXP (x, 1)) >= 0
8267 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8268 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8269 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8270 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8271 break;
8273 /* If the shift count is a constant and we can do arithmetic in
8274 the mode of the shift, refine which bits we need. Otherwise, use the
8275 conservative form of the mask. */
8276 if (CONST_INT_P (XEXP (x, 1))
8277 && INTVAL (XEXP (x, 1)) >= 0
8278 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8279 && HWI_COMPUTABLE_MODE_P (op_mode))
8280 mask >>= INTVAL (XEXP (x, 1));
8281 else
8282 mask = fuller_mask;
8284 op0 = gen_lowpart_or_truncate (op_mode,
8285 force_to_mode (XEXP (x, 0), op_mode,
8286 mask, next_select));
8288 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8289 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8290 break;
8292 case LSHIFTRT:
8293 /* Here we can only do something if the shift count is a constant,
8294 this shift constant is valid for the host, and we can do arithmetic
8295 in OP_MODE. */
8297 if (CONST_INT_P (XEXP (x, 1))
8298 && INTVAL (XEXP (x, 1)) >= 0
8299 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8300 && HWI_COMPUTABLE_MODE_P (op_mode))
8302 rtx inner = XEXP (x, 0);
8303 unsigned HOST_WIDE_INT inner_mask;
8305 /* Select the mask of the bits we need for the shift operand. */
8306 inner_mask = mask << INTVAL (XEXP (x, 1));
8308 /* We can only change the mode of the shift if we can do arithmetic
8309 in the mode of the shift and INNER_MASK is no wider than the
8310 width of X's mode. */
8311 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8312 op_mode = GET_MODE (x);
8314 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8316 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8317 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8320 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8321 shift and AND produces only copies of the sign bit (C2 is one less
8322 than a power of two), we can do this with just a shift. */
8324 if (GET_CODE (x) == LSHIFTRT
8325 && CONST_INT_P (XEXP (x, 1))
8326 /* The shift puts one of the sign bit copies in the least significant
8327 bit. */
8328 && ((INTVAL (XEXP (x, 1))
8329 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8330 >= GET_MODE_PRECISION (GET_MODE (x)))
8331 && exact_log2 (mask + 1) >= 0
8332 /* Number of bits left after the shift must be more than the mask
8333 needs. */
8334 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8335 <= GET_MODE_PRECISION (GET_MODE (x)))
8336 /* Must be more sign bit copies than the mask needs. */
8337 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8338 >= exact_log2 (mask + 1)))
8339 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8340 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8341 - exact_log2 (mask + 1)));
8343 goto shiftrt;
8345 case ASHIFTRT:
8346 /* If we are just looking for the sign bit, we don't need this shift at
8347 all, even if it has a variable count. */
8348 if (val_signbit_p (GET_MODE (x), mask))
8349 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8351 /* If this is a shift by a constant, get a mask that contains those bits
8352 that are not copies of the sign bit. We then have two cases: If
8353 MASK only includes those bits, this can be a logical shift, which may
8354 allow simplifications. If MASK is a single-bit field not within
8355 those bits, we are requesting a copy of the sign bit and hence can
8356 shift the sign bit to the appropriate location. */
8358 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8359 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8361 int i;
8363 /* If the considered data is wider than HOST_WIDE_INT, we can't
8364 represent a mask for all its bits in a single scalar.
8365 But we only care about the lower bits, so calculate these. */
8367 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8369 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8371 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8372 is the number of bits a full-width mask would have set.
8373 We need only shift if these are fewer than nonzero can
8374 hold. If not, we must keep all bits set in nonzero. */
8376 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8377 < HOST_BITS_PER_WIDE_INT)
8378 nonzero >>= INTVAL (XEXP (x, 1))
8379 + HOST_BITS_PER_WIDE_INT
8380 - GET_MODE_PRECISION (GET_MODE (x)) ;
8382 else
8384 nonzero = GET_MODE_MASK (GET_MODE (x));
8385 nonzero >>= INTVAL (XEXP (x, 1));
8388 if ((mask & ~nonzero) == 0)
8390 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8391 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8392 if (GET_CODE (x) != ASHIFTRT)
8393 return force_to_mode (x, mode, mask, next_select);
8396 else if ((i = exact_log2 (mask)) >= 0)
8398 x = simplify_shift_const
8399 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8400 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8402 if (GET_CODE (x) != ASHIFTRT)
8403 return force_to_mode (x, mode, mask, next_select);
8407 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8408 even if the shift count isn't a constant. */
8409 if (mask == 1)
8410 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8411 XEXP (x, 0), XEXP (x, 1));
8413 shiftrt:
8415 /* If this is a zero- or sign-extension operation that just affects bits
8416 we don't care about, remove it. Be sure the call above returned
8417 something that is still a shift. */
8419 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8420 && CONST_INT_P (XEXP (x, 1))
8421 && INTVAL (XEXP (x, 1)) >= 0
8422 && (INTVAL (XEXP (x, 1))
8423 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8424 && GET_CODE (XEXP (x, 0)) == ASHIFT
8425 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8426 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8427 next_select);
8429 break;
8431 case ROTATE:
8432 case ROTATERT:
8433 /* If the shift count is constant and we can do computations
8434 in the mode of X, compute where the bits we care about are.
8435 Otherwise, we can't do anything. Don't change the mode of
8436 the shift or propagate MODE into the shift, though. */
8437 if (CONST_INT_P (XEXP (x, 1))
8438 && INTVAL (XEXP (x, 1)) >= 0)
8440 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8441 GET_MODE (x), GEN_INT (mask),
8442 XEXP (x, 1));
8443 if (temp && CONST_INT_P (temp))
8444 SUBST (XEXP (x, 0),
8445 force_to_mode (XEXP (x, 0), GET_MODE (x),
8446 INTVAL (temp), next_select));
8448 break;
8450 case NEG:
8451 /* If we just want the low-order bit, the NEG isn't needed since it
8452 won't change the low-order bit. */
8453 if (mask == 1)
8454 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8456 /* We need any bits less significant than the most significant bit in
8457 MASK since carries from those bits will affect the bits we are
8458 interested in. */
8459 mask = fuller_mask;
8460 goto unop;
8462 case NOT:
8463 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8464 same as the XOR case above. Ensure that the constant we form is not
8465 wider than the mode of X. */
8467 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8468 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8469 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8470 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8471 < GET_MODE_PRECISION (GET_MODE (x)))
8472 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8474 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8475 GET_MODE (x));
8476 temp = simplify_gen_binary (XOR, GET_MODE (x),
8477 XEXP (XEXP (x, 0), 0), temp);
8478 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8479 temp, XEXP (XEXP (x, 0), 1));
8481 return force_to_mode (x, mode, mask, next_select);
8484 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8485 use the full mask inside the NOT. */
8486 mask = fuller_mask;
8488 unop:
8489 op0 = gen_lowpart_or_truncate (op_mode,
8490 force_to_mode (XEXP (x, 0), mode, mask,
8491 next_select));
8492 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8493 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8494 break;
8496 case NE:
8497 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8498 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8499 which is equal to STORE_FLAG_VALUE. */
8500 if ((mask & ~STORE_FLAG_VALUE) == 0
8501 && XEXP (x, 1) == const0_rtx
8502 && GET_MODE (XEXP (x, 0)) == mode
8503 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8504 && (nonzero_bits (XEXP (x, 0), mode)
8505 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8506 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8508 break;
8510 case IF_THEN_ELSE:
8511 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8512 written in a narrower mode. We play it safe and do not do so. */
8514 SUBST (XEXP (x, 1),
8515 gen_lowpart_or_truncate (GET_MODE (x),
8516 force_to_mode (XEXP (x, 1), mode,
8517 mask, next_select)));
8518 SUBST (XEXP (x, 2),
8519 gen_lowpart_or_truncate (GET_MODE (x),
8520 force_to_mode (XEXP (x, 2), mode,
8521 mask, next_select)));
8522 break;
8524 default:
8525 break;
8528 /* Ensure we return a value of the proper mode. */
8529 return gen_lowpart_or_truncate (mode, x);
8532 /* Return nonzero if X is an expression that has one of two values depending on
8533 whether some other value is zero or nonzero. In that case, we return the
8534 value that is being tested, *PTRUE is set to the value if the rtx being
8535 returned has a nonzero value, and *PFALSE is set to the other alternative.
8537 If we return zero, we set *PTRUE and *PFALSE to X. */
8539 static rtx
8540 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8542 enum machine_mode mode = GET_MODE (x);
8543 enum rtx_code code = GET_CODE (x);
8544 rtx cond0, cond1, true0, true1, false0, false1;
8545 unsigned HOST_WIDE_INT nz;
8547 /* If we are comparing a value against zero, we are done. */
8548 if ((code == NE || code == EQ)
8549 && XEXP (x, 1) == const0_rtx)
8551 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8552 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8553 return XEXP (x, 0);
8556 /* If this is a unary operation whose operand has one of two values, apply
8557 our opcode to compute those values. */
8558 else if (UNARY_P (x)
8559 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8561 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8562 *pfalse = simplify_gen_unary (code, mode, false0,
8563 GET_MODE (XEXP (x, 0)));
8564 return cond0;
8567 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8568 make can't possibly match and would suppress other optimizations. */
8569 else if (code == COMPARE)
8572 /* If this is a binary operation, see if either side has only one of two
8573 values. If either one does or if both do and they are conditional on
8574 the same value, compute the new true and false values. */
8575 else if (BINARY_P (x))
8577 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8578 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8580 if ((cond0 != 0 || cond1 != 0)
8581 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8583 /* If if_then_else_cond returned zero, then true/false are the
8584 same rtl. We must copy one of them to prevent invalid rtl
8585 sharing. */
8586 if (cond0 == 0)
8587 true0 = copy_rtx (true0);
8588 else if (cond1 == 0)
8589 true1 = copy_rtx (true1);
8591 if (COMPARISON_P (x))
8593 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8594 true0, true1);
8595 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8596 false0, false1);
8598 else
8600 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8601 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8604 return cond0 ? cond0 : cond1;
8607 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8608 operands is zero when the other is nonzero, and vice-versa,
8609 and STORE_FLAG_VALUE is 1 or -1. */
8611 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8612 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8613 || code == UMAX)
8614 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8616 rtx op0 = XEXP (XEXP (x, 0), 1);
8617 rtx op1 = XEXP (XEXP (x, 1), 1);
8619 cond0 = XEXP (XEXP (x, 0), 0);
8620 cond1 = XEXP (XEXP (x, 1), 0);
8622 if (COMPARISON_P (cond0)
8623 && COMPARISON_P (cond1)
8624 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8625 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8626 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8627 || ((swap_condition (GET_CODE (cond0))
8628 == reversed_comparison_code (cond1, NULL))
8629 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8630 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8631 && ! side_effects_p (x))
8633 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8634 *pfalse = simplify_gen_binary (MULT, mode,
8635 (code == MINUS
8636 ? simplify_gen_unary (NEG, mode,
8637 op1, mode)
8638 : op1),
8639 const_true_rtx);
8640 return cond0;
8644 /* Similarly for MULT, AND and UMIN, except that for these the result
8645 is always zero. */
8646 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8647 && (code == MULT || code == AND || code == UMIN)
8648 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8650 cond0 = XEXP (XEXP (x, 0), 0);
8651 cond1 = XEXP (XEXP (x, 1), 0);
8653 if (COMPARISON_P (cond0)
8654 && COMPARISON_P (cond1)
8655 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8656 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8657 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8658 || ((swap_condition (GET_CODE (cond0))
8659 == reversed_comparison_code (cond1, NULL))
8660 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8661 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8662 && ! side_effects_p (x))
8664 *ptrue = *pfalse = const0_rtx;
8665 return cond0;
8670 else if (code == IF_THEN_ELSE)
8672 /* If we have IF_THEN_ELSE already, extract the condition and
8673 canonicalize it if it is NE or EQ. */
8674 cond0 = XEXP (x, 0);
8675 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8676 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8677 return XEXP (cond0, 0);
8678 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8680 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8681 return XEXP (cond0, 0);
8683 else
8684 return cond0;
8687 /* If X is a SUBREG, we can narrow both the true and false values
8688 if the inner expression, if there is a condition. */
8689 else if (code == SUBREG
8690 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8691 &true0, &false0)))
8693 true0 = simplify_gen_subreg (mode, true0,
8694 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8695 false0 = simplify_gen_subreg (mode, false0,
8696 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8697 if (true0 && false0)
8699 *ptrue = true0;
8700 *pfalse = false0;
8701 return cond0;
8705 /* If X is a constant, this isn't special and will cause confusions
8706 if we treat it as such. Likewise if it is equivalent to a constant. */
8707 else if (CONSTANT_P (x)
8708 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8711 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8712 will be least confusing to the rest of the compiler. */
8713 else if (mode == BImode)
8715 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8716 return x;
8719 /* If X is known to be either 0 or -1, those are the true and
8720 false values when testing X. */
8721 else if (x == constm1_rtx || x == const0_rtx
8722 || (mode != VOIDmode
8723 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8725 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8726 return x;
8729 /* Likewise for 0 or a single bit. */
8730 else if (HWI_COMPUTABLE_MODE_P (mode)
8731 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8733 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8734 return x;
8737 /* Otherwise fail; show no condition with true and false values the same. */
8738 *ptrue = *pfalse = x;
8739 return 0;
8742 /* Return the value of expression X given the fact that condition COND
8743 is known to be true when applied to REG as its first operand and VAL
8744 as its second. X is known to not be shared and so can be modified in
8745 place.
8747 We only handle the simplest cases, and specifically those cases that
8748 arise with IF_THEN_ELSE expressions. */
8750 static rtx
8751 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8753 enum rtx_code code = GET_CODE (x);
8754 rtx temp;
8755 const char *fmt;
8756 int i, j;
8758 if (side_effects_p (x))
8759 return x;
8761 /* If either operand of the condition is a floating point value,
8762 then we have to avoid collapsing an EQ comparison. */
8763 if (cond == EQ
8764 && rtx_equal_p (x, reg)
8765 && ! FLOAT_MODE_P (GET_MODE (x))
8766 && ! FLOAT_MODE_P (GET_MODE (val)))
8767 return val;
8769 if (cond == UNEQ && rtx_equal_p (x, reg))
8770 return val;
8772 /* If X is (abs REG) and we know something about REG's relationship
8773 with zero, we may be able to simplify this. */
8775 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8776 switch (cond)
8778 case GE: case GT: case EQ:
8779 return XEXP (x, 0);
8780 case LT: case LE:
8781 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8782 XEXP (x, 0),
8783 GET_MODE (XEXP (x, 0)));
8784 default:
8785 break;
8788 /* The only other cases we handle are MIN, MAX, and comparisons if the
8789 operands are the same as REG and VAL. */
8791 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8793 if (rtx_equal_p (XEXP (x, 0), val))
8794 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8796 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8798 if (COMPARISON_P (x))
8800 if (comparison_dominates_p (cond, code))
8801 return const_true_rtx;
8803 code = reversed_comparison_code (x, NULL);
8804 if (code != UNKNOWN
8805 && comparison_dominates_p (cond, code))
8806 return const0_rtx;
8807 else
8808 return x;
8810 else if (code == SMAX || code == SMIN
8811 || code == UMIN || code == UMAX)
8813 int unsignedp = (code == UMIN || code == UMAX);
8815 /* Do not reverse the condition when it is NE or EQ.
8816 This is because we cannot conclude anything about
8817 the value of 'SMAX (x, y)' when x is not equal to y,
8818 but we can when x equals y. */
8819 if ((code == SMAX || code == UMAX)
8820 && ! (cond == EQ || cond == NE))
8821 cond = reverse_condition (cond);
8823 switch (cond)
8825 case GE: case GT:
8826 return unsignedp ? x : XEXP (x, 1);
8827 case LE: case LT:
8828 return unsignedp ? x : XEXP (x, 0);
8829 case GEU: case GTU:
8830 return unsignedp ? XEXP (x, 1) : x;
8831 case LEU: case LTU:
8832 return unsignedp ? XEXP (x, 0) : x;
8833 default:
8834 break;
8839 else if (code == SUBREG)
8841 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8842 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8844 if (SUBREG_REG (x) != r)
8846 /* We must simplify subreg here, before we lose track of the
8847 original inner_mode. */
8848 new_rtx = simplify_subreg (GET_MODE (x), r,
8849 inner_mode, SUBREG_BYTE (x));
8850 if (new_rtx)
8851 return new_rtx;
8852 else
8853 SUBST (SUBREG_REG (x), r);
8856 return x;
8858 /* We don't have to handle SIGN_EXTEND here, because even in the
8859 case of replacing something with a modeless CONST_INT, a
8860 CONST_INT is already (supposed to be) a valid sign extension for
8861 its narrower mode, which implies it's already properly
8862 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8863 story is different. */
8864 else if (code == ZERO_EXTEND)
8866 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8867 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8869 if (XEXP (x, 0) != r)
8871 /* We must simplify the zero_extend here, before we lose
8872 track of the original inner_mode. */
8873 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8874 r, inner_mode);
8875 if (new_rtx)
8876 return new_rtx;
8877 else
8878 SUBST (XEXP (x, 0), r);
8881 return x;
8884 fmt = GET_RTX_FORMAT (code);
8885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8887 if (fmt[i] == 'e')
8888 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8889 else if (fmt[i] == 'E')
8890 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8891 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8892 cond, reg, val));
8895 return x;
8898 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8899 assignment as a field assignment. */
8901 static int
8902 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8904 if (x == y || rtx_equal_p (x, y))
8905 return 1;
8907 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8908 return 0;
8910 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8911 Note that all SUBREGs of MEM are paradoxical; otherwise they
8912 would have been rewritten. */
8913 if (MEM_P (x) && GET_CODE (y) == SUBREG
8914 && MEM_P (SUBREG_REG (y))
8915 && rtx_equal_p (SUBREG_REG (y),
8916 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8917 return 1;
8919 if (MEM_P (y) && GET_CODE (x) == SUBREG
8920 && MEM_P (SUBREG_REG (x))
8921 && rtx_equal_p (SUBREG_REG (x),
8922 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8923 return 1;
8925 /* We used to see if get_last_value of X and Y were the same but that's
8926 not correct. In one direction, we'll cause the assignment to have
8927 the wrong destination and in the case, we'll import a register into this
8928 insn that might have already have been dead. So fail if none of the
8929 above cases are true. */
8930 return 0;
8933 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8934 Return that assignment if so.
8936 We only handle the most common cases. */
8938 static rtx
8939 make_field_assignment (rtx x)
8941 rtx dest = SET_DEST (x);
8942 rtx src = SET_SRC (x);
8943 rtx assign;
8944 rtx rhs, lhs;
8945 HOST_WIDE_INT c1;
8946 HOST_WIDE_INT pos;
8947 unsigned HOST_WIDE_INT len;
8948 rtx other;
8949 enum machine_mode mode;
8951 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8952 a clear of a one-bit field. We will have changed it to
8953 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8954 for a SUBREG. */
8956 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8957 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8958 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8959 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8961 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8962 1, 1, 1, 0);
8963 if (assign != 0)
8964 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8965 return x;
8968 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8969 && subreg_lowpart_p (XEXP (src, 0))
8970 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8971 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8972 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8973 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8974 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8975 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8977 assign = make_extraction (VOIDmode, dest, 0,
8978 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8979 1, 1, 1, 0);
8980 if (assign != 0)
8981 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8982 return x;
8985 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8986 one-bit field. */
8987 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8988 && XEXP (XEXP (src, 0), 0) == const1_rtx
8989 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8991 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8992 1, 1, 1, 0);
8993 if (assign != 0)
8994 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8995 return x;
8998 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8999 SRC is an AND with all bits of that field set, then we can discard
9000 the AND. */
9001 if (GET_CODE (dest) == ZERO_EXTRACT
9002 && CONST_INT_P (XEXP (dest, 1))
9003 && GET_CODE (src) == AND
9004 && CONST_INT_P (XEXP (src, 1)))
9006 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9007 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9008 unsigned HOST_WIDE_INT ze_mask;
9010 if (width >= HOST_BITS_PER_WIDE_INT)
9011 ze_mask = -1;
9012 else
9013 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9015 /* Complete overlap. We can remove the source AND. */
9016 if ((and_mask & ze_mask) == ze_mask)
9017 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9019 /* Partial overlap. We can reduce the source AND. */
9020 if ((and_mask & ze_mask) != and_mask)
9022 mode = GET_MODE (src);
9023 src = gen_rtx_AND (mode, XEXP (src, 0),
9024 gen_int_mode (and_mask & ze_mask, mode));
9025 return gen_rtx_SET (VOIDmode, dest, src);
9029 /* The other case we handle is assignments into a constant-position
9030 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9031 a mask that has all one bits except for a group of zero bits and
9032 OTHER is known to have zeros where C1 has ones, this is such an
9033 assignment. Compute the position and length from C1. Shift OTHER
9034 to the appropriate position, force it to the required mode, and
9035 make the extraction. Check for the AND in both operands. */
9037 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9038 return x;
9040 rhs = expand_compound_operation (XEXP (src, 0));
9041 lhs = expand_compound_operation (XEXP (src, 1));
9043 if (GET_CODE (rhs) == AND
9044 && CONST_INT_P (XEXP (rhs, 1))
9045 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9046 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9047 else if (GET_CODE (lhs) == AND
9048 && CONST_INT_P (XEXP (lhs, 1))
9049 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9050 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9051 else
9052 return x;
9054 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9055 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9056 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9057 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9058 return x;
9060 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9061 if (assign == 0)
9062 return x;
9064 /* The mode to use for the source is the mode of the assignment, or of
9065 what is inside a possible STRICT_LOW_PART. */
9066 mode = (GET_CODE (assign) == STRICT_LOW_PART
9067 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9069 /* Shift OTHER right POS places and make it the source, restricting it
9070 to the proper length and mode. */
9072 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9073 GET_MODE (src),
9074 other, pos),
9075 dest);
9076 src = force_to_mode (src, mode,
9077 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9078 ? ~(unsigned HOST_WIDE_INT) 0
9079 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9082 /* If SRC is masked by an AND that does not make a difference in
9083 the value being stored, strip it. */
9084 if (GET_CODE (assign) == ZERO_EXTRACT
9085 && CONST_INT_P (XEXP (assign, 1))
9086 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9087 && GET_CODE (src) == AND
9088 && CONST_INT_P (XEXP (src, 1))
9089 && UINTVAL (XEXP (src, 1))
9090 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9091 src = XEXP (src, 0);
9093 return gen_rtx_SET (VOIDmode, assign, src);
9096 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9097 if so. */
9099 static rtx
9100 apply_distributive_law (rtx x)
9102 enum rtx_code code = GET_CODE (x);
9103 enum rtx_code inner_code;
9104 rtx lhs, rhs, other;
9105 rtx tem;
9107 /* Distributivity is not true for floating point as it can change the
9108 value. So we don't do it unless -funsafe-math-optimizations. */
9109 if (FLOAT_MODE_P (GET_MODE (x))
9110 && ! flag_unsafe_math_optimizations)
9111 return x;
9113 /* The outer operation can only be one of the following: */
9114 if (code != IOR && code != AND && code != XOR
9115 && code != PLUS && code != MINUS)
9116 return x;
9118 lhs = XEXP (x, 0);
9119 rhs = XEXP (x, 1);
9121 /* If either operand is a primitive we can't do anything, so get out
9122 fast. */
9123 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9124 return x;
9126 lhs = expand_compound_operation (lhs);
9127 rhs = expand_compound_operation (rhs);
9128 inner_code = GET_CODE (lhs);
9129 if (inner_code != GET_CODE (rhs))
9130 return x;
9132 /* See if the inner and outer operations distribute. */
9133 switch (inner_code)
9135 case LSHIFTRT:
9136 case ASHIFTRT:
9137 case AND:
9138 case IOR:
9139 /* These all distribute except over PLUS. */
9140 if (code == PLUS || code == MINUS)
9141 return x;
9142 break;
9144 case MULT:
9145 if (code != PLUS && code != MINUS)
9146 return x;
9147 break;
9149 case ASHIFT:
9150 /* This is also a multiply, so it distributes over everything. */
9151 break;
9153 /* This used to handle SUBREG, but this turned out to be counter-
9154 productive, since (subreg (op ...)) usually is not handled by
9155 insn patterns, and this "optimization" therefore transformed
9156 recognizable patterns into unrecognizable ones. Therefore the
9157 SUBREG case was removed from here.
9159 It is possible that distributing SUBREG over arithmetic operations
9160 leads to an intermediate result than can then be optimized further,
9161 e.g. by moving the outer SUBREG to the other side of a SET as done
9162 in simplify_set. This seems to have been the original intent of
9163 handling SUBREGs here.
9165 However, with current GCC this does not appear to actually happen,
9166 at least on major platforms. If some case is found where removing
9167 the SUBREG case here prevents follow-on optimizations, distributing
9168 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9170 default:
9171 return x;
9174 /* Set LHS and RHS to the inner operands (A and B in the example
9175 above) and set OTHER to the common operand (C in the example).
9176 There is only one way to do this unless the inner operation is
9177 commutative. */
9178 if (COMMUTATIVE_ARITH_P (lhs)
9179 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9180 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9181 else if (COMMUTATIVE_ARITH_P (lhs)
9182 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9183 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9184 else if (COMMUTATIVE_ARITH_P (lhs)
9185 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9186 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9187 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9188 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9189 else
9190 return x;
9192 /* Form the new inner operation, seeing if it simplifies first. */
9193 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9195 /* There is one exception to the general way of distributing:
9196 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9197 if (code == XOR && inner_code == IOR)
9199 inner_code = AND;
9200 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9203 /* We may be able to continuing distributing the result, so call
9204 ourselves recursively on the inner operation before forming the
9205 outer operation, which we return. */
9206 return simplify_gen_binary (inner_code, GET_MODE (x),
9207 apply_distributive_law (tem), other);
9210 /* See if X is of the form (* (+ A B) C), and if so convert to
9211 (+ (* A C) (* B C)) and try to simplify.
9213 Most of the time, this results in no change. However, if some of
9214 the operands are the same or inverses of each other, simplifications
9215 will result.
9217 For example, (and (ior A B) (not B)) can occur as the result of
9218 expanding a bit field assignment. When we apply the distributive
9219 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9220 which then simplifies to (and (A (not B))).
9222 Note that no checks happen on the validity of applying the inverse
9223 distributive law. This is pointless since we can do it in the
9224 few places where this routine is called.
9226 N is the index of the term that is decomposed (the arithmetic operation,
9227 i.e. (+ A B) in the first example above). !N is the index of the term that
9228 is distributed, i.e. of C in the first example above. */
9229 static rtx
9230 distribute_and_simplify_rtx (rtx x, int n)
9232 enum machine_mode mode;
9233 enum rtx_code outer_code, inner_code;
9234 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9236 /* Distributivity is not true for floating point as it can change the
9237 value. So we don't do it unless -funsafe-math-optimizations. */
9238 if (FLOAT_MODE_P (GET_MODE (x))
9239 && ! flag_unsafe_math_optimizations)
9240 return NULL_RTX;
9242 decomposed = XEXP (x, n);
9243 if (!ARITHMETIC_P (decomposed))
9244 return NULL_RTX;
9246 mode = GET_MODE (x);
9247 outer_code = GET_CODE (x);
9248 distributed = XEXP (x, !n);
9250 inner_code = GET_CODE (decomposed);
9251 inner_op0 = XEXP (decomposed, 0);
9252 inner_op1 = XEXP (decomposed, 1);
9254 /* Special case (and (xor B C) (not A)), which is equivalent to
9255 (xor (ior A B) (ior A C)) */
9256 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9258 distributed = XEXP (distributed, 0);
9259 outer_code = IOR;
9262 if (n == 0)
9264 /* Distribute the second term. */
9265 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9266 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9268 else
9270 /* Distribute the first term. */
9271 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9272 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9275 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9276 new_op0, new_op1));
9277 if (GET_CODE (tmp) != outer_code
9278 && (set_src_cost (tmp, optimize_this_for_speed_p)
9279 < set_src_cost (x, optimize_this_for_speed_p)))
9280 return tmp;
9282 return NULL_RTX;
9285 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9286 in MODE. Return an equivalent form, if different from (and VAROP
9287 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9289 static rtx
9290 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9291 unsigned HOST_WIDE_INT constop)
9293 unsigned HOST_WIDE_INT nonzero;
9294 unsigned HOST_WIDE_INT orig_constop;
9295 rtx orig_varop;
9296 int i;
9298 orig_varop = varop;
9299 orig_constop = constop;
9300 if (GET_CODE (varop) == CLOBBER)
9301 return NULL_RTX;
9303 /* Simplify VAROP knowing that we will be only looking at some of the
9304 bits in it.
9306 Note by passing in CONSTOP, we guarantee that the bits not set in
9307 CONSTOP are not significant and will never be examined. We must
9308 ensure that is the case by explicitly masking out those bits
9309 before returning. */
9310 varop = force_to_mode (varop, mode, constop, 0);
9312 /* If VAROP is a CLOBBER, we will fail so return it. */
9313 if (GET_CODE (varop) == CLOBBER)
9314 return varop;
9316 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9317 to VAROP and return the new constant. */
9318 if (CONST_INT_P (varop))
9319 return gen_int_mode (INTVAL (varop) & constop, mode);
9321 /* See what bits may be nonzero in VAROP. Unlike the general case of
9322 a call to nonzero_bits, here we don't care about bits outside
9323 MODE. */
9325 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9327 /* Turn off all bits in the constant that are known to already be zero.
9328 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9329 which is tested below. */
9331 constop &= nonzero;
9333 /* If we don't have any bits left, return zero. */
9334 if (constop == 0)
9335 return const0_rtx;
9337 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9338 a power of two, we can replace this with an ASHIFT. */
9339 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9340 && (i = exact_log2 (constop)) >= 0)
9341 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9343 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9344 or XOR, then try to apply the distributive law. This may eliminate
9345 operations if either branch can be simplified because of the AND.
9346 It may also make some cases more complex, but those cases probably
9347 won't match a pattern either with or without this. */
9349 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9350 return
9351 gen_lowpart
9352 (mode,
9353 apply_distributive_law
9354 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9355 simplify_and_const_int (NULL_RTX,
9356 GET_MODE (varop),
9357 XEXP (varop, 0),
9358 constop),
9359 simplify_and_const_int (NULL_RTX,
9360 GET_MODE (varop),
9361 XEXP (varop, 1),
9362 constop))));
9364 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9365 the AND and see if one of the operands simplifies to zero. If so, we
9366 may eliminate it. */
9368 if (GET_CODE (varop) == PLUS
9369 && exact_log2 (constop + 1) >= 0)
9371 rtx o0, o1;
9373 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9374 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9375 if (o0 == const0_rtx)
9376 return o1;
9377 if (o1 == const0_rtx)
9378 return o0;
9381 /* Make a SUBREG if necessary. If we can't make it, fail. */
9382 varop = gen_lowpart (mode, varop);
9383 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9384 return NULL_RTX;
9386 /* If we are only masking insignificant bits, return VAROP. */
9387 if (constop == nonzero)
9388 return varop;
9390 if (varop == orig_varop && constop == orig_constop)
9391 return NULL_RTX;
9393 /* Otherwise, return an AND. */
9394 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9398 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9399 in MODE.
9401 Return an equivalent form, if different from X. Otherwise, return X. If
9402 X is zero, we are to always construct the equivalent form. */
9404 static rtx
9405 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9406 unsigned HOST_WIDE_INT constop)
9408 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9409 if (tem)
9410 return tem;
9412 if (!x)
9413 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9414 gen_int_mode (constop, mode));
9415 if (GET_MODE (x) != mode)
9416 x = gen_lowpart (mode, x);
9417 return x;
9420 /* Given a REG, X, compute which bits in X can be nonzero.
9421 We don't care about bits outside of those defined in MODE.
9423 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9424 a shift, AND, or zero_extract, we can do better. */
9426 static rtx
9427 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9428 const_rtx known_x ATTRIBUTE_UNUSED,
9429 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9430 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9431 unsigned HOST_WIDE_INT *nonzero)
9433 rtx tem;
9434 reg_stat_type *rsp;
9436 /* If X is a register whose nonzero bits value is current, use it.
9437 Otherwise, if X is a register whose value we can find, use that
9438 value. Otherwise, use the previously-computed global nonzero bits
9439 for this register. */
9441 rsp = &reg_stat[REGNO (x)];
9442 if (rsp->last_set_value != 0
9443 && (rsp->last_set_mode == mode
9444 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9445 && GET_MODE_CLASS (mode) == MODE_INT))
9446 && ((rsp->last_set_label >= label_tick_ebb_start
9447 && rsp->last_set_label < label_tick)
9448 || (rsp->last_set_label == label_tick
9449 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9450 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9451 && REG_N_SETS (REGNO (x)) == 1
9452 && !REGNO_REG_SET_P
9453 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9455 *nonzero &= rsp->last_set_nonzero_bits;
9456 return NULL;
9459 tem = get_last_value (x);
9461 if (tem)
9463 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9464 /* If X is narrower than MODE and TEM is a non-negative
9465 constant that would appear negative in the mode of X,
9466 sign-extend it for use in reg_nonzero_bits because some
9467 machines (maybe most) will actually do the sign-extension
9468 and this is the conservative approach.
9470 ??? For 2.5, try to tighten up the MD files in this regard
9471 instead of this kludge. */
9473 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9474 && CONST_INT_P (tem)
9475 && INTVAL (tem) > 0
9476 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9477 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9478 #endif
9479 return tem;
9481 else if (nonzero_sign_valid && rsp->nonzero_bits)
9483 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9485 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9486 /* We don't know anything about the upper bits. */
9487 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9488 *nonzero &= mask;
9491 return NULL;
9494 /* Return the number of bits at the high-order end of X that are known to
9495 be equal to the sign bit. X will be used in mode MODE; if MODE is
9496 VOIDmode, X will be used in its own mode. The returned value will always
9497 be between 1 and the number of bits in MODE. */
9499 static rtx
9500 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9501 const_rtx known_x ATTRIBUTE_UNUSED,
9502 enum machine_mode known_mode
9503 ATTRIBUTE_UNUSED,
9504 unsigned int known_ret ATTRIBUTE_UNUSED,
9505 unsigned int *result)
9507 rtx tem;
9508 reg_stat_type *rsp;
9510 rsp = &reg_stat[REGNO (x)];
9511 if (rsp->last_set_value != 0
9512 && rsp->last_set_mode == mode
9513 && ((rsp->last_set_label >= label_tick_ebb_start
9514 && rsp->last_set_label < label_tick)
9515 || (rsp->last_set_label == label_tick
9516 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9517 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9518 && REG_N_SETS (REGNO (x)) == 1
9519 && !REGNO_REG_SET_P
9520 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9522 *result = rsp->last_set_sign_bit_copies;
9523 return NULL;
9526 tem = get_last_value (x);
9527 if (tem != 0)
9528 return tem;
9530 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9531 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9532 *result = rsp->sign_bit_copies;
9534 return NULL;
9537 /* Return the number of "extended" bits there are in X, when interpreted
9538 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9539 unsigned quantities, this is the number of high-order zero bits.
9540 For signed quantities, this is the number of copies of the sign bit
9541 minus 1. In both case, this function returns the number of "spare"
9542 bits. For example, if two quantities for which this function returns
9543 at least 1 are added, the addition is known not to overflow.
9545 This function will always return 0 unless called during combine, which
9546 implies that it must be called from a define_split. */
9548 unsigned int
9549 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9551 if (nonzero_sign_valid == 0)
9552 return 0;
9554 return (unsignedp
9555 ? (HWI_COMPUTABLE_MODE_P (mode)
9556 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9557 - floor_log2 (nonzero_bits (x, mode)))
9558 : 0)
9559 : num_sign_bit_copies (x, mode) - 1);
9562 /* This function is called from `simplify_shift_const' to merge two
9563 outer operations. Specifically, we have already found that we need
9564 to perform operation *POP0 with constant *PCONST0 at the outermost
9565 position. We would now like to also perform OP1 with constant CONST1
9566 (with *POP0 being done last).
9568 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9569 the resulting operation. *PCOMP_P is set to 1 if we would need to
9570 complement the innermost operand, otherwise it is unchanged.
9572 MODE is the mode in which the operation will be done. No bits outside
9573 the width of this mode matter. It is assumed that the width of this mode
9574 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9576 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9577 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9578 result is simply *PCONST0.
9580 If the resulting operation cannot be expressed as one operation, we
9581 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9583 static int
9584 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9586 enum rtx_code op0 = *pop0;
9587 HOST_WIDE_INT const0 = *pconst0;
9589 const0 &= GET_MODE_MASK (mode);
9590 const1 &= GET_MODE_MASK (mode);
9592 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9593 if (op0 == AND)
9594 const1 &= const0;
9596 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9597 if OP0 is SET. */
9599 if (op1 == UNKNOWN || op0 == SET)
9600 return 1;
9602 else if (op0 == UNKNOWN)
9603 op0 = op1, const0 = const1;
9605 else if (op0 == op1)
9607 switch (op0)
9609 case AND:
9610 const0 &= const1;
9611 break;
9612 case IOR:
9613 const0 |= const1;
9614 break;
9615 case XOR:
9616 const0 ^= const1;
9617 break;
9618 case PLUS:
9619 const0 += const1;
9620 break;
9621 case NEG:
9622 op0 = UNKNOWN;
9623 break;
9624 default:
9625 break;
9629 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9630 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9631 return 0;
9633 /* If the two constants aren't the same, we can't do anything. The
9634 remaining six cases can all be done. */
9635 else if (const0 != const1)
9636 return 0;
9638 else
9639 switch (op0)
9641 case IOR:
9642 if (op1 == AND)
9643 /* (a & b) | b == b */
9644 op0 = SET;
9645 else /* op1 == XOR */
9646 /* (a ^ b) | b == a | b */
9648 break;
9650 case XOR:
9651 if (op1 == AND)
9652 /* (a & b) ^ b == (~a) & b */
9653 op0 = AND, *pcomp_p = 1;
9654 else /* op1 == IOR */
9655 /* (a | b) ^ b == a & ~b */
9656 op0 = AND, const0 = ~const0;
9657 break;
9659 case AND:
9660 if (op1 == IOR)
9661 /* (a | b) & b == b */
9662 op0 = SET;
9663 else /* op1 == XOR */
9664 /* (a ^ b) & b) == (~a) & b */
9665 *pcomp_p = 1;
9666 break;
9667 default:
9668 break;
9671 /* Check for NO-OP cases. */
9672 const0 &= GET_MODE_MASK (mode);
9673 if (const0 == 0
9674 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9675 op0 = UNKNOWN;
9676 else if (const0 == 0 && op0 == AND)
9677 op0 = SET;
9678 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9679 && op0 == AND)
9680 op0 = UNKNOWN;
9682 *pop0 = op0;
9684 /* ??? Slightly redundant with the above mask, but not entirely.
9685 Moving this above means we'd have to sign-extend the mode mask
9686 for the final test. */
9687 if (op0 != UNKNOWN && op0 != NEG)
9688 *pconst0 = trunc_int_for_mode (const0, mode);
9690 return 1;
9693 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9694 the shift in. The original shift operation CODE is performed on OP in
9695 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9696 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9697 result of the shift is subject to operation OUTER_CODE with operand
9698 OUTER_CONST. */
9700 static enum machine_mode
9701 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9702 enum machine_mode orig_mode, enum machine_mode mode,
9703 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9705 if (orig_mode == mode)
9706 return mode;
9707 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9709 /* In general we can't perform in wider mode for right shift and rotate. */
9710 switch (code)
9712 case ASHIFTRT:
9713 /* We can still widen if the bits brought in from the left are identical
9714 to the sign bit of ORIG_MODE. */
9715 if (num_sign_bit_copies (op, mode)
9716 > (unsigned) (GET_MODE_PRECISION (mode)
9717 - GET_MODE_PRECISION (orig_mode)))
9718 return mode;
9719 return orig_mode;
9721 case LSHIFTRT:
9722 /* Similarly here but with zero bits. */
9723 if (HWI_COMPUTABLE_MODE_P (mode)
9724 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9725 return mode;
9727 /* We can also widen if the bits brought in will be masked off. This
9728 operation is performed in ORIG_MODE. */
9729 if (outer_code == AND)
9731 int care_bits = low_bitmask_len (orig_mode, outer_const);
9733 if (care_bits >= 0
9734 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9735 return mode;
9737 /* fall through */
9739 case ROTATE:
9740 return orig_mode;
9742 case ROTATERT:
9743 gcc_unreachable ();
9745 default:
9746 return mode;
9750 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9751 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9752 if we cannot simplify it. Otherwise, return a simplified value.
9754 The shift is normally computed in the widest mode we find in VAROP, as
9755 long as it isn't a different number of words than RESULT_MODE. Exceptions
9756 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9758 static rtx
9759 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9760 rtx varop, int orig_count)
9762 enum rtx_code orig_code = code;
9763 rtx orig_varop = varop;
9764 int count;
9765 enum machine_mode mode = result_mode;
9766 enum machine_mode shift_mode, tmode;
9767 unsigned int mode_words
9768 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9769 /* We form (outer_op (code varop count) (outer_const)). */
9770 enum rtx_code outer_op = UNKNOWN;
9771 HOST_WIDE_INT outer_const = 0;
9772 int complement_p = 0;
9773 rtx new_rtx, x;
9775 /* Make sure and truncate the "natural" shift on the way in. We don't
9776 want to do this inside the loop as it makes it more difficult to
9777 combine shifts. */
9778 if (SHIFT_COUNT_TRUNCATED)
9779 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9781 /* If we were given an invalid count, don't do anything except exactly
9782 what was requested. */
9784 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9785 return NULL_RTX;
9787 count = orig_count;
9789 /* Unless one of the branches of the `if' in this loop does a `continue',
9790 we will `break' the loop after the `if'. */
9792 while (count != 0)
9794 /* If we have an operand of (clobber (const_int 0)), fail. */
9795 if (GET_CODE (varop) == CLOBBER)
9796 return NULL_RTX;
9798 /* Convert ROTATERT to ROTATE. */
9799 if (code == ROTATERT)
9801 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9802 code = ROTATE;
9803 if (VECTOR_MODE_P (result_mode))
9804 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9805 else
9806 count = bitsize - count;
9809 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9810 mode, outer_op, outer_const);
9812 /* Handle cases where the count is greater than the size of the mode
9813 minus 1. For ASHIFT, use the size minus one as the count (this can
9814 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9815 take the count modulo the size. For other shifts, the result is
9816 zero.
9818 Since these shifts are being produced by the compiler by combining
9819 multiple operations, each of which are defined, we know what the
9820 result is supposed to be. */
9822 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9824 if (code == ASHIFTRT)
9825 count = GET_MODE_PRECISION (shift_mode) - 1;
9826 else if (code == ROTATE || code == ROTATERT)
9827 count %= GET_MODE_PRECISION (shift_mode);
9828 else
9830 /* We can't simply return zero because there may be an
9831 outer op. */
9832 varop = const0_rtx;
9833 count = 0;
9834 break;
9838 /* If we discovered we had to complement VAROP, leave. Making a NOT
9839 here would cause an infinite loop. */
9840 if (complement_p)
9841 break;
9843 /* An arithmetic right shift of a quantity known to be -1 or 0
9844 is a no-op. */
9845 if (code == ASHIFTRT
9846 && (num_sign_bit_copies (varop, shift_mode)
9847 == GET_MODE_PRECISION (shift_mode)))
9849 count = 0;
9850 break;
9853 /* If we are doing an arithmetic right shift and discarding all but
9854 the sign bit copies, this is equivalent to doing a shift by the
9855 bitsize minus one. Convert it into that shift because it will often
9856 allow other simplifications. */
9858 if (code == ASHIFTRT
9859 && (count + num_sign_bit_copies (varop, shift_mode)
9860 >= GET_MODE_PRECISION (shift_mode)))
9861 count = GET_MODE_PRECISION (shift_mode) - 1;
9863 /* We simplify the tests below and elsewhere by converting
9864 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9865 `make_compound_operation' will convert it to an ASHIFTRT for
9866 those machines (such as VAX) that don't have an LSHIFTRT. */
9867 if (code == ASHIFTRT
9868 && val_signbit_known_clear_p (shift_mode,
9869 nonzero_bits (varop, shift_mode)))
9870 code = LSHIFTRT;
9872 if (((code == LSHIFTRT
9873 && HWI_COMPUTABLE_MODE_P (shift_mode)
9874 && !(nonzero_bits (varop, shift_mode) >> count))
9875 || (code == ASHIFT
9876 && HWI_COMPUTABLE_MODE_P (shift_mode)
9877 && !((nonzero_bits (varop, shift_mode) << count)
9878 & GET_MODE_MASK (shift_mode))))
9879 && !side_effects_p (varop))
9880 varop = const0_rtx;
9882 switch (GET_CODE (varop))
9884 case SIGN_EXTEND:
9885 case ZERO_EXTEND:
9886 case SIGN_EXTRACT:
9887 case ZERO_EXTRACT:
9888 new_rtx = expand_compound_operation (varop);
9889 if (new_rtx != varop)
9891 varop = new_rtx;
9892 continue;
9894 break;
9896 case MEM:
9897 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9898 minus the width of a smaller mode, we can do this with a
9899 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9900 if ((code == ASHIFTRT || code == LSHIFTRT)
9901 && ! mode_dependent_address_p (XEXP (varop, 0),
9902 MEM_ADDR_SPACE (varop))
9903 && ! MEM_VOLATILE_P (varop)
9904 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9905 MODE_INT, 1)) != BLKmode)
9907 new_rtx = adjust_address_nv (varop, tmode,
9908 BYTES_BIG_ENDIAN ? 0
9909 : count / BITS_PER_UNIT);
9911 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9912 : ZERO_EXTEND, mode, new_rtx);
9913 count = 0;
9914 continue;
9916 break;
9918 case SUBREG:
9919 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9920 the same number of words as what we've seen so far. Then store
9921 the widest mode in MODE. */
9922 if (subreg_lowpart_p (varop)
9923 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9924 > GET_MODE_SIZE (GET_MODE (varop)))
9925 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9926 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9927 == mode_words
9928 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9929 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9931 varop = SUBREG_REG (varop);
9932 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9933 mode = GET_MODE (varop);
9934 continue;
9936 break;
9938 case MULT:
9939 /* Some machines use MULT instead of ASHIFT because MULT
9940 is cheaper. But it is still better on those machines to
9941 merge two shifts into one. */
9942 if (CONST_INT_P (XEXP (varop, 1))
9943 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9945 varop
9946 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9947 XEXP (varop, 0),
9948 GEN_INT (exact_log2 (
9949 UINTVAL (XEXP (varop, 1)))));
9950 continue;
9952 break;
9954 case UDIV:
9955 /* Similar, for when divides are cheaper. */
9956 if (CONST_INT_P (XEXP (varop, 1))
9957 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9959 varop
9960 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9961 XEXP (varop, 0),
9962 GEN_INT (exact_log2 (
9963 UINTVAL (XEXP (varop, 1)))));
9964 continue;
9966 break;
9968 case ASHIFTRT:
9969 /* If we are extracting just the sign bit of an arithmetic
9970 right shift, that shift is not needed. However, the sign
9971 bit of a wider mode may be different from what would be
9972 interpreted as the sign bit in a narrower mode, so, if
9973 the result is narrower, don't discard the shift. */
9974 if (code == LSHIFTRT
9975 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9976 && (GET_MODE_BITSIZE (result_mode)
9977 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9979 varop = XEXP (varop, 0);
9980 continue;
9983 /* ... fall through ... */
9985 case LSHIFTRT:
9986 case ASHIFT:
9987 case ROTATE:
9988 /* Here we have two nested shifts. The result is usually the
9989 AND of a new shift with a mask. We compute the result below. */
9990 if (CONST_INT_P (XEXP (varop, 1))
9991 && INTVAL (XEXP (varop, 1)) >= 0
9992 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
9993 && HWI_COMPUTABLE_MODE_P (result_mode)
9994 && HWI_COMPUTABLE_MODE_P (mode)
9995 && !VECTOR_MODE_P (result_mode))
9997 enum rtx_code first_code = GET_CODE (varop);
9998 unsigned int first_count = INTVAL (XEXP (varop, 1));
9999 unsigned HOST_WIDE_INT mask;
10000 rtx mask_rtx;
10002 /* We have one common special case. We can't do any merging if
10003 the inner code is an ASHIFTRT of a smaller mode. However, if
10004 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10005 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10006 we can convert it to
10007 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10008 This simplifies certain SIGN_EXTEND operations. */
10009 if (code == ASHIFT && first_code == ASHIFTRT
10010 && count == (GET_MODE_PRECISION (result_mode)
10011 - GET_MODE_PRECISION (GET_MODE (varop))))
10013 /* C3 has the low-order C1 bits zero. */
10015 mask = GET_MODE_MASK (mode)
10016 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10018 varop = simplify_and_const_int (NULL_RTX, result_mode,
10019 XEXP (varop, 0), mask);
10020 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10021 varop, count);
10022 count = first_count;
10023 code = ASHIFTRT;
10024 continue;
10027 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10028 than C1 high-order bits equal to the sign bit, we can convert
10029 this to either an ASHIFT or an ASHIFTRT depending on the
10030 two counts.
10032 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10034 if (code == ASHIFTRT && first_code == ASHIFT
10035 && GET_MODE (varop) == shift_mode
10036 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10037 > first_count))
10039 varop = XEXP (varop, 0);
10040 count -= first_count;
10041 if (count < 0)
10043 count = -count;
10044 code = ASHIFT;
10047 continue;
10050 /* There are some cases we can't do. If CODE is ASHIFTRT,
10051 we can only do this if FIRST_CODE is also ASHIFTRT.
10053 We can't do the case when CODE is ROTATE and FIRST_CODE is
10054 ASHIFTRT.
10056 If the mode of this shift is not the mode of the outer shift,
10057 we can't do this if either shift is a right shift or ROTATE.
10059 Finally, we can't do any of these if the mode is too wide
10060 unless the codes are the same.
10062 Handle the case where the shift codes are the same
10063 first. */
10065 if (code == first_code)
10067 if (GET_MODE (varop) != result_mode
10068 && (code == ASHIFTRT || code == LSHIFTRT
10069 || code == ROTATE))
10070 break;
10072 count += first_count;
10073 varop = XEXP (varop, 0);
10074 continue;
10077 if (code == ASHIFTRT
10078 || (code == ROTATE && first_code == ASHIFTRT)
10079 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10080 || (GET_MODE (varop) != result_mode
10081 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10082 || first_code == ROTATE
10083 || code == ROTATE)))
10084 break;
10086 /* To compute the mask to apply after the shift, shift the
10087 nonzero bits of the inner shift the same way the
10088 outer shift will. */
10090 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10092 mask_rtx
10093 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10094 GEN_INT (count));
10096 /* Give up if we can't compute an outer operation to use. */
10097 if (mask_rtx == 0
10098 || !CONST_INT_P (mask_rtx)
10099 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10100 INTVAL (mask_rtx),
10101 result_mode, &complement_p))
10102 break;
10104 /* If the shifts are in the same direction, we add the
10105 counts. Otherwise, we subtract them. */
10106 if ((code == ASHIFTRT || code == LSHIFTRT)
10107 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10108 count += first_count;
10109 else
10110 count -= first_count;
10112 /* If COUNT is positive, the new shift is usually CODE,
10113 except for the two exceptions below, in which case it is
10114 FIRST_CODE. If the count is negative, FIRST_CODE should
10115 always be used */
10116 if (count > 0
10117 && ((first_code == ROTATE && code == ASHIFT)
10118 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10119 code = first_code;
10120 else if (count < 0)
10121 code = first_code, count = -count;
10123 varop = XEXP (varop, 0);
10124 continue;
10127 /* If we have (A << B << C) for any shift, we can convert this to
10128 (A << C << B). This wins if A is a constant. Only try this if
10129 B is not a constant. */
10131 else if (GET_CODE (varop) == code
10132 && CONST_INT_P (XEXP (varop, 0))
10133 && !CONST_INT_P (XEXP (varop, 1)))
10135 rtx new_rtx = simplify_const_binary_operation (code, mode,
10136 XEXP (varop, 0),
10137 GEN_INT (count));
10138 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10139 count = 0;
10140 continue;
10142 break;
10144 case NOT:
10145 if (VECTOR_MODE_P (mode))
10146 break;
10148 /* Make this fit the case below. */
10149 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10150 continue;
10152 case IOR:
10153 case AND:
10154 case XOR:
10155 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10156 with C the size of VAROP - 1 and the shift is logical if
10157 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10158 we have an (le X 0) operation. If we have an arithmetic shift
10159 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10160 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10162 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10163 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10164 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10165 && (code == LSHIFTRT || code == ASHIFTRT)
10166 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10167 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10169 count = 0;
10170 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10171 const0_rtx);
10173 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10174 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10176 continue;
10179 /* If we have (shift (logical)), move the logical to the outside
10180 to allow it to possibly combine with another logical and the
10181 shift to combine with another shift. This also canonicalizes to
10182 what a ZERO_EXTRACT looks like. Also, some machines have
10183 (and (shift)) insns. */
10185 if (CONST_INT_P (XEXP (varop, 1))
10186 /* We can't do this if we have (ashiftrt (xor)) and the
10187 constant has its sign bit set in shift_mode. */
10188 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10189 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10190 shift_mode))
10191 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10192 XEXP (varop, 1),
10193 GEN_INT (count))) != 0
10194 && CONST_INT_P (new_rtx)
10195 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10196 INTVAL (new_rtx), result_mode, &complement_p))
10198 varop = XEXP (varop, 0);
10199 continue;
10202 /* If we can't do that, try to simplify the shift in each arm of the
10203 logical expression, make a new logical expression, and apply
10204 the inverse distributive law. This also can't be done
10205 for some (ashiftrt (xor)). */
10206 if (CONST_INT_P (XEXP (varop, 1))
10207 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10208 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10209 shift_mode)))
10211 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10212 XEXP (varop, 0), count);
10213 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10214 XEXP (varop, 1), count);
10216 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10217 lhs, rhs);
10218 varop = apply_distributive_law (varop);
10220 count = 0;
10221 continue;
10223 break;
10225 case EQ:
10226 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10227 says that the sign bit can be tested, FOO has mode MODE, C is
10228 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10229 that may be nonzero. */
10230 if (code == LSHIFTRT
10231 && XEXP (varop, 1) == const0_rtx
10232 && GET_MODE (XEXP (varop, 0)) == result_mode
10233 && count == (GET_MODE_PRECISION (result_mode) - 1)
10234 && HWI_COMPUTABLE_MODE_P (result_mode)
10235 && STORE_FLAG_VALUE == -1
10236 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10237 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10238 &complement_p))
10240 varop = XEXP (varop, 0);
10241 count = 0;
10242 continue;
10244 break;
10246 case NEG:
10247 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10248 than the number of bits in the mode is equivalent to A. */
10249 if (code == LSHIFTRT
10250 && count == (GET_MODE_PRECISION (result_mode) - 1)
10251 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10253 varop = XEXP (varop, 0);
10254 count = 0;
10255 continue;
10258 /* NEG commutes with ASHIFT since it is multiplication. Move the
10259 NEG outside to allow shifts to combine. */
10260 if (code == ASHIFT
10261 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10262 &complement_p))
10264 varop = XEXP (varop, 0);
10265 continue;
10267 break;
10269 case PLUS:
10270 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10271 is one less than the number of bits in the mode is
10272 equivalent to (xor A 1). */
10273 if (code == LSHIFTRT
10274 && count == (GET_MODE_PRECISION (result_mode) - 1)
10275 && XEXP (varop, 1) == constm1_rtx
10276 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10277 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10278 &complement_p))
10280 count = 0;
10281 varop = XEXP (varop, 0);
10282 continue;
10285 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10286 that might be nonzero in BAR are those being shifted out and those
10287 bits are known zero in FOO, we can replace the PLUS with FOO.
10288 Similarly in the other operand order. This code occurs when
10289 we are computing the size of a variable-size array. */
10291 if ((code == ASHIFTRT || code == LSHIFTRT)
10292 && count < HOST_BITS_PER_WIDE_INT
10293 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10294 && (nonzero_bits (XEXP (varop, 1), result_mode)
10295 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10297 varop = XEXP (varop, 0);
10298 continue;
10300 else if ((code == ASHIFTRT || code == LSHIFTRT)
10301 && count < HOST_BITS_PER_WIDE_INT
10302 && HWI_COMPUTABLE_MODE_P (result_mode)
10303 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10304 >> count)
10305 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10306 & nonzero_bits (XEXP (varop, 1),
10307 result_mode)))
10309 varop = XEXP (varop, 1);
10310 continue;
10313 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10314 if (code == ASHIFT
10315 && CONST_INT_P (XEXP (varop, 1))
10316 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10317 XEXP (varop, 1),
10318 GEN_INT (count))) != 0
10319 && CONST_INT_P (new_rtx)
10320 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10321 INTVAL (new_rtx), result_mode, &complement_p))
10323 varop = XEXP (varop, 0);
10324 continue;
10327 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10328 signbit', and attempt to change the PLUS to an XOR and move it to
10329 the outer operation as is done above in the AND/IOR/XOR case
10330 leg for shift(logical). See details in logical handling above
10331 for reasoning in doing so. */
10332 if (code == LSHIFTRT
10333 && CONST_INT_P (XEXP (varop, 1))
10334 && mode_signbit_p (result_mode, XEXP (varop, 1))
10335 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10336 XEXP (varop, 1),
10337 GEN_INT (count))) != 0
10338 && CONST_INT_P (new_rtx)
10339 && merge_outer_ops (&outer_op, &outer_const, XOR,
10340 INTVAL (new_rtx), result_mode, &complement_p))
10342 varop = XEXP (varop, 0);
10343 continue;
10346 break;
10348 case MINUS:
10349 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10350 with C the size of VAROP - 1 and the shift is logical if
10351 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10352 we have a (gt X 0) operation. If the shift is arithmetic with
10353 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10354 we have a (neg (gt X 0)) operation. */
10356 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10357 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10358 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10359 && (code == LSHIFTRT || code == ASHIFTRT)
10360 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10361 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10362 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10364 count = 0;
10365 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10366 const0_rtx);
10368 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10369 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10371 continue;
10373 break;
10375 case TRUNCATE:
10376 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10377 if the truncate does not affect the value. */
10378 if (code == LSHIFTRT
10379 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10380 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10381 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10382 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10383 - GET_MODE_PRECISION (GET_MODE (varop)))))
10385 rtx varop_inner = XEXP (varop, 0);
10387 varop_inner
10388 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10389 XEXP (varop_inner, 0),
10390 GEN_INT
10391 (count + INTVAL (XEXP (varop_inner, 1))));
10392 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10393 count = 0;
10394 continue;
10396 break;
10398 default:
10399 break;
10402 break;
10405 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10406 outer_op, outer_const);
10408 /* We have now finished analyzing the shift. The result should be
10409 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10410 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10411 to the result of the shift. OUTER_CONST is the relevant constant,
10412 but we must turn off all bits turned off in the shift. */
10414 if (outer_op == UNKNOWN
10415 && orig_code == code && orig_count == count
10416 && varop == orig_varop
10417 && shift_mode == GET_MODE (varop))
10418 return NULL_RTX;
10420 /* Make a SUBREG if necessary. If we can't make it, fail. */
10421 varop = gen_lowpart (shift_mode, varop);
10422 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10423 return NULL_RTX;
10425 /* If we have an outer operation and we just made a shift, it is
10426 possible that we could have simplified the shift were it not
10427 for the outer operation. So try to do the simplification
10428 recursively. */
10430 if (outer_op != UNKNOWN)
10431 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10432 else
10433 x = NULL_RTX;
10435 if (x == NULL_RTX)
10436 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10438 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10439 turn off all the bits that the shift would have turned off. */
10440 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10441 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10442 GET_MODE_MASK (result_mode) >> orig_count);
10444 /* Do the remainder of the processing in RESULT_MODE. */
10445 x = gen_lowpart_or_truncate (result_mode, x);
10447 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10448 operation. */
10449 if (complement_p)
10450 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10452 if (outer_op != UNKNOWN)
10454 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10455 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10456 outer_const = trunc_int_for_mode (outer_const, result_mode);
10458 if (outer_op == AND)
10459 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10460 else if (outer_op == SET)
10462 /* This means that we have determined that the result is
10463 equivalent to a constant. This should be rare. */
10464 if (!side_effects_p (x))
10465 x = GEN_INT (outer_const);
10467 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10468 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10469 else
10470 x = simplify_gen_binary (outer_op, result_mode, x,
10471 GEN_INT (outer_const));
10474 return x;
10477 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10478 The result of the shift is RESULT_MODE. If we cannot simplify it,
10479 return X or, if it is NULL, synthesize the expression with
10480 simplify_gen_binary. Otherwise, return a simplified value.
10482 The shift is normally computed in the widest mode we find in VAROP, as
10483 long as it isn't a different number of words than RESULT_MODE. Exceptions
10484 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10486 static rtx
10487 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10488 rtx varop, int count)
10490 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10491 if (tem)
10492 return tem;
10494 if (!x)
10495 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10496 if (GET_MODE (x) != result_mode)
10497 x = gen_lowpart (result_mode, x);
10498 return x;
10502 /* Like recog, but we receive the address of a pointer to a new pattern.
10503 We try to match the rtx that the pointer points to.
10504 If that fails, we may try to modify or replace the pattern,
10505 storing the replacement into the same pointer object.
10507 Modifications include deletion or addition of CLOBBERs.
10509 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10510 the CLOBBERs are placed.
10512 The value is the final insn code from the pattern ultimately matched,
10513 or -1. */
10515 static int
10516 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10518 rtx pat = *pnewpat;
10519 rtx pat_without_clobbers;
10520 int insn_code_number;
10521 int num_clobbers_to_add = 0;
10522 int i;
10523 rtx notes = NULL_RTX;
10524 rtx old_notes, old_pat;
10525 int old_icode;
10527 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10528 we use to indicate that something didn't match. If we find such a
10529 thing, force rejection. */
10530 if (GET_CODE (pat) == PARALLEL)
10531 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10532 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10533 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10534 return -1;
10536 old_pat = PATTERN (insn);
10537 old_notes = REG_NOTES (insn);
10538 PATTERN (insn) = pat;
10539 REG_NOTES (insn) = NULL_RTX;
10541 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10542 if (dump_file && (dump_flags & TDF_DETAILS))
10544 if (insn_code_number < 0)
10545 fputs ("Failed to match this instruction:\n", dump_file);
10546 else
10547 fputs ("Successfully matched this instruction:\n", dump_file);
10548 print_rtl_single (dump_file, pat);
10551 /* If it isn't, there is the possibility that we previously had an insn
10552 that clobbered some register as a side effect, but the combined
10553 insn doesn't need to do that. So try once more without the clobbers
10554 unless this represents an ASM insn. */
10556 if (insn_code_number < 0 && ! check_asm_operands (pat)
10557 && GET_CODE (pat) == PARALLEL)
10559 int pos;
10561 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10562 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10564 if (i != pos)
10565 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10566 pos++;
10569 SUBST_INT (XVECLEN (pat, 0), pos);
10571 if (pos == 1)
10572 pat = XVECEXP (pat, 0, 0);
10574 PATTERN (insn) = pat;
10575 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10576 if (dump_file && (dump_flags & TDF_DETAILS))
10578 if (insn_code_number < 0)
10579 fputs ("Failed to match this instruction:\n", dump_file);
10580 else
10581 fputs ("Successfully matched this instruction:\n", dump_file);
10582 print_rtl_single (dump_file, pat);
10586 pat_without_clobbers = pat;
10588 PATTERN (insn) = old_pat;
10589 REG_NOTES (insn) = old_notes;
10591 /* Recognize all noop sets, these will be killed by followup pass. */
10592 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10593 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10595 /* If we had any clobbers to add, make a new pattern than contains
10596 them. Then check to make sure that all of them are dead. */
10597 if (num_clobbers_to_add)
10599 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10600 rtvec_alloc (GET_CODE (pat) == PARALLEL
10601 ? (XVECLEN (pat, 0)
10602 + num_clobbers_to_add)
10603 : num_clobbers_to_add + 1));
10605 if (GET_CODE (pat) == PARALLEL)
10606 for (i = 0; i < XVECLEN (pat, 0); i++)
10607 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10608 else
10609 XVECEXP (newpat, 0, 0) = pat;
10611 add_clobbers (newpat, insn_code_number);
10613 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10614 i < XVECLEN (newpat, 0); i++)
10616 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10617 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10618 return -1;
10619 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10621 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10622 notes = alloc_reg_note (REG_UNUSED,
10623 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10626 pat = newpat;
10629 if (insn_code_number >= 0
10630 && insn_code_number != NOOP_MOVE_INSN_CODE)
10632 old_pat = PATTERN (insn);
10633 old_notes = REG_NOTES (insn);
10634 old_icode = INSN_CODE (insn);
10635 PATTERN (insn) = pat;
10636 REG_NOTES (insn) = notes;
10638 /* Allow targets to reject combined insn. */
10639 if (!targetm.legitimate_combined_insn (insn))
10641 if (dump_file && (dump_flags & TDF_DETAILS))
10642 fputs ("Instruction not appropriate for target.",
10643 dump_file);
10645 /* Callers expect recog_for_combine to strip
10646 clobbers from the pattern on failure. */
10647 pat = pat_without_clobbers;
10648 notes = NULL_RTX;
10650 insn_code_number = -1;
10653 PATTERN (insn) = old_pat;
10654 REG_NOTES (insn) = old_notes;
10655 INSN_CODE (insn) = old_icode;
10658 *pnewpat = pat;
10659 *pnotes = notes;
10661 return insn_code_number;
10664 /* Like gen_lowpart_general but for use by combine. In combine it
10665 is not possible to create any new pseudoregs. However, it is
10666 safe to create invalid memory addresses, because combine will
10667 try to recognize them and all they will do is make the combine
10668 attempt fail.
10670 If for some reason this cannot do its job, an rtx
10671 (clobber (const_int 0)) is returned.
10672 An insn containing that will not be recognized. */
10674 static rtx
10675 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10677 enum machine_mode imode = GET_MODE (x);
10678 unsigned int osize = GET_MODE_SIZE (omode);
10679 unsigned int isize = GET_MODE_SIZE (imode);
10680 rtx result;
10682 if (omode == imode)
10683 return x;
10685 /* We can only support MODE being wider than a word if X is a
10686 constant integer or has a mode the same size. */
10687 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10688 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10689 goto fail;
10691 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10692 won't know what to do. So we will strip off the SUBREG here and
10693 process normally. */
10694 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10696 x = SUBREG_REG (x);
10698 /* For use in case we fall down into the address adjustments
10699 further below, we need to adjust the known mode and size of
10700 x; imode and isize, since we just adjusted x. */
10701 imode = GET_MODE (x);
10703 if (imode == omode)
10704 return x;
10706 isize = GET_MODE_SIZE (imode);
10709 result = gen_lowpart_common (omode, x);
10711 if (result)
10712 return result;
10714 if (MEM_P (x))
10716 int offset = 0;
10718 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10719 address. */
10720 if (MEM_VOLATILE_P (x)
10721 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10722 goto fail;
10724 /* If we want to refer to something bigger than the original memref,
10725 generate a paradoxical subreg instead. That will force a reload
10726 of the original memref X. */
10727 if (isize < osize)
10728 return gen_rtx_SUBREG (omode, x, 0);
10730 if (WORDS_BIG_ENDIAN)
10731 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10733 /* Adjust the address so that the address-after-the-data is
10734 unchanged. */
10735 if (BYTES_BIG_ENDIAN)
10736 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10738 return adjust_address_nv (x, omode, offset);
10741 /* If X is a comparison operator, rewrite it in a new mode. This
10742 probably won't match, but may allow further simplifications. */
10743 else if (COMPARISON_P (x))
10744 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10746 /* If we couldn't simplify X any other way, just enclose it in a
10747 SUBREG. Normally, this SUBREG won't match, but some patterns may
10748 include an explicit SUBREG or we may simplify it further in combine. */
10749 else
10751 int offset = 0;
10752 rtx res;
10754 offset = subreg_lowpart_offset (omode, imode);
10755 if (imode == VOIDmode)
10757 imode = int_mode_for_mode (omode);
10758 x = gen_lowpart_common (imode, x);
10759 if (x == NULL)
10760 goto fail;
10762 res = simplify_gen_subreg (omode, x, imode, offset);
10763 if (res)
10764 return res;
10767 fail:
10768 return gen_rtx_CLOBBER (omode, const0_rtx);
10771 /* Try to simplify a comparison between OP0 and a constant OP1,
10772 where CODE is the comparison code that will be tested, into a
10773 (CODE OP0 const0_rtx) form.
10775 The result is a possibly different comparison code to use.
10776 *POP1 may be updated. */
10778 static enum rtx_code
10779 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10781 enum machine_mode mode = GET_MODE (op0);
10782 unsigned int mode_width = GET_MODE_PRECISION (mode);
10783 HOST_WIDE_INT const_op = INTVAL (*pop1);
10785 /* Get the constant we are comparing against and turn off all bits
10786 not on in our mode. */
10787 if (mode != VOIDmode)
10788 const_op = trunc_int_for_mode (const_op, mode);
10790 /* If we are comparing against a constant power of two and the value
10791 being compared can only have that single bit nonzero (e.g., it was
10792 `and'ed with that bit), we can replace this with a comparison
10793 with zero. */
10794 if (const_op
10795 && (code == EQ || code == NE || code == GE || code == GEU
10796 || code == LT || code == LTU)
10797 && mode_width <= HOST_BITS_PER_WIDE_INT
10798 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
10799 && (nonzero_bits (op0, mode)
10800 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
10802 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10803 const_op = 0;
10806 /* Similarly, if we are comparing a value known to be either -1 or
10807 0 with -1, change it to the opposite comparison against zero. */
10808 if (const_op == -1
10809 && (code == EQ || code == NE || code == GT || code == LE
10810 || code == GEU || code == LTU)
10811 && num_sign_bit_copies (op0, mode) == mode_width)
10813 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10814 const_op = 0;
10817 /* Do some canonicalizations based on the comparison code. We prefer
10818 comparisons against zero and then prefer equality comparisons.
10819 If we can reduce the size of a constant, we will do that too. */
10820 switch (code)
10822 case LT:
10823 /* < C is equivalent to <= (C - 1) */
10824 if (const_op > 0)
10826 const_op -= 1;
10827 code = LE;
10828 /* ... fall through to LE case below. */
10830 else
10831 break;
10833 case LE:
10834 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10835 if (const_op < 0)
10837 const_op += 1;
10838 code = LT;
10841 /* If we are doing a <= 0 comparison on a value known to have
10842 a zero sign bit, we can replace this with == 0. */
10843 else if (const_op == 0
10844 && mode_width <= HOST_BITS_PER_WIDE_INT
10845 && (nonzero_bits (op0, mode)
10846 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10847 == 0)
10848 code = EQ;
10849 break;
10851 case GE:
10852 /* >= C is equivalent to > (C - 1). */
10853 if (const_op > 0)
10855 const_op -= 1;
10856 code = GT;
10857 /* ... fall through to GT below. */
10859 else
10860 break;
10862 case GT:
10863 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10864 if (const_op < 0)
10866 const_op += 1;
10867 code = GE;
10870 /* If we are doing a > 0 comparison on a value known to have
10871 a zero sign bit, we can replace this with != 0. */
10872 else if (const_op == 0
10873 && mode_width <= HOST_BITS_PER_WIDE_INT
10874 && (nonzero_bits (op0, mode)
10875 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10876 == 0)
10877 code = NE;
10878 break;
10880 case LTU:
10881 /* < C is equivalent to <= (C - 1). */
10882 if (const_op > 0)
10884 const_op -= 1;
10885 code = LEU;
10886 /* ... fall through ... */
10888 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10889 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10890 && (unsigned HOST_WIDE_INT) const_op
10891 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10893 const_op = 0;
10894 code = GE;
10895 break;
10897 else
10898 break;
10900 case LEU:
10901 /* unsigned <= 0 is equivalent to == 0 */
10902 if (const_op == 0)
10903 code = EQ;
10904 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10905 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10906 && (unsigned HOST_WIDE_INT) const_op
10907 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10909 const_op = 0;
10910 code = GE;
10912 break;
10914 case GEU:
10915 /* >= C is equivalent to > (C - 1). */
10916 if (const_op > 1)
10918 const_op -= 1;
10919 code = GTU;
10920 /* ... fall through ... */
10923 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10924 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10925 && (unsigned HOST_WIDE_INT) const_op
10926 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10928 const_op = 0;
10929 code = LT;
10930 break;
10932 else
10933 break;
10935 case GTU:
10936 /* unsigned > 0 is equivalent to != 0 */
10937 if (const_op == 0)
10938 code = NE;
10939 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10940 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10941 && (unsigned HOST_WIDE_INT) const_op
10942 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10944 const_op = 0;
10945 code = LT;
10947 break;
10949 default:
10950 break;
10953 *pop1 = GEN_INT (const_op);
10954 return code;
10957 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10958 comparison code that will be tested.
10960 The result is a possibly different comparison code to use. *POP0 and
10961 *POP1 may be updated.
10963 It is possible that we might detect that a comparison is either always
10964 true or always false. However, we do not perform general constant
10965 folding in combine, so this knowledge isn't useful. Such tautologies
10966 should have been detected earlier. Hence we ignore all such cases. */
10968 static enum rtx_code
10969 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10971 rtx op0 = *pop0;
10972 rtx op1 = *pop1;
10973 rtx tem, tem1;
10974 int i;
10975 enum machine_mode mode, tmode;
10977 /* Try a few ways of applying the same transformation to both operands. */
10978 while (1)
10980 #ifndef WORD_REGISTER_OPERATIONS
10981 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10982 so check specially. */
10983 if (code != GTU && code != GEU && code != LTU && code != LEU
10984 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10985 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10986 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10987 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10988 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10989 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10990 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10991 && CONST_INT_P (XEXP (op0, 1))
10992 && XEXP (op0, 1) == XEXP (op1, 1)
10993 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10994 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10995 && (INTVAL (XEXP (op0, 1))
10996 == (GET_MODE_PRECISION (GET_MODE (op0))
10997 - (GET_MODE_PRECISION
10998 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11000 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11001 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11003 #endif
11005 /* If both operands are the same constant shift, see if we can ignore the
11006 shift. We can if the shift is a rotate or if the bits shifted out of
11007 this shift are known to be zero for both inputs and if the type of
11008 comparison is compatible with the shift. */
11009 if (GET_CODE (op0) == GET_CODE (op1)
11010 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
11011 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11012 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11013 && (code != GT && code != LT && code != GE && code != LE))
11014 || (GET_CODE (op0) == ASHIFTRT
11015 && (code != GTU && code != LTU
11016 && code != GEU && code != LEU)))
11017 && CONST_INT_P (XEXP (op0, 1))
11018 && INTVAL (XEXP (op0, 1)) >= 0
11019 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11020 && XEXP (op0, 1) == XEXP (op1, 1))
11022 enum machine_mode mode = GET_MODE (op0);
11023 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11024 int shift_count = INTVAL (XEXP (op0, 1));
11026 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11027 mask &= (mask >> shift_count) << shift_count;
11028 else if (GET_CODE (op0) == ASHIFT)
11029 mask = (mask & (mask << shift_count)) >> shift_count;
11031 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11032 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11033 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11034 else
11035 break;
11038 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11039 SUBREGs are of the same mode, and, in both cases, the AND would
11040 be redundant if the comparison was done in the narrower mode,
11041 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11042 and the operand's possibly nonzero bits are 0xffffff01; in that case
11043 if we only care about QImode, we don't need the AND). This case
11044 occurs if the output mode of an scc insn is not SImode and
11045 STORE_FLAG_VALUE == 1 (e.g., the 386).
11047 Similarly, check for a case where the AND's are ZERO_EXTEND
11048 operations from some narrower mode even though a SUBREG is not
11049 present. */
11051 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11052 && CONST_INT_P (XEXP (op0, 1))
11053 && CONST_INT_P (XEXP (op1, 1)))
11055 rtx inner_op0 = XEXP (op0, 0);
11056 rtx inner_op1 = XEXP (op1, 0);
11057 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11058 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11059 int changed = 0;
11061 if (paradoxical_subreg_p (inner_op0)
11062 && GET_CODE (inner_op1) == SUBREG
11063 && (GET_MODE (SUBREG_REG (inner_op0))
11064 == GET_MODE (SUBREG_REG (inner_op1)))
11065 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11066 <= HOST_BITS_PER_WIDE_INT)
11067 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11068 GET_MODE (SUBREG_REG (inner_op0)))))
11069 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11070 GET_MODE (SUBREG_REG (inner_op1))))))
11072 op0 = SUBREG_REG (inner_op0);
11073 op1 = SUBREG_REG (inner_op1);
11075 /* The resulting comparison is always unsigned since we masked
11076 off the original sign bit. */
11077 code = unsigned_condition (code);
11079 changed = 1;
11082 else if (c0 == c1)
11083 for (tmode = GET_CLASS_NARROWEST_MODE
11084 (GET_MODE_CLASS (GET_MODE (op0)));
11085 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11086 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11088 op0 = gen_lowpart (tmode, inner_op0);
11089 op1 = gen_lowpart (tmode, inner_op1);
11090 code = unsigned_condition (code);
11091 changed = 1;
11092 break;
11095 if (! changed)
11096 break;
11099 /* If both operands are NOT, we can strip off the outer operation
11100 and adjust the comparison code for swapped operands; similarly for
11101 NEG, except that this must be an equality comparison. */
11102 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11103 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11104 && (code == EQ || code == NE)))
11105 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11107 else
11108 break;
11111 /* If the first operand is a constant, swap the operands and adjust the
11112 comparison code appropriately, but don't do this if the second operand
11113 is already a constant integer. */
11114 if (swap_commutative_operands_p (op0, op1))
11116 tem = op0, op0 = op1, op1 = tem;
11117 code = swap_condition (code);
11120 /* We now enter a loop during which we will try to simplify the comparison.
11121 For the most part, we only are concerned with comparisons with zero,
11122 but some things may really be comparisons with zero but not start
11123 out looking that way. */
11125 while (CONST_INT_P (op1))
11127 enum machine_mode mode = GET_MODE (op0);
11128 unsigned int mode_width = GET_MODE_PRECISION (mode);
11129 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11130 int equality_comparison_p;
11131 int sign_bit_comparison_p;
11132 int unsigned_comparison_p;
11133 HOST_WIDE_INT const_op;
11135 /* We only want to handle integral modes. This catches VOIDmode,
11136 CCmode, and the floating-point modes. An exception is that we
11137 can handle VOIDmode if OP0 is a COMPARE or a comparison
11138 operation. */
11140 if (GET_MODE_CLASS (mode) != MODE_INT
11141 && ! (mode == VOIDmode
11142 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11143 break;
11145 /* Try to simplify the compare to constant, possibly changing the
11146 comparison op, and/or changing op1 to zero. */
11147 code = simplify_compare_const (code, op0, &op1);
11148 const_op = INTVAL (op1);
11150 /* Compute some predicates to simplify code below. */
11152 equality_comparison_p = (code == EQ || code == NE);
11153 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11154 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11155 || code == GEU);
11157 /* If this is a sign bit comparison and we can do arithmetic in
11158 MODE, say that we will only be needing the sign bit of OP0. */
11159 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11160 op0 = force_to_mode (op0, mode,
11161 (unsigned HOST_WIDE_INT) 1
11162 << (GET_MODE_PRECISION (mode) - 1),
11165 /* Now try cases based on the opcode of OP0. If none of the cases
11166 does a "continue", we exit this loop immediately after the
11167 switch. */
11169 switch (GET_CODE (op0))
11171 case ZERO_EXTRACT:
11172 /* If we are extracting a single bit from a variable position in
11173 a constant that has only a single bit set and are comparing it
11174 with zero, we can convert this into an equality comparison
11175 between the position and the location of the single bit. */
11176 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11177 have already reduced the shift count modulo the word size. */
11178 if (!SHIFT_COUNT_TRUNCATED
11179 && CONST_INT_P (XEXP (op0, 0))
11180 && XEXP (op0, 1) == const1_rtx
11181 && equality_comparison_p && const_op == 0
11182 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11184 if (BITS_BIG_ENDIAN)
11185 i = BITS_PER_WORD - 1 - i;
11187 op0 = XEXP (op0, 2);
11188 op1 = GEN_INT (i);
11189 const_op = i;
11191 /* Result is nonzero iff shift count is equal to I. */
11192 code = reverse_condition (code);
11193 continue;
11196 /* ... fall through ... */
11198 case SIGN_EXTRACT:
11199 tem = expand_compound_operation (op0);
11200 if (tem != op0)
11202 op0 = tem;
11203 continue;
11205 break;
11207 case NOT:
11208 /* If testing for equality, we can take the NOT of the constant. */
11209 if (equality_comparison_p
11210 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11212 op0 = XEXP (op0, 0);
11213 op1 = tem;
11214 continue;
11217 /* If just looking at the sign bit, reverse the sense of the
11218 comparison. */
11219 if (sign_bit_comparison_p)
11221 op0 = XEXP (op0, 0);
11222 code = (code == GE ? LT : GE);
11223 continue;
11225 break;
11227 case NEG:
11228 /* If testing for equality, we can take the NEG of the constant. */
11229 if (equality_comparison_p
11230 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11232 op0 = XEXP (op0, 0);
11233 op1 = tem;
11234 continue;
11237 /* The remaining cases only apply to comparisons with zero. */
11238 if (const_op != 0)
11239 break;
11241 /* When X is ABS or is known positive,
11242 (neg X) is < 0 if and only if X != 0. */
11244 if (sign_bit_comparison_p
11245 && (GET_CODE (XEXP (op0, 0)) == ABS
11246 || (mode_width <= HOST_BITS_PER_WIDE_INT
11247 && (nonzero_bits (XEXP (op0, 0), mode)
11248 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11249 == 0)))
11251 op0 = XEXP (op0, 0);
11252 code = (code == LT ? NE : EQ);
11253 continue;
11256 /* If we have NEG of something whose two high-order bits are the
11257 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11258 if (num_sign_bit_copies (op0, mode) >= 2)
11260 op0 = XEXP (op0, 0);
11261 code = swap_condition (code);
11262 continue;
11264 break;
11266 case ROTATE:
11267 /* If we are testing equality and our count is a constant, we
11268 can perform the inverse operation on our RHS. */
11269 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11270 && (tem = simplify_binary_operation (ROTATERT, mode,
11271 op1, XEXP (op0, 1))) != 0)
11273 op0 = XEXP (op0, 0);
11274 op1 = tem;
11275 continue;
11278 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11279 a particular bit. Convert it to an AND of a constant of that
11280 bit. This will be converted into a ZERO_EXTRACT. */
11281 if (const_op == 0 && sign_bit_comparison_p
11282 && CONST_INT_P (XEXP (op0, 1))
11283 && mode_width <= HOST_BITS_PER_WIDE_INT)
11285 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11286 ((unsigned HOST_WIDE_INT) 1
11287 << (mode_width - 1
11288 - INTVAL (XEXP (op0, 1)))));
11289 code = (code == LT ? NE : EQ);
11290 continue;
11293 /* Fall through. */
11295 case ABS:
11296 /* ABS is ignorable inside an equality comparison with zero. */
11297 if (const_op == 0 && equality_comparison_p)
11299 op0 = XEXP (op0, 0);
11300 continue;
11302 break;
11304 case SIGN_EXTEND:
11305 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11306 (compare FOO CONST) if CONST fits in FOO's mode and we
11307 are either testing inequality or have an unsigned
11308 comparison with ZERO_EXTEND or a signed comparison with
11309 SIGN_EXTEND. But don't do it if we don't have a compare
11310 insn of the given mode, since we'd have to revert it
11311 later on, and then we wouldn't know whether to sign- or
11312 zero-extend. */
11313 mode = GET_MODE (XEXP (op0, 0));
11314 if (GET_MODE_CLASS (mode) == MODE_INT
11315 && ! unsigned_comparison_p
11316 && HWI_COMPUTABLE_MODE_P (mode)
11317 && trunc_int_for_mode (const_op, mode) == const_op
11318 && have_insn_for (COMPARE, mode))
11320 op0 = XEXP (op0, 0);
11321 continue;
11323 break;
11325 case SUBREG:
11326 /* Check for the case where we are comparing A - C1 with C2, that is
11328 (subreg:MODE (plus (A) (-C1))) op (C2)
11330 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11331 comparison in the wider mode. One of the following two conditions
11332 must be true in order for this to be valid:
11334 1. The mode extension results in the same bit pattern being added
11335 on both sides and the comparison is equality or unsigned. As
11336 C2 has been truncated to fit in MODE, the pattern can only be
11337 all 0s or all 1s.
11339 2. The mode extension results in the sign bit being copied on
11340 each side.
11342 The difficulty here is that we have predicates for A but not for
11343 (A - C1) so we need to check that C1 is within proper bounds so
11344 as to perturbate A as little as possible. */
11346 if (mode_width <= HOST_BITS_PER_WIDE_INT
11347 && subreg_lowpart_p (op0)
11348 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11349 && GET_CODE (SUBREG_REG (op0)) == PLUS
11350 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11352 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11353 rtx a = XEXP (SUBREG_REG (op0), 0);
11354 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11356 if ((c1 > 0
11357 && (unsigned HOST_WIDE_INT) c1
11358 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11359 && (equality_comparison_p || unsigned_comparison_p)
11360 /* (A - C1) zero-extends if it is positive and sign-extends
11361 if it is negative, C2 both zero- and sign-extends. */
11362 && ((0 == (nonzero_bits (a, inner_mode)
11363 & ~GET_MODE_MASK (mode))
11364 && const_op >= 0)
11365 /* (A - C1) sign-extends if it is positive and 1-extends
11366 if it is negative, C2 both sign- and 1-extends. */
11367 || (num_sign_bit_copies (a, inner_mode)
11368 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11369 - mode_width)
11370 && const_op < 0)))
11371 || ((unsigned HOST_WIDE_INT) c1
11372 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11373 /* (A - C1) always sign-extends, like C2. */
11374 && num_sign_bit_copies (a, inner_mode)
11375 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11376 - (mode_width - 1))))
11378 op0 = SUBREG_REG (op0);
11379 continue;
11383 /* If the inner mode is narrower and we are extracting the low part,
11384 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11385 if (subreg_lowpart_p (op0)
11386 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11387 /* Fall through */ ;
11388 else
11389 break;
11391 /* ... fall through ... */
11393 case ZERO_EXTEND:
11394 mode = GET_MODE (XEXP (op0, 0));
11395 if (GET_MODE_CLASS (mode) == MODE_INT
11396 && (unsigned_comparison_p || equality_comparison_p)
11397 && HWI_COMPUTABLE_MODE_P (mode)
11398 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11399 && const_op >= 0
11400 && have_insn_for (COMPARE, mode))
11402 op0 = XEXP (op0, 0);
11403 continue;
11405 break;
11407 case PLUS:
11408 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11409 this for equality comparisons due to pathological cases involving
11410 overflows. */
11411 if (equality_comparison_p
11412 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11413 op1, XEXP (op0, 1))))
11415 op0 = XEXP (op0, 0);
11416 op1 = tem;
11417 continue;
11420 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11421 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11422 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11424 op0 = XEXP (XEXP (op0, 0), 0);
11425 code = (code == LT ? EQ : NE);
11426 continue;
11428 break;
11430 case MINUS:
11431 /* We used to optimize signed comparisons against zero, but that
11432 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11433 arrive here as equality comparisons, or (GEU, LTU) are
11434 optimized away. No need to special-case them. */
11436 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11437 (eq B (minus A C)), whichever simplifies. We can only do
11438 this for equality comparisons due to pathological cases involving
11439 overflows. */
11440 if (equality_comparison_p
11441 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11442 XEXP (op0, 1), op1)))
11444 op0 = XEXP (op0, 0);
11445 op1 = tem;
11446 continue;
11449 if (equality_comparison_p
11450 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11451 XEXP (op0, 0), op1)))
11453 op0 = XEXP (op0, 1);
11454 op1 = tem;
11455 continue;
11458 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11459 of bits in X minus 1, is one iff X > 0. */
11460 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11461 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11462 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11463 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11465 op0 = XEXP (op0, 1);
11466 code = (code == GE ? LE : GT);
11467 continue;
11469 break;
11471 case XOR:
11472 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11473 if C is zero or B is a constant. */
11474 if (equality_comparison_p
11475 && 0 != (tem = simplify_binary_operation (XOR, mode,
11476 XEXP (op0, 1), op1)))
11478 op0 = XEXP (op0, 0);
11479 op1 = tem;
11480 continue;
11482 break;
11484 case EQ: case NE:
11485 case UNEQ: case LTGT:
11486 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11487 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11488 case UNORDERED: case ORDERED:
11489 /* We can't do anything if OP0 is a condition code value, rather
11490 than an actual data value. */
11491 if (const_op != 0
11492 || CC0_P (XEXP (op0, 0))
11493 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11494 break;
11496 /* Get the two operands being compared. */
11497 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11498 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11499 else
11500 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11502 /* Check for the cases where we simply want the result of the
11503 earlier test or the opposite of that result. */
11504 if (code == NE || code == EQ
11505 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11506 && (code == LT || code == GE)))
11508 enum rtx_code new_code;
11509 if (code == LT || code == NE)
11510 new_code = GET_CODE (op0);
11511 else
11512 new_code = reversed_comparison_code (op0, NULL);
11514 if (new_code != UNKNOWN)
11516 code = new_code;
11517 op0 = tem;
11518 op1 = tem1;
11519 continue;
11522 break;
11524 case IOR:
11525 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11526 iff X <= 0. */
11527 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11528 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11529 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11531 op0 = XEXP (op0, 1);
11532 code = (code == GE ? GT : LE);
11533 continue;
11535 break;
11537 case AND:
11538 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11539 will be converted to a ZERO_EXTRACT later. */
11540 if (const_op == 0 && equality_comparison_p
11541 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11542 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11544 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11545 XEXP (XEXP (op0, 0), 1));
11546 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11547 continue;
11550 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11551 zero and X is a comparison and C1 and C2 describe only bits set
11552 in STORE_FLAG_VALUE, we can compare with X. */
11553 if (const_op == 0 && equality_comparison_p
11554 && mode_width <= HOST_BITS_PER_WIDE_INT
11555 && CONST_INT_P (XEXP (op0, 1))
11556 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11557 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11558 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11559 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11561 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11562 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11563 if ((~STORE_FLAG_VALUE & mask) == 0
11564 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11565 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11566 && COMPARISON_P (tem))))
11568 op0 = XEXP (XEXP (op0, 0), 0);
11569 continue;
11573 /* If we are doing an equality comparison of an AND of a bit equal
11574 to the sign bit, replace this with a LT or GE comparison of
11575 the underlying value. */
11576 if (equality_comparison_p
11577 && const_op == 0
11578 && CONST_INT_P (XEXP (op0, 1))
11579 && mode_width <= HOST_BITS_PER_WIDE_INT
11580 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11581 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11583 op0 = XEXP (op0, 0);
11584 code = (code == EQ ? GE : LT);
11585 continue;
11588 /* If this AND operation is really a ZERO_EXTEND from a narrower
11589 mode, the constant fits within that mode, and this is either an
11590 equality or unsigned comparison, try to do this comparison in
11591 the narrower mode.
11593 Note that in:
11595 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11596 -> (ne:DI (reg:SI 4) (const_int 0))
11598 unless TRULY_NOOP_TRUNCATION allows it or the register is
11599 known to hold a value of the required mode the
11600 transformation is invalid. */
11601 if ((equality_comparison_p || unsigned_comparison_p)
11602 && CONST_INT_P (XEXP (op0, 1))
11603 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11604 & GET_MODE_MASK (mode))
11605 + 1)) >= 0
11606 && const_op >> i == 0
11607 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11608 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11609 || (REG_P (XEXP (op0, 0))
11610 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11612 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11613 continue;
11616 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11617 fits in both M1 and M2 and the SUBREG is either paradoxical
11618 or represents the low part, permute the SUBREG and the AND
11619 and try again. */
11620 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11622 unsigned HOST_WIDE_INT c1;
11623 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11624 /* Require an integral mode, to avoid creating something like
11625 (AND:SF ...). */
11626 if (SCALAR_INT_MODE_P (tmode)
11627 /* It is unsafe to commute the AND into the SUBREG if the
11628 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11629 not defined. As originally written the upper bits
11630 have a defined value due to the AND operation.
11631 However, if we commute the AND inside the SUBREG then
11632 they no longer have defined values and the meaning of
11633 the code has been changed. */
11634 && (0
11635 #ifdef WORD_REGISTER_OPERATIONS
11636 || (mode_width > GET_MODE_PRECISION (tmode)
11637 && mode_width <= BITS_PER_WORD)
11638 #endif
11639 || (mode_width <= GET_MODE_PRECISION (tmode)
11640 && subreg_lowpart_p (XEXP (op0, 0))))
11641 && CONST_INT_P (XEXP (op0, 1))
11642 && mode_width <= HOST_BITS_PER_WIDE_INT
11643 && HWI_COMPUTABLE_MODE_P (tmode)
11644 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11645 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11646 && c1 != mask
11647 && c1 != GET_MODE_MASK (tmode))
11649 op0 = simplify_gen_binary (AND, tmode,
11650 SUBREG_REG (XEXP (op0, 0)),
11651 gen_int_mode (c1, tmode));
11652 op0 = gen_lowpart (mode, op0);
11653 continue;
11657 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11658 if (const_op == 0 && equality_comparison_p
11659 && XEXP (op0, 1) == const1_rtx
11660 && GET_CODE (XEXP (op0, 0)) == NOT)
11662 op0 = simplify_and_const_int (NULL_RTX, mode,
11663 XEXP (XEXP (op0, 0), 0), 1);
11664 code = (code == NE ? EQ : NE);
11665 continue;
11668 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11669 (eq (and (lshiftrt X) 1) 0).
11670 Also handle the case where (not X) is expressed using xor. */
11671 if (const_op == 0 && equality_comparison_p
11672 && XEXP (op0, 1) == const1_rtx
11673 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11675 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11676 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11678 if (GET_CODE (shift_op) == NOT
11679 || (GET_CODE (shift_op) == XOR
11680 && CONST_INT_P (XEXP (shift_op, 1))
11681 && CONST_INT_P (shift_count)
11682 && HWI_COMPUTABLE_MODE_P (mode)
11683 && (UINTVAL (XEXP (shift_op, 1))
11684 == (unsigned HOST_WIDE_INT) 1
11685 << INTVAL (shift_count))))
11688 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11689 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11690 code = (code == NE ? EQ : NE);
11691 continue;
11694 break;
11696 case ASHIFT:
11697 /* If we have (compare (ashift FOO N) (const_int C)) and
11698 the high order N bits of FOO (N+1 if an inequality comparison)
11699 are known to be zero, we can do this by comparing FOO with C
11700 shifted right N bits so long as the low-order N bits of C are
11701 zero. */
11702 if (CONST_INT_P (XEXP (op0, 1))
11703 && INTVAL (XEXP (op0, 1)) >= 0
11704 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11705 < HOST_BITS_PER_WIDE_INT)
11706 && (((unsigned HOST_WIDE_INT) const_op
11707 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11708 - 1)) == 0)
11709 && mode_width <= HOST_BITS_PER_WIDE_INT
11710 && (nonzero_bits (XEXP (op0, 0), mode)
11711 & ~(mask >> (INTVAL (XEXP (op0, 1))
11712 + ! equality_comparison_p))) == 0)
11714 /* We must perform a logical shift, not an arithmetic one,
11715 as we want the top N bits of C to be zero. */
11716 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11718 temp >>= INTVAL (XEXP (op0, 1));
11719 op1 = gen_int_mode (temp, mode);
11720 op0 = XEXP (op0, 0);
11721 continue;
11724 /* If we are doing a sign bit comparison, it means we are testing
11725 a particular bit. Convert it to the appropriate AND. */
11726 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11727 && mode_width <= HOST_BITS_PER_WIDE_INT)
11729 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11730 ((unsigned HOST_WIDE_INT) 1
11731 << (mode_width - 1
11732 - INTVAL (XEXP (op0, 1)))));
11733 code = (code == LT ? NE : EQ);
11734 continue;
11737 /* If this an equality comparison with zero and we are shifting
11738 the low bit to the sign bit, we can convert this to an AND of the
11739 low-order bit. */
11740 if (const_op == 0 && equality_comparison_p
11741 && CONST_INT_P (XEXP (op0, 1))
11742 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11744 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11745 continue;
11747 break;
11749 case ASHIFTRT:
11750 /* If this is an equality comparison with zero, we can do this
11751 as a logical shift, which might be much simpler. */
11752 if (equality_comparison_p && const_op == 0
11753 && CONST_INT_P (XEXP (op0, 1)))
11755 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11756 XEXP (op0, 0),
11757 INTVAL (XEXP (op0, 1)));
11758 continue;
11761 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11762 do the comparison in a narrower mode. */
11763 if (! unsigned_comparison_p
11764 && CONST_INT_P (XEXP (op0, 1))
11765 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11766 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11767 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11768 MODE_INT, 1)) != BLKmode
11769 && (((unsigned HOST_WIDE_INT) const_op
11770 + (GET_MODE_MASK (tmode) >> 1) + 1)
11771 <= GET_MODE_MASK (tmode)))
11773 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11774 continue;
11777 /* Likewise if OP0 is a PLUS of a sign extension with a
11778 constant, which is usually represented with the PLUS
11779 between the shifts. */
11780 if (! unsigned_comparison_p
11781 && CONST_INT_P (XEXP (op0, 1))
11782 && GET_CODE (XEXP (op0, 0)) == PLUS
11783 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11784 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11785 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11786 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11787 MODE_INT, 1)) != BLKmode
11788 && (((unsigned HOST_WIDE_INT) const_op
11789 + (GET_MODE_MASK (tmode) >> 1) + 1)
11790 <= GET_MODE_MASK (tmode)))
11792 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11793 rtx add_const = XEXP (XEXP (op0, 0), 1);
11794 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11795 add_const, XEXP (op0, 1));
11797 op0 = simplify_gen_binary (PLUS, tmode,
11798 gen_lowpart (tmode, inner),
11799 new_const);
11800 continue;
11803 /* ... fall through ... */
11804 case LSHIFTRT:
11805 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11806 the low order N bits of FOO are known to be zero, we can do this
11807 by comparing FOO with C shifted left N bits so long as no
11808 overflow occurs. Even if the low order N bits of FOO aren't known
11809 to be zero, if the comparison is >= or < we can use the same
11810 optimization and for > or <= by setting all the low
11811 order N bits in the comparison constant. */
11812 if (CONST_INT_P (XEXP (op0, 1))
11813 && INTVAL (XEXP (op0, 1)) > 0
11814 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11815 && mode_width <= HOST_BITS_PER_WIDE_INT
11816 && (((unsigned HOST_WIDE_INT) const_op
11817 + (GET_CODE (op0) != LSHIFTRT
11818 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11819 + 1)
11820 : 0))
11821 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11823 unsigned HOST_WIDE_INT low_bits
11824 = (nonzero_bits (XEXP (op0, 0), mode)
11825 & (((unsigned HOST_WIDE_INT) 1
11826 << INTVAL (XEXP (op0, 1))) - 1));
11827 if (low_bits == 0 || !equality_comparison_p)
11829 /* If the shift was logical, then we must make the condition
11830 unsigned. */
11831 if (GET_CODE (op0) == LSHIFTRT)
11832 code = unsigned_condition (code);
11834 const_op <<= INTVAL (XEXP (op0, 1));
11835 if (low_bits != 0
11836 && (code == GT || code == GTU
11837 || code == LE || code == LEU))
11838 const_op
11839 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11840 op1 = GEN_INT (const_op);
11841 op0 = XEXP (op0, 0);
11842 continue;
11846 /* If we are using this shift to extract just the sign bit, we
11847 can replace this with an LT or GE comparison. */
11848 if (const_op == 0
11849 && (equality_comparison_p || sign_bit_comparison_p)
11850 && CONST_INT_P (XEXP (op0, 1))
11851 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11853 op0 = XEXP (op0, 0);
11854 code = (code == NE || code == GT ? LT : GE);
11855 continue;
11857 break;
11859 default:
11860 break;
11863 break;
11866 /* Now make any compound operations involved in this comparison. Then,
11867 check for an outmost SUBREG on OP0 that is not doing anything or is
11868 paradoxical. The latter transformation must only be performed when
11869 it is known that the "extra" bits will be the same in op0 and op1 or
11870 that they don't matter. There are three cases to consider:
11872 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11873 care bits and we can assume they have any convenient value. So
11874 making the transformation is safe.
11876 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11877 In this case the upper bits of op0 are undefined. We should not make
11878 the simplification in that case as we do not know the contents of
11879 those bits.
11881 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11882 UNKNOWN. In that case we know those bits are zeros or ones. We must
11883 also be sure that they are the same as the upper bits of op1.
11885 We can never remove a SUBREG for a non-equality comparison because
11886 the sign bit is in a different place in the underlying object. */
11888 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11889 op1 = make_compound_operation (op1, SET);
11891 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11892 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11893 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11894 && (code == NE || code == EQ))
11896 if (paradoxical_subreg_p (op0))
11898 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11899 implemented. */
11900 if (REG_P (SUBREG_REG (op0)))
11902 op0 = SUBREG_REG (op0);
11903 op1 = gen_lowpart (GET_MODE (op0), op1);
11906 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11907 <= HOST_BITS_PER_WIDE_INT)
11908 && (nonzero_bits (SUBREG_REG (op0),
11909 GET_MODE (SUBREG_REG (op0)))
11910 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11912 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11914 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11915 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11916 op0 = SUBREG_REG (op0), op1 = tem;
11920 /* We now do the opposite procedure: Some machines don't have compare
11921 insns in all modes. If OP0's mode is an integer mode smaller than a
11922 word and we can't do a compare in that mode, see if there is a larger
11923 mode for which we can do the compare. There are a number of cases in
11924 which we can use the wider mode. */
11926 mode = GET_MODE (op0);
11927 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11928 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11929 && ! have_insn_for (COMPARE, mode))
11930 for (tmode = GET_MODE_WIDER_MODE (mode);
11931 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11932 tmode = GET_MODE_WIDER_MODE (tmode))
11933 if (have_insn_for (COMPARE, tmode))
11935 int zero_extended;
11937 /* If this is a test for negative, we can make an explicit
11938 test of the sign bit. Test this first so we can use
11939 a paradoxical subreg to extend OP0. */
11941 if (op1 == const0_rtx && (code == LT || code == GE)
11942 && HWI_COMPUTABLE_MODE_P (mode))
11944 op0 = simplify_gen_binary (AND, tmode,
11945 gen_lowpart (tmode, op0),
11946 GEN_INT ((unsigned HOST_WIDE_INT) 1
11947 << (GET_MODE_BITSIZE (mode)
11948 - 1)));
11949 code = (code == LT) ? NE : EQ;
11950 break;
11953 /* If the only nonzero bits in OP0 and OP1 are those in the
11954 narrower mode and this is an equality or unsigned comparison,
11955 we can use the wider mode. Similarly for sign-extended
11956 values, in which case it is true for all comparisons. */
11957 zero_extended = ((code == EQ || code == NE
11958 || code == GEU || code == GTU
11959 || code == LEU || code == LTU)
11960 && (nonzero_bits (op0, tmode)
11961 & ~GET_MODE_MASK (mode)) == 0
11962 && ((CONST_INT_P (op1)
11963 || (nonzero_bits (op1, tmode)
11964 & ~GET_MODE_MASK (mode)) == 0)));
11966 if (zero_extended
11967 || ((num_sign_bit_copies (op0, tmode)
11968 > (unsigned int) (GET_MODE_PRECISION (tmode)
11969 - GET_MODE_PRECISION (mode)))
11970 && (num_sign_bit_copies (op1, tmode)
11971 > (unsigned int) (GET_MODE_PRECISION (tmode)
11972 - GET_MODE_PRECISION (mode)))))
11974 /* If OP0 is an AND and we don't have an AND in MODE either,
11975 make a new AND in the proper mode. */
11976 if (GET_CODE (op0) == AND
11977 && !have_insn_for (AND, mode))
11978 op0 = simplify_gen_binary (AND, tmode,
11979 gen_lowpart (tmode,
11980 XEXP (op0, 0)),
11981 gen_lowpart (tmode,
11982 XEXP (op0, 1)));
11983 else
11985 if (zero_extended)
11987 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11988 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11990 else
11992 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11993 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11995 break;
12000 /* We may have changed the comparison operands. Re-canonicalize. */
12001 if (swap_commutative_operands_p (op0, op1))
12003 tem = op0, op0 = op1, op1 = tem;
12004 code = swap_condition (code);
12007 /* If this machine only supports a subset of valid comparisons, see if we
12008 can convert an unsupported one into a supported one. */
12009 target_canonicalize_comparison (&code, &op0, &op1, 0);
12011 *pop0 = op0;
12012 *pop1 = op1;
12014 return code;
12017 /* Utility function for record_value_for_reg. Count number of
12018 rtxs in X. */
12019 static int
12020 count_rtxs (rtx x)
12022 enum rtx_code code = GET_CODE (x);
12023 const char *fmt;
12024 int i, j, ret = 1;
12026 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12027 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12029 rtx x0 = XEXP (x, 0);
12030 rtx x1 = XEXP (x, 1);
12032 if (x0 == x1)
12033 return 1 + 2 * count_rtxs (x0);
12035 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12036 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12037 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12038 return 2 + 2 * count_rtxs (x0)
12039 + count_rtxs (x == XEXP (x1, 0)
12040 ? XEXP (x1, 1) : XEXP (x1, 0));
12042 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12043 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12044 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12045 return 2 + 2 * count_rtxs (x1)
12046 + count_rtxs (x == XEXP (x0, 0)
12047 ? XEXP (x0, 1) : XEXP (x0, 0));
12050 fmt = GET_RTX_FORMAT (code);
12051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12052 if (fmt[i] == 'e')
12053 ret += count_rtxs (XEXP (x, i));
12054 else if (fmt[i] == 'E')
12055 for (j = 0; j < XVECLEN (x, i); j++)
12056 ret += count_rtxs (XVECEXP (x, i, j));
12058 return ret;
12061 /* Utility function for following routine. Called when X is part of a value
12062 being stored into last_set_value. Sets last_set_table_tick
12063 for each register mentioned. Similar to mention_regs in cse.c */
12065 static void
12066 update_table_tick (rtx x)
12068 enum rtx_code code = GET_CODE (x);
12069 const char *fmt = GET_RTX_FORMAT (code);
12070 int i, j;
12072 if (code == REG)
12074 unsigned int regno = REGNO (x);
12075 unsigned int endregno = END_REGNO (x);
12076 unsigned int r;
12078 for (r = regno; r < endregno; r++)
12080 reg_stat_type *rsp = &reg_stat[r];
12081 rsp->last_set_table_tick = label_tick;
12084 return;
12087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12088 if (fmt[i] == 'e')
12090 /* Check for identical subexpressions. If x contains
12091 identical subexpression we only have to traverse one of
12092 them. */
12093 if (i == 0 && ARITHMETIC_P (x))
12095 /* Note that at this point x1 has already been
12096 processed. */
12097 rtx x0 = XEXP (x, 0);
12098 rtx x1 = XEXP (x, 1);
12100 /* If x0 and x1 are identical then there is no need to
12101 process x0. */
12102 if (x0 == x1)
12103 break;
12105 /* If x0 is identical to a subexpression of x1 then while
12106 processing x1, x0 has already been processed. Thus we
12107 are done with x. */
12108 if (ARITHMETIC_P (x1)
12109 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12110 break;
12112 /* If x1 is identical to a subexpression of x0 then we
12113 still have to process the rest of x0. */
12114 if (ARITHMETIC_P (x0)
12115 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12117 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12118 break;
12122 update_table_tick (XEXP (x, i));
12124 else if (fmt[i] == 'E')
12125 for (j = 0; j < XVECLEN (x, i); j++)
12126 update_table_tick (XVECEXP (x, i, j));
12129 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12130 are saying that the register is clobbered and we no longer know its
12131 value. If INSN is zero, don't update reg_stat[].last_set; this is
12132 only permitted with VALUE also zero and is used to invalidate the
12133 register. */
12135 static void
12136 record_value_for_reg (rtx reg, rtx insn, rtx value)
12138 unsigned int regno = REGNO (reg);
12139 unsigned int endregno = END_REGNO (reg);
12140 unsigned int i;
12141 reg_stat_type *rsp;
12143 /* If VALUE contains REG and we have a previous value for REG, substitute
12144 the previous value. */
12145 if (value && insn && reg_overlap_mentioned_p (reg, value))
12147 rtx tem;
12149 /* Set things up so get_last_value is allowed to see anything set up to
12150 our insn. */
12151 subst_low_luid = DF_INSN_LUID (insn);
12152 tem = get_last_value (reg);
12154 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12155 it isn't going to be useful and will take a lot of time to process,
12156 so just use the CLOBBER. */
12158 if (tem)
12160 if (ARITHMETIC_P (tem)
12161 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12162 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12163 tem = XEXP (tem, 0);
12164 else if (count_occurrences (value, reg, 1) >= 2)
12166 /* If there are two or more occurrences of REG in VALUE,
12167 prevent the value from growing too much. */
12168 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12169 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12172 value = replace_rtx (copy_rtx (value), reg, tem);
12176 /* For each register modified, show we don't know its value, that
12177 we don't know about its bitwise content, that its value has been
12178 updated, and that we don't know the location of the death of the
12179 register. */
12180 for (i = regno; i < endregno; i++)
12182 rsp = &reg_stat[i];
12184 if (insn)
12185 rsp->last_set = insn;
12187 rsp->last_set_value = 0;
12188 rsp->last_set_mode = VOIDmode;
12189 rsp->last_set_nonzero_bits = 0;
12190 rsp->last_set_sign_bit_copies = 0;
12191 rsp->last_death = 0;
12192 rsp->truncated_to_mode = VOIDmode;
12195 /* Mark registers that are being referenced in this value. */
12196 if (value)
12197 update_table_tick (value);
12199 /* Now update the status of each register being set.
12200 If someone is using this register in this block, set this register
12201 to invalid since we will get confused between the two lives in this
12202 basic block. This makes using this register always invalid. In cse, we
12203 scan the table to invalidate all entries using this register, but this
12204 is too much work for us. */
12206 for (i = regno; i < endregno; i++)
12208 rsp = &reg_stat[i];
12209 rsp->last_set_label = label_tick;
12210 if (!insn
12211 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12212 rsp->last_set_invalid = 1;
12213 else
12214 rsp->last_set_invalid = 0;
12217 /* The value being assigned might refer to X (like in "x++;"). In that
12218 case, we must replace it with (clobber (const_int 0)) to prevent
12219 infinite loops. */
12220 rsp = &reg_stat[regno];
12221 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12223 value = copy_rtx (value);
12224 if (!get_last_value_validate (&value, insn, label_tick, 1))
12225 value = 0;
12228 /* For the main register being modified, update the value, the mode, the
12229 nonzero bits, and the number of sign bit copies. */
12231 rsp->last_set_value = value;
12233 if (value)
12235 enum machine_mode mode = GET_MODE (reg);
12236 subst_low_luid = DF_INSN_LUID (insn);
12237 rsp->last_set_mode = mode;
12238 if (GET_MODE_CLASS (mode) == MODE_INT
12239 && HWI_COMPUTABLE_MODE_P (mode))
12240 mode = nonzero_bits_mode;
12241 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12242 rsp->last_set_sign_bit_copies
12243 = num_sign_bit_copies (value, GET_MODE (reg));
12247 /* Called via note_stores from record_dead_and_set_regs to handle one
12248 SET or CLOBBER in an insn. DATA is the instruction in which the
12249 set is occurring. */
12251 static void
12252 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12254 rtx record_dead_insn = (rtx) data;
12256 if (GET_CODE (dest) == SUBREG)
12257 dest = SUBREG_REG (dest);
12259 if (!record_dead_insn)
12261 if (REG_P (dest))
12262 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12263 return;
12266 if (REG_P (dest))
12268 /* If we are setting the whole register, we know its value. Otherwise
12269 show that we don't know the value. We can handle SUBREG in
12270 some cases. */
12271 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12272 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12273 else if (GET_CODE (setter) == SET
12274 && GET_CODE (SET_DEST (setter)) == SUBREG
12275 && SUBREG_REG (SET_DEST (setter)) == dest
12276 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12277 && subreg_lowpart_p (SET_DEST (setter)))
12278 record_value_for_reg (dest, record_dead_insn,
12279 gen_lowpart (GET_MODE (dest),
12280 SET_SRC (setter)));
12281 else
12282 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12284 else if (MEM_P (dest)
12285 /* Ignore pushes, they clobber nothing. */
12286 && ! push_operand (dest, GET_MODE (dest)))
12287 mem_last_set = DF_INSN_LUID (record_dead_insn);
12290 /* Update the records of when each REG was most recently set or killed
12291 for the things done by INSN. This is the last thing done in processing
12292 INSN in the combiner loop.
12294 We update reg_stat[], in particular fields last_set, last_set_value,
12295 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12296 last_death, and also the similar information mem_last_set (which insn
12297 most recently modified memory) and last_call_luid (which insn was the
12298 most recent subroutine call). */
12300 static void
12301 record_dead_and_set_regs (rtx insn)
12303 rtx link;
12304 unsigned int i;
12306 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12308 if (REG_NOTE_KIND (link) == REG_DEAD
12309 && REG_P (XEXP (link, 0)))
12311 unsigned int regno = REGNO (XEXP (link, 0));
12312 unsigned int endregno = END_REGNO (XEXP (link, 0));
12314 for (i = regno; i < endregno; i++)
12316 reg_stat_type *rsp;
12318 rsp = &reg_stat[i];
12319 rsp->last_death = insn;
12322 else if (REG_NOTE_KIND (link) == REG_INC)
12323 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12326 if (CALL_P (insn))
12328 hard_reg_set_iterator hrsi;
12329 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12331 reg_stat_type *rsp;
12333 rsp = &reg_stat[i];
12334 rsp->last_set_invalid = 1;
12335 rsp->last_set = insn;
12336 rsp->last_set_value = 0;
12337 rsp->last_set_mode = VOIDmode;
12338 rsp->last_set_nonzero_bits = 0;
12339 rsp->last_set_sign_bit_copies = 0;
12340 rsp->last_death = 0;
12341 rsp->truncated_to_mode = VOIDmode;
12344 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12346 /* We can't combine into a call pattern. Remember, though, that
12347 the return value register is set at this LUID. We could
12348 still replace a register with the return value from the
12349 wrong subroutine call! */
12350 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12352 else
12353 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12356 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12357 register present in the SUBREG, so for each such SUBREG go back and
12358 adjust nonzero and sign bit information of the registers that are
12359 known to have some zero/sign bits set.
12361 This is needed because when combine blows the SUBREGs away, the
12362 information on zero/sign bits is lost and further combines can be
12363 missed because of that. */
12365 static void
12366 record_promoted_value (rtx insn, rtx subreg)
12368 struct insn_link *links;
12369 rtx set;
12370 unsigned int regno = REGNO (SUBREG_REG (subreg));
12371 enum machine_mode mode = GET_MODE (subreg);
12373 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12374 return;
12376 for (links = LOG_LINKS (insn); links;)
12378 reg_stat_type *rsp;
12380 insn = links->insn;
12381 set = single_set (insn);
12383 if (! set || !REG_P (SET_DEST (set))
12384 || REGNO (SET_DEST (set)) != regno
12385 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12387 links = links->next;
12388 continue;
12391 rsp = &reg_stat[regno];
12392 if (rsp->last_set == insn)
12394 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12395 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12398 if (REG_P (SET_SRC (set)))
12400 regno = REGNO (SET_SRC (set));
12401 links = LOG_LINKS (insn);
12403 else
12404 break;
12408 /* Check if X, a register, is known to contain a value already
12409 truncated to MODE. In this case we can use a subreg to refer to
12410 the truncated value even though in the generic case we would need
12411 an explicit truncation. */
12413 static bool
12414 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12416 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12417 enum machine_mode truncated = rsp->truncated_to_mode;
12419 if (truncated == 0
12420 || rsp->truncation_label < label_tick_ebb_start)
12421 return false;
12422 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12423 return true;
12424 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12425 return true;
12426 return false;
12429 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12430 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12431 might be able to turn a truncate into a subreg using this information.
12432 Return -1 if traversing *P is complete or 0 otherwise. */
12434 static int
12435 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12437 rtx x = *p;
12438 enum machine_mode truncated_mode;
12439 reg_stat_type *rsp;
12441 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12443 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12444 truncated_mode = GET_MODE (x);
12446 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12447 return -1;
12449 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12450 return -1;
12452 x = SUBREG_REG (x);
12454 /* ??? For hard-regs we now record everything. We might be able to
12455 optimize this using last_set_mode. */
12456 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12457 truncated_mode = GET_MODE (x);
12458 else
12459 return 0;
12461 rsp = &reg_stat[REGNO (x)];
12462 if (rsp->truncated_to_mode == 0
12463 || rsp->truncation_label < label_tick_ebb_start
12464 || (GET_MODE_SIZE (truncated_mode)
12465 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12467 rsp->truncated_to_mode = truncated_mode;
12468 rsp->truncation_label = label_tick;
12471 return -1;
12474 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12475 the modes they are used in. This can help truning TRUNCATEs into
12476 SUBREGs. */
12478 static void
12479 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12481 for_each_rtx (x, record_truncated_value, NULL);
12484 /* Scan X for promoted SUBREGs. For each one found,
12485 note what it implies to the registers used in it. */
12487 static void
12488 check_promoted_subreg (rtx insn, rtx x)
12490 if (GET_CODE (x) == SUBREG
12491 && SUBREG_PROMOTED_VAR_P (x)
12492 && REG_P (SUBREG_REG (x)))
12493 record_promoted_value (insn, x);
12494 else
12496 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12497 int i, j;
12499 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12500 switch (format[i])
12502 case 'e':
12503 check_promoted_subreg (insn, XEXP (x, i));
12504 break;
12505 case 'V':
12506 case 'E':
12507 if (XVEC (x, i) != 0)
12508 for (j = 0; j < XVECLEN (x, i); j++)
12509 check_promoted_subreg (insn, XVECEXP (x, i, j));
12510 break;
12515 /* Verify that all the registers and memory references mentioned in *LOC are
12516 still valid. *LOC was part of a value set in INSN when label_tick was
12517 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12518 the invalid references with (clobber (const_int 0)) and return 1. This
12519 replacement is useful because we often can get useful information about
12520 the form of a value (e.g., if it was produced by a shift that always
12521 produces -1 or 0) even though we don't know exactly what registers it
12522 was produced from. */
12524 static int
12525 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12527 rtx x = *loc;
12528 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12529 int len = GET_RTX_LENGTH (GET_CODE (x));
12530 int i, j;
12532 if (REG_P (x))
12534 unsigned int regno = REGNO (x);
12535 unsigned int endregno = END_REGNO (x);
12536 unsigned int j;
12538 for (j = regno; j < endregno; j++)
12540 reg_stat_type *rsp = &reg_stat[j];
12541 if (rsp->last_set_invalid
12542 /* If this is a pseudo-register that was only set once and not
12543 live at the beginning of the function, it is always valid. */
12544 || (! (regno >= FIRST_PSEUDO_REGISTER
12545 && REG_N_SETS (regno) == 1
12546 && (!REGNO_REG_SET_P
12547 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12548 && rsp->last_set_label > tick))
12550 if (replace)
12551 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12552 return replace;
12556 return 1;
12558 /* If this is a memory reference, make sure that there were no stores after
12559 it that might have clobbered the value. We don't have alias info, so we
12560 assume any store invalidates it. Moreover, we only have local UIDs, so
12561 we also assume that there were stores in the intervening basic blocks. */
12562 else if (MEM_P (x) && !MEM_READONLY_P (x)
12563 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12565 if (replace)
12566 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12567 return replace;
12570 for (i = 0; i < len; i++)
12572 if (fmt[i] == 'e')
12574 /* Check for identical subexpressions. If x contains
12575 identical subexpression we only have to traverse one of
12576 them. */
12577 if (i == 1 && ARITHMETIC_P (x))
12579 /* Note that at this point x0 has already been checked
12580 and found valid. */
12581 rtx x0 = XEXP (x, 0);
12582 rtx x1 = XEXP (x, 1);
12584 /* If x0 and x1 are identical then x is also valid. */
12585 if (x0 == x1)
12586 return 1;
12588 /* If x1 is identical to a subexpression of x0 then
12589 while checking x0, x1 has already been checked. Thus
12590 it is valid and so as x. */
12591 if (ARITHMETIC_P (x0)
12592 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12593 return 1;
12595 /* If x0 is identical to a subexpression of x1 then x is
12596 valid iff the rest of x1 is valid. */
12597 if (ARITHMETIC_P (x1)
12598 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12599 return
12600 get_last_value_validate (&XEXP (x1,
12601 x0 == XEXP (x1, 0) ? 1 : 0),
12602 insn, tick, replace);
12605 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12606 replace) == 0)
12607 return 0;
12609 else if (fmt[i] == 'E')
12610 for (j = 0; j < XVECLEN (x, i); j++)
12611 if (get_last_value_validate (&XVECEXP (x, i, j),
12612 insn, tick, replace) == 0)
12613 return 0;
12616 /* If we haven't found a reason for it to be invalid, it is valid. */
12617 return 1;
12620 /* Get the last value assigned to X, if known. Some registers
12621 in the value may be replaced with (clobber (const_int 0)) if their value
12622 is known longer known reliably. */
12624 static rtx
12625 get_last_value (const_rtx x)
12627 unsigned int regno;
12628 rtx value;
12629 reg_stat_type *rsp;
12631 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12632 then convert it to the desired mode. If this is a paradoxical SUBREG,
12633 we cannot predict what values the "extra" bits might have. */
12634 if (GET_CODE (x) == SUBREG
12635 && subreg_lowpart_p (x)
12636 && !paradoxical_subreg_p (x)
12637 && (value = get_last_value (SUBREG_REG (x))) != 0)
12638 return gen_lowpart (GET_MODE (x), value);
12640 if (!REG_P (x))
12641 return 0;
12643 regno = REGNO (x);
12644 rsp = &reg_stat[regno];
12645 value = rsp->last_set_value;
12647 /* If we don't have a value, or if it isn't for this basic block and
12648 it's either a hard register, set more than once, or it's a live
12649 at the beginning of the function, return 0.
12651 Because if it's not live at the beginning of the function then the reg
12652 is always set before being used (is never used without being set).
12653 And, if it's set only once, and it's always set before use, then all
12654 uses must have the same last value, even if it's not from this basic
12655 block. */
12657 if (value == 0
12658 || (rsp->last_set_label < label_tick_ebb_start
12659 && (regno < FIRST_PSEUDO_REGISTER
12660 || REG_N_SETS (regno) != 1
12661 || REGNO_REG_SET_P
12662 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12663 return 0;
12665 /* If the value was set in a later insn than the ones we are processing,
12666 we can't use it even if the register was only set once. */
12667 if (rsp->last_set_label == label_tick
12668 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12669 return 0;
12671 /* If the value has all its registers valid, return it. */
12672 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12673 return value;
12675 /* Otherwise, make a copy and replace any invalid register with
12676 (clobber (const_int 0)). If that fails for some reason, return 0. */
12678 value = copy_rtx (value);
12679 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12680 return value;
12682 return 0;
12685 /* Return nonzero if expression X refers to a REG or to memory
12686 that is set in an instruction more recent than FROM_LUID. */
12688 static int
12689 use_crosses_set_p (const_rtx x, int from_luid)
12691 const char *fmt;
12692 int i;
12693 enum rtx_code code = GET_CODE (x);
12695 if (code == REG)
12697 unsigned int regno = REGNO (x);
12698 unsigned endreg = END_REGNO (x);
12700 #ifdef PUSH_ROUNDING
12701 /* Don't allow uses of the stack pointer to be moved,
12702 because we don't know whether the move crosses a push insn. */
12703 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12704 return 1;
12705 #endif
12706 for (; regno < endreg; regno++)
12708 reg_stat_type *rsp = &reg_stat[regno];
12709 if (rsp->last_set
12710 && rsp->last_set_label == label_tick
12711 && DF_INSN_LUID (rsp->last_set) > from_luid)
12712 return 1;
12714 return 0;
12717 if (code == MEM && mem_last_set > from_luid)
12718 return 1;
12720 fmt = GET_RTX_FORMAT (code);
12722 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12724 if (fmt[i] == 'E')
12726 int j;
12727 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12728 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12729 return 1;
12731 else if (fmt[i] == 'e'
12732 && use_crosses_set_p (XEXP (x, i), from_luid))
12733 return 1;
12735 return 0;
12738 /* Define three variables used for communication between the following
12739 routines. */
12741 static unsigned int reg_dead_regno, reg_dead_endregno;
12742 static int reg_dead_flag;
12744 /* Function called via note_stores from reg_dead_at_p.
12746 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12747 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12749 static void
12750 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12752 unsigned int regno, endregno;
12754 if (!REG_P (dest))
12755 return;
12757 regno = REGNO (dest);
12758 endregno = END_REGNO (dest);
12759 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12760 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12763 /* Return nonzero if REG is known to be dead at INSN.
12765 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12766 referencing REG, it is dead. If we hit a SET referencing REG, it is
12767 live. Otherwise, see if it is live or dead at the start of the basic
12768 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12769 must be assumed to be always live. */
12771 static int
12772 reg_dead_at_p (rtx reg, rtx insn)
12774 basic_block block;
12775 unsigned int i;
12777 /* Set variables for reg_dead_at_p_1. */
12778 reg_dead_regno = REGNO (reg);
12779 reg_dead_endregno = END_REGNO (reg);
12781 reg_dead_flag = 0;
12783 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12784 we allow the machine description to decide whether use-and-clobber
12785 patterns are OK. */
12786 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12788 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12789 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12790 return 0;
12793 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12794 beginning of basic block. */
12795 block = BLOCK_FOR_INSN (insn);
12796 for (;;)
12798 if (INSN_P (insn))
12800 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12801 if (reg_dead_flag)
12802 return reg_dead_flag == 1 ? 1 : 0;
12804 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12805 return 1;
12808 if (insn == BB_HEAD (block))
12809 break;
12811 insn = PREV_INSN (insn);
12814 /* Look at live-in sets for the basic block that we were in. */
12815 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12816 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12817 return 0;
12819 return 1;
12822 /* Note hard registers in X that are used. */
12824 static void
12825 mark_used_regs_combine (rtx x)
12827 RTX_CODE code = GET_CODE (x);
12828 unsigned int regno;
12829 int i;
12831 switch (code)
12833 case LABEL_REF:
12834 case SYMBOL_REF:
12835 case CONST:
12836 CASE_CONST_ANY:
12837 case PC:
12838 case ADDR_VEC:
12839 case ADDR_DIFF_VEC:
12840 case ASM_INPUT:
12841 #ifdef HAVE_cc0
12842 /* CC0 must die in the insn after it is set, so we don't need to take
12843 special note of it here. */
12844 case CC0:
12845 #endif
12846 return;
12848 case CLOBBER:
12849 /* If we are clobbering a MEM, mark any hard registers inside the
12850 address as used. */
12851 if (MEM_P (XEXP (x, 0)))
12852 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12853 return;
12855 case REG:
12856 regno = REGNO (x);
12857 /* A hard reg in a wide mode may really be multiple registers.
12858 If so, mark all of them just like the first. */
12859 if (regno < FIRST_PSEUDO_REGISTER)
12861 /* None of this applies to the stack, frame or arg pointers. */
12862 if (regno == STACK_POINTER_REGNUM
12863 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12864 || regno == HARD_FRAME_POINTER_REGNUM
12865 #endif
12866 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12867 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12868 #endif
12869 || regno == FRAME_POINTER_REGNUM)
12870 return;
12872 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12874 return;
12876 case SET:
12878 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12879 the address. */
12880 rtx testreg = SET_DEST (x);
12882 while (GET_CODE (testreg) == SUBREG
12883 || GET_CODE (testreg) == ZERO_EXTRACT
12884 || GET_CODE (testreg) == STRICT_LOW_PART)
12885 testreg = XEXP (testreg, 0);
12887 if (MEM_P (testreg))
12888 mark_used_regs_combine (XEXP (testreg, 0));
12890 mark_used_regs_combine (SET_SRC (x));
12892 return;
12894 default:
12895 break;
12898 /* Recursively scan the operands of this expression. */
12901 const char *fmt = GET_RTX_FORMAT (code);
12903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12905 if (fmt[i] == 'e')
12906 mark_used_regs_combine (XEXP (x, i));
12907 else if (fmt[i] == 'E')
12909 int j;
12911 for (j = 0; j < XVECLEN (x, i); j++)
12912 mark_used_regs_combine (XVECEXP (x, i, j));
12918 /* Remove register number REGNO from the dead registers list of INSN.
12920 Return the note used to record the death, if there was one. */
12923 remove_death (unsigned int regno, rtx insn)
12925 rtx note = find_regno_note (insn, REG_DEAD, regno);
12927 if (note)
12928 remove_note (insn, note);
12930 return note;
12933 /* For each register (hardware or pseudo) used within expression X, if its
12934 death is in an instruction with luid between FROM_LUID (inclusive) and
12935 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12936 list headed by PNOTES.
12938 That said, don't move registers killed by maybe_kill_insn.
12940 This is done when X is being merged by combination into TO_INSN. These
12941 notes will then be distributed as needed. */
12943 static void
12944 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12945 rtx *pnotes)
12947 const char *fmt;
12948 int len, i;
12949 enum rtx_code code = GET_CODE (x);
12951 if (code == REG)
12953 unsigned int regno = REGNO (x);
12954 rtx where_dead = reg_stat[regno].last_death;
12956 /* Don't move the register if it gets killed in between from and to. */
12957 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12958 && ! reg_referenced_p (x, maybe_kill_insn))
12959 return;
12961 if (where_dead
12962 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12963 && DF_INSN_LUID (where_dead) >= from_luid
12964 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12966 rtx note = remove_death (regno, where_dead);
12968 /* It is possible for the call above to return 0. This can occur
12969 when last_death points to I2 or I1 that we combined with.
12970 In that case make a new note.
12972 We must also check for the case where X is a hard register
12973 and NOTE is a death note for a range of hard registers
12974 including X. In that case, we must put REG_DEAD notes for
12975 the remaining registers in place of NOTE. */
12977 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12978 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12979 > GET_MODE_SIZE (GET_MODE (x))))
12981 unsigned int deadregno = REGNO (XEXP (note, 0));
12982 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12983 unsigned int ourend = END_HARD_REGNO (x);
12984 unsigned int i;
12986 for (i = deadregno; i < deadend; i++)
12987 if (i < regno || i >= ourend)
12988 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12991 /* If we didn't find any note, or if we found a REG_DEAD note that
12992 covers only part of the given reg, and we have a multi-reg hard
12993 register, then to be safe we must check for REG_DEAD notes
12994 for each register other than the first. They could have
12995 their own REG_DEAD notes lying around. */
12996 else if ((note == 0
12997 || (note != 0
12998 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12999 < GET_MODE_SIZE (GET_MODE (x)))))
13000 && regno < FIRST_PSEUDO_REGISTER
13001 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13003 unsigned int ourend = END_HARD_REGNO (x);
13004 unsigned int i, offset;
13005 rtx oldnotes = 0;
13007 if (note)
13008 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13009 else
13010 offset = 1;
13012 for (i = regno + offset; i < ourend; i++)
13013 move_deaths (regno_reg_rtx[i],
13014 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13017 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13019 XEXP (note, 1) = *pnotes;
13020 *pnotes = note;
13022 else
13023 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13026 return;
13029 else if (GET_CODE (x) == SET)
13031 rtx dest = SET_DEST (x);
13033 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13035 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13036 that accesses one word of a multi-word item, some
13037 piece of everything register in the expression is used by
13038 this insn, so remove any old death. */
13039 /* ??? So why do we test for equality of the sizes? */
13041 if (GET_CODE (dest) == ZERO_EXTRACT
13042 || GET_CODE (dest) == STRICT_LOW_PART
13043 || (GET_CODE (dest) == SUBREG
13044 && (((GET_MODE_SIZE (GET_MODE (dest))
13045 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13046 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13047 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13049 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13050 return;
13053 /* If this is some other SUBREG, we know it replaces the entire
13054 value, so use that as the destination. */
13055 if (GET_CODE (dest) == SUBREG)
13056 dest = SUBREG_REG (dest);
13058 /* If this is a MEM, adjust deaths of anything used in the address.
13059 For a REG (the only other possibility), the entire value is
13060 being replaced so the old value is not used in this insn. */
13062 if (MEM_P (dest))
13063 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13064 to_insn, pnotes);
13065 return;
13068 else if (GET_CODE (x) == CLOBBER)
13069 return;
13071 len = GET_RTX_LENGTH (code);
13072 fmt = GET_RTX_FORMAT (code);
13074 for (i = 0; i < len; i++)
13076 if (fmt[i] == 'E')
13078 int j;
13079 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13080 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13081 to_insn, pnotes);
13083 else if (fmt[i] == 'e')
13084 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13088 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13089 pattern of an insn. X must be a REG. */
13091 static int
13092 reg_bitfield_target_p (rtx x, rtx body)
13094 int i;
13096 if (GET_CODE (body) == SET)
13098 rtx dest = SET_DEST (body);
13099 rtx target;
13100 unsigned int regno, tregno, endregno, endtregno;
13102 if (GET_CODE (dest) == ZERO_EXTRACT)
13103 target = XEXP (dest, 0);
13104 else if (GET_CODE (dest) == STRICT_LOW_PART)
13105 target = SUBREG_REG (XEXP (dest, 0));
13106 else
13107 return 0;
13109 if (GET_CODE (target) == SUBREG)
13110 target = SUBREG_REG (target);
13112 if (!REG_P (target))
13113 return 0;
13115 tregno = REGNO (target), regno = REGNO (x);
13116 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13117 return target == x;
13119 endtregno = end_hard_regno (GET_MODE (target), tregno);
13120 endregno = end_hard_regno (GET_MODE (x), regno);
13122 return endregno > tregno && regno < endtregno;
13125 else if (GET_CODE (body) == PARALLEL)
13126 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13127 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13128 return 1;
13130 return 0;
13133 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13134 as appropriate. I3 and I2 are the insns resulting from the combination
13135 insns including FROM (I2 may be zero).
13137 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13138 not need REG_DEAD notes because they are being substituted for. This
13139 saves searching in the most common cases.
13141 Each note in the list is either ignored or placed on some insns, depending
13142 on the type of note. */
13144 static void
13145 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13146 rtx elim_i1, rtx elim_i0)
13148 rtx note, next_note;
13149 rtx tem;
13151 for (note = notes; note; note = next_note)
13153 rtx place = 0, place2 = 0;
13155 next_note = XEXP (note, 1);
13156 switch (REG_NOTE_KIND (note))
13158 case REG_BR_PROB:
13159 case REG_BR_PRED:
13160 /* Doesn't matter much where we put this, as long as it's somewhere.
13161 It is preferable to keep these notes on branches, which is most
13162 likely to be i3. */
13163 place = i3;
13164 break;
13166 case REG_NON_LOCAL_GOTO:
13167 if (JUMP_P (i3))
13168 place = i3;
13169 else
13171 gcc_assert (i2 && JUMP_P (i2));
13172 place = i2;
13174 break;
13176 case REG_EH_REGION:
13177 /* These notes must remain with the call or trapping instruction. */
13178 if (CALL_P (i3))
13179 place = i3;
13180 else if (i2 && CALL_P (i2))
13181 place = i2;
13182 else
13184 gcc_assert (cfun->can_throw_non_call_exceptions);
13185 if (may_trap_p (i3))
13186 place = i3;
13187 else if (i2 && may_trap_p (i2))
13188 place = i2;
13189 /* ??? Otherwise assume we've combined things such that we
13190 can now prove that the instructions can't trap. Drop the
13191 note in this case. */
13193 break;
13195 case REG_ARGS_SIZE:
13196 /* ??? How to distribute between i3-i1. Assume i3 contains the
13197 entire adjustment. Assert i3 contains at least some adjust. */
13198 if (!noop_move_p (i3))
13200 int old_size, args_size = INTVAL (XEXP (note, 0));
13201 /* fixup_args_size_notes looks at REG_NORETURN note,
13202 so ensure the note is placed there first. */
13203 if (CALL_P (i3))
13205 rtx *np;
13206 for (np = &next_note; *np; np = &XEXP (*np, 1))
13207 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13209 rtx n = *np;
13210 *np = XEXP (n, 1);
13211 XEXP (n, 1) = REG_NOTES (i3);
13212 REG_NOTES (i3) = n;
13213 break;
13216 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13217 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13218 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13219 gcc_assert (old_size != args_size
13220 || (CALL_P (i3)
13221 && !ACCUMULATE_OUTGOING_ARGS
13222 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13224 break;
13226 case REG_NORETURN:
13227 case REG_SETJMP:
13228 case REG_TM:
13229 /* These notes must remain with the call. It should not be
13230 possible for both I2 and I3 to be a call. */
13231 if (CALL_P (i3))
13232 place = i3;
13233 else
13235 gcc_assert (i2 && CALL_P (i2));
13236 place = i2;
13238 break;
13240 case REG_UNUSED:
13241 /* Any clobbers for i3 may still exist, and so we must process
13242 REG_UNUSED notes from that insn.
13244 Any clobbers from i2 or i1 can only exist if they were added by
13245 recog_for_combine. In that case, recog_for_combine created the
13246 necessary REG_UNUSED notes. Trying to keep any original
13247 REG_UNUSED notes from these insns can cause incorrect output
13248 if it is for the same register as the original i3 dest.
13249 In that case, we will notice that the register is set in i3,
13250 and then add a REG_UNUSED note for the destination of i3, which
13251 is wrong. However, it is possible to have REG_UNUSED notes from
13252 i2 or i1 for register which were both used and clobbered, so
13253 we keep notes from i2 or i1 if they will turn into REG_DEAD
13254 notes. */
13256 /* If this register is set or clobbered in I3, put the note there
13257 unless there is one already. */
13258 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13260 if (from_insn != i3)
13261 break;
13263 if (! (REG_P (XEXP (note, 0))
13264 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13265 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13266 place = i3;
13268 /* Otherwise, if this register is used by I3, then this register
13269 now dies here, so we must put a REG_DEAD note here unless there
13270 is one already. */
13271 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13272 && ! (REG_P (XEXP (note, 0))
13273 ? find_regno_note (i3, REG_DEAD,
13274 REGNO (XEXP (note, 0)))
13275 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13277 PUT_REG_NOTE_KIND (note, REG_DEAD);
13278 place = i3;
13280 break;
13282 case REG_EQUAL:
13283 case REG_EQUIV:
13284 case REG_NOALIAS:
13285 /* These notes say something about results of an insn. We can
13286 only support them if they used to be on I3 in which case they
13287 remain on I3. Otherwise they are ignored.
13289 If the note refers to an expression that is not a constant, we
13290 must also ignore the note since we cannot tell whether the
13291 equivalence is still true. It might be possible to do
13292 slightly better than this (we only have a problem if I2DEST
13293 or I1DEST is present in the expression), but it doesn't
13294 seem worth the trouble. */
13296 if (from_insn == i3
13297 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13298 place = i3;
13299 break;
13301 case REG_INC:
13302 /* These notes say something about how a register is used. They must
13303 be present on any use of the register in I2 or I3. */
13304 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13305 place = i3;
13307 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13309 if (place)
13310 place2 = i2;
13311 else
13312 place = i2;
13314 break;
13316 case REG_LABEL_TARGET:
13317 case REG_LABEL_OPERAND:
13318 /* This can show up in several ways -- either directly in the
13319 pattern, or hidden off in the constant pool with (or without?)
13320 a REG_EQUAL note. */
13321 /* ??? Ignore the without-reg_equal-note problem for now. */
13322 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13323 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13324 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13325 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13326 place = i3;
13328 if (i2
13329 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13330 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13331 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13332 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13334 if (place)
13335 place2 = i2;
13336 else
13337 place = i2;
13340 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13341 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13342 there. */
13343 if (place && JUMP_P (place)
13344 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13345 && (JUMP_LABEL (place) == NULL
13346 || JUMP_LABEL (place) == XEXP (note, 0)))
13348 rtx label = JUMP_LABEL (place);
13350 if (!label)
13351 JUMP_LABEL (place) = XEXP (note, 0);
13352 else if (LABEL_P (label))
13353 LABEL_NUSES (label)--;
13356 if (place2 && JUMP_P (place2)
13357 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13358 && (JUMP_LABEL (place2) == NULL
13359 || JUMP_LABEL (place2) == XEXP (note, 0)))
13361 rtx label = JUMP_LABEL (place2);
13363 if (!label)
13364 JUMP_LABEL (place2) = XEXP (note, 0);
13365 else if (LABEL_P (label))
13366 LABEL_NUSES (label)--;
13367 place2 = 0;
13369 break;
13371 case REG_NONNEG:
13372 /* This note says something about the value of a register prior
13373 to the execution of an insn. It is too much trouble to see
13374 if the note is still correct in all situations. It is better
13375 to simply delete it. */
13376 break;
13378 case REG_DEAD:
13379 /* If we replaced the right hand side of FROM_INSN with a
13380 REG_EQUAL note, the original use of the dying register
13381 will not have been combined into I3 and I2. In such cases,
13382 FROM_INSN is guaranteed to be the first of the combined
13383 instructions, so we simply need to search back before
13384 FROM_INSN for the previous use or set of this register,
13385 then alter the notes there appropriately.
13387 If the register is used as an input in I3, it dies there.
13388 Similarly for I2, if it is nonzero and adjacent to I3.
13390 If the register is not used as an input in either I3 or I2
13391 and it is not one of the registers we were supposed to eliminate,
13392 there are two possibilities. We might have a non-adjacent I2
13393 or we might have somehow eliminated an additional register
13394 from a computation. For example, we might have had A & B where
13395 we discover that B will always be zero. In this case we will
13396 eliminate the reference to A.
13398 In both cases, we must search to see if we can find a previous
13399 use of A and put the death note there. */
13401 if (from_insn
13402 && from_insn == i2mod
13403 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13404 tem = from_insn;
13405 else
13407 if (from_insn
13408 && CALL_P (from_insn)
13409 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13410 place = from_insn;
13411 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13412 place = i3;
13413 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13414 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13415 place = i2;
13416 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13417 && !(i2mod
13418 && reg_overlap_mentioned_p (XEXP (note, 0),
13419 i2mod_old_rhs)))
13420 || rtx_equal_p (XEXP (note, 0), elim_i1)
13421 || rtx_equal_p (XEXP (note, 0), elim_i0))
13422 break;
13423 tem = i3;
13426 if (place == 0)
13428 basic_block bb = this_basic_block;
13430 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13432 if (!NONDEBUG_INSN_P (tem))
13434 if (tem == BB_HEAD (bb))
13435 break;
13436 continue;
13439 /* If the register is being set at TEM, see if that is all
13440 TEM is doing. If so, delete TEM. Otherwise, make this
13441 into a REG_UNUSED note instead. Don't delete sets to
13442 global register vars. */
13443 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13444 || !global_regs[REGNO (XEXP (note, 0))])
13445 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13447 rtx set = single_set (tem);
13448 rtx inner_dest = 0;
13449 #ifdef HAVE_cc0
13450 rtx cc0_setter = NULL_RTX;
13451 #endif
13453 if (set != 0)
13454 for (inner_dest = SET_DEST (set);
13455 (GET_CODE (inner_dest) == STRICT_LOW_PART
13456 || GET_CODE (inner_dest) == SUBREG
13457 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13458 inner_dest = XEXP (inner_dest, 0))
13461 /* Verify that it was the set, and not a clobber that
13462 modified the register.
13464 CC0 targets must be careful to maintain setter/user
13465 pairs. If we cannot delete the setter due to side
13466 effects, mark the user with an UNUSED note instead
13467 of deleting it. */
13469 if (set != 0 && ! side_effects_p (SET_SRC (set))
13470 && rtx_equal_p (XEXP (note, 0), inner_dest)
13471 #ifdef HAVE_cc0
13472 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13473 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13474 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13475 #endif
13478 /* Move the notes and links of TEM elsewhere.
13479 This might delete other dead insns recursively.
13480 First set the pattern to something that won't use
13481 any register. */
13482 rtx old_notes = REG_NOTES (tem);
13484 PATTERN (tem) = pc_rtx;
13485 REG_NOTES (tem) = NULL;
13487 distribute_notes (old_notes, tem, tem, NULL_RTX,
13488 NULL_RTX, NULL_RTX, NULL_RTX);
13489 distribute_links (LOG_LINKS (tem));
13491 SET_INSN_DELETED (tem);
13492 if (tem == i2)
13493 i2 = NULL_RTX;
13495 #ifdef HAVE_cc0
13496 /* Delete the setter too. */
13497 if (cc0_setter)
13499 PATTERN (cc0_setter) = pc_rtx;
13500 old_notes = REG_NOTES (cc0_setter);
13501 REG_NOTES (cc0_setter) = NULL;
13503 distribute_notes (old_notes, cc0_setter,
13504 cc0_setter, NULL_RTX,
13505 NULL_RTX, NULL_RTX, NULL_RTX);
13506 distribute_links (LOG_LINKS (cc0_setter));
13508 SET_INSN_DELETED (cc0_setter);
13509 if (cc0_setter == i2)
13510 i2 = NULL_RTX;
13512 #endif
13514 else
13516 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13518 /* If there isn't already a REG_UNUSED note, put one
13519 here. Do not place a REG_DEAD note, even if
13520 the register is also used here; that would not
13521 match the algorithm used in lifetime analysis
13522 and can cause the consistency check in the
13523 scheduler to fail. */
13524 if (! find_regno_note (tem, REG_UNUSED,
13525 REGNO (XEXP (note, 0))))
13526 place = tem;
13527 break;
13530 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13531 || (CALL_P (tem)
13532 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13534 place = tem;
13536 /* If we are doing a 3->2 combination, and we have a
13537 register which formerly died in i3 and was not used
13538 by i2, which now no longer dies in i3 and is used in
13539 i2 but does not die in i2, and place is between i2
13540 and i3, then we may need to move a link from place to
13541 i2. */
13542 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13543 && from_insn
13544 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13545 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13547 struct insn_link *links = LOG_LINKS (place);
13548 LOG_LINKS (place) = NULL;
13549 distribute_links (links);
13551 break;
13554 if (tem == BB_HEAD (bb))
13555 break;
13560 /* If the register is set or already dead at PLACE, we needn't do
13561 anything with this note if it is still a REG_DEAD note.
13562 We check here if it is set at all, not if is it totally replaced,
13563 which is what `dead_or_set_p' checks, so also check for it being
13564 set partially. */
13566 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13568 unsigned int regno = REGNO (XEXP (note, 0));
13569 reg_stat_type *rsp = &reg_stat[regno];
13571 if (dead_or_set_p (place, XEXP (note, 0))
13572 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13574 /* Unless the register previously died in PLACE, clear
13575 last_death. [I no longer understand why this is
13576 being done.] */
13577 if (rsp->last_death != place)
13578 rsp->last_death = 0;
13579 place = 0;
13581 else
13582 rsp->last_death = place;
13584 /* If this is a death note for a hard reg that is occupying
13585 multiple registers, ensure that we are still using all
13586 parts of the object. If we find a piece of the object
13587 that is unused, we must arrange for an appropriate REG_DEAD
13588 note to be added for it. However, we can't just emit a USE
13589 and tag the note to it, since the register might actually
13590 be dead; so we recourse, and the recursive call then finds
13591 the previous insn that used this register. */
13593 if (place && regno < FIRST_PSEUDO_REGISTER
13594 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13596 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13597 bool all_used = true;
13598 unsigned int i;
13600 for (i = regno; i < endregno; i++)
13601 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13602 && ! find_regno_fusage (place, USE, i))
13603 || dead_or_set_regno_p (place, i))
13605 all_used = false;
13606 break;
13609 if (! all_used)
13611 /* Put only REG_DEAD notes for pieces that are
13612 not already dead or set. */
13614 for (i = regno; i < endregno;
13615 i += hard_regno_nregs[i][reg_raw_mode[i]])
13617 rtx piece = regno_reg_rtx[i];
13618 basic_block bb = this_basic_block;
13620 if (! dead_or_set_p (place, piece)
13621 && ! reg_bitfield_target_p (piece,
13622 PATTERN (place)))
13624 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13625 NULL_RTX);
13627 distribute_notes (new_note, place, place,
13628 NULL_RTX, NULL_RTX, NULL_RTX,
13629 NULL_RTX);
13631 else if (! refers_to_regno_p (i, i + 1,
13632 PATTERN (place), 0)
13633 && ! find_regno_fusage (place, USE, i))
13634 for (tem = PREV_INSN (place); ;
13635 tem = PREV_INSN (tem))
13637 if (!NONDEBUG_INSN_P (tem))
13639 if (tem == BB_HEAD (bb))
13640 break;
13641 continue;
13643 if (dead_or_set_p (tem, piece)
13644 || reg_bitfield_target_p (piece,
13645 PATTERN (tem)))
13647 add_reg_note (tem, REG_UNUSED, piece);
13648 break;
13653 place = 0;
13657 break;
13659 default:
13660 /* Any other notes should not be present at this point in the
13661 compilation. */
13662 gcc_unreachable ();
13665 if (place)
13667 XEXP (note, 1) = REG_NOTES (place);
13668 REG_NOTES (place) = note;
13671 if (place2)
13672 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13676 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13677 I3, I2, and I1 to new locations. This is also called to add a link
13678 pointing at I3 when I3's destination is changed. */
13680 static void
13681 distribute_links (struct insn_link *links)
13683 struct insn_link *link, *next_link;
13685 for (link = links; link; link = next_link)
13687 rtx place = 0;
13688 rtx insn;
13689 rtx set, reg;
13691 next_link = link->next;
13693 /* If the insn that this link points to is a NOTE or isn't a single
13694 set, ignore it. In the latter case, it isn't clear what we
13695 can do other than ignore the link, since we can't tell which
13696 register it was for. Such links wouldn't be used by combine
13697 anyway.
13699 It is not possible for the destination of the target of the link to
13700 have been changed by combine. The only potential of this is if we
13701 replace I3, I2, and I1 by I3 and I2. But in that case the
13702 destination of I2 also remains unchanged. */
13704 if (NOTE_P (link->insn)
13705 || (set = single_set (link->insn)) == 0)
13706 continue;
13708 reg = SET_DEST (set);
13709 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13710 || GET_CODE (reg) == STRICT_LOW_PART)
13711 reg = XEXP (reg, 0);
13713 /* A LOG_LINK is defined as being placed on the first insn that uses
13714 a register and points to the insn that sets the register. Start
13715 searching at the next insn after the target of the link and stop
13716 when we reach a set of the register or the end of the basic block.
13718 Note that this correctly handles the link that used to point from
13719 I3 to I2. Also note that not much searching is typically done here
13720 since most links don't point very far away. */
13722 for (insn = NEXT_INSN (link->insn);
13723 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13724 || BB_HEAD (this_basic_block->next_bb) != insn));
13725 insn = NEXT_INSN (insn))
13726 if (DEBUG_INSN_P (insn))
13727 continue;
13728 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13730 if (reg_referenced_p (reg, PATTERN (insn)))
13731 place = insn;
13732 break;
13734 else if (CALL_P (insn)
13735 && find_reg_fusage (insn, USE, reg))
13737 place = insn;
13738 break;
13740 else if (INSN_P (insn) && reg_set_p (reg, insn))
13741 break;
13743 /* If we found a place to put the link, place it there unless there
13744 is already a link to the same insn as LINK at that point. */
13746 if (place)
13748 struct insn_link *link2;
13750 FOR_EACH_LOG_LINK (link2, place)
13751 if (link2->insn == link->insn)
13752 break;
13754 if (link2 == NULL)
13756 link->next = LOG_LINKS (place);
13757 LOG_LINKS (place) = link;
13759 /* Set added_links_insn to the earliest insn we added a
13760 link to. */
13761 if (added_links_insn == 0
13762 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13763 added_links_insn = place;
13769 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13770 Check whether the expression pointer to by LOC is a register or
13771 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13772 Otherwise return zero. */
13774 static int
13775 unmentioned_reg_p_1 (rtx *loc, void *expr)
13777 rtx x = *loc;
13779 if (x != NULL_RTX
13780 && (REG_P (x) || MEM_P (x))
13781 && ! reg_mentioned_p (x, (rtx) expr))
13782 return 1;
13783 return 0;
13786 /* Check for any register or memory mentioned in EQUIV that is not
13787 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13788 of EXPR where some registers may have been replaced by constants. */
13790 static bool
13791 unmentioned_reg_p (rtx equiv, rtx expr)
13793 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13796 DEBUG_FUNCTION void
13797 dump_combine_stats (FILE *file)
13799 fprintf
13800 (file,
13801 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13802 combine_attempts, combine_merges, combine_extras, combine_successes);
13805 void
13806 dump_combine_total_stats (FILE *file)
13808 fprintf
13809 (file,
13810 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13811 total_attempts, total_merges, total_extras, total_successes);
13814 static bool
13815 gate_handle_combine (void)
13817 return (optimize > 0);
13820 /* Try combining insns through substitution. */
13821 static unsigned int
13822 rest_of_handle_combine (void)
13824 int rebuild_jump_labels_after_combine;
13826 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13827 df_note_add_problem ();
13828 df_analyze ();
13830 regstat_init_n_sets_and_refs ();
13832 rebuild_jump_labels_after_combine
13833 = combine_instructions (get_insns (), max_reg_num ());
13835 /* Combining insns may have turned an indirect jump into a
13836 direct jump. Rebuild the JUMP_LABEL fields of jumping
13837 instructions. */
13838 if (rebuild_jump_labels_after_combine)
13840 timevar_push (TV_JUMP);
13841 rebuild_jump_labels (get_insns ());
13842 cleanup_cfg (0);
13843 timevar_pop (TV_JUMP);
13846 regstat_free_n_sets_and_refs ();
13847 return 0;
13850 namespace {
13852 const pass_data pass_data_combine =
13854 RTL_PASS, /* type */
13855 "combine", /* name */
13856 OPTGROUP_NONE, /* optinfo_flags */
13857 true, /* has_gate */
13858 true, /* has_execute */
13859 TV_COMBINE, /* tv_id */
13860 PROP_cfglayout, /* properties_required */
13861 0, /* properties_provided */
13862 0, /* properties_destroyed */
13863 0, /* todo_flags_start */
13864 ( TODO_df_finish | TODO_verify_rtl_sharing ), /* todo_flags_finish */
13867 class pass_combine : public rtl_opt_pass
13869 public:
13870 pass_combine(gcc::context *ctxt)
13871 : rtl_opt_pass(pass_data_combine, ctxt)
13874 /* opt_pass methods: */
13875 bool gate () { return gate_handle_combine (); }
13876 unsigned int execute () { return rest_of_handle_combine (); }
13878 }; // class pass_combine
13880 } // anon namespace
13882 rtl_opt_pass *
13883 make_pass_combine (gcc::context *ctxt)
13885 return new pass_combine (ctxt);