1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains various simple utilities to analyze the CFG. */
25 #include "coretypes.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
36 /* Store the data structures necessary for depth-first search. */
37 struct depth_first_search_dsS
{
38 /* stack for backtracking during the algorithm */
41 /* number of edges in the stack. That is, positions 0, ..., sp-1
45 /* record of basic blocks already seen by depth-first search */
46 sbitmap visited_blocks
;
48 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
50 static void flow_dfs_compute_reverse_init (depth_first_search_ds
);
51 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds
,
53 static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds
);
54 static void flow_dfs_compute_reverse_finish (depth_first_search_ds
);
55 static bool flow_active_insn_p (rtx
);
57 /* Like active_insn_p, except keep the return value clobber around
61 flow_active_insn_p (rtx insn
)
63 if (active_insn_p (insn
))
66 /* A clobber of the function return value exists for buggy
67 programs that fail to return a value. Its effect is to
68 keep the return value from being live across the entire
69 function. If we allow it to be skipped, we introduce the
70 possibility for register livetime aborts. */
71 if (GET_CODE (PATTERN (insn
)) == CLOBBER
72 && REG_P (XEXP (PATTERN (insn
), 0))
73 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))
79 /* Return true if the block has no effect and only forwards control flow to
80 its single destination. */
83 forwarder_block_p (basic_block bb
)
87 if (bb
== EXIT_BLOCK_PTR
|| bb
== ENTRY_BLOCK_PTR
88 || !bb
->succ
|| bb
->succ
->succ_next
)
91 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
92 if (INSN_P (insn
) && flow_active_insn_p (insn
))
95 return (!INSN_P (insn
)
96 || (JUMP_P (insn
) && simplejump_p (insn
))
97 || !flow_active_insn_p (insn
));
100 /* Return nonzero if we can reach target from src by falling through. */
103 can_fallthru (basic_block src
, basic_block target
)
105 rtx insn
= BB_END (src
);
109 if (target
== EXIT_BLOCK_PTR
)
111 if (src
->next_bb
!= target
)
113 for (e
= src
->succ
; e
; e
= e
->succ_next
)
114 if (e
->dest
== EXIT_BLOCK_PTR
115 && e
->flags
& EDGE_FALLTHRU
)
118 insn2
= BB_HEAD (target
);
119 if (insn2
&& !active_insn_p (insn2
))
120 insn2
= next_active_insn (insn2
);
122 /* ??? Later we may add code to move jump tables offline. */
123 return next_active_insn (insn
) == insn2
;
126 /* Return nonzero if we could reach target from src by falling through,
127 if the target was made adjacent. If we already have a fall-through
128 edge to the exit block, we can't do that. */
130 could_fall_through (basic_block src
, basic_block target
)
134 if (target
== EXIT_BLOCK_PTR
)
136 for (e
= src
->succ
; e
; e
= e
->succ_next
)
137 if (e
->dest
== EXIT_BLOCK_PTR
138 && e
->flags
& EDGE_FALLTHRU
)
143 /* Mark the back edges in DFS traversal.
144 Return nonzero if a loop (natural or otherwise) is present.
145 Inspired by Depth_First_Search_PP described in:
147 Advanced Compiler Design and Implementation
149 Morgan Kaufmann, 1997
151 and heavily borrowed from flow_depth_first_order_compute. */
154 mark_dfs_back_edges (void)
165 /* Allocate the preorder and postorder number arrays. */
166 pre
= xcalloc (last_basic_block
, sizeof (int));
167 post
= xcalloc (last_basic_block
, sizeof (int));
169 /* Allocate stack for back-tracking up CFG. */
170 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
173 /* Allocate bitmap to track nodes that have been visited. */
174 visited
= sbitmap_alloc (last_basic_block
);
176 /* None of the nodes in the CFG have been visited yet. */
177 sbitmap_zero (visited
);
179 /* Push the first edge on to the stack. */
180 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
188 /* Look at the edge on the top of the stack. */
192 e
->flags
&= ~EDGE_DFS_BACK
;
194 /* Check if the edge destination has been visited yet. */
195 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
197 /* Mark that we have visited the destination. */
198 SET_BIT (visited
, dest
->index
);
200 pre
[dest
->index
] = prenum
++;
203 /* Since the DEST node has been visited for the first
204 time, check its successors. */
205 stack
[sp
++] = dest
->succ
;
208 post
[dest
->index
] = postnum
++;
212 if (dest
!= EXIT_BLOCK_PTR
&& src
!= ENTRY_BLOCK_PTR
213 && pre
[src
->index
] >= pre
[dest
->index
]
214 && post
[dest
->index
] == 0)
215 e
->flags
|= EDGE_DFS_BACK
, found
= true;
217 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
)
218 post
[src
->index
] = postnum
++;
221 stack
[sp
- 1] = e
->succ_next
;
230 sbitmap_free (visited
);
235 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
238 set_edge_can_fallthru_flag (void)
246 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
248 e
->flags
&= ~EDGE_CAN_FALLTHRU
;
250 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
251 if (e
->flags
& EDGE_FALLTHRU
)
252 e
->flags
|= EDGE_CAN_FALLTHRU
;
255 /* If the BB ends with an invertible condjump all (2) edges are
256 CAN_FALLTHRU edges. */
257 if (!bb
->succ
|| !bb
->succ
->succ_next
|| bb
->succ
->succ_next
->succ_next
)
259 if (!any_condjump_p (BB_END (bb
)))
261 if (!invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0))
263 invert_jump (BB_END (bb
), JUMP_LABEL (BB_END (bb
)), 0);
264 bb
->succ
->flags
|= EDGE_CAN_FALLTHRU
;
265 bb
->succ
->succ_next
->flags
|= EDGE_CAN_FALLTHRU
;
269 /* Find unreachable blocks. An unreachable block will have 0 in
270 the reachable bit in block->flags. A nonzero value indicates the
271 block is reachable. */
274 find_unreachable_blocks (void)
277 basic_block
*tos
, *worklist
, bb
;
279 tos
= worklist
= xmalloc (sizeof (basic_block
) * n_basic_blocks
);
281 /* Clear all the reachability flags. */
284 bb
->flags
&= ~BB_REACHABLE
;
286 /* Add our starting points to the worklist. Almost always there will
287 be only one. It isn't inconceivable that we might one day directly
288 support Fortran alternate entry points. */
290 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
294 /* Mark the block reachable. */
295 e
->dest
->flags
|= BB_REACHABLE
;
298 /* Iterate: find everything reachable from what we've already seen. */
300 while (tos
!= worklist
)
302 basic_block b
= *--tos
;
304 for (e
= b
->succ
; e
; e
= e
->succ_next
)
305 if (!(e
->dest
->flags
& BB_REACHABLE
))
308 e
->dest
->flags
|= BB_REACHABLE
;
315 /* Functions to access an edge list with a vector representation.
316 Enough data is kept such that given an index number, the
317 pred and succ that edge represents can be determined, or
318 given a pred and a succ, its index number can be returned.
319 This allows algorithms which consume a lot of memory to
320 represent the normally full matrix of edge (pred,succ) with a
321 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
322 wasted space in the client code due to sparse flow graphs. */
324 /* This functions initializes the edge list. Basically the entire
325 flowgraph is processed, and all edges are assigned a number,
326 and the data structure is filled in. */
329 create_edge_list (void)
331 struct edge_list
*elist
;
337 block_count
= n_basic_blocks
+ 2; /* Include the entry and exit blocks. */
341 /* Determine the number of edges in the flow graph by counting successor
342 edges on each basic block. */
343 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
345 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
349 elist
= xmalloc (sizeof (struct edge_list
));
350 elist
->num_blocks
= block_count
;
351 elist
->num_edges
= num_edges
;
352 elist
->index_to_edge
= xmalloc (sizeof (edge
) * num_edges
);
356 /* Follow successors of blocks, and register these edges. */
357 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
358 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
359 elist
->index_to_edge
[num_edges
++] = e
;
364 /* This function free's memory associated with an edge list. */
367 free_edge_list (struct edge_list
*elist
)
371 free (elist
->index_to_edge
);
376 /* This function provides debug output showing an edge list. */
379 print_edge_list (FILE *f
, struct edge_list
*elist
)
383 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
384 elist
->num_blocks
- 2, elist
->num_edges
);
386 for (x
= 0; x
< elist
->num_edges
; x
++)
388 fprintf (f
, " %-4d - edge(", x
);
389 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
390 fprintf (f
, "entry,");
392 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
394 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
395 fprintf (f
, "exit)\n");
397 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
401 /* This function provides an internal consistency check of an edge list,
402 verifying that all edges are present, and that there are no
406 verify_edge_list (FILE *f
, struct edge_list
*elist
)
408 int pred
, succ
, index
;
410 basic_block bb
, p
, s
;
412 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
414 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
416 pred
= e
->src
->index
;
417 succ
= e
->dest
->index
;
418 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
419 if (index
== EDGE_INDEX_NO_EDGE
)
421 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
425 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
426 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
427 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
428 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
429 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
430 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
434 /* We've verified that all the edges are in the list, now lets make sure
435 there are no spurious edges in the list. */
437 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
438 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
442 for (e
= p
->succ
; e
; e
= e
->succ_next
)
449 for (e
= s
->pred
; e
; e
= e
->pred_next
)
456 if (EDGE_INDEX (elist
, p
, s
)
457 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
458 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
460 if (EDGE_INDEX (elist
, p
, s
)
461 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
462 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
463 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
467 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
468 If no such edge exists, return NULL. */
471 find_edge (basic_block pred
, basic_block succ
)
475 for (e
= pred
->succ
; e
; e
= e
->succ_next
)
482 /* This routine will determine what, if any, edge there is between
483 a specified predecessor and successor. */
486 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
490 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
491 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
492 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
495 return (EDGE_INDEX_NO_EDGE
);
498 /* Dump the list of basic blocks in the bitmap NODES. */
501 flow_nodes_print (const char *str
, const sbitmap nodes
, FILE *file
)
508 fprintf (file
, "%s { ", str
);
509 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, {fprintf (file
, "%d ", node
);});
513 /* Dump the list of edges in the array EDGE_LIST. */
516 flow_edge_list_print (const char *str
, const edge
*edge_list
, int num_edges
, FILE *file
)
523 fprintf (file
, "%s { ", str
);
524 for (i
= 0; i
< num_edges
; i
++)
525 fprintf (file
, "%d->%d ", edge_list
[i
]->src
->index
,
526 edge_list
[i
]->dest
->index
);
532 /* This routine will remove any fake predecessor edges for a basic block.
533 When the edge is removed, it is also removed from whatever successor
537 remove_fake_predecessors (basic_block bb
)
541 for (e
= bb
->pred
; e
;)
546 if ((tmp
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
551 /* This routine will remove all fake edges from the flow graph. If
552 we remove all fake successors, it will automatically remove all
553 fake predecessors. */
556 remove_fake_edges (void)
560 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
561 remove_fake_predecessors (bb
);
564 /* This routine will remove all fake edges to the EXIT_BLOCK. */
567 remove_fake_exit_edges (void)
569 remove_fake_predecessors (EXIT_BLOCK_PTR
);
573 /* This function will add a fake edge between any block which has no
574 successors, and the exit block. Some data flow equations require these
578 add_noreturn_fake_exit_edges (void)
583 if (bb
->succ
== NULL
)
584 make_single_succ_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
587 /* This function adds a fake edge between any infinite loops to the
588 exit block. Some optimizations require a path from each node to
591 See also Morgan, Figure 3.10, pp. 82-83.
593 The current implementation is ugly, not attempting to minimize the
594 number of inserted fake edges. To reduce the number of fake edges
595 to insert, add fake edges from _innermost_ loops containing only
596 nodes not reachable from the exit block. */
599 connect_infinite_loops_to_exit (void)
601 basic_block unvisited_block
;
602 struct depth_first_search_dsS dfs_ds
;
604 /* Perform depth-first search in the reverse graph to find nodes
605 reachable from the exit block. */
606 flow_dfs_compute_reverse_init (&dfs_ds
);
607 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
609 /* Repeatedly add fake edges, updating the unreachable nodes. */
612 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
);
613 if (!unvisited_block
)
616 make_edge (unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
617 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
620 flow_dfs_compute_reverse_finish (&dfs_ds
);
624 /* Compute reverse top sort order. */
627 flow_reverse_top_sort_order_compute (int *rts_order
)
634 /* Allocate stack for back-tracking up CFG. */
635 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
638 /* Allocate bitmap to track nodes that have been visited. */
639 visited
= sbitmap_alloc (last_basic_block
);
641 /* None of the nodes in the CFG have been visited yet. */
642 sbitmap_zero (visited
);
644 /* Push the first edge on to the stack. */
645 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
653 /* Look at the edge on the top of the stack. */
658 /* Check if the edge destination has been visited yet. */
659 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
661 /* Mark that we have visited the destination. */
662 SET_BIT (visited
, dest
->index
);
665 /* Since the DEST node has been visited for the first
666 time, check its successors. */
667 stack
[sp
++] = dest
->succ
;
669 rts_order
[postnum
++] = dest
->index
;
673 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
)
674 rts_order
[postnum
++] = src
->index
;
677 stack
[sp
- 1] = e
->succ_next
;
684 sbitmap_free (visited
);
687 /* Compute the depth first search order and store in the array
688 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
689 RC_ORDER is nonzero, return the reverse completion number for each
690 node. Returns the number of nodes visited. A depth first search
691 tries to get as far away from the starting point as quickly as
695 flow_depth_first_order_compute (int *dfs_order
, int *rc_order
)
700 int rcnum
= n_basic_blocks
- 1;
703 /* Allocate stack for back-tracking up CFG. */
704 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
707 /* Allocate bitmap to track nodes that have been visited. */
708 visited
= sbitmap_alloc (last_basic_block
);
710 /* None of the nodes in the CFG have been visited yet. */
711 sbitmap_zero (visited
);
713 /* Push the first edge on to the stack. */
714 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
722 /* Look at the edge on the top of the stack. */
727 /* Check if the edge destination has been visited yet. */
728 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
730 /* Mark that we have visited the destination. */
731 SET_BIT (visited
, dest
->index
);
734 dfs_order
[dfsnum
] = dest
->index
;
739 /* Since the DEST node has been visited for the first
740 time, check its successors. */
741 stack
[sp
++] = dest
->succ
;
743 /* There are no successors for the DEST node so assign
744 its reverse completion number. */
745 rc_order
[rcnum
--] = dest
->index
;
749 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
751 /* There are no more successors for the SRC node
752 so assign its reverse completion number. */
753 rc_order
[rcnum
--] = src
->index
;
756 stack
[sp
- 1] = e
->succ_next
;
763 sbitmap_free (visited
);
765 /* The number of nodes visited should be the number of blocks. */
766 gcc_assert (dfsnum
== n_basic_blocks
);
774 struct dfst_node
**node
;
775 struct dfst_node
*up
;
778 /* Compute a preorder transversal ordering such that a sub-tree which
779 is the source of a cross edge appears before the sub-tree which is
780 the destination of the cross edge. This allows for easy detection
781 of all the entry blocks for a loop.
783 The ordering is compute by:
785 1) Generating a depth first spanning tree.
787 2) Walking the resulting tree from right to left. */
790 flow_preorder_transversal_compute (int *pot_order
)
798 struct dfst_node
*node
;
799 struct dfst_node
*dfst
;
802 /* Allocate stack for back-tracking up CFG. */
803 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
806 /* Allocate the tree. */
807 dfst
= xcalloc (last_basic_block
, sizeof (struct dfst_node
));
812 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
817 ? xcalloc (max_successors
, sizeof (struct dfst_node
*)) : NULL
);
820 /* Allocate bitmap to track nodes that have been visited. */
821 visited
= sbitmap_alloc (last_basic_block
);
823 /* None of the nodes in the CFG have been visited yet. */
824 sbitmap_zero (visited
);
826 /* Push the first edge on to the stack. */
827 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
834 /* Look at the edge on the top of the stack. */
839 /* Check if the edge destination has been visited yet. */
840 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
842 /* Mark that we have visited the destination. */
843 SET_BIT (visited
, dest
->index
);
845 /* Add the destination to the preorder tree. */
846 if (src
!= ENTRY_BLOCK_PTR
)
848 dfst
[src
->index
].node
[dfst
[src
->index
].nnodes
++]
849 = &dfst
[dest
->index
];
850 dfst
[dest
->index
].up
= &dfst
[src
->index
];
854 /* Since the DEST node has been visited for the first
855 time, check its successors. */
856 stack
[sp
++] = dest
->succ
;
859 else if (e
->succ_next
)
860 stack
[sp
- 1] = e
->succ_next
;
866 sbitmap_free (visited
);
868 /* Record the preorder transversal order by
869 walking the tree from right to left. */
872 node
= &dfst
[ENTRY_BLOCK_PTR
->next_bb
->index
];
879 node
= node
->node
[--node
->nnodes
];
880 pot_order
[i
++] = node
- dfst
;
888 for (i
= 0; i
< last_basic_block
; i
++)
895 /* Compute the depth first search order on the _reverse_ graph and
896 store in the array DFS_ORDER, marking the nodes visited in VISITED.
897 Returns the number of nodes visited.
899 The computation is split into three pieces:
901 flow_dfs_compute_reverse_init () creates the necessary data
904 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
905 structures. The block will start the search.
907 flow_dfs_compute_reverse_execute () continues (or starts) the
908 search using the block on the top of the stack, stopping when the
911 flow_dfs_compute_reverse_finish () destroys the necessary data
914 Thus, the user will probably call ..._init(), call ..._add_bb() to
915 add a beginning basic block to the stack, call ..._execute(),
916 possibly add another bb to the stack and again call ..._execute(),
917 ..., and finally call _finish(). */
919 /* Initialize the data structures used for depth-first search on the
920 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
921 added to the basic block stack. DATA is the current depth-first
922 search context. If INITIALIZE_STACK is nonzero, there is an
923 element on the stack. */
926 flow_dfs_compute_reverse_init (depth_first_search_ds data
)
928 /* Allocate stack for back-tracking up CFG. */
929 data
->stack
= xmalloc ((n_basic_blocks
- (INVALID_BLOCK
+ 1))
930 * sizeof (basic_block
));
933 /* Allocate bitmap to track nodes that have been visited. */
934 data
->visited_blocks
= sbitmap_alloc (last_basic_block
- (INVALID_BLOCK
+ 1));
936 /* None of the nodes in the CFG have been visited yet. */
937 sbitmap_zero (data
->visited_blocks
);
942 /* Add the specified basic block to the top of the dfs data
943 structures. When the search continues, it will start at the
947 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data
, basic_block bb
)
949 data
->stack
[data
->sp
++] = bb
;
950 SET_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1));
953 /* Continue the depth-first search through the reverse graph starting with the
954 block at the stack's top and ending when the stack is empty. Visited nodes
955 are marked. Returns an unvisited basic block, or NULL if there is none
959 flow_dfs_compute_reverse_execute (depth_first_search_ds data
)
966 bb
= data
->stack
[--data
->sp
];
968 /* Perform depth-first search on adjacent vertices. */
969 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
970 if (!TEST_BIT (data
->visited_blocks
,
971 e
->src
->index
- (INVALID_BLOCK
+ 1)))
972 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
975 /* Determine if there are unvisited basic blocks. */
976 FOR_BB_BETWEEN (bb
, EXIT_BLOCK_PTR
, NULL
, prev_bb
)
977 if (!TEST_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1)))
983 /* Destroy the data structures needed for depth-first search on the
987 flow_dfs_compute_reverse_finish (depth_first_search_ds data
)
990 sbitmap_free (data
->visited_blocks
);
993 /* Performs dfs search from BB over vertices satisfying PREDICATE;
994 if REVERSE, go against direction of edges. Returns number of blocks
995 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
997 dfs_enumerate_from (basic_block bb
, int reverse
,
998 bool (*predicate
) (basic_block
, void *),
999 basic_block
*rslt
, int rslt_max
, void *data
)
1001 basic_block
*st
, lbb
;
1004 st
= xcalloc (rslt_max
, sizeof (basic_block
));
1005 rslt
[tv
++] = st
[sp
++] = bb
;
1006 bb
->flags
|= BB_VISITED
;
1013 for (e
= lbb
->pred
; e
; e
= e
->pred_next
)
1014 if (!(e
->src
->flags
& BB_VISITED
) && predicate (e
->src
, data
))
1016 gcc_assert (tv
!= rslt_max
);
1017 rslt
[tv
++] = st
[sp
++] = e
->src
;
1018 e
->src
->flags
|= BB_VISITED
;
1023 for (e
= lbb
->succ
; e
; e
= e
->succ_next
)
1024 if (!(e
->dest
->flags
& BB_VISITED
) && predicate (e
->dest
, data
))
1026 gcc_assert (tv
!= rslt_max
);
1027 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1028 e
->dest
->flags
|= BB_VISITED
;
1033 for (sp
= 0; sp
< tv
; sp
++)
1034 rslt
[sp
]->flags
&= ~BB_VISITED
;
1039 /* Computing the Dominance Frontier:
1041 As described in Morgan, section 3.5, this may be done simply by
1042 walking the dominator tree bottom-up, computing the frontier for
1043 the children before the parent. When considering a block B,
1044 there are two cases:
1046 (1) A flow graph edge leaving B that does not lead to a child
1047 of B in the dominator tree must be a block that is either equal
1048 to B or not dominated by B. Such blocks belong in the frontier
1051 (2) Consider a block X in the frontier of one of the children C
1052 of B. If X is not equal to B and is not dominated by B, it
1053 is in the frontier of B. */
1056 compute_dominance_frontiers_1 (bitmap
*frontiers
, basic_block bb
, sbitmap done
)
1061 SET_BIT (done
, bb
->index
);
1063 /* Do the frontier of the children first. Not all children in the
1064 dominator tree (blocks dominated by this one) are children in the
1065 CFG, so check all blocks. */
1066 for (c
= first_dom_son (CDI_DOMINATORS
, bb
);
1068 c
= next_dom_son (CDI_DOMINATORS
, c
))
1070 if (! TEST_BIT (done
, c
->index
))
1071 compute_dominance_frontiers_1 (frontiers
, c
, done
);
1074 /* Find blocks conforming to rule (1) above. */
1075 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
1077 if (e
->dest
== EXIT_BLOCK_PTR
)
1079 if (get_immediate_dominator (CDI_DOMINATORS
, e
->dest
) != bb
)
1080 bitmap_set_bit (frontiers
[bb
->index
], e
->dest
->index
);
1083 /* Find blocks conforming to rule (2). */
1084 for (c
= first_dom_son (CDI_DOMINATORS
, bb
);
1086 c
= next_dom_son (CDI_DOMINATORS
, c
))
1090 EXECUTE_IF_SET_IN_BITMAP (frontiers
[c
->index
], 0, x
,
1092 if (get_immediate_dominator (CDI_DOMINATORS
, BASIC_BLOCK (x
)) != bb
)
1093 bitmap_set_bit (frontiers
[bb
->index
], x
);
1100 compute_dominance_frontiers (bitmap
*frontiers
)
1102 sbitmap done
= sbitmap_alloc (last_basic_block
);
1104 timevar_push (TV_DOM_FRONTIERS
);
1106 sbitmap_zero (done
);
1108 compute_dominance_frontiers_1 (frontiers
, ENTRY_BLOCK_PTR
->succ
->dest
, done
);
1110 sbitmap_free (done
);
1112 timevar_pop (TV_DOM_FRONTIERS
);