PR rtl-optimization/60601
[official-gcc.git] / gcc / var-tracking.c
blob65d82854c0a433c5abbe0e5409852a0631041933
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
715 if (dest == stack_pointer_rtx)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
729 else if (MEM_P (dest))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
735 switch (code)
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
752 return;
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
760 return;
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
768 return;
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
776 return;
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
784 return;
786 default:
787 return;
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
799 rtx pattern;
801 *pre = 0;
802 *post = 0;
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
817 int i;
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
831 static bool
832 vt_stack_adjustments (void)
834 edge_iterator *stack;
835 int sp;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851 while (sp)
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
880 VTI (dest)->out.stack_adjust = offset;
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
887 else
889 /* We can end up with different stack adjustments for the exit block
890 of a shrink-wrapped function if stack_adjust_offset_pre_post
891 doesn't understand the rtx pattern used to restore the stack
892 pointer in the epilogue. For example, on s390(x), the stack
893 pointer is often restored via a load-multiple instruction
894 and so no stack_adjust offset is recorded for it. This means
895 that the stack offset at the end of the epilogue block is the
896 the same as the offset before the epilogue, whereas other paths
897 to the exit block will have the correct stack_adjust.
899 It is safe to ignore these differences because (a) we never
900 use the stack_adjust for the exit block in this pass and
901 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
902 function are correct.
904 We must check whether the adjustments on other edges are
905 the same though. */
906 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
907 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
909 free (stack);
910 return false;
913 if (! ei_one_before_end_p (ei))
914 /* Go to the next edge. */
915 ei_next (&stack[sp - 1]);
916 else
917 /* Return to previous level if there are no more edges. */
918 sp--;
922 free (stack);
923 return true;
926 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
927 hard_frame_pointer_rtx is being mapped to it and offset for it. */
928 static rtx cfa_base_rtx;
929 static HOST_WIDE_INT cfa_base_offset;
931 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
932 or hard_frame_pointer_rtx. */
934 static inline rtx
935 compute_cfa_pointer (HOST_WIDE_INT adjustment)
937 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
940 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
941 or -1 if the replacement shouldn't be done. */
942 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
944 /* Data for adjust_mems callback. */
946 struct adjust_mem_data
948 bool store;
949 enum machine_mode mem_mode;
950 HOST_WIDE_INT stack_adjust;
951 rtx side_effects;
954 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
955 transformation of wider mode arithmetics to narrower mode,
956 -1 if it is suitable and subexpressions shouldn't be
957 traversed and 0 if it is suitable and subexpressions should
958 be traversed. Called through for_each_rtx. */
960 static int
961 use_narrower_mode_test (rtx *loc, void *data)
963 rtx subreg = (rtx) data;
965 if (CONSTANT_P (*loc))
966 return -1;
967 switch (GET_CODE (*loc))
969 case REG:
970 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
971 return 1;
972 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
973 *loc, subreg_lowpart_offset (GET_MODE (subreg),
974 GET_MODE (*loc))))
975 return 1;
976 return -1;
977 case PLUS:
978 case MINUS:
979 case MULT:
980 return 0;
981 case ASHIFT:
982 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
983 return 1;
984 else
985 return -1;
986 default:
987 return 1;
991 /* Transform X into narrower mode MODE from wider mode WMODE. */
993 static rtx
994 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
996 rtx op0, op1;
997 if (CONSTANT_P (x))
998 return lowpart_subreg (mode, x, wmode);
999 switch (GET_CODE (x))
1001 case REG:
1002 return lowpart_subreg (mode, x, wmode);
1003 case PLUS:
1004 case MINUS:
1005 case MULT:
1006 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1007 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1008 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1009 case ASHIFT:
1010 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1011 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1012 default:
1013 gcc_unreachable ();
1017 /* Helper function for adjusting used MEMs. */
1019 static rtx
1020 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1022 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1023 rtx mem, addr = loc, tem;
1024 enum machine_mode mem_mode_save;
1025 bool store_save;
1026 switch (GET_CODE (loc))
1028 case REG:
1029 /* Don't do any sp or fp replacements outside of MEM addresses
1030 on the LHS. */
1031 if (amd->mem_mode == VOIDmode && amd->store)
1032 return loc;
1033 if (loc == stack_pointer_rtx
1034 && !frame_pointer_needed
1035 && cfa_base_rtx)
1036 return compute_cfa_pointer (amd->stack_adjust);
1037 else if (loc == hard_frame_pointer_rtx
1038 && frame_pointer_needed
1039 && hard_frame_pointer_adjustment != -1
1040 && cfa_base_rtx)
1041 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1042 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1043 return loc;
1044 case MEM:
1045 mem = loc;
1046 if (!amd->store)
1048 mem = targetm.delegitimize_address (mem);
1049 if (mem != loc && !MEM_P (mem))
1050 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1053 addr = XEXP (mem, 0);
1054 mem_mode_save = amd->mem_mode;
1055 amd->mem_mode = GET_MODE (mem);
1056 store_save = amd->store;
1057 amd->store = false;
1058 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1059 amd->store = store_save;
1060 amd->mem_mode = mem_mode_save;
1061 if (mem == loc)
1062 addr = targetm.delegitimize_address (addr);
1063 if (addr != XEXP (mem, 0))
1064 mem = replace_equiv_address_nv (mem, addr);
1065 if (!amd->store)
1066 mem = avoid_constant_pool_reference (mem);
1067 return mem;
1068 case PRE_INC:
1069 case PRE_DEC:
1070 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1071 gen_int_mode (GET_CODE (loc) == PRE_INC
1072 ? GET_MODE_SIZE (amd->mem_mode)
1073 : -GET_MODE_SIZE (amd->mem_mode),
1074 GET_MODE (loc)));
1075 case POST_INC:
1076 case POST_DEC:
1077 if (addr == loc)
1078 addr = XEXP (loc, 0);
1079 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1082 gen_int_mode ((GET_CODE (loc) == PRE_INC
1083 || GET_CODE (loc) == POST_INC)
1084 ? GET_MODE_SIZE (amd->mem_mode)
1085 : -GET_MODE_SIZE (amd->mem_mode),
1086 GET_MODE (loc)));
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (VOIDmode,
1093 XEXP (loc, 0), tem),
1094 amd->side_effects);
1095 return addr;
1096 case PRE_MODIFY:
1097 addr = XEXP (loc, 1);
1098 case POST_MODIFY:
1099 if (addr == loc)
1100 addr = XEXP (loc, 0);
1101 gcc_assert (amd->mem_mode != VOIDmode);
1102 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 store_save = amd->store;
1104 amd->store = false;
1105 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1106 adjust_mems, data);
1107 amd->store = store_save;
1108 amd->side_effects = alloc_EXPR_LIST (0,
1109 gen_rtx_SET (VOIDmode,
1110 XEXP (loc, 0), tem),
1111 amd->side_effects);
1112 return addr;
1113 case SUBREG:
1114 /* First try without delegitimization of whole MEMs and
1115 avoid_constant_pool_reference, which is more likely to succeed. */
1116 store_save = amd->store;
1117 amd->store = true;
1118 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1119 data);
1120 amd->store = store_save;
1121 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 if (mem == SUBREG_REG (loc))
1124 tem = loc;
1125 goto finish_subreg;
1127 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1128 GET_MODE (SUBREG_REG (loc)),
1129 SUBREG_BYTE (loc));
1130 if (tem)
1131 goto finish_subreg;
1132 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1133 GET_MODE (SUBREG_REG (loc)),
1134 SUBREG_BYTE (loc));
1135 if (tem == NULL_RTX)
1136 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1137 finish_subreg:
1138 if (MAY_HAVE_DEBUG_INSNS
1139 && GET_CODE (tem) == SUBREG
1140 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1141 || GET_CODE (SUBREG_REG (tem)) == MINUS
1142 || GET_CODE (SUBREG_REG (tem)) == MULT
1143 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1144 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1145 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1146 && GET_MODE_SIZE (GET_MODE (tem))
1147 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1148 && subreg_lowpart_p (tem)
1149 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1150 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1151 GET_MODE (SUBREG_REG (tem)));
1152 return tem;
1153 case ASM_OPERANDS:
1154 /* Don't do any replacements in second and following
1155 ASM_OPERANDS of inline-asm with multiple sets.
1156 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1157 and ASM_OPERANDS_LABEL_VEC need to be equal between
1158 all the ASM_OPERANDs in the insn and adjust_insn will
1159 fix this up. */
1160 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1161 return loc;
1162 break;
1163 default:
1164 break;
1166 return NULL_RTX;
1169 /* Helper function for replacement of uses. */
1171 static void
1172 adjust_mem_uses (rtx *x, void *data)
1174 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1175 if (new_x != *x)
1176 validate_change (NULL_RTX, x, new_x, true);
1179 /* Helper function for replacement of stores. */
1181 static void
1182 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1184 if (MEM_P (loc))
1186 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1187 adjust_mems, data);
1188 if (new_dest != SET_DEST (expr))
1190 rtx xexpr = CONST_CAST_RTX (expr);
1191 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1196 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1197 replace them with their value in the insn and add the side-effects
1198 as other sets to the insn. */
1200 static void
1201 adjust_insn (basic_block bb, rtx insn)
1203 struct adjust_mem_data amd;
1204 rtx set;
1206 #ifdef HAVE_window_save
1207 /* If the target machine has an explicit window save instruction, the
1208 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1209 if (RTX_FRAME_RELATED_P (insn)
1210 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1212 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1213 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1214 parm_reg_t *p;
1216 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1218 XVECEXP (rtl, 0, i * 2)
1219 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1220 /* Do not clobber the attached DECL, but only the REG. */
1221 XVECEXP (rtl, 0, i * 2 + 1)
1222 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1223 gen_raw_REG (GET_MODE (p->outgoing),
1224 REGNO (p->outgoing)));
1227 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1228 return;
1230 #endif
1232 amd.mem_mode = VOIDmode;
1233 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1234 amd.side_effects = NULL_RTX;
1236 amd.store = true;
1237 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1239 amd.store = false;
1240 if (GET_CODE (PATTERN (insn)) == PARALLEL
1241 && asm_noperands (PATTERN (insn)) > 0
1242 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1244 rtx body, set0;
1245 int i;
1247 /* inline-asm with multiple sets is tiny bit more complicated,
1248 because the 3 vectors in ASM_OPERANDS need to be shared between
1249 all ASM_OPERANDS in the instruction. adjust_mems will
1250 not touch ASM_OPERANDS other than the first one, asm_noperands
1251 test above needs to be called before that (otherwise it would fail)
1252 and afterwards this code fixes it up. */
1253 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1254 body = PATTERN (insn);
1255 set0 = XVECEXP (body, 0, 0);
1256 gcc_checking_assert (GET_CODE (set0) == SET
1257 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1259 for (i = 1; i < XVECLEN (body, 0); i++)
1260 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1261 break;
1262 else
1264 set = XVECEXP (body, 0, i);
1265 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1266 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1267 == i);
1268 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1269 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1270 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1271 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1272 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1273 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1275 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1276 ASM_OPERANDS_INPUT_VEC (newsrc)
1277 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1278 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1279 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1280 ASM_OPERANDS_LABEL_VEC (newsrc)
1281 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1282 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1286 else
1287 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1289 /* For read-only MEMs containing some constant, prefer those
1290 constants. */
1291 set = single_set (insn);
1292 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1294 rtx note = find_reg_equal_equiv_note (insn);
1296 if (note && CONSTANT_P (XEXP (note, 0)))
1297 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1300 if (amd.side_effects)
1302 rtx *pat, new_pat, s;
1303 int i, oldn, newn;
1305 pat = &PATTERN (insn);
1306 if (GET_CODE (*pat) == COND_EXEC)
1307 pat = &COND_EXEC_CODE (*pat);
1308 if (GET_CODE (*pat) == PARALLEL)
1309 oldn = XVECLEN (*pat, 0);
1310 else
1311 oldn = 1;
1312 for (s = amd.side_effects, newn = 0; s; newn++)
1313 s = XEXP (s, 1);
1314 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1315 if (GET_CODE (*pat) == PARALLEL)
1316 for (i = 0; i < oldn; i++)
1317 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1318 else
1319 XVECEXP (new_pat, 0, 0) = *pat;
1320 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1321 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1322 free_EXPR_LIST_list (&amd.side_effects);
1323 validate_change (NULL_RTX, pat, new_pat, true);
1327 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1328 static inline rtx
1329 dv_as_rtx (decl_or_value dv)
1331 tree decl;
1333 if (dv_is_value_p (dv))
1334 return dv_as_value (dv);
1336 decl = dv_as_decl (dv);
1338 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1339 return DECL_RTL_KNOWN_SET (decl);
1342 /* Return nonzero if a decl_or_value must not have more than one
1343 variable part. The returned value discriminates among various
1344 kinds of one-part DVs ccording to enum onepart_enum. */
1345 static inline onepart_enum_t
1346 dv_onepart_p (decl_or_value dv)
1348 tree decl;
1350 if (!MAY_HAVE_DEBUG_INSNS)
1351 return NOT_ONEPART;
1353 if (dv_is_value_p (dv))
1354 return ONEPART_VALUE;
1356 decl = dv_as_decl (dv);
1358 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1359 return ONEPART_DEXPR;
1361 if (target_for_debug_bind (decl) != NULL_TREE)
1362 return ONEPART_VDECL;
1364 return NOT_ONEPART;
1367 /* Return the variable pool to be used for a dv of type ONEPART. */
1368 static inline alloc_pool
1369 onepart_pool (onepart_enum_t onepart)
1371 return onepart ? valvar_pool : var_pool;
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1398 decl_or_value dv;
1400 switch (GET_CODE (x))
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1411 default:
1412 gcc_unreachable ();
1415 return dv;
1418 extern void debug_dv (decl_or_value dv);
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1429 static void loc_exp_dep_clear (variable var);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 static void
1434 variable_htab_free (void *elem)
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1440 gcc_checking_assert (var->refcount > 0);
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1446 for (i = 0; i < var->n_var_parts; i++)
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1450 next = node->next;
1451 pool_free (loc_chain_pool, node);
1453 var->var_part[i].loc_chain = NULL;
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1466 pool_free (onepart_pool (var->onepart), var);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1471 static void
1472 init_attrs_list_set (attrs *set)
1474 int i;
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1480 /* Make the list *LISTP empty. */
1482 static void
1483 attrs_list_clear (attrs *listp)
1485 attrs list, next;
1487 for (list = *listp; list; list = next)
1489 next = list->next;
1490 pool_free (attrs_pool, list);
1492 *listp = NULL;
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1512 attrs list;
1514 list = (attrs) pool_alloc (attrs_pool);
1515 list->loc = loc;
1516 list->dv = dv;
1517 list->offset = offset;
1518 list->next = *listp;
1519 *listp = list;
1522 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1524 static void
1525 attrs_list_copy (attrs *dstp, attrs src)
1527 attrs n;
1529 attrs_list_clear (dstp);
1530 for (; src; src = src->next)
1532 n = (attrs) pool_alloc (attrs_pool);
1533 n->loc = src->loc;
1534 n->dv = src->dv;
1535 n->offset = src->offset;
1536 n->next = *dstp;
1537 *dstp = n;
1541 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1543 static void
1544 attrs_list_union (attrs *dstp, attrs src)
1546 for (; src; src = src->next)
1548 if (!attrs_list_member (*dstp, src->dv, src->offset))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1553 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1554 *DSTP. */
1556 static void
1557 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1559 gcc_assert (!*dstp);
1560 for (; src; src = src->next)
1562 if (!dv_onepart_p (src->dv))
1563 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 for (src = src2; src; src = src->next)
1567 if (!dv_onepart_p (src->dv)
1568 && !attrs_list_member (*dstp, src->dv, src->offset))
1569 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1573 /* Shared hashtable support. */
1575 /* Return true if VARS is shared. */
1577 static inline bool
1578 shared_hash_shared (shared_hash vars)
1580 return vars->refcount > 1;
1583 /* Return the hash table for VARS. */
1585 static inline variable_table_type
1586 shared_hash_htab (shared_hash vars)
1588 return vars->htab;
1591 /* Return true if VAR is shared, or maybe because VARS is shared. */
1593 static inline bool
1594 shared_var_p (variable var, shared_hash vars)
1596 /* Don't count an entry in the changed_variables table as a duplicate. */
1597 return ((var->refcount > 1 + (int) var->in_changed_variables)
1598 || shared_hash_shared (vars));
1601 /* Copy variables into a new hash table. */
1603 static shared_hash
1604 shared_hash_unshare (shared_hash vars)
1606 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1607 gcc_assert (vars->refcount > 1);
1608 new_vars->refcount = 1;
1609 new_vars->htab.create (vars->htab.elements () + 3);
1610 vars_copy (new_vars->htab, vars->htab);
1611 vars->refcount--;
1612 return new_vars;
1615 /* Increment reference counter on VARS and return it. */
1617 static inline shared_hash
1618 shared_hash_copy (shared_hash vars)
1620 vars->refcount++;
1621 return vars;
1624 /* Decrement reference counter and destroy hash table if not shared
1625 anymore. */
1627 static void
1628 shared_hash_destroy (shared_hash vars)
1630 gcc_checking_assert (vars->refcount > 0);
1631 if (--vars->refcount == 0)
1633 vars->htab.dispose ();
1634 pool_free (shared_hash_pool, vars);
1638 /* Unshare *PVARS if shared and return slot for DV. If INS is
1639 INSERT, insert it if not already present. */
1641 static inline variable_def **
1642 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1643 hashval_t dvhash, enum insert_option ins)
1645 if (shared_hash_shared (*pvars))
1646 *pvars = shared_hash_unshare (*pvars);
1647 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1650 static inline variable_def **
1651 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1652 enum insert_option ins)
1654 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1657 /* Return slot for DV, if it is already present in the hash table.
1658 If it is not present, insert it only VARS is not shared, otherwise
1659 return NULL. */
1661 static inline variable_def **
1662 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1664 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1665 shared_hash_shared (vars)
1666 ? NO_INSERT : INSERT);
1669 static inline variable_def **
1670 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1672 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1675 /* Return slot for DV only if it is already present in the hash table. */
1677 static inline variable_def **
1678 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1679 hashval_t dvhash)
1681 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1684 static inline variable_def **
1685 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1687 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1690 /* Return variable for DV or NULL if not already present in the hash
1691 table. */
1693 static inline variable
1694 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1696 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1699 static inline variable
1700 shared_hash_find (shared_hash vars, decl_or_value dv)
1702 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1705 /* Return true if TVAL is better than CVAL as a canonival value. We
1706 choose lowest-numbered VALUEs, using the RTX address as a
1707 tie-breaker. The idea is to arrange them into a star topology,
1708 such that all of them are at most one step away from the canonical
1709 value, and the canonical value has backlinks to all of them, in
1710 addition to all the actual locations. We don't enforce this
1711 topology throughout the entire dataflow analysis, though.
1714 static inline bool
1715 canon_value_cmp (rtx tval, rtx cval)
1717 return !cval
1718 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1721 static bool dst_can_be_shared;
1723 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1725 static variable_def **
1726 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1727 enum var_init_status initialized)
1729 variable new_var;
1730 int i;
1732 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1733 new_var->dv = var->dv;
1734 new_var->refcount = 1;
1735 var->refcount--;
1736 new_var->n_var_parts = var->n_var_parts;
1737 new_var->onepart = var->onepart;
1738 new_var->in_changed_variables = false;
1740 if (! flag_var_tracking_uninit)
1741 initialized = VAR_INIT_STATUS_INITIALIZED;
1743 for (i = 0; i < var->n_var_parts; i++)
1745 location_chain node;
1746 location_chain *nextp;
1748 if (i == 0 && var->onepart)
1750 /* One-part auxiliary data is only used while emitting
1751 notes, so propagate it to the new variable in the active
1752 dataflow set. If we're not emitting notes, this will be
1753 a no-op. */
1754 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1755 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1756 VAR_LOC_1PAUX (var) = NULL;
1758 else
1759 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1760 nextp = &new_var->var_part[i].loc_chain;
1761 for (node = var->var_part[i].loc_chain; node; node = node->next)
1763 location_chain new_lc;
1765 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1766 new_lc->next = NULL;
1767 if (node->init > initialized)
1768 new_lc->init = node->init;
1769 else
1770 new_lc->init = initialized;
1771 if (node->set_src && !(MEM_P (node->set_src)))
1772 new_lc->set_src = node->set_src;
1773 else
1774 new_lc->set_src = NULL;
1775 new_lc->loc = node->loc;
1777 *nextp = new_lc;
1778 nextp = &new_lc->next;
1781 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1784 dst_can_be_shared = false;
1785 if (shared_hash_shared (set->vars))
1786 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1787 else if (set->traversed_vars && set->vars != set->traversed_vars)
1788 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1789 *slot = new_var;
1790 if (var->in_changed_variables)
1792 variable_def **cslot
1793 = changed_variables.find_slot_with_hash (var->dv,
1794 dv_htab_hash (var->dv), NO_INSERT);
1795 gcc_assert (*cslot == (void *) var);
1796 var->in_changed_variables = false;
1797 variable_htab_free (var);
1798 *cslot = new_var;
1799 new_var->in_changed_variables = true;
1801 return slot;
1804 /* Copy all variables from hash table SRC to hash table DST. */
1806 static void
1807 vars_copy (variable_table_type dst, variable_table_type src)
1809 variable_iterator_type hi;
1810 variable var;
1812 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1814 variable_def **dstp;
1815 var->refcount++;
1816 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1817 *dstp = var;
1821 /* Map a decl to its main debug decl. */
1823 static inline tree
1824 var_debug_decl (tree decl)
1826 if (decl && TREE_CODE (decl) == VAR_DECL
1827 && DECL_HAS_DEBUG_EXPR_P (decl))
1829 tree debugdecl = DECL_DEBUG_EXPR (decl);
1830 if (DECL_P (debugdecl))
1831 decl = debugdecl;
1834 return decl;
1837 /* Set the register LOC to contain DV, OFFSET. */
1839 static void
1840 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1841 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1842 enum insert_option iopt)
1844 attrs node;
1845 bool decl_p = dv_is_decl_p (dv);
1847 if (decl_p)
1848 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1850 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1851 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1852 && node->offset == offset)
1853 break;
1854 if (!node)
1855 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1856 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1859 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1861 static void
1862 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1863 rtx set_src)
1865 tree decl = REG_EXPR (loc);
1866 HOST_WIDE_INT offset = REG_OFFSET (loc);
1868 var_reg_decl_set (set, loc, initialized,
1869 dv_from_decl (decl), offset, set_src, INSERT);
1872 static enum var_init_status
1873 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1875 variable var;
1876 int i;
1877 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1879 if (! flag_var_tracking_uninit)
1880 return VAR_INIT_STATUS_INITIALIZED;
1882 var = shared_hash_find (set->vars, dv);
1883 if (var)
1885 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1887 location_chain nextp;
1888 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1889 if (rtx_equal_p (nextp->loc, loc))
1891 ret_val = nextp->init;
1892 break;
1897 return ret_val;
1900 /* Delete current content of register LOC in dataflow set SET and set
1901 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1902 MODIFY is true, any other live copies of the same variable part are
1903 also deleted from the dataflow set, otherwise the variable part is
1904 assumed to be copied from another location holding the same
1905 part. */
1907 static void
1908 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1909 enum var_init_status initialized, rtx set_src)
1911 tree decl = REG_EXPR (loc);
1912 HOST_WIDE_INT offset = REG_OFFSET (loc);
1913 attrs node, next;
1914 attrs *nextp;
1916 decl = var_debug_decl (decl);
1918 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1919 initialized = get_init_value (set, loc, dv_from_decl (decl));
1921 nextp = &set->regs[REGNO (loc)];
1922 for (node = *nextp; node; node = next)
1924 next = node->next;
1925 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1927 delete_variable_part (set, node->loc, node->dv, node->offset);
1928 pool_free (attrs_pool, node);
1929 *nextp = next;
1931 else
1933 node->loc = loc;
1934 nextp = &node->next;
1937 if (modify)
1938 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1939 var_reg_set (set, loc, initialized, set_src);
1942 /* Delete the association of register LOC in dataflow set SET with any
1943 variables that aren't onepart. If CLOBBER is true, also delete any
1944 other live copies of the same variable part, and delete the
1945 association with onepart dvs too. */
1947 static void
1948 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1950 attrs *nextp = &set->regs[REGNO (loc)];
1951 attrs node, next;
1953 if (clobber)
1955 tree decl = REG_EXPR (loc);
1956 HOST_WIDE_INT offset = REG_OFFSET (loc);
1958 decl = var_debug_decl (decl);
1960 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1963 for (node = *nextp; node; node = next)
1965 next = node->next;
1966 if (clobber || !dv_onepart_p (node->dv))
1968 delete_variable_part (set, node->loc, node->dv, node->offset);
1969 pool_free (attrs_pool, node);
1970 *nextp = next;
1972 else
1973 nextp = &node->next;
1977 /* Delete content of register with number REGNO in dataflow set SET. */
1979 static void
1980 var_regno_delete (dataflow_set *set, int regno)
1982 attrs *reg = &set->regs[regno];
1983 attrs node, next;
1985 for (node = *reg; node; node = next)
1987 next = node->next;
1988 delete_variable_part (set, node->loc, node->dv, node->offset);
1989 pool_free (attrs_pool, node);
1991 *reg = NULL;
1994 /* Return true if I is the negated value of a power of two. */
1995 static bool
1996 negative_power_of_two_p (HOST_WIDE_INT i)
1998 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1999 return x == (x & -x);
2002 /* Strip constant offsets and alignments off of LOC. Return the base
2003 expression. */
2005 static rtx
2006 vt_get_canonicalize_base (rtx loc)
2008 while ((GET_CODE (loc) == PLUS
2009 || GET_CODE (loc) == AND)
2010 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2011 && (GET_CODE (loc) != AND
2012 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2013 loc = XEXP (loc, 0);
2015 return loc;
2018 /* This caches canonicalized addresses for VALUEs, computed using
2019 information in the global cselib table. */
2020 static struct pointer_map_t *global_get_addr_cache;
2022 /* This caches canonicalized addresses for VALUEs, computed using
2023 information from the global cache and information pertaining to a
2024 basic block being analyzed. */
2025 static struct pointer_map_t *local_get_addr_cache;
2027 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2029 /* Return the canonical address for LOC, that must be a VALUE, using a
2030 cached global equivalence or computing it and storing it in the
2031 global cache. */
2033 static rtx
2034 get_addr_from_global_cache (rtx const loc)
2036 rtx x;
2037 void **slot;
2039 gcc_checking_assert (GET_CODE (loc) == VALUE);
2041 slot = pointer_map_insert (global_get_addr_cache, loc);
2042 if (*slot)
2043 return (rtx)*slot;
2045 x = canon_rtx (get_addr (loc));
2047 /* Tentative, avoiding infinite recursion. */
2048 *slot = x;
2050 if (x != loc)
2052 rtx nx = vt_canonicalize_addr (NULL, x);
2053 if (nx != x)
2055 /* The table may have moved during recursion, recompute
2056 SLOT. */
2057 slot = pointer_map_contains (global_get_addr_cache, loc);
2058 *slot = x = nx;
2062 return x;
2065 /* Return the canonical address for LOC, that must be a VALUE, using a
2066 cached local equivalence or computing it and storing it in the
2067 local cache. */
2069 static rtx
2070 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2072 rtx x;
2073 void **slot;
2074 decl_or_value dv;
2075 variable var;
2076 location_chain l;
2078 gcc_checking_assert (GET_CODE (loc) == VALUE);
2080 slot = pointer_map_insert (local_get_addr_cache, loc);
2081 if (*slot)
2082 return (rtx)*slot;
2084 x = get_addr_from_global_cache (loc);
2086 /* Tentative, avoiding infinite recursion. */
2087 *slot = x;
2089 /* Recurse to cache local expansion of X, or if we need to search
2090 for a VALUE in the expansion. */
2091 if (x != loc)
2093 rtx nx = vt_canonicalize_addr (set, x);
2094 if (nx != x)
2096 slot = pointer_map_contains (local_get_addr_cache, loc);
2097 *slot = x = nx;
2099 return x;
2102 dv = dv_from_rtx (x);
2103 var = shared_hash_find (set->vars, dv);
2104 if (!var)
2105 return x;
2107 /* Look for an improved equivalent expression. */
2108 for (l = var->var_part[0].loc_chain; l; l = l->next)
2110 rtx base = vt_get_canonicalize_base (l->loc);
2111 if (GET_CODE (base) == VALUE
2112 && canon_value_cmp (base, loc))
2114 rtx nx = vt_canonicalize_addr (set, l->loc);
2115 if (x != nx)
2117 slot = pointer_map_contains (local_get_addr_cache, loc);
2118 *slot = x = nx;
2120 break;
2124 return x;
2127 /* Canonicalize LOC using equivalences from SET in addition to those
2128 in the cselib static table. It expects a VALUE-based expression,
2129 and it will only substitute VALUEs with other VALUEs or
2130 function-global equivalences, so that, if two addresses have base
2131 VALUEs that are locally or globally related in ways that
2132 memrefs_conflict_p cares about, they will both canonicalize to
2133 expressions that have the same base VALUE.
2135 The use of VALUEs as canonical base addresses enables the canonical
2136 RTXs to remain unchanged globally, if they resolve to a constant,
2137 or throughout a basic block otherwise, so that they can be cached
2138 and the cache needs not be invalidated when REGs, MEMs or such
2139 change. */
2141 static rtx
2142 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2144 HOST_WIDE_INT ofst = 0;
2145 enum machine_mode mode = GET_MODE (oloc);
2146 rtx loc = oloc;
2147 rtx x;
2148 bool retry = true;
2150 while (retry)
2152 while (GET_CODE (loc) == PLUS
2153 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2155 ofst += INTVAL (XEXP (loc, 1));
2156 loc = XEXP (loc, 0);
2159 /* Alignment operations can't normally be combined, so just
2160 canonicalize the base and we're done. We'll normally have
2161 only one stack alignment anyway. */
2162 if (GET_CODE (loc) == AND
2163 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2164 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2166 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2167 if (x != XEXP (loc, 0))
2168 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2169 retry = false;
2172 if (GET_CODE (loc) == VALUE)
2174 if (set)
2175 loc = get_addr_from_local_cache (set, loc);
2176 else
2177 loc = get_addr_from_global_cache (loc);
2179 /* Consolidate plus_constants. */
2180 while (ofst && GET_CODE (loc) == PLUS
2181 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2183 ofst += INTVAL (XEXP (loc, 1));
2184 loc = XEXP (loc, 0);
2187 retry = false;
2189 else
2191 x = canon_rtx (loc);
2192 if (retry)
2193 retry = (x != loc);
2194 loc = x;
2198 /* Add OFST back in. */
2199 if (ofst)
2201 /* Don't build new RTL if we can help it. */
2202 if (GET_CODE (oloc) == PLUS
2203 && XEXP (oloc, 0) == loc
2204 && INTVAL (XEXP (oloc, 1)) == ofst)
2205 return oloc;
2207 loc = plus_constant (mode, loc, ofst);
2210 return loc;
2213 /* Return true iff there's a true dependence between MLOC and LOC.
2214 MADDR must be a canonicalized version of MLOC's address. */
2216 static inline bool
2217 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2219 if (GET_CODE (loc) != MEM)
2220 return false;
2222 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2223 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2224 return false;
2226 return true;
2229 /* Hold parameters for the hashtab traversal function
2230 drop_overlapping_mem_locs, see below. */
2232 struct overlapping_mems
2234 dataflow_set *set;
2235 rtx loc, addr;
2238 /* Remove all MEMs that overlap with COMS->LOC from the location list
2239 of a hash table entry for a value. COMS->ADDR must be a
2240 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2241 canonicalized itself. */
2244 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2246 dataflow_set *set = coms->set;
2247 rtx mloc = coms->loc, addr = coms->addr;
2248 variable var = *slot;
2250 if (var->onepart == ONEPART_VALUE)
2252 location_chain loc, *locp;
2253 bool changed = false;
2254 rtx cur_loc;
2256 gcc_assert (var->n_var_parts == 1);
2258 if (shared_var_p (var, set->vars))
2260 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2261 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2262 break;
2264 if (!loc)
2265 return 1;
2267 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2268 var = *slot;
2269 gcc_assert (var->n_var_parts == 1);
2272 if (VAR_LOC_1PAUX (var))
2273 cur_loc = VAR_LOC_FROM (var);
2274 else
2275 cur_loc = var->var_part[0].cur_loc;
2277 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2278 loc; loc = *locp)
2280 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2282 locp = &loc->next;
2283 continue;
2286 *locp = loc->next;
2287 /* If we have deleted the location which was last emitted
2288 we have to emit new location so add the variable to set
2289 of changed variables. */
2290 if (cur_loc == loc->loc)
2292 changed = true;
2293 var->var_part[0].cur_loc = NULL;
2294 if (VAR_LOC_1PAUX (var))
2295 VAR_LOC_FROM (var) = NULL;
2297 pool_free (loc_chain_pool, loc);
2300 if (!var->var_part[0].loc_chain)
2302 var->n_var_parts--;
2303 changed = true;
2305 if (changed)
2306 variable_was_changed (var, set);
2309 return 1;
2312 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2314 static void
2315 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2317 struct overlapping_mems coms;
2319 gcc_checking_assert (GET_CODE (loc) == MEM);
2321 coms.set = set;
2322 coms.loc = canon_rtx (loc);
2323 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2325 set->traversed_vars = set->vars;
2326 shared_hash_htab (set->vars)
2327 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2328 set->traversed_vars = NULL;
2331 /* Set the location of DV, OFFSET as the MEM LOC. */
2333 static void
2334 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2335 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2336 enum insert_option iopt)
2338 if (dv_is_decl_p (dv))
2339 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2341 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2344 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2345 SET to LOC.
2346 Adjust the address first if it is stack pointer based. */
2348 static void
2349 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2350 rtx set_src)
2352 tree decl = MEM_EXPR (loc);
2353 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2355 var_mem_decl_set (set, loc, initialized,
2356 dv_from_decl (decl), offset, set_src, INSERT);
2359 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2360 dataflow set SET to LOC. If MODIFY is true, any other live copies
2361 of the same variable part are also deleted from the dataflow set,
2362 otherwise the variable part is assumed to be copied from another
2363 location holding the same part.
2364 Adjust the address first if it is stack pointer based. */
2366 static void
2367 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2368 enum var_init_status initialized, rtx set_src)
2370 tree decl = MEM_EXPR (loc);
2371 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2373 clobber_overlapping_mems (set, loc);
2374 decl = var_debug_decl (decl);
2376 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2377 initialized = get_init_value (set, loc, dv_from_decl (decl));
2379 if (modify)
2380 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2381 var_mem_set (set, loc, initialized, set_src);
2384 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2385 true, also delete any other live copies of the same variable part.
2386 Adjust the address first if it is stack pointer based. */
2388 static void
2389 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2391 tree decl = MEM_EXPR (loc);
2392 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2394 clobber_overlapping_mems (set, loc);
2395 decl = var_debug_decl (decl);
2396 if (clobber)
2397 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2398 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2401 /* Return true if LOC should not be expanded for location expressions,
2402 or used in them. */
2404 static inline bool
2405 unsuitable_loc (rtx loc)
2407 switch (GET_CODE (loc))
2409 case PC:
2410 case SCRATCH:
2411 case CC0:
2412 case ASM_INPUT:
2413 case ASM_OPERANDS:
2414 return true;
2416 default:
2417 return false;
2421 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2422 bound to it. */
2424 static inline void
2425 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2427 if (REG_P (loc))
2429 if (modified)
2430 var_regno_delete (set, REGNO (loc));
2431 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2432 dv_from_value (val), 0, NULL_RTX, INSERT);
2434 else if (MEM_P (loc))
2436 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2438 if (modified)
2439 clobber_overlapping_mems (set, loc);
2441 if (l && GET_CODE (l->loc) == VALUE)
2442 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2444 /* If this MEM is a global constant, we don't need it in the
2445 dynamic tables. ??? We should test this before emitting the
2446 micro-op in the first place. */
2447 while (l)
2448 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2449 break;
2450 else
2451 l = l->next;
2453 if (!l)
2454 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2455 dv_from_value (val), 0, NULL_RTX, INSERT);
2457 else
2459 /* Other kinds of equivalences are necessarily static, at least
2460 so long as we do not perform substitutions while merging
2461 expressions. */
2462 gcc_unreachable ();
2463 set_variable_part (set, loc, dv_from_value (val), 0,
2464 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2468 /* Bind a value to a location it was just stored in. If MODIFIED
2469 holds, assume the location was modified, detaching it from any
2470 values bound to it. */
2472 static void
2473 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2475 cselib_val *v = CSELIB_VAL_PTR (val);
2477 gcc_assert (cselib_preserved_value_p (v));
2479 if (dump_file)
2481 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2482 print_inline_rtx (dump_file, loc, 0);
2483 fprintf (dump_file, " evaluates to ");
2484 print_inline_rtx (dump_file, val, 0);
2485 if (v->locs)
2487 struct elt_loc_list *l;
2488 for (l = v->locs; l; l = l->next)
2490 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2491 print_inline_rtx (dump_file, l->loc, 0);
2494 fprintf (dump_file, "\n");
2497 gcc_checking_assert (!unsuitable_loc (loc));
2499 val_bind (set, val, loc, modified);
2502 /* Clear (canonical address) slots that reference X. */
2504 static bool
2505 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2506 void **slot, void *x)
2508 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2509 *slot = NULL;
2510 return true;
2513 /* Reset this node, detaching all its equivalences. Return the slot
2514 in the variable hash table that holds dv, if there is one. */
2516 static void
2517 val_reset (dataflow_set *set, decl_or_value dv)
2519 variable var = shared_hash_find (set->vars, dv) ;
2520 location_chain node;
2521 rtx cval;
2523 if (!var || !var->n_var_parts)
2524 return;
2526 gcc_assert (var->n_var_parts == 1);
2528 if (var->onepart == ONEPART_VALUE)
2530 rtx x = dv_as_value (dv);
2531 void **slot;
2533 /* Relationships in the global cache don't change, so reset the
2534 local cache entry only. */
2535 slot = pointer_map_contains (local_get_addr_cache, x);
2536 if (slot)
2538 /* If the value resolved back to itself, odds are that other
2539 values may have cached it too. These entries now refer
2540 to the old X, so detach them too. Entries that used the
2541 old X but resolved to something else remain ok as long as
2542 that something else isn't also reset. */
2543 if (*slot == x)
2544 pointer_map_traverse (local_get_addr_cache,
2545 local_get_addr_clear_given_value, x);
2546 *slot = NULL;
2550 cval = NULL;
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 if (GET_CODE (node->loc) == VALUE
2553 && canon_value_cmp (node->loc, cval))
2554 cval = node->loc;
2556 for (node = var->var_part[0].loc_chain; node; node = node->next)
2557 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2559 /* Redirect the equivalence link to the new canonical
2560 value, or simply remove it if it would point at
2561 itself. */
2562 if (cval)
2563 set_variable_part (set, cval, dv_from_value (node->loc),
2564 0, node->init, node->set_src, NO_INSERT);
2565 delete_variable_part (set, dv_as_value (dv),
2566 dv_from_value (node->loc), 0);
2569 if (cval)
2571 decl_or_value cdv = dv_from_value (cval);
2573 /* Keep the remaining values connected, accummulating links
2574 in the canonical value. */
2575 for (node = var->var_part[0].loc_chain; node; node = node->next)
2577 if (node->loc == cval)
2578 continue;
2579 else if (GET_CODE (node->loc) == REG)
2580 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2581 node->set_src, NO_INSERT);
2582 else if (GET_CODE (node->loc) == MEM)
2583 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2584 node->set_src, NO_INSERT);
2585 else
2586 set_variable_part (set, node->loc, cdv, 0,
2587 node->init, node->set_src, NO_INSERT);
2591 /* We remove this last, to make sure that the canonical value is not
2592 removed to the point of requiring reinsertion. */
2593 if (cval)
2594 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2596 clobber_variable_part (set, NULL, dv, 0, NULL);
2599 /* Find the values in a given location and map the val to another
2600 value, if it is unique, or add the location as one holding the
2601 value. */
2603 static void
2604 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2606 decl_or_value dv = dv_from_value (val);
2608 if (dump_file && (dump_flags & TDF_DETAILS))
2610 if (insn)
2611 fprintf (dump_file, "%i: ", INSN_UID (insn));
2612 else
2613 fprintf (dump_file, "head: ");
2614 print_inline_rtx (dump_file, val, 0);
2615 fputs (" is at ", dump_file);
2616 print_inline_rtx (dump_file, loc, 0);
2617 fputc ('\n', dump_file);
2620 val_reset (set, dv);
2622 gcc_checking_assert (!unsuitable_loc (loc));
2624 if (REG_P (loc))
2626 attrs node, found = NULL;
2628 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2629 if (dv_is_value_p (node->dv)
2630 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2632 found = node;
2634 /* Map incoming equivalences. ??? Wouldn't it be nice if
2635 we just started sharing the location lists? Maybe a
2636 circular list ending at the value itself or some
2637 such. */
2638 set_variable_part (set, dv_as_value (node->dv),
2639 dv_from_value (val), node->offset,
2640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2641 set_variable_part (set, val, node->dv, node->offset,
2642 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2645 /* If we didn't find any equivalence, we need to remember that
2646 this value is held in the named register. */
2647 if (found)
2648 return;
2650 /* ??? Attempt to find and merge equivalent MEMs or other
2651 expressions too. */
2653 val_bind (set, val, loc, false);
2656 /* Initialize dataflow set SET to be empty.
2657 VARS_SIZE is the initial size of hash table VARS. */
2659 static void
2660 dataflow_set_init (dataflow_set *set)
2662 init_attrs_list_set (set->regs);
2663 set->vars = shared_hash_copy (empty_shared_hash);
2664 set->stack_adjust = 0;
2665 set->traversed_vars = NULL;
2668 /* Delete the contents of dataflow set SET. */
2670 static void
2671 dataflow_set_clear (dataflow_set *set)
2673 int i;
2675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2676 attrs_list_clear (&set->regs[i]);
2678 shared_hash_destroy (set->vars);
2679 set->vars = shared_hash_copy (empty_shared_hash);
2682 /* Copy the contents of dataflow set SRC to DST. */
2684 static void
2685 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2687 int i;
2689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2690 attrs_list_copy (&dst->regs[i], src->regs[i]);
2692 shared_hash_destroy (dst->vars);
2693 dst->vars = shared_hash_copy (src->vars);
2694 dst->stack_adjust = src->stack_adjust;
2697 /* Information for merging lists of locations for a given offset of variable.
2699 struct variable_union_info
2701 /* Node of the location chain. */
2702 location_chain lc;
2704 /* The sum of positions in the input chains. */
2705 int pos;
2707 /* The position in the chain of DST dataflow set. */
2708 int pos_dst;
2711 /* Buffer for location list sorting and its allocated size. */
2712 static struct variable_union_info *vui_vec;
2713 static int vui_allocated;
2715 /* Compare function for qsort, order the structures by POS element. */
2717 static int
2718 variable_union_info_cmp_pos (const void *n1, const void *n2)
2720 const struct variable_union_info *const i1 =
2721 (const struct variable_union_info *) n1;
2722 const struct variable_union_info *const i2 =
2723 ( const struct variable_union_info *) n2;
2725 if (i1->pos != i2->pos)
2726 return i1->pos - i2->pos;
2728 return (i1->pos_dst - i2->pos_dst);
2731 /* Compute union of location parts of variable *SLOT and the same variable
2732 from hash table DATA. Compute "sorted" union of the location chains
2733 for common offsets, i.e. the locations of a variable part are sorted by
2734 a priority where the priority is the sum of the positions in the 2 chains
2735 (if a location is only in one list the position in the second list is
2736 defined to be larger than the length of the chains).
2737 When we are updating the location parts the newest location is in the
2738 beginning of the chain, so when we do the described "sorted" union
2739 we keep the newest locations in the beginning. */
2741 static int
2742 variable_union (variable src, dataflow_set *set)
2744 variable dst;
2745 variable_def **dstp;
2746 int i, j, k;
2748 dstp = shared_hash_find_slot (set->vars, src->dv);
2749 if (!dstp || !*dstp)
2751 src->refcount++;
2753 dst_can_be_shared = false;
2754 if (!dstp)
2755 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2757 *dstp = src;
2759 /* Continue traversing the hash table. */
2760 return 1;
2762 else
2763 dst = *dstp;
2765 gcc_assert (src->n_var_parts);
2766 gcc_checking_assert (src->onepart == dst->onepart);
2768 /* We can combine one-part variables very efficiently, because their
2769 entries are in canonical order. */
2770 if (src->onepart)
2772 location_chain *nodep, dnode, snode;
2774 gcc_assert (src->n_var_parts == 1
2775 && dst->n_var_parts == 1);
2777 snode = src->var_part[0].loc_chain;
2778 gcc_assert (snode);
2780 restart_onepart_unshared:
2781 nodep = &dst->var_part[0].loc_chain;
2782 dnode = *nodep;
2783 gcc_assert (dnode);
2785 while (snode)
2787 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2789 if (r > 0)
2791 location_chain nnode;
2793 if (shared_var_p (dst, set->vars))
2795 dstp = unshare_variable (set, dstp, dst,
2796 VAR_INIT_STATUS_INITIALIZED);
2797 dst = *dstp;
2798 goto restart_onepart_unshared;
2801 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2802 nnode->loc = snode->loc;
2803 nnode->init = snode->init;
2804 if (!snode->set_src || MEM_P (snode->set_src))
2805 nnode->set_src = NULL;
2806 else
2807 nnode->set_src = snode->set_src;
2808 nnode->next = dnode;
2809 dnode = nnode;
2811 else if (r == 0)
2812 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2814 if (r >= 0)
2815 snode = snode->next;
2817 nodep = &dnode->next;
2818 dnode = *nodep;
2821 return 1;
2824 gcc_checking_assert (!src->onepart);
2826 /* Count the number of location parts, result is K. */
2827 for (i = 0, j = 0, k = 0;
2828 i < src->n_var_parts && j < dst->n_var_parts; k++)
2830 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2832 i++;
2833 j++;
2835 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2836 i++;
2837 else
2838 j++;
2840 k += src->n_var_parts - i;
2841 k += dst->n_var_parts - j;
2843 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2844 thus there are at most MAX_VAR_PARTS different offsets. */
2845 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2847 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2849 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2850 dst = *dstp;
2853 i = src->n_var_parts - 1;
2854 j = dst->n_var_parts - 1;
2855 dst->n_var_parts = k;
2857 for (k--; k >= 0; k--)
2859 location_chain node, node2;
2861 if (i >= 0 && j >= 0
2862 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2864 /* Compute the "sorted" union of the chains, i.e. the locations which
2865 are in both chains go first, they are sorted by the sum of
2866 positions in the chains. */
2867 int dst_l, src_l;
2868 int ii, jj, n;
2869 struct variable_union_info *vui;
2871 /* If DST is shared compare the location chains.
2872 If they are different we will modify the chain in DST with
2873 high probability so make a copy of DST. */
2874 if (shared_var_p (dst, set->vars))
2876 for (node = src->var_part[i].loc_chain,
2877 node2 = dst->var_part[j].loc_chain; node && node2;
2878 node = node->next, node2 = node2->next)
2880 if (!((REG_P (node2->loc)
2881 && REG_P (node->loc)
2882 && REGNO (node2->loc) == REGNO (node->loc))
2883 || rtx_equal_p (node2->loc, node->loc)))
2885 if (node2->init < node->init)
2886 node2->init = node->init;
2887 break;
2890 if (node || node2)
2892 dstp = unshare_variable (set, dstp, dst,
2893 VAR_INIT_STATUS_UNKNOWN);
2894 dst = (variable)*dstp;
2898 src_l = 0;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 src_l++;
2901 dst_l = 0;
2902 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2903 dst_l++;
2905 if (dst_l == 1)
2907 /* The most common case, much simpler, no qsort is needed. */
2908 location_chain dstnode = dst->var_part[j].loc_chain;
2909 dst->var_part[k].loc_chain = dstnode;
2910 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2911 node2 = dstnode;
2912 for (node = src->var_part[i].loc_chain; node; node = node->next)
2913 if (!((REG_P (dstnode->loc)
2914 && REG_P (node->loc)
2915 && REGNO (dstnode->loc) == REGNO (node->loc))
2916 || rtx_equal_p (dstnode->loc, node->loc)))
2918 location_chain new_node;
2920 /* Copy the location from SRC. */
2921 new_node = (location_chain) pool_alloc (loc_chain_pool);
2922 new_node->loc = node->loc;
2923 new_node->init = node->init;
2924 if (!node->set_src || MEM_P (node->set_src))
2925 new_node->set_src = NULL;
2926 else
2927 new_node->set_src = node->set_src;
2928 node2->next = new_node;
2929 node2 = new_node;
2931 node2->next = NULL;
2933 else
2935 if (src_l + dst_l > vui_allocated)
2937 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2938 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2939 vui_allocated);
2941 vui = vui_vec;
2943 /* Fill in the locations from DST. */
2944 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2945 node = node->next, jj++)
2947 vui[jj].lc = node;
2948 vui[jj].pos_dst = jj;
2950 /* Pos plus value larger than a sum of 2 valid positions. */
2951 vui[jj].pos = jj + src_l + dst_l;
2954 /* Fill in the locations from SRC. */
2955 n = dst_l;
2956 for (node = src->var_part[i].loc_chain, ii = 0; node;
2957 node = node->next, ii++)
2959 /* Find location from NODE. */
2960 for (jj = 0; jj < dst_l; jj++)
2962 if ((REG_P (vui[jj].lc->loc)
2963 && REG_P (node->loc)
2964 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2965 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2967 vui[jj].pos = jj + ii;
2968 break;
2971 if (jj >= dst_l) /* The location has not been found. */
2973 location_chain new_node;
2975 /* Copy the location from SRC. */
2976 new_node = (location_chain) pool_alloc (loc_chain_pool);
2977 new_node->loc = node->loc;
2978 new_node->init = node->init;
2979 if (!node->set_src || MEM_P (node->set_src))
2980 new_node->set_src = NULL;
2981 else
2982 new_node->set_src = node->set_src;
2983 vui[n].lc = new_node;
2984 vui[n].pos_dst = src_l + dst_l;
2985 vui[n].pos = ii + src_l + dst_l;
2986 n++;
2990 if (dst_l == 2)
2992 /* Special case still very common case. For dst_l == 2
2993 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2994 vui[i].pos == i + src_l + dst_l. */
2995 if (vui[0].pos > vui[1].pos)
2997 /* Order should be 1, 0, 2... */
2998 dst->var_part[k].loc_chain = vui[1].lc;
2999 vui[1].lc->next = vui[0].lc;
3000 if (n >= 3)
3002 vui[0].lc->next = vui[2].lc;
3003 vui[n - 1].lc->next = NULL;
3005 else
3006 vui[0].lc->next = NULL;
3007 ii = 3;
3009 else
3011 dst->var_part[k].loc_chain = vui[0].lc;
3012 if (n >= 3 && vui[2].pos < vui[1].pos)
3014 /* Order should be 0, 2, 1, 3... */
3015 vui[0].lc->next = vui[2].lc;
3016 vui[2].lc->next = vui[1].lc;
3017 if (n >= 4)
3019 vui[1].lc->next = vui[3].lc;
3020 vui[n - 1].lc->next = NULL;
3022 else
3023 vui[1].lc->next = NULL;
3024 ii = 4;
3026 else
3028 /* Order should be 0, 1, 2... */
3029 ii = 1;
3030 vui[n - 1].lc->next = NULL;
3033 for (; ii < n; ii++)
3034 vui[ii - 1].lc->next = vui[ii].lc;
3036 else
3038 qsort (vui, n, sizeof (struct variable_union_info),
3039 variable_union_info_cmp_pos);
3041 /* Reconnect the nodes in sorted order. */
3042 for (ii = 1; ii < n; ii++)
3043 vui[ii - 1].lc->next = vui[ii].lc;
3044 vui[n - 1].lc->next = NULL;
3045 dst->var_part[k].loc_chain = vui[0].lc;
3048 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3050 i--;
3051 j--;
3053 else if ((i >= 0 && j >= 0
3054 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3055 || i < 0)
3057 dst->var_part[k] = dst->var_part[j];
3058 j--;
3060 else if ((i >= 0 && j >= 0
3061 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3062 || j < 0)
3064 location_chain *nextp;
3066 /* Copy the chain from SRC. */
3067 nextp = &dst->var_part[k].loc_chain;
3068 for (node = src->var_part[i].loc_chain; node; node = node->next)
3070 location_chain new_lc;
3072 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3073 new_lc->next = NULL;
3074 new_lc->init = node->init;
3075 if (!node->set_src || MEM_P (node->set_src))
3076 new_lc->set_src = NULL;
3077 else
3078 new_lc->set_src = node->set_src;
3079 new_lc->loc = node->loc;
3081 *nextp = new_lc;
3082 nextp = &new_lc->next;
3085 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3086 i--;
3088 dst->var_part[k].cur_loc = NULL;
3091 if (flag_var_tracking_uninit)
3092 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3094 location_chain node, node2;
3095 for (node = src->var_part[i].loc_chain; node; node = node->next)
3096 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3097 if (rtx_equal_p (node->loc, node2->loc))
3099 if (node->init > node2->init)
3100 node2->init = node->init;
3104 /* Continue traversing the hash table. */
3105 return 1;
3108 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3110 static void
3111 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3113 int i;
3115 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3116 attrs_list_union (&dst->regs[i], src->regs[i]);
3118 if (dst->vars == empty_shared_hash)
3120 shared_hash_destroy (dst->vars);
3121 dst->vars = shared_hash_copy (src->vars);
3123 else
3125 variable_iterator_type hi;
3126 variable var;
3128 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3129 var, variable, hi)
3130 variable_union (var, dst);
3134 /* Whether the value is currently being expanded. */
3135 #define VALUE_RECURSED_INTO(x) \
3136 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3138 /* Whether no expansion was found, saving useless lookups.
3139 It must only be set when VALUE_CHANGED is clear. */
3140 #define NO_LOC_P(x) \
3141 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3143 /* Whether cur_loc in the value needs to be (re)computed. */
3144 #define VALUE_CHANGED(x) \
3145 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3146 /* Whether cur_loc in the decl needs to be (re)computed. */
3147 #define DECL_CHANGED(x) TREE_VISITED (x)
3149 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3150 user DECLs, this means they're in changed_variables. Values and
3151 debug exprs may be left with this flag set if no user variable
3152 requires them to be evaluated. */
3154 static inline void
3155 set_dv_changed (decl_or_value dv, bool newv)
3157 switch (dv_onepart_p (dv))
3159 case ONEPART_VALUE:
3160 if (newv)
3161 NO_LOC_P (dv_as_value (dv)) = false;
3162 VALUE_CHANGED (dv_as_value (dv)) = newv;
3163 break;
3165 case ONEPART_DEXPR:
3166 if (newv)
3167 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3168 /* Fall through... */
3170 default:
3171 DECL_CHANGED (dv_as_decl (dv)) = newv;
3172 break;
3176 /* Return true if DV needs to have its cur_loc recomputed. */
3178 static inline bool
3179 dv_changed_p (decl_or_value dv)
3181 return (dv_is_value_p (dv)
3182 ? VALUE_CHANGED (dv_as_value (dv))
3183 : DECL_CHANGED (dv_as_decl (dv)));
3186 /* Return a location list node whose loc is rtx_equal to LOC, in the
3187 location list of a one-part variable or value VAR, or in that of
3188 any values recursively mentioned in the location lists. VARS must
3189 be in star-canonical form. */
3191 static location_chain
3192 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3194 location_chain node;
3195 enum rtx_code loc_code;
3197 if (!var)
3198 return NULL;
3200 gcc_checking_assert (var->onepart);
3202 if (!var->n_var_parts)
3203 return NULL;
3205 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3207 loc_code = GET_CODE (loc);
3208 for (node = var->var_part[0].loc_chain; node; node = node->next)
3210 decl_or_value dv;
3211 variable rvar;
3213 if (GET_CODE (node->loc) != loc_code)
3215 if (GET_CODE (node->loc) != VALUE)
3216 continue;
3218 else if (loc == node->loc)
3219 return node;
3220 else if (loc_code != VALUE)
3222 if (rtx_equal_p (loc, node->loc))
3223 return node;
3224 continue;
3227 /* Since we're in star-canonical form, we don't need to visit
3228 non-canonical nodes: one-part variables and non-canonical
3229 values would only point back to the canonical node. */
3230 if (dv_is_value_p (var->dv)
3231 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3233 /* Skip all subsequent VALUEs. */
3234 while (node->next && GET_CODE (node->next->loc) == VALUE)
3236 node = node->next;
3237 gcc_checking_assert (!canon_value_cmp (node->loc,
3238 dv_as_value (var->dv)));
3239 if (loc == node->loc)
3240 return node;
3242 continue;
3245 gcc_checking_assert (node == var->var_part[0].loc_chain);
3246 gcc_checking_assert (!node->next);
3248 dv = dv_from_value (node->loc);
3249 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3250 return find_loc_in_1pdv (loc, rvar, vars);
3253 /* ??? Gotta look in cselib_val locations too. */
3255 return NULL;
3258 /* Hash table iteration argument passed to variable_merge. */
3259 struct dfset_merge
3261 /* The set in which the merge is to be inserted. */
3262 dataflow_set *dst;
3263 /* The set that we're iterating in. */
3264 dataflow_set *cur;
3265 /* The set that may contain the other dv we are to merge with. */
3266 dataflow_set *src;
3267 /* Number of onepart dvs in src. */
3268 int src_onepart_cnt;
3271 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3272 loc_cmp order, and it is maintained as such. */
3274 static void
3275 insert_into_intersection (location_chain *nodep, rtx loc,
3276 enum var_init_status status)
3278 location_chain node;
3279 int r;
3281 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3282 if ((r = loc_cmp (node->loc, loc)) == 0)
3284 node->init = MIN (node->init, status);
3285 return;
3287 else if (r > 0)
3288 break;
3290 node = (location_chain) pool_alloc (loc_chain_pool);
3292 node->loc = loc;
3293 node->set_src = NULL;
3294 node->init = status;
3295 node->next = *nodep;
3296 *nodep = node;
3299 /* Insert in DEST the intersection of the locations present in both
3300 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3301 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3302 DSM->dst. */
3304 static void
3305 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3306 location_chain s1node, variable s2var)
3308 dataflow_set *s1set = dsm->cur;
3309 dataflow_set *s2set = dsm->src;
3310 location_chain found;
3312 if (s2var)
3314 location_chain s2node;
3316 gcc_checking_assert (s2var->onepart);
3318 if (s2var->n_var_parts)
3320 s2node = s2var->var_part[0].loc_chain;
3322 for (; s1node && s2node;
3323 s1node = s1node->next, s2node = s2node->next)
3324 if (s1node->loc != s2node->loc)
3325 break;
3326 else if (s1node->loc == val)
3327 continue;
3328 else
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, s2node->init));
3334 for (; s1node; s1node = s1node->next)
3336 if (s1node->loc == val)
3337 continue;
3339 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3340 shared_hash_htab (s2set->vars))))
3342 insert_into_intersection (dest, s1node->loc,
3343 MIN (s1node->init, found->init));
3344 continue;
3347 if (GET_CODE (s1node->loc) == VALUE
3348 && !VALUE_RECURSED_INTO (s1node->loc))
3350 decl_or_value dv = dv_from_value (s1node->loc);
3351 variable svar = shared_hash_find (s1set->vars, dv);
3352 if (svar)
3354 if (svar->n_var_parts == 1)
3356 VALUE_RECURSED_INTO (s1node->loc) = true;
3357 intersect_loc_chains (val, dest, dsm,
3358 svar->var_part[0].loc_chain,
3359 s2var);
3360 VALUE_RECURSED_INTO (s1node->loc) = false;
3365 /* ??? gotta look in cselib_val locations too. */
3367 /* ??? if the location is equivalent to any location in src,
3368 searched recursively
3370 add to dst the values needed to represent the equivalence
3372 telling whether locations S is equivalent to another dv's
3373 location list:
3375 for each location D in the list
3377 if S and D satisfy rtx_equal_p, then it is present
3379 else if D is a value, recurse without cycles
3381 else if S and D have the same CODE and MODE
3383 for each operand oS and the corresponding oD
3385 if oS and oD are not equivalent, then S an D are not equivalent
3387 else if they are RTX vectors
3389 if any vector oS element is not equivalent to its respective oD,
3390 then S and D are not equivalent
3398 /* Return -1 if X should be before Y in a location list for a 1-part
3399 variable, 1 if Y should be before X, and 0 if they're equivalent
3400 and should not appear in the list. */
3402 static int
3403 loc_cmp (rtx x, rtx y)
3405 int i, j, r;
3406 RTX_CODE code = GET_CODE (x);
3407 const char *fmt;
3409 if (x == y)
3410 return 0;
3412 if (REG_P (x))
3414 if (!REG_P (y))
3415 return -1;
3416 gcc_assert (GET_MODE (x) == GET_MODE (y));
3417 if (REGNO (x) == REGNO (y))
3418 return 0;
3419 else if (REGNO (x) < REGNO (y))
3420 return -1;
3421 else
3422 return 1;
3425 if (REG_P (y))
3426 return 1;
3428 if (MEM_P (x))
3430 if (!MEM_P (y))
3431 return -1;
3432 gcc_assert (GET_MODE (x) == GET_MODE (y));
3433 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3436 if (MEM_P (y))
3437 return 1;
3439 if (GET_CODE (x) == VALUE)
3441 if (GET_CODE (y) != VALUE)
3442 return -1;
3443 /* Don't assert the modes are the same, that is true only
3444 when not recursing. (subreg:QI (value:SI 1:1) 0)
3445 and (subreg:QI (value:DI 2:2) 0) can be compared,
3446 even when the modes are different. */
3447 if (canon_value_cmp (x, y))
3448 return -1;
3449 else
3450 return 1;
3453 if (GET_CODE (y) == VALUE)
3454 return 1;
3456 /* Entry value is the least preferable kind of expression. */
3457 if (GET_CODE (x) == ENTRY_VALUE)
3459 if (GET_CODE (y) != ENTRY_VALUE)
3460 return 1;
3461 gcc_assert (GET_MODE (x) == GET_MODE (y));
3462 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3465 if (GET_CODE (y) == ENTRY_VALUE)
3466 return -1;
3468 if (GET_CODE (x) == GET_CODE (y))
3469 /* Compare operands below. */;
3470 else if (GET_CODE (x) < GET_CODE (y))
3471 return -1;
3472 else
3473 return 1;
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3477 if (GET_CODE (x) == DEBUG_EXPR)
3479 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3480 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3481 return -1;
3482 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3483 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3484 return 1;
3487 fmt = GET_RTX_FORMAT (code);
3488 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3489 switch (fmt[i])
3491 case 'w':
3492 if (XWINT (x, i) == XWINT (y, i))
3493 break;
3494 else if (XWINT (x, i) < XWINT (y, i))
3495 return -1;
3496 else
3497 return 1;
3499 case 'n':
3500 case 'i':
3501 if (XINT (x, i) == XINT (y, i))
3502 break;
3503 else if (XINT (x, i) < XINT (y, i))
3504 return -1;
3505 else
3506 return 1;
3508 case 'V':
3509 case 'E':
3510 /* Compare the vector length first. */
3511 if (XVECLEN (x, i) == XVECLEN (y, i))
3512 /* Compare the vectors elements. */;
3513 else if (XVECLEN (x, i) < XVECLEN (y, i))
3514 return -1;
3515 else
3516 return 1;
3518 for (j = 0; j < XVECLEN (x, i); j++)
3519 if ((r = loc_cmp (XVECEXP (x, i, j),
3520 XVECEXP (y, i, j))))
3521 return r;
3522 break;
3524 case 'e':
3525 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3526 return r;
3527 break;
3529 case 'S':
3530 case 's':
3531 if (XSTR (x, i) == XSTR (y, i))
3532 break;
3533 if (!XSTR (x, i))
3534 return -1;
3535 if (!XSTR (y, i))
3536 return 1;
3537 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3538 break;
3539 else if (r < 0)
3540 return -1;
3541 else
3542 return 1;
3544 case 'u':
3545 /* These are just backpointers, so they don't matter. */
3546 break;
3548 case '0':
3549 case 't':
3550 break;
3552 /* It is believed that rtx's at this level will never
3553 contain anything but integers and other rtx's,
3554 except for within LABEL_REFs and SYMBOL_REFs. */
3555 default:
3556 gcc_unreachable ();
3559 return 0;
3562 #if ENABLE_CHECKING
3563 /* Check the order of entries in one-part variables. */
3566 canonicalize_loc_order_check (variable_def **slot,
3567 dataflow_set *data ATTRIBUTE_UNUSED)
3569 variable var = *slot;
3570 location_chain node, next;
3572 #ifdef ENABLE_RTL_CHECKING
3573 int i;
3574 for (i = 0; i < var->n_var_parts; i++)
3575 gcc_assert (var->var_part[0].cur_loc == NULL);
3576 gcc_assert (!var->in_changed_variables);
3577 #endif
3579 if (!var->onepart)
3580 return 1;
3582 gcc_assert (var->n_var_parts == 1);
3583 node = var->var_part[0].loc_chain;
3584 gcc_assert (node);
3586 while ((next = node->next))
3588 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3589 node = next;
3592 return 1;
3594 #endif
3596 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3597 more likely to be chosen as canonical for an equivalence set.
3598 Ensure less likely values can reach more likely neighbors, making
3599 the connections bidirectional. */
3602 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3604 variable var = *slot;
3605 decl_or_value dv = var->dv;
3606 rtx val;
3607 location_chain node;
3609 if (!dv_is_value_p (dv))
3610 return 1;
3612 gcc_checking_assert (var->n_var_parts == 1);
3614 val = dv_as_value (dv);
3616 for (node = var->var_part[0].loc_chain; node; node = node->next)
3617 if (GET_CODE (node->loc) == VALUE)
3619 if (canon_value_cmp (node->loc, val))
3620 VALUE_RECURSED_INTO (val) = true;
3621 else
3623 decl_or_value odv = dv_from_value (node->loc);
3624 variable_def **oslot;
3625 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3627 set_slot_part (set, val, oslot, odv, 0,
3628 node->init, NULL_RTX);
3630 VALUE_RECURSED_INTO (node->loc) = true;
3634 return 1;
3637 /* Remove redundant entries from equivalence lists in onepart
3638 variables, canonicalizing equivalence sets into star shapes. */
3641 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3643 variable var = *slot;
3644 decl_or_value dv = var->dv;
3645 location_chain node;
3646 decl_or_value cdv;
3647 rtx val, cval;
3648 variable_def **cslot;
3649 bool has_value;
3650 bool has_marks;
3652 if (!var->onepart)
3653 return 1;
3655 gcc_checking_assert (var->n_var_parts == 1);
3657 if (dv_is_value_p (dv))
3659 cval = dv_as_value (dv);
3660 if (!VALUE_RECURSED_INTO (cval))
3661 return 1;
3662 VALUE_RECURSED_INTO (cval) = false;
3664 else
3665 cval = NULL_RTX;
3667 restart:
3668 val = cval;
3669 has_value = false;
3670 has_marks = false;
3672 gcc_assert (var->n_var_parts == 1);
3674 for (node = var->var_part[0].loc_chain; node; node = node->next)
3675 if (GET_CODE (node->loc) == VALUE)
3677 has_value = true;
3678 if (VALUE_RECURSED_INTO (node->loc))
3679 has_marks = true;
3680 if (canon_value_cmp (node->loc, cval))
3681 cval = node->loc;
3684 if (!has_value)
3685 return 1;
3687 if (cval == val)
3689 if (!has_marks || dv_is_decl_p (dv))
3690 return 1;
3692 /* Keep it marked so that we revisit it, either after visiting a
3693 child node, or after visiting a new parent that might be
3694 found out. */
3695 VALUE_RECURSED_INTO (val) = true;
3697 for (node = var->var_part[0].loc_chain; node; node = node->next)
3698 if (GET_CODE (node->loc) == VALUE
3699 && VALUE_RECURSED_INTO (node->loc))
3701 cval = node->loc;
3702 restart_with_cval:
3703 VALUE_RECURSED_INTO (cval) = false;
3704 dv = dv_from_value (cval);
3705 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3706 if (!slot)
3708 gcc_assert (dv_is_decl_p (var->dv));
3709 /* The canonical value was reset and dropped.
3710 Remove it. */
3711 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3712 return 1;
3714 var = *slot;
3715 gcc_assert (dv_is_value_p (var->dv));
3716 if (var->n_var_parts == 0)
3717 return 1;
3718 gcc_assert (var->n_var_parts == 1);
3719 goto restart;
3722 VALUE_RECURSED_INTO (val) = false;
3724 return 1;
3727 /* Push values to the canonical one. */
3728 cdv = dv_from_value (cval);
3729 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3731 for (node = var->var_part[0].loc_chain; node; node = node->next)
3732 if (node->loc != cval)
3734 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3735 node->init, NULL_RTX);
3736 if (GET_CODE (node->loc) == VALUE)
3738 decl_or_value ndv = dv_from_value (node->loc);
3740 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3741 NO_INSERT);
3743 if (canon_value_cmp (node->loc, val))
3745 /* If it could have been a local minimum, it's not any more,
3746 since it's now neighbor to cval, so it may have to push
3747 to it. Conversely, if it wouldn't have prevailed over
3748 val, then whatever mark it has is fine: if it was to
3749 push, it will now push to a more canonical node, but if
3750 it wasn't, then it has already pushed any values it might
3751 have to. */
3752 VALUE_RECURSED_INTO (node->loc) = true;
3753 /* Make sure we visit node->loc by ensuring we cval is
3754 visited too. */
3755 VALUE_RECURSED_INTO (cval) = true;
3757 else if (!VALUE_RECURSED_INTO (node->loc))
3758 /* If we have no need to "recurse" into this node, it's
3759 already "canonicalized", so drop the link to the old
3760 parent. */
3761 clobber_variable_part (set, cval, ndv, 0, NULL);
3763 else if (GET_CODE (node->loc) == REG)
3765 attrs list = set->regs[REGNO (node->loc)], *listp;
3767 /* Change an existing attribute referring to dv so that it
3768 refers to cdv, removing any duplicate this might
3769 introduce, and checking that no previous duplicates
3770 existed, all in a single pass. */
3772 while (list)
3774 if (list->offset == 0
3775 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3776 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3777 break;
3779 list = list->next;
3782 gcc_assert (list);
3783 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3785 list->dv = cdv;
3786 for (listp = &list->next; (list = *listp); listp = &list->next)
3788 if (list->offset)
3789 continue;
3791 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3793 *listp = list->next;
3794 pool_free (attrs_pool, list);
3795 list = *listp;
3796 break;
3799 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3802 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3804 for (listp = &list->next; (list = *listp); listp = &list->next)
3806 if (list->offset)
3807 continue;
3809 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3811 *listp = list->next;
3812 pool_free (attrs_pool, list);
3813 list = *listp;
3814 break;
3817 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3820 else
3821 gcc_unreachable ();
3823 #if ENABLE_CHECKING
3824 while (list)
3826 if (list->offset == 0
3827 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3828 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3829 gcc_unreachable ();
3831 list = list->next;
3833 #endif
3837 if (val)
3838 set_slot_part (set, val, cslot, cdv, 0,
3839 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3841 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3843 /* Variable may have been unshared. */
3844 var = *slot;
3845 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3846 && var->var_part[0].loc_chain->next == NULL);
3848 if (VALUE_RECURSED_INTO (cval))
3849 goto restart_with_cval;
3851 return 1;
3854 /* Bind one-part variables to the canonical value in an equivalence
3855 set. Not doing this causes dataflow convergence failure in rare
3856 circumstances, see PR42873. Unfortunately we can't do this
3857 efficiently as part of canonicalize_values_star, since we may not
3858 have determined or even seen the canonical value of a set when we
3859 get to a variable that references another member of the set. */
3862 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3864 variable var = *slot;
3865 decl_or_value dv = var->dv;
3866 location_chain node;
3867 rtx cval;
3868 decl_or_value cdv;
3869 variable_def **cslot;
3870 variable cvar;
3871 location_chain cnode;
3873 if (!var->onepart || var->onepart == ONEPART_VALUE)
3874 return 1;
3876 gcc_assert (var->n_var_parts == 1);
3878 node = var->var_part[0].loc_chain;
3880 if (GET_CODE (node->loc) != VALUE)
3881 return 1;
3883 gcc_assert (!node->next);
3884 cval = node->loc;
3886 /* Push values to the canonical one. */
3887 cdv = dv_from_value (cval);
3888 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3889 if (!cslot)
3890 return 1;
3891 cvar = *cslot;
3892 gcc_assert (cvar->n_var_parts == 1);
3894 cnode = cvar->var_part[0].loc_chain;
3896 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3897 that are not “more canonical” than it. */
3898 if (GET_CODE (cnode->loc) != VALUE
3899 || !canon_value_cmp (cnode->loc, cval))
3900 return 1;
3902 /* CVAL was found to be non-canonical. Change the variable to point
3903 to the canonical VALUE. */
3904 gcc_assert (!cnode->next);
3905 cval = cnode->loc;
3907 slot = set_slot_part (set, cval, slot, dv, 0,
3908 node->init, node->set_src);
3909 clobber_slot_part (set, cval, slot, 0, node->set_src);
3911 return 1;
3914 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3915 corresponding entry in DSM->src. Multi-part variables are combined
3916 with variable_union, whereas onepart dvs are combined with
3917 intersection. */
3919 static int
3920 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3922 dataflow_set *dst = dsm->dst;
3923 variable_def **dstslot;
3924 variable s2var, dvar = NULL;
3925 decl_or_value dv = s1var->dv;
3926 onepart_enum_t onepart = s1var->onepart;
3927 rtx val;
3928 hashval_t dvhash;
3929 location_chain node, *nodep;
3931 /* If the incoming onepart variable has an empty location list, then
3932 the intersection will be just as empty. For other variables,
3933 it's always union. */
3934 gcc_checking_assert (s1var->n_var_parts
3935 && s1var->var_part[0].loc_chain);
3937 if (!onepart)
3938 return variable_union (s1var, dst);
3940 gcc_checking_assert (s1var->n_var_parts == 1);
3942 dvhash = dv_htab_hash (dv);
3943 if (dv_is_value_p (dv))
3944 val = dv_as_value (dv);
3945 else
3946 val = NULL;
3948 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3949 if (!s2var)
3951 dst_can_be_shared = false;
3952 return 1;
3955 dsm->src_onepart_cnt--;
3956 gcc_assert (s2var->var_part[0].loc_chain
3957 && s2var->onepart == onepart
3958 && s2var->n_var_parts == 1);
3960 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3961 if (dstslot)
3963 dvar = *dstslot;
3964 gcc_assert (dvar->refcount == 1
3965 && dvar->onepart == onepart
3966 && dvar->n_var_parts == 1);
3967 nodep = &dvar->var_part[0].loc_chain;
3969 else
3971 nodep = &node;
3972 node = NULL;
3975 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3977 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3978 dvhash, INSERT);
3979 *dstslot = dvar = s2var;
3980 dvar->refcount++;
3982 else
3984 dst_can_be_shared = false;
3986 intersect_loc_chains (val, nodep, dsm,
3987 s1var->var_part[0].loc_chain, s2var);
3989 if (!dstslot)
3991 if (node)
3993 dvar = (variable) pool_alloc (onepart_pool (onepart));
3994 dvar->dv = dv;
3995 dvar->refcount = 1;
3996 dvar->n_var_parts = 1;
3997 dvar->onepart = onepart;
3998 dvar->in_changed_variables = false;
3999 dvar->var_part[0].loc_chain = node;
4000 dvar->var_part[0].cur_loc = NULL;
4001 if (onepart)
4002 VAR_LOC_1PAUX (dvar) = NULL;
4003 else
4004 VAR_PART_OFFSET (dvar, 0) = 0;
4006 dstslot
4007 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4008 INSERT);
4009 gcc_assert (!*dstslot);
4010 *dstslot = dvar;
4012 else
4013 return 1;
4017 nodep = &dvar->var_part[0].loc_chain;
4018 while ((node = *nodep))
4020 location_chain *nextp = &node->next;
4022 if (GET_CODE (node->loc) == REG)
4024 attrs list;
4026 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4027 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4028 && dv_is_value_p (list->dv))
4029 break;
4031 if (!list)
4032 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4033 dv, 0, node->loc);
4034 /* If this value became canonical for another value that had
4035 this register, we want to leave it alone. */
4036 else if (dv_as_value (list->dv) != val)
4038 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4039 dstslot, dv, 0,
4040 node->init, NULL_RTX);
4041 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4043 /* Since nextp points into the removed node, we can't
4044 use it. The pointer to the next node moved to nodep.
4045 However, if the variable we're walking is unshared
4046 during our walk, we'll keep walking the location list
4047 of the previously-shared variable, in which case the
4048 node won't have been removed, and we'll want to skip
4049 it. That's why we test *nodep here. */
4050 if (*nodep != node)
4051 nextp = nodep;
4054 else
4055 /* Canonicalization puts registers first, so we don't have to
4056 walk it all. */
4057 break;
4058 nodep = nextp;
4061 if (dvar != *dstslot)
4062 dvar = *dstslot;
4063 nodep = &dvar->var_part[0].loc_chain;
4065 if (val)
4067 /* Mark all referenced nodes for canonicalization, and make sure
4068 we have mutual equivalence links. */
4069 VALUE_RECURSED_INTO (val) = true;
4070 for (node = *nodep; node; node = node->next)
4071 if (GET_CODE (node->loc) == VALUE)
4073 VALUE_RECURSED_INTO (node->loc) = true;
4074 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4075 node->init, NULL, INSERT);
4078 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4079 gcc_assert (*dstslot == dvar);
4080 canonicalize_values_star (dstslot, dst);
4081 gcc_checking_assert (dstslot
4082 == shared_hash_find_slot_noinsert_1 (dst->vars,
4083 dv, dvhash));
4084 dvar = *dstslot;
4086 else
4088 bool has_value = false, has_other = false;
4090 /* If we have one value and anything else, we're going to
4091 canonicalize this, so make sure all values have an entry in
4092 the table and are marked for canonicalization. */
4093 for (node = *nodep; node; node = node->next)
4095 if (GET_CODE (node->loc) == VALUE)
4097 /* If this was marked during register canonicalization,
4098 we know we have to canonicalize values. */
4099 if (has_value)
4100 has_other = true;
4101 has_value = true;
4102 if (has_other)
4103 break;
4105 else
4107 has_other = true;
4108 if (has_value)
4109 break;
4113 if (has_value && has_other)
4115 for (node = *nodep; node; node = node->next)
4117 if (GET_CODE (node->loc) == VALUE)
4119 decl_or_value dv = dv_from_value (node->loc);
4120 variable_def **slot = NULL;
4122 if (shared_hash_shared (dst->vars))
4123 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4124 if (!slot)
4125 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4126 INSERT);
4127 if (!*slot)
4129 variable var = (variable) pool_alloc (onepart_pool
4130 (ONEPART_VALUE));
4131 var->dv = dv;
4132 var->refcount = 1;
4133 var->n_var_parts = 1;
4134 var->onepart = ONEPART_VALUE;
4135 var->in_changed_variables = false;
4136 var->var_part[0].loc_chain = NULL;
4137 var->var_part[0].cur_loc = NULL;
4138 VAR_LOC_1PAUX (var) = NULL;
4139 *slot = var;
4142 VALUE_RECURSED_INTO (node->loc) = true;
4146 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4147 gcc_assert (*dstslot == dvar);
4148 canonicalize_values_star (dstslot, dst);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst->vars,
4151 dv, dvhash));
4152 dvar = *dstslot;
4156 if (!onepart_variable_different_p (dvar, s2var))
4158 variable_htab_free (dvar);
4159 *dstslot = dvar = s2var;
4160 dvar->refcount++;
4162 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4164 variable_htab_free (dvar);
4165 *dstslot = dvar = s1var;
4166 dvar->refcount++;
4167 dst_can_be_shared = false;
4169 else
4170 dst_can_be_shared = false;
4172 return 1;
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4180 static int
4181 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4183 dataflow_set *dst = dsm->dst;
4184 decl_or_value dv = s2var->dv;
4186 if (!s2var->onepart)
4188 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4189 *dstp = s2var;
4190 s2var->refcount++;
4191 return 1;
4194 dsm->src_onepart_cnt++;
4195 return 1;
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4201 static void
4202 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4204 dataflow_set cur = *dst;
4205 dataflow_set *src1 = &cur;
4206 struct dfset_merge dsm;
4207 int i;
4208 size_t src1_elems, src2_elems;
4209 variable_iterator_type hi;
4210 variable var;
4212 src1_elems = shared_hash_htab (src1->vars).elements ();
4213 src2_elems = shared_hash_htab (src2->vars).elements ();
4214 dataflow_set_init (dst);
4215 dst->stack_adjust = cur.stack_adjust;
4216 shared_hash_destroy (dst->vars);
4217 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4218 dst->vars->refcount = 1;
4219 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4224 dsm.dst = dst;
4225 dsm.src = src2;
4226 dsm.cur = src1;
4227 dsm.src_onepart_cnt = 0;
4229 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4230 var, variable, hi)
4231 variable_merge_over_src (var, &dsm);
4232 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4233 var, variable, hi)
4234 variable_merge_over_cur (var, &dsm);
4236 if (dsm.src_onepart_cnt)
4237 dst_can_be_shared = false;
4239 dataflow_set_destroy (src1);
4242 /* Mark register equivalences. */
4244 static void
4245 dataflow_set_equiv_regs (dataflow_set *set)
4247 int i;
4248 attrs list, *listp;
4250 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4252 rtx canon[NUM_MACHINE_MODES];
4254 /* If the list is empty or one entry, no need to canonicalize
4255 anything. */
4256 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4257 continue;
4259 memset (canon, 0, sizeof (canon));
4261 for (list = set->regs[i]; list; list = list->next)
4262 if (list->offset == 0 && dv_is_value_p (list->dv))
4264 rtx val = dv_as_value (list->dv);
4265 rtx *cvalp = &canon[(int)GET_MODE (val)];
4266 rtx cval = *cvalp;
4268 if (canon_value_cmp (val, cval))
4269 *cvalp = val;
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_onepart_p (list->dv))
4275 rtx cval = canon[(int)GET_MODE (list->loc)];
4277 if (!cval)
4278 continue;
4280 if (dv_is_value_p (list->dv))
4282 rtx val = dv_as_value (list->dv);
4284 if (val == cval)
4285 continue;
4287 VALUE_RECURSED_INTO (val) = true;
4288 set_variable_part (set, val, dv_from_value (cval), 0,
4289 VAR_INIT_STATUS_INITIALIZED,
4290 NULL, NO_INSERT);
4293 VALUE_RECURSED_INTO (cval) = true;
4294 set_variable_part (set, cval, list->dv, 0,
4295 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4298 for (listp = &set->regs[i]; (list = *listp);
4299 listp = list ? &list->next : listp)
4300 if (list->offset == 0 && dv_onepart_p (list->dv))
4302 rtx cval = canon[(int)GET_MODE (list->loc)];
4303 variable_def **slot;
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4311 if (!VALUE_RECURSED_INTO (val))
4312 continue;
4315 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4316 canonicalize_values_star (slot, set);
4317 if (*listp != list)
4318 list = NULL;
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4326 static void
4327 remove_duplicate_values (variable var)
4329 location_chain node, *nodep;
4331 gcc_assert (var->onepart);
4332 gcc_assert (var->n_var_parts == 1);
4333 gcc_assert (var->refcount == 1);
4335 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4337 if (GET_CODE (node->loc) == VALUE)
4339 if (VALUE_RECURSED_INTO (node->loc))
4341 /* Remove duplicate value node. */
4342 *nodep = node->next;
4343 pool_free (loc_chain_pool, node);
4344 continue;
4346 else
4347 VALUE_RECURSED_INTO (node->loc) = true;
4349 nodep = &node->next;
4352 for (node = var->var_part[0].loc_chain; node; node = node->next)
4353 if (GET_CODE (node->loc) == VALUE)
4355 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4356 VALUE_RECURSED_INTO (node->loc) = false;
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4364 /* The new input set for the current block. */
4365 dataflow_set *set;
4366 /* Pointer to the permanent input set for the current block, or
4367 NULL. */
4368 dataflow_set **permp;
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4375 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4377 dataflow_set *set = dfpm->set;
4378 variable var = *slot;
4379 location_chain node;
4381 if (!var->onepart || !var->n_var_parts)
4382 return 1;
4384 gcc_assert (var->n_var_parts == 1);
4386 if (dv_is_decl_p (var->dv))
4388 bool check_dupes = false;
4390 restart:
4391 for (node = var->var_part[0].loc_chain; node; node = node->next)
4393 if (GET_CODE (node->loc) == VALUE)
4394 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4395 else if (GET_CODE (node->loc) == REG)
4397 attrs att, *attp, *curp = NULL;
4399 if (var->refcount != 1)
4401 slot = unshare_variable (set, slot, var,
4402 VAR_INIT_STATUS_INITIALIZED);
4403 var = *slot;
4404 goto restart;
4407 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4408 attp = &att->next)
4409 if (att->offset == 0
4410 && GET_MODE (att->loc) == GET_MODE (node->loc))
4412 if (dv_is_value_p (att->dv))
4414 rtx cval = dv_as_value (att->dv);
4415 node->loc = cval;
4416 check_dupes = true;
4417 break;
4419 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4420 curp = attp;
4423 if (!curp)
4425 curp = attp;
4426 while (*curp)
4427 if ((*curp)->offset == 0
4428 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4429 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4430 break;
4431 else
4432 curp = &(*curp)->next;
4433 gcc_assert (*curp);
4436 if (!att)
4438 decl_or_value cdv;
4439 rtx cval;
4441 if (!*dfpm->permp)
4443 *dfpm->permp = XNEW (dataflow_set);
4444 dataflow_set_init (*dfpm->permp);
4447 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4448 att; att = att->next)
4449 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4451 gcc_assert (att->offset == 0
4452 && dv_is_value_p (att->dv));
4453 val_reset (set, att->dv);
4454 break;
4457 if (att)
4459 cdv = att->dv;
4460 cval = dv_as_value (cdv);
4462 else
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4467 cselib_val *v;
4468 gcc_assert (!cselib_lookup (node->loc,
4469 GET_MODE (node->loc), 0,
4470 VOIDmode));
4471 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4472 VOIDmode);
4473 cselib_preserve_value (v);
4474 cselib_invalidate_rtx (node->loc);
4475 cval = v->val_rtx;
4476 cdv = dv_from_value (cval);
4477 if (dump_file)
4478 fprintf (dump_file,
4479 "Created new value %u:%u for reg %i\n",
4480 v->uid, v->hash, REGNO (node->loc));
4483 var_reg_decl_set (*dfpm->permp, node->loc,
4484 VAR_INIT_STATUS_INITIALIZED,
4485 cdv, 0, NULL, INSERT);
4487 node->loc = cval;
4488 check_dupes = true;
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4494 att = *curp;
4495 *curp = att->next;
4496 pool_free (attrs_pool, att);
4500 if (check_dupes)
4501 remove_duplicate_values (var);
4504 return 1;
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4511 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4513 dataflow_set *set = dfpm->set;
4514 variable pvar = *pslot, var;
4515 location_chain pnode;
4516 decl_or_value dv;
4517 attrs att;
4519 gcc_assert (dv_is_value_p (pvar->dv)
4520 && pvar->n_var_parts == 1);
4521 pnode = pvar->var_part[0].loc_chain;
4522 gcc_assert (pnode
4523 && !pnode->next
4524 && REG_P (pnode->loc));
4526 dv = pvar->dv;
4528 var = shared_hash_find (set->vars, dv);
4529 if (var)
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4538 return 1;
4539 val_reset (set, dv);
4542 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4543 if (att->offset == 0
4544 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4545 && dv_is_value_p (att->dv))
4546 break;
4548 /* If there is a value associated with this register already, create
4549 an equivalence. */
4550 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4552 rtx cval = dv_as_value (att->dv);
4553 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4554 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4555 NULL, INSERT);
4557 else if (!att)
4559 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4560 dv, 0, pnode->loc);
4561 variable_union (pvar, set);
4564 return 1;
4567 /* Just checking stuff and registering register attributes for
4568 now. */
4570 static void
4571 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4573 struct dfset_post_merge dfpm;
4575 dfpm.set = set;
4576 dfpm.permp = permp;
4578 shared_hash_htab (set->vars)
4579 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4580 if (*permp)
4581 shared_hash_htab ((*permp)->vars)
4582 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4583 shared_hash_htab (set->vars)
4584 .traverse <dataflow_set *, canonicalize_values_star> (set);
4585 shared_hash_htab (set->vars)
4586 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4593 static location_chain
4594 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4596 location_chain node;
4597 decl_or_value dv;
4598 variable var;
4599 location_chain where = NULL;
4601 if (!val)
4602 return NULL;
4604 gcc_assert (GET_CODE (val) == VALUE
4605 && !VALUE_RECURSED_INTO (val));
4607 dv = dv_from_value (val);
4608 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4610 if (!var)
4611 return NULL;
4613 gcc_assert (var->onepart);
4615 if (!var->n_var_parts)
4616 return NULL;
4618 VALUE_RECURSED_INTO (val) = true;
4620 for (node = var->var_part[0].loc_chain; node; node = node->next)
4621 if (MEM_P (node->loc)
4622 && MEM_EXPR (node->loc) == expr
4623 && INT_MEM_OFFSET (node->loc) == 0)
4625 where = node;
4626 break;
4628 else if (GET_CODE (node->loc) == VALUE
4629 && !VALUE_RECURSED_INTO (node->loc)
4630 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4631 break;
4633 VALUE_RECURSED_INTO (val) = false;
4635 return where;
4638 /* Return TRUE if the value of MEM may vary across a call. */
4640 static bool
4641 mem_dies_at_call (rtx mem)
4643 tree expr = MEM_EXPR (mem);
4644 tree decl;
4646 if (!expr)
4647 return true;
4649 decl = get_base_address (expr);
4651 if (!decl)
4652 return true;
4654 if (!DECL_P (decl))
4655 return true;
4657 return (may_be_aliased (decl)
4658 || (!TREE_READONLY (decl) && is_global_var (decl)));
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4666 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4668 variable var = *slot;
4670 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4672 tree decl = dv_as_decl (var->dv);
4673 location_chain loc, *locp;
4674 bool changed = false;
4676 if (!var->n_var_parts)
4677 return 1;
4679 gcc_assert (var->n_var_parts == 1);
4681 if (shared_var_p (var, set->vars))
4683 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4685 /* We want to remove dying MEMs that doesn't refer to DECL. */
4686 if (GET_CODE (loc->loc) == MEM
4687 && (MEM_EXPR (loc->loc) != decl
4688 || INT_MEM_OFFSET (loc->loc) != 0)
4689 && !mem_dies_at_call (loc->loc))
4690 break;
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc->loc) == VALUE
4693 && find_mem_expr_in_1pdv (decl, loc->loc,
4694 shared_hash_htab (set->vars)))
4695 break;
4698 if (!loc)
4699 return 1;
4701 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4702 var = *slot;
4703 gcc_assert (var->n_var_parts == 1);
4706 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4707 loc; loc = *locp)
4709 rtx old_loc = loc->loc;
4710 if (GET_CODE (old_loc) == VALUE)
4712 location_chain mem_node
4713 = find_mem_expr_in_1pdv (decl, loc->loc,
4714 shared_hash_htab (set->vars));
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4722 if (mem_node)
4724 loc->loc = mem_node->loc;
4725 loc->set_src = mem_node->set_src;
4726 loc->init = MIN (loc->init, mem_node->init);
4730 if (GET_CODE (loc->loc) != MEM
4731 || (MEM_EXPR (loc->loc) == decl
4732 && INT_MEM_OFFSET (loc->loc) == 0)
4733 || !mem_dies_at_call (loc->loc))
4735 if (old_loc != loc->loc && emit_notes)
4737 if (old_loc == var->var_part[0].cur_loc)
4739 changed = true;
4740 var->var_part[0].cur_loc = NULL;
4743 locp = &loc->next;
4744 continue;
4747 if (emit_notes)
4749 if (old_loc == var->var_part[0].cur_loc)
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4755 *locp = loc->next;
4756 pool_free (loc_chain_pool, loc);
4759 if (!var->var_part[0].loc_chain)
4761 var->n_var_parts--;
4762 changed = true;
4764 if (changed)
4765 variable_was_changed (var, set);
4768 return 1;
4771 /* Remove all MEMs from the location list of a hash table entry for a
4772 value. */
4775 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4777 variable var = *slot;
4779 if (var->onepart == ONEPART_VALUE)
4781 location_chain loc, *locp;
4782 bool changed = false;
4783 rtx cur_loc;
4785 gcc_assert (var->n_var_parts == 1);
4787 if (shared_var_p (var, set->vars))
4789 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4790 if (GET_CODE (loc->loc) == MEM
4791 && mem_dies_at_call (loc->loc))
4792 break;
4794 if (!loc)
4795 return 1;
4797 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4798 var = *slot;
4799 gcc_assert (var->n_var_parts == 1);
4802 if (VAR_LOC_1PAUX (var))
4803 cur_loc = VAR_LOC_FROM (var);
4804 else
4805 cur_loc = var->var_part[0].cur_loc;
4807 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4808 loc; loc = *locp)
4810 if (GET_CODE (loc->loc) != MEM
4811 || !mem_dies_at_call (loc->loc))
4813 locp = &loc->next;
4814 continue;
4817 *locp = loc->next;
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc == loc->loc)
4823 changed = true;
4824 var->var_part[0].cur_loc = NULL;
4825 if (VAR_LOC_1PAUX (var))
4826 VAR_LOC_FROM (var) = NULL;
4828 pool_free (loc_chain_pool, loc);
4831 if (!var->var_part[0].loc_chain)
4833 var->n_var_parts--;
4834 changed = true;
4836 if (changed)
4837 variable_was_changed (var, set);
4840 return 1;
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4846 static void
4847 dataflow_set_clear_at_call (dataflow_set *set)
4849 unsigned int r;
4850 hard_reg_set_iterator hrsi;
4852 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4853 var_regno_delete (set, r);
4855 if (MAY_HAVE_DEBUG_INSNS)
4857 set->traversed_vars = set->vars;
4858 shared_hash_htab (set->vars)
4859 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4860 set->traversed_vars = set->vars;
4861 shared_hash_htab (set->vars)
4862 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4863 set->traversed_vars = NULL;
4867 static bool
4868 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4870 location_chain lc1, lc2;
4872 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4874 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4876 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4878 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4879 break;
4881 if (rtx_equal_p (lc1->loc, lc2->loc))
4882 break;
4884 if (!lc2)
4885 return true;
4887 return false;
4890 /* Return true if one-part variables VAR1 and VAR2 are different.
4891 They must be in canonical order. */
4893 static bool
4894 onepart_variable_different_p (variable var1, variable var2)
4896 location_chain lc1, lc2;
4898 if (var1 == var2)
4899 return false;
4901 gcc_assert (var1->n_var_parts == 1
4902 && var2->n_var_parts == 1);
4904 lc1 = var1->var_part[0].loc_chain;
4905 lc2 = var2->var_part[0].loc_chain;
4907 gcc_assert (lc1 && lc2);
4909 while (lc1 && lc2)
4911 if (loc_cmp (lc1->loc, lc2->loc))
4912 return true;
4913 lc1 = lc1->next;
4914 lc2 = lc2->next;
4917 return lc1 != lc2;
4920 /* Return true if variables VAR1 and VAR2 are different. */
4922 static bool
4923 variable_different_p (variable var1, variable var2)
4925 int i;
4927 if (var1 == var2)
4928 return false;
4930 if (var1->onepart != var2->onepart)
4931 return true;
4933 if (var1->n_var_parts != var2->n_var_parts)
4934 return true;
4936 if (var1->onepart && var1->n_var_parts)
4938 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4939 && var1->n_var_parts == 1);
4940 /* One-part values have locations in a canonical order. */
4941 return onepart_variable_different_p (var1, var2);
4944 for (i = 0; i < var1->n_var_parts; i++)
4946 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4947 return true;
4948 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4949 return true;
4950 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4951 return true;
4953 return false;
4956 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4958 static bool
4959 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4961 variable_iterator_type hi;
4962 variable var1;
4964 if (old_set->vars == new_set->vars)
4965 return false;
4967 if (shared_hash_htab (old_set->vars).elements ()
4968 != shared_hash_htab (new_set->vars).elements ())
4969 return true;
4971 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4972 var1, variable, hi)
4974 variable_table_type htab = shared_hash_htab (new_set->vars);
4975 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4976 if (!var2)
4978 if (dump_file && (dump_flags & TDF_DETAILS))
4980 fprintf (dump_file, "dataflow difference found: removal of:\n");
4981 dump_var (var1);
4983 return true;
4986 if (variable_different_p (var1, var2))
4988 if (dump_file && (dump_flags & TDF_DETAILS))
4990 fprintf (dump_file, "dataflow difference found: "
4991 "old and new follow:\n");
4992 dump_var (var1);
4993 dump_var (var2);
4995 return true;
4999 /* No need to traverse the second hashtab, if both have the same number
5000 of elements and the second one had all entries found in the first one,
5001 then it can't have any extra entries. */
5002 return false;
5005 /* Free the contents of dataflow set SET. */
5007 static void
5008 dataflow_set_destroy (dataflow_set *set)
5010 int i;
5012 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5013 attrs_list_clear (&set->regs[i]);
5015 shared_hash_destroy (set->vars);
5016 set->vars = NULL;
5019 /* Return true if RTL X contains a SYMBOL_REF. */
5021 static bool
5022 contains_symbol_ref (rtx x)
5024 const char *fmt;
5025 RTX_CODE code;
5026 int i;
5028 if (!x)
5029 return false;
5031 code = GET_CODE (x);
5032 if (code == SYMBOL_REF)
5033 return true;
5035 fmt = GET_RTX_FORMAT (code);
5036 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5038 if (fmt[i] == 'e')
5040 if (contains_symbol_ref (XEXP (x, i)))
5041 return true;
5043 else if (fmt[i] == 'E')
5045 int j;
5046 for (j = 0; j < XVECLEN (x, i); j++)
5047 if (contains_symbol_ref (XVECEXP (x, i, j)))
5048 return true;
5052 return false;
5055 /* Shall EXPR be tracked? */
5057 static bool
5058 track_expr_p (tree expr, bool need_rtl)
5060 rtx decl_rtl;
5061 tree realdecl;
5063 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5064 return DECL_RTL_SET_P (expr);
5066 /* If EXPR is not a parameter or a variable do not track it. */
5067 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5068 return 0;
5070 /* It also must have a name... */
5071 if (!DECL_NAME (expr) && need_rtl)
5072 return 0;
5074 /* ... and a RTL assigned to it. */
5075 decl_rtl = DECL_RTL_IF_SET (expr);
5076 if (!decl_rtl && need_rtl)
5077 return 0;
5079 /* If this expression is really a debug alias of some other declaration, we
5080 don't need to track this expression if the ultimate declaration is
5081 ignored. */
5082 realdecl = expr;
5083 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5085 realdecl = DECL_DEBUG_EXPR (realdecl);
5086 if (!DECL_P (realdecl))
5088 if (handled_component_p (realdecl)
5089 || (TREE_CODE (realdecl) == MEM_REF
5090 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5092 HOST_WIDE_INT bitsize, bitpos, maxsize;
5093 tree innerdecl
5094 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5095 &maxsize);
5096 if (!DECL_P (innerdecl)
5097 || DECL_IGNORED_P (innerdecl)
5098 /* Do not track declarations for parts of tracked parameters
5099 since we want to track them as a whole instead. */
5100 || (TREE_CODE (innerdecl) == PARM_DECL
5101 && DECL_MODE (innerdecl) != BLKmode
5102 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5103 || TREE_STATIC (innerdecl)
5104 || bitsize <= 0
5105 || bitpos + bitsize > 256
5106 || bitsize != maxsize)
5107 return 0;
5108 else
5109 realdecl = expr;
5111 else
5112 return 0;
5116 /* Do not track EXPR if REALDECL it should be ignored for debugging
5117 purposes. */
5118 if (DECL_IGNORED_P (realdecl))
5119 return 0;
5121 /* Do not track global variables until we are able to emit correct location
5122 list for them. */
5123 if (TREE_STATIC (realdecl))
5124 return 0;
5126 /* When the EXPR is a DECL for alias of some variable (see example)
5127 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5128 DECL_RTL contains SYMBOL_REF.
5130 Example:
5131 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5132 char **_dl_argv;
5134 if (decl_rtl && MEM_P (decl_rtl)
5135 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5136 return 0;
5138 /* If RTX is a memory it should not be very large (because it would be
5139 an array or struct). */
5140 if (decl_rtl && MEM_P (decl_rtl))
5142 /* Do not track structures and arrays. */
5143 if (GET_MODE (decl_rtl) == BLKmode
5144 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5145 return 0;
5146 if (MEM_SIZE_KNOWN_P (decl_rtl)
5147 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5148 return 0;
5151 DECL_CHANGED (expr) = 0;
5152 DECL_CHANGED (realdecl) = 0;
5153 return 1;
5156 /* Determine whether a given LOC refers to the same variable part as
5157 EXPR+OFFSET. */
5159 static bool
5160 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5162 tree expr2;
5163 HOST_WIDE_INT offset2;
5165 if (! DECL_P (expr))
5166 return false;
5168 if (REG_P (loc))
5170 expr2 = REG_EXPR (loc);
5171 offset2 = REG_OFFSET (loc);
5173 else if (MEM_P (loc))
5175 expr2 = MEM_EXPR (loc);
5176 offset2 = INT_MEM_OFFSET (loc);
5178 else
5179 return false;
5181 if (! expr2 || ! DECL_P (expr2))
5182 return false;
5184 expr = var_debug_decl (expr);
5185 expr2 = var_debug_decl (expr2);
5187 return (expr == expr2 && offset == offset2);
5190 /* LOC is a REG or MEM that we would like to track if possible.
5191 If EXPR is null, we don't know what expression LOC refers to,
5192 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5193 LOC is an lvalue register.
5195 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5196 is something we can track. When returning true, store the mode of
5197 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5198 from EXPR in *OFFSET_OUT (if nonnull). */
5200 static bool
5201 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5202 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5204 enum machine_mode mode;
5206 if (expr == NULL || !track_expr_p (expr, true))
5207 return false;
5209 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5210 whole subreg, but only the old inner part is really relevant. */
5211 mode = GET_MODE (loc);
5212 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5214 enum machine_mode pseudo_mode;
5216 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5217 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5219 offset += byte_lowpart_offset (pseudo_mode, mode);
5220 mode = pseudo_mode;
5224 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5225 Do the same if we are storing to a register and EXPR occupies
5226 the whole of register LOC; in that case, the whole of EXPR is
5227 being changed. We exclude complex modes from the second case
5228 because the real and imaginary parts are represented as separate
5229 pseudo registers, even if the whole complex value fits into one
5230 hard register. */
5231 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5232 || (store_reg_p
5233 && !COMPLEX_MODE_P (DECL_MODE (expr))
5234 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5235 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5237 mode = DECL_MODE (expr);
5238 offset = 0;
5241 if (offset < 0 || offset >= MAX_VAR_PARTS)
5242 return false;
5244 if (mode_out)
5245 *mode_out = mode;
5246 if (offset_out)
5247 *offset_out = offset;
5248 return true;
5251 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5252 want to track. When returning nonnull, make sure that the attributes
5253 on the returned value are updated. */
5255 static rtx
5256 var_lowpart (enum machine_mode mode, rtx loc)
5258 unsigned int offset, reg_offset, regno;
5260 if (GET_MODE (loc) == mode)
5261 return loc;
5263 if (!REG_P (loc) && !MEM_P (loc))
5264 return NULL;
5266 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5268 if (MEM_P (loc))
5269 return adjust_address_nv (loc, mode, offset);
5271 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5272 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5273 reg_offset, mode);
5274 return gen_rtx_REG_offset (loc, mode, regno, offset);
5277 /* Carry information about uses and stores while walking rtx. */
5279 struct count_use_info
5281 /* The insn where the RTX is. */
5282 rtx insn;
5284 /* The basic block where insn is. */
5285 basic_block bb;
5287 /* The array of n_sets sets in the insn, as determined by cselib. */
5288 struct cselib_set *sets;
5289 int n_sets;
5291 /* True if we're counting stores, false otherwise. */
5292 bool store_p;
5295 /* Find a VALUE corresponding to X. */
5297 static inline cselib_val *
5298 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5300 int i;
5302 if (cui->sets)
5304 /* This is called after uses are set up and before stores are
5305 processed by cselib, so it's safe to look up srcs, but not
5306 dsts. So we look up expressions that appear in srcs or in
5307 dest expressions, but we search the sets array for dests of
5308 stores. */
5309 if (cui->store_p)
5311 /* Some targets represent memset and memcpy patterns
5312 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5313 (set (mem:BLK ...) (const_int ...)) or
5314 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5315 in that case, otherwise we end up with mode mismatches. */
5316 if (mode == BLKmode && MEM_P (x))
5317 return NULL;
5318 for (i = 0; i < cui->n_sets; i++)
5319 if (cui->sets[i].dest == x)
5320 return cui->sets[i].src_elt;
5322 else
5323 return cselib_lookup (x, mode, 0, VOIDmode);
5326 return NULL;
5329 /* Replace all registers and addresses in an expression with VALUE
5330 expressions that map back to them, unless the expression is a
5331 register. If no mapping is or can be performed, returns NULL. */
5333 static rtx
5334 replace_expr_with_values (rtx loc)
5336 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5337 return NULL;
5338 else if (MEM_P (loc))
5340 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5341 get_address_mode (loc), 0,
5342 GET_MODE (loc));
5343 if (addr)
5344 return replace_equiv_address_nv (loc, addr->val_rtx);
5345 else
5346 return NULL;
5348 else
5349 return cselib_subst_to_values (loc, VOIDmode);
5352 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5353 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5354 RTX. */
5356 static int
5357 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5359 rtx loc = *x;
5361 return GET_CODE (loc) == DEBUG_EXPR;
5364 /* Determine what kind of micro operation to choose for a USE. Return
5365 MO_CLOBBER if no micro operation is to be generated. */
5367 static enum micro_operation_type
5368 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5370 tree expr;
5372 if (cui && cui->sets)
5374 if (GET_CODE (loc) == VAR_LOCATION)
5376 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5378 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5379 if (! VAR_LOC_UNKNOWN_P (ploc))
5381 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5382 VOIDmode);
5384 /* ??? flag_float_store and volatile mems are never
5385 given values, but we could in theory use them for
5386 locations. */
5387 gcc_assert (val || 1);
5389 return MO_VAL_LOC;
5391 else
5392 return MO_CLOBBER;
5395 if (REG_P (loc) || MEM_P (loc))
5397 if (modep)
5398 *modep = GET_MODE (loc);
5399 if (cui->store_p)
5401 if (REG_P (loc)
5402 || (find_use_val (loc, GET_MODE (loc), cui)
5403 && cselib_lookup (XEXP (loc, 0),
5404 get_address_mode (loc), 0,
5405 GET_MODE (loc))))
5406 return MO_VAL_SET;
5408 else
5410 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5412 if (val && !cselib_preserved_value_p (val))
5413 return MO_VAL_USE;
5418 if (REG_P (loc))
5420 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5422 if (loc == cfa_base_rtx)
5423 return MO_CLOBBER;
5424 expr = REG_EXPR (loc);
5426 if (!expr)
5427 return MO_USE_NO_VAR;
5428 else if (target_for_debug_bind (var_debug_decl (expr)))
5429 return MO_CLOBBER;
5430 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5431 false, modep, NULL))
5432 return MO_USE;
5433 else
5434 return MO_USE_NO_VAR;
5436 else if (MEM_P (loc))
5438 expr = MEM_EXPR (loc);
5440 if (!expr)
5441 return MO_CLOBBER;
5442 else if (target_for_debug_bind (var_debug_decl (expr)))
5443 return MO_CLOBBER;
5444 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5445 false, modep, NULL)
5446 /* Multi-part variables shouldn't refer to one-part
5447 variable names such as VALUEs (never happens) or
5448 DEBUG_EXPRs (only happens in the presence of debug
5449 insns). */
5450 && (!MAY_HAVE_DEBUG_INSNS
5451 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5452 return MO_USE;
5453 else
5454 return MO_CLOBBER;
5457 return MO_CLOBBER;
5460 /* Log to OUT information about micro-operation MOPT involving X in
5461 INSN of BB. */
5463 static inline void
5464 log_op_type (rtx x, basic_block bb, rtx insn,
5465 enum micro_operation_type mopt, FILE *out)
5467 fprintf (out, "bb %i op %i insn %i %s ",
5468 bb->index, VTI (bb)->mos.length (),
5469 INSN_UID (insn), micro_operation_type_name[mopt]);
5470 print_inline_rtx (out, x, 2);
5471 fputc ('\n', out);
5474 /* Tell whether the CONCAT used to holds a VALUE and its location
5475 needs value resolution, i.e., an attempt of mapping the location
5476 back to other incoming values. */
5477 #define VAL_NEEDS_RESOLUTION(x) \
5478 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5479 /* Whether the location in the CONCAT is a tracked expression, that
5480 should also be handled like a MO_USE. */
5481 #define VAL_HOLDS_TRACK_EXPR(x) \
5482 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5483 /* Whether the location in the CONCAT should be handled like a MO_COPY
5484 as well. */
5485 #define VAL_EXPR_IS_COPIED(x) \
5486 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5487 /* Whether the location in the CONCAT should be handled like a
5488 MO_CLOBBER as well. */
5489 #define VAL_EXPR_IS_CLOBBERED(x) \
5490 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5492 /* All preserved VALUEs. */
5493 static vec<rtx> preserved_values;
5495 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5497 static void
5498 preserve_value (cselib_val *val)
5500 cselib_preserve_value (val);
5501 preserved_values.safe_push (val->val_rtx);
5504 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5505 any rtxes not suitable for CONST use not replaced by VALUEs
5506 are discovered. */
5508 static int
5509 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5511 if (*x == NULL_RTX)
5512 return 0;
5514 switch (GET_CODE (*x))
5516 case REG:
5517 case DEBUG_EXPR:
5518 case PC:
5519 case SCRATCH:
5520 case CC0:
5521 case ASM_INPUT:
5522 case ASM_OPERANDS:
5523 return 1;
5524 case MEM:
5525 return !MEM_READONLY_P (*x);
5526 default:
5527 return 0;
5531 /* Add uses (register and memory references) LOC which will be tracked
5532 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5534 static int
5535 add_uses (rtx *ploc, void *data)
5537 rtx loc = *ploc;
5538 enum machine_mode mode = VOIDmode;
5539 struct count_use_info *cui = (struct count_use_info *)data;
5540 enum micro_operation_type type = use_type (loc, cui, &mode);
5542 if (type != MO_CLOBBER)
5544 basic_block bb = cui->bb;
5545 micro_operation mo;
5547 mo.type = type;
5548 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5549 mo.insn = cui->insn;
5551 if (type == MO_VAL_LOC)
5553 rtx oloc = loc;
5554 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5555 cselib_val *val;
5557 gcc_assert (cui->sets);
5559 if (MEM_P (vloc)
5560 && !REG_P (XEXP (vloc, 0))
5561 && !MEM_P (XEXP (vloc, 0)))
5563 rtx mloc = vloc;
5564 enum machine_mode address_mode = get_address_mode (mloc);
5565 cselib_val *val
5566 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5567 GET_MODE (mloc));
5569 if (val && !cselib_preserved_value_p (val))
5570 preserve_value (val);
5573 if (CONSTANT_P (vloc)
5574 && (GET_CODE (vloc) != CONST
5575 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5576 /* For constants don't look up any value. */;
5577 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5578 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5580 enum machine_mode mode2;
5581 enum micro_operation_type type2;
5582 rtx nloc = NULL;
5583 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5585 if (resolvable)
5586 nloc = replace_expr_with_values (vloc);
5588 if (nloc)
5590 oloc = shallow_copy_rtx (oloc);
5591 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5594 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5596 type2 = use_type (vloc, 0, &mode2);
5598 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5599 || type2 == MO_CLOBBER);
5601 if (type2 == MO_CLOBBER
5602 && !cselib_preserved_value_p (val))
5604 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5605 preserve_value (val);
5608 else if (!VAR_LOC_UNKNOWN_P (vloc))
5610 oloc = shallow_copy_rtx (oloc);
5611 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5614 mo.u.loc = oloc;
5616 else if (type == MO_VAL_USE)
5618 enum machine_mode mode2 = VOIDmode;
5619 enum micro_operation_type type2;
5620 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5621 rtx vloc, oloc = loc, nloc;
5623 gcc_assert (cui->sets);
5625 if (MEM_P (oloc)
5626 && !REG_P (XEXP (oloc, 0))
5627 && !MEM_P (XEXP (oloc, 0)))
5629 rtx mloc = oloc;
5630 enum machine_mode address_mode = get_address_mode (mloc);
5631 cselib_val *val
5632 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5633 GET_MODE (mloc));
5635 if (val && !cselib_preserved_value_p (val))
5636 preserve_value (val);
5639 type2 = use_type (loc, 0, &mode2);
5641 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5642 || type2 == MO_CLOBBER);
5644 if (type2 == MO_USE)
5645 vloc = var_lowpart (mode2, loc);
5646 else
5647 vloc = oloc;
5649 /* The loc of a MO_VAL_USE may have two forms:
5651 (concat val src): val is at src, a value-based
5652 representation.
5654 (concat (concat val use) src): same as above, with use as
5655 the MO_USE tracked value, if it differs from src.
5659 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5660 nloc = replace_expr_with_values (loc);
5661 if (!nloc)
5662 nloc = oloc;
5664 if (vloc != nloc)
5665 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5666 else
5667 oloc = val->val_rtx;
5669 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5671 if (type2 == MO_USE)
5672 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5673 if (!cselib_preserved_value_p (val))
5675 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5676 preserve_value (val);
5679 else
5680 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5682 if (dump_file && (dump_flags & TDF_DETAILS))
5683 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5684 VTI (bb)->mos.safe_push (mo);
5687 return 0;
5690 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5692 static void
5693 add_uses_1 (rtx *x, void *cui)
5695 for_each_rtx (x, add_uses, cui);
5698 /* This is the value used during expansion of locations. We want it
5699 to be unbounded, so that variables expanded deep in a recursion
5700 nest are fully evaluated, so that their values are cached
5701 correctly. We avoid recursion cycles through other means, and we
5702 don't unshare RTL, so excess complexity is not a problem. */
5703 #define EXPR_DEPTH (INT_MAX)
5704 /* We use this to keep too-complex expressions from being emitted as
5705 location notes, and then to debug information. Users can trade
5706 compile time for ridiculously complex expressions, although they're
5707 seldom useful, and they may often have to be discarded as not
5708 representable anyway. */
5709 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5711 /* Attempt to reverse the EXPR operation in the debug info and record
5712 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5713 no longer live we can express its value as VAL - 6. */
5715 static void
5716 reverse_op (rtx val, const_rtx expr, rtx insn)
5718 rtx src, arg, ret;
5719 cselib_val *v;
5720 struct elt_loc_list *l;
5721 enum rtx_code code;
5722 int count;
5724 if (GET_CODE (expr) != SET)
5725 return;
5727 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5728 return;
5730 src = SET_SRC (expr);
5731 switch (GET_CODE (src))
5733 case PLUS:
5734 case MINUS:
5735 case XOR:
5736 case NOT:
5737 case NEG:
5738 if (!REG_P (XEXP (src, 0)))
5739 return;
5740 break;
5741 case SIGN_EXTEND:
5742 case ZERO_EXTEND:
5743 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5744 return;
5745 break;
5746 default:
5747 return;
5750 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5751 return;
5753 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5754 if (!v || !cselib_preserved_value_p (v))
5755 return;
5757 /* Use canonical V to avoid creating multiple redundant expressions
5758 for different VALUES equivalent to V. */
5759 v = canonical_cselib_val (v);
5761 /* Adding a reverse op isn't useful if V already has an always valid
5762 location. Ignore ENTRY_VALUE, while it is always constant, we should
5763 prefer non-ENTRY_VALUE locations whenever possible. */
5764 for (l = v->locs, count = 0; l; l = l->next, count++)
5765 if (CONSTANT_P (l->loc)
5766 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5767 return;
5768 /* Avoid creating too large locs lists. */
5769 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5770 return;
5772 switch (GET_CODE (src))
5774 case NOT:
5775 case NEG:
5776 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5777 return;
5778 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5779 break;
5780 case SIGN_EXTEND:
5781 case ZERO_EXTEND:
5782 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5783 break;
5784 case XOR:
5785 code = XOR;
5786 goto binary;
5787 case PLUS:
5788 code = MINUS;
5789 goto binary;
5790 case MINUS:
5791 code = PLUS;
5792 goto binary;
5793 binary:
5794 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5795 return;
5796 arg = XEXP (src, 1);
5797 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5799 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5800 if (arg == NULL_RTX)
5801 return;
5802 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5803 return;
5805 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5806 if (ret == val)
5807 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5808 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5809 breaks a lot of routines during var-tracking. */
5810 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5811 break;
5812 default:
5813 gcc_unreachable ();
5816 cselib_add_permanent_equiv (v, ret, insn);
5819 /* Add stores (register and memory references) LOC which will be tracked
5820 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5821 CUIP->insn is instruction which the LOC is part of. */
5823 static void
5824 add_stores (rtx loc, const_rtx expr, void *cuip)
5826 enum machine_mode mode = VOIDmode, mode2;
5827 struct count_use_info *cui = (struct count_use_info *)cuip;
5828 basic_block bb = cui->bb;
5829 micro_operation mo;
5830 rtx oloc = loc, nloc, src = NULL;
5831 enum micro_operation_type type = use_type (loc, cui, &mode);
5832 bool track_p = false;
5833 cselib_val *v;
5834 bool resolve, preserve;
5836 if (type == MO_CLOBBER)
5837 return;
5839 mode2 = mode;
5841 if (REG_P (loc))
5843 gcc_assert (loc != cfa_base_rtx);
5844 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5845 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5846 || GET_CODE (expr) == CLOBBER)
5848 mo.type = MO_CLOBBER;
5849 mo.u.loc = loc;
5850 if (GET_CODE (expr) == SET
5851 && SET_DEST (expr) == loc
5852 && !unsuitable_loc (SET_SRC (expr))
5853 && find_use_val (loc, mode, cui))
5855 gcc_checking_assert (type == MO_VAL_SET);
5856 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5859 else
5861 if (GET_CODE (expr) == SET
5862 && SET_DEST (expr) == loc
5863 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5864 src = var_lowpart (mode2, SET_SRC (expr));
5865 loc = var_lowpart (mode2, loc);
5867 if (src == NULL)
5869 mo.type = MO_SET;
5870 mo.u.loc = loc;
5872 else
5874 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5875 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5877 /* If this is an instruction copying (part of) a parameter
5878 passed by invisible reference to its register location,
5879 pretend it's a SET so that the initial memory location
5880 is discarded, as the parameter register can be reused
5881 for other purposes and we do not track locations based
5882 on generic registers. */
5883 if (MEM_P (src)
5884 && REG_EXPR (loc)
5885 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5886 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5887 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5888 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5889 != arg_pointer_rtx)
5890 mo.type = MO_SET;
5891 else
5892 mo.type = MO_COPY;
5894 else
5895 mo.type = MO_SET;
5896 mo.u.loc = xexpr;
5899 mo.insn = cui->insn;
5901 else if (MEM_P (loc)
5902 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5903 || cui->sets))
5905 if (MEM_P (loc) && type == MO_VAL_SET
5906 && !REG_P (XEXP (loc, 0))
5907 && !MEM_P (XEXP (loc, 0)))
5909 rtx mloc = loc;
5910 enum machine_mode address_mode = get_address_mode (mloc);
5911 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5912 address_mode, 0,
5913 GET_MODE (mloc));
5915 if (val && !cselib_preserved_value_p (val))
5916 preserve_value (val);
5919 if (GET_CODE (expr) == CLOBBER || !track_p)
5921 mo.type = MO_CLOBBER;
5922 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5924 else
5926 if (GET_CODE (expr) == SET
5927 && SET_DEST (expr) == loc
5928 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5929 src = var_lowpart (mode2, SET_SRC (expr));
5930 loc = var_lowpart (mode2, loc);
5932 if (src == NULL)
5934 mo.type = MO_SET;
5935 mo.u.loc = loc;
5937 else
5939 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5940 if (same_variable_part_p (SET_SRC (xexpr),
5941 MEM_EXPR (loc),
5942 INT_MEM_OFFSET (loc)))
5943 mo.type = MO_COPY;
5944 else
5945 mo.type = MO_SET;
5946 mo.u.loc = xexpr;
5949 mo.insn = cui->insn;
5951 else
5952 return;
5954 if (type != MO_VAL_SET)
5955 goto log_and_return;
5957 v = find_use_val (oloc, mode, cui);
5959 if (!v)
5960 goto log_and_return;
5962 resolve = preserve = !cselib_preserved_value_p (v);
5964 /* We cannot track values for multiple-part variables, so we track only
5965 locations for tracked parameters passed either by invisible reference
5966 or directly in multiple locations. */
5967 if (track_p
5968 && REG_P (loc)
5969 && REG_EXPR (loc)
5970 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5971 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5972 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5973 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5974 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5975 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5976 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5978 /* Although we don't use the value here, it could be used later by the
5979 mere virtue of its existence as the operand of the reverse operation
5980 that gave rise to it (typically extension/truncation). Make sure it
5981 is preserved as required by vt_expand_var_loc_chain. */
5982 if (preserve)
5983 preserve_value (v);
5984 goto log_and_return;
5987 if (loc == stack_pointer_rtx
5988 && hard_frame_pointer_adjustment != -1
5989 && preserve)
5990 cselib_set_value_sp_based (v);
5992 nloc = replace_expr_with_values (oloc);
5993 if (nloc)
5994 oloc = nloc;
5996 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5998 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6000 gcc_assert (oval != v);
6001 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6003 if (oval && !cselib_preserved_value_p (oval))
6005 micro_operation moa;
6007 preserve_value (oval);
6009 moa.type = MO_VAL_USE;
6010 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6011 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6012 moa.insn = cui->insn;
6014 if (dump_file && (dump_flags & TDF_DETAILS))
6015 log_op_type (moa.u.loc, cui->bb, cui->insn,
6016 moa.type, dump_file);
6017 VTI (bb)->mos.safe_push (moa);
6020 resolve = false;
6022 else if (resolve && GET_CODE (mo.u.loc) == SET)
6024 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6025 nloc = replace_expr_with_values (SET_SRC (expr));
6026 else
6027 nloc = NULL_RTX;
6029 /* Avoid the mode mismatch between oexpr and expr. */
6030 if (!nloc && mode != mode2)
6032 nloc = SET_SRC (expr);
6033 gcc_assert (oloc == SET_DEST (expr));
6036 if (nloc && nloc != SET_SRC (mo.u.loc))
6037 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6038 else
6040 if (oloc == SET_DEST (mo.u.loc))
6041 /* No point in duplicating. */
6042 oloc = mo.u.loc;
6043 if (!REG_P (SET_SRC (mo.u.loc)))
6044 resolve = false;
6047 else if (!resolve)
6049 if (GET_CODE (mo.u.loc) == SET
6050 && oloc == SET_DEST (mo.u.loc))
6051 /* No point in duplicating. */
6052 oloc = mo.u.loc;
6054 else
6055 resolve = false;
6057 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6059 if (mo.u.loc != oloc)
6060 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6062 /* The loc of a MO_VAL_SET may have various forms:
6064 (concat val dst): dst now holds val
6066 (concat val (set dst src)): dst now holds val, copied from src
6068 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6069 after replacing mems and non-top-level regs with values.
6071 (concat (concat val dstv) (set dst src)): dst now holds val,
6072 copied from src. dstv is a value-based representation of dst, if
6073 it differs from dst. If resolution is needed, src is a REG, and
6074 its mode is the same as that of val.
6076 (concat (concat val (set dstv srcv)) (set dst src)): src
6077 copied to dst, holding val. dstv and srcv are value-based
6078 representations of dst and src, respectively.
6082 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6083 reverse_op (v->val_rtx, expr, cui->insn);
6085 mo.u.loc = loc;
6087 if (track_p)
6088 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6089 if (preserve)
6091 VAL_NEEDS_RESOLUTION (loc) = resolve;
6092 preserve_value (v);
6094 if (mo.type == MO_CLOBBER)
6095 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6096 if (mo.type == MO_COPY)
6097 VAL_EXPR_IS_COPIED (loc) = 1;
6099 mo.type = MO_VAL_SET;
6101 log_and_return:
6102 if (dump_file && (dump_flags & TDF_DETAILS))
6103 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6104 VTI (bb)->mos.safe_push (mo);
6107 /* Arguments to the call. */
6108 static rtx call_arguments;
6110 /* Compute call_arguments. */
6112 static void
6113 prepare_call_arguments (basic_block bb, rtx insn)
6115 rtx link, x, call;
6116 rtx prev, cur, next;
6117 rtx this_arg = NULL_RTX;
6118 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6119 tree obj_type_ref = NULL_TREE;
6120 CUMULATIVE_ARGS args_so_far_v;
6121 cumulative_args_t args_so_far;
6123 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6124 args_so_far = pack_cumulative_args (&args_so_far_v);
6125 call = get_call_rtx_from (insn);
6126 if (call)
6128 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6130 rtx symbol = XEXP (XEXP (call, 0), 0);
6131 if (SYMBOL_REF_DECL (symbol))
6132 fndecl = SYMBOL_REF_DECL (symbol);
6134 if (fndecl == NULL_TREE)
6135 fndecl = MEM_EXPR (XEXP (call, 0));
6136 if (fndecl
6137 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6138 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6139 fndecl = NULL_TREE;
6140 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6141 type = TREE_TYPE (fndecl);
6142 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6144 if (TREE_CODE (fndecl) == INDIRECT_REF
6145 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6146 obj_type_ref = TREE_OPERAND (fndecl, 0);
6147 fndecl = NULL_TREE;
6149 if (type)
6151 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6152 t = TREE_CHAIN (t))
6153 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6154 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6155 break;
6156 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6157 type = NULL;
6158 else
6160 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6161 link = CALL_INSN_FUNCTION_USAGE (insn);
6162 #ifndef PCC_STATIC_STRUCT_RETURN
6163 if (aggregate_value_p (TREE_TYPE (type), type)
6164 && targetm.calls.struct_value_rtx (type, 0) == 0)
6166 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6167 enum machine_mode mode = TYPE_MODE (struct_addr);
6168 rtx reg;
6169 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6170 nargs + 1);
6171 reg = targetm.calls.function_arg (args_so_far, mode,
6172 struct_addr, true);
6173 targetm.calls.function_arg_advance (args_so_far, mode,
6174 struct_addr, true);
6175 if (reg == NULL_RTX)
6177 for (; link; link = XEXP (link, 1))
6178 if (GET_CODE (XEXP (link, 0)) == USE
6179 && MEM_P (XEXP (XEXP (link, 0), 0)))
6181 link = XEXP (link, 1);
6182 break;
6186 else
6187 #endif
6188 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6189 nargs);
6190 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6192 enum machine_mode mode;
6193 t = TYPE_ARG_TYPES (type);
6194 mode = TYPE_MODE (TREE_VALUE (t));
6195 this_arg = targetm.calls.function_arg (args_so_far, mode,
6196 TREE_VALUE (t), true);
6197 if (this_arg && !REG_P (this_arg))
6198 this_arg = NULL_RTX;
6199 else if (this_arg == NULL_RTX)
6201 for (; link; link = XEXP (link, 1))
6202 if (GET_CODE (XEXP (link, 0)) == USE
6203 && MEM_P (XEXP (XEXP (link, 0), 0)))
6205 this_arg = XEXP (XEXP (link, 0), 0);
6206 break;
6213 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6215 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6216 if (GET_CODE (XEXP (link, 0)) == USE)
6218 rtx item = NULL_RTX;
6219 x = XEXP (XEXP (link, 0), 0);
6220 if (GET_MODE (link) == VOIDmode
6221 || GET_MODE (link) == BLKmode
6222 || (GET_MODE (link) != GET_MODE (x)
6223 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6224 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6225 /* Can't do anything for these, if the original type mode
6226 isn't known or can't be converted. */;
6227 else if (REG_P (x))
6229 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6230 if (val && cselib_preserved_value_p (val))
6231 item = val->val_rtx;
6232 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6234 enum machine_mode mode = GET_MODE (x);
6236 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6237 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6239 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6241 if (reg == NULL_RTX || !REG_P (reg))
6242 continue;
6243 val = cselib_lookup (reg, mode, 0, VOIDmode);
6244 if (val && cselib_preserved_value_p (val))
6246 item = val->val_rtx;
6247 break;
6252 else if (MEM_P (x))
6254 rtx mem = x;
6255 cselib_val *val;
6257 if (!frame_pointer_needed)
6259 struct adjust_mem_data amd;
6260 amd.mem_mode = VOIDmode;
6261 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6262 amd.side_effects = NULL_RTX;
6263 amd.store = true;
6264 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6265 &amd);
6266 gcc_assert (amd.side_effects == NULL_RTX);
6268 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6269 if (val && cselib_preserved_value_p (val))
6270 item = val->val_rtx;
6271 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6273 /* For non-integer stack argument see also if they weren't
6274 initialized by integers. */
6275 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6276 if (imode != GET_MODE (mem) && imode != BLKmode)
6278 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6279 imode, 0, VOIDmode);
6280 if (val && cselib_preserved_value_p (val))
6281 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6282 imode);
6286 if (item)
6288 rtx x2 = x;
6289 if (GET_MODE (item) != GET_MODE (link))
6290 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6291 if (GET_MODE (x2) != GET_MODE (link))
6292 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6293 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6294 call_arguments
6295 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6297 if (t && t != void_list_node)
6299 tree argtype = TREE_VALUE (t);
6300 enum machine_mode mode = TYPE_MODE (argtype);
6301 rtx reg;
6302 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6304 argtype = build_pointer_type (argtype);
6305 mode = TYPE_MODE (argtype);
6307 reg = targetm.calls.function_arg (args_so_far, mode,
6308 argtype, true);
6309 if (TREE_CODE (argtype) == REFERENCE_TYPE
6310 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6311 && reg
6312 && REG_P (reg)
6313 && GET_MODE (reg) == mode
6314 && GET_MODE_CLASS (mode) == MODE_INT
6315 && REG_P (x)
6316 && REGNO (x) == REGNO (reg)
6317 && GET_MODE (x) == mode
6318 && item)
6320 enum machine_mode indmode
6321 = TYPE_MODE (TREE_TYPE (argtype));
6322 rtx mem = gen_rtx_MEM (indmode, x);
6323 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6324 if (val && cselib_preserved_value_p (val))
6326 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6327 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6328 call_arguments);
6330 else
6332 struct elt_loc_list *l;
6333 tree initial;
6335 /* Try harder, when passing address of a constant
6336 pool integer it can be easily read back. */
6337 item = XEXP (item, 1);
6338 if (GET_CODE (item) == SUBREG)
6339 item = SUBREG_REG (item);
6340 gcc_assert (GET_CODE (item) == VALUE);
6341 val = CSELIB_VAL_PTR (item);
6342 for (l = val->locs; l; l = l->next)
6343 if (GET_CODE (l->loc) == SYMBOL_REF
6344 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6345 && SYMBOL_REF_DECL (l->loc)
6346 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6348 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6349 if (tree_fits_shwi_p (initial))
6351 item = GEN_INT (tree_to_shwi (initial));
6352 item = gen_rtx_CONCAT (indmode, mem, item);
6353 call_arguments
6354 = gen_rtx_EXPR_LIST (VOIDmode, item,
6355 call_arguments);
6357 break;
6361 targetm.calls.function_arg_advance (args_so_far, mode,
6362 argtype, true);
6363 t = TREE_CHAIN (t);
6367 /* Add debug arguments. */
6368 if (fndecl
6369 && TREE_CODE (fndecl) == FUNCTION_DECL
6370 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6372 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6373 if (debug_args)
6375 unsigned int ix;
6376 tree param;
6377 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6379 rtx item;
6380 tree dtemp = (**debug_args)[ix + 1];
6381 enum machine_mode mode = DECL_MODE (dtemp);
6382 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6383 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6384 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6385 call_arguments);
6390 /* Reverse call_arguments chain. */
6391 prev = NULL_RTX;
6392 for (cur = call_arguments; cur; cur = next)
6394 next = XEXP (cur, 1);
6395 XEXP (cur, 1) = prev;
6396 prev = cur;
6398 call_arguments = prev;
6400 x = get_call_rtx_from (insn);
6401 if (x)
6403 x = XEXP (XEXP (x, 0), 0);
6404 if (GET_CODE (x) == SYMBOL_REF)
6405 /* Don't record anything. */;
6406 else if (CONSTANT_P (x))
6408 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6409 pc_rtx, x);
6410 call_arguments
6411 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6413 else
6415 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6416 if (val && cselib_preserved_value_p (val))
6418 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6419 call_arguments
6420 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6424 if (this_arg)
6426 enum machine_mode mode
6427 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6428 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6429 HOST_WIDE_INT token
6430 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6431 if (token)
6432 clobbered = plus_constant (mode, clobbered,
6433 token * GET_MODE_SIZE (mode));
6434 clobbered = gen_rtx_MEM (mode, clobbered);
6435 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6436 call_arguments
6437 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6441 /* Callback for cselib_record_sets_hook, that records as micro
6442 operations uses and stores in an insn after cselib_record_sets has
6443 analyzed the sets in an insn, but before it modifies the stored
6444 values in the internal tables, unless cselib_record_sets doesn't
6445 call it directly (perhaps because we're not doing cselib in the
6446 first place, in which case sets and n_sets will be 0). */
6448 static void
6449 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6451 basic_block bb = BLOCK_FOR_INSN (insn);
6452 int n1, n2;
6453 struct count_use_info cui;
6454 micro_operation *mos;
6456 cselib_hook_called = true;
6458 cui.insn = insn;
6459 cui.bb = bb;
6460 cui.sets = sets;
6461 cui.n_sets = n_sets;
6463 n1 = VTI (bb)->mos.length ();
6464 cui.store_p = false;
6465 note_uses (&PATTERN (insn), add_uses_1, &cui);
6466 n2 = VTI (bb)->mos.length () - 1;
6467 mos = VTI (bb)->mos.address ();
6469 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6470 MO_VAL_LOC last. */
6471 while (n1 < n2)
6473 while (n1 < n2 && mos[n1].type == MO_USE)
6474 n1++;
6475 while (n1 < n2 && mos[n2].type != MO_USE)
6476 n2--;
6477 if (n1 < n2)
6479 micro_operation sw;
6481 sw = mos[n1];
6482 mos[n1] = mos[n2];
6483 mos[n2] = sw;
6487 n2 = VTI (bb)->mos.length () - 1;
6488 while (n1 < n2)
6490 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6491 n1++;
6492 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6493 n2--;
6494 if (n1 < n2)
6496 micro_operation sw;
6498 sw = mos[n1];
6499 mos[n1] = mos[n2];
6500 mos[n2] = sw;
6504 if (CALL_P (insn))
6506 micro_operation mo;
6508 mo.type = MO_CALL;
6509 mo.insn = insn;
6510 mo.u.loc = call_arguments;
6511 call_arguments = NULL_RTX;
6513 if (dump_file && (dump_flags & TDF_DETAILS))
6514 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6515 VTI (bb)->mos.safe_push (mo);
6518 n1 = VTI (bb)->mos.length ();
6519 /* This will record NEXT_INSN (insn), such that we can
6520 insert notes before it without worrying about any
6521 notes that MO_USEs might emit after the insn. */
6522 cui.store_p = true;
6523 note_stores (PATTERN (insn), add_stores, &cui);
6524 n2 = VTI (bb)->mos.length () - 1;
6525 mos = VTI (bb)->mos.address ();
6527 /* Order the MO_VAL_USEs first (note_stores does nothing
6528 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6529 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6530 while (n1 < n2)
6532 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6533 n1++;
6534 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6535 n2--;
6536 if (n1 < n2)
6538 micro_operation sw;
6540 sw = mos[n1];
6541 mos[n1] = mos[n2];
6542 mos[n2] = sw;
6546 n2 = VTI (bb)->mos.length () - 1;
6547 while (n1 < n2)
6549 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6550 n1++;
6551 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6552 n2--;
6553 if (n1 < n2)
6555 micro_operation sw;
6557 sw = mos[n1];
6558 mos[n1] = mos[n2];
6559 mos[n2] = sw;
6564 static enum var_init_status
6565 find_src_status (dataflow_set *in, rtx src)
6567 tree decl = NULL_TREE;
6568 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6570 if (! flag_var_tracking_uninit)
6571 status = VAR_INIT_STATUS_INITIALIZED;
6573 if (src && REG_P (src))
6574 decl = var_debug_decl (REG_EXPR (src));
6575 else if (src && MEM_P (src))
6576 decl = var_debug_decl (MEM_EXPR (src));
6578 if (src && decl)
6579 status = get_init_value (in, src, dv_from_decl (decl));
6581 return status;
6584 /* SRC is the source of an assignment. Use SET to try to find what
6585 was ultimately assigned to SRC. Return that value if known,
6586 otherwise return SRC itself. */
6588 static rtx
6589 find_src_set_src (dataflow_set *set, rtx src)
6591 tree decl = NULL_TREE; /* The variable being copied around. */
6592 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6593 variable var;
6594 location_chain nextp;
6595 int i;
6596 bool found;
6598 if (src && REG_P (src))
6599 decl = var_debug_decl (REG_EXPR (src));
6600 else if (src && MEM_P (src))
6601 decl = var_debug_decl (MEM_EXPR (src));
6603 if (src && decl)
6605 decl_or_value dv = dv_from_decl (decl);
6607 var = shared_hash_find (set->vars, dv);
6608 if (var)
6610 found = false;
6611 for (i = 0; i < var->n_var_parts && !found; i++)
6612 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6613 nextp = nextp->next)
6614 if (rtx_equal_p (nextp->loc, src))
6616 set_src = nextp->set_src;
6617 found = true;
6623 return set_src;
6626 /* Compute the changes of variable locations in the basic block BB. */
6628 static bool
6629 compute_bb_dataflow (basic_block bb)
6631 unsigned int i;
6632 micro_operation *mo;
6633 bool changed;
6634 dataflow_set old_out;
6635 dataflow_set *in = &VTI (bb)->in;
6636 dataflow_set *out = &VTI (bb)->out;
6638 dataflow_set_init (&old_out);
6639 dataflow_set_copy (&old_out, out);
6640 dataflow_set_copy (out, in);
6642 if (MAY_HAVE_DEBUG_INSNS)
6643 local_get_addr_cache = pointer_map_create ();
6645 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6647 rtx insn = mo->insn;
6649 switch (mo->type)
6651 case MO_CALL:
6652 dataflow_set_clear_at_call (out);
6653 break;
6655 case MO_USE:
6657 rtx loc = mo->u.loc;
6659 if (REG_P (loc))
6660 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6661 else if (MEM_P (loc))
6662 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6664 break;
6666 case MO_VAL_LOC:
6668 rtx loc = mo->u.loc;
6669 rtx val, vloc;
6670 tree var;
6672 if (GET_CODE (loc) == CONCAT)
6674 val = XEXP (loc, 0);
6675 vloc = XEXP (loc, 1);
6677 else
6679 val = NULL_RTX;
6680 vloc = loc;
6683 var = PAT_VAR_LOCATION_DECL (vloc);
6685 clobber_variable_part (out, NULL_RTX,
6686 dv_from_decl (var), 0, NULL_RTX);
6687 if (val)
6689 if (VAL_NEEDS_RESOLUTION (loc))
6690 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6691 set_variable_part (out, val, dv_from_decl (var), 0,
6692 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6693 INSERT);
6695 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6696 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6697 dv_from_decl (var), 0,
6698 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6699 INSERT);
6701 break;
6703 case MO_VAL_USE:
6705 rtx loc = mo->u.loc;
6706 rtx val, vloc, uloc;
6708 vloc = uloc = XEXP (loc, 1);
6709 val = XEXP (loc, 0);
6711 if (GET_CODE (val) == CONCAT)
6713 uloc = XEXP (val, 1);
6714 val = XEXP (val, 0);
6717 if (VAL_NEEDS_RESOLUTION (loc))
6718 val_resolve (out, val, vloc, insn);
6719 else
6720 val_store (out, val, uloc, insn, false);
6722 if (VAL_HOLDS_TRACK_EXPR (loc))
6724 if (GET_CODE (uloc) == REG)
6725 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6726 NULL);
6727 else if (GET_CODE (uloc) == MEM)
6728 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6729 NULL);
6732 break;
6734 case MO_VAL_SET:
6736 rtx loc = mo->u.loc;
6737 rtx val, vloc, uloc;
6738 rtx dstv, srcv;
6740 vloc = loc;
6741 uloc = XEXP (vloc, 1);
6742 val = XEXP (vloc, 0);
6743 vloc = uloc;
6745 if (GET_CODE (uloc) == SET)
6747 dstv = SET_DEST (uloc);
6748 srcv = SET_SRC (uloc);
6750 else
6752 dstv = uloc;
6753 srcv = NULL;
6756 if (GET_CODE (val) == CONCAT)
6758 dstv = vloc = XEXP (val, 1);
6759 val = XEXP (val, 0);
6762 if (GET_CODE (vloc) == SET)
6764 srcv = SET_SRC (vloc);
6766 gcc_assert (val != srcv);
6767 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6769 dstv = vloc = SET_DEST (vloc);
6771 if (VAL_NEEDS_RESOLUTION (loc))
6772 val_resolve (out, val, srcv, insn);
6774 else if (VAL_NEEDS_RESOLUTION (loc))
6776 gcc_assert (GET_CODE (uloc) == SET
6777 && GET_CODE (SET_SRC (uloc)) == REG);
6778 val_resolve (out, val, SET_SRC (uloc), insn);
6781 if (VAL_HOLDS_TRACK_EXPR (loc))
6783 if (VAL_EXPR_IS_CLOBBERED (loc))
6785 if (REG_P (uloc))
6786 var_reg_delete (out, uloc, true);
6787 else if (MEM_P (uloc))
6789 gcc_assert (MEM_P (dstv));
6790 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6791 var_mem_delete (out, dstv, true);
6794 else
6796 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6797 rtx src = NULL, dst = uloc;
6798 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6800 if (GET_CODE (uloc) == SET)
6802 src = SET_SRC (uloc);
6803 dst = SET_DEST (uloc);
6806 if (copied_p)
6808 if (flag_var_tracking_uninit)
6810 status = find_src_status (in, src);
6812 if (status == VAR_INIT_STATUS_UNKNOWN)
6813 status = find_src_status (out, src);
6816 src = find_src_set_src (in, src);
6819 if (REG_P (dst))
6820 var_reg_delete_and_set (out, dst, !copied_p,
6821 status, srcv);
6822 else if (MEM_P (dst))
6824 gcc_assert (MEM_P (dstv));
6825 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6826 var_mem_delete_and_set (out, dstv, !copied_p,
6827 status, srcv);
6831 else if (REG_P (uloc))
6832 var_regno_delete (out, REGNO (uloc));
6833 else if (MEM_P (uloc))
6835 gcc_checking_assert (GET_CODE (vloc) == MEM);
6836 gcc_checking_assert (dstv == vloc);
6837 if (dstv != vloc)
6838 clobber_overlapping_mems (out, vloc);
6841 val_store (out, val, dstv, insn, true);
6843 break;
6845 case MO_SET:
6847 rtx loc = mo->u.loc;
6848 rtx set_src = NULL;
6850 if (GET_CODE (loc) == SET)
6852 set_src = SET_SRC (loc);
6853 loc = SET_DEST (loc);
6856 if (REG_P (loc))
6857 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6858 set_src);
6859 else if (MEM_P (loc))
6860 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6861 set_src);
6863 break;
6865 case MO_COPY:
6867 rtx loc = mo->u.loc;
6868 enum var_init_status src_status;
6869 rtx set_src = NULL;
6871 if (GET_CODE (loc) == SET)
6873 set_src = SET_SRC (loc);
6874 loc = SET_DEST (loc);
6877 if (! flag_var_tracking_uninit)
6878 src_status = VAR_INIT_STATUS_INITIALIZED;
6879 else
6881 src_status = find_src_status (in, set_src);
6883 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6884 src_status = find_src_status (out, set_src);
6887 set_src = find_src_set_src (in, set_src);
6889 if (REG_P (loc))
6890 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6891 else if (MEM_P (loc))
6892 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6894 break;
6896 case MO_USE_NO_VAR:
6898 rtx loc = mo->u.loc;
6900 if (REG_P (loc))
6901 var_reg_delete (out, loc, false);
6902 else if (MEM_P (loc))
6903 var_mem_delete (out, loc, false);
6905 break;
6907 case MO_CLOBBER:
6909 rtx loc = mo->u.loc;
6911 if (REG_P (loc))
6912 var_reg_delete (out, loc, true);
6913 else if (MEM_P (loc))
6914 var_mem_delete (out, loc, true);
6916 break;
6918 case MO_ADJUST:
6919 out->stack_adjust += mo->u.adjust;
6920 break;
6924 if (MAY_HAVE_DEBUG_INSNS)
6926 pointer_map_destroy (local_get_addr_cache);
6927 local_get_addr_cache = NULL;
6929 dataflow_set_equiv_regs (out);
6930 shared_hash_htab (out->vars)
6931 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6932 shared_hash_htab (out->vars)
6933 .traverse <dataflow_set *, canonicalize_values_star> (out);
6934 #if ENABLE_CHECKING
6935 shared_hash_htab (out->vars)
6936 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6937 #endif
6939 changed = dataflow_set_different (&old_out, out);
6940 dataflow_set_destroy (&old_out);
6941 return changed;
6944 /* Find the locations of variables in the whole function. */
6946 static bool
6947 vt_find_locations (void)
6949 fibheap_t worklist, pending, fibheap_swap;
6950 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6951 basic_block bb;
6952 edge e;
6953 int *bb_order;
6954 int *rc_order;
6955 int i;
6956 int htabsz = 0;
6957 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6958 bool success = true;
6960 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6961 /* Compute reverse completion order of depth first search of the CFG
6962 so that the data-flow runs faster. */
6963 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6964 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6965 pre_and_rev_post_order_compute (NULL, rc_order, false);
6966 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6967 bb_order[rc_order[i]] = i;
6968 free (rc_order);
6970 worklist = fibheap_new ();
6971 pending = fibheap_new ();
6972 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6973 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6974 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6975 bitmap_clear (in_worklist);
6977 FOR_EACH_BB_FN (bb, cfun)
6978 fibheap_insert (pending, bb_order[bb->index], bb);
6979 bitmap_ones (in_pending);
6981 while (success && !fibheap_empty (pending))
6983 fibheap_swap = pending;
6984 pending = worklist;
6985 worklist = fibheap_swap;
6986 sbitmap_swap = in_pending;
6987 in_pending = in_worklist;
6988 in_worklist = sbitmap_swap;
6990 bitmap_clear (visited);
6992 while (!fibheap_empty (worklist))
6994 bb = (basic_block) fibheap_extract_min (worklist);
6995 bitmap_clear_bit (in_worklist, bb->index);
6996 gcc_assert (!bitmap_bit_p (visited, bb->index));
6997 if (!bitmap_bit_p (visited, bb->index))
6999 bool changed;
7000 edge_iterator ei;
7001 int oldinsz, oldoutsz;
7003 bitmap_set_bit (visited, bb->index);
7005 if (VTI (bb)->in.vars)
7007 htabsz
7008 -= shared_hash_htab (VTI (bb)->in.vars).size ()
7009 + shared_hash_htab (VTI (bb)->out.vars).size ();
7010 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
7011 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
7013 else
7014 oldinsz = oldoutsz = 0;
7016 if (MAY_HAVE_DEBUG_INSNS)
7018 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7019 bool first = true, adjust = false;
7021 /* Calculate the IN set as the intersection of
7022 predecessor OUT sets. */
7024 dataflow_set_clear (in);
7025 dst_can_be_shared = true;
7027 FOR_EACH_EDGE (e, ei, bb->preds)
7028 if (!VTI (e->src)->flooded)
7029 gcc_assert (bb_order[bb->index]
7030 <= bb_order[e->src->index]);
7031 else if (first)
7033 dataflow_set_copy (in, &VTI (e->src)->out);
7034 first_out = &VTI (e->src)->out;
7035 first = false;
7037 else
7039 dataflow_set_merge (in, &VTI (e->src)->out);
7040 adjust = true;
7043 if (adjust)
7045 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7046 #if ENABLE_CHECKING
7047 /* Merge and merge_adjust should keep entries in
7048 canonical order. */
7049 shared_hash_htab (in->vars)
7050 .traverse <dataflow_set *,
7051 canonicalize_loc_order_check> (in);
7052 #endif
7053 if (dst_can_be_shared)
7055 shared_hash_destroy (in->vars);
7056 in->vars = shared_hash_copy (first_out->vars);
7060 VTI (bb)->flooded = true;
7062 else
7064 /* Calculate the IN set as union of predecessor OUT sets. */
7065 dataflow_set_clear (&VTI (bb)->in);
7066 FOR_EACH_EDGE (e, ei, bb->preds)
7067 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7070 changed = compute_bb_dataflow (bb);
7071 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7072 + shared_hash_htab (VTI (bb)->out.vars).size ();
7074 if (htabmax && htabsz > htabmax)
7076 if (MAY_HAVE_DEBUG_INSNS)
7077 inform (DECL_SOURCE_LOCATION (cfun->decl),
7078 "variable tracking size limit exceeded with "
7079 "-fvar-tracking-assignments, retrying without");
7080 else
7081 inform (DECL_SOURCE_LOCATION (cfun->decl),
7082 "variable tracking size limit exceeded");
7083 success = false;
7084 break;
7087 if (changed)
7089 FOR_EACH_EDGE (e, ei, bb->succs)
7091 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7092 continue;
7094 if (bitmap_bit_p (visited, e->dest->index))
7096 if (!bitmap_bit_p (in_pending, e->dest->index))
7098 /* Send E->DEST to next round. */
7099 bitmap_set_bit (in_pending, e->dest->index);
7100 fibheap_insert (pending,
7101 bb_order[e->dest->index],
7102 e->dest);
7105 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7107 /* Add E->DEST to current round. */
7108 bitmap_set_bit (in_worklist, e->dest->index);
7109 fibheap_insert (worklist, bb_order[e->dest->index],
7110 e->dest);
7115 if (dump_file)
7116 fprintf (dump_file,
7117 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7118 bb->index,
7119 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7120 oldinsz,
7121 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7122 oldoutsz,
7123 (int)worklist->nodes, (int)pending->nodes, htabsz);
7125 if (dump_file && (dump_flags & TDF_DETAILS))
7127 fprintf (dump_file, "BB %i IN:\n", bb->index);
7128 dump_dataflow_set (&VTI (bb)->in);
7129 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7130 dump_dataflow_set (&VTI (bb)->out);
7136 if (success && MAY_HAVE_DEBUG_INSNS)
7137 FOR_EACH_BB_FN (bb, cfun)
7138 gcc_assert (VTI (bb)->flooded);
7140 free (bb_order);
7141 fibheap_delete (worklist);
7142 fibheap_delete (pending);
7143 sbitmap_free (visited);
7144 sbitmap_free (in_worklist);
7145 sbitmap_free (in_pending);
7147 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7148 return success;
7151 /* Print the content of the LIST to dump file. */
7153 static void
7154 dump_attrs_list (attrs list)
7156 for (; list; list = list->next)
7158 if (dv_is_decl_p (list->dv))
7159 print_mem_expr (dump_file, dv_as_decl (list->dv));
7160 else
7161 print_rtl_single (dump_file, dv_as_value (list->dv));
7162 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7164 fprintf (dump_file, "\n");
7167 /* Print the information about variable *SLOT to dump file. */
7170 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7172 variable var = *slot;
7174 dump_var (var);
7176 /* Continue traversing the hash table. */
7177 return 1;
7180 /* Print the information about variable VAR to dump file. */
7182 static void
7183 dump_var (variable var)
7185 int i;
7186 location_chain node;
7188 if (dv_is_decl_p (var->dv))
7190 const_tree decl = dv_as_decl (var->dv);
7192 if (DECL_NAME (decl))
7194 fprintf (dump_file, " name: %s",
7195 IDENTIFIER_POINTER (DECL_NAME (decl)));
7196 if (dump_flags & TDF_UID)
7197 fprintf (dump_file, "D.%u", DECL_UID (decl));
7199 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7200 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7201 else
7202 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7203 fprintf (dump_file, "\n");
7205 else
7207 fputc (' ', dump_file);
7208 print_rtl_single (dump_file, dv_as_value (var->dv));
7211 for (i = 0; i < var->n_var_parts; i++)
7213 fprintf (dump_file, " offset %ld\n",
7214 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7215 for (node = var->var_part[i].loc_chain; node; node = node->next)
7217 fprintf (dump_file, " ");
7218 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7219 fprintf (dump_file, "[uninit]");
7220 print_rtl_single (dump_file, node->loc);
7225 /* Print the information about variables from hash table VARS to dump file. */
7227 static void
7228 dump_vars (variable_table_type vars)
7230 if (vars.elements () > 0)
7232 fprintf (dump_file, "Variables:\n");
7233 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7237 /* Print the dataflow set SET to dump file. */
7239 static void
7240 dump_dataflow_set (dataflow_set *set)
7242 int i;
7244 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7245 set->stack_adjust);
7246 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7248 if (set->regs[i])
7250 fprintf (dump_file, "Reg %d:", i);
7251 dump_attrs_list (set->regs[i]);
7254 dump_vars (shared_hash_htab (set->vars));
7255 fprintf (dump_file, "\n");
7258 /* Print the IN and OUT sets for each basic block to dump file. */
7260 static void
7261 dump_dataflow_sets (void)
7263 basic_block bb;
7265 FOR_EACH_BB_FN (bb, cfun)
7267 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7268 fprintf (dump_file, "IN:\n");
7269 dump_dataflow_set (&VTI (bb)->in);
7270 fprintf (dump_file, "OUT:\n");
7271 dump_dataflow_set (&VTI (bb)->out);
7275 /* Return the variable for DV in dropped_values, inserting one if
7276 requested with INSERT. */
7278 static inline variable
7279 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7281 variable_def **slot;
7282 variable empty_var;
7283 onepart_enum_t onepart;
7285 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7287 if (!slot)
7288 return NULL;
7290 if (*slot)
7291 return *slot;
7293 gcc_checking_assert (insert == INSERT);
7295 onepart = dv_onepart_p (dv);
7297 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7299 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7300 empty_var->dv = dv;
7301 empty_var->refcount = 1;
7302 empty_var->n_var_parts = 0;
7303 empty_var->onepart = onepart;
7304 empty_var->in_changed_variables = false;
7305 empty_var->var_part[0].loc_chain = NULL;
7306 empty_var->var_part[0].cur_loc = NULL;
7307 VAR_LOC_1PAUX (empty_var) = NULL;
7308 set_dv_changed (dv, true);
7310 *slot = empty_var;
7312 return empty_var;
7315 /* Recover the one-part aux from dropped_values. */
7317 static struct onepart_aux *
7318 recover_dropped_1paux (variable var)
7320 variable dvar;
7322 gcc_checking_assert (var->onepart);
7324 if (VAR_LOC_1PAUX (var))
7325 return VAR_LOC_1PAUX (var);
7327 if (var->onepart == ONEPART_VDECL)
7328 return NULL;
7330 dvar = variable_from_dropped (var->dv, NO_INSERT);
7332 if (!dvar)
7333 return NULL;
7335 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7336 VAR_LOC_1PAUX (dvar) = NULL;
7338 return VAR_LOC_1PAUX (var);
7341 /* Add variable VAR to the hash table of changed variables and
7342 if it has no locations delete it from SET's hash table. */
7344 static void
7345 variable_was_changed (variable var, dataflow_set *set)
7347 hashval_t hash = dv_htab_hash (var->dv);
7349 if (emit_notes)
7351 variable_def **slot;
7353 /* Remember this decl or VALUE has been added to changed_variables. */
7354 set_dv_changed (var->dv, true);
7356 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7358 if (*slot)
7360 variable old_var = *slot;
7361 gcc_assert (old_var->in_changed_variables);
7362 old_var->in_changed_variables = false;
7363 if (var != old_var && var->onepart)
7365 /* Restore the auxiliary info from an empty variable
7366 previously created for changed_variables, so it is
7367 not lost. */
7368 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7369 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7370 VAR_LOC_1PAUX (old_var) = NULL;
7372 variable_htab_free (*slot);
7375 if (set && var->n_var_parts == 0)
7377 onepart_enum_t onepart = var->onepart;
7378 variable empty_var = NULL;
7379 variable_def **dslot = NULL;
7381 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7383 dslot = dropped_values.find_slot_with_hash (var->dv,
7384 dv_htab_hash (var->dv),
7385 INSERT);
7386 empty_var = *dslot;
7388 if (empty_var)
7390 gcc_checking_assert (!empty_var->in_changed_variables);
7391 if (!VAR_LOC_1PAUX (var))
7393 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7394 VAR_LOC_1PAUX (empty_var) = NULL;
7396 else
7397 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7401 if (!empty_var)
7403 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7404 empty_var->dv = var->dv;
7405 empty_var->refcount = 1;
7406 empty_var->n_var_parts = 0;
7407 empty_var->onepart = onepart;
7408 if (dslot)
7410 empty_var->refcount++;
7411 *dslot = empty_var;
7414 else
7415 empty_var->refcount++;
7416 empty_var->in_changed_variables = true;
7417 *slot = empty_var;
7418 if (onepart)
7420 empty_var->var_part[0].loc_chain = NULL;
7421 empty_var->var_part[0].cur_loc = NULL;
7422 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7423 VAR_LOC_1PAUX (var) = NULL;
7425 goto drop_var;
7427 else
7429 if (var->onepart && !VAR_LOC_1PAUX (var))
7430 recover_dropped_1paux (var);
7431 var->refcount++;
7432 var->in_changed_variables = true;
7433 *slot = var;
7436 else
7438 gcc_assert (set);
7439 if (var->n_var_parts == 0)
7441 variable_def **slot;
7443 drop_var:
7444 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7445 if (slot)
7447 if (shared_hash_shared (set->vars))
7448 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7449 NO_INSERT);
7450 shared_hash_htab (set->vars).clear_slot (slot);
7456 /* Look for the index in VAR->var_part corresponding to OFFSET.
7457 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7458 referenced int will be set to the index that the part has or should
7459 have, if it should be inserted. */
7461 static inline int
7462 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7463 int *insertion_point)
7465 int pos, low, high;
7467 if (var->onepart)
7469 if (offset != 0)
7470 return -1;
7472 if (insertion_point)
7473 *insertion_point = 0;
7475 return var->n_var_parts - 1;
7478 /* Find the location part. */
7479 low = 0;
7480 high = var->n_var_parts;
7481 while (low != high)
7483 pos = (low + high) / 2;
7484 if (VAR_PART_OFFSET (var, pos) < offset)
7485 low = pos + 1;
7486 else
7487 high = pos;
7489 pos = low;
7491 if (insertion_point)
7492 *insertion_point = pos;
7494 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7495 return pos;
7497 return -1;
7500 static variable_def **
7501 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7502 decl_or_value dv, HOST_WIDE_INT offset,
7503 enum var_init_status initialized, rtx set_src)
7505 int pos;
7506 location_chain node, next;
7507 location_chain *nextp;
7508 variable var;
7509 onepart_enum_t onepart;
7511 var = *slot;
7513 if (var)
7514 onepart = var->onepart;
7515 else
7516 onepart = dv_onepart_p (dv);
7518 gcc_checking_assert (offset == 0 || !onepart);
7519 gcc_checking_assert (loc != dv_as_opaque (dv));
7521 if (! flag_var_tracking_uninit)
7522 initialized = VAR_INIT_STATUS_INITIALIZED;
7524 if (!var)
7526 /* Create new variable information. */
7527 var = (variable) pool_alloc (onepart_pool (onepart));
7528 var->dv = dv;
7529 var->refcount = 1;
7530 var->n_var_parts = 1;
7531 var->onepart = onepart;
7532 var->in_changed_variables = false;
7533 if (var->onepart)
7534 VAR_LOC_1PAUX (var) = NULL;
7535 else
7536 VAR_PART_OFFSET (var, 0) = offset;
7537 var->var_part[0].loc_chain = NULL;
7538 var->var_part[0].cur_loc = NULL;
7539 *slot = var;
7540 pos = 0;
7541 nextp = &var->var_part[0].loc_chain;
7543 else if (onepart)
7545 int r = -1, c = 0;
7547 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7549 pos = 0;
7551 if (GET_CODE (loc) == VALUE)
7553 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7554 nextp = &node->next)
7555 if (GET_CODE (node->loc) == VALUE)
7557 if (node->loc == loc)
7559 r = 0;
7560 break;
7562 if (canon_value_cmp (node->loc, loc))
7563 c++;
7564 else
7566 r = 1;
7567 break;
7570 else if (REG_P (node->loc) || MEM_P (node->loc))
7571 c++;
7572 else
7574 r = 1;
7575 break;
7578 else if (REG_P (loc))
7580 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7581 nextp = &node->next)
7582 if (REG_P (node->loc))
7584 if (REGNO (node->loc) < REGNO (loc))
7585 c++;
7586 else
7588 if (REGNO (node->loc) == REGNO (loc))
7589 r = 0;
7590 else
7591 r = 1;
7592 break;
7595 else
7597 r = 1;
7598 break;
7601 else if (MEM_P (loc))
7603 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7604 nextp = &node->next)
7605 if (REG_P (node->loc))
7606 c++;
7607 else if (MEM_P (node->loc))
7609 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7610 break;
7611 else
7612 c++;
7614 else
7616 r = 1;
7617 break;
7620 else
7621 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7622 nextp = &node->next)
7623 if ((r = loc_cmp (node->loc, loc)) >= 0)
7624 break;
7625 else
7626 c++;
7628 if (r == 0)
7629 return slot;
7631 if (shared_var_p (var, set->vars))
7633 slot = unshare_variable (set, slot, var, initialized);
7634 var = *slot;
7635 for (nextp = &var->var_part[0].loc_chain; c;
7636 nextp = &(*nextp)->next)
7637 c--;
7638 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7641 else
7643 int inspos = 0;
7645 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7647 pos = find_variable_location_part (var, offset, &inspos);
7649 if (pos >= 0)
7651 node = var->var_part[pos].loc_chain;
7653 if (node
7654 && ((REG_P (node->loc) && REG_P (loc)
7655 && REGNO (node->loc) == REGNO (loc))
7656 || rtx_equal_p (node->loc, loc)))
7658 /* LOC is in the beginning of the chain so we have nothing
7659 to do. */
7660 if (node->init < initialized)
7661 node->init = initialized;
7662 if (set_src != NULL)
7663 node->set_src = set_src;
7665 return slot;
7667 else
7669 /* We have to make a copy of a shared variable. */
7670 if (shared_var_p (var, set->vars))
7672 slot = unshare_variable (set, slot, var, initialized);
7673 var = *slot;
7677 else
7679 /* We have not found the location part, new one will be created. */
7681 /* We have to make a copy of the shared variable. */
7682 if (shared_var_p (var, set->vars))
7684 slot = unshare_variable (set, slot, var, initialized);
7685 var = *slot;
7688 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7689 thus there are at most MAX_VAR_PARTS different offsets. */
7690 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7691 && (!var->n_var_parts || !onepart));
7693 /* We have to move the elements of array starting at index
7694 inspos to the next position. */
7695 for (pos = var->n_var_parts; pos > inspos; pos--)
7696 var->var_part[pos] = var->var_part[pos - 1];
7698 var->n_var_parts++;
7699 gcc_checking_assert (!onepart);
7700 VAR_PART_OFFSET (var, pos) = offset;
7701 var->var_part[pos].loc_chain = NULL;
7702 var->var_part[pos].cur_loc = NULL;
7705 /* Delete the location from the list. */
7706 nextp = &var->var_part[pos].loc_chain;
7707 for (node = var->var_part[pos].loc_chain; node; node = next)
7709 next = node->next;
7710 if ((REG_P (node->loc) && REG_P (loc)
7711 && REGNO (node->loc) == REGNO (loc))
7712 || rtx_equal_p (node->loc, loc))
7714 /* Save these values, to assign to the new node, before
7715 deleting this one. */
7716 if (node->init > initialized)
7717 initialized = node->init;
7718 if (node->set_src != NULL && set_src == NULL)
7719 set_src = node->set_src;
7720 if (var->var_part[pos].cur_loc == node->loc)
7721 var->var_part[pos].cur_loc = NULL;
7722 pool_free (loc_chain_pool, node);
7723 *nextp = next;
7724 break;
7726 else
7727 nextp = &node->next;
7730 nextp = &var->var_part[pos].loc_chain;
7733 /* Add the location to the beginning. */
7734 node = (location_chain) pool_alloc (loc_chain_pool);
7735 node->loc = loc;
7736 node->init = initialized;
7737 node->set_src = set_src;
7738 node->next = *nextp;
7739 *nextp = node;
7741 /* If no location was emitted do so. */
7742 if (var->var_part[pos].cur_loc == NULL)
7743 variable_was_changed (var, set);
7745 return slot;
7748 /* Set the part of variable's location in the dataflow set SET. The
7749 variable part is specified by variable's declaration in DV and
7750 offset OFFSET and the part's location by LOC. IOPT should be
7751 NO_INSERT if the variable is known to be in SET already and the
7752 variable hash table must not be resized, and INSERT otherwise. */
7754 static void
7755 set_variable_part (dataflow_set *set, rtx loc,
7756 decl_or_value dv, HOST_WIDE_INT offset,
7757 enum var_init_status initialized, rtx set_src,
7758 enum insert_option iopt)
7760 variable_def **slot;
7762 if (iopt == NO_INSERT)
7763 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7764 else
7766 slot = shared_hash_find_slot (set->vars, dv);
7767 if (!slot)
7768 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7770 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7773 /* Remove all recorded register locations for the given variable part
7774 from dataflow set SET, except for those that are identical to loc.
7775 The variable part is specified by variable's declaration or value
7776 DV and offset OFFSET. */
7778 static variable_def **
7779 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7780 HOST_WIDE_INT offset, rtx set_src)
7782 variable var = *slot;
7783 int pos = find_variable_location_part (var, offset, NULL);
7785 if (pos >= 0)
7787 location_chain node, next;
7789 /* Remove the register locations from the dataflow set. */
7790 next = var->var_part[pos].loc_chain;
7791 for (node = next; node; node = next)
7793 next = node->next;
7794 if (node->loc != loc
7795 && (!flag_var_tracking_uninit
7796 || !set_src
7797 || MEM_P (set_src)
7798 || !rtx_equal_p (set_src, node->set_src)))
7800 if (REG_P (node->loc))
7802 attrs anode, anext;
7803 attrs *anextp;
7805 /* Remove the variable part from the register's
7806 list, but preserve any other variable parts
7807 that might be regarded as live in that same
7808 register. */
7809 anextp = &set->regs[REGNO (node->loc)];
7810 for (anode = *anextp; anode; anode = anext)
7812 anext = anode->next;
7813 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7814 && anode->offset == offset)
7816 pool_free (attrs_pool, anode);
7817 *anextp = anext;
7819 else
7820 anextp = &anode->next;
7824 slot = delete_slot_part (set, node->loc, slot, offset);
7829 return slot;
7832 /* Remove all recorded register locations for the given variable part
7833 from dataflow set SET, except for those that are identical to loc.
7834 The variable part is specified by variable's declaration or value
7835 DV and offset OFFSET. */
7837 static void
7838 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7839 HOST_WIDE_INT offset, rtx set_src)
7841 variable_def **slot;
7843 if (!dv_as_opaque (dv)
7844 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7845 return;
7847 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7848 if (!slot)
7849 return;
7851 clobber_slot_part (set, loc, slot, offset, set_src);
7854 /* Delete the part of variable's location from dataflow set SET. The
7855 variable part is specified by its SET->vars slot SLOT and offset
7856 OFFSET and the part's location by LOC. */
7858 static variable_def **
7859 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7860 HOST_WIDE_INT offset)
7862 variable var = *slot;
7863 int pos = find_variable_location_part (var, offset, NULL);
7865 if (pos >= 0)
7867 location_chain node, next;
7868 location_chain *nextp;
7869 bool changed;
7870 rtx cur_loc;
7872 if (shared_var_p (var, set->vars))
7874 /* If the variable contains the location part we have to
7875 make a copy of the variable. */
7876 for (node = var->var_part[pos].loc_chain; node;
7877 node = node->next)
7879 if ((REG_P (node->loc) && REG_P (loc)
7880 && REGNO (node->loc) == REGNO (loc))
7881 || rtx_equal_p (node->loc, loc))
7883 slot = unshare_variable (set, slot, var,
7884 VAR_INIT_STATUS_UNKNOWN);
7885 var = *slot;
7886 break;
7891 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7892 cur_loc = VAR_LOC_FROM (var);
7893 else
7894 cur_loc = var->var_part[pos].cur_loc;
7896 /* Delete the location part. */
7897 changed = false;
7898 nextp = &var->var_part[pos].loc_chain;
7899 for (node = *nextp; node; node = next)
7901 next = node->next;
7902 if ((REG_P (node->loc) && REG_P (loc)
7903 && REGNO (node->loc) == REGNO (loc))
7904 || rtx_equal_p (node->loc, loc))
7906 /* If we have deleted the location which was last emitted
7907 we have to emit new location so add the variable to set
7908 of changed variables. */
7909 if (cur_loc == node->loc)
7911 changed = true;
7912 var->var_part[pos].cur_loc = NULL;
7913 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7914 VAR_LOC_FROM (var) = NULL;
7916 pool_free (loc_chain_pool, node);
7917 *nextp = next;
7918 break;
7920 else
7921 nextp = &node->next;
7924 if (var->var_part[pos].loc_chain == NULL)
7926 changed = true;
7927 var->n_var_parts--;
7928 while (pos < var->n_var_parts)
7930 var->var_part[pos] = var->var_part[pos + 1];
7931 pos++;
7934 if (changed)
7935 variable_was_changed (var, set);
7938 return slot;
7941 /* Delete the part of variable's location from dataflow set SET. The
7942 variable part is specified by variable's declaration or value DV
7943 and offset OFFSET and the part's location by LOC. */
7945 static void
7946 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7947 HOST_WIDE_INT offset)
7949 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7950 if (!slot)
7951 return;
7953 delete_slot_part (set, loc, slot, offset);
7957 /* Structure for passing some other parameters to function
7958 vt_expand_loc_callback. */
7959 struct expand_loc_callback_data
7961 /* The variables and values active at this point. */
7962 variable_table_type vars;
7964 /* Stack of values and debug_exprs under expansion, and their
7965 children. */
7966 auto_vec<rtx, 4> expanding;
7968 /* Stack of values and debug_exprs whose expansion hit recursion
7969 cycles. They will have VALUE_RECURSED_INTO marked when added to
7970 this list. This flag will be cleared if any of its dependencies
7971 resolves to a valid location. So, if the flag remains set at the
7972 end of the search, we know no valid location for this one can
7973 possibly exist. */
7974 auto_vec<rtx, 4> pending;
7976 /* The maximum depth among the sub-expressions under expansion.
7977 Zero indicates no expansion so far. */
7978 expand_depth depth;
7981 /* Allocate the one-part auxiliary data structure for VAR, with enough
7982 room for COUNT dependencies. */
7984 static void
7985 loc_exp_dep_alloc (variable var, int count)
7987 size_t allocsize;
7989 gcc_checking_assert (var->onepart);
7991 /* We can be called with COUNT == 0 to allocate the data structure
7992 without any dependencies, e.g. for the backlinks only. However,
7993 if we are specifying a COUNT, then the dependency list must have
7994 been emptied before. It would be possible to adjust pointers or
7995 force it empty here, but this is better done at an earlier point
7996 in the algorithm, so we instead leave an assertion to catch
7997 errors. */
7998 gcc_checking_assert (!count
7999 || VAR_LOC_DEP_VEC (var) == NULL
8000 || VAR_LOC_DEP_VEC (var)->is_empty ());
8002 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8003 return;
8005 allocsize = offsetof (struct onepart_aux, deps)
8006 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8008 if (VAR_LOC_1PAUX (var))
8010 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8011 VAR_LOC_1PAUX (var), allocsize);
8012 /* If the reallocation moves the onepaux structure, the
8013 back-pointer to BACKLINKS in the first list member will still
8014 point to its old location. Adjust it. */
8015 if (VAR_LOC_DEP_LST (var))
8016 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8018 else
8020 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8021 *VAR_LOC_DEP_LSTP (var) = NULL;
8022 VAR_LOC_FROM (var) = NULL;
8023 VAR_LOC_DEPTH (var).complexity = 0;
8024 VAR_LOC_DEPTH (var).entryvals = 0;
8026 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8029 /* Remove all entries from the vector of active dependencies of VAR,
8030 removing them from the back-links lists too. */
8032 static void
8033 loc_exp_dep_clear (variable var)
8035 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8037 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8038 if (led->next)
8039 led->next->pprev = led->pprev;
8040 if (led->pprev)
8041 *led->pprev = led->next;
8042 VAR_LOC_DEP_VEC (var)->pop ();
8046 /* Insert an active dependency from VAR on X to the vector of
8047 dependencies, and add the corresponding back-link to X's list of
8048 back-links in VARS. */
8050 static void
8051 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8053 decl_or_value dv;
8054 variable xvar;
8055 loc_exp_dep *led;
8057 dv = dv_from_rtx (x);
8059 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8060 an additional look up? */
8061 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8063 if (!xvar)
8065 xvar = variable_from_dropped (dv, NO_INSERT);
8066 gcc_checking_assert (xvar);
8069 /* No point in adding the same backlink more than once. This may
8070 arise if say the same value appears in two complex expressions in
8071 the same loc_list, or even more than once in a single
8072 expression. */
8073 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8074 return;
8076 if (var->onepart == NOT_ONEPART)
8077 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8078 else
8080 loc_exp_dep empty;
8081 memset (&empty, 0, sizeof (empty));
8082 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8083 led = &VAR_LOC_DEP_VEC (var)->last ();
8085 led->dv = var->dv;
8086 led->value = x;
8088 loc_exp_dep_alloc (xvar, 0);
8089 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8090 led->next = *led->pprev;
8091 if (led->next)
8092 led->next->pprev = &led->next;
8093 *led->pprev = led;
8096 /* Create active dependencies of VAR on COUNT values starting at
8097 VALUE, and corresponding back-links to the entries in VARS. Return
8098 true if we found any pending-recursion results. */
8100 static bool
8101 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8102 variable_table_type vars)
8104 bool pending_recursion = false;
8106 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8107 || VAR_LOC_DEP_VEC (var)->is_empty ());
8109 /* Set up all dependencies from last_child (as set up at the end of
8110 the loop above) to the end. */
8111 loc_exp_dep_alloc (var, count);
8113 while (count--)
8115 rtx x = *value++;
8117 if (!pending_recursion)
8118 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8120 loc_exp_insert_dep (var, x, vars);
8123 return pending_recursion;
8126 /* Notify the back-links of IVAR that are pending recursion that we
8127 have found a non-NIL value for it, so they are cleared for another
8128 attempt to compute a current location. */
8130 static void
8131 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8133 loc_exp_dep *led, *next;
8135 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8137 decl_or_value dv = led->dv;
8138 variable var;
8140 next = led->next;
8142 if (dv_is_value_p (dv))
8144 rtx value = dv_as_value (dv);
8146 /* If we have already resolved it, leave it alone. */
8147 if (!VALUE_RECURSED_INTO (value))
8148 continue;
8150 /* Check that VALUE_RECURSED_INTO, true from the test above,
8151 implies NO_LOC_P. */
8152 gcc_checking_assert (NO_LOC_P (value));
8154 /* We won't notify variables that are being expanded,
8155 because their dependency list is cleared before
8156 recursing. */
8157 NO_LOC_P (value) = false;
8158 VALUE_RECURSED_INTO (value) = false;
8160 gcc_checking_assert (dv_changed_p (dv));
8162 else
8164 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8165 if (!dv_changed_p (dv))
8166 continue;
8169 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8171 if (!var)
8172 var = variable_from_dropped (dv, NO_INSERT);
8174 if (var)
8175 notify_dependents_of_resolved_value (var, vars);
8177 if (next)
8178 next->pprev = led->pprev;
8179 if (led->pprev)
8180 *led->pprev = next;
8181 led->next = NULL;
8182 led->pprev = NULL;
8186 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8187 int max_depth, void *data);
8189 /* Return the combined depth, when one sub-expression evaluated to
8190 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8192 static inline expand_depth
8193 update_depth (expand_depth saved_depth, expand_depth best_depth)
8195 /* If we didn't find anything, stick with what we had. */
8196 if (!best_depth.complexity)
8197 return saved_depth;
8199 /* If we found hadn't found anything, use the depth of the current
8200 expression. Do NOT add one extra level, we want to compute the
8201 maximum depth among sub-expressions. We'll increment it later,
8202 if appropriate. */
8203 if (!saved_depth.complexity)
8204 return best_depth;
8206 /* Combine the entryval count so that regardless of which one we
8207 return, the entryval count is accurate. */
8208 best_depth.entryvals = saved_depth.entryvals
8209 = best_depth.entryvals + saved_depth.entryvals;
8211 if (saved_depth.complexity < best_depth.complexity)
8212 return best_depth;
8213 else
8214 return saved_depth;
8217 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8218 DATA for cselib expand callback. If PENDRECP is given, indicate in
8219 it whether any sub-expression couldn't be fully evaluated because
8220 it is pending recursion resolution. */
8222 static inline rtx
8223 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8225 struct expand_loc_callback_data *elcd
8226 = (struct expand_loc_callback_data *) data;
8227 location_chain loc, next;
8228 rtx result = NULL;
8229 int first_child, result_first_child, last_child;
8230 bool pending_recursion;
8231 rtx loc_from = NULL;
8232 struct elt_loc_list *cloc = NULL;
8233 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8234 int wanted_entryvals, found_entryvals = 0;
8236 /* Clear all backlinks pointing at this, so that we're not notified
8237 while we're active. */
8238 loc_exp_dep_clear (var);
8240 retry:
8241 if (var->onepart == ONEPART_VALUE)
8243 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8245 gcc_checking_assert (cselib_preserved_value_p (val));
8247 cloc = val->locs;
8250 first_child = result_first_child = last_child
8251 = elcd->expanding.length ();
8253 wanted_entryvals = found_entryvals;
8255 /* Attempt to expand each available location in turn. */
8256 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8257 loc || cloc; loc = next)
8259 result_first_child = last_child;
8261 if (!loc)
8263 loc_from = cloc->loc;
8264 next = loc;
8265 cloc = cloc->next;
8266 if (unsuitable_loc (loc_from))
8267 continue;
8269 else
8271 loc_from = loc->loc;
8272 next = loc->next;
8275 gcc_checking_assert (!unsuitable_loc (loc_from));
8277 elcd->depth.complexity = elcd->depth.entryvals = 0;
8278 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8279 vt_expand_loc_callback, data);
8280 last_child = elcd->expanding.length ();
8282 if (result)
8284 depth = elcd->depth;
8286 gcc_checking_assert (depth.complexity
8287 || result_first_child == last_child);
8289 if (last_child - result_first_child != 1)
8291 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8292 depth.entryvals++;
8293 depth.complexity++;
8296 if (depth.complexity <= EXPR_USE_DEPTH)
8298 if (depth.entryvals <= wanted_entryvals)
8299 break;
8300 else if (!found_entryvals || depth.entryvals < found_entryvals)
8301 found_entryvals = depth.entryvals;
8304 result = NULL;
8307 /* Set it up in case we leave the loop. */
8308 depth.complexity = depth.entryvals = 0;
8309 loc_from = NULL;
8310 result_first_child = first_child;
8313 if (!loc_from && wanted_entryvals < found_entryvals)
8315 /* We found entries with ENTRY_VALUEs and skipped them. Since
8316 we could not find any expansions without ENTRY_VALUEs, but we
8317 found at least one with them, go back and get an entry with
8318 the minimum number ENTRY_VALUE count that we found. We could
8319 avoid looping, but since each sub-loc is already resolved,
8320 the re-expansion should be trivial. ??? Should we record all
8321 attempted locs as dependencies, so that we retry the
8322 expansion should any of them change, in the hope it can give
8323 us a new entry without an ENTRY_VALUE? */
8324 elcd->expanding.truncate (first_child);
8325 goto retry;
8328 /* Register all encountered dependencies as active. */
8329 pending_recursion = loc_exp_dep_set
8330 (var, result, elcd->expanding.address () + result_first_child,
8331 last_child - result_first_child, elcd->vars);
8333 elcd->expanding.truncate (first_child);
8335 /* Record where the expansion came from. */
8336 gcc_checking_assert (!result || !pending_recursion);
8337 VAR_LOC_FROM (var) = loc_from;
8338 VAR_LOC_DEPTH (var) = depth;
8340 gcc_checking_assert (!depth.complexity == !result);
8342 elcd->depth = update_depth (saved_depth, depth);
8344 /* Indicate whether any of the dependencies are pending recursion
8345 resolution. */
8346 if (pendrecp)
8347 *pendrecp = pending_recursion;
8349 if (!pendrecp || !pending_recursion)
8350 var->var_part[0].cur_loc = result;
8352 return result;
8355 /* Callback for cselib_expand_value, that looks for expressions
8356 holding the value in the var-tracking hash tables. Return X for
8357 standard processing, anything else is to be used as-is. */
8359 static rtx
8360 vt_expand_loc_callback (rtx x, bitmap regs,
8361 int max_depth ATTRIBUTE_UNUSED,
8362 void *data)
8364 struct expand_loc_callback_data *elcd
8365 = (struct expand_loc_callback_data *) data;
8366 decl_or_value dv;
8367 variable var;
8368 rtx result, subreg;
8369 bool pending_recursion = false;
8370 bool from_empty = false;
8372 switch (GET_CODE (x))
8374 case SUBREG:
8375 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8376 EXPR_DEPTH,
8377 vt_expand_loc_callback, data);
8379 if (!subreg)
8380 return NULL;
8382 result = simplify_gen_subreg (GET_MODE (x), subreg,
8383 GET_MODE (SUBREG_REG (x)),
8384 SUBREG_BYTE (x));
8386 /* Invalid SUBREGs are ok in debug info. ??? We could try
8387 alternate expansions for the VALUE as well. */
8388 if (!result)
8389 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8391 return result;
8393 case DEBUG_EXPR:
8394 case VALUE:
8395 dv = dv_from_rtx (x);
8396 break;
8398 default:
8399 return x;
8402 elcd->expanding.safe_push (x);
8404 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8405 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8407 if (NO_LOC_P (x))
8409 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8410 return NULL;
8413 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8415 if (!var)
8417 from_empty = true;
8418 var = variable_from_dropped (dv, INSERT);
8421 gcc_checking_assert (var);
8423 if (!dv_changed_p (dv))
8425 gcc_checking_assert (!NO_LOC_P (x));
8426 gcc_checking_assert (var->var_part[0].cur_loc);
8427 gcc_checking_assert (VAR_LOC_1PAUX (var));
8428 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8430 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8432 return var->var_part[0].cur_loc;
8435 VALUE_RECURSED_INTO (x) = true;
8436 /* This is tentative, but it makes some tests simpler. */
8437 NO_LOC_P (x) = true;
8439 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8441 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8443 if (pending_recursion)
8445 gcc_checking_assert (!result);
8446 elcd->pending.safe_push (x);
8448 else
8450 NO_LOC_P (x) = !result;
8451 VALUE_RECURSED_INTO (x) = false;
8452 set_dv_changed (dv, false);
8454 if (result)
8455 notify_dependents_of_resolved_value (var, elcd->vars);
8458 return result;
8461 /* While expanding variables, we may encounter recursion cycles
8462 because of mutual (possibly indirect) dependencies between two
8463 particular variables (or values), say A and B. If we're trying to
8464 expand A when we get to B, which in turn attempts to expand A, if
8465 we can't find any other expansion for B, we'll add B to this
8466 pending-recursion stack, and tentatively return NULL for its
8467 location. This tentative value will be used for any other
8468 occurrences of B, unless A gets some other location, in which case
8469 it will notify B that it is worth another try at computing a
8470 location for it, and it will use the location computed for A then.
8471 At the end of the expansion, the tentative NULL locations become
8472 final for all members of PENDING that didn't get a notification.
8473 This function performs this finalization of NULL locations. */
8475 static void
8476 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8478 while (!pending->is_empty ())
8480 rtx x = pending->pop ();
8481 decl_or_value dv;
8483 if (!VALUE_RECURSED_INTO (x))
8484 continue;
8486 gcc_checking_assert (NO_LOC_P (x));
8487 VALUE_RECURSED_INTO (x) = false;
8488 dv = dv_from_rtx (x);
8489 gcc_checking_assert (dv_changed_p (dv));
8490 set_dv_changed (dv, false);
8494 /* Initialize expand_loc_callback_data D with variable hash table V.
8495 It must be a macro because of alloca (vec stack). */
8496 #define INIT_ELCD(d, v) \
8497 do \
8499 (d).vars = (v); \
8500 (d).depth.complexity = (d).depth.entryvals = 0; \
8502 while (0)
8503 /* Finalize expand_loc_callback_data D, resolved to location L. */
8504 #define FINI_ELCD(d, l) \
8505 do \
8507 resolve_expansions_pending_recursion (&(d).pending); \
8508 (d).pending.release (); \
8509 (d).expanding.release (); \
8511 if ((l) && MEM_P (l)) \
8512 (l) = targetm.delegitimize_address (l); \
8514 while (0)
8516 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8517 equivalences in VARS, updating their CUR_LOCs in the process. */
8519 static rtx
8520 vt_expand_loc (rtx loc, variable_table_type vars)
8522 struct expand_loc_callback_data data;
8523 rtx result;
8525 if (!MAY_HAVE_DEBUG_INSNS)
8526 return loc;
8528 INIT_ELCD (data, vars);
8530 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8531 vt_expand_loc_callback, &data);
8533 FINI_ELCD (data, result);
8535 return result;
8538 /* Expand the one-part VARiable to a location, using the equivalences
8539 in VARS, updating their CUR_LOCs in the process. */
8541 static rtx
8542 vt_expand_1pvar (variable var, variable_table_type vars)
8544 struct expand_loc_callback_data data;
8545 rtx loc;
8547 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8549 if (!dv_changed_p (var->dv))
8550 return var->var_part[0].cur_loc;
8552 INIT_ELCD (data, vars);
8554 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8556 gcc_checking_assert (data.expanding.is_empty ());
8558 FINI_ELCD (data, loc);
8560 return loc;
8563 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8564 additional parameters: WHERE specifies whether the note shall be emitted
8565 before or after instruction INSN. */
8568 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8570 variable var = *varp;
8571 rtx insn = data->insn;
8572 enum emit_note_where where = data->where;
8573 variable_table_type vars = data->vars;
8574 rtx note, note_vl;
8575 int i, j, n_var_parts;
8576 bool complete;
8577 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8578 HOST_WIDE_INT last_limit;
8579 tree type_size_unit;
8580 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8581 rtx loc[MAX_VAR_PARTS];
8582 tree decl;
8583 location_chain lc;
8585 gcc_checking_assert (var->onepart == NOT_ONEPART
8586 || var->onepart == ONEPART_VDECL);
8588 decl = dv_as_decl (var->dv);
8590 complete = true;
8591 last_limit = 0;
8592 n_var_parts = 0;
8593 if (!var->onepart)
8594 for (i = 0; i < var->n_var_parts; i++)
8595 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8596 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8597 for (i = 0; i < var->n_var_parts; i++)
8599 enum machine_mode mode, wider_mode;
8600 rtx loc2;
8601 HOST_WIDE_INT offset;
8603 if (i == 0 && var->onepart)
8605 gcc_checking_assert (var->n_var_parts == 1);
8606 offset = 0;
8607 initialized = VAR_INIT_STATUS_INITIALIZED;
8608 loc2 = vt_expand_1pvar (var, vars);
8610 else
8612 if (last_limit < VAR_PART_OFFSET (var, i))
8614 complete = false;
8615 break;
8617 else if (last_limit > VAR_PART_OFFSET (var, i))
8618 continue;
8619 offset = VAR_PART_OFFSET (var, i);
8620 loc2 = var->var_part[i].cur_loc;
8621 if (loc2 && GET_CODE (loc2) == MEM
8622 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8624 rtx depval = XEXP (loc2, 0);
8626 loc2 = vt_expand_loc (loc2, vars);
8628 if (loc2)
8629 loc_exp_insert_dep (var, depval, vars);
8631 if (!loc2)
8633 complete = false;
8634 continue;
8636 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8637 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8638 if (var->var_part[i].cur_loc == lc->loc)
8640 initialized = lc->init;
8641 break;
8643 gcc_assert (lc);
8646 offsets[n_var_parts] = offset;
8647 if (!loc2)
8649 complete = false;
8650 continue;
8652 loc[n_var_parts] = loc2;
8653 mode = GET_MODE (var->var_part[i].cur_loc);
8654 if (mode == VOIDmode && var->onepart)
8655 mode = DECL_MODE (decl);
8656 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8658 /* Attempt to merge adjacent registers or memory. */
8659 wider_mode = GET_MODE_WIDER_MODE (mode);
8660 for (j = i + 1; j < var->n_var_parts; j++)
8661 if (last_limit <= VAR_PART_OFFSET (var, j))
8662 break;
8663 if (j < var->n_var_parts
8664 && wider_mode != VOIDmode
8665 && var->var_part[j].cur_loc
8666 && mode == GET_MODE (var->var_part[j].cur_loc)
8667 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8668 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8669 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8670 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8672 rtx new_loc = NULL;
8674 if (REG_P (loc[n_var_parts])
8675 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8676 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8677 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8678 == REGNO (loc2))
8680 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8681 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8682 mode, 0);
8683 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8684 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8685 if (new_loc)
8687 if (!REG_P (new_loc)
8688 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8689 new_loc = NULL;
8690 else
8691 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8694 else if (MEM_P (loc[n_var_parts])
8695 && GET_CODE (XEXP (loc2, 0)) == PLUS
8696 && REG_P (XEXP (XEXP (loc2, 0), 0))
8697 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8699 if ((REG_P (XEXP (loc[n_var_parts], 0))
8700 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8701 XEXP (XEXP (loc2, 0), 0))
8702 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8703 == GET_MODE_SIZE (mode))
8704 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8705 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8706 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8707 XEXP (XEXP (loc2, 0), 0))
8708 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8709 + GET_MODE_SIZE (mode)
8710 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8711 new_loc = adjust_address_nv (loc[n_var_parts],
8712 wider_mode, 0);
8715 if (new_loc)
8717 loc[n_var_parts] = new_loc;
8718 mode = wider_mode;
8719 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8720 i = j;
8723 ++n_var_parts;
8725 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8726 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8727 complete = false;
8729 if (! flag_var_tracking_uninit)
8730 initialized = VAR_INIT_STATUS_INITIALIZED;
8732 note_vl = NULL_RTX;
8733 if (!complete)
8734 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8735 (int) initialized);
8736 else if (n_var_parts == 1)
8738 rtx expr_list;
8740 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8741 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8742 else
8743 expr_list = loc[0];
8745 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8746 (int) initialized);
8748 else if (n_var_parts)
8750 rtx parallel;
8752 for (i = 0; i < n_var_parts; i++)
8753 loc[i]
8754 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8756 parallel = gen_rtx_PARALLEL (VOIDmode,
8757 gen_rtvec_v (n_var_parts, loc));
8758 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8759 parallel, (int) initialized);
8762 if (where != EMIT_NOTE_BEFORE_INSN)
8764 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8765 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8766 NOTE_DURING_CALL_P (note) = true;
8768 else
8770 /* Make sure that the call related notes come first. */
8771 while (NEXT_INSN (insn)
8772 && NOTE_P (insn)
8773 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8774 && NOTE_DURING_CALL_P (insn))
8775 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8776 insn = NEXT_INSN (insn);
8777 if (NOTE_P (insn)
8778 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8779 && NOTE_DURING_CALL_P (insn))
8780 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8781 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8782 else
8783 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8785 NOTE_VAR_LOCATION (note) = note_vl;
8787 set_dv_changed (var->dv, false);
8788 gcc_assert (var->in_changed_variables);
8789 var->in_changed_variables = false;
8790 changed_variables.clear_slot (varp);
8792 /* Continue traversing the hash table. */
8793 return 1;
8796 /* While traversing changed_variables, push onto DATA (a stack of RTX
8797 values) entries that aren't user variables. */
8800 var_track_values_to_stack (variable_def **slot,
8801 vec<rtx, va_heap> *changed_values_stack)
8803 variable var = *slot;
8805 if (var->onepart == ONEPART_VALUE)
8806 changed_values_stack->safe_push (dv_as_value (var->dv));
8807 else if (var->onepart == ONEPART_DEXPR)
8808 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8810 return 1;
8813 /* Remove from changed_variables the entry whose DV corresponds to
8814 value or debug_expr VAL. */
8815 static void
8816 remove_value_from_changed_variables (rtx val)
8818 decl_or_value dv = dv_from_rtx (val);
8819 variable_def **slot;
8820 variable var;
8822 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8823 NO_INSERT);
8824 var = *slot;
8825 var->in_changed_variables = false;
8826 changed_variables.clear_slot (slot);
8829 /* If VAL (a value or debug_expr) has backlinks to variables actively
8830 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8831 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8832 have dependencies of their own to notify. */
8834 static void
8835 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8836 vec<rtx, va_heap> *changed_values_stack)
8838 variable_def **slot;
8839 variable var;
8840 loc_exp_dep *led;
8841 decl_or_value dv = dv_from_rtx (val);
8843 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8844 NO_INSERT);
8845 if (!slot)
8846 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8847 if (!slot)
8848 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8849 NO_INSERT);
8850 var = *slot;
8852 while ((led = VAR_LOC_DEP_LST (var)))
8854 decl_or_value ldv = led->dv;
8855 variable ivar;
8857 /* Deactivate and remove the backlink, as it was “used up”. It
8858 makes no sense to attempt to notify the same entity again:
8859 either it will be recomputed and re-register an active
8860 dependency, or it will still have the changed mark. */
8861 if (led->next)
8862 led->next->pprev = led->pprev;
8863 if (led->pprev)
8864 *led->pprev = led->next;
8865 led->next = NULL;
8866 led->pprev = NULL;
8868 if (dv_changed_p (ldv))
8869 continue;
8871 switch (dv_onepart_p (ldv))
8873 case ONEPART_VALUE:
8874 case ONEPART_DEXPR:
8875 set_dv_changed (ldv, true);
8876 changed_values_stack->safe_push (dv_as_rtx (ldv));
8877 break;
8879 case ONEPART_VDECL:
8880 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8881 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8882 variable_was_changed (ivar, NULL);
8883 break;
8885 case NOT_ONEPART:
8886 pool_free (loc_exp_dep_pool, led);
8887 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8888 if (ivar)
8890 int i = ivar->n_var_parts;
8891 while (i--)
8893 rtx loc = ivar->var_part[i].cur_loc;
8895 if (loc && GET_CODE (loc) == MEM
8896 && XEXP (loc, 0) == val)
8898 variable_was_changed (ivar, NULL);
8899 break;
8903 break;
8905 default:
8906 gcc_unreachable ();
8911 /* Take out of changed_variables any entries that don't refer to use
8912 variables. Back-propagate change notifications from values and
8913 debug_exprs to their active dependencies in HTAB or in
8914 CHANGED_VARIABLES. */
8916 static void
8917 process_changed_values (variable_table_type htab)
8919 int i, n;
8920 rtx val;
8921 auto_vec<rtx, 20> changed_values_stack;
8923 /* Move values from changed_variables to changed_values_stack. */
8924 changed_variables
8925 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8926 (&changed_values_stack);
8928 /* Back-propagate change notifications in values while popping
8929 them from the stack. */
8930 for (n = i = changed_values_stack.length ();
8931 i > 0; i = changed_values_stack.length ())
8933 val = changed_values_stack.pop ();
8934 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8936 /* This condition will hold when visiting each of the entries
8937 originally in changed_variables. We can't remove them
8938 earlier because this could drop the backlinks before we got a
8939 chance to use them. */
8940 if (i == n)
8942 remove_value_from_changed_variables (val);
8943 n--;
8948 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8949 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8950 the notes shall be emitted before of after instruction INSN. */
8952 static void
8953 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8954 shared_hash vars)
8956 emit_note_data data;
8957 variable_table_type htab = shared_hash_htab (vars);
8959 if (!changed_variables.elements ())
8960 return;
8962 if (MAY_HAVE_DEBUG_INSNS)
8963 process_changed_values (htab);
8965 data.insn = insn;
8966 data.where = where;
8967 data.vars = htab;
8969 changed_variables
8970 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8973 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8974 same variable in hash table DATA or is not there at all. */
8977 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8979 variable old_var, new_var;
8981 old_var = *slot;
8982 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8984 if (!new_var)
8986 /* Variable has disappeared. */
8987 variable empty_var = NULL;
8989 if (old_var->onepart == ONEPART_VALUE
8990 || old_var->onepart == ONEPART_DEXPR)
8992 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8993 if (empty_var)
8995 gcc_checking_assert (!empty_var->in_changed_variables);
8996 if (!VAR_LOC_1PAUX (old_var))
8998 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8999 VAR_LOC_1PAUX (empty_var) = NULL;
9001 else
9002 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9006 if (!empty_var)
9008 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9009 empty_var->dv = old_var->dv;
9010 empty_var->refcount = 0;
9011 empty_var->n_var_parts = 0;
9012 empty_var->onepart = old_var->onepart;
9013 empty_var->in_changed_variables = false;
9016 if (empty_var->onepart)
9018 /* Propagate the auxiliary data to (ultimately)
9019 changed_variables. */
9020 empty_var->var_part[0].loc_chain = NULL;
9021 empty_var->var_part[0].cur_loc = NULL;
9022 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9023 VAR_LOC_1PAUX (old_var) = NULL;
9025 variable_was_changed (empty_var, NULL);
9026 /* Continue traversing the hash table. */
9027 return 1;
9029 /* Update cur_loc and one-part auxiliary data, before new_var goes
9030 through variable_was_changed. */
9031 if (old_var != new_var && new_var->onepart)
9033 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9034 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9035 VAR_LOC_1PAUX (old_var) = NULL;
9036 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9038 if (variable_different_p (old_var, new_var))
9039 variable_was_changed (new_var, NULL);
9041 /* Continue traversing the hash table. */
9042 return 1;
9045 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9046 table DATA. */
9049 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
9051 variable old_var, new_var;
9053 new_var = *slot;
9054 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9055 if (!old_var)
9057 int i;
9058 for (i = 0; i < new_var->n_var_parts; i++)
9059 new_var->var_part[i].cur_loc = NULL;
9060 variable_was_changed (new_var, NULL);
9063 /* Continue traversing the hash table. */
9064 return 1;
9067 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9068 NEW_SET. */
9070 static void
9071 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9072 dataflow_set *new_set)
9074 shared_hash_htab (old_set->vars)
9075 .traverse <variable_table_type, emit_notes_for_differences_1>
9076 (shared_hash_htab (new_set->vars));
9077 shared_hash_htab (new_set->vars)
9078 .traverse <variable_table_type, emit_notes_for_differences_2>
9079 (shared_hash_htab (old_set->vars));
9080 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9083 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9085 static rtx
9086 next_non_note_insn_var_location (rtx insn)
9088 while (insn)
9090 insn = NEXT_INSN (insn);
9091 if (insn == 0
9092 || !NOTE_P (insn)
9093 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9094 break;
9097 return insn;
9100 /* Emit the notes for changes of location parts in the basic block BB. */
9102 static void
9103 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9105 unsigned int i;
9106 micro_operation *mo;
9108 dataflow_set_clear (set);
9109 dataflow_set_copy (set, &VTI (bb)->in);
9111 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9113 rtx insn = mo->insn;
9114 rtx next_insn = next_non_note_insn_var_location (insn);
9116 switch (mo->type)
9118 case MO_CALL:
9119 dataflow_set_clear_at_call (set);
9120 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9122 rtx arguments = mo->u.loc, *p = &arguments, note;
9123 while (*p)
9125 XEXP (XEXP (*p, 0), 1)
9126 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9127 shared_hash_htab (set->vars));
9128 /* If expansion is successful, keep it in the list. */
9129 if (XEXP (XEXP (*p, 0), 1))
9130 p = &XEXP (*p, 1);
9131 /* Otherwise, if the following item is data_value for it,
9132 drop it too too. */
9133 else if (XEXP (*p, 1)
9134 && REG_P (XEXP (XEXP (*p, 0), 0))
9135 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9136 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9138 && REGNO (XEXP (XEXP (*p, 0), 0))
9139 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9140 0), 0)))
9141 *p = XEXP (XEXP (*p, 1), 1);
9142 /* Just drop this item. */
9143 else
9144 *p = XEXP (*p, 1);
9146 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9147 NOTE_VAR_LOCATION (note) = arguments;
9149 break;
9151 case MO_USE:
9153 rtx loc = mo->u.loc;
9155 if (REG_P (loc))
9156 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9157 else
9158 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9160 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9162 break;
9164 case MO_VAL_LOC:
9166 rtx loc = mo->u.loc;
9167 rtx val, vloc;
9168 tree var;
9170 if (GET_CODE (loc) == CONCAT)
9172 val = XEXP (loc, 0);
9173 vloc = XEXP (loc, 1);
9175 else
9177 val = NULL_RTX;
9178 vloc = loc;
9181 var = PAT_VAR_LOCATION_DECL (vloc);
9183 clobber_variable_part (set, NULL_RTX,
9184 dv_from_decl (var), 0, NULL_RTX);
9185 if (val)
9187 if (VAL_NEEDS_RESOLUTION (loc))
9188 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9189 set_variable_part (set, val, dv_from_decl (var), 0,
9190 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9191 INSERT);
9193 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9194 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9195 dv_from_decl (var), 0,
9196 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9197 INSERT);
9199 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9201 break;
9203 case MO_VAL_USE:
9205 rtx loc = mo->u.loc;
9206 rtx val, vloc, uloc;
9208 vloc = uloc = XEXP (loc, 1);
9209 val = XEXP (loc, 0);
9211 if (GET_CODE (val) == CONCAT)
9213 uloc = XEXP (val, 1);
9214 val = XEXP (val, 0);
9217 if (VAL_NEEDS_RESOLUTION (loc))
9218 val_resolve (set, val, vloc, insn);
9219 else
9220 val_store (set, val, uloc, insn, false);
9222 if (VAL_HOLDS_TRACK_EXPR (loc))
9224 if (GET_CODE (uloc) == REG)
9225 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9226 NULL);
9227 else if (GET_CODE (uloc) == MEM)
9228 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9229 NULL);
9232 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9234 break;
9236 case MO_VAL_SET:
9238 rtx loc = mo->u.loc;
9239 rtx val, vloc, uloc;
9240 rtx dstv, srcv;
9242 vloc = loc;
9243 uloc = XEXP (vloc, 1);
9244 val = XEXP (vloc, 0);
9245 vloc = uloc;
9247 if (GET_CODE (uloc) == SET)
9249 dstv = SET_DEST (uloc);
9250 srcv = SET_SRC (uloc);
9252 else
9254 dstv = uloc;
9255 srcv = NULL;
9258 if (GET_CODE (val) == CONCAT)
9260 dstv = vloc = XEXP (val, 1);
9261 val = XEXP (val, 0);
9264 if (GET_CODE (vloc) == SET)
9266 srcv = SET_SRC (vloc);
9268 gcc_assert (val != srcv);
9269 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9271 dstv = vloc = SET_DEST (vloc);
9273 if (VAL_NEEDS_RESOLUTION (loc))
9274 val_resolve (set, val, srcv, insn);
9276 else if (VAL_NEEDS_RESOLUTION (loc))
9278 gcc_assert (GET_CODE (uloc) == SET
9279 && GET_CODE (SET_SRC (uloc)) == REG);
9280 val_resolve (set, val, SET_SRC (uloc), insn);
9283 if (VAL_HOLDS_TRACK_EXPR (loc))
9285 if (VAL_EXPR_IS_CLOBBERED (loc))
9287 if (REG_P (uloc))
9288 var_reg_delete (set, uloc, true);
9289 else if (MEM_P (uloc))
9291 gcc_assert (MEM_P (dstv));
9292 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9293 var_mem_delete (set, dstv, true);
9296 else
9298 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9299 rtx src = NULL, dst = uloc;
9300 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9302 if (GET_CODE (uloc) == SET)
9304 src = SET_SRC (uloc);
9305 dst = SET_DEST (uloc);
9308 if (copied_p)
9310 status = find_src_status (set, src);
9312 src = find_src_set_src (set, src);
9315 if (REG_P (dst))
9316 var_reg_delete_and_set (set, dst, !copied_p,
9317 status, srcv);
9318 else if (MEM_P (dst))
9320 gcc_assert (MEM_P (dstv));
9321 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9322 var_mem_delete_and_set (set, dstv, !copied_p,
9323 status, srcv);
9327 else if (REG_P (uloc))
9328 var_regno_delete (set, REGNO (uloc));
9329 else if (MEM_P (uloc))
9331 gcc_checking_assert (GET_CODE (vloc) == MEM);
9332 gcc_checking_assert (vloc == dstv);
9333 if (vloc != dstv)
9334 clobber_overlapping_mems (set, vloc);
9337 val_store (set, val, dstv, insn, true);
9339 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9340 set->vars);
9342 break;
9344 case MO_SET:
9346 rtx loc = mo->u.loc;
9347 rtx set_src = NULL;
9349 if (GET_CODE (loc) == SET)
9351 set_src = SET_SRC (loc);
9352 loc = SET_DEST (loc);
9355 if (REG_P (loc))
9356 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9357 set_src);
9358 else
9359 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9360 set_src);
9362 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9363 set->vars);
9365 break;
9367 case MO_COPY:
9369 rtx loc = mo->u.loc;
9370 enum var_init_status src_status;
9371 rtx set_src = NULL;
9373 if (GET_CODE (loc) == SET)
9375 set_src = SET_SRC (loc);
9376 loc = SET_DEST (loc);
9379 src_status = find_src_status (set, set_src);
9380 set_src = find_src_set_src (set, set_src);
9382 if (REG_P (loc))
9383 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9384 else
9385 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9387 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9388 set->vars);
9390 break;
9392 case MO_USE_NO_VAR:
9394 rtx loc = mo->u.loc;
9396 if (REG_P (loc))
9397 var_reg_delete (set, loc, false);
9398 else
9399 var_mem_delete (set, loc, false);
9401 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9403 break;
9405 case MO_CLOBBER:
9407 rtx loc = mo->u.loc;
9409 if (REG_P (loc))
9410 var_reg_delete (set, loc, true);
9411 else
9412 var_mem_delete (set, loc, true);
9414 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9415 set->vars);
9417 break;
9419 case MO_ADJUST:
9420 set->stack_adjust += mo->u.adjust;
9421 break;
9426 /* Emit notes for the whole function. */
9428 static void
9429 vt_emit_notes (void)
9431 basic_block bb;
9432 dataflow_set cur;
9434 gcc_assert (!changed_variables.elements ());
9436 /* Free memory occupied by the out hash tables, as they aren't used
9437 anymore. */
9438 FOR_EACH_BB_FN (bb, cfun)
9439 dataflow_set_clear (&VTI (bb)->out);
9441 /* Enable emitting notes by functions (mainly by set_variable_part and
9442 delete_variable_part). */
9443 emit_notes = true;
9445 if (MAY_HAVE_DEBUG_INSNS)
9447 dropped_values.create (cselib_get_next_uid () * 2);
9448 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9449 sizeof (loc_exp_dep), 64);
9452 dataflow_set_init (&cur);
9454 FOR_EACH_BB_FN (bb, cfun)
9456 /* Emit the notes for changes of variable locations between two
9457 subsequent basic blocks. */
9458 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9460 if (MAY_HAVE_DEBUG_INSNS)
9461 local_get_addr_cache = pointer_map_create ();
9463 /* Emit the notes for the changes in the basic block itself. */
9464 emit_notes_in_bb (bb, &cur);
9466 if (MAY_HAVE_DEBUG_INSNS)
9467 pointer_map_destroy (local_get_addr_cache);
9468 local_get_addr_cache = NULL;
9470 /* Free memory occupied by the in hash table, we won't need it
9471 again. */
9472 dataflow_set_clear (&VTI (bb)->in);
9474 #ifdef ENABLE_CHECKING
9475 shared_hash_htab (cur.vars)
9476 .traverse <variable_table_type, emit_notes_for_differences_1>
9477 (shared_hash_htab (empty_shared_hash));
9478 #endif
9479 dataflow_set_destroy (&cur);
9481 if (MAY_HAVE_DEBUG_INSNS)
9482 dropped_values.dispose ();
9484 emit_notes = false;
9487 /* If there is a declaration and offset associated with register/memory RTL
9488 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9490 static bool
9491 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9493 if (REG_P (rtl))
9495 if (REG_ATTRS (rtl))
9497 *declp = REG_EXPR (rtl);
9498 *offsetp = REG_OFFSET (rtl);
9499 return true;
9502 else if (GET_CODE (rtl) == PARALLEL)
9504 tree decl = NULL_TREE;
9505 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9506 int len = XVECLEN (rtl, 0), i;
9508 for (i = 0; i < len; i++)
9510 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9511 if (!REG_P (reg) || !REG_ATTRS (reg))
9512 break;
9513 if (!decl)
9514 decl = REG_EXPR (reg);
9515 if (REG_EXPR (reg) != decl)
9516 break;
9517 if (REG_OFFSET (reg) < offset)
9518 offset = REG_OFFSET (reg);
9521 if (i == len)
9523 *declp = decl;
9524 *offsetp = offset;
9525 return true;
9528 else if (MEM_P (rtl))
9530 if (MEM_ATTRS (rtl))
9532 *declp = MEM_EXPR (rtl);
9533 *offsetp = INT_MEM_OFFSET (rtl);
9534 return true;
9537 return false;
9540 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9541 of VAL. */
9543 static void
9544 record_entry_value (cselib_val *val, rtx rtl)
9546 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9548 ENTRY_VALUE_EXP (ev) = rtl;
9550 cselib_add_permanent_equiv (val, ev, get_insns ());
9553 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9555 static void
9556 vt_add_function_parameter (tree parm)
9558 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9559 rtx incoming = DECL_INCOMING_RTL (parm);
9560 tree decl;
9561 enum machine_mode mode;
9562 HOST_WIDE_INT offset;
9563 dataflow_set *out;
9564 decl_or_value dv;
9566 if (TREE_CODE (parm) != PARM_DECL)
9567 return;
9569 if (!decl_rtl || !incoming)
9570 return;
9572 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9573 return;
9575 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9576 rewrite the incoming location of parameters passed on the stack
9577 into MEMs based on the argument pointer, so that incoming doesn't
9578 depend on a pseudo. */
9579 if (MEM_P (incoming)
9580 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9581 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9582 && XEXP (XEXP (incoming, 0), 0)
9583 == crtl->args.internal_arg_pointer
9584 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9586 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9587 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9588 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9589 incoming
9590 = replace_equiv_address_nv (incoming,
9591 plus_constant (Pmode,
9592 arg_pointer_rtx, off));
9595 #ifdef HAVE_window_save
9596 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9597 If the target machine has an explicit window save instruction, the
9598 actual entry value is the corresponding OUTGOING_REGNO instead. */
9599 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9601 if (REG_P (incoming)
9602 && HARD_REGISTER_P (incoming)
9603 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9605 parm_reg_t p;
9606 p.incoming = incoming;
9607 incoming
9608 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9609 OUTGOING_REGNO (REGNO (incoming)), 0);
9610 p.outgoing = incoming;
9611 vec_safe_push (windowed_parm_regs, p);
9613 else if (GET_CODE (incoming) == PARALLEL)
9615 rtx outgoing
9616 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9617 int i;
9619 for (i = 0; i < XVECLEN (incoming, 0); i++)
9621 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9622 parm_reg_t p;
9623 p.incoming = reg;
9624 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9625 OUTGOING_REGNO (REGNO (reg)), 0);
9626 p.outgoing = reg;
9627 XVECEXP (outgoing, 0, i)
9628 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9629 XEXP (XVECEXP (incoming, 0, i), 1));
9630 vec_safe_push (windowed_parm_regs, p);
9633 incoming = outgoing;
9635 else if (MEM_P (incoming)
9636 && REG_P (XEXP (incoming, 0))
9637 && HARD_REGISTER_P (XEXP (incoming, 0)))
9639 rtx reg = XEXP (incoming, 0);
9640 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9642 parm_reg_t p;
9643 p.incoming = reg;
9644 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9645 p.outgoing = reg;
9646 vec_safe_push (windowed_parm_regs, p);
9647 incoming = replace_equiv_address_nv (incoming, reg);
9651 #endif
9653 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9655 if (MEM_P (incoming))
9657 /* This means argument is passed by invisible reference. */
9658 offset = 0;
9659 decl = parm;
9661 else
9663 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9664 return;
9665 offset += byte_lowpart_offset (GET_MODE (incoming),
9666 GET_MODE (decl_rtl));
9670 if (!decl)
9671 return;
9673 if (parm != decl)
9675 /* If that DECL_RTL wasn't a pseudo that got spilled to
9676 memory, bail out. Otherwise, the spill slot sharing code
9677 will force the memory to reference spill_slot_decl (%sfp),
9678 so we don't match above. That's ok, the pseudo must have
9679 referenced the entire parameter, so just reset OFFSET. */
9680 if (decl != get_spill_slot_decl (false))
9681 return;
9682 offset = 0;
9685 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9686 return;
9688 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9690 dv = dv_from_decl (parm);
9692 if (target_for_debug_bind (parm)
9693 /* We can't deal with these right now, because this kind of
9694 variable is single-part. ??? We could handle parallels
9695 that describe multiple locations for the same single
9696 value, but ATM we don't. */
9697 && GET_CODE (incoming) != PARALLEL)
9699 cselib_val *val;
9700 rtx lowpart;
9702 /* ??? We shouldn't ever hit this, but it may happen because
9703 arguments passed by invisible reference aren't dealt with
9704 above: incoming-rtl will have Pmode rather than the
9705 expected mode for the type. */
9706 if (offset)
9707 return;
9709 lowpart = var_lowpart (mode, incoming);
9710 if (!lowpart)
9711 return;
9713 val = cselib_lookup_from_insn (lowpart, mode, true,
9714 VOIDmode, get_insns ());
9716 /* ??? Float-typed values in memory are not handled by
9717 cselib. */
9718 if (val)
9720 preserve_value (val);
9721 set_variable_part (out, val->val_rtx, dv, offset,
9722 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9723 dv = dv_from_value (val->val_rtx);
9726 if (MEM_P (incoming))
9728 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9729 VOIDmode, get_insns ());
9730 if (val)
9732 preserve_value (val);
9733 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9738 if (REG_P (incoming))
9740 incoming = var_lowpart (mode, incoming);
9741 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9742 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9743 incoming);
9744 set_variable_part (out, incoming, dv, offset,
9745 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9746 if (dv_is_value_p (dv))
9748 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9749 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9750 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9752 enum machine_mode indmode
9753 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9754 rtx mem = gen_rtx_MEM (indmode, incoming);
9755 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9756 VOIDmode,
9757 get_insns ());
9758 if (val)
9760 preserve_value (val);
9761 record_entry_value (val, mem);
9762 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9763 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9768 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9770 int i;
9772 for (i = 0; i < XVECLEN (incoming, 0); i++)
9774 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9775 offset = REG_OFFSET (reg);
9776 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9777 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9778 set_variable_part (out, reg, dv, offset,
9779 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9782 else if (MEM_P (incoming))
9784 incoming = var_lowpart (mode, incoming);
9785 set_variable_part (out, incoming, dv, offset,
9786 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9790 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9792 static void
9793 vt_add_function_parameters (void)
9795 tree parm;
9797 for (parm = DECL_ARGUMENTS (current_function_decl);
9798 parm; parm = DECL_CHAIN (parm))
9799 vt_add_function_parameter (parm);
9801 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9803 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9805 if (TREE_CODE (vexpr) == INDIRECT_REF)
9806 vexpr = TREE_OPERAND (vexpr, 0);
9808 if (TREE_CODE (vexpr) == PARM_DECL
9809 && DECL_ARTIFICIAL (vexpr)
9810 && !DECL_IGNORED_P (vexpr)
9811 && DECL_NAMELESS (vexpr))
9812 vt_add_function_parameter (vexpr);
9816 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9817 ensure it isn't flushed during cselib_reset_table.
9818 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9819 has been eliminated. */
9821 static void
9822 vt_init_cfa_base (void)
9824 cselib_val *val;
9826 #ifdef FRAME_POINTER_CFA_OFFSET
9827 cfa_base_rtx = frame_pointer_rtx;
9828 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9829 #else
9830 cfa_base_rtx = arg_pointer_rtx;
9831 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9832 #endif
9833 if (cfa_base_rtx == hard_frame_pointer_rtx
9834 || !fixed_regs[REGNO (cfa_base_rtx)])
9836 cfa_base_rtx = NULL_RTX;
9837 return;
9839 if (!MAY_HAVE_DEBUG_INSNS)
9840 return;
9842 /* Tell alias analysis that cfa_base_rtx should share
9843 find_base_term value with stack pointer or hard frame pointer. */
9844 if (!frame_pointer_needed)
9845 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9846 else if (!crtl->stack_realign_tried)
9847 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9849 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9850 VOIDmode, get_insns ());
9851 preserve_value (val);
9852 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9855 /* Allocate and initialize the data structures for variable tracking
9856 and parse the RTL to get the micro operations. */
9858 static bool
9859 vt_initialize (void)
9861 basic_block bb;
9862 HOST_WIDE_INT fp_cfa_offset = -1;
9864 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9866 attrs_pool = create_alloc_pool ("attrs_def pool",
9867 sizeof (struct attrs_def), 1024);
9868 var_pool = create_alloc_pool ("variable_def pool",
9869 sizeof (struct variable_def)
9870 + (MAX_VAR_PARTS - 1)
9871 * sizeof (((variable)NULL)->var_part[0]), 64);
9872 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9873 sizeof (struct location_chain_def),
9874 1024);
9875 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9876 sizeof (struct shared_hash_def), 256);
9877 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9878 empty_shared_hash->refcount = 1;
9879 empty_shared_hash->htab.create (1);
9880 changed_variables.create (10);
9882 /* Init the IN and OUT sets. */
9883 FOR_ALL_BB_FN (bb, cfun)
9885 VTI (bb)->visited = false;
9886 VTI (bb)->flooded = false;
9887 dataflow_set_init (&VTI (bb)->in);
9888 dataflow_set_init (&VTI (bb)->out);
9889 VTI (bb)->permp = NULL;
9892 if (MAY_HAVE_DEBUG_INSNS)
9894 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9895 scratch_regs = BITMAP_ALLOC (NULL);
9896 valvar_pool = create_alloc_pool ("small variable_def pool",
9897 sizeof (struct variable_def), 256);
9898 preserved_values.create (256);
9899 global_get_addr_cache = pointer_map_create ();
9901 else
9903 scratch_regs = NULL;
9904 valvar_pool = NULL;
9905 global_get_addr_cache = NULL;
9908 if (MAY_HAVE_DEBUG_INSNS)
9910 rtx reg, expr;
9911 int ofst;
9912 cselib_val *val;
9914 #ifdef FRAME_POINTER_CFA_OFFSET
9915 reg = frame_pointer_rtx;
9916 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9917 #else
9918 reg = arg_pointer_rtx;
9919 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9920 #endif
9922 ofst -= INCOMING_FRAME_SP_OFFSET;
9924 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9925 VOIDmode, get_insns ());
9926 preserve_value (val);
9927 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9928 cselib_preserve_cfa_base_value (val, REGNO (reg));
9929 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9930 stack_pointer_rtx, -ofst);
9931 cselib_add_permanent_equiv (val, expr, get_insns ());
9933 if (ofst)
9935 val = cselib_lookup_from_insn (stack_pointer_rtx,
9936 GET_MODE (stack_pointer_rtx), 1,
9937 VOIDmode, get_insns ());
9938 preserve_value (val);
9939 expr = plus_constant (GET_MODE (reg), reg, ofst);
9940 cselib_add_permanent_equiv (val, expr, get_insns ());
9944 /* In order to factor out the adjustments made to the stack pointer or to
9945 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9946 instead of individual location lists, we're going to rewrite MEMs based
9947 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9948 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9949 resp. arg_pointer_rtx. We can do this either when there is no frame
9950 pointer in the function and stack adjustments are consistent for all
9951 basic blocks or when there is a frame pointer and no stack realignment.
9952 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9953 has been eliminated. */
9954 if (!frame_pointer_needed)
9956 rtx reg, elim;
9958 if (!vt_stack_adjustments ())
9959 return false;
9961 #ifdef FRAME_POINTER_CFA_OFFSET
9962 reg = frame_pointer_rtx;
9963 #else
9964 reg = arg_pointer_rtx;
9965 #endif
9966 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9967 if (elim != reg)
9969 if (GET_CODE (elim) == PLUS)
9970 elim = XEXP (elim, 0);
9971 if (elim == stack_pointer_rtx)
9972 vt_init_cfa_base ();
9975 else if (!crtl->stack_realign_tried)
9977 rtx reg, elim;
9979 #ifdef FRAME_POINTER_CFA_OFFSET
9980 reg = frame_pointer_rtx;
9981 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9982 #else
9983 reg = arg_pointer_rtx;
9984 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9985 #endif
9986 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9987 if (elim != reg)
9989 if (GET_CODE (elim) == PLUS)
9991 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9992 elim = XEXP (elim, 0);
9994 if (elim != hard_frame_pointer_rtx)
9995 fp_cfa_offset = -1;
9997 else
9998 fp_cfa_offset = -1;
10001 /* If the stack is realigned and a DRAP register is used, we're going to
10002 rewrite MEMs based on it representing incoming locations of parameters
10003 passed on the stack into MEMs based on the argument pointer. Although
10004 we aren't going to rewrite other MEMs, we still need to initialize the
10005 virtual CFA pointer in order to ensure that the argument pointer will
10006 be seen as a constant throughout the function.
10008 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10009 else if (stack_realign_drap)
10011 rtx reg, elim;
10013 #ifdef FRAME_POINTER_CFA_OFFSET
10014 reg = frame_pointer_rtx;
10015 #else
10016 reg = arg_pointer_rtx;
10017 #endif
10018 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10019 if (elim != reg)
10021 if (GET_CODE (elim) == PLUS)
10022 elim = XEXP (elim, 0);
10023 if (elim == hard_frame_pointer_rtx)
10024 vt_init_cfa_base ();
10028 hard_frame_pointer_adjustment = -1;
10030 vt_add_function_parameters ();
10032 FOR_EACH_BB_FN (bb, cfun)
10034 rtx insn;
10035 HOST_WIDE_INT pre, post = 0;
10036 basic_block first_bb, last_bb;
10038 if (MAY_HAVE_DEBUG_INSNS)
10040 cselib_record_sets_hook = add_with_sets;
10041 if (dump_file && (dump_flags & TDF_DETAILS))
10042 fprintf (dump_file, "first value: %i\n",
10043 cselib_get_next_uid ());
10046 first_bb = bb;
10047 for (;;)
10049 edge e;
10050 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10051 || ! single_pred_p (bb->next_bb))
10052 break;
10053 e = find_edge (bb, bb->next_bb);
10054 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10055 break;
10056 bb = bb->next_bb;
10058 last_bb = bb;
10060 /* Add the micro-operations to the vector. */
10061 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10063 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10064 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10065 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10066 insn = NEXT_INSN (insn))
10068 if (INSN_P (insn))
10070 if (!frame_pointer_needed)
10072 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10073 if (pre)
10075 micro_operation mo;
10076 mo.type = MO_ADJUST;
10077 mo.u.adjust = pre;
10078 mo.insn = insn;
10079 if (dump_file && (dump_flags & TDF_DETAILS))
10080 log_op_type (PATTERN (insn), bb, insn,
10081 MO_ADJUST, dump_file);
10082 VTI (bb)->mos.safe_push (mo);
10083 VTI (bb)->out.stack_adjust += pre;
10087 cselib_hook_called = false;
10088 adjust_insn (bb, insn);
10089 if (MAY_HAVE_DEBUG_INSNS)
10091 if (CALL_P (insn))
10092 prepare_call_arguments (bb, insn);
10093 cselib_process_insn (insn);
10094 if (dump_file && (dump_flags & TDF_DETAILS))
10096 print_rtl_single (dump_file, insn);
10097 dump_cselib_table (dump_file);
10100 if (!cselib_hook_called)
10101 add_with_sets (insn, 0, 0);
10102 cancel_changes (0);
10104 if (!frame_pointer_needed && post)
10106 micro_operation mo;
10107 mo.type = MO_ADJUST;
10108 mo.u.adjust = post;
10109 mo.insn = insn;
10110 if (dump_file && (dump_flags & TDF_DETAILS))
10111 log_op_type (PATTERN (insn), bb, insn,
10112 MO_ADJUST, dump_file);
10113 VTI (bb)->mos.safe_push (mo);
10114 VTI (bb)->out.stack_adjust += post;
10117 if (fp_cfa_offset != -1
10118 && hard_frame_pointer_adjustment == -1
10119 && fp_setter_insn (insn))
10121 vt_init_cfa_base ();
10122 hard_frame_pointer_adjustment = fp_cfa_offset;
10123 /* Disassociate sp from fp now. */
10124 if (MAY_HAVE_DEBUG_INSNS)
10126 cselib_val *v;
10127 cselib_invalidate_rtx (stack_pointer_rtx);
10128 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10129 VOIDmode);
10130 if (v && !cselib_preserved_value_p (v))
10132 cselib_set_value_sp_based (v);
10133 preserve_value (v);
10139 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10142 bb = last_bb;
10144 if (MAY_HAVE_DEBUG_INSNS)
10146 cselib_preserve_only_values ();
10147 cselib_reset_table (cselib_get_next_uid ());
10148 cselib_record_sets_hook = NULL;
10152 hard_frame_pointer_adjustment = -1;
10153 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10154 cfa_base_rtx = NULL_RTX;
10155 return true;
10158 /* This is *not* reset after each function. It gives each
10159 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10160 a unique label number. */
10162 static int debug_label_num = 1;
10164 /* Get rid of all debug insns from the insn stream. */
10166 static void
10167 delete_debug_insns (void)
10169 basic_block bb;
10170 rtx insn, next;
10172 if (!MAY_HAVE_DEBUG_INSNS)
10173 return;
10175 FOR_EACH_BB_FN (bb, cfun)
10177 FOR_BB_INSNS_SAFE (bb, insn, next)
10178 if (DEBUG_INSN_P (insn))
10180 tree decl = INSN_VAR_LOCATION_DECL (insn);
10181 if (TREE_CODE (decl) == LABEL_DECL
10182 && DECL_NAME (decl)
10183 && !DECL_RTL_SET_P (decl))
10185 PUT_CODE (insn, NOTE);
10186 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10187 NOTE_DELETED_LABEL_NAME (insn)
10188 = IDENTIFIER_POINTER (DECL_NAME (decl));
10189 SET_DECL_RTL (decl, insn);
10190 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10192 else
10193 delete_insn (insn);
10198 /* Run a fast, BB-local only version of var tracking, to take care of
10199 information that we don't do global analysis on, such that not all
10200 information is lost. If SKIPPED holds, we're skipping the global
10201 pass entirely, so we should try to use information it would have
10202 handled as well.. */
10204 static void
10205 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10207 /* ??? Just skip it all for now. */
10208 delete_debug_insns ();
10211 /* Free the data structures needed for variable tracking. */
10213 static void
10214 vt_finalize (void)
10216 basic_block bb;
10218 FOR_EACH_BB_FN (bb, cfun)
10220 VTI (bb)->mos.release ();
10223 FOR_ALL_BB_FN (bb, cfun)
10225 dataflow_set_destroy (&VTI (bb)->in);
10226 dataflow_set_destroy (&VTI (bb)->out);
10227 if (VTI (bb)->permp)
10229 dataflow_set_destroy (VTI (bb)->permp);
10230 XDELETE (VTI (bb)->permp);
10233 free_aux_for_blocks ();
10234 empty_shared_hash->htab.dispose ();
10235 changed_variables.dispose ();
10236 free_alloc_pool (attrs_pool);
10237 free_alloc_pool (var_pool);
10238 free_alloc_pool (loc_chain_pool);
10239 free_alloc_pool (shared_hash_pool);
10241 if (MAY_HAVE_DEBUG_INSNS)
10243 if (global_get_addr_cache)
10244 pointer_map_destroy (global_get_addr_cache);
10245 global_get_addr_cache = NULL;
10246 if (loc_exp_dep_pool)
10247 free_alloc_pool (loc_exp_dep_pool);
10248 loc_exp_dep_pool = NULL;
10249 free_alloc_pool (valvar_pool);
10250 preserved_values.release ();
10251 cselib_finish ();
10252 BITMAP_FREE (scratch_regs);
10253 scratch_regs = NULL;
10256 #ifdef HAVE_window_save
10257 vec_free (windowed_parm_regs);
10258 #endif
10260 if (vui_vec)
10261 XDELETEVEC (vui_vec);
10262 vui_vec = NULL;
10263 vui_allocated = 0;
10266 /* The entry point to variable tracking pass. */
10268 static inline unsigned int
10269 variable_tracking_main_1 (void)
10271 bool success;
10273 if (flag_var_tracking_assignments < 0)
10275 delete_debug_insns ();
10276 return 0;
10279 if (n_basic_blocks_for_fn (cfun) > 500 &&
10280 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10282 vt_debug_insns_local (true);
10283 return 0;
10286 mark_dfs_back_edges ();
10287 if (!vt_initialize ())
10289 vt_finalize ();
10290 vt_debug_insns_local (true);
10291 return 0;
10294 success = vt_find_locations ();
10296 if (!success && flag_var_tracking_assignments > 0)
10298 vt_finalize ();
10300 delete_debug_insns ();
10302 /* This is later restored by our caller. */
10303 flag_var_tracking_assignments = 0;
10305 success = vt_initialize ();
10306 gcc_assert (success);
10308 success = vt_find_locations ();
10311 if (!success)
10313 vt_finalize ();
10314 vt_debug_insns_local (false);
10315 return 0;
10318 if (dump_file && (dump_flags & TDF_DETAILS))
10320 dump_dataflow_sets ();
10321 dump_reg_info (dump_file);
10322 dump_flow_info (dump_file, dump_flags);
10325 timevar_push (TV_VAR_TRACKING_EMIT);
10326 vt_emit_notes ();
10327 timevar_pop (TV_VAR_TRACKING_EMIT);
10329 vt_finalize ();
10330 vt_debug_insns_local (false);
10331 return 0;
10334 unsigned int
10335 variable_tracking_main (void)
10337 unsigned int ret;
10338 int save = flag_var_tracking_assignments;
10340 ret = variable_tracking_main_1 ();
10342 flag_var_tracking_assignments = save;
10344 return ret;
10347 static bool
10348 gate_handle_var_tracking (void)
10350 return (flag_var_tracking && !targetm.delay_vartrack);
10355 namespace {
10357 const pass_data pass_data_variable_tracking =
10359 RTL_PASS, /* type */
10360 "vartrack", /* name */
10361 OPTGROUP_NONE, /* optinfo_flags */
10362 true, /* has_gate */
10363 true, /* has_execute */
10364 TV_VAR_TRACKING, /* tv_id */
10365 0, /* properties_required */
10366 0, /* properties_provided */
10367 0, /* properties_destroyed */
10368 0, /* todo_flags_start */
10369 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10372 class pass_variable_tracking : public rtl_opt_pass
10374 public:
10375 pass_variable_tracking (gcc::context *ctxt)
10376 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10379 /* opt_pass methods: */
10380 bool gate () { return gate_handle_var_tracking (); }
10381 unsigned int execute () { return variable_tracking_main (); }
10383 }; // class pass_variable_tracking
10385 } // anon namespace
10387 rtl_opt_pass *
10388 make_pass_variable_tracking (gcc::context *ctxt)
10390 return new pass_variable_tracking (ctxt);