1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
6 //===----------------------------------------------------------------------===//
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 // Mac-specific interceptors.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_platform.h"
16 #include "interception/interception.h"
17 #include "tsan_interceptors.h"
18 #include "tsan_interface.h"
19 #include "tsan_interface_ann.h"
21 #include <libkern/OSAtomic.h>
23 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
25 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
27 typedef long long_t
; // NOLINT
31 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
32 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
33 // actually aliases of each other, and we cannot have different interceptors for
34 // them, because they're actually the same function. Thus, we have to stay
35 // conservative and treat the non-barrier versions as mo_acq_rel.
36 static const morder kMacOrderBarrier
= mo_acq_rel
;
37 static const morder kMacOrderNonBarrier
= mo_acq_rel
;
39 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
40 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
41 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
42 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo); \
45 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
46 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
47 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
48 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x; \
51 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
52 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
53 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
54 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1; \
57 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
59 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
60 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
61 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1; \
64 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m) \
65 m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
66 kMacOrderNonBarrier) \
67 m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
69 m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \
70 kMacOrderNonBarrier) \
71 m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f, \
74 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig) \
75 m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
76 kMacOrderNonBarrier) \
77 m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
79 m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
80 kMacOrderNonBarrier) \
81 m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier, \
82 __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
84 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd
, fetch_add
,
85 OSATOMIC_INTERCEPTOR_PLUS_X
)
86 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement
, fetch_add
,
87 OSATOMIC_INTERCEPTOR_PLUS_1
)
88 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement
, fetch_sub
,
89 OSATOMIC_INTERCEPTOR_MINUS_1
)
90 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr
, fetch_or
, OSATOMIC_INTERCEPTOR_PLUS_X
,
92 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd
, fetch_and
,
93 OSATOMIC_INTERCEPTOR_PLUS_X
, OSATOMIC_INTERCEPTOR
)
94 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor
, fetch_xor
,
95 OSATOMIC_INTERCEPTOR_PLUS_X
, OSATOMIC_INTERCEPTOR
)
97 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t) \
98 TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \
99 SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr); \
100 return tsan_atomic_f##_compare_exchange_strong( \
101 (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
102 kMacOrderNonBarrier, kMacOrderNonBarrier); \
105 TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value, \
107 SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr); \
108 return tsan_atomic_f##_compare_exchange_strong( \
109 (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
110 kMacOrderBarrier, kMacOrderNonBarrier); \
113 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt
, __tsan_atomic32
, a32
, int)
114 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong
, __tsan_atomic64
, a64
,
116 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr
, __tsan_atomic64
, a64
,
118 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32
, __tsan_atomic32
, a32
,
120 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64
, __tsan_atomic64
, a64
,
123 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo) \
124 TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
125 SCOPED_TSAN_INTERCEPTOR(f, n, ptr); \
126 char *byte_ptr = ((char *)ptr) + (n >> 3); \
127 char bit = 0x80u >> (n & 7); \
128 char mask = clear ? ~bit : bit; \
129 char orig_byte = op((a8 *)byte_ptr, mask, mo); \
130 return orig_byte & bit; \
133 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear) \
134 OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
135 OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
137 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet
, __tsan_atomic8_fetch_or
, false)
138 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear
, __tsan_atomic8_fetch_and
,
141 TSAN_INTERCEPTOR(void, OSAtomicEnqueue
, OSQueueHead
*list
, void *item
,
143 SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue
, list
, item
, offset
);
144 __tsan_release(item
);
145 REAL(OSAtomicEnqueue
)(list
, item
, offset
);
148 TSAN_INTERCEPTOR(void *, OSAtomicDequeue
, OSQueueHead
*list
, size_t offset
) {
149 SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue
, list
, offset
);
150 void *item
= REAL(OSAtomicDequeue
)(list
, offset
);
151 if (item
) __tsan_acquire(item
);
155 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
158 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue
, OSFifoQueueHead
*list
, void *item
,
160 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue
, list
, item
, offset
);
161 __tsan_release(item
);
162 REAL(OSAtomicFifoEnqueue
)(list
, item
, offset
);
165 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue
, OSFifoQueueHead
*list
,
167 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue
, list
, offset
);
168 void *item
= REAL(OSAtomicFifoDequeue
)(list
, offset
);
169 if (item
) __tsan_acquire(item
);
175 TSAN_INTERCEPTOR(void, OSSpinLockLock
, volatile OSSpinLock
*lock
) {
176 CHECK(!cur_thread()->is_dead
);
177 if (!cur_thread()->is_inited
) {
178 return REAL(OSSpinLockLock
)(lock
);
180 SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock
, lock
);
181 REAL(OSSpinLockLock
)(lock
);
182 Acquire(thr
, pc
, (uptr
)lock
);
185 TSAN_INTERCEPTOR(bool, OSSpinLockTry
, volatile OSSpinLock
*lock
) {
186 CHECK(!cur_thread()->is_dead
);
187 if (!cur_thread()->is_inited
) {
188 return REAL(OSSpinLockTry
)(lock
);
190 SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry
, lock
);
191 bool result
= REAL(OSSpinLockTry
)(lock
);
193 Acquire(thr
, pc
, (uptr
)lock
);
197 TSAN_INTERCEPTOR(void, OSSpinLockUnlock
, volatile OSSpinLock
*lock
) {
198 CHECK(!cur_thread()->is_dead
);
199 if (!cur_thread()->is_inited
) {
200 return REAL(OSSpinLockUnlock
)(lock
);
202 SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock
, lock
);
203 Release(thr
, pc
, (uptr
)lock
);
204 REAL(OSSpinLockUnlock
)(lock
);
207 TSAN_INTERCEPTOR(void, os_lock_lock
, void *lock
) {
208 CHECK(!cur_thread()->is_dead
);
209 if (!cur_thread()->is_inited
) {
210 return REAL(os_lock_lock
)(lock
);
212 SCOPED_TSAN_INTERCEPTOR(os_lock_lock
, lock
);
213 REAL(os_lock_lock
)(lock
);
214 Acquire(thr
, pc
, (uptr
)lock
);
217 TSAN_INTERCEPTOR(bool, os_lock_trylock
, void *lock
) {
218 CHECK(!cur_thread()->is_dead
);
219 if (!cur_thread()->is_inited
) {
220 return REAL(os_lock_trylock
)(lock
);
222 SCOPED_TSAN_INTERCEPTOR(os_lock_trylock
, lock
);
223 bool result
= REAL(os_lock_trylock
)(lock
);
225 Acquire(thr
, pc
, (uptr
)lock
);
229 TSAN_INTERCEPTOR(void, os_lock_unlock
, void *lock
) {
230 CHECK(!cur_thread()->is_dead
);
231 if (!cur_thread()->is_inited
) {
232 return REAL(os_lock_unlock
)(lock
);
234 SCOPED_TSAN_INTERCEPTOR(os_lock_unlock
, lock
);
235 Release(thr
, pc
, (uptr
)lock
);
236 REAL(os_lock_unlock
)(lock
);
239 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
241 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler
,
242 xpc_connection_t connection
, xpc_handler_t handler
) {
243 SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler
, connection
,
245 Release(thr
, pc
, (uptr
)connection
);
246 xpc_handler_t new_handler
= ^(xpc_object_t object
) {
248 SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler
);
249 Acquire(thr
, pc
, (uptr
)connection
);
253 REAL(xpc_connection_set_event_handler
)(connection
, new_handler
);
256 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier
, xpc_connection_t connection
,
257 dispatch_block_t barrier
) {
258 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier
, connection
, barrier
);
259 Release(thr
, pc
, (uptr
)connection
);
260 dispatch_block_t new_barrier
= ^() {
262 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier
);
263 Acquire(thr
, pc
, (uptr
)connection
);
267 REAL(xpc_connection_send_barrier
)(connection
, new_barrier
);
270 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply
,
271 xpc_connection_t connection
, xpc_object_t message
,
272 dispatch_queue_t replyq
, xpc_handler_t handler
) {
273 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply
, connection
,
274 message
, replyq
, handler
);
275 Release(thr
, pc
, (uptr
)connection
);
276 xpc_handler_t new_handler
= ^(xpc_object_t object
) {
278 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply
);
279 Acquire(thr
, pc
, (uptr
)connection
);
283 REAL(xpc_connection_send_message_with_reply
)
284 (connection
, message
, replyq
, new_handler
);
287 TSAN_INTERCEPTOR(void, xpc_connection_cancel
, xpc_connection_t connection
) {
288 SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel
, connection
);
289 Release(thr
, pc
, (uptr
)connection
);
290 REAL(xpc_connection_cancel
)(connection
);
293 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
295 // On macOS, libc++ is always linked dynamically, so intercepting works the
297 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
300 struct fake_shared_weak_count
{
301 volatile a64 shared_owners
;
302 volatile a64 shared_weak_owners
;
303 virtual void _unused_0x0() = 0;
304 virtual void _unused_0x8() = 0;
305 virtual void on_zero_shared() = 0;
306 virtual void _unused_0x18() = 0;
307 virtual void on_zero_shared_weak() = 0;
311 // The following code adds libc++ interceptors for:
312 // void __shared_weak_count::__release_shared() _NOEXCEPT;
313 // bool __shared_count::__release_shared() _NOEXCEPT;
314 // Shared and weak pointers in C++ maintain reference counts via atomics in
315 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
316 // destructor code. These interceptors re-implements the whole functions so that
317 // the mo_acq_rel semantics of the atomic decrement are visible.
319 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
320 // object and call the original function, because it would have a race between
321 // the sync and the destruction of the object. Calling both under a lock will
322 // not work because the destructor can invoke this interceptor again (and even
323 // in a different thread, so recursive locks don't help).
325 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv
,
326 fake_shared_weak_count
*o
) {
327 if (!flags()->shared_ptr_interceptor
)
328 return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv
)(o
);
330 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv
,
332 if (__tsan_atomic64_fetch_add(&o
->shared_owners
, -1, mo_release
) == 0) {
333 Acquire(thr
, pc
, (uptr
)&o
->shared_owners
);
335 if (__tsan_atomic64_fetch_add(&o
->shared_weak_owners
, -1, mo_release
) ==
337 Acquire(thr
, pc
, (uptr
)&o
->shared_weak_owners
);
338 o
->on_zero_shared_weak();
343 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv
,
344 fake_shared_weak_count
*o
) {
345 if (!flags()->shared_ptr_interceptor
)
346 return REAL(_ZNSt3__114__shared_count16__release_sharedEv
)(o
);
348 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv
, o
);
349 if (__tsan_atomic64_fetch_add(&o
->shared_owners
, -1, mo_release
) == 0) {
350 Acquire(thr
, pc
, (uptr
)&o
->shared_owners
);
358 struct call_once_callback_args
{
359 void (*orig_func
)(void *arg
);
364 void call_once_callback_wrapper(void *arg
) {
365 call_once_callback_args
*new_args
= (call_once_callback_args
*)arg
;
366 new_args
->orig_func(new_args
->orig_arg
);
367 __tsan_release(new_args
->flag
);
371 // This adds a libc++ interceptor for:
372 // void __call_once(volatile unsigned long&, void*, void(*)(void*));
373 // C++11 call_once is implemented via an internal function __call_once which is
374 // inside libc++.dylib, and the atomic release store inside it is thus
375 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
376 // function and performs an explicit Release after the user code has run.
377 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E
, void *flag
,
378 void *arg
, void (*func
)(void *arg
)) {
379 call_once_callback_args new_args
= {func
, arg
, flag
};
380 REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E
)(flag
, &new_args
,
381 call_once_callback_wrapper
);
384 } // namespace __tsan
386 #endif // SANITIZER_MAC