Daily bump.
[official-gcc.git] / gcc / local-alloc.c
blob05d0bde6c893b1042fa340baa7bcd7c7ad686bc5
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "tm_p.h"
66 #include "flags.h"
67 #include "hard-reg-set.h"
68 #include "basic-block.h"
69 #include "regs.h"
70 #include "function.h"
71 #include "insn-config.h"
72 #include "insn-attr.h"
73 #include "recog.h"
74 #include "output.h"
75 #include "toplev.h"
76 #include "except.h"
77 #include "integrate.h"
79 /* Next quantity number available for allocation. */
81 static int next_qty;
83 /* Information we maintain about each quantity. */
84 struct qty
86 /* The number of refs to quantity Q. */
88 int n_refs;
90 /* The frequency of uses of quantity Q. */
92 int freq;
94 /* Insn number (counting from head of basic block)
95 where quantity Q was born. -1 if birth has not been recorded. */
97 int birth;
99 /* Insn number (counting from head of basic block)
100 where given quantity died. Due to the way tying is done,
101 and the fact that we consider in this pass only regs that die but once,
102 a quantity can die only once. Each quantity's life span
103 is a set of consecutive insns. -1 if death has not been recorded. */
105 int death;
107 /* Number of words needed to hold the data in given quantity.
108 This depends on its machine mode. It is used for these purposes:
109 1. It is used in computing the relative importances of qtys,
110 which determines the order in which we look for regs for them.
111 2. It is used in rules that prevent tying several registers of
112 different sizes in a way that is geometrically impossible
113 (see combine_regs). */
115 int size;
117 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
119 int n_calls_crossed;
121 /* The register number of one pseudo register whose reg_qty value is Q.
122 This register should be the head of the chain
123 maintained in reg_next_in_qty. */
125 int first_reg;
127 /* Reg class contained in (smaller than) the preferred classes of all
128 the pseudo regs that are tied in given quantity.
129 This is the preferred class for allocating that quantity. */
131 enum reg_class min_class;
133 /* Register class within which we allocate given qty if we can't get
134 its preferred class. */
136 enum reg_class alternate_class;
138 /* This holds the mode of the registers that are tied to given qty,
139 or VOIDmode if registers with differing modes are tied together. */
141 enum machine_mode mode;
143 /* the hard reg number chosen for given quantity,
144 or -1 if none was found. */
146 short phys_reg;
148 /* Nonzero if this quantity has been used in a SUBREG in some
149 way that is illegal. */
151 char changes_mode;
155 static struct qty *qty;
157 /* These fields are kept separately to speedup their clearing. */
159 /* We maintain two hard register sets that indicate suggested hard registers
160 for each quantity. The first, phys_copy_sugg, contains hard registers
161 that are tied to the quantity by a simple copy. The second contains all
162 hard registers that are tied to the quantity via an arithmetic operation.
164 The former register set is given priority for allocation. This tends to
165 eliminate copy insns. */
167 /* Element Q is a set of hard registers that are suggested for quantity Q by
168 copy insns. */
170 static HARD_REG_SET *qty_phys_copy_sugg;
172 /* Element Q is a set of hard registers that are suggested for quantity Q by
173 arithmetic insns. */
175 static HARD_REG_SET *qty_phys_sugg;
177 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
179 static short *qty_phys_num_copy_sugg;
181 /* Element Q is the number of suggested registers in qty_phys_sugg. */
183 static short *qty_phys_num_sugg;
185 /* If (REG N) has been assigned a quantity number, is a register number
186 of another register assigned the same quantity number, or -1 for the
187 end of the chain. qty->first_reg point to the head of this chain. */
189 static int *reg_next_in_qty;
191 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
192 if it is >= 0,
193 of -1 if this register cannot be allocated by local-alloc,
194 or -2 if not known yet.
196 Note that if we see a use or death of pseudo register N with
197 reg_qty[N] == -2, register N must be local to the current block. If
198 it were used in more than one block, we would have reg_qty[N] == -1.
199 This relies on the fact that if reg_basic_block[N] is >= 0, register N
200 will not appear in any other block. We save a considerable number of
201 tests by exploiting this.
203 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
204 be referenced. */
206 static int *reg_qty;
208 /* The offset (in words) of register N within its quantity.
209 This can be nonzero if register N is SImode, and has been tied
210 to a subreg of a DImode register. */
212 static char *reg_offset;
214 /* Vector of substitutions of register numbers,
215 used to map pseudo regs into hardware regs.
216 This is set up as a result of register allocation.
217 Element N is the hard reg assigned to pseudo reg N,
218 or is -1 if no hard reg was assigned.
219 If N is a hard reg number, element N is N. */
221 short *reg_renumber;
223 /* Set of hard registers live at the current point in the scan
224 of the instructions in a basic block. */
226 static HARD_REG_SET regs_live;
228 /* Each set of hard registers indicates registers live at a particular
229 point in the basic block. For N even, regs_live_at[N] says which
230 hard registers are needed *after* insn N/2 (i.e., they may not
231 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
233 If an object is to conflict with the inputs of insn J but not the
234 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
235 if it is to conflict with the outputs of insn J but not the inputs of
236 insn J + 1, it is said to die at index J*2 + 1. */
238 static HARD_REG_SET *regs_live_at;
240 /* Communicate local vars `insn_number' and `insn'
241 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
242 static int this_insn_number;
243 static rtx this_insn;
245 struct equivalence
247 /* Set when an attempt should be made to replace a register
248 with the associated src_p entry. */
250 char replace;
252 /* Set when a REG_EQUIV note is found or created. Use to
253 keep track of what memory accesses might be created later,
254 e.g. by reload. */
256 rtx replacement;
258 rtx *src_p;
260 /* Loop depth is used to recognize equivalences which appear
261 to be present within the same loop (or in an inner loop). */
263 int loop_depth;
265 /* The list of each instruction which initializes this register. */
267 rtx init_insns;
270 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
271 structure for that register. */
273 static struct equivalence *reg_equiv;
275 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
276 static int recorded_label_ref;
278 static void alloc_qty PARAMS ((int, enum machine_mode, int, int));
279 static void validate_equiv_mem_from_store PARAMS ((rtx, rtx, void *));
280 static int validate_equiv_mem PARAMS ((rtx, rtx, rtx));
281 static int equiv_init_varies_p PARAMS ((rtx));
282 static int equiv_init_movable_p PARAMS ((rtx, int));
283 static int contains_replace_regs PARAMS ((rtx));
284 static int memref_referenced_p PARAMS ((rtx, rtx));
285 static int memref_used_between_p PARAMS ((rtx, rtx, rtx));
286 static void update_equiv_regs PARAMS ((void));
287 static void no_equiv PARAMS ((rtx, rtx, void *));
288 static void block_alloc PARAMS ((int));
289 static int qty_sugg_compare PARAMS ((int, int));
290 static int qty_sugg_compare_1 PARAMS ((const PTR, const PTR));
291 static int qty_compare PARAMS ((int, int));
292 static int qty_compare_1 PARAMS ((const PTR, const PTR));
293 static int combine_regs PARAMS ((rtx, rtx, int, int, rtx, int));
294 static int reg_meets_class_p PARAMS ((int, enum reg_class));
295 static void update_qty_class PARAMS ((int, int));
296 static void reg_is_set PARAMS ((rtx, rtx, void *));
297 static void reg_is_born PARAMS ((rtx, int));
298 static void wipe_dead_reg PARAMS ((rtx, int));
299 static int find_free_reg PARAMS ((enum reg_class, enum machine_mode,
300 int, int, int, int, int));
301 static void mark_life PARAMS ((int, enum machine_mode, int));
302 static void post_mark_life PARAMS ((int, enum machine_mode, int, int, int));
303 static int no_conflict_p PARAMS ((rtx, rtx, rtx));
304 static int requires_inout PARAMS ((const char *));
306 /* Allocate a new quantity (new within current basic block)
307 for register number REGNO which is born at index BIRTH
308 within the block. MODE and SIZE are info on reg REGNO. */
310 static void
311 alloc_qty (regno, mode, size, birth)
312 int regno;
313 enum machine_mode mode;
314 int size, birth;
316 int qtyno = next_qty++;
318 reg_qty[regno] = qtyno;
319 reg_offset[regno] = 0;
320 reg_next_in_qty[regno] = -1;
322 qty[qtyno].first_reg = regno;
323 qty[qtyno].size = size;
324 qty[qtyno].mode = mode;
325 qty[qtyno].birth = birth;
326 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
327 qty[qtyno].min_class = reg_preferred_class (regno);
328 qty[qtyno].alternate_class = reg_alternate_class (regno);
329 qty[qtyno].n_refs = REG_N_REFS (regno);
330 qty[qtyno].freq = REG_FREQ (regno);
331 qty[qtyno].changes_mode = REG_CHANGES_MODE (regno);
334 /* Main entry point of this file. */
337 local_alloc ()
339 int b, i;
340 int max_qty;
342 /* We need to keep track of whether or not we recorded a LABEL_REF so
343 that we know if the jump optimizer needs to be rerun. */
344 recorded_label_ref = 0;
346 /* Leaf functions and non-leaf functions have different needs.
347 If defined, let the machine say what kind of ordering we
348 should use. */
349 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
350 ORDER_REGS_FOR_LOCAL_ALLOC;
351 #endif
353 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
354 registers. */
355 update_equiv_regs ();
357 /* This sets the maximum number of quantities we can have. Quantity
358 numbers start at zero and we can have one for each pseudo. */
359 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
361 /* Allocate vectors of temporary data.
362 See the declarations of these variables, above,
363 for what they mean. */
365 qty = (struct qty *) xmalloc (max_qty * sizeof (struct qty));
366 qty_phys_copy_sugg
367 = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
368 qty_phys_num_copy_sugg = (short *) xmalloc (max_qty * sizeof (short));
369 qty_phys_sugg = (HARD_REG_SET *) xmalloc (max_qty * sizeof (HARD_REG_SET));
370 qty_phys_num_sugg = (short *) xmalloc (max_qty * sizeof (short));
372 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
373 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
374 reg_next_in_qty = (int *) xmalloc (max_regno * sizeof (int));
376 /* Determine which pseudo-registers can be allocated by local-alloc.
377 In general, these are the registers used only in a single block and
378 which only die once.
380 We need not be concerned with which block actually uses the register
381 since we will never see it outside that block. */
383 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
385 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
386 reg_qty[i] = -2;
387 else
388 reg_qty[i] = -1;
391 /* Force loop below to initialize entire quantity array. */
392 next_qty = max_qty;
394 /* Allocate each block's local registers, block by block. */
396 for (b = 0; b < n_basic_blocks; b++)
398 /* NEXT_QTY indicates which elements of the `qty_...'
399 vectors might need to be initialized because they were used
400 for the previous block; it is set to the entire array before
401 block 0. Initialize those, with explicit loop if there are few,
402 else with bzero and bcopy. Do not initialize vectors that are
403 explicit set by `alloc_qty'. */
405 if (next_qty < 6)
407 for (i = 0; i < next_qty; i++)
409 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
410 qty_phys_num_copy_sugg[i] = 0;
411 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
412 qty_phys_num_sugg[i] = 0;
415 else
417 #define CLEAR(vector) \
418 memset ((char *) (vector), 0, (sizeof (*(vector))) * next_qty);
420 CLEAR (qty_phys_copy_sugg);
421 CLEAR (qty_phys_num_copy_sugg);
422 CLEAR (qty_phys_sugg);
423 CLEAR (qty_phys_num_sugg);
426 next_qty = 0;
428 block_alloc (b);
431 free (qty);
432 free (qty_phys_copy_sugg);
433 free (qty_phys_num_copy_sugg);
434 free (qty_phys_sugg);
435 free (qty_phys_num_sugg);
437 free (reg_qty);
438 free (reg_offset);
439 free (reg_next_in_qty);
441 return recorded_label_ref;
444 /* Used for communication between the following two functions: contains
445 a MEM that we wish to ensure remains unchanged. */
446 static rtx equiv_mem;
448 /* Set nonzero if EQUIV_MEM is modified. */
449 static int equiv_mem_modified;
451 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
452 Called via note_stores. */
454 static void
455 validate_equiv_mem_from_store (dest, set, data)
456 rtx dest;
457 rtx set ATTRIBUTE_UNUSED;
458 void *data ATTRIBUTE_UNUSED;
460 if ((GET_CODE (dest) == REG
461 && reg_overlap_mentioned_p (dest, equiv_mem))
462 || (GET_CODE (dest) == MEM
463 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
464 equiv_mem_modified = 1;
467 /* Verify that no store between START and the death of REG invalidates
468 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
469 by storing into an overlapping memory location, or with a non-const
470 CALL_INSN.
472 Return 1 if MEMREF remains valid. */
474 static int
475 validate_equiv_mem (start, reg, memref)
476 rtx start;
477 rtx reg;
478 rtx memref;
480 rtx insn;
481 rtx note;
483 equiv_mem = memref;
484 equiv_mem_modified = 0;
486 /* If the memory reference has side effects or is volatile, it isn't a
487 valid equivalence. */
488 if (side_effects_p (memref))
489 return 0;
491 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
493 if (! INSN_P (insn))
494 continue;
496 if (find_reg_note (insn, REG_DEAD, reg))
497 return 1;
499 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
500 && ! CONST_OR_PURE_CALL_P (insn))
501 return 0;
503 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
505 /* If a register mentioned in MEMREF is modified via an
506 auto-increment, we lose the equivalence. Do the same if one
507 dies; although we could extend the life, it doesn't seem worth
508 the trouble. */
510 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
511 if ((REG_NOTE_KIND (note) == REG_INC
512 || REG_NOTE_KIND (note) == REG_DEAD)
513 && GET_CODE (XEXP (note, 0)) == REG
514 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
515 return 0;
518 return 0;
521 /* Returns zero if X is known to be invariant. */
523 static int
524 equiv_init_varies_p (x)
525 rtx x;
527 RTX_CODE code = GET_CODE (x);
528 int i;
529 const char *fmt;
531 switch (code)
533 case MEM:
534 return ! RTX_UNCHANGING_P (x) || equiv_init_varies_p (XEXP (x, 0));
536 case QUEUED:
537 return 1;
539 case CONST:
540 case CONST_INT:
541 case CONST_DOUBLE:
542 case CONST_VECTOR:
543 case SYMBOL_REF:
544 case LABEL_REF:
545 return 0;
547 case REG:
548 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
550 case ASM_OPERANDS:
551 if (MEM_VOLATILE_P (x))
552 return 1;
554 /* FALLTHROUGH */
556 default:
557 break;
560 fmt = GET_RTX_FORMAT (code);
561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
562 if (fmt[i] == 'e')
564 if (equiv_init_varies_p (XEXP (x, i)))
565 return 1;
567 else if (fmt[i] == 'E')
569 int j;
570 for (j = 0; j < XVECLEN (x, i); j++)
571 if (equiv_init_varies_p (XVECEXP (x, i, j)))
572 return 1;
575 return 0;
578 /* Returns non-zero if X (used to initialize register REGNO) is movable.
579 X is only movable if the registers it uses have equivalent initializations
580 which appear to be within the same loop (or in an inner loop) and movable
581 or if they are not candidates for local_alloc and don't vary. */
583 static int
584 equiv_init_movable_p (x, regno)
585 rtx x;
586 int regno;
588 int i, j;
589 const char *fmt;
590 enum rtx_code code = GET_CODE (x);
592 switch (code)
594 case SET:
595 return equiv_init_movable_p (SET_SRC (x), regno);
597 case CC0:
598 case CLOBBER:
599 return 0;
601 case PRE_INC:
602 case PRE_DEC:
603 case POST_INC:
604 case POST_DEC:
605 case PRE_MODIFY:
606 case POST_MODIFY:
607 return 0;
609 case REG:
610 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
611 && reg_equiv[REGNO (x)].replace)
612 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
614 case UNSPEC_VOLATILE:
615 return 0;
617 case ASM_OPERANDS:
618 if (MEM_VOLATILE_P (x))
619 return 0;
621 /* FALLTHROUGH */
623 default:
624 break;
627 fmt = GET_RTX_FORMAT (code);
628 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
629 switch (fmt[i])
631 case 'e':
632 if (! equiv_init_movable_p (XEXP (x, i), regno))
633 return 0;
634 break;
635 case 'E':
636 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
637 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
638 return 0;
639 break;
642 return 1;
645 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
647 static int
648 contains_replace_regs (x)
649 rtx x;
651 int i, j;
652 const char *fmt;
653 enum rtx_code code = GET_CODE (x);
655 switch (code)
657 case CONST_INT:
658 case CONST:
659 case LABEL_REF:
660 case SYMBOL_REF:
661 case CONST_DOUBLE:
662 case CONST_VECTOR:
663 case PC:
664 case CC0:
665 case HIGH:
666 return 0;
668 case REG:
669 return reg_equiv[REGNO (x)].replace;
671 default:
672 break;
675 fmt = GET_RTX_FORMAT (code);
676 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
677 switch (fmt[i])
679 case 'e':
680 if (contains_replace_regs (XEXP (x, i)))
681 return 1;
682 break;
683 case 'E':
684 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
685 if (contains_replace_regs (XVECEXP (x, i, j)))
686 return 1;
687 break;
690 return 0;
693 /* TRUE if X references a memory location that would be affected by a store
694 to MEMREF. */
696 static int
697 memref_referenced_p (memref, x)
698 rtx x;
699 rtx memref;
701 int i, j;
702 const char *fmt;
703 enum rtx_code code = GET_CODE (x);
705 switch (code)
707 case CONST_INT:
708 case CONST:
709 case LABEL_REF:
710 case SYMBOL_REF:
711 case CONST_DOUBLE:
712 case CONST_VECTOR:
713 case PC:
714 case CC0:
715 case HIGH:
716 case LO_SUM:
717 return 0;
719 case REG:
720 return (reg_equiv[REGNO (x)].replacement
721 && memref_referenced_p (memref,
722 reg_equiv[REGNO (x)].replacement));
724 case MEM:
725 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
726 return 1;
727 break;
729 case SET:
730 /* If we are setting a MEM, it doesn't count (its address does), but any
731 other SET_DEST that has a MEM in it is referencing the MEM. */
732 if (GET_CODE (SET_DEST (x)) == MEM)
734 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
735 return 1;
737 else if (memref_referenced_p (memref, SET_DEST (x)))
738 return 1;
740 return memref_referenced_p (memref, SET_SRC (x));
742 default:
743 break;
746 fmt = GET_RTX_FORMAT (code);
747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
748 switch (fmt[i])
750 case 'e':
751 if (memref_referenced_p (memref, XEXP (x, i)))
752 return 1;
753 break;
754 case 'E':
755 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
756 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
757 return 1;
758 break;
761 return 0;
764 /* TRUE if some insn in the range (START, END] references a memory location
765 that would be affected by a store to MEMREF. */
767 static int
768 memref_used_between_p (memref, start, end)
769 rtx memref;
770 rtx start;
771 rtx end;
773 rtx insn;
775 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
776 insn = NEXT_INSN (insn))
777 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
778 return 1;
780 return 0;
783 /* Return nonzero if the rtx X is invariant over the current function. */
784 /* ??? Actually, the places this is used in reload expect exactly what
785 is tested here, and not everything that is function invariant. In
786 particular, the frame pointer and arg pointer are special cased;
787 pic_offset_table_rtx is not, and this will cause aborts when we
788 go to spill these things to memory. */
791 function_invariant_p (x)
792 rtx x;
794 if (CONSTANT_P (x))
795 return 1;
796 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
797 return 1;
798 if (GET_CODE (x) == PLUS
799 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
800 && CONSTANT_P (XEXP (x, 1)))
801 return 1;
802 return 0;
805 /* Find registers that are equivalent to a single value throughout the
806 compilation (either because they can be referenced in memory or are set once
807 from a single constant). Lower their priority for a register.
809 If such a register is only referenced once, try substituting its value
810 into the using insn. If it succeeds, we can eliminate the register
811 completely. */
813 static void
814 update_equiv_regs ()
816 rtx insn;
817 int block;
818 int loop_depth;
819 regset_head cleared_regs;
820 int clear_regnos = 0;
822 reg_equiv = (struct equivalence *) xcalloc (max_regno, sizeof *reg_equiv);
823 INIT_REG_SET (&cleared_regs);
825 init_alias_analysis ();
827 /* Scan the insns and find which registers have equivalences. Do this
828 in a separate scan of the insns because (due to -fcse-follow-jumps)
829 a register can be set below its use. */
830 for (block = 0; block < n_basic_blocks; block++)
832 basic_block bb = BASIC_BLOCK (block);
833 loop_depth = bb->loop_depth;
835 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = NEXT_INSN (insn))
837 rtx note;
838 rtx set;
839 rtx dest, src;
840 int regno;
842 if (! INSN_P (insn))
843 continue;
845 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
846 if (REG_NOTE_KIND (note) == REG_INC)
847 no_equiv (XEXP (note, 0), note, NULL);
849 set = single_set (insn);
851 /* If this insn contains more (or less) than a single SET,
852 only mark all destinations as having no known equivalence. */
853 if (set == 0)
855 note_stores (PATTERN (insn), no_equiv, NULL);
856 continue;
858 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
860 int i;
862 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
864 rtx part = XVECEXP (PATTERN (insn), 0, i);
865 if (part != set)
866 note_stores (part, no_equiv, NULL);
870 dest = SET_DEST (set);
871 src = SET_SRC (set);
873 /* If this sets a MEM to the contents of a REG that is only used
874 in a single basic block, see if the register is always equivalent
875 to that memory location and if moving the store from INSN to the
876 insn that set REG is safe. If so, put a REG_EQUIV note on the
877 initializing insn.
879 Don't add a REG_EQUIV note if the insn already has one. The existing
880 REG_EQUIV is likely more useful than the one we are adding.
882 If one of the regs in the address has reg_equiv[REGNO].replace set,
883 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
884 optimization may move the set of this register immediately before
885 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
886 the mention in the REG_EQUIV note would be to an uninitialized
887 pseudo. */
888 /* ????? This test isn't good enough; we might see a MEM with a use of
889 a pseudo register before we see its setting insn that will cause
890 reg_equiv[].replace for that pseudo to be set.
891 Equivalences to MEMs should be made in another pass, after the
892 reg_equiv[].replace information has been gathered. */
894 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
895 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
896 && REG_BASIC_BLOCK (regno) >= 0
897 && REG_N_SETS (regno) == 1
898 && reg_equiv[regno].init_insns != 0
899 && reg_equiv[regno].init_insns != const0_rtx
900 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
901 REG_EQUIV, NULL_RTX)
902 && ! contains_replace_regs (XEXP (dest, 0)))
904 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
905 if (validate_equiv_mem (init_insn, src, dest)
906 && ! memref_used_between_p (dest, init_insn, insn))
907 REG_NOTES (init_insn)
908 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
911 /* We only handle the case of a pseudo register being set
912 once, or always to the same value. */
913 /* ??? The mn10200 port breaks if we add equivalences for
914 values that need an ADDRESS_REGS register and set them equivalent
915 to a MEM of a pseudo. The actual problem is in the over-conservative
916 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
917 calculate_needs, but we traditionally work around this problem
918 here by rejecting equivalences when the destination is in a register
919 that's likely spilled. This is fragile, of course, since the
920 preferred class of a pseudo depends on all instructions that set
921 or use it. */
923 if (GET_CODE (dest) != REG
924 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
925 || reg_equiv[regno].init_insns == const0_rtx
926 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
927 && GET_CODE (src) == MEM))
929 /* This might be seting a SUBREG of a pseudo, a pseudo that is
930 also set somewhere else to a constant. */
931 note_stores (set, no_equiv, NULL);
932 continue;
935 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
937 /* cse sometimes generates function invariants, but doesn't put a
938 REG_EQUAL note on the insn. Since this note would be redundant,
939 there's no point creating it earlier than here. */
940 if (! note && ! rtx_varies_p (src, 0))
941 note = set_unique_reg_note (insn, REG_EQUAL, src);
943 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
944 since it represents a function call */
945 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
946 note = NULL_RTX;
948 if (REG_N_SETS (regno) != 1
949 && (! note
950 || rtx_varies_p (XEXP (note, 0), 0)
951 || (reg_equiv[regno].replacement
952 && ! rtx_equal_p (XEXP (note, 0),
953 reg_equiv[regno].replacement))))
955 no_equiv (dest, set, NULL);
956 continue;
958 /* Record this insn as initializing this register. */
959 reg_equiv[regno].init_insns
960 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
962 /* If this register is known to be equal to a constant, record that
963 it is always equivalent to the constant. */
964 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
965 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
967 /* If this insn introduces a "constant" register, decrease the priority
968 of that register. Record this insn if the register is only used once
969 more and the equivalence value is the same as our source.
971 The latter condition is checked for two reasons: First, it is an
972 indication that it may be more efficient to actually emit the insn
973 as written (if no registers are available, reload will substitute
974 the equivalence). Secondly, it avoids problems with any registers
975 dying in this insn whose death notes would be missed.
977 If we don't have a REG_EQUIV note, see if this insn is loading
978 a register used only in one basic block from a MEM. If so, and the
979 MEM remains unchanged for the life of the register, add a REG_EQUIV
980 note. */
982 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
984 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
985 && GET_CODE (SET_SRC (set)) == MEM
986 && validate_equiv_mem (insn, dest, SET_SRC (set)))
987 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
988 REG_NOTES (insn));
990 if (note)
992 int regno = REGNO (dest);
994 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
995 We might end up substituting the LABEL_REF for uses of the
996 pseudo here or later. That kind of transformation may turn an
997 indirect jump into a direct jump, in which case we must rerun the
998 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
999 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
1000 || (GET_CODE (XEXP (note, 0)) == CONST
1001 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
1002 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
1003 == LABEL_REF)))
1004 recorded_label_ref = 1;
1006 reg_equiv[regno].replacement = XEXP (note, 0);
1007 reg_equiv[regno].src_p = &SET_SRC (set);
1008 reg_equiv[regno].loop_depth = loop_depth;
1010 /* Don't mess with things live during setjmp. */
1011 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
1013 /* Note that the statement below does not affect the priority
1014 in local-alloc! */
1015 REG_LIVE_LENGTH (regno) *= 2;
1018 /* If the register is referenced exactly twice, meaning it is
1019 set once and used once, indicate that the reference may be
1020 replaced by the equivalence we computed above. Do this
1021 even if the register is only used in one block so that
1022 dependencies can be handled where the last register is
1023 used in a different block (i.e. HIGH / LO_SUM sequences)
1024 and to reduce the number of registers alive across
1025 calls. */
1027 if (REG_N_REFS (regno) == 2
1028 && (rtx_equal_p (XEXP (note, 0), src)
1029 || ! equiv_init_varies_p (src))
1030 && GET_CODE (insn) == INSN
1031 && equiv_init_movable_p (PATTERN (insn), regno))
1032 reg_equiv[regno].replace = 1;
1038 /* Now scan all regs killed in an insn to see if any of them are
1039 registers only used that once. If so, see if we can replace the
1040 reference with the equivalent from. If we can, delete the
1041 initializing reference and this register will go away. If we
1042 can't replace the reference, and the initialzing reference is
1043 within the same loop (or in an inner loop), then move the register
1044 initialization just before the use, so that they are in the same
1045 basic block. */
1046 for (block = n_basic_blocks - 1; block >= 0; block--)
1048 basic_block bb = BASIC_BLOCK (block);
1050 loop_depth = bb->loop_depth;
1051 for (insn = bb->end; insn != PREV_INSN (bb->head); insn = PREV_INSN (insn))
1053 rtx link;
1055 if (! INSN_P (insn))
1056 continue;
1058 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1060 if (REG_NOTE_KIND (link) == REG_DEAD
1061 /* Make sure this insn still refers to the register. */
1062 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1064 int regno = REGNO (XEXP (link, 0));
1065 rtx equiv_insn;
1067 if (! reg_equiv[regno].replace
1068 || reg_equiv[regno].loop_depth < loop_depth)
1069 continue;
1071 /* reg_equiv[REGNO].replace gets set only when
1072 REG_N_REFS[REGNO] is 2, i.e. the register is set
1073 once and used once. (If it were only set, but not used,
1074 flow would have deleted the setting insns.) Hence
1075 there can only be one insn in reg_equiv[REGNO].init_insns. */
1076 if (reg_equiv[regno].init_insns == NULL_RTX
1077 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1078 abort ();
1079 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1081 /* We may not move instructions that can throw, since
1082 that changes basic block boundaries and we are not
1083 prepared to adjust the CFG to match. */
1084 if (can_throw_internal (equiv_insn))
1085 continue;
1087 if (asm_noperands (PATTERN (equiv_insn)) < 0
1088 && validate_replace_rtx (regno_reg_rtx[regno],
1089 *(reg_equiv[regno].src_p), insn))
1091 rtx equiv_link;
1092 rtx last_link;
1093 rtx note;
1095 /* Find the last note. */
1096 for (last_link = link; XEXP (last_link, 1);
1097 last_link = XEXP (last_link, 1))
1100 /* Append the REG_DEAD notes from equiv_insn. */
1101 equiv_link = REG_NOTES (equiv_insn);
1102 while (equiv_link)
1104 note = equiv_link;
1105 equiv_link = XEXP (equiv_link, 1);
1106 if (REG_NOTE_KIND (note) == REG_DEAD)
1108 remove_note (equiv_insn, note);
1109 XEXP (last_link, 1) = note;
1110 XEXP (note, 1) = NULL_RTX;
1111 last_link = note;
1115 remove_death (regno, insn);
1116 REG_N_REFS (regno) = 0;
1117 REG_FREQ (regno) = 0;
1118 delete_insn (equiv_insn);
1120 reg_equiv[regno].init_insns
1121 = XEXP (reg_equiv[regno].init_insns, 1);
1123 /* Move the initialization of the register to just before
1124 INSN. Update the flow information. */
1125 else if (PREV_INSN (insn) != equiv_insn)
1127 rtx new_insn;
1129 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1130 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1131 REG_NOTES (equiv_insn) = 0;
1133 /* Make sure this insn is recognized before reload begins,
1134 otherwise eliminate_regs_in_insn will abort. */
1135 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1137 delete_insn (equiv_insn);
1139 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1141 REG_BASIC_BLOCK (regno) = block >= 0 ? block : 0;
1142 REG_N_CALLS_CROSSED (regno) = 0;
1143 REG_LIVE_LENGTH (regno) = 2;
1145 if (block >= 0 && insn == BLOCK_HEAD (block))
1146 BLOCK_HEAD (block) = PREV_INSN (insn);
1148 /* Remember to clear REGNO from all basic block's live
1149 info. */
1150 SET_REGNO_REG_SET (&cleared_regs, regno);
1151 clear_regnos++;
1158 /* Clear all dead REGNOs from all basic block's live info. */
1159 if (clear_regnos)
1161 int j, l;
1162 if (clear_regnos > 8)
1164 for (l = 0; l < n_basic_blocks; l++)
1166 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
1167 &cleared_regs);
1168 AND_COMPL_REG_SET (BASIC_BLOCK (l)->global_live_at_end,
1169 &cleared_regs);
1172 else
1173 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1175 for (l = 0; l < n_basic_blocks; l++)
1177 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start, j);
1178 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_end, j);
1183 /* Clean up. */
1184 end_alias_analysis ();
1185 CLEAR_REG_SET (&cleared_regs);
1186 free (reg_equiv);
1189 /* Mark REG as having no known equivalence.
1190 Some instructions might have been proceessed before and furnished
1191 with REG_EQUIV notes for this register; these notes will have to be
1192 removed.
1193 STORE is the piece of RTL that does the non-constant / conflicting
1194 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1195 but needs to be there because this function is called from note_stores. */
1196 static void
1197 no_equiv (reg, store, data)
1198 rtx reg, store ATTRIBUTE_UNUSED;
1199 void *data ATTRIBUTE_UNUSED;
1201 int regno;
1202 rtx list;
1204 if (GET_CODE (reg) != REG)
1205 return;
1206 regno = REGNO (reg);
1207 list = reg_equiv[regno].init_insns;
1208 if (list == const0_rtx)
1209 return;
1210 for (; list; list = XEXP (list, 1))
1212 rtx insn = XEXP (list, 0);
1213 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1215 reg_equiv[regno].init_insns = const0_rtx;
1216 reg_equiv[regno].replacement = NULL_RTX;
1219 /* Allocate hard regs to the pseudo regs used only within block number B.
1220 Only the pseudos that die but once can be handled. */
1222 static void
1223 block_alloc (b)
1224 int b;
1226 int i, q;
1227 rtx insn;
1228 rtx note, hard_reg;
1229 int insn_number = 0;
1230 int insn_count = 0;
1231 int max_uid = get_max_uid ();
1232 int *qty_order;
1233 int no_conflict_combined_regno = -1;
1235 /* Count the instructions in the basic block. */
1237 insn = BLOCK_END (b);
1238 while (1)
1240 if (GET_CODE (insn) != NOTE)
1241 if (++insn_count > max_uid)
1242 abort ();
1243 if (insn == BLOCK_HEAD (b))
1244 break;
1245 insn = PREV_INSN (insn);
1248 /* +2 to leave room for a post_mark_life at the last insn and for
1249 the birth of a CLOBBER in the first insn. */
1250 regs_live_at = (HARD_REG_SET *) xcalloc ((2 * insn_count + 2),
1251 sizeof (HARD_REG_SET));
1253 /* Initialize table of hardware registers currently live. */
1255 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1257 /* This loop scans the instructions of the basic block
1258 and assigns quantities to registers.
1259 It computes which registers to tie. */
1261 insn = BLOCK_HEAD (b);
1262 while (1)
1264 if (GET_CODE (insn) != NOTE)
1265 insn_number++;
1267 if (INSN_P (insn))
1269 rtx link, set;
1270 int win = 0;
1271 rtx r0, r1 = NULL_RTX;
1272 int combined_regno = -1;
1273 int i;
1275 this_insn_number = insn_number;
1276 this_insn = insn;
1278 extract_insn (insn);
1279 which_alternative = -1;
1281 /* Is this insn suitable for tying two registers?
1282 If so, try doing that.
1283 Suitable insns are those with at least two operands and where
1284 operand 0 is an output that is a register that is not
1285 earlyclobber.
1287 We can tie operand 0 with some operand that dies in this insn.
1288 First look for operands that are required to be in the same
1289 register as operand 0. If we find such, only try tying that
1290 operand or one that can be put into that operand if the
1291 operation is commutative. If we don't find an operand
1292 that is required to be in the same register as operand 0,
1293 we can tie with any operand.
1295 Subregs in place of regs are also ok.
1297 If tying is done, WIN is set nonzero. */
1299 if (optimize
1300 && recog_data.n_operands > 1
1301 && recog_data.constraints[0][0] == '='
1302 && recog_data.constraints[0][1] != '&')
1304 /* If non-negative, is an operand that must match operand 0. */
1305 int must_match_0 = -1;
1306 /* Counts number of alternatives that require a match with
1307 operand 0. */
1308 int n_matching_alts = 0;
1310 for (i = 1; i < recog_data.n_operands; i++)
1312 const char *p = recog_data.constraints[i];
1313 int this_match = requires_inout (p);
1315 n_matching_alts += this_match;
1316 if (this_match == recog_data.n_alternatives)
1317 must_match_0 = i;
1320 r0 = recog_data.operand[0];
1321 for (i = 1; i < recog_data.n_operands; i++)
1323 /* Skip this operand if we found an operand that
1324 must match operand 0 and this operand isn't it
1325 and can't be made to be it by commutativity. */
1327 if (must_match_0 >= 0 && i != must_match_0
1328 && ! (i == must_match_0 + 1
1329 && recog_data.constraints[i-1][0] == '%')
1330 && ! (i == must_match_0 - 1
1331 && recog_data.constraints[i][0] == '%'))
1332 continue;
1334 /* Likewise if each alternative has some operand that
1335 must match operand zero. In that case, skip any
1336 operand that doesn't list operand 0 since we know that
1337 the operand always conflicts with operand 0. We
1338 ignore commutatity in this case to keep things simple. */
1339 if (n_matching_alts == recog_data.n_alternatives
1340 && 0 == requires_inout (recog_data.constraints[i]))
1341 continue;
1343 r1 = recog_data.operand[i];
1345 /* If the operand is an address, find a register in it.
1346 There may be more than one register, but we only try one
1347 of them. */
1348 if (recog_data.constraints[i][0] == 'p')
1349 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1350 r1 = XEXP (r1, 0);
1352 /* Avoid making a call-saved register unnecessarily
1353 clobbered. */
1354 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1355 if (hard_reg != NULL_RTX)
1357 if (GET_CODE (hard_reg) == REG
1358 && IN_RANGE (REGNO (hard_reg),
1359 0, FIRST_PSEUDO_REGISTER - 1)
1360 && ! call_used_regs[REGNO (hard_reg)])
1361 continue;
1364 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1366 /* We have two priorities for hard register preferences.
1367 If we have a move insn or an insn whose first input
1368 can only be in the same register as the output, give
1369 priority to an equivalence found from that insn. */
1370 int may_save_copy
1371 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1373 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1374 win = combine_regs (r1, r0, may_save_copy,
1375 insn_number, insn, 0);
1377 if (win)
1378 break;
1382 /* Recognize an insn sequence with an ultimate result
1383 which can safely overlap one of the inputs.
1384 The sequence begins with a CLOBBER of its result,
1385 and ends with an insn that copies the result to itself
1386 and has a REG_EQUAL note for an equivalent formula.
1387 That note indicates what the inputs are.
1388 The result and the input can overlap if each insn in
1389 the sequence either doesn't mention the input
1390 or has a REG_NO_CONFLICT note to inhibit the conflict.
1392 We do the combining test at the CLOBBER so that the
1393 destination register won't have had a quantity number
1394 assigned, since that would prevent combining. */
1396 if (optimize
1397 && GET_CODE (PATTERN (insn)) == CLOBBER
1398 && (r0 = XEXP (PATTERN (insn), 0),
1399 GET_CODE (r0) == REG)
1400 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1401 && XEXP (link, 0) != 0
1402 && GET_CODE (XEXP (link, 0)) == INSN
1403 && (set = single_set (XEXP (link, 0))) != 0
1404 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1405 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1406 NULL_RTX)) != 0)
1408 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1409 /* Check that we have such a sequence. */
1410 && no_conflict_p (insn, r0, r1))
1411 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1412 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1413 && (r1 = XEXP (XEXP (note, 0), 0),
1414 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1415 && no_conflict_p (insn, r0, r1))
1416 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1418 /* Here we care if the operation to be computed is
1419 commutative. */
1420 else if ((GET_CODE (XEXP (note, 0)) == EQ
1421 || GET_CODE (XEXP (note, 0)) == NE
1422 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1423 && (r1 = XEXP (XEXP (note, 0), 1),
1424 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1425 && no_conflict_p (insn, r0, r1))
1426 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1428 /* If we did combine something, show the register number
1429 in question so that we know to ignore its death. */
1430 if (win)
1431 no_conflict_combined_regno = REGNO (r1);
1434 /* If registers were just tied, set COMBINED_REGNO
1435 to the number of the register used in this insn
1436 that was tied to the register set in this insn.
1437 This register's qty should not be "killed". */
1439 if (win)
1441 while (GET_CODE (r1) == SUBREG)
1442 r1 = SUBREG_REG (r1);
1443 combined_regno = REGNO (r1);
1446 /* Mark the death of everything that dies in this instruction,
1447 except for anything that was just combined. */
1449 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1450 if (REG_NOTE_KIND (link) == REG_DEAD
1451 && GET_CODE (XEXP (link, 0)) == REG
1452 && combined_regno != (int) REGNO (XEXP (link, 0))
1453 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1454 || ! find_reg_note (insn, REG_NO_CONFLICT,
1455 XEXP (link, 0))))
1456 wipe_dead_reg (XEXP (link, 0), 0);
1458 /* Allocate qty numbers for all registers local to this block
1459 that are born (set) in this instruction.
1460 A pseudo that already has a qty is not changed. */
1462 note_stores (PATTERN (insn), reg_is_set, NULL);
1464 /* If anything is set in this insn and then unused, mark it as dying
1465 after this insn, so it will conflict with our outputs. This
1466 can't match with something that combined, and it doesn't matter
1467 if it did. Do this after the calls to reg_is_set since these
1468 die after, not during, the current insn. */
1470 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1471 if (REG_NOTE_KIND (link) == REG_UNUSED
1472 && GET_CODE (XEXP (link, 0)) == REG)
1473 wipe_dead_reg (XEXP (link, 0), 1);
1475 /* If this is an insn that has a REG_RETVAL note pointing at a
1476 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1477 block, so clear any register number that combined within it. */
1478 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1479 && GET_CODE (XEXP (note, 0)) == INSN
1480 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1481 no_conflict_combined_regno = -1;
1484 /* Set the registers live after INSN_NUMBER. Note that we never
1485 record the registers live before the block's first insn, since no
1486 pseudos we care about are live before that insn. */
1488 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1489 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1491 if (insn == BLOCK_END (b))
1492 break;
1494 insn = NEXT_INSN (insn);
1497 /* Now every register that is local to this basic block
1498 should have been given a quantity, or else -1 meaning ignore it.
1499 Every quantity should have a known birth and death.
1501 Order the qtys so we assign them registers in order of the
1502 number of suggested registers they need so we allocate those with
1503 the most restrictive needs first. */
1505 qty_order = (int *) xmalloc (next_qty * sizeof (int));
1506 for (i = 0; i < next_qty; i++)
1507 qty_order[i] = i;
1509 #define EXCHANGE(I1, I2) \
1510 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1512 switch (next_qty)
1514 case 3:
1515 /* Make qty_order[2] be the one to allocate last. */
1516 if (qty_sugg_compare (0, 1) > 0)
1517 EXCHANGE (0, 1);
1518 if (qty_sugg_compare (1, 2) > 0)
1519 EXCHANGE (2, 1);
1521 /* ... Fall through ... */
1522 case 2:
1523 /* Put the best one to allocate in qty_order[0]. */
1524 if (qty_sugg_compare (0, 1) > 0)
1525 EXCHANGE (0, 1);
1527 /* ... Fall through ... */
1529 case 1:
1530 case 0:
1531 /* Nothing to do here. */
1532 break;
1534 default:
1535 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1538 /* Try to put each quantity in a suggested physical register, if it has one.
1539 This may cause registers to be allocated that otherwise wouldn't be, but
1540 this seems acceptable in local allocation (unlike global allocation). */
1541 for (i = 0; i < next_qty; i++)
1543 q = qty_order[i];
1544 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1545 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1546 0, 1, qty[q].birth, qty[q].death);
1547 else
1548 qty[q].phys_reg = -1;
1551 /* Order the qtys so we assign them registers in order of
1552 decreasing length of life. Normally call qsort, but if we
1553 have only a very small number of quantities, sort them ourselves. */
1555 for (i = 0; i < next_qty; i++)
1556 qty_order[i] = i;
1558 #define EXCHANGE(I1, I2) \
1559 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1561 switch (next_qty)
1563 case 3:
1564 /* Make qty_order[2] be the one to allocate last. */
1565 if (qty_compare (0, 1) > 0)
1566 EXCHANGE (0, 1);
1567 if (qty_compare (1, 2) > 0)
1568 EXCHANGE (2, 1);
1570 /* ... Fall through ... */
1571 case 2:
1572 /* Put the best one to allocate in qty_order[0]. */
1573 if (qty_compare (0, 1) > 0)
1574 EXCHANGE (0, 1);
1576 /* ... Fall through ... */
1578 case 1:
1579 case 0:
1580 /* Nothing to do here. */
1581 break;
1583 default:
1584 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1587 /* Now for each qty that is not a hardware register,
1588 look for a hardware register to put it in.
1589 First try the register class that is cheapest for this qty,
1590 if there is more than one class. */
1592 for (i = 0; i < next_qty; i++)
1594 q = qty_order[i];
1595 if (qty[q].phys_reg < 0)
1597 #ifdef INSN_SCHEDULING
1598 /* These values represent the adjusted lifetime of a qty so
1599 that it conflicts with qtys which appear near the start/end
1600 of this qty's lifetime.
1602 The purpose behind extending the lifetime of this qty is to
1603 discourage the register allocator from creating false
1604 dependencies.
1606 The adjustment value is chosen to indicate that this qty
1607 conflicts with all the qtys in the instructions immediately
1608 before and after the lifetime of this qty.
1610 Experiments have shown that higher values tend to hurt
1611 overall code performance.
1613 If allocation using the extended lifetime fails we will try
1614 again with the qty's unadjusted lifetime. */
1615 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1616 int fake_death = MIN (insn_number * 2 + 1,
1617 qty[q].death + 2 - qty[q].death % 2);
1618 #endif
1620 if (N_REG_CLASSES > 1)
1622 #ifdef INSN_SCHEDULING
1623 /* We try to avoid using hard registers allocated to qtys which
1624 are born immediately after this qty or die immediately before
1625 this qty.
1627 This optimization is only appropriate when we will run
1628 a scheduling pass after reload and we are not optimizing
1629 for code size. */
1630 if (flag_schedule_insns_after_reload
1631 && !optimize_size
1632 && !SMALL_REGISTER_CLASSES)
1634 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1635 qty[q].mode, q, 0, 0,
1636 fake_birth, fake_death);
1637 if (qty[q].phys_reg >= 0)
1638 continue;
1640 #endif
1641 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1642 qty[q].mode, q, 0, 0,
1643 qty[q].birth, qty[q].death);
1644 if (qty[q].phys_reg >= 0)
1645 continue;
1648 #ifdef INSN_SCHEDULING
1649 /* Similarly, avoid false dependencies. */
1650 if (flag_schedule_insns_after_reload
1651 && !optimize_size
1652 && !SMALL_REGISTER_CLASSES
1653 && qty[q].alternate_class != NO_REGS)
1654 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1655 qty[q].mode, q, 0, 0,
1656 fake_birth, fake_death);
1657 #endif
1658 if (qty[q].alternate_class != NO_REGS)
1659 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1660 qty[q].mode, q, 0, 0,
1661 qty[q].birth, qty[q].death);
1665 /* Now propagate the register assignments
1666 to the pseudo regs belonging to the qtys. */
1668 for (q = 0; q < next_qty; q++)
1669 if (qty[q].phys_reg >= 0)
1671 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1672 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1675 /* Clean up. */
1676 free (regs_live_at);
1677 free (qty_order);
1680 /* Compare two quantities' priority for getting real registers.
1681 We give shorter-lived quantities higher priority.
1682 Quantities with more references are also preferred, as are quantities that
1683 require multiple registers. This is the identical prioritization as
1684 done by global-alloc.
1686 We used to give preference to registers with *longer* lives, but using
1687 the same algorithm in both local- and global-alloc can speed up execution
1688 of some programs by as much as a factor of three! */
1690 /* Note that the quotient will never be bigger than
1691 the value of floor_log2 times the maximum number of
1692 times a register can occur in one insn (surely less than 100)
1693 weighted by frequency (max REG_FREQ_MAX).
1694 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1695 QTY_CMP_PRI is also used by qty_sugg_compare. */
1697 #define QTY_CMP_PRI(q) \
1698 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1699 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1701 static int
1702 qty_compare (q1, q2)
1703 int q1, q2;
1705 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1708 static int
1709 qty_compare_1 (q1p, q2p)
1710 const PTR q1p;
1711 const PTR q2p;
1713 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1714 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1716 if (tem != 0)
1717 return tem;
1719 /* If qtys are equally good, sort by qty number,
1720 so that the results of qsort leave nothing to chance. */
1721 return q1 - q2;
1724 /* Compare two quantities' priority for getting real registers. This version
1725 is called for quantities that have suggested hard registers. First priority
1726 goes to quantities that have copy preferences, then to those that have
1727 normal preferences. Within those groups, quantities with the lower
1728 number of preferences have the highest priority. Of those, we use the same
1729 algorithm as above. */
1731 #define QTY_CMP_SUGG(q) \
1732 (qty_phys_num_copy_sugg[q] \
1733 ? qty_phys_num_copy_sugg[q] \
1734 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1736 static int
1737 qty_sugg_compare (q1, q2)
1738 int q1, q2;
1740 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1742 if (tem != 0)
1743 return tem;
1745 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1748 static int
1749 qty_sugg_compare_1 (q1p, q2p)
1750 const PTR q1p;
1751 const PTR q2p;
1753 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1754 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1756 if (tem != 0)
1757 return tem;
1759 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1760 if (tem != 0)
1761 return tem;
1763 /* If qtys are equally good, sort by qty number,
1764 so that the results of qsort leave nothing to chance. */
1765 return q1 - q2;
1768 #undef QTY_CMP_SUGG
1769 #undef QTY_CMP_PRI
1771 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1772 Returns 1 if have done so, or 0 if cannot.
1774 Combining registers means marking them as having the same quantity
1775 and adjusting the offsets within the quantity if either of
1776 them is a SUBREG).
1778 We don't actually combine a hard reg with a pseudo; instead
1779 we just record the hard reg as the suggestion for the pseudo's quantity.
1780 If we really combined them, we could lose if the pseudo lives
1781 across an insn that clobbers the hard reg (eg, movstr).
1783 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1784 there is no REG_DEAD note on INSN. This occurs during the processing
1785 of REG_NO_CONFLICT blocks.
1787 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1788 SETREG or if the input and output must share a register.
1789 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1791 There are elaborate checks for the validity of combining. */
1793 static int
1794 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1795 rtx usedreg, setreg;
1796 int may_save_copy;
1797 int insn_number;
1798 rtx insn;
1799 int already_dead;
1801 int ureg, sreg;
1802 int offset = 0;
1803 int usize, ssize;
1804 int sqty;
1806 /* Determine the numbers and sizes of registers being used. If a subreg
1807 is present that does not change the entire register, don't consider
1808 this a copy insn. */
1810 while (GET_CODE (usedreg) == SUBREG)
1812 rtx subreg = SUBREG_REG (usedreg);
1814 if (GET_CODE (subreg) == REG)
1816 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1817 may_save_copy = 0;
1819 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1820 offset += subreg_regno_offset (REGNO (subreg),
1821 GET_MODE (subreg),
1822 SUBREG_BYTE (usedreg),
1823 GET_MODE (usedreg));
1824 else
1825 offset += (SUBREG_BYTE (usedreg)
1826 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1829 usedreg = subreg;
1832 if (GET_CODE (usedreg) != REG)
1833 return 0;
1835 ureg = REGNO (usedreg);
1836 if (ureg < FIRST_PSEUDO_REGISTER)
1837 usize = HARD_REGNO_NREGS (ureg, GET_MODE (usedreg));
1838 else
1839 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1840 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1841 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1843 while (GET_CODE (setreg) == SUBREG)
1845 rtx subreg = SUBREG_REG (setreg);
1847 if (GET_CODE (subreg) == REG)
1849 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1850 may_save_copy = 0;
1852 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1853 offset -= subreg_regno_offset (REGNO (subreg),
1854 GET_MODE (subreg),
1855 SUBREG_BYTE (setreg),
1856 GET_MODE (setreg));
1857 else
1858 offset -= (SUBREG_BYTE (setreg)
1859 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1862 setreg = subreg;
1865 if (GET_CODE (setreg) != REG)
1866 return 0;
1868 sreg = REGNO (setreg);
1869 if (sreg < FIRST_PSEUDO_REGISTER)
1870 ssize = HARD_REGNO_NREGS (sreg, GET_MODE (setreg));
1871 else
1872 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1873 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1874 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1876 /* If UREG is a pseudo-register that hasn't already been assigned a
1877 quantity number, it means that it is not local to this block or dies
1878 more than once. In either event, we can't do anything with it. */
1879 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1880 /* Do not combine registers unless one fits within the other. */
1881 || (offset > 0 && usize + offset > ssize)
1882 || (offset < 0 && usize + offset < ssize)
1883 /* Do not combine with a smaller already-assigned object
1884 if that smaller object is already combined with something bigger. */
1885 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1886 && usize < qty[reg_qty[ureg]].size)
1887 /* Can't combine if SREG is not a register we can allocate. */
1888 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1889 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1890 These have already been taken care of. This probably wouldn't
1891 combine anyway, but don't take any chances. */
1892 || (ureg >= FIRST_PSEUDO_REGISTER
1893 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1894 /* Don't tie something to itself. In most cases it would make no
1895 difference, but it would screw up if the reg being tied to itself
1896 also dies in this insn. */
1897 || ureg == sreg
1898 /* Don't try to connect two different hardware registers. */
1899 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1900 /* Don't connect two different machine modes if they have different
1901 implications as to which registers may be used. */
1902 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1903 return 0;
1905 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1906 qty_phys_sugg for the pseudo instead of tying them.
1908 Return "failure" so that the lifespan of UREG is terminated here;
1909 that way the two lifespans will be disjoint and nothing will prevent
1910 the pseudo reg from being given this hard reg. */
1912 if (ureg < FIRST_PSEUDO_REGISTER)
1914 /* Allocate a quantity number so we have a place to put our
1915 suggestions. */
1916 if (reg_qty[sreg] == -2)
1917 reg_is_born (setreg, 2 * insn_number);
1919 if (reg_qty[sreg] >= 0)
1921 if (may_save_copy
1922 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1924 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1925 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1927 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1929 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1930 qty_phys_num_sugg[reg_qty[sreg]]++;
1933 return 0;
1936 /* Similarly for SREG a hard register and UREG a pseudo register. */
1938 if (sreg < FIRST_PSEUDO_REGISTER)
1940 if (may_save_copy
1941 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1943 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1944 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1946 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1948 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1949 qty_phys_num_sugg[reg_qty[ureg]]++;
1951 return 0;
1954 /* At this point we know that SREG and UREG are both pseudos.
1955 Do nothing if SREG already has a quantity or is a register that we
1956 don't allocate. */
1957 if (reg_qty[sreg] >= -1
1958 /* If we are not going to let any regs live across calls,
1959 don't tie a call-crossing reg to a non-call-crossing reg. */
1960 || (current_function_has_nonlocal_label
1961 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1962 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1963 return 0;
1965 /* We don't already know about SREG, so tie it to UREG
1966 if this is the last use of UREG, provided the classes they want
1967 are compatible. */
1969 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1970 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1972 /* Add SREG to UREG's quantity. */
1973 sqty = reg_qty[ureg];
1974 reg_qty[sreg] = sqty;
1975 reg_offset[sreg] = reg_offset[ureg] + offset;
1976 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1977 qty[sqty].first_reg = sreg;
1979 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1980 update_qty_class (sqty, sreg);
1982 /* Update info about quantity SQTY. */
1983 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1984 qty[sqty].n_refs += REG_N_REFS (sreg);
1985 qty[sqty].freq += REG_FREQ (sreg);
1986 if (usize < ssize)
1988 int i;
1990 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1991 reg_offset[i] -= offset;
1993 qty[sqty].size = ssize;
1994 qty[sqty].mode = GET_MODE (setreg);
1997 else
1998 return 0;
2000 return 1;
2003 /* Return 1 if the preferred class of REG allows it to be tied
2004 to a quantity or register whose class is CLASS.
2005 True if REG's reg class either contains or is contained in CLASS. */
2007 static int
2008 reg_meets_class_p (reg, class)
2009 int reg;
2010 enum reg_class class;
2012 enum reg_class rclass = reg_preferred_class (reg);
2013 return (reg_class_subset_p (rclass, class)
2014 || reg_class_subset_p (class, rclass));
2017 /* Update the class of QTYNO assuming that REG is being tied to it. */
2019 static void
2020 update_qty_class (qtyno, reg)
2021 int qtyno;
2022 int reg;
2024 enum reg_class rclass = reg_preferred_class (reg);
2025 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2026 qty[qtyno].min_class = rclass;
2028 rclass = reg_alternate_class (reg);
2029 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2030 qty[qtyno].alternate_class = rclass;
2032 if (REG_CHANGES_MODE (reg))
2033 qty[qtyno].changes_mode = 1;
2036 /* Handle something which alters the value of an rtx REG.
2038 REG is whatever is set or clobbered. SETTER is the rtx that
2039 is modifying the register.
2041 If it is not really a register, we do nothing.
2042 The file-global variables `this_insn' and `this_insn_number'
2043 carry info from `block_alloc'. */
2045 static void
2046 reg_is_set (reg, setter, data)
2047 rtx reg;
2048 rtx setter;
2049 void *data ATTRIBUTE_UNUSED;
2051 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2052 a hard register. These may actually not exist any more. */
2054 if (GET_CODE (reg) != SUBREG
2055 && GET_CODE (reg) != REG)
2056 return;
2058 /* Mark this register as being born. If it is used in a CLOBBER, mark
2059 it as being born halfway between the previous insn and this insn so that
2060 it conflicts with our inputs but not the outputs of the previous insn. */
2062 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2065 /* Handle beginning of the life of register REG.
2066 BIRTH is the index at which this is happening. */
2068 static void
2069 reg_is_born (reg, birth)
2070 rtx reg;
2071 int birth;
2073 int regno;
2075 if (GET_CODE (reg) == SUBREG)
2077 regno = REGNO (SUBREG_REG (reg));
2078 if (regno < FIRST_PSEUDO_REGISTER)
2079 regno = subreg_hard_regno (reg, 1);
2081 else
2082 regno = REGNO (reg);
2084 if (regno < FIRST_PSEUDO_REGISTER)
2086 mark_life (regno, GET_MODE (reg), 1);
2088 /* If the register was to have been born earlier that the present
2089 insn, mark it as live where it is actually born. */
2090 if (birth < 2 * this_insn_number)
2091 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2093 else
2095 if (reg_qty[regno] == -2)
2096 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2098 /* If this register has a quantity number, show that it isn't dead. */
2099 if (reg_qty[regno] >= 0)
2100 qty[reg_qty[regno]].death = -1;
2104 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2105 REG is an output that is dying (i.e., it is never used), otherwise it
2106 is an input (the normal case).
2107 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2109 static void
2110 wipe_dead_reg (reg, output_p)
2111 rtx reg;
2112 int output_p;
2114 int regno = REGNO (reg);
2116 /* If this insn has multiple results,
2117 and the dead reg is used in one of the results,
2118 extend its life to after this insn,
2119 so it won't get allocated together with any other result of this insn.
2121 It is unsafe to use !single_set here since it will ignore an unused
2122 output. Just because an output is unused does not mean the compiler
2123 can assume the side effect will not occur. Consider if REG appears
2124 in the address of an output and we reload the output. If we allocate
2125 REG to the same hard register as an unused output we could set the hard
2126 register before the output reload insn. */
2127 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2128 && multiple_sets (this_insn))
2130 int i;
2131 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2133 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2134 if (GET_CODE (set) == SET
2135 && GET_CODE (SET_DEST (set)) != REG
2136 && !rtx_equal_p (reg, SET_DEST (set))
2137 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2138 output_p = 1;
2142 /* If this register is used in an auto-increment address, then extend its
2143 life to after this insn, so that it won't get allocated together with
2144 the result of this insn. */
2145 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2146 output_p = 1;
2148 if (regno < FIRST_PSEUDO_REGISTER)
2150 mark_life (regno, GET_MODE (reg), 0);
2152 /* If a hard register is dying as an output, mark it as in use at
2153 the beginning of this insn (the above statement would cause this
2154 not to happen). */
2155 if (output_p)
2156 post_mark_life (regno, GET_MODE (reg), 1,
2157 2 * this_insn_number, 2 * this_insn_number + 1);
2160 else if (reg_qty[regno] >= 0)
2161 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2164 /* Find a block of SIZE words of hard regs in reg_class CLASS
2165 that can hold something of machine-mode MODE
2166 (but actually we test only the first of the block for holding MODE)
2167 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2168 and return the number of the first of them.
2169 Return -1 if such a block cannot be found.
2170 If QTYNO crosses calls, insist on a register preserved by calls,
2171 unless ACCEPT_CALL_CLOBBERED is nonzero.
2173 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2174 register is available. If not, return -1. */
2176 static int
2177 find_free_reg (class, mode, qtyno, accept_call_clobbered, just_try_suggested,
2178 born_index, dead_index)
2179 enum reg_class class;
2180 enum machine_mode mode;
2181 int qtyno;
2182 int accept_call_clobbered;
2183 int just_try_suggested;
2184 int born_index, dead_index;
2186 int i, ins;
2187 #ifdef HARD_REG_SET
2188 /* Declare it register if it's a scalar. */
2189 register
2190 #endif
2191 HARD_REG_SET used, first_used;
2192 #ifdef ELIMINABLE_REGS
2193 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2194 #endif
2196 /* Validate our parameters. */
2197 if (born_index < 0 || born_index > dead_index)
2198 abort ();
2200 /* Don't let a pseudo live in a reg across a function call
2201 if we might get a nonlocal goto. */
2202 if (current_function_has_nonlocal_label
2203 && qty[qtyno].n_calls_crossed > 0)
2204 return -1;
2206 if (accept_call_clobbered)
2207 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2208 else if (qty[qtyno].n_calls_crossed == 0)
2209 COPY_HARD_REG_SET (used, fixed_reg_set);
2210 else
2211 COPY_HARD_REG_SET (used, call_used_reg_set);
2213 if (accept_call_clobbered)
2214 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2216 for (ins = born_index; ins < dead_index; ins++)
2217 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2219 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2221 /* Don't use the frame pointer reg in local-alloc even if
2222 we may omit the frame pointer, because if we do that and then we
2223 need a frame pointer, reload won't know how to move the pseudo
2224 to another hard reg. It can move only regs made by global-alloc.
2226 This is true of any register that can be eliminated. */
2227 #ifdef ELIMINABLE_REGS
2228 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2229 SET_HARD_REG_BIT (used, eliminables[i].from);
2230 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2231 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2232 that it might be eliminated into. */
2233 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2234 #endif
2235 #else
2236 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2237 #endif
2239 #ifdef CLASS_CANNOT_CHANGE_MODE
2240 if (qty[qtyno].changes_mode)
2241 IOR_HARD_REG_SET (used,
2242 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
2243 #endif
2245 /* Normally, the registers that can be used for the first register in
2246 a multi-register quantity are the same as those that can be used for
2247 subsequent registers. However, if just trying suggested registers,
2248 restrict our consideration to them. If there are copy-suggested
2249 register, try them. Otherwise, try the arithmetic-suggested
2250 registers. */
2251 COPY_HARD_REG_SET (first_used, used);
2253 if (just_try_suggested)
2255 if (qty_phys_num_copy_sugg[qtyno] != 0)
2256 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2257 else
2258 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2261 /* If all registers are excluded, we can't do anything. */
2262 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2264 /* If at least one would be suitable, test each hard reg. */
2266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2268 #ifdef REG_ALLOC_ORDER
2269 int regno = reg_alloc_order[i];
2270 #else
2271 int regno = i;
2272 #endif
2273 if (! TEST_HARD_REG_BIT (first_used, regno)
2274 && HARD_REGNO_MODE_OK (regno, mode)
2275 && (qty[qtyno].n_calls_crossed == 0
2276 || accept_call_clobbered
2277 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2279 int j;
2280 int size1 = HARD_REGNO_NREGS (regno, mode);
2281 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2282 if (j == size1)
2284 /* Mark that this register is in use between its birth and death
2285 insns. */
2286 post_mark_life (regno, mode, 1, born_index, dead_index);
2287 return regno;
2289 #ifndef REG_ALLOC_ORDER
2290 /* Skip starting points we know will lose. */
2291 i += j;
2292 #endif
2296 fail:
2297 /* If we are just trying suggested register, we have just tried copy-
2298 suggested registers, and there are arithmetic-suggested registers,
2299 try them. */
2301 /* If it would be profitable to allocate a call-clobbered register
2302 and save and restore it around calls, do that. */
2303 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2304 && qty_phys_num_sugg[qtyno] != 0)
2306 /* Don't try the copy-suggested regs again. */
2307 qty_phys_num_copy_sugg[qtyno] = 0;
2308 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2309 born_index, dead_index);
2312 /* We need not check to see if the current function has nonlocal
2313 labels because we don't put any pseudos that are live over calls in
2314 registers in that case. */
2316 if (! accept_call_clobbered
2317 && flag_caller_saves
2318 && ! just_try_suggested
2319 && qty[qtyno].n_calls_crossed != 0
2320 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2321 qty[qtyno].n_calls_crossed))
2323 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2324 if (i >= 0)
2325 caller_save_needed = 1;
2326 return i;
2328 return -1;
2331 /* Mark that REGNO with machine-mode MODE is live starting from the current
2332 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2333 is zero). */
2335 static void
2336 mark_life (regno, mode, life)
2337 int regno;
2338 enum machine_mode mode;
2339 int life;
2341 int j = HARD_REGNO_NREGS (regno, mode);
2342 if (life)
2343 while (--j >= 0)
2344 SET_HARD_REG_BIT (regs_live, regno + j);
2345 else
2346 while (--j >= 0)
2347 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2350 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2351 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2352 to insn number DEATH (exclusive). */
2354 static void
2355 post_mark_life (regno, mode, life, birth, death)
2356 int regno;
2357 enum machine_mode mode;
2358 int life, birth, death;
2360 int j = HARD_REGNO_NREGS (regno, mode);
2361 #ifdef HARD_REG_SET
2362 /* Declare it register if it's a scalar. */
2363 register
2364 #endif
2365 HARD_REG_SET this_reg;
2367 CLEAR_HARD_REG_SET (this_reg);
2368 while (--j >= 0)
2369 SET_HARD_REG_BIT (this_reg, regno + j);
2371 if (life)
2372 while (birth < death)
2374 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2375 birth++;
2377 else
2378 while (birth < death)
2380 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2381 birth++;
2385 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2386 is the register being clobbered, and R1 is a register being used in
2387 the equivalent expression.
2389 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2390 in which it is used, return 1.
2392 Otherwise, return 0. */
2394 static int
2395 no_conflict_p (insn, r0, r1)
2396 rtx insn, r0 ATTRIBUTE_UNUSED, r1;
2398 int ok = 0;
2399 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2400 rtx p, last;
2402 /* If R1 is a hard register, return 0 since we handle this case
2403 when we scan the insns that actually use it. */
2405 if (note == 0
2406 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2407 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2408 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2409 return 0;
2411 last = XEXP (note, 0);
2413 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2414 if (INSN_P (p))
2416 if (find_reg_note (p, REG_DEAD, r1))
2417 ok = 1;
2419 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2420 some earlier optimization pass has inserted instructions into
2421 the sequence, and it is not safe to perform this optimization.
2422 Note that emit_no_conflict_block always ensures that this is
2423 true when these sequences are created. */
2424 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2425 return 0;
2428 return ok;
2431 /* Return the number of alternatives for which the constraint string P
2432 indicates that the operand must be equal to operand 0 and that no register
2433 is acceptable. */
2435 static int
2436 requires_inout (p)
2437 const char *p;
2439 char c;
2440 int found_zero = 0;
2441 int reg_allowed = 0;
2442 int num_matching_alts = 0;
2444 while ((c = *p++))
2445 switch (c)
2447 case '=': case '+': case '?':
2448 case '#': case '&': case '!':
2449 case '*': case '%':
2450 case 'm': case '<': case '>': case 'V': case 'o':
2451 case 'E': case 'F': case 'G': case 'H':
2452 case 's': case 'i': case 'n':
2453 case 'I': case 'J': case 'K': case 'L':
2454 case 'M': case 'N': case 'O': case 'P':
2455 case 'X':
2456 /* These don't say anything we care about. */
2457 break;
2459 case ',':
2460 if (found_zero && ! reg_allowed)
2461 num_matching_alts++;
2463 found_zero = reg_allowed = 0;
2464 break;
2466 case '0':
2467 found_zero = 1;
2468 break;
2470 case '1': case '2': case '3': case '4': case '5':
2471 case '6': case '7': case '8': case '9':
2472 /* Skip the balance of the matching constraint. */
2473 while (ISDIGIT (*p))
2474 p++;
2475 break;
2477 default:
2478 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
2479 break;
2480 /* FALLTHRU */
2481 case 'p':
2482 case 'g': case 'r':
2483 reg_allowed = 1;
2484 break;
2487 if (found_zero && ! reg_allowed)
2488 num_matching_alts++;
2490 return num_matching_alts;
2493 void
2494 dump_local_alloc (file)
2495 FILE *file;
2497 int i;
2498 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2499 if (reg_renumber[i] != -1)
2500 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);