Daily bump.
[official-gcc.git] / gcc / unroll.c
blob6be951e279223b385fd7a8b7a24c3b09d44236cb
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 #include "config.h"
135 #include "system.h"
136 #include "rtl.h"
137 #include "tm_p.h"
138 #include "insn-config.h"
139 #include "integrate.h"
140 #include "regs.h"
141 #include "recog.h"
142 #include "flags.h"
143 #include "function.h"
144 #include "expr.h"
145 #include "loop.h"
146 #include "toplev.h"
147 #include "hard-reg-set.h"
148 #include "basic-block.h"
149 #include "predict.h"
151 /* The prime factors looked for when trying to unroll a loop by some
152 number which is modulo the total number of iterations. Just checking
153 for these 4 prime factors will find at least one factor for 75% of
154 all numbers theoretically. Practically speaking, this will succeed
155 almost all of the time since loops are generally a multiple of 2
156 and/or 5. */
158 #define NUM_FACTORS 4
160 static struct _factor { const int factor; int count; }
161 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
163 /* Describes the different types of loop unrolling performed. */
165 enum unroll_types
167 UNROLL_COMPLETELY,
168 UNROLL_MODULO,
169 UNROLL_NAIVE
172 /* This controls which loops are unrolled, and by how much we unroll
173 them. */
175 #ifndef MAX_UNROLLED_INSNS
176 #define MAX_UNROLLED_INSNS 100
177 #endif
179 /* Indexed by register number, if non-zero, then it contains a pointer
180 to a struct induction for a DEST_REG giv which has been combined with
181 one of more address givs. This is needed because whenever such a DEST_REG
182 giv is modified, we must modify the value of all split address givs
183 that were combined with this DEST_REG giv. */
185 static struct induction **addr_combined_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the current value of the register, which depends on the
189 iteration number. */
191 static rtx *splittable_regs;
193 /* Indexed by register number, if this is a splittable induction variable,
194 then this will hold the number of instructions in the loop that modify
195 the induction variable. Used to ensure that only the last insn modifying
196 a split iv will update the original iv of the dest. */
198 static int *splittable_regs_updates;
200 /* Forward declarations. */
202 static void init_reg_map PARAMS ((struct inline_remap *, int));
203 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
204 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
205 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
206 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx));
209 static int find_splittable_regs PARAMS ((const struct loop *,
210 enum unroll_types, int));
211 static int find_splittable_givs PARAMS ((const struct loop *,
212 struct iv_class *, enum unroll_types,
213 rtx, int));
214 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
215 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
216 static int verify_addresses PARAMS ((struct induction *, rtx, int));
217 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
218 static rtx find_common_reg_term PARAMS ((rtx, rtx));
219 static rtx subtract_reg_term PARAMS ((rtx, rtx));
220 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
221 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
223 /* Try to unroll one loop and split induction variables in the loop.
225 The loop is described by the arguments LOOP and INSN_COUNT.
226 STRENGTH_REDUCTION_P indicates whether information generated in the
227 strength reduction pass is available.
229 This function is intended to be called from within `strength_reduce'
230 in loop.c. */
232 void
233 unroll_loop (loop, insn_count, strength_reduce_p)
234 struct loop *loop;
235 int insn_count;
236 int strength_reduce_p;
238 struct loop_info *loop_info = LOOP_INFO (loop);
239 struct loop_ivs *ivs = LOOP_IVS (loop);
240 int i, j;
241 unsigned int r;
242 unsigned HOST_WIDE_INT temp;
243 int unroll_number = 1;
244 rtx copy_start, copy_end;
245 rtx insn, sequence, pattern, tem;
246 int max_labelno, max_insnno;
247 rtx insert_before;
248 struct inline_remap *map;
249 char *local_label = NULL;
250 char *local_regno;
251 unsigned int max_local_regnum;
252 unsigned int maxregnum;
253 rtx exit_label = 0;
254 rtx start_label;
255 struct iv_class *bl;
256 int splitting_not_safe = 0;
257 enum unroll_types unroll_type = UNROLL_NAIVE;
258 int loop_preconditioned = 0;
259 rtx safety_label;
260 /* This points to the last real insn in the loop, which should be either
261 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
262 jumps). */
263 rtx last_loop_insn;
264 rtx loop_start = loop->start;
265 rtx loop_end = loop->end;
267 /* Don't bother unrolling huge loops. Since the minimum factor is
268 two, loops greater than one half of MAX_UNROLLED_INSNS will never
269 be unrolled. */
270 if (insn_count > MAX_UNROLLED_INSNS / 2)
272 if (loop_dump_stream)
273 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
274 return;
277 /* When emitting debugger info, we can't unroll loops with unequal numbers
278 of block_beg and block_end notes, because that would unbalance the block
279 structure of the function. This can happen as a result of the
280 "if (foo) bar; else break;" optimization in jump.c. */
281 /* ??? Gcc has a general policy that -g is never supposed to change the code
282 that the compiler emits, so we must disable this optimization always,
283 even if debug info is not being output. This is rare, so this should
284 not be a significant performance problem. */
286 if (1 /* write_symbols != NO_DEBUG */)
288 int block_begins = 0;
289 int block_ends = 0;
291 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
293 if (GET_CODE (insn) == NOTE)
295 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
296 block_begins++;
297 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
298 block_ends++;
299 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
300 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
302 /* Note, would be nice to add code to unroll EH
303 regions, but until that time, we punt (don't
304 unroll). For the proper way of doing it, see
305 expand_inline_function. */
307 if (loop_dump_stream)
308 fprintf (loop_dump_stream,
309 "Unrolling failure: cannot unroll EH regions.\n");
310 return;
315 if (block_begins != block_ends)
317 if (loop_dump_stream)
318 fprintf (loop_dump_stream,
319 "Unrolling failure: Unbalanced block notes.\n");
320 return;
324 /* Determine type of unroll to perform. Depends on the number of iterations
325 and the size of the loop. */
327 /* If there is no strength reduce info, then set
328 loop_info->n_iterations to zero. This can happen if
329 strength_reduce can't find any bivs in the loop. A value of zero
330 indicates that the number of iterations could not be calculated. */
332 if (! strength_reduce_p)
333 loop_info->n_iterations = 0;
335 if (loop_dump_stream && loop_info->n_iterations > 0)
337 fputs ("Loop unrolling: ", loop_dump_stream);
338 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
339 loop_info->n_iterations);
340 fputs (" iterations.\n", loop_dump_stream);
343 /* Find and save a pointer to the last nonnote insn in the loop. */
345 last_loop_insn = prev_nonnote_insn (loop_end);
347 /* Calculate how many times to unroll the loop. Indicate whether or
348 not the loop is being completely unrolled. */
350 if (loop_info->n_iterations == 1)
352 /* Handle the case where the loop begins with an unconditional
353 jump to the loop condition. Make sure to delete the jump
354 insn, otherwise the loop body will never execute. */
356 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
357 if (ujump)
358 delete_related_insns (ujump);
360 /* If number of iterations is exactly 1, then eliminate the compare and
361 branch at the end of the loop since they will never be taken.
362 Then return, since no other action is needed here. */
364 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
365 don't do anything. */
367 if (GET_CODE (last_loop_insn) == BARRIER)
369 /* Delete the jump insn. This will delete the barrier also. */
370 delete_related_insns (PREV_INSN (last_loop_insn));
372 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
374 #ifdef HAVE_cc0
375 rtx prev = PREV_INSN (last_loop_insn);
376 #endif
377 delete_related_insns (last_loop_insn);
378 #ifdef HAVE_cc0
379 /* The immediately preceding insn may be a compare which must be
380 deleted. */
381 if (only_sets_cc0_p (prev))
382 delete_related_insns (prev);
383 #endif
386 /* Remove the loop notes since this is no longer a loop. */
387 if (loop->vtop)
388 delete_related_insns (loop->vtop);
389 if (loop->cont)
390 delete_related_insns (loop->cont);
391 if (loop_start)
392 delete_related_insns (loop_start);
393 if (loop_end)
394 delete_related_insns (loop_end);
396 return;
398 else if (loop_info->n_iterations > 0
399 /* Avoid overflow in the next expression. */
400 && loop_info->n_iterations < MAX_UNROLLED_INSNS
401 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
403 unroll_number = loop_info->n_iterations;
404 unroll_type = UNROLL_COMPLETELY;
406 else if (loop_info->n_iterations > 0)
408 /* Try to factor the number of iterations. Don't bother with the
409 general case, only using 2, 3, 5, and 7 will get 75% of all
410 numbers theoretically, and almost all in practice. */
412 for (i = 0; i < NUM_FACTORS; i++)
413 factors[i].count = 0;
415 temp = loop_info->n_iterations;
416 for (i = NUM_FACTORS - 1; i >= 0; i--)
417 while (temp % factors[i].factor == 0)
419 factors[i].count++;
420 temp = temp / factors[i].factor;
423 /* Start with the larger factors first so that we generally
424 get lots of unrolling. */
426 unroll_number = 1;
427 temp = insn_count;
428 for (i = 3; i >= 0; i--)
429 while (factors[i].count--)
431 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
433 unroll_number *= factors[i].factor;
434 temp *= factors[i].factor;
436 else
437 break;
440 /* If we couldn't find any factors, then unroll as in the normal
441 case. */
442 if (unroll_number == 1)
444 if (loop_dump_stream)
445 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
447 else
448 unroll_type = UNROLL_MODULO;
451 /* Default case, calculate number of times to unroll loop based on its
452 size. */
453 if (unroll_type == UNROLL_NAIVE)
455 if (8 * insn_count < MAX_UNROLLED_INSNS)
456 unroll_number = 8;
457 else if (4 * insn_count < MAX_UNROLLED_INSNS)
458 unroll_number = 4;
459 else
460 unroll_number = 2;
463 /* Now we know how many times to unroll the loop. */
465 if (loop_dump_stream)
466 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
468 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
470 /* Loops of these types can start with jump down to the exit condition
471 in rare circumstances.
473 Consider a pair of nested loops where the inner loop is part
474 of the exit code for the outer loop.
476 In this case jump.c will not duplicate the exit test for the outer
477 loop, so it will start with a jump to the exit code.
479 Then consider if the inner loop turns out to iterate once and
480 only once. We will end up deleting the jumps associated with
481 the inner loop. However, the loop notes are not removed from
482 the instruction stream.
484 And finally assume that we can compute the number of iterations
485 for the outer loop.
487 In this case unroll may want to unroll the outer loop even though
488 it starts with a jump to the outer loop's exit code.
490 We could try to optimize this case, but it hardly seems worth it.
491 Just return without unrolling the loop in such cases. */
493 insn = loop_start;
494 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
495 insn = NEXT_INSN (insn);
496 if (GET_CODE (insn) == JUMP_INSN)
497 return;
500 if (unroll_type == UNROLL_COMPLETELY)
502 /* Completely unrolling the loop: Delete the compare and branch at
503 the end (the last two instructions). This delete must done at the
504 very end of loop unrolling, to avoid problems with calls to
505 back_branch_in_range_p, which is called by find_splittable_regs.
506 All increments of splittable bivs/givs are changed to load constant
507 instructions. */
509 copy_start = loop_start;
511 /* Set insert_before to the instruction immediately after the JUMP_INSN
512 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
513 the loop will be correctly handled by copy_loop_body. */
514 insert_before = NEXT_INSN (last_loop_insn);
516 /* Set copy_end to the insn before the jump at the end of the loop. */
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
519 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
521 copy_end = PREV_INSN (last_loop_insn);
522 #ifdef HAVE_cc0
523 /* The instruction immediately before the JUMP_INSN may be a compare
524 instruction which we do not want to copy. */
525 if (sets_cc0_p (PREV_INSN (copy_end)))
526 copy_end = PREV_INSN (copy_end);
527 #endif
529 else
531 /* We currently can't unroll a loop if it doesn't end with a
532 JUMP_INSN. There would need to be a mechanism that recognizes
533 this case, and then inserts a jump after each loop body, which
534 jumps to after the last loop body. */
535 if (loop_dump_stream)
536 fprintf (loop_dump_stream,
537 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
538 return;
541 else if (unroll_type == UNROLL_MODULO)
543 /* Partially unrolling the loop: The compare and branch at the end
544 (the last two instructions) must remain. Don't copy the compare
545 and branch instructions at the end of the loop. Insert the unrolled
546 code immediately before the compare/branch at the end so that the
547 code will fall through to them as before. */
549 copy_start = loop_start;
551 /* Set insert_before to the jump insn at the end of the loop.
552 Set copy_end to before the jump insn at the end of the loop. */
553 if (GET_CODE (last_loop_insn) == BARRIER)
555 insert_before = PREV_INSN (last_loop_insn);
556 copy_end = PREV_INSN (insert_before);
558 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
560 insert_before = last_loop_insn;
561 #ifdef HAVE_cc0
562 /* The instruction immediately before the JUMP_INSN may be a compare
563 instruction which we do not want to copy or delete. */
564 if (sets_cc0_p (PREV_INSN (insert_before)))
565 insert_before = PREV_INSN (insert_before);
566 #endif
567 copy_end = PREV_INSN (insert_before);
569 else
571 /* We currently can't unroll a loop if it doesn't end with a
572 JUMP_INSN. There would need to be a mechanism that recognizes
573 this case, and then inserts a jump after each loop body, which
574 jumps to after the last loop body. */
575 if (loop_dump_stream)
576 fprintf (loop_dump_stream,
577 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
578 return;
581 else
583 /* Normal case: Must copy the compare and branch instructions at the
584 end of the loop. */
586 if (GET_CODE (last_loop_insn) == BARRIER)
588 /* Loop ends with an unconditional jump and a barrier.
589 Handle this like above, don't copy jump and barrier.
590 This is not strictly necessary, but doing so prevents generating
591 unconditional jumps to an immediately following label.
593 This will be corrected below if the target of this jump is
594 not the start_label. */
596 insert_before = PREV_INSN (last_loop_insn);
597 copy_end = PREV_INSN (insert_before);
599 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
601 /* Set insert_before to immediately after the JUMP_INSN, so that
602 NOTEs at the end of the loop will be correctly handled by
603 copy_loop_body. */
604 insert_before = NEXT_INSN (last_loop_insn);
605 copy_end = last_loop_insn;
607 else
609 /* We currently can't unroll a loop if it doesn't end with a
610 JUMP_INSN. There would need to be a mechanism that recognizes
611 this case, and then inserts a jump after each loop body, which
612 jumps to after the last loop body. */
613 if (loop_dump_stream)
614 fprintf (loop_dump_stream,
615 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
616 return;
619 /* If copying exit test branches because they can not be eliminated,
620 then must convert the fall through case of the branch to a jump past
621 the end of the loop. Create a label to emit after the loop and save
622 it for later use. Do not use the label after the loop, if any, since
623 it might be used by insns outside the loop, or there might be insns
624 added before it later by final_[bg]iv_value which must be after
625 the real exit label. */
626 exit_label = gen_label_rtx ();
628 insn = loop_start;
629 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
630 insn = NEXT_INSN (insn);
632 if (GET_CODE (insn) == JUMP_INSN)
634 /* The loop starts with a jump down to the exit condition test.
635 Start copying the loop after the barrier following this
636 jump insn. */
637 copy_start = NEXT_INSN (insn);
639 /* Splitting induction variables doesn't work when the loop is
640 entered via a jump to the bottom, because then we end up doing
641 a comparison against a new register for a split variable, but
642 we did not execute the set insn for the new register because
643 it was skipped over. */
644 splitting_not_safe = 1;
645 if (loop_dump_stream)
646 fprintf (loop_dump_stream,
647 "Splitting not safe, because loop not entered at top.\n");
649 else
650 copy_start = loop_start;
653 /* This should always be the first label in the loop. */
654 start_label = NEXT_INSN (copy_start);
655 /* There may be a line number note and/or a loop continue note here. */
656 while (GET_CODE (start_label) == NOTE)
657 start_label = NEXT_INSN (start_label);
658 if (GET_CODE (start_label) != CODE_LABEL)
660 /* This can happen as a result of jump threading. If the first insns in
661 the loop test the same condition as the loop's backward jump, or the
662 opposite condition, then the backward jump will be modified to point
663 to elsewhere, and the loop's start label is deleted.
665 This case currently can not be handled by the loop unrolling code. */
667 if (loop_dump_stream)
668 fprintf (loop_dump_stream,
669 "Unrolling failure: unknown insns between BEG note and loop label.\n");
670 return;
672 if (LABEL_NAME (start_label))
674 /* The jump optimization pass must have combined the original start label
675 with a named label for a goto. We can't unroll this case because
676 jumps which go to the named label must be handled differently than
677 jumps to the loop start, and it is impossible to differentiate them
678 in this case. */
679 if (loop_dump_stream)
680 fprintf (loop_dump_stream,
681 "Unrolling failure: loop start label is gone\n");
682 return;
685 if (unroll_type == UNROLL_NAIVE
686 && GET_CODE (last_loop_insn) == BARRIER
687 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
688 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
690 /* In this case, we must copy the jump and barrier, because they will
691 not be converted to jumps to an immediately following label. */
693 insert_before = NEXT_INSN (last_loop_insn);
694 copy_end = last_loop_insn;
697 if (unroll_type == UNROLL_NAIVE
698 && GET_CODE (last_loop_insn) == JUMP_INSN
699 && start_label != JUMP_LABEL (last_loop_insn))
701 /* ??? The loop ends with a conditional branch that does not branch back
702 to the loop start label. In this case, we must emit an unconditional
703 branch to the loop exit after emitting the final branch.
704 copy_loop_body does not have support for this currently, so we
705 give up. It doesn't seem worthwhile to unroll anyways since
706 unrolling would increase the number of branch instructions
707 executed. */
708 if (loop_dump_stream)
709 fprintf (loop_dump_stream,
710 "Unrolling failure: final conditional branch not to loop start\n");
711 return;
714 /* Allocate a translation table for the labels and insn numbers.
715 They will be filled in as we copy the insns in the loop. */
717 max_labelno = max_label_num ();
718 max_insnno = get_max_uid ();
720 /* Various paths through the unroll code may reach the "egress" label
721 without initializing fields within the map structure.
723 To be safe, we use xcalloc to zero the memory. */
724 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
726 /* Allocate the label map. */
728 if (max_labelno > 0)
730 map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
731 local_label = (char *) xcalloc (max_labelno, sizeof (char));
734 /* Search the loop and mark all local labels, i.e. the ones which have to
735 be distinct labels when copied. For all labels which might be
736 non-local, set their label_map entries to point to themselves.
737 If they happen to be local their label_map entries will be overwritten
738 before the loop body is copied. The label_map entries for local labels
739 will be set to a different value each time the loop body is copied. */
741 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
743 rtx note;
745 if (GET_CODE (insn) == CODE_LABEL)
746 local_label[CODE_LABEL_NUMBER (insn)] = 1;
747 else if (GET_CODE (insn) == JUMP_INSN)
749 if (JUMP_LABEL (insn))
750 set_label_in_map (map,
751 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
752 JUMP_LABEL (insn));
753 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
754 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
756 rtx pat = PATTERN (insn);
757 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
758 int len = XVECLEN (pat, diff_vec_p);
759 rtx label;
761 for (i = 0; i < len; i++)
763 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
764 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
768 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
769 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
770 XEXP (note, 0));
773 /* Allocate space for the insn map. */
775 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
777 /* Set this to zero, to indicate that we are doing loop unrolling,
778 not function inlining. */
779 map->inline_target = 0;
781 /* The register and constant maps depend on the number of registers
782 present, so the final maps can't be created until after
783 find_splittable_regs is called. However, they are needed for
784 preconditioning, so we create temporary maps when preconditioning
785 is performed. */
787 /* The preconditioning code may allocate two new pseudo registers. */
788 maxregnum = max_reg_num ();
790 /* local_regno is only valid for regnos < max_local_regnum. */
791 max_local_regnum = maxregnum;
793 /* Allocate and zero out the splittable_regs and addr_combined_regs
794 arrays. These must be zeroed here because they will be used if
795 loop preconditioning is performed, and must be zero for that case.
797 It is safe to do this here, since the extra registers created by the
798 preconditioning code and find_splittable_regs will never be used
799 to access the splittable_regs[] and addr_combined_regs[] arrays. */
801 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
802 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
803 addr_combined_regs
804 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
805 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
807 /* Mark all local registers, i.e. the ones which are referenced only
808 inside the loop. */
809 if (INSN_UID (copy_end) < max_uid_for_loop)
811 int copy_start_luid = INSN_LUID (copy_start);
812 int copy_end_luid = INSN_LUID (copy_end);
814 /* If a register is used in the jump insn, we must not duplicate it
815 since it will also be used outside the loop. */
816 if (GET_CODE (copy_end) == JUMP_INSN)
817 copy_end_luid--;
819 /* If we have a target that uses cc0, then we also must not duplicate
820 the insn that sets cc0 before the jump insn, if one is present. */
821 #ifdef HAVE_cc0
822 if (GET_CODE (copy_end) == JUMP_INSN
823 && sets_cc0_p (PREV_INSN (copy_end)))
824 copy_end_luid--;
825 #endif
827 /* If copy_start points to the NOTE that starts the loop, then we must
828 use the next luid, because invariant pseudo-regs moved out of the loop
829 have their lifetimes modified to start here, but they are not safe
830 to duplicate. */
831 if (copy_start == loop_start)
832 copy_start_luid++;
834 /* If a pseudo's lifetime is entirely contained within this loop, then we
835 can use a different pseudo in each unrolled copy of the loop. This
836 results in better code. */
837 /* We must limit the generic test to max_reg_before_loop, because only
838 these pseudo registers have valid regno_first_uid info. */
839 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
840 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
841 && REGNO_FIRST_LUID (r) >= copy_start_luid
842 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
843 && REGNO_LAST_LUID (r) <= copy_end_luid)
845 /* However, we must also check for loop-carried dependencies.
846 If the value the pseudo has at the end of iteration X is
847 used by iteration X+1, then we can not use a different pseudo
848 for each unrolled copy of the loop. */
849 /* A pseudo is safe if regno_first_uid is a set, and this
850 set dominates all instructions from regno_first_uid to
851 regno_last_uid. */
852 /* ??? This check is simplistic. We would get better code if
853 this check was more sophisticated. */
854 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
855 copy_start, copy_end))
856 local_regno[r] = 1;
858 if (loop_dump_stream)
860 if (local_regno[r])
861 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
862 else
863 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
869 /* If this loop requires exit tests when unrolled, check to see if we
870 can precondition the loop so as to make the exit tests unnecessary.
871 Just like variable splitting, this is not safe if the loop is entered
872 via a jump to the bottom. Also, can not do this if no strength
873 reduce info, because precondition_loop_p uses this info. */
875 /* Must copy the loop body for preconditioning before the following
876 find_splittable_regs call since that will emit insns which need to
877 be after the preconditioned loop copies, but immediately before the
878 unrolled loop copies. */
880 /* Also, it is not safe to split induction variables for the preconditioned
881 copies of the loop body. If we split induction variables, then the code
882 assumes that each induction variable can be represented as a function
883 of its initial value and the loop iteration number. This is not true
884 in this case, because the last preconditioned copy of the loop body
885 could be any iteration from the first up to the `unroll_number-1'th,
886 depending on the initial value of the iteration variable. Therefore
887 we can not split induction variables here, because we can not calculate
888 their value. Hence, this code must occur before find_splittable_regs
889 is called. */
891 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
893 rtx initial_value, final_value, increment;
894 enum machine_mode mode;
896 if (precondition_loop_p (loop,
897 &initial_value, &final_value, &increment,
898 &mode))
900 rtx diff;
901 rtx *labels;
902 int abs_inc, neg_inc;
903 enum rtx_code cc = loop_info->comparison_code;
904 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
905 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
907 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
909 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
910 "unroll_loop_precondition");
911 global_const_equiv_varray = map->const_equiv_varray;
913 init_reg_map (map, maxregnum);
915 /* Limit loop unrolling to 4, since this will make 7 copies of
916 the loop body. */
917 if (unroll_number > 4)
918 unroll_number = 4;
920 /* Save the absolute value of the increment, and also whether or
921 not it is negative. */
922 neg_inc = 0;
923 abs_inc = INTVAL (increment);
924 if (abs_inc < 0)
926 abs_inc = -abs_inc;
927 neg_inc = 1;
930 start_sequence ();
932 /* Final value may have form of (PLUS val1 const1_rtx). We need
933 to convert it into general operand, so compute the real value. */
935 if (GET_CODE (final_value) == PLUS)
937 final_value = expand_simple_binop (mode, PLUS,
938 copy_rtx (XEXP (final_value, 0)),
939 copy_rtx (XEXP (final_value, 1)),
940 NULL_RTX, 0, OPTAB_LIB_WIDEN);
942 if (!nonmemory_operand (final_value, VOIDmode))
943 final_value = force_reg (mode, copy_rtx (final_value));
945 /* Calculate the difference between the final and initial values.
946 Final value may be a (plus (reg x) (const_int 1)) rtx.
947 Let the following cse pass simplify this if initial value is
948 a constant.
950 We must copy the final and initial values here to avoid
951 improperly shared rtl.
953 We have to deal with for (i = 0; --i < 6;) type loops.
954 For such loops the real final value is the first time the
955 loop variable overflows, so the diff we calculate is the
956 distance from the overflow value. This is 0 or ~0 for
957 unsigned loops depending on the direction, or INT_MAX,
958 INT_MAX+1 for signed loops. We really do not need the
959 exact value, since we are only interested in the diff
960 modulo the increment, and the increment is a power of 2,
961 so we can pretend that the overflow value is 0/~0. */
963 if (cc == NE || less_p != neg_inc)
964 diff = expand_simple_binop (mode, MINUS, final_value,
965 copy_rtx (initial_value), NULL_RTX, 0,
966 OPTAB_LIB_WIDEN);
967 else
968 diff = expand_simple_unop (mode, neg_inc ? NOT : NEG,
969 copy_rtx (initial_value), NULL_RTX, 0);
971 /* Now calculate (diff % (unroll * abs (increment))) by using an
972 and instruction. */
973 diff = expand_simple_binop (GET_MODE (diff), AND, diff,
974 GEN_INT (unroll_number * abs_inc - 1),
975 NULL_RTX, 0, OPTAB_LIB_WIDEN);
977 /* Now emit a sequence of branches to jump to the proper precond
978 loop entry point. */
980 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
981 for (i = 0; i < unroll_number; i++)
982 labels[i] = gen_label_rtx ();
984 /* Check for the case where the initial value is greater than or
985 equal to the final value. In that case, we want to execute
986 exactly one loop iteration. The code below will fail for this
987 case. This check does not apply if the loop has a NE
988 comparison at the end. */
990 if (cc != NE)
992 rtx incremented_initval;
993 incremented_initval = expand_simple_binop (mode, PLUS,
994 initial_value,
995 increment,
996 NULL_RTX, 0,
997 OPTAB_LIB_WIDEN);
998 emit_cmp_and_jump_insns (incremented_initval, final_value,
999 less_p ? GE : LE, NULL_RTX,
1000 mode, unsigned_p, labels[1]);
1001 predict_insn_def (get_last_insn (), PRED_LOOP_CONDITION,
1002 TAKEN);
1003 JUMP_LABEL (get_last_insn ()) = labels[1];
1004 LABEL_NUSES (labels[1])++;
1007 /* Assuming the unroll_number is 4, and the increment is 2, then
1008 for a negative increment: for a positive increment:
1009 diff = 0,1 precond 0 diff = 0,7 precond 0
1010 diff = 2,3 precond 3 diff = 1,2 precond 1
1011 diff = 4,5 precond 2 diff = 3,4 precond 2
1012 diff = 6,7 precond 1 diff = 5,6 precond 3 */
1014 /* We only need to emit (unroll_number - 1) branches here, the
1015 last case just falls through to the following code. */
1017 /* ??? This would give better code if we emitted a tree of branches
1018 instead of the current linear list of branches. */
1020 for (i = 0; i < unroll_number - 1; i++)
1022 int cmp_const;
1023 enum rtx_code cmp_code;
1025 /* For negative increments, must invert the constant compared
1026 against, except when comparing against zero. */
1027 if (i == 0)
1029 cmp_const = 0;
1030 cmp_code = EQ;
1032 else if (neg_inc)
1034 cmp_const = unroll_number - i;
1035 cmp_code = GE;
1037 else
1039 cmp_const = i;
1040 cmp_code = LE;
1043 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
1044 cmp_code, NULL_RTX, mode, 0, labels[i]);
1045 JUMP_LABEL (get_last_insn ()) = labels[i];
1046 LABEL_NUSES (labels[i])++;
1047 predict_insn (get_last_insn (), PRED_LOOP_PRECONDITIONING,
1048 REG_BR_PROB_BASE / (unroll_number - i));
1051 /* If the increment is greater than one, then we need another branch,
1052 to handle other cases equivalent to 0. */
1054 /* ??? This should be merged into the code above somehow to help
1055 simplify the code here, and reduce the number of branches emitted.
1056 For the negative increment case, the branch here could easily
1057 be merged with the `0' case branch above. For the positive
1058 increment case, it is not clear how this can be simplified. */
1060 if (abs_inc != 1)
1062 int cmp_const;
1063 enum rtx_code cmp_code;
1065 if (neg_inc)
1067 cmp_const = abs_inc - 1;
1068 cmp_code = LE;
1070 else
1072 cmp_const = abs_inc * (unroll_number - 1) + 1;
1073 cmp_code = GE;
1076 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1077 NULL_RTX, mode, 0, labels[0]);
1078 JUMP_LABEL (get_last_insn ()) = labels[0];
1079 LABEL_NUSES (labels[0])++;
1082 sequence = gen_sequence ();
1083 end_sequence ();
1084 loop_insn_hoist (loop, sequence);
1086 /* Only the last copy of the loop body here needs the exit
1087 test, so set copy_end to exclude the compare/branch here,
1088 and then reset it inside the loop when get to the last
1089 copy. */
1091 if (GET_CODE (last_loop_insn) == BARRIER)
1092 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1093 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1095 copy_end = PREV_INSN (last_loop_insn);
1096 #ifdef HAVE_cc0
1097 /* The immediately preceding insn may be a compare which
1098 we do not want to copy. */
1099 if (sets_cc0_p (PREV_INSN (copy_end)))
1100 copy_end = PREV_INSN (copy_end);
1101 #endif
1103 else
1104 abort ();
1106 for (i = 1; i < unroll_number; i++)
1108 emit_label_after (labels[unroll_number - i],
1109 PREV_INSN (loop_start));
1111 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1112 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1113 0, (VARRAY_SIZE (map->const_equiv_varray)
1114 * sizeof (struct const_equiv_data)));
1115 map->const_age = 0;
1117 for (j = 0; j < max_labelno; j++)
1118 if (local_label[j])
1119 set_label_in_map (map, j, gen_label_rtx ());
1121 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1122 if (local_regno[r])
1124 map->reg_map[r]
1125 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1126 record_base_value (REGNO (map->reg_map[r]),
1127 regno_reg_rtx[r], 0);
1129 /* The last copy needs the compare/branch insns at the end,
1130 so reset copy_end here if the loop ends with a conditional
1131 branch. */
1133 if (i == unroll_number - 1)
1135 if (GET_CODE (last_loop_insn) == BARRIER)
1136 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1137 else
1138 copy_end = last_loop_insn;
1141 /* None of the copies are the `last_iteration', so just
1142 pass zero for that parameter. */
1143 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1144 unroll_type, start_label, loop_end,
1145 loop_start, copy_end);
1147 emit_label_after (labels[0], PREV_INSN (loop_start));
1149 if (GET_CODE (last_loop_insn) == BARRIER)
1151 insert_before = PREV_INSN (last_loop_insn);
1152 copy_end = PREV_INSN (insert_before);
1154 else
1156 insert_before = last_loop_insn;
1157 #ifdef HAVE_cc0
1158 /* The instruction immediately before the JUMP_INSN may
1159 be a compare instruction which we do not want to copy
1160 or delete. */
1161 if (sets_cc0_p (PREV_INSN (insert_before)))
1162 insert_before = PREV_INSN (insert_before);
1163 #endif
1164 copy_end = PREV_INSN (insert_before);
1167 /* Set unroll type to MODULO now. */
1168 unroll_type = UNROLL_MODULO;
1169 loop_preconditioned = 1;
1171 /* Clean up. */
1172 free (labels);
1176 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1177 the loop unless all loops are being unrolled. */
1178 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1180 if (loop_dump_stream)
1181 fprintf (loop_dump_stream,
1182 "Unrolling failure: Naive unrolling not being done.\n");
1183 goto egress;
1186 /* At this point, we are guaranteed to unroll the loop. */
1188 /* Keep track of the unroll factor for the loop. */
1189 loop_info->unroll_number = unroll_number;
1191 /* For each biv and giv, determine whether it can be safely split into
1192 a different variable for each unrolled copy of the loop body.
1193 We precalculate and save this info here, since computing it is
1194 expensive.
1196 Do this before deleting any instructions from the loop, so that
1197 back_branch_in_range_p will work correctly. */
1199 if (splitting_not_safe)
1200 temp = 0;
1201 else
1202 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1204 /* find_splittable_regs may have created some new registers, so must
1205 reallocate the reg_map with the new larger size, and must realloc
1206 the constant maps also. */
1208 maxregnum = max_reg_num ();
1209 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1211 init_reg_map (map, maxregnum);
1213 if (map->const_equiv_varray == 0)
1214 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1215 maxregnum + temp * unroll_number * 2,
1216 "unroll_loop");
1217 global_const_equiv_varray = map->const_equiv_varray;
1219 /* Search the list of bivs and givs to find ones which need to be remapped
1220 when split, and set their reg_map entry appropriately. */
1222 for (bl = ivs->list; bl; bl = bl->next)
1224 if (REGNO (bl->biv->src_reg) != bl->regno)
1225 map->reg_map[bl->regno] = bl->biv->src_reg;
1226 #if 0
1227 /* Currently, non-reduced/final-value givs are never split. */
1228 for (v = bl->giv; v; v = v->next_iv)
1229 if (REGNO (v->src_reg) != bl->regno)
1230 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1231 #endif
1234 /* Use our current register alignment and pointer flags. */
1235 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1236 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1238 /* If the loop is being partially unrolled, and the iteration variables
1239 are being split, and are being renamed for the split, then must fix up
1240 the compare/jump instruction at the end of the loop to refer to the new
1241 registers. This compare isn't copied, so the registers used in it
1242 will never be replaced if it isn't done here. */
1244 if (unroll_type == UNROLL_MODULO)
1246 insn = NEXT_INSN (copy_end);
1247 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1248 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1251 /* For unroll_number times, make a copy of each instruction
1252 between copy_start and copy_end, and insert these new instructions
1253 before the end of the loop. */
1255 for (i = 0; i < unroll_number; i++)
1257 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1258 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1259 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1260 map->const_age = 0;
1262 for (j = 0; j < max_labelno; j++)
1263 if (local_label[j])
1264 set_label_in_map (map, j, gen_label_rtx ());
1266 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1267 if (local_regno[r])
1269 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1270 record_base_value (REGNO (map->reg_map[r]),
1271 regno_reg_rtx[r], 0);
1274 /* If loop starts with a branch to the test, then fix it so that
1275 it points to the test of the first unrolled copy of the loop. */
1276 if (i == 0 && loop_start != copy_start)
1278 insn = PREV_INSN (copy_start);
1279 pattern = PATTERN (insn);
1281 tem = get_label_from_map (map,
1282 CODE_LABEL_NUMBER
1283 (XEXP (SET_SRC (pattern), 0)));
1284 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1286 /* Set the jump label so that it can be used by later loop unrolling
1287 passes. */
1288 JUMP_LABEL (insn) = tem;
1289 LABEL_NUSES (tem)++;
1292 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1293 i == unroll_number - 1, unroll_type, start_label,
1294 loop_end, insert_before, insert_before);
1297 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1298 insn to be deleted. This prevents any runaway delete_insn call from
1299 more insns that it should, as it always stops at a CODE_LABEL. */
1301 /* Delete the compare and branch at the end of the loop if completely
1302 unrolling the loop. Deleting the backward branch at the end also
1303 deletes the code label at the start of the loop. This is done at
1304 the very end to avoid problems with back_branch_in_range_p. */
1306 if (unroll_type == UNROLL_COMPLETELY)
1307 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1308 else
1309 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1311 /* Delete all of the original loop instructions. Don't delete the
1312 LOOP_BEG note, or the first code label in the loop. */
1314 insn = NEXT_INSN (copy_start);
1315 while (insn != safety_label)
1317 /* ??? Don't delete named code labels. They will be deleted when the
1318 jump that references them is deleted. Otherwise, we end up deleting
1319 them twice, which causes them to completely disappear instead of turn
1320 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1321 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1322 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1323 associated LABEL_DECL to point to one of the new label instances. */
1324 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1325 if (insn != start_label
1326 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1327 && ! (GET_CODE (insn) == NOTE
1328 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1329 insn = delete_related_insns (insn);
1330 else
1331 insn = NEXT_INSN (insn);
1334 /* Can now delete the 'safety' label emitted to protect us from runaway
1335 delete_related_insns calls. */
1336 if (INSN_DELETED_P (safety_label))
1337 abort ();
1338 delete_related_insns (safety_label);
1340 /* If exit_label exists, emit it after the loop. Doing the emit here
1341 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1342 This is needed so that mostly_true_jump in reorg.c will treat jumps
1343 to this loop end label correctly, i.e. predict that they are usually
1344 not taken. */
1345 if (exit_label)
1346 emit_label_after (exit_label, loop_end);
1348 egress:
1349 if (unroll_type == UNROLL_COMPLETELY)
1351 /* Remove the loop notes since this is no longer a loop. */
1352 if (loop->vtop)
1353 delete_related_insns (loop->vtop);
1354 if (loop->cont)
1355 delete_related_insns (loop->cont);
1356 if (loop_start)
1357 delete_related_insns (loop_start);
1358 if (loop_end)
1359 delete_related_insns (loop_end);
1362 if (map->const_equiv_varray)
1363 VARRAY_FREE (map->const_equiv_varray);
1364 if (map->label_map)
1366 free (map->label_map);
1367 free (local_label);
1369 free (map->insn_map);
1370 free (splittable_regs);
1371 free (splittable_regs_updates);
1372 free (addr_combined_regs);
1373 free (local_regno);
1374 if (map->reg_map)
1375 free (map->reg_map);
1376 free (map);
1379 /* Return true if the loop can be safely, and profitably, preconditioned
1380 so that the unrolled copies of the loop body don't need exit tests.
1382 This only works if final_value, initial_value and increment can be
1383 determined, and if increment is a constant power of 2.
1384 If increment is not a power of 2, then the preconditioning modulo
1385 operation would require a real modulo instead of a boolean AND, and this
1386 is not considered `profitable'. */
1388 /* ??? If the loop is known to be executed very many times, or the machine
1389 has a very cheap divide instruction, then preconditioning is a win even
1390 when the increment is not a power of 2. Use RTX_COST to compute
1391 whether divide is cheap.
1392 ??? A divide by constant doesn't actually need a divide, look at
1393 expand_divmod. The reduced cost of this optimized modulo is not
1394 reflected in RTX_COST. */
1397 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1398 const struct loop *loop;
1399 rtx *initial_value, *final_value, *increment;
1400 enum machine_mode *mode;
1402 rtx loop_start = loop->start;
1403 struct loop_info *loop_info = LOOP_INFO (loop);
1405 if (loop_info->n_iterations > 0)
1407 if (INTVAL (loop_info->increment) > 0)
1409 *initial_value = const0_rtx;
1410 *increment = const1_rtx;
1411 *final_value = GEN_INT (loop_info->n_iterations);
1413 else
1415 *initial_value = GEN_INT (loop_info->n_iterations);
1416 *increment = constm1_rtx;
1417 *final_value = const0_rtx;
1419 *mode = word_mode;
1421 if (loop_dump_stream)
1423 fputs ("Preconditioning: Success, number of iterations known, ",
1424 loop_dump_stream);
1425 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1426 loop_info->n_iterations);
1427 fputs (".\n", loop_dump_stream);
1429 return 1;
1432 if (loop_info->iteration_var == 0)
1434 if (loop_dump_stream)
1435 fprintf (loop_dump_stream,
1436 "Preconditioning: Could not find iteration variable.\n");
1437 return 0;
1439 else if (loop_info->initial_value == 0)
1441 if (loop_dump_stream)
1442 fprintf (loop_dump_stream,
1443 "Preconditioning: Could not find initial value.\n");
1444 return 0;
1446 else if (loop_info->increment == 0)
1448 if (loop_dump_stream)
1449 fprintf (loop_dump_stream,
1450 "Preconditioning: Could not find increment value.\n");
1451 return 0;
1453 else if (GET_CODE (loop_info->increment) != CONST_INT)
1455 if (loop_dump_stream)
1456 fprintf (loop_dump_stream,
1457 "Preconditioning: Increment not a constant.\n");
1458 return 0;
1460 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1461 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1463 if (loop_dump_stream)
1464 fprintf (loop_dump_stream,
1465 "Preconditioning: Increment not a constant power of 2.\n");
1466 return 0;
1469 /* Unsigned_compare and compare_dir can be ignored here, since they do
1470 not matter for preconditioning. */
1472 if (loop_info->final_value == 0)
1474 if (loop_dump_stream)
1475 fprintf (loop_dump_stream,
1476 "Preconditioning: EQ comparison loop.\n");
1477 return 0;
1480 /* Must ensure that final_value is invariant, so call
1481 loop_invariant_p to check. Before doing so, must check regno
1482 against max_reg_before_loop to make sure that the register is in
1483 the range covered by loop_invariant_p. If it isn't, then it is
1484 most likely a biv/giv which by definition are not invariant. */
1485 if ((GET_CODE (loop_info->final_value) == REG
1486 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1487 || (GET_CODE (loop_info->final_value) == PLUS
1488 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1489 || ! loop_invariant_p (loop, loop_info->final_value))
1491 if (loop_dump_stream)
1492 fprintf (loop_dump_stream,
1493 "Preconditioning: Final value not invariant.\n");
1494 return 0;
1497 /* Fail for floating point values, since the caller of this function
1498 does not have code to deal with them. */
1499 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1500 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1502 if (loop_dump_stream)
1503 fprintf (loop_dump_stream,
1504 "Preconditioning: Floating point final or initial value.\n");
1505 return 0;
1508 /* Fail if loop_info->iteration_var is not live before loop_start,
1509 since we need to test its value in the preconditioning code. */
1511 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1512 > INSN_LUID (loop_start))
1514 if (loop_dump_stream)
1515 fprintf (loop_dump_stream,
1516 "Preconditioning: Iteration var not live before loop start.\n");
1517 return 0;
1520 /* Note that loop_iterations biases the initial value for GIV iterators
1521 such as "while (i-- > 0)" so that we can calculate the number of
1522 iterations just like for BIV iterators.
1524 Also note that the absolute values of initial_value and
1525 final_value are unimportant as only their difference is used for
1526 calculating the number of loop iterations. */
1527 *initial_value = loop_info->initial_value;
1528 *increment = loop_info->increment;
1529 *final_value = loop_info->final_value;
1531 /* Decide what mode to do these calculations in. Choose the larger
1532 of final_value's mode and initial_value's mode, or a full-word if
1533 both are constants. */
1534 *mode = GET_MODE (*final_value);
1535 if (*mode == VOIDmode)
1537 *mode = GET_MODE (*initial_value);
1538 if (*mode == VOIDmode)
1539 *mode = word_mode;
1541 else if (*mode != GET_MODE (*initial_value)
1542 && (GET_MODE_SIZE (*mode)
1543 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1544 *mode = GET_MODE (*initial_value);
1546 /* Success! */
1547 if (loop_dump_stream)
1548 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1549 return 1;
1552 /* All pseudo-registers must be mapped to themselves. Two hard registers
1553 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1554 REGNUM, to avoid function-inlining specific conversions of these
1555 registers. All other hard regs can not be mapped because they may be
1556 used with different
1557 modes. */
1559 static void
1560 init_reg_map (map, maxregnum)
1561 struct inline_remap *map;
1562 int maxregnum;
1564 int i;
1566 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1567 map->reg_map[i] = regno_reg_rtx[i];
1568 /* Just clear the rest of the entries. */
1569 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1570 map->reg_map[i] = 0;
1572 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1573 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1574 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1575 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1578 /* Strength-reduction will often emit code for optimized biv/givs which
1579 calculates their value in a temporary register, and then copies the result
1580 to the iv. This procedure reconstructs the pattern computing the iv;
1581 verifying that all operands are of the proper form.
1583 PATTERN must be the result of single_set.
1584 The return value is the amount that the giv is incremented by. */
1586 static rtx
1587 calculate_giv_inc (pattern, src_insn, regno)
1588 rtx pattern, src_insn;
1589 unsigned int regno;
1591 rtx increment;
1592 rtx increment_total = 0;
1593 int tries = 0;
1595 retry:
1596 /* Verify that we have an increment insn here. First check for a plus
1597 as the set source. */
1598 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1600 /* SR sometimes computes the new giv value in a temp, then copies it
1601 to the new_reg. */
1602 src_insn = PREV_INSN (src_insn);
1603 pattern = single_set (src_insn);
1604 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1605 abort ();
1607 /* The last insn emitted is not needed, so delete it to avoid confusing
1608 the second cse pass. This insn sets the giv unnecessarily. */
1609 delete_related_insns (get_last_insn ());
1612 /* Verify that we have a constant as the second operand of the plus. */
1613 increment = XEXP (SET_SRC (pattern), 1);
1614 if (GET_CODE (increment) != CONST_INT)
1616 /* SR sometimes puts the constant in a register, especially if it is
1617 too big to be an add immed operand. */
1618 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1620 /* SR may have used LO_SUM to compute the constant if it is too large
1621 for a load immed operand. In this case, the constant is in operand
1622 one of the LO_SUM rtx. */
1623 if (GET_CODE (increment) == LO_SUM)
1624 increment = XEXP (increment, 1);
1626 /* Some ports store large constants in memory and add a REG_EQUAL
1627 note to the store insn. */
1628 else if (GET_CODE (increment) == MEM)
1630 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1631 if (note)
1632 increment = XEXP (note, 0);
1635 else if (GET_CODE (increment) == IOR
1636 || GET_CODE (increment) == ASHIFT
1637 || GET_CODE (increment) == PLUS)
1639 /* The rs6000 port loads some constants with IOR.
1640 The alpha port loads some constants with ASHIFT and PLUS. */
1641 rtx second_part = XEXP (increment, 1);
1642 enum rtx_code code = GET_CODE (increment);
1644 increment = find_last_value (XEXP (increment, 0),
1645 &src_insn, NULL_RTX, 0);
1646 /* Don't need the last insn anymore. */
1647 delete_related_insns (get_last_insn ());
1649 if (GET_CODE (second_part) != CONST_INT
1650 || GET_CODE (increment) != CONST_INT)
1651 abort ();
1653 if (code == IOR)
1654 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1655 else if (code == PLUS)
1656 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1657 else
1658 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1661 if (GET_CODE (increment) != CONST_INT)
1662 abort ();
1664 /* The insn loading the constant into a register is no longer needed,
1665 so delete it. */
1666 delete_related_insns (get_last_insn ());
1669 if (increment_total)
1670 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1671 else
1672 increment_total = increment;
1674 /* Check that the source register is the same as the register we expected
1675 to see as the source. If not, something is seriously wrong. */
1676 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1677 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1679 /* Some machines (e.g. the romp), may emit two add instructions for
1680 certain constants, so lets try looking for another add immediately
1681 before this one if we have only seen one add insn so far. */
1683 if (tries == 0)
1685 tries++;
1687 src_insn = PREV_INSN (src_insn);
1688 pattern = single_set (src_insn);
1690 delete_related_insns (get_last_insn ());
1692 goto retry;
1695 abort ();
1698 return increment_total;
1701 /* Copy REG_NOTES, except for insn references, because not all insn_map
1702 entries are valid yet. We do need to copy registers now though, because
1703 the reg_map entries can change during copying. */
1705 static rtx
1706 initial_reg_note_copy (notes, map)
1707 rtx notes;
1708 struct inline_remap *map;
1710 rtx copy;
1712 if (notes == 0)
1713 return 0;
1715 copy = rtx_alloc (GET_CODE (notes));
1716 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1718 if (GET_CODE (notes) == EXPR_LIST)
1719 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1720 else if (GET_CODE (notes) == INSN_LIST)
1721 /* Don't substitute for these yet. */
1722 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1723 else
1724 abort ();
1726 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1728 return copy;
1731 /* Fixup insn references in copied REG_NOTES. */
1733 static void
1734 final_reg_note_copy (notesp, map)
1735 rtx *notesp;
1736 struct inline_remap *map;
1738 while (*notesp)
1740 rtx note = *notesp;
1742 if (GET_CODE (note) == INSN_LIST)
1744 /* Sometimes, we have a REG_WAS_0 note that points to a
1745 deleted instruction. In that case, we can just delete the
1746 note. */
1747 if (REG_NOTE_KIND (note) == REG_WAS_0)
1749 *notesp = XEXP (note, 1);
1750 continue;
1752 else
1754 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1756 /* If we failed to remap the note, something is awry.
1757 Allow REG_LABEL as it may reference label outside
1758 the unrolled loop. */
1759 if (!insn)
1761 if (REG_NOTE_KIND (note) != REG_LABEL)
1762 abort ();
1764 else
1765 XEXP (note, 0) = insn;
1769 notesp = &XEXP (note, 1);
1773 /* Copy each instruction in the loop, substituting from map as appropriate.
1774 This is very similar to a loop in expand_inline_function. */
1776 static void
1777 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1778 unroll_type, start_label, loop_end, insert_before,
1779 copy_notes_from)
1780 struct loop *loop;
1781 rtx copy_start, copy_end;
1782 struct inline_remap *map;
1783 rtx exit_label;
1784 int last_iteration;
1785 enum unroll_types unroll_type;
1786 rtx start_label, loop_end, insert_before, copy_notes_from;
1788 struct loop_ivs *ivs = LOOP_IVS (loop);
1789 rtx insn, pattern;
1790 rtx set, tem, copy = NULL_RTX;
1791 int dest_reg_was_split, i;
1792 #ifdef HAVE_cc0
1793 rtx cc0_insn = 0;
1794 #endif
1795 rtx final_label = 0;
1796 rtx giv_inc, giv_dest_reg, giv_src_reg;
1798 /* If this isn't the last iteration, then map any references to the
1799 start_label to final_label. Final label will then be emitted immediately
1800 after the end of this loop body if it was ever used.
1802 If this is the last iteration, then map references to the start_label
1803 to itself. */
1804 if (! last_iteration)
1806 final_label = gen_label_rtx ();
1807 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1809 else
1810 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1812 start_sequence ();
1814 /* Emit a NOTE_INSN_DELETED to force at least two insns onto the sequence.
1815 Else gen_sequence could return a raw pattern for a jump which we pass
1816 off to emit_insn_before (instead of emit_jump_insn_before) which causes
1817 a variety of losing behaviors later. */
1818 emit_note (0, NOTE_INSN_DELETED);
1820 insn = copy_start;
1823 insn = NEXT_INSN (insn);
1825 map->orig_asm_operands_vector = 0;
1827 switch (GET_CODE (insn))
1829 case INSN:
1830 pattern = PATTERN (insn);
1831 copy = 0;
1832 giv_inc = 0;
1834 /* Check to see if this is a giv that has been combined with
1835 some split address givs. (Combined in the sense that
1836 `combine_givs' in loop.c has put two givs in the same register.)
1837 In this case, we must search all givs based on the same biv to
1838 find the address givs. Then split the address givs.
1839 Do this before splitting the giv, since that may map the
1840 SET_DEST to a new register. */
1842 if ((set = single_set (insn))
1843 && GET_CODE (SET_DEST (set)) == REG
1844 && addr_combined_regs[REGNO (SET_DEST (set))])
1846 struct iv_class *bl;
1847 struct induction *v, *tv;
1848 unsigned int regno = REGNO (SET_DEST (set));
1850 v = addr_combined_regs[REGNO (SET_DEST (set))];
1851 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1853 /* Although the giv_inc amount is not needed here, we must call
1854 calculate_giv_inc here since it might try to delete the
1855 last insn emitted. If we wait until later to call it,
1856 we might accidentally delete insns generated immediately
1857 below by emit_unrolled_add. */
1859 giv_inc = calculate_giv_inc (set, insn, regno);
1861 /* Now find all address giv's that were combined with this
1862 giv 'v'. */
1863 for (tv = bl->giv; tv; tv = tv->next_iv)
1864 if (tv->giv_type == DEST_ADDR && tv->same == v)
1866 int this_giv_inc;
1868 /* If this DEST_ADDR giv was not split, then ignore it. */
1869 if (*tv->location != tv->dest_reg)
1870 continue;
1872 /* Scale this_giv_inc if the multiplicative factors of
1873 the two givs are different. */
1874 this_giv_inc = INTVAL (giv_inc);
1875 if (tv->mult_val != v->mult_val)
1876 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1877 * INTVAL (tv->mult_val));
1879 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1880 *tv->location = tv->dest_reg;
1882 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1884 /* Must emit an insn to increment the split address
1885 giv. Add in the const_adjust field in case there
1886 was a constant eliminated from the address. */
1887 rtx value, dest_reg;
1889 /* tv->dest_reg will be either a bare register,
1890 or else a register plus a constant. */
1891 if (GET_CODE (tv->dest_reg) == REG)
1892 dest_reg = tv->dest_reg;
1893 else
1894 dest_reg = XEXP (tv->dest_reg, 0);
1896 /* Check for shared address givs, and avoid
1897 incrementing the shared pseudo reg more than
1898 once. */
1899 if (! tv->same_insn && ! tv->shared)
1901 /* tv->dest_reg may actually be a (PLUS (REG)
1902 (CONST)) here, so we must call plus_constant
1903 to add the const_adjust amount before calling
1904 emit_unrolled_add below. */
1905 value = plus_constant (tv->dest_reg,
1906 tv->const_adjust);
1908 if (GET_CODE (value) == PLUS)
1910 /* The constant could be too large for an add
1911 immediate, so can't directly emit an insn
1912 here. */
1913 emit_unrolled_add (dest_reg, XEXP (value, 0),
1914 XEXP (value, 1));
1918 /* Reset the giv to be just the register again, in case
1919 it is used after the set we have just emitted.
1920 We must subtract the const_adjust factor added in
1921 above. */
1922 tv->dest_reg = plus_constant (dest_reg,
1923 -tv->const_adjust);
1924 *tv->location = tv->dest_reg;
1929 /* If this is a setting of a splittable variable, then determine
1930 how to split the variable, create a new set based on this split,
1931 and set up the reg_map so that later uses of the variable will
1932 use the new split variable. */
1934 dest_reg_was_split = 0;
1936 if ((set = single_set (insn))
1937 && GET_CODE (SET_DEST (set)) == REG
1938 && splittable_regs[REGNO (SET_DEST (set))])
1940 unsigned int regno = REGNO (SET_DEST (set));
1941 unsigned int src_regno;
1943 dest_reg_was_split = 1;
1945 giv_dest_reg = SET_DEST (set);
1946 giv_src_reg = giv_dest_reg;
1947 /* Compute the increment value for the giv, if it wasn't
1948 already computed above. */
1949 if (giv_inc == 0)
1950 giv_inc = calculate_giv_inc (set, insn, regno);
1952 src_regno = REGNO (giv_src_reg);
1954 if (unroll_type == UNROLL_COMPLETELY)
1956 /* Completely unrolling the loop. Set the induction
1957 variable to a known constant value. */
1959 /* The value in splittable_regs may be an invariant
1960 value, so we must use plus_constant here. */
1961 splittable_regs[regno]
1962 = plus_constant (splittable_regs[src_regno],
1963 INTVAL (giv_inc));
1965 if (GET_CODE (splittable_regs[regno]) == PLUS)
1967 giv_src_reg = XEXP (splittable_regs[regno], 0);
1968 giv_inc = XEXP (splittable_regs[regno], 1);
1970 else
1972 /* The splittable_regs value must be a REG or a
1973 CONST_INT, so put the entire value in the giv_src_reg
1974 variable. */
1975 giv_src_reg = splittable_regs[regno];
1976 giv_inc = const0_rtx;
1979 else
1981 /* Partially unrolling loop. Create a new pseudo
1982 register for the iteration variable, and set it to
1983 be a constant plus the original register. Except
1984 on the last iteration, when the result has to
1985 go back into the original iteration var register. */
1987 /* Handle bivs which must be mapped to a new register
1988 when split. This happens for bivs which need their
1989 final value set before loop entry. The new register
1990 for the biv was stored in the biv's first struct
1991 induction entry by find_splittable_regs. */
1993 if (regno < ivs->n_regs
1994 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1996 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1997 giv_dest_reg = giv_src_reg;
2000 #if 0
2001 /* If non-reduced/final-value givs were split, then
2002 this would have to remap those givs also. See
2003 find_splittable_regs. */
2004 #endif
2006 splittable_regs[regno]
2007 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
2008 giv_inc,
2009 splittable_regs[src_regno]);
2010 giv_inc = splittable_regs[regno];
2012 /* Now split the induction variable by changing the dest
2013 of this insn to a new register, and setting its
2014 reg_map entry to point to this new register.
2016 If this is the last iteration, and this is the last insn
2017 that will update the iv, then reuse the original dest,
2018 to ensure that the iv will have the proper value when
2019 the loop exits or repeats.
2021 Using splittable_regs_updates here like this is safe,
2022 because it can only be greater than one if all
2023 instructions modifying the iv are always executed in
2024 order. */
2026 if (! last_iteration
2027 || (splittable_regs_updates[regno]-- != 1))
2029 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2030 giv_dest_reg = tem;
2031 map->reg_map[regno] = tem;
2032 record_base_value (REGNO (tem),
2033 giv_inc == const0_rtx
2034 ? giv_src_reg
2035 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2036 giv_src_reg, giv_inc),
2039 else
2040 map->reg_map[regno] = giv_src_reg;
2043 /* The constant being added could be too large for an add
2044 immediate, so can't directly emit an insn here. */
2045 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2046 copy = get_last_insn ();
2047 pattern = PATTERN (copy);
2049 else
2051 pattern = copy_rtx_and_substitute (pattern, map, 0);
2052 copy = emit_insn (pattern);
2054 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2056 #ifdef HAVE_cc0
2057 /* If this insn is setting CC0, it may need to look at
2058 the insn that uses CC0 to see what type of insn it is.
2059 In that case, the call to recog via validate_change will
2060 fail. So don't substitute constants here. Instead,
2061 do it when we emit the following insn.
2063 For example, see the pyr.md file. That machine has signed and
2064 unsigned compares. The compare patterns must check the
2065 following branch insn to see which what kind of compare to
2066 emit.
2068 If the previous insn set CC0, substitute constants on it as
2069 well. */
2070 if (sets_cc0_p (PATTERN (copy)) != 0)
2071 cc0_insn = copy;
2072 else
2074 if (cc0_insn)
2075 try_constants (cc0_insn, map);
2076 cc0_insn = 0;
2077 try_constants (copy, map);
2079 #else
2080 try_constants (copy, map);
2081 #endif
2083 /* Make split induction variable constants `permanent' since we
2084 know there are no backward branches across iteration variable
2085 settings which would invalidate this. */
2086 if (dest_reg_was_split)
2088 int regno = REGNO (SET_DEST (set));
2090 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2091 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2092 == map->const_age))
2093 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2095 break;
2097 case JUMP_INSN:
2098 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2099 copy = emit_jump_insn (pattern);
2100 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2102 if (JUMP_LABEL (insn))
2104 JUMP_LABEL (copy) = get_label_from_map (map,
2105 CODE_LABEL_NUMBER
2106 (JUMP_LABEL (insn)));
2107 LABEL_NUSES (JUMP_LABEL (copy))++;
2109 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2110 && ! last_iteration)
2113 /* This is a branch to the beginning of the loop; this is the
2114 last insn being copied; and this is not the last iteration.
2115 In this case, we want to change the original fall through
2116 case to be a branch past the end of the loop, and the
2117 original jump label case to fall_through. */
2119 if (!invert_jump (copy, exit_label, 0))
2121 rtx jmp;
2122 rtx lab = gen_label_rtx ();
2123 /* Can't do it by reversing the jump (probably because we
2124 couldn't reverse the conditions), so emit a new
2125 jump_insn after COPY, and redirect the jump around
2126 that. */
2127 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2128 JUMP_LABEL (jmp) = exit_label;
2129 LABEL_NUSES (exit_label)++;
2130 jmp = emit_barrier_after (jmp);
2131 emit_label_after (lab, jmp);
2132 LABEL_NUSES (lab) = 0;
2133 if (!redirect_jump (copy, lab, 0))
2134 abort ();
2138 #ifdef HAVE_cc0
2139 if (cc0_insn)
2140 try_constants (cc0_insn, map);
2141 cc0_insn = 0;
2142 #endif
2143 try_constants (copy, map);
2145 /* Set the jump label of COPY correctly to avoid problems with
2146 later passes of unroll_loop, if INSN had jump label set. */
2147 if (JUMP_LABEL (insn))
2149 rtx label = 0;
2151 /* Can't use the label_map for every insn, since this may be
2152 the backward branch, and hence the label was not mapped. */
2153 if ((set = single_set (copy)))
2155 tem = SET_SRC (set);
2156 if (GET_CODE (tem) == LABEL_REF)
2157 label = XEXP (tem, 0);
2158 else if (GET_CODE (tem) == IF_THEN_ELSE)
2160 if (XEXP (tem, 1) != pc_rtx)
2161 label = XEXP (XEXP (tem, 1), 0);
2162 else
2163 label = XEXP (XEXP (tem, 2), 0);
2167 if (label && GET_CODE (label) == CODE_LABEL)
2168 JUMP_LABEL (copy) = label;
2169 else
2171 /* An unrecognizable jump insn, probably the entry jump
2172 for a switch statement. This label must have been mapped,
2173 so just use the label_map to get the new jump label. */
2174 JUMP_LABEL (copy)
2175 = get_label_from_map (map,
2176 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2179 /* If this is a non-local jump, then must increase the label
2180 use count so that the label will not be deleted when the
2181 original jump is deleted. */
2182 LABEL_NUSES (JUMP_LABEL (copy))++;
2184 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2185 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2187 rtx pat = PATTERN (copy);
2188 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2189 int len = XVECLEN (pat, diff_vec_p);
2190 int i;
2192 for (i = 0; i < len; i++)
2193 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2196 /* If this used to be a conditional jump insn but whose branch
2197 direction is now known, we must do something special. */
2198 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2200 #ifdef HAVE_cc0
2201 /* If the previous insn set cc0 for us, delete it. */
2202 if (only_sets_cc0_p (PREV_INSN (copy)))
2203 delete_related_insns (PREV_INSN (copy));
2204 #endif
2206 /* If this is now a no-op, delete it. */
2207 if (map->last_pc_value == pc_rtx)
2209 delete_insn (copy);
2210 copy = 0;
2212 else
2213 /* Otherwise, this is unconditional jump so we must put a
2214 BARRIER after it. We could do some dead code elimination
2215 here, but jump.c will do it just as well. */
2216 emit_barrier ();
2218 break;
2220 case CALL_INSN:
2221 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2222 copy = emit_call_insn (pattern);
2223 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2224 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2226 /* Because the USAGE information potentially contains objects other
2227 than hard registers, we need to copy it. */
2228 CALL_INSN_FUNCTION_USAGE (copy)
2229 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2230 map, 0);
2232 #ifdef HAVE_cc0
2233 if (cc0_insn)
2234 try_constants (cc0_insn, map);
2235 cc0_insn = 0;
2236 #endif
2237 try_constants (copy, map);
2239 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2240 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2241 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2242 break;
2244 case CODE_LABEL:
2245 /* If this is the loop start label, then we don't need to emit a
2246 copy of this label since no one will use it. */
2248 if (insn != start_label)
2250 copy = emit_label (get_label_from_map (map,
2251 CODE_LABEL_NUMBER (insn)));
2252 map->const_age++;
2254 break;
2256 case BARRIER:
2257 copy = emit_barrier ();
2258 break;
2260 case NOTE:
2261 /* VTOP and CONT notes are valid only before the loop exit test.
2262 If placed anywhere else, loop may generate bad code. */
2263 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2264 the associated rtl. We do not want to share the structure in
2265 this new block. */
2267 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2268 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2269 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2270 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2271 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2272 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2273 copy = emit_note (NOTE_SOURCE_FILE (insn),
2274 NOTE_LINE_NUMBER (insn));
2275 else
2276 copy = 0;
2277 break;
2279 default:
2280 abort ();
2283 map->insn_map[INSN_UID (insn)] = copy;
2285 while (insn != copy_end);
2287 /* Now finish coping the REG_NOTES. */
2288 insn = copy_start;
2291 insn = NEXT_INSN (insn);
2292 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2293 || GET_CODE (insn) == CALL_INSN)
2294 && map->insn_map[INSN_UID (insn)])
2295 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2297 while (insn != copy_end);
2299 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2300 each of these notes here, since there may be some important ones, such as
2301 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2302 iteration, because the original notes won't be deleted.
2304 We can't use insert_before here, because when from preconditioning,
2305 insert_before points before the loop. We can't use copy_end, because
2306 there may be insns already inserted after it (which we don't want to
2307 copy) when not from preconditioning code. */
2309 if (! last_iteration)
2311 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2313 /* VTOP notes are valid only before the loop exit test.
2314 If placed anywhere else, loop may generate bad code.
2315 There is no need to test for NOTE_INSN_LOOP_CONT notes
2316 here, since COPY_NOTES_FROM will be at most one or two (for cc0)
2317 instructions before the last insn in the loop, and if the
2318 end test is that short, there will be a VTOP note between
2319 the CONT note and the test. */
2320 if (GET_CODE (insn) == NOTE
2321 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2322 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2323 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP)
2324 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2328 if (final_label && LABEL_NUSES (final_label) > 0)
2329 emit_label (final_label);
2331 tem = gen_sequence ();
2332 end_sequence ();
2333 loop_insn_emit_before (loop, 0, insert_before, tem);
2336 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2337 emitted. This will correctly handle the case where the increment value
2338 won't fit in the immediate field of a PLUS insns. */
2340 void
2341 emit_unrolled_add (dest_reg, src_reg, increment)
2342 rtx dest_reg, src_reg, increment;
2344 rtx result;
2346 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2347 dest_reg, 0, OPTAB_LIB_WIDEN);
2349 if (dest_reg != result)
2350 emit_move_insn (dest_reg, result);
2353 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2354 is a backward branch in that range that branches to somewhere between
2355 LOOP->START and INSN. Returns 0 otherwise. */
2357 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2358 In practice, this is not a problem, because this function is seldom called,
2359 and uses a negligible amount of CPU time on average. */
2362 back_branch_in_range_p (loop, insn)
2363 const struct loop *loop;
2364 rtx insn;
2366 rtx p, q, target_insn;
2367 rtx loop_start = loop->start;
2368 rtx loop_end = loop->end;
2369 rtx orig_loop_end = loop->end;
2371 /* Stop before we get to the backward branch at the end of the loop. */
2372 loop_end = prev_nonnote_insn (loop_end);
2373 if (GET_CODE (loop_end) == BARRIER)
2374 loop_end = PREV_INSN (loop_end);
2376 /* Check in case insn has been deleted, search forward for first non
2377 deleted insn following it. */
2378 while (INSN_DELETED_P (insn))
2379 insn = NEXT_INSN (insn);
2381 /* Check for the case where insn is the last insn in the loop. Deal
2382 with the case where INSN was a deleted loop test insn, in which case
2383 it will now be the NOTE_LOOP_END. */
2384 if (insn == loop_end || insn == orig_loop_end)
2385 return 0;
2387 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2389 if (GET_CODE (p) == JUMP_INSN)
2391 target_insn = JUMP_LABEL (p);
2393 /* Search from loop_start to insn, to see if one of them is
2394 the target_insn. We can't use INSN_LUID comparisons here,
2395 since insn may not have an LUID entry. */
2396 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2397 if (q == target_insn)
2398 return 1;
2402 return 0;
2405 /* Try to generate the simplest rtx for the expression
2406 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2407 value of giv's. */
2409 static rtx
2410 fold_rtx_mult_add (mult1, mult2, add1, mode)
2411 rtx mult1, mult2, add1;
2412 enum machine_mode mode;
2414 rtx temp, mult_res;
2415 rtx result;
2417 /* The modes must all be the same. This should always be true. For now,
2418 check to make sure. */
2419 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2420 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2421 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2422 abort ();
2424 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2425 will be a constant. */
2426 if (GET_CODE (mult1) == CONST_INT)
2428 temp = mult2;
2429 mult2 = mult1;
2430 mult1 = temp;
2433 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2434 if (! mult_res)
2435 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2437 /* Again, put the constant second. */
2438 if (GET_CODE (add1) == CONST_INT)
2440 temp = add1;
2441 add1 = mult_res;
2442 mult_res = temp;
2445 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2446 if (! result)
2447 result = gen_rtx_PLUS (mode, add1, mult_res);
2449 return result;
2452 /* Searches the list of induction struct's for the biv BL, to try to calculate
2453 the total increment value for one iteration of the loop as a constant.
2455 Returns the increment value as an rtx, simplified as much as possible,
2456 if it can be calculated. Otherwise, returns 0. */
2459 biv_total_increment (bl)
2460 const struct iv_class *bl;
2462 struct induction *v;
2463 rtx result;
2465 /* For increment, must check every instruction that sets it. Each
2466 instruction must be executed only once each time through the loop.
2467 To verify this, we check that the insn is always executed, and that
2468 there are no backward branches after the insn that branch to before it.
2469 Also, the insn must have a mult_val of one (to make sure it really is
2470 an increment). */
2472 result = const0_rtx;
2473 for (v = bl->biv; v; v = v->next_iv)
2475 if (v->always_computable && v->mult_val == const1_rtx
2476 && ! v->maybe_multiple)
2477 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2478 else
2479 return 0;
2482 return result;
2485 /* For each biv and giv, determine whether it can be safely split into
2486 a different variable for each unrolled copy of the loop body. If it
2487 is safe to split, then indicate that by saving some useful info
2488 in the splittable_regs array.
2490 If the loop is being completely unrolled, then splittable_regs will hold
2491 the current value of the induction variable while the loop is unrolled.
2492 It must be set to the initial value of the induction variable here.
2493 Otherwise, splittable_regs will hold the difference between the current
2494 value of the induction variable and the value the induction variable had
2495 at the top of the loop. It must be set to the value 0 here.
2497 Returns the total number of instructions that set registers that are
2498 splittable. */
2500 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2501 constant values are unnecessary, since we can easily calculate increment
2502 values in this case even if nothing is constant. The increment value
2503 should not involve a multiply however. */
2505 /* ?? Even if the biv/giv increment values aren't constant, it may still
2506 be beneficial to split the variable if the loop is only unrolled a few
2507 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2509 static int
2510 find_splittable_regs (loop, unroll_type, unroll_number)
2511 const struct loop *loop;
2512 enum unroll_types unroll_type;
2513 int unroll_number;
2515 struct loop_ivs *ivs = LOOP_IVS (loop);
2516 struct iv_class *bl;
2517 struct induction *v;
2518 rtx increment, tem;
2519 rtx biv_final_value;
2520 int biv_splittable;
2521 int result = 0;
2523 for (bl = ivs->list; bl; bl = bl->next)
2525 /* Biv_total_increment must return a constant value,
2526 otherwise we can not calculate the split values. */
2528 increment = biv_total_increment (bl);
2529 if (! increment || GET_CODE (increment) != CONST_INT)
2530 continue;
2532 /* The loop must be unrolled completely, or else have a known number
2533 of iterations and only one exit, or else the biv must be dead
2534 outside the loop, or else the final value must be known. Otherwise,
2535 it is unsafe to split the biv since it may not have the proper
2536 value on loop exit. */
2538 /* loop_number_exit_count is non-zero if the loop has an exit other than
2539 a fall through at the end. */
2541 biv_splittable = 1;
2542 biv_final_value = 0;
2543 if (unroll_type != UNROLL_COMPLETELY
2544 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2545 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2546 || ! bl->init_insn
2547 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2548 || (REGNO_FIRST_LUID (bl->regno)
2549 < INSN_LUID (bl->init_insn))
2550 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2551 && ! (biv_final_value = final_biv_value (loop, bl)))
2552 biv_splittable = 0;
2554 /* If any of the insns setting the BIV don't do so with a simple
2555 PLUS, we don't know how to split it. */
2556 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2557 if ((tem = single_set (v->insn)) == 0
2558 || GET_CODE (SET_DEST (tem)) != REG
2559 || REGNO (SET_DEST (tem)) != bl->regno
2560 || GET_CODE (SET_SRC (tem)) != PLUS)
2561 biv_splittable = 0;
2563 /* If final value is non-zero, then must emit an instruction which sets
2564 the value of the biv to the proper value. This is done after
2565 handling all of the givs, since some of them may need to use the
2566 biv's value in their initialization code. */
2568 /* This biv is splittable. If completely unrolling the loop, save
2569 the biv's initial value. Otherwise, save the constant zero. */
2571 if (biv_splittable == 1)
2573 if (unroll_type == UNROLL_COMPLETELY)
2575 /* If the initial value of the biv is itself (i.e. it is too
2576 complicated for strength_reduce to compute), or is a hard
2577 register, or it isn't invariant, then we must create a new
2578 pseudo reg to hold the initial value of the biv. */
2580 if (GET_CODE (bl->initial_value) == REG
2581 && (REGNO (bl->initial_value) == bl->regno
2582 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2583 || ! loop_invariant_p (loop, bl->initial_value)))
2585 rtx tem = gen_reg_rtx (bl->biv->mode);
2587 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2588 loop_insn_hoist (loop,
2589 gen_move_insn (tem, bl->biv->src_reg));
2591 if (loop_dump_stream)
2592 fprintf (loop_dump_stream,
2593 "Biv %d initial value remapped to %d.\n",
2594 bl->regno, REGNO (tem));
2596 splittable_regs[bl->regno] = tem;
2598 else
2599 splittable_regs[bl->regno] = bl->initial_value;
2601 else
2602 splittable_regs[bl->regno] = const0_rtx;
2604 /* Save the number of instructions that modify the biv, so that
2605 we can treat the last one specially. */
2607 splittable_regs_updates[bl->regno] = bl->biv_count;
2608 result += bl->biv_count;
2610 if (loop_dump_stream)
2611 fprintf (loop_dump_stream,
2612 "Biv %d safe to split.\n", bl->regno);
2615 /* Check every giv that depends on this biv to see whether it is
2616 splittable also. Even if the biv isn't splittable, givs which
2617 depend on it may be splittable if the biv is live outside the
2618 loop, and the givs aren't. */
2620 result += find_splittable_givs (loop, bl, unroll_type, increment,
2621 unroll_number);
2623 /* If final value is non-zero, then must emit an instruction which sets
2624 the value of the biv to the proper value. This is done after
2625 handling all of the givs, since some of them may need to use the
2626 biv's value in their initialization code. */
2627 if (biv_final_value)
2629 /* If the loop has multiple exits, emit the insns before the
2630 loop to ensure that it will always be executed no matter
2631 how the loop exits. Otherwise emit the insn after the loop,
2632 since this is slightly more efficient. */
2633 if (! loop->exit_count)
2634 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2635 biv_final_value));
2636 else
2638 /* Create a new register to hold the value of the biv, and then
2639 set the biv to its final value before the loop start. The biv
2640 is set to its final value before loop start to ensure that
2641 this insn will always be executed, no matter how the loop
2642 exits. */
2643 rtx tem = gen_reg_rtx (bl->biv->mode);
2644 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2646 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2647 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2648 biv_final_value));
2650 if (loop_dump_stream)
2651 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2652 REGNO (bl->biv->src_reg), REGNO (tem));
2654 /* Set up the mapping from the original biv register to the new
2655 register. */
2656 bl->biv->src_reg = tem;
2660 return result;
2663 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2664 for the instruction that is using it. Do not make any changes to that
2665 instruction. */
2667 static int
2668 verify_addresses (v, giv_inc, unroll_number)
2669 struct induction *v;
2670 rtx giv_inc;
2671 int unroll_number;
2673 int ret = 1;
2674 rtx orig_addr = *v->location;
2675 rtx last_addr = plus_constant (v->dest_reg,
2676 INTVAL (giv_inc) * (unroll_number - 1));
2678 /* First check to see if either address would fail. Handle the fact
2679 that we have may have a match_dup. */
2680 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2681 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2682 ret = 0;
2684 /* Now put things back the way they were before. This should always
2685 succeed. */
2686 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2687 abort ();
2689 return ret;
2692 /* For every giv based on the biv BL, check to determine whether it is
2693 splittable. This is a subroutine to find_splittable_regs ().
2695 Return the number of instructions that set splittable registers. */
2697 static int
2698 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2699 const struct loop *loop;
2700 struct iv_class *bl;
2701 enum unroll_types unroll_type;
2702 rtx increment;
2703 int unroll_number;
2705 struct loop_ivs *ivs = LOOP_IVS (loop);
2706 struct induction *v, *v2;
2707 rtx final_value;
2708 rtx tem;
2709 int result = 0;
2711 /* Scan the list of givs, and set the same_insn field when there are
2712 multiple identical givs in the same insn. */
2713 for (v = bl->giv; v; v = v->next_iv)
2714 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2715 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2716 && ! v2->same_insn)
2717 v2->same_insn = v;
2719 for (v = bl->giv; v; v = v->next_iv)
2721 rtx giv_inc, value;
2723 /* Only split the giv if it has already been reduced, or if the loop is
2724 being completely unrolled. */
2725 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2726 continue;
2728 /* The giv can be split if the insn that sets the giv is executed once
2729 and only once on every iteration of the loop. */
2730 /* An address giv can always be split. v->insn is just a use not a set,
2731 and hence it does not matter whether it is always executed. All that
2732 matters is that all the biv increments are always executed, and we
2733 won't reach here if they aren't. */
2734 if (v->giv_type != DEST_ADDR
2735 && (! v->always_computable
2736 || back_branch_in_range_p (loop, v->insn)))
2737 continue;
2739 /* The giv increment value must be a constant. */
2740 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2741 v->mode);
2742 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2743 continue;
2745 /* The loop must be unrolled completely, or else have a known number of
2746 iterations and only one exit, or else the giv must be dead outside
2747 the loop, or else the final value of the giv must be known.
2748 Otherwise, it is not safe to split the giv since it may not have the
2749 proper value on loop exit. */
2751 /* The used outside loop test will fail for DEST_ADDR givs. They are
2752 never used outside the loop anyways, so it is always safe to split a
2753 DEST_ADDR giv. */
2755 final_value = 0;
2756 if (unroll_type != UNROLL_COMPLETELY
2757 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2758 && v->giv_type != DEST_ADDR
2759 /* The next part is true if the pseudo is used outside the loop.
2760 We assume that this is true for any pseudo created after loop
2761 starts, because we don't have a reg_n_info entry for them. */
2762 && (REGNO (v->dest_reg) >= max_reg_before_loop
2763 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2764 /* Check for the case where the pseudo is set by a shift/add
2765 sequence, in which case the first insn setting the pseudo
2766 is the first insn of the shift/add sequence. */
2767 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2768 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2769 != INSN_UID (XEXP (tem, 0)))))
2770 /* Line above always fails if INSN was moved by loop opt. */
2771 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2772 >= INSN_LUID (loop->end)))
2773 && ! (final_value = v->final_value))
2774 continue;
2776 #if 0
2777 /* Currently, non-reduced/final-value givs are never split. */
2778 /* Should emit insns after the loop if possible, as the biv final value
2779 code below does. */
2781 /* If the final value is non-zero, and the giv has not been reduced,
2782 then must emit an instruction to set the final value. */
2783 if (final_value && !v->new_reg)
2785 /* Create a new register to hold the value of the giv, and then set
2786 the giv to its final value before the loop start. The giv is set
2787 to its final value before loop start to ensure that this insn
2788 will always be executed, no matter how we exit. */
2789 tem = gen_reg_rtx (v->mode);
2790 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2791 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2793 if (loop_dump_stream)
2794 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2795 REGNO (v->dest_reg), REGNO (tem));
2797 v->src_reg = tem;
2799 #endif
2801 /* This giv is splittable. If completely unrolling the loop, save the
2802 giv's initial value. Otherwise, save the constant zero for it. */
2804 if (unroll_type == UNROLL_COMPLETELY)
2806 /* It is not safe to use bl->initial_value here, because it may not
2807 be invariant. It is safe to use the initial value stored in
2808 the splittable_regs array if it is set. In rare cases, it won't
2809 be set, so then we do exactly the same thing as
2810 find_splittable_regs does to get a safe value. */
2811 rtx biv_initial_value;
2813 if (splittable_regs[bl->regno])
2814 biv_initial_value = splittable_regs[bl->regno];
2815 else if (GET_CODE (bl->initial_value) != REG
2816 || (REGNO (bl->initial_value) != bl->regno
2817 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2818 biv_initial_value = bl->initial_value;
2819 else
2821 rtx tem = gen_reg_rtx (bl->biv->mode);
2823 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2824 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2825 biv_initial_value = tem;
2827 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2828 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2829 v->add_val, v->mode);
2831 else
2832 value = const0_rtx;
2834 if (v->new_reg)
2836 /* If a giv was combined with another giv, then we can only split
2837 this giv if the giv it was combined with was reduced. This
2838 is because the value of v->new_reg is meaningless in this
2839 case. */
2840 if (v->same && ! v->same->new_reg)
2842 if (loop_dump_stream)
2843 fprintf (loop_dump_stream,
2844 "giv combined with unreduced giv not split.\n");
2845 continue;
2847 /* If the giv is an address destination, it could be something other
2848 than a simple register, these have to be treated differently. */
2849 else if (v->giv_type == DEST_REG)
2851 /* If value is not a constant, register, or register plus
2852 constant, then compute its value into a register before
2853 loop start. This prevents invalid rtx sharing, and should
2854 generate better code. We can use bl->initial_value here
2855 instead of splittable_regs[bl->regno] because this code
2856 is going before the loop start. */
2857 if (unroll_type == UNROLL_COMPLETELY
2858 && GET_CODE (value) != CONST_INT
2859 && GET_CODE (value) != REG
2860 && (GET_CODE (value) != PLUS
2861 || GET_CODE (XEXP (value, 0)) != REG
2862 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2864 rtx tem = gen_reg_rtx (v->mode);
2865 record_base_value (REGNO (tem), v->add_val, 0);
2866 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2867 v->add_val, tem);
2868 value = tem;
2871 splittable_regs[REGNO (v->new_reg)] = value;
2873 else
2875 /* Splitting address givs is useful since it will often allow us
2876 to eliminate some increment insns for the base giv as
2877 unnecessary. */
2879 /* If the addr giv is combined with a dest_reg giv, then all
2880 references to that dest reg will be remapped, which is NOT
2881 what we want for split addr regs. We always create a new
2882 register for the split addr giv, just to be safe. */
2884 /* If we have multiple identical address givs within a
2885 single instruction, then use a single pseudo reg for
2886 both. This is necessary in case one is a match_dup
2887 of the other. */
2889 v->const_adjust = 0;
2891 if (v->same_insn)
2893 v->dest_reg = v->same_insn->dest_reg;
2894 if (loop_dump_stream)
2895 fprintf (loop_dump_stream,
2896 "Sharing address givs in insn %d\n",
2897 INSN_UID (v->insn));
2899 /* If multiple address GIVs have been combined with the
2900 same dest_reg GIV, do not create a new register for
2901 each. */
2902 else if (unroll_type != UNROLL_COMPLETELY
2903 && v->giv_type == DEST_ADDR
2904 && v->same && v->same->giv_type == DEST_ADDR
2905 && v->same->unrolled
2906 /* combine_givs_p may return true for some cases
2907 where the add and mult values are not equal.
2908 To share a register here, the values must be
2909 equal. */
2910 && rtx_equal_p (v->same->mult_val, v->mult_val)
2911 && rtx_equal_p (v->same->add_val, v->add_val)
2912 /* If the memory references have different modes,
2913 then the address may not be valid and we must
2914 not share registers. */
2915 && verify_addresses (v, giv_inc, unroll_number))
2917 v->dest_reg = v->same->dest_reg;
2918 v->shared = 1;
2920 else if (unroll_type != UNROLL_COMPLETELY)
2922 /* If not completely unrolling the loop, then create a new
2923 register to hold the split value of the DEST_ADDR giv.
2924 Emit insn to initialize its value before loop start. */
2926 rtx tem = gen_reg_rtx (v->mode);
2927 struct induction *same = v->same;
2928 rtx new_reg = v->new_reg;
2929 record_base_value (REGNO (tem), v->add_val, 0);
2931 /* If the address giv has a constant in its new_reg value,
2932 then this constant can be pulled out and put in value,
2933 instead of being part of the initialization code. */
2935 if (GET_CODE (new_reg) == PLUS
2936 && GET_CODE (XEXP (new_reg, 1)) == CONST_INT)
2938 v->dest_reg
2939 = plus_constant (tem, INTVAL (XEXP (new_reg, 1)));
2941 /* Only succeed if this will give valid addresses.
2942 Try to validate both the first and the last
2943 address resulting from loop unrolling, if
2944 one fails, then can't do const elim here. */
2945 if (verify_addresses (v, giv_inc, unroll_number))
2947 /* Save the negative of the eliminated const, so
2948 that we can calculate the dest_reg's increment
2949 value later. */
2950 v->const_adjust = -INTVAL (XEXP (new_reg, 1));
2952 new_reg = XEXP (new_reg, 0);
2953 if (loop_dump_stream)
2954 fprintf (loop_dump_stream,
2955 "Eliminating constant from giv %d\n",
2956 REGNO (tem));
2958 else
2959 v->dest_reg = tem;
2961 else
2962 v->dest_reg = tem;
2964 /* If the address hasn't been checked for validity yet, do so
2965 now, and fail completely if either the first or the last
2966 unrolled copy of the address is not a valid address
2967 for the instruction that uses it. */
2968 if (v->dest_reg == tem
2969 && ! verify_addresses (v, giv_inc, unroll_number))
2971 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2972 if (v2->same_insn == v)
2973 v2->same_insn = 0;
2975 if (loop_dump_stream)
2976 fprintf (loop_dump_stream,
2977 "Invalid address for giv at insn %d\n",
2978 INSN_UID (v->insn));
2979 continue;
2982 v->new_reg = new_reg;
2983 v->same = same;
2985 /* We set this after the address check, to guarantee that
2986 the register will be initialized. */
2987 v->unrolled = 1;
2989 /* To initialize the new register, just move the value of
2990 new_reg into it. This is not guaranteed to give a valid
2991 instruction on machines with complex addressing modes.
2992 If we can't recognize it, then delete it and emit insns
2993 to calculate the value from scratch. */
2994 loop_insn_hoist (loop, gen_rtx_SET (VOIDmode, tem,
2995 copy_rtx (v->new_reg)));
2996 if (recog_memoized (PREV_INSN (loop->start)) < 0)
2998 rtx sequence, ret;
3000 /* We can't use bl->initial_value to compute the initial
3001 value, because the loop may have been preconditioned.
3002 We must calculate it from NEW_REG. */
3003 delete_related_insns (PREV_INSN (loop->start));
3005 start_sequence ();
3006 ret = force_operand (v->new_reg, tem);
3007 if (ret != tem)
3008 emit_move_insn (tem, ret);
3009 sequence = gen_sequence ();
3010 end_sequence ();
3011 loop_insn_hoist (loop, sequence);
3013 if (loop_dump_stream)
3014 fprintf (loop_dump_stream,
3015 "Invalid init insn, rewritten.\n");
3018 else
3020 v->dest_reg = value;
3022 /* Check the resulting address for validity, and fail
3023 if the resulting address would be invalid. */
3024 if (! verify_addresses (v, giv_inc, unroll_number))
3026 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3027 if (v2->same_insn == v)
3028 v2->same_insn = 0;
3030 if (loop_dump_stream)
3031 fprintf (loop_dump_stream,
3032 "Invalid address for giv at insn %d\n",
3033 INSN_UID (v->insn));
3034 continue;
3038 /* Store the value of dest_reg into the insn. This sharing
3039 will not be a problem as this insn will always be copied
3040 later. */
3042 *v->location = v->dest_reg;
3044 /* If this address giv is combined with a dest reg giv, then
3045 save the base giv's induction pointer so that we will be
3046 able to handle this address giv properly. The base giv
3047 itself does not have to be splittable. */
3049 if (v->same && v->same->giv_type == DEST_REG)
3050 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3052 if (GET_CODE (v->new_reg) == REG)
3054 /* This giv maybe hasn't been combined with any others.
3055 Make sure that it's giv is marked as splittable here. */
3057 splittable_regs[REGNO (v->new_reg)] = value;
3059 /* Make it appear to depend upon itself, so that the
3060 giv will be properly split in the main loop above. */
3061 if (! v->same)
3063 v->same = v;
3064 addr_combined_regs[REGNO (v->new_reg)] = v;
3068 if (loop_dump_stream)
3069 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3072 else
3074 #if 0
3075 /* Currently, unreduced giv's can't be split. This is not too much
3076 of a problem since unreduced giv's are not live across loop
3077 iterations anyways. When unrolling a loop completely though,
3078 it makes sense to reduce&split givs when possible, as this will
3079 result in simpler instructions, and will not require that a reg
3080 be live across loop iterations. */
3082 splittable_regs[REGNO (v->dest_reg)] = value;
3083 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3084 REGNO (v->dest_reg), INSN_UID (v->insn));
3085 #else
3086 continue;
3087 #endif
3090 /* Unreduced givs are only updated once by definition. Reduced givs
3091 are updated as many times as their biv is. Mark it so if this is
3092 a splittable register. Don't need to do anything for address givs
3093 where this may not be a register. */
3095 if (GET_CODE (v->new_reg) == REG)
3097 int count = 1;
3098 if (! v->ignore)
3099 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
3101 splittable_regs_updates[REGNO (v->new_reg)] = count;
3104 result++;
3106 if (loop_dump_stream)
3108 int regnum;
3110 if (GET_CODE (v->dest_reg) == CONST_INT)
3111 regnum = -1;
3112 else if (GET_CODE (v->dest_reg) != REG)
3113 regnum = REGNO (XEXP (v->dest_reg, 0));
3114 else
3115 regnum = REGNO (v->dest_reg);
3116 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3117 regnum, INSN_UID (v->insn));
3121 return result;
3124 /* Try to prove that the register is dead after the loop exits. Trace every
3125 loop exit looking for an insn that will always be executed, which sets
3126 the register to some value, and appears before the first use of the register
3127 is found. If successful, then return 1, otherwise return 0. */
3129 /* ?? Could be made more intelligent in the handling of jumps, so that
3130 it can search past if statements and other similar structures. */
3132 static int
3133 reg_dead_after_loop (loop, reg)
3134 const struct loop *loop;
3135 rtx reg;
3137 rtx insn, label;
3138 enum rtx_code code;
3139 int jump_count = 0;
3140 int label_count = 0;
3142 /* In addition to checking all exits of this loop, we must also check
3143 all exits of inner nested loops that would exit this loop. We don't
3144 have any way to identify those, so we just give up if there are any
3145 such inner loop exits. */
3147 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3148 label_count++;
3150 if (label_count != loop->exit_count)
3151 return 0;
3153 /* HACK: Must also search the loop fall through exit, create a label_ref
3154 here which points to the loop->end, and append the loop_number_exit_labels
3155 list to it. */
3156 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
3157 LABEL_NEXTREF (label) = loop->exit_labels;
3159 for (; label; label = LABEL_NEXTREF (label))
3161 /* Succeed if find an insn which sets the biv or if reach end of
3162 function. Fail if find an insn that uses the biv, or if come to
3163 a conditional jump. */
3165 insn = NEXT_INSN (XEXP (label, 0));
3166 while (insn)
3168 code = GET_CODE (insn);
3169 if (GET_RTX_CLASS (code) == 'i')
3171 rtx set;
3173 if (reg_referenced_p (reg, PATTERN (insn)))
3174 return 0;
3176 set = single_set (insn);
3177 if (set && rtx_equal_p (SET_DEST (set), reg))
3178 break;
3181 if (code == JUMP_INSN)
3183 if (GET_CODE (PATTERN (insn)) == RETURN)
3184 break;
3185 else if (!any_uncondjump_p (insn)
3186 /* Prevent infinite loop following infinite loops. */
3187 || jump_count++ > 20)
3188 return 0;
3189 else
3190 insn = JUMP_LABEL (insn);
3193 insn = NEXT_INSN (insn);
3197 /* Success, the register is dead on all loop exits. */
3198 return 1;
3201 /* Try to calculate the final value of the biv, the value it will have at
3202 the end of the loop. If we can do it, return that value. */
3205 final_biv_value (loop, bl)
3206 const struct loop *loop;
3207 struct iv_class *bl;
3209 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3210 rtx increment, tem;
3212 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3214 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3215 return 0;
3217 /* The final value for reversed bivs must be calculated differently than
3218 for ordinary bivs. In this case, there is already an insn after the
3219 loop which sets this biv's final value (if necessary), and there are
3220 no other loop exits, so we can return any value. */
3221 if (bl->reversed)
3223 if (loop_dump_stream)
3224 fprintf (loop_dump_stream,
3225 "Final biv value for %d, reversed biv.\n", bl->regno);
3227 return const0_rtx;
3230 /* Try to calculate the final value as initial value + (number of iterations
3231 * increment). For this to work, increment must be invariant, the only
3232 exit from the loop must be the fall through at the bottom (otherwise
3233 it may not have its final value when the loop exits), and the initial
3234 value of the biv must be invariant. */
3236 if (n_iterations != 0
3237 && ! loop->exit_count
3238 && loop_invariant_p (loop, bl->initial_value))
3240 increment = biv_total_increment (bl);
3242 if (increment && loop_invariant_p (loop, increment))
3244 /* Can calculate the loop exit value, emit insns after loop
3245 end to calculate this value into a temporary register in
3246 case it is needed later. */
3248 tem = gen_reg_rtx (bl->biv->mode);
3249 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3250 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3251 bl->initial_value, tem);
3253 if (loop_dump_stream)
3254 fprintf (loop_dump_stream,
3255 "Final biv value for %d, calculated.\n", bl->regno);
3257 return tem;
3261 /* Check to see if the biv is dead at all loop exits. */
3262 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3264 if (loop_dump_stream)
3265 fprintf (loop_dump_stream,
3266 "Final biv value for %d, biv dead after loop exit.\n",
3267 bl->regno);
3269 return const0_rtx;
3272 return 0;
3275 /* Try to calculate the final value of the giv, the value it will have at
3276 the end of the loop. If we can do it, return that value. */
3279 final_giv_value (loop, v)
3280 const struct loop *loop;
3281 struct induction *v;
3283 struct loop_ivs *ivs = LOOP_IVS (loop);
3284 struct iv_class *bl;
3285 rtx insn;
3286 rtx increment, tem;
3287 rtx seq;
3288 rtx loop_end = loop->end;
3289 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3291 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3293 /* The final value for givs which depend on reversed bivs must be calculated
3294 differently than for ordinary givs. In this case, there is already an
3295 insn after the loop which sets this giv's final value (if necessary),
3296 and there are no other loop exits, so we can return any value. */
3297 if (bl->reversed)
3299 if (loop_dump_stream)
3300 fprintf (loop_dump_stream,
3301 "Final giv value for %d, depends on reversed biv\n",
3302 REGNO (v->dest_reg));
3303 return const0_rtx;
3306 /* Try to calculate the final value as a function of the biv it depends
3307 upon. The only exit from the loop must be the fall through at the bottom
3308 and the insn that sets the giv must be executed on every iteration
3309 (otherwise the giv may not have its final value when the loop exits). */
3311 /* ??? Can calculate the final giv value by subtracting off the
3312 extra biv increments times the giv's mult_val. The loop must have
3313 only one exit for this to work, but the loop iterations does not need
3314 to be known. */
3316 if (n_iterations != 0
3317 && ! loop->exit_count
3318 && v->always_executed)
3320 /* ?? It is tempting to use the biv's value here since these insns will
3321 be put after the loop, and hence the biv will have its final value
3322 then. However, this fails if the biv is subsequently eliminated.
3323 Perhaps determine whether biv's are eliminable before trying to
3324 determine whether giv's are replaceable so that we can use the
3325 biv value here if it is not eliminable. */
3327 /* We are emitting code after the end of the loop, so we must make
3328 sure that bl->initial_value is still valid then. It will still
3329 be valid if it is invariant. */
3331 increment = biv_total_increment (bl);
3333 if (increment && loop_invariant_p (loop, increment)
3334 && loop_invariant_p (loop, bl->initial_value))
3336 /* Can calculate the loop exit value of its biv as
3337 (n_iterations * increment) + initial_value */
3339 /* The loop exit value of the giv is then
3340 (final_biv_value - extra increments) * mult_val + add_val.
3341 The extra increments are any increments to the biv which
3342 occur in the loop after the giv's value is calculated.
3343 We must search from the insn that sets the giv to the end
3344 of the loop to calculate this value. */
3346 /* Put the final biv value in tem. */
3347 tem = gen_reg_rtx (v->mode);
3348 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3349 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3350 GEN_INT (n_iterations),
3351 extend_value_for_giv (v, bl->initial_value),
3352 tem);
3354 /* Subtract off extra increments as we find them. */
3355 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3356 insn = NEXT_INSN (insn))
3358 struct induction *biv;
3360 for (biv = bl->biv; biv; biv = biv->next_iv)
3361 if (biv->insn == insn)
3363 start_sequence ();
3364 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3365 biv->add_val, NULL_RTX, 0,
3366 OPTAB_LIB_WIDEN);
3367 seq = gen_sequence ();
3368 end_sequence ();
3369 loop_insn_sink (loop, seq);
3373 /* Now calculate the giv's final value. */
3374 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3376 if (loop_dump_stream)
3377 fprintf (loop_dump_stream,
3378 "Final giv value for %d, calc from biv's value.\n",
3379 REGNO (v->dest_reg));
3381 return tem;
3385 /* Replaceable giv's should never reach here. */
3386 if (v->replaceable)
3387 abort ();
3389 /* Check to see if the biv is dead at all loop exits. */
3390 if (reg_dead_after_loop (loop, v->dest_reg))
3392 if (loop_dump_stream)
3393 fprintf (loop_dump_stream,
3394 "Final giv value for %d, giv dead after loop exit.\n",
3395 REGNO (v->dest_reg));
3397 return const0_rtx;
3400 return 0;
3403 /* Look back before LOOP->START for the insn that sets REG and return
3404 the equivalent constant if there is a REG_EQUAL note otherwise just
3405 the SET_SRC of REG. */
3407 static rtx
3408 loop_find_equiv_value (loop, reg)
3409 const struct loop *loop;
3410 rtx reg;
3412 rtx loop_start = loop->start;
3413 rtx insn, set;
3414 rtx ret;
3416 ret = reg;
3417 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3419 if (GET_CODE (insn) == CODE_LABEL)
3420 break;
3422 else if (INSN_P (insn) && reg_set_p (reg, insn))
3424 /* We found the last insn before the loop that sets the register.
3425 If it sets the entire register, and has a REG_EQUAL note,
3426 then use the value of the REG_EQUAL note. */
3427 if ((set = single_set (insn))
3428 && (SET_DEST (set) == reg))
3430 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3432 /* Only use the REG_EQUAL note if it is a constant.
3433 Other things, divide in particular, will cause
3434 problems later if we use them. */
3435 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3436 && CONSTANT_P (XEXP (note, 0)))
3437 ret = XEXP (note, 0);
3438 else
3439 ret = SET_SRC (set);
3441 /* We cannot do this if it changes between the
3442 assignment and loop start though. */
3443 if (modified_between_p (ret, insn, loop_start))
3444 ret = reg;
3446 break;
3449 return ret;
3452 /* Return a simplified rtx for the expression OP - REG.
3454 REG must appear in OP, and OP must be a register or the sum of a register
3455 and a second term.
3457 Thus, the return value must be const0_rtx or the second term.
3459 The caller is responsible for verifying that REG appears in OP and OP has
3460 the proper form. */
3462 static rtx
3463 subtract_reg_term (op, reg)
3464 rtx op, reg;
3466 if (op == reg)
3467 return const0_rtx;
3468 if (GET_CODE (op) == PLUS)
3470 if (XEXP (op, 0) == reg)
3471 return XEXP (op, 1);
3472 else if (XEXP (op, 1) == reg)
3473 return XEXP (op, 0);
3475 /* OP does not contain REG as a term. */
3476 abort ();
3479 /* Find and return register term common to both expressions OP0 and
3480 OP1 or NULL_RTX if no such term exists. Each expression must be a
3481 REG or a PLUS of a REG. */
3483 static rtx
3484 find_common_reg_term (op0, op1)
3485 rtx op0, op1;
3487 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3488 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3490 rtx op00;
3491 rtx op01;
3492 rtx op10;
3493 rtx op11;
3495 if (GET_CODE (op0) == PLUS)
3496 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3497 else
3498 op01 = const0_rtx, op00 = op0;
3500 if (GET_CODE (op1) == PLUS)
3501 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3502 else
3503 op11 = const0_rtx, op10 = op1;
3505 /* Find and return common register term if present. */
3506 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3507 return op00;
3508 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3509 return op01;
3512 /* No common register term found. */
3513 return NULL_RTX;
3516 /* Determine the loop iterator and calculate the number of loop
3517 iterations. Returns the exact number of loop iterations if it can
3518 be calculated, otherwise returns zero. */
3520 unsigned HOST_WIDE_INT
3521 loop_iterations (loop)
3522 struct loop *loop;
3524 struct loop_info *loop_info = LOOP_INFO (loop);
3525 struct loop_ivs *ivs = LOOP_IVS (loop);
3526 rtx comparison, comparison_value;
3527 rtx iteration_var, initial_value, increment, final_value;
3528 enum rtx_code comparison_code;
3529 HOST_WIDE_INT inc;
3530 unsigned HOST_WIDE_INT abs_inc;
3531 unsigned HOST_WIDE_INT abs_diff;
3532 int off_by_one;
3533 int increment_dir;
3534 int unsigned_p, compare_dir, final_larger;
3535 rtx last_loop_insn;
3536 rtx reg_term;
3537 struct iv_class *bl;
3539 loop_info->n_iterations = 0;
3540 loop_info->initial_value = 0;
3541 loop_info->initial_equiv_value = 0;
3542 loop_info->comparison_value = 0;
3543 loop_info->final_value = 0;
3544 loop_info->final_equiv_value = 0;
3545 loop_info->increment = 0;
3546 loop_info->iteration_var = 0;
3547 loop_info->unroll_number = 1;
3548 loop_info->iv = 0;
3550 /* We used to use prev_nonnote_insn here, but that fails because it might
3551 accidentally get the branch for a contained loop if the branch for this
3552 loop was deleted. We can only trust branches immediately before the
3553 loop_end. */
3554 last_loop_insn = PREV_INSN (loop->end);
3556 /* ??? We should probably try harder to find the jump insn
3557 at the end of the loop. The following code assumes that
3558 the last loop insn is a jump to the top of the loop. */
3559 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3561 if (loop_dump_stream)
3562 fprintf (loop_dump_stream,
3563 "Loop iterations: No final conditional branch found.\n");
3564 return 0;
3567 /* If there is a more than a single jump to the top of the loop
3568 we cannot (easily) determine the iteration count. */
3569 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3571 if (loop_dump_stream)
3572 fprintf (loop_dump_stream,
3573 "Loop iterations: Loop has multiple back edges.\n");
3574 return 0;
3577 /* If there are multiple conditionalized loop exit tests, they may jump
3578 back to differing CODE_LABELs. */
3579 if (loop->top && loop->cont)
3581 rtx temp = PREV_INSN (last_loop_insn);
3585 if (GET_CODE (temp) == JUMP_INSN)
3587 /* There are some kinds of jumps we can't deal with easily. */
3588 if (JUMP_LABEL (temp) == 0)
3590 if (loop_dump_stream)
3591 fprintf
3592 (loop_dump_stream,
3593 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3594 return 0;
3597 if (/* Previous unrolling may have generated new insns not
3598 covered by the uid_luid array. */
3599 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3600 /* Check if we jump back into the loop body. */
3601 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3602 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3604 if (loop_dump_stream)
3605 fprintf
3606 (loop_dump_stream,
3607 "Loop iterations: Loop has multiple back edges.\n");
3608 return 0;
3612 while ((temp = PREV_INSN (temp)) != loop->cont);
3615 /* Find the iteration variable. If the last insn is a conditional
3616 branch, and the insn before tests a register value, make that the
3617 iteration variable. */
3619 comparison = get_condition_for_loop (loop, last_loop_insn);
3620 if (comparison == 0)
3622 if (loop_dump_stream)
3623 fprintf (loop_dump_stream,
3624 "Loop iterations: No final comparison found.\n");
3625 return 0;
3628 /* ??? Get_condition may switch position of induction variable and
3629 invariant register when it canonicalizes the comparison. */
3631 comparison_code = GET_CODE (comparison);
3632 iteration_var = XEXP (comparison, 0);
3633 comparison_value = XEXP (comparison, 1);
3635 if (GET_CODE (iteration_var) != REG)
3637 if (loop_dump_stream)
3638 fprintf (loop_dump_stream,
3639 "Loop iterations: Comparison not against register.\n");
3640 return 0;
3643 /* The only new registers that are created before loop iterations
3644 are givs made from biv increments or registers created by
3645 load_mems. In the latter case, it is possible that try_copy_prop
3646 will propagate a new pseudo into the old iteration register but
3647 this will be marked by having the REG_USERVAR_P bit set. */
3649 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3650 && ! REG_USERVAR_P (iteration_var))
3651 abort ();
3653 /* Determine the initial value of the iteration variable, and the amount
3654 that it is incremented each loop. Use the tables constructed by
3655 the strength reduction pass to calculate these values. */
3657 /* Clear the result values, in case no answer can be found. */
3658 initial_value = 0;
3659 increment = 0;
3661 /* The iteration variable can be either a giv or a biv. Check to see
3662 which it is, and compute the variable's initial value, and increment
3663 value if possible. */
3665 /* If this is a new register, can't handle it since we don't have any
3666 reg_iv_type entry for it. */
3667 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3669 if (loop_dump_stream)
3670 fprintf (loop_dump_stream,
3671 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3672 return 0;
3675 /* Reject iteration variables larger than the host wide int size, since they
3676 could result in a number of iterations greater than the range of our
3677 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3678 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3679 > HOST_BITS_PER_WIDE_INT))
3681 if (loop_dump_stream)
3682 fprintf (loop_dump_stream,
3683 "Loop iterations: Iteration var rejected because mode too large.\n");
3684 return 0;
3686 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3688 if (loop_dump_stream)
3689 fprintf (loop_dump_stream,
3690 "Loop iterations: Iteration var not an integer.\n");
3691 return 0;
3693 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3695 if (REGNO (iteration_var) >= ivs->n_regs)
3696 abort ();
3698 /* Grab initial value, only useful if it is a constant. */
3699 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3700 initial_value = bl->initial_value;
3701 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3703 if (loop_dump_stream)
3704 fprintf (loop_dump_stream,
3705 "Loop iterations: Basic induction var not set once in each iteration.\n");
3706 return 0;
3709 increment = biv_total_increment (bl);
3711 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3713 HOST_WIDE_INT offset = 0;
3714 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3715 rtx biv_initial_value;
3717 if (REGNO (v->src_reg) >= ivs->n_regs)
3718 abort ();
3720 if (!v->always_executed || v->maybe_multiple)
3722 if (loop_dump_stream)
3723 fprintf (loop_dump_stream,
3724 "Loop iterations: General induction var not set once in each iteration.\n");
3725 return 0;
3728 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3730 /* Increment value is mult_val times the increment value of the biv. */
3732 increment = biv_total_increment (bl);
3733 if (increment)
3735 struct induction *biv_inc;
3737 increment = fold_rtx_mult_add (v->mult_val,
3738 extend_value_for_giv (v, increment),
3739 const0_rtx, v->mode);
3740 /* The caller assumes that one full increment has occurred at the
3741 first loop test. But that's not true when the biv is incremented
3742 after the giv is set (which is the usual case), e.g.:
3743 i = 6; do {;} while (i++ < 9) .
3744 Therefore, we bias the initial value by subtracting the amount of
3745 the increment that occurs between the giv set and the giv test. */
3746 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3748 if (loop_insn_first_p (v->insn, biv_inc->insn))
3750 if (REG_P (biv_inc->add_val))
3752 if (loop_dump_stream)
3753 fprintf (loop_dump_stream,
3754 "Loop iterations: Basic induction var add_val is REG %d.\n",
3755 REGNO (biv_inc->add_val));
3756 return 0;
3759 offset -= INTVAL (biv_inc->add_val);
3763 if (loop_dump_stream)
3764 fprintf (loop_dump_stream,
3765 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3766 (long) offset);
3768 /* Initial value is mult_val times the biv's initial value plus
3769 add_val. Only useful if it is a constant. */
3770 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3771 initial_value
3772 = fold_rtx_mult_add (v->mult_val,
3773 plus_constant (biv_initial_value, offset),
3774 v->add_val, v->mode);
3776 else
3778 if (loop_dump_stream)
3779 fprintf (loop_dump_stream,
3780 "Loop iterations: Not basic or general induction var.\n");
3781 return 0;
3784 if (initial_value == 0)
3785 return 0;
3787 unsigned_p = 0;
3788 off_by_one = 0;
3789 switch (comparison_code)
3791 case LEU:
3792 unsigned_p = 1;
3793 case LE:
3794 compare_dir = 1;
3795 off_by_one = 1;
3796 break;
3797 case GEU:
3798 unsigned_p = 1;
3799 case GE:
3800 compare_dir = -1;
3801 off_by_one = -1;
3802 break;
3803 case EQ:
3804 /* Cannot determine loop iterations with this case. */
3805 compare_dir = 0;
3806 break;
3807 case LTU:
3808 unsigned_p = 1;
3809 case LT:
3810 compare_dir = 1;
3811 break;
3812 case GTU:
3813 unsigned_p = 1;
3814 case GT:
3815 compare_dir = -1;
3816 case NE:
3817 compare_dir = 0;
3818 break;
3819 default:
3820 abort ();
3823 /* If the comparison value is an invariant register, then try to find
3824 its value from the insns before the start of the loop. */
3826 final_value = comparison_value;
3827 if (GET_CODE (comparison_value) == REG
3828 && loop_invariant_p (loop, comparison_value))
3830 final_value = loop_find_equiv_value (loop, comparison_value);
3832 /* If we don't get an invariant final value, we are better
3833 off with the original register. */
3834 if (! loop_invariant_p (loop, final_value))
3835 final_value = comparison_value;
3838 /* Calculate the approximate final value of the induction variable
3839 (on the last successful iteration). The exact final value
3840 depends on the branch operator, and increment sign. It will be
3841 wrong if the iteration variable is not incremented by one each
3842 time through the loop and (comparison_value + off_by_one -
3843 initial_value) % increment != 0.
3844 ??? Note that the final_value may overflow and thus final_larger
3845 will be bogus. A potentially infinite loop will be classified
3846 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3847 if (off_by_one)
3848 final_value = plus_constant (final_value, off_by_one);
3850 /* Save the calculated values describing this loop's bounds, in case
3851 precondition_loop_p will need them later. These values can not be
3852 recalculated inside precondition_loop_p because strength reduction
3853 optimizations may obscure the loop's structure.
3855 These values are only required by precondition_loop_p and insert_bct
3856 whenever the number of iterations cannot be computed at compile time.
3857 Only the difference between final_value and initial_value is
3858 important. Note that final_value is only approximate. */
3859 loop_info->initial_value = initial_value;
3860 loop_info->comparison_value = comparison_value;
3861 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3862 loop_info->increment = increment;
3863 loop_info->iteration_var = iteration_var;
3864 loop_info->comparison_code = comparison_code;
3865 loop_info->iv = bl;
3867 /* Try to determine the iteration count for loops such
3868 as (for i = init; i < init + const; i++). When running the
3869 loop optimization twice, the first pass often converts simple
3870 loops into this form. */
3872 if (REG_P (initial_value))
3874 rtx reg1;
3875 rtx reg2;
3876 rtx const2;
3878 reg1 = initial_value;
3879 if (GET_CODE (final_value) == PLUS)
3880 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3881 else
3882 reg2 = final_value, const2 = const0_rtx;
3884 /* Check for initial_value = reg1, final_value = reg2 + const2,
3885 where reg1 != reg2. */
3886 if (REG_P (reg2) && reg2 != reg1)
3888 rtx temp;
3890 /* Find what reg1 is equivalent to. Hopefully it will
3891 either be reg2 or reg2 plus a constant. */
3892 temp = loop_find_equiv_value (loop, reg1);
3894 if (find_common_reg_term (temp, reg2))
3895 initial_value = temp;
3896 else
3898 /* Find what reg2 is equivalent to. Hopefully it will
3899 either be reg1 or reg1 plus a constant. Let's ignore
3900 the latter case for now since it is not so common. */
3901 temp = loop_find_equiv_value (loop, reg2);
3903 if (temp == loop_info->iteration_var)
3904 temp = initial_value;
3905 if (temp == reg1)
3906 final_value = (const2 == const0_rtx)
3907 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3910 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3912 rtx temp;
3914 /* When running the loop optimizer twice, check_dbra_loop
3915 further obfuscates reversible loops of the form:
3916 for (i = init; i < init + const; i++). We often end up with
3917 final_value = 0, initial_value = temp, temp = temp2 - init,
3918 where temp2 = init + const. If the loop has a vtop we
3919 can replace initial_value with const. */
3921 temp = loop_find_equiv_value (loop, reg1);
3923 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3925 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3927 if (GET_CODE (temp2) == PLUS
3928 && XEXP (temp2, 0) == XEXP (temp, 1))
3929 initial_value = XEXP (temp2, 1);
3934 /* If have initial_value = reg + const1 and final_value = reg +
3935 const2, then replace initial_value with const1 and final_value
3936 with const2. This should be safe since we are protected by the
3937 initial comparison before entering the loop if we have a vtop.
3938 For example, a + b < a + c is not equivalent to b < c for all a
3939 when using modulo arithmetic.
3941 ??? Without a vtop we could still perform the optimization if we check
3942 the initial and final values carefully. */
3943 if (loop->vtop
3944 && (reg_term = find_common_reg_term (initial_value, final_value)))
3946 initial_value = subtract_reg_term (initial_value, reg_term);
3947 final_value = subtract_reg_term (final_value, reg_term);
3950 loop_info->initial_equiv_value = initial_value;
3951 loop_info->final_equiv_value = final_value;
3953 /* For EQ comparison loops, we don't have a valid final value.
3954 Check this now so that we won't leave an invalid value if we
3955 return early for any other reason. */
3956 if (comparison_code == EQ)
3957 loop_info->final_equiv_value = loop_info->final_value = 0;
3959 if (increment == 0)
3961 if (loop_dump_stream)
3962 fprintf (loop_dump_stream,
3963 "Loop iterations: Increment value can't be calculated.\n");
3964 return 0;
3967 if (GET_CODE (increment) != CONST_INT)
3969 /* If we have a REG, check to see if REG holds a constant value. */
3970 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3971 clear if it is worthwhile to try to handle such RTL. */
3972 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3973 increment = loop_find_equiv_value (loop, increment);
3975 if (GET_CODE (increment) != CONST_INT)
3977 if (loop_dump_stream)
3979 fprintf (loop_dump_stream,
3980 "Loop iterations: Increment value not constant ");
3981 print_simple_rtl (loop_dump_stream, increment);
3982 fprintf (loop_dump_stream, ".\n");
3984 return 0;
3986 loop_info->increment = increment;
3989 if (GET_CODE (initial_value) != CONST_INT)
3991 if (loop_dump_stream)
3993 fprintf (loop_dump_stream,
3994 "Loop iterations: Initial value not constant ");
3995 print_simple_rtl (loop_dump_stream, initial_value);
3996 fprintf (loop_dump_stream, ".\n");
3998 return 0;
4000 else if (comparison_code == EQ)
4002 if (loop_dump_stream)
4003 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
4004 return 0;
4006 else if (GET_CODE (final_value) != CONST_INT)
4008 if (loop_dump_stream)
4010 fprintf (loop_dump_stream,
4011 "Loop iterations: Final value not constant ");
4012 print_simple_rtl (loop_dump_stream, final_value);
4013 fprintf (loop_dump_stream, ".\n");
4015 return 0;
4018 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
4019 if (unsigned_p)
4020 final_larger
4021 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
4022 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
4023 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
4024 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
4025 else
4026 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
4027 - (INTVAL (final_value) < INTVAL (initial_value));
4029 if (INTVAL (increment) > 0)
4030 increment_dir = 1;
4031 else if (INTVAL (increment) == 0)
4032 increment_dir = 0;
4033 else
4034 increment_dir = -1;
4036 /* There are 27 different cases: compare_dir = -1, 0, 1;
4037 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
4038 There are 4 normal cases, 4 reverse cases (where the iteration variable
4039 will overflow before the loop exits), 4 infinite loop cases, and 15
4040 immediate exit (0 or 1 iteration depending on loop type) cases.
4041 Only try to optimize the normal cases. */
4043 /* (compare_dir/final_larger/increment_dir)
4044 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
4045 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
4046 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
4047 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
4049 /* ?? If the meaning of reverse loops (where the iteration variable
4050 will overflow before the loop exits) is undefined, then could
4051 eliminate all of these special checks, and just always assume
4052 the loops are normal/immediate/infinite. Note that this means
4053 the sign of increment_dir does not have to be known. Also,
4054 since it does not really hurt if immediate exit loops or infinite loops
4055 are optimized, then that case could be ignored also, and hence all
4056 loops can be optimized.
4058 According to ANSI Spec, the reverse loop case result is undefined,
4059 because the action on overflow is undefined.
4061 See also the special test for NE loops below. */
4063 if (final_larger == increment_dir && final_larger != 0
4064 && (final_larger == compare_dir || compare_dir == 0))
4065 /* Normal case. */
4067 else
4069 if (loop_dump_stream)
4070 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
4071 return 0;
4074 /* Calculate the number of iterations, final_value is only an approximation,
4075 so correct for that. Note that abs_diff and n_iterations are
4076 unsigned, because they can be as large as 2^n - 1. */
4078 inc = INTVAL (increment);
4079 if (inc > 0)
4081 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
4082 abs_inc = inc;
4084 else if (inc < 0)
4086 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
4087 abs_inc = -inc;
4089 else
4090 abort ();
4092 /* Given that iteration_var is going to iterate over its own mode,
4093 not HOST_WIDE_INT, disregard higher bits that might have come
4094 into the picture due to sign extension of initial and final
4095 values. */
4096 abs_diff &= ((unsigned HOST_WIDE_INT) 1
4097 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
4098 << 1) - 1;
4100 /* For NE tests, make sure that the iteration variable won't miss
4101 the final value. If abs_diff mod abs_incr is not zero, then the
4102 iteration variable will overflow before the loop exits, and we
4103 can not calculate the number of iterations. */
4104 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
4105 return 0;
4107 /* Note that the number of iterations could be calculated using
4108 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
4109 handle potential overflow of the summation. */
4110 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
4111 return loop_info->n_iterations;
4114 /* Replace uses of split bivs with their split pseudo register. This is
4115 for original instructions which remain after loop unrolling without
4116 copying. */
4118 static rtx
4119 remap_split_bivs (loop, x)
4120 struct loop *loop;
4121 rtx x;
4123 struct loop_ivs *ivs = LOOP_IVS (loop);
4124 enum rtx_code code;
4125 int i;
4126 const char *fmt;
4128 if (x == 0)
4129 return x;
4131 code = GET_CODE (x);
4132 switch (code)
4134 case SCRATCH:
4135 case PC:
4136 case CC0:
4137 case CONST_INT:
4138 case CONST_DOUBLE:
4139 case CONST:
4140 case SYMBOL_REF:
4141 case LABEL_REF:
4142 return x;
4144 case REG:
4145 #if 0
4146 /* If non-reduced/final-value givs were split, then this would also
4147 have to remap those givs also. */
4148 #endif
4149 if (REGNO (x) < ivs->n_regs
4150 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
4151 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
4152 break;
4154 default:
4155 break;
4158 fmt = GET_RTX_FORMAT (code);
4159 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4161 if (fmt[i] == 'e')
4162 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
4163 else if (fmt[i] == 'E')
4165 int j;
4166 for (j = 0; j < XVECLEN (x, i); j++)
4167 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
4170 return x;
4173 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
4174 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
4175 return 0. COPY_START is where we can start looking for the insns
4176 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
4177 insns.
4179 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
4180 must dominate LAST_UID.
4182 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4183 may not dominate LAST_UID.
4185 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
4186 must dominate LAST_UID. */
4189 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
4190 int regno;
4191 int first_uid;
4192 int last_uid;
4193 rtx copy_start;
4194 rtx copy_end;
4196 int passed_jump = 0;
4197 rtx p = NEXT_INSN (copy_start);
4199 while (INSN_UID (p) != first_uid)
4201 if (GET_CODE (p) == JUMP_INSN)
4202 passed_jump = 1;
4203 /* Could not find FIRST_UID. */
4204 if (p == copy_end)
4205 return 0;
4206 p = NEXT_INSN (p);
4209 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4210 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4211 return 0;
4213 /* FIRST_UID is always executed. */
4214 if (passed_jump == 0)
4215 return 1;
4217 while (INSN_UID (p) != last_uid)
4219 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4220 can not be sure that FIRST_UID dominates LAST_UID. */
4221 if (GET_CODE (p) == CODE_LABEL)
4222 return 0;
4223 /* Could not find LAST_UID, but we reached the end of the loop, so
4224 it must be safe. */
4225 else if (p == copy_end)
4226 return 1;
4227 p = NEXT_INSN (p);
4230 /* FIRST_UID is always executed if LAST_UID is executed. */
4231 return 1;
4234 /* This routine is called when the number of iterations for the unrolled
4235 loop is one. The goal is to identify a loop that begins with an
4236 unconditional branch to the loop continuation note (or a label just after).
4237 In this case, the unconditional branch that starts the loop needs to be
4238 deleted so that we execute the single iteration. */
4240 static rtx
4241 ujump_to_loop_cont (loop_start, loop_cont)
4242 rtx loop_start;
4243 rtx loop_cont;
4245 rtx x, label, label_ref;
4247 /* See if loop start, or the next insn is an unconditional jump. */
4248 loop_start = next_nonnote_insn (loop_start);
4250 x = pc_set (loop_start);
4251 if (!x)
4252 return NULL_RTX;
4254 label_ref = SET_SRC (x);
4255 if (!label_ref)
4256 return NULL_RTX;
4258 /* Examine insn after loop continuation note. Return if not a label. */
4259 label = next_nonnote_insn (loop_cont);
4260 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4261 return NULL_RTX;
4263 /* Return the loop start if the branch label matches the code label. */
4264 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4265 return loop_start;
4266 else
4267 return NULL_RTX;