Add PR.
[official-gcc.git] / gcc / cfgloopanal.c
blob4c50bbe959c9763c7b86c3efe6f012fc98d94eba
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "output.h"
32 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34 bool
35 just_once_each_iteration_p (struct loop *loop, basic_block bb)
37 /* It must be executed at least once each iteration. */
38 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
39 return false;
41 /* And just once. */
42 if (bb->loop_father != loop)
43 return false;
45 /* But this was not enough. We might have some irreducible loop here. */
46 if (bb->flags & BB_IRREDUCIBLE_LOOP)
47 return false;
49 return true;
52 /* Structure representing edge of a graph. */
54 struct edge
56 int src, dest; /* Source and destination. */
57 struct edge *pred_next, *succ_next;
58 /* Next edge in predecessor and successor lists. */
59 void *data; /* Data attached to the edge. */
62 /* Structure representing vertex of a graph. */
64 struct vertex
66 struct edge *pred, *succ;
67 /* Lists of predecessors and successors. */
68 int component; /* Number of dfs restarts before reaching the
69 vertex. */
70 int post; /* Postorder number. */
73 /* Structure representing a graph. */
75 struct graph
77 int n_vertices; /* Number of vertices. */
78 struct vertex *vertices;
79 /* The vertices. */
82 /* Dumps graph G into F. */
84 extern void dump_graph (FILE *, struct graph *);
85 void dump_graph (FILE *f, struct graph *g)
87 int i;
88 struct edge *e;
90 for (i = 0; i < g->n_vertices; i++)
92 if (!g->vertices[i].pred
93 && !g->vertices[i].succ)
94 continue;
96 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
97 for (e = g->vertices[i].pred; e; e = e->pred_next)
98 fprintf (f, " %d", e->src);
99 fprintf (f, "\n");
101 fprintf (f, "\t->");
102 for (e = g->vertices[i].succ; e; e = e->succ_next)
103 fprintf (f, " %d", e->dest);
104 fprintf (f, "\n");
108 /* Creates a new graph with N_VERTICES vertices. */
110 static struct graph *
111 new_graph (int n_vertices)
113 struct graph *g = xmalloc (sizeof (struct graph));
115 g->n_vertices = n_vertices;
116 g->vertices = xcalloc (n_vertices, sizeof (struct vertex));
118 return g;
121 /* Adds an edge from F to T to graph G, with DATA attached. */
123 static void
124 add_edge (struct graph *g, int f, int t, void *data)
126 struct edge *e = xmalloc (sizeof (struct edge));
128 e->src = f;
129 e->dest = t;
130 e->data = data;
132 e->pred_next = g->vertices[t].pred;
133 g->vertices[t].pred = e;
135 e->succ_next = g->vertices[f].succ;
136 g->vertices[f].succ = e;
139 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
140 The vertices in postorder are stored into QT. If FORWARD is false,
141 backward dfs is run. */
143 static void
144 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
146 int i, tick = 0, v, comp = 0, top;
147 struct edge *e;
148 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
150 for (i = 0; i < g->n_vertices; i++)
152 g->vertices[i].component = -1;
153 g->vertices[i].post = -1;
156 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
157 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
158 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
159 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
161 for (i = 0; i < nq; i++)
163 v = qs[i];
164 if (g->vertices[v].post != -1)
165 continue;
167 g->vertices[v].component = comp++;
168 e = FST_EDGE (v);
169 top = 0;
171 while (1)
173 while (e && g->vertices[EDGE_DEST (e)].component != -1)
174 e = NEXT_EDGE (e);
176 if (!e)
178 if (qt)
179 qt[tick] = v;
180 g->vertices[v].post = tick++;
182 if (!top)
183 break;
185 e = stack[--top];
186 v = EDGE_SRC (e);
187 e = NEXT_EDGE (e);
188 continue;
191 stack[top++] = e;
192 v = EDGE_DEST (e);
193 e = FST_EDGE (v);
194 g->vertices[v].component = comp - 1;
198 free (stack);
201 /* Marks the edge E in graph G irreducible if it connects two vertices in the
202 same scc. */
204 static void
205 check_irred (struct graph *g, struct edge *e)
207 edge real = e->data;
209 /* All edges should lead from a component with higher number to the
210 one with lower one. */
211 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
213 if (g->vertices[e->src].component != g->vertices[e->dest].component)
214 return;
216 real->flags |= EDGE_IRREDUCIBLE_LOOP;
217 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
218 real->src->flags |= BB_IRREDUCIBLE_LOOP;
221 /* Runs CALLBACK for all edges in G. */
223 static void
224 for_each_edge (struct graph *g,
225 void (callback) (struct graph *, struct edge *))
227 struct edge *e;
228 int i;
230 for (i = 0; i < g->n_vertices; i++)
231 for (e = g->vertices[i].succ; e; e = e->succ_next)
232 callback (g, e);
235 /* Releases the memory occupied by G. */
237 static void
238 free_graph (struct graph *g)
240 struct edge *e, *n;
241 int i;
243 for (i = 0; i < g->n_vertices; i++)
244 for (e = g->vertices[i].succ; e; e = n)
246 n = e->succ_next;
247 free (e);
249 free (g->vertices);
250 free (g);
253 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
254 throw away all latch edges and mark blocks inside any remaining cycle.
255 Everything is a bit complicated due to fact we do not want to do this
256 for parts of cycles that only "pass" through some loop -- i.e. for
257 each cycle, we want to mark blocks that belong directly to innermost
258 loop containing the whole cycle.
260 LOOPS is the loop tree. */
262 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
263 #define BB_REPR(BB) ((BB)->index + 1)
265 void
266 mark_irreducible_loops (struct loops *loops)
268 basic_block act;
269 edge e;
270 int i, src, dest;
271 struct graph *g;
272 int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
273 int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
274 int nq, depth;
275 struct loop *cloop;
277 /* Reset the flags. */
278 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
280 act->flags &= ~BB_IRREDUCIBLE_LOOP;
281 for (e = act->succ; e; e = e->succ_next)
282 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
285 /* Create the edge lists. */
286 g = new_graph (last_basic_block + loops->num);
288 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
289 for (e = act->succ; e; e = e->succ_next)
291 /* Ignore edges to exit. */
292 if (e->dest == EXIT_BLOCK_PTR)
293 continue;
295 /* And latch edges. */
296 if (e->dest->loop_father->header == e->dest
297 && e->dest->loop_father->latch == act)
298 continue;
300 /* Edges inside a single loop should be left where they are. Edges
301 to subloop headers should lead to representative of the subloop,
302 but from the same place.
304 Edges exiting loops should lead from representative
305 of the son of nearest common ancestor of the loops in that
306 act lays. */
308 src = BB_REPR (act);
309 dest = BB_REPR (e->dest);
311 if (e->dest->loop_father->header == e->dest)
312 dest = LOOP_REPR (e->dest->loop_father);
314 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
316 depth = find_common_loop (act->loop_father,
317 e->dest->loop_father)->depth + 1;
318 if (depth == act->loop_father->depth)
319 cloop = act->loop_father;
320 else
321 cloop = act->loop_father->pred[depth];
323 src = LOOP_REPR (cloop);
326 add_edge (g, src, dest, e);
329 /* Find the strongly connected components. Use the algorithm of Tarjan --
330 first determine the postorder dfs numbering in reversed graph, then
331 run the dfs on the original graph in the order given by decreasing
332 numbers assigned by the previous pass. */
333 nq = 0;
334 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
336 queue1[nq++] = BB_REPR (act);
338 for (i = 1; i < (int) loops->num; i++)
339 if (loops->parray[i])
340 queue1[nq++] = LOOP_REPR (loops->parray[i]);
341 dfs (g, queue1, nq, queue2, false);
342 for (i = 0; i < nq; i++)
343 queue1[i] = queue2[nq - i - 1];
344 dfs (g, queue1, nq, NULL, true);
346 /* Mark the irreducible loops. */
347 for_each_edge (g, check_irred);
349 free_graph (g);
350 free (queue1);
351 free (queue2);
353 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
356 /* Counts number of insns inside LOOP. */
358 num_loop_insns (struct loop *loop)
360 basic_block *bbs, bb;
361 unsigned i, ninsns = 0;
362 rtx insn;
364 bbs = get_loop_body (loop);
365 for (i = 0; i < loop->num_nodes; i++)
367 bb = bbs[i];
368 ninsns++;
369 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
370 if (INSN_P (insn))
371 ninsns++;
373 free(bbs);
375 return ninsns;
378 /* Counts number of insns executed on average per iteration LOOP. */
380 average_num_loop_insns (struct loop *loop)
382 basic_block *bbs, bb;
383 unsigned i, binsns, ninsns, ratio;
384 rtx insn;
386 ninsns = 0;
387 bbs = get_loop_body (loop);
388 for (i = 0; i < loop->num_nodes; i++)
390 bb = bbs[i];
392 binsns = 1;
393 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
394 if (INSN_P (insn))
395 binsns++;
397 ratio = loop->header->frequency == 0
398 ? BB_FREQ_MAX
399 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
400 ninsns += binsns * ratio;
402 free(bbs);
404 ninsns /= BB_FREQ_MAX;
405 if (!ninsns)
406 ninsns = 1; /* To avoid division by zero. */
408 return ninsns;
411 /* Returns expected number of LOOP iterations.
412 Compute upper bound on number of iterations in case they do not fit integer
413 to help loop peeling heuristics. Use exact counts if at all possible. */
414 unsigned
415 expected_loop_iterations (const struct loop *loop)
417 edge e;
419 if (loop->header->count)
421 gcov_type count_in, count_latch, expected;
423 count_in = 0;
424 count_latch = 0;
426 for (e = loop->header->pred; e; e = e->pred_next)
427 if (e->src == loop->latch)
428 count_latch = e->count;
429 else
430 count_in += e->count;
432 if (count_in == 0)
433 expected = count_latch * 2;
434 else
435 expected = (count_latch + count_in - 1) / count_in;
437 /* Avoid overflows. */
438 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
440 else
442 int freq_in, freq_latch;
444 freq_in = 0;
445 freq_latch = 0;
447 for (e = loop->header->pred; e; e = e->pred_next)
448 if (e->src == loop->latch)
449 freq_latch = EDGE_FREQUENCY (e);
450 else
451 freq_in += EDGE_FREQUENCY (e);
453 if (freq_in == 0)
454 return freq_latch * 2;
456 return (freq_latch + freq_in - 1) / freq_in;
460 /* Returns the maximum level of nesting of subloops of LOOP. */
462 unsigned
463 get_loop_level (const struct loop *loop)
465 const struct loop *ploop;
466 unsigned mx = 0, l;
468 for (ploop = loop->inner; ploop; ploop = ploop->next)
470 l = get_loop_level (ploop);
471 if (l >= mx)
472 mx = l + 1;
474 return mx;
477 /* Returns estimate on cost of computing SEQ. */
479 static unsigned
480 seq_cost (rtx seq)
482 unsigned cost = 0;
483 rtx set;
485 for (; seq; seq = NEXT_INSN (seq))
487 set = single_set (seq);
488 if (set)
489 cost += rtx_cost (set, SET);
490 else
491 cost++;
494 return cost;
497 /* The properties of the target. */
499 unsigned target_avail_regs; /* Number of available registers. */
500 unsigned target_res_regs; /* Number of reserved registers. */
501 unsigned target_small_cost; /* The cost for register when there is a free one. */
502 unsigned target_pres_cost; /* The cost for register when there are not too many
503 free ones. */
504 unsigned target_spill_cost; /* The cost for register when we need to spill. */
506 /* Initialize the constants for computing set costs. */
508 void
509 init_set_costs (void)
511 rtx seq;
512 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
513 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
514 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
515 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
516 unsigned i;
518 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
519 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
520 && !fixed_regs[i])
521 target_avail_regs++;
523 target_res_regs = 3;
525 /* These are really just heuristic values. */
527 start_sequence ();
528 emit_move_insn (reg1, reg2);
529 seq = get_insns ();
530 end_sequence ();
531 target_small_cost = seq_cost (seq);
532 target_pres_cost = 2 * target_small_cost;
534 start_sequence ();
535 emit_move_insn (mem, reg1);
536 emit_move_insn (reg2, mem);
537 seq = get_insns ();
538 end_sequence ();
539 target_spill_cost = seq_cost (seq);
542 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
543 number of global registers used in loop. N_USES is the number of relevant
544 variable uses. */
546 unsigned
547 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
549 unsigned regs_needed = regs_used + size;
550 unsigned cost = 0;
552 if (regs_needed + target_res_regs <= target_avail_regs)
553 cost += target_small_cost * size;
554 else if (regs_needed <= target_avail_regs)
555 cost += target_pres_cost * size;
556 else
558 cost += target_pres_cost * size;
559 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
562 return cost;